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Abstract

We analyze the Condorcet paradox within a strategic bargaining model with ma-

jority voting, exogenous recognition probabilities, and no discounting. Stationary

subgame perfect equilibria (SSPE) exist whenever the geometric mean of the play-

ers’ risk coefficients, ratios of utility differences between alternatives, is at most one.

SSPEs ensure agreement within finite expected time. For generic parameter values,

SSPEs are unique and exclude Condorcet cycles. In an SSPE, at least two players

propose their best alternative and at most one player proposes his middle alternative

with positive probability. Players never reject best alternatives, may reject mid-

dle alternatives with positive probability, and reject worst alternatives. Recognition

probabilities represent bargaining power and drive expected delay. Irrespective of

utilities, no delay occurs for suitable distributions of bargaining power, whereas ex-

pected delay goes to infinity in the limit where one player holds all bargaining power.

Contrary to the case with unanimous approval, a player benefits from an increase in

his risk aversion.
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1 Introduction

Decisions on collective choice problems are often taken by means of majority voting, and

the analysis of majority voting is therefore an important topic in political economy. When

preferences are such that some alternative beats every other feasible alternative in a pair-

wise vote, i.e. there is a Condorcet winner, then this will be the outcome reached for a

huge variety of games that capture the underlying institution. Such would be the case

for instance in models with real-time agenda setting and fixed defaults as in Banks and

Duggan (2000), in models with evolving defaults as studied in Bernheim, Rangel and Rayo

(2006), as well as in the more traditional social choice approach.

Unfortunately, Condorcet winners may not exist and this gives rise to the Condorcet

paradox in which any alternative can be reached from any other by a sequence of alterna-

tives, where each alternative in the sequence beats the previous one by a pairwise majority

vote as has been demonstrated in McKelvey (1976, 1979). It has been shown in the lit-

erature that the occurrence of the Condorcet paradox is not an artifact. Work by Plott

(1967), Rubinstein (1979), Schofield (1983), Cox (1984), and Le Breton (1987) shows that

this paradox occurs generically.

The lack of Condorcet winners is also a frequently observed empirical phenomenon.

Balinski and Laraki (2010) provide a detailed documentation of the occurrence of the

Condorcet paradox in the 1976 Cabernet-Sauvignon wine tasting in Paris, the 1994 general

election of the Danish Folketing, and the 2007 French presidential election. Roessler,

Shelegia, and Strulovici (2013) explain the underdevelopment of the Roman metro system

as a consequence of a Condorcet cycle in the majority preferences over building a metro,

preserving antiquities, and not digging.

In its most simple form the paradox features three players, three alternatives, and

players’ preferences such that a pairwise vote over the alternatives results in a Condorcet

cycle: one pair of players prefers the second alternative to the third alternative, another

pair of players prefers the first alternative to the second alternative, and a third pair of

players prefers the third alternative to the first alternative. Whether and how players reach

an agreement in this case is an open issue. It is the main research question addressed in

this paper.

We take the strategic bargaining approach to analyze the Condorcet paradox, an ap-

proach that is advocated in Baron and Ferejohn (1989) and Banks and Duggan (2000) to

study collective decision problems and that extends the seminal work on bargaining by

Rubinstein (1982) and Binmore (1987). Such an approach makes explicit how alternatives

that are up for voting are selected and how players vote on alternatives, both on and off

the equilibrium path.

In every bargaining round, exogenous and positive recognition probabilities select one
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player who has the right to propose. This recognized player either proposes one of the

three alternatives or gives up the right to propose in which case the bargaining proceeds to

the next round. In the former case, the other players publicly vote in a sequential order.

Majority voting among three players implies that one vote in favor suffices for acceptance,

after which the alternative will be implemented, and players receive their utility. Otherwise,

no alternative is implemented and we proceed to the next round where random selection

determines the next proposer. Perpetual disagreement leads to a utility of zero for all

players.

Our analysis complements the one of Baron and Ferejohn (1989), who use this bar-

gaining protocol to examine the collective decision problem of dividing a surplus, or the

more general framework of coalitional bargaining in Chatterjee, Dutta, Ray, and Sengupta

(1993), which is the relevant case when the players can make arbitrary side-payments and

have utility functions that are linear in the side-payment received. We instead consider the

case where collective decision making concerns the choice out of a finite set of alternatives.

In many cases side-payments are impossible or prohibited, for instance when a government

agency decides on the location of a public facility, chooses what technology to use, and so

on, which would make our model the relevant one to consider.

Apart from offering insights in collective choice problems, our model also applies to

coalition and network formation, and thereby to marriage and roommate problems. Propos-

ing an alternative corresponds to proposing a coalition in a coalition formation context and

to proposing a link in a network formation model. Our model applies to coalition or network

formation without side-payments as well as to situations where the coalition or network is

formed first, and side-payments are made later. This is for instance the perspective taken

in Aumann and Myerson (1988) and Jackson and Wolinsky (1996) in their work on network

formation.

Bloch (1996) studies a sequential game of coalition formation when the division of the

coalitional surplus is fixed and payoffs are defined relative to the whole coalition structure.

Bloch (1996) shows for the rejector-proposes protocol introduced in Selten (1981) that core

stable coalition structures can be attained as a stationary subgame perfect equilibrium of

the game, but that stationary subgame perfect equilibria in pure strategies may fail to

exist when the condition of core stability is violated. When coalitional externalities are

absent, one obtains the class of hedonic games studied in Bloch and Diamantoudi (2011).

They note that, in roommate problems with odd top rings, equilibria in pure strategies do

not exist. When interpreted as a game of coalition formation, our model allows for three

non-trivial coalition structures to form, and the Condorcet cycle in our model is equivalent

to the absence of a core stable coalition structure and the presence of an odd top ring.

We characterize the set of stationary subgame perfect equilibria (SSPE). A subgame
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perfect equilibrium is said to be stationary if the strategy of a player is the same whenever

the player faces the same continuation game. In identifying identical continuation games,

we follow the approach suggested in Maskin and Tirole (2001) for determining the notion

of a stationary strategy. For a foundation of stationary equilibria, we refer to Bhaskar,

Mailath, and Morris (2009).

For reasons similar to Binmore, Rubinstein and Wolinsky (1986), we are interested in

the case where bargaining occurs relatively fast, so where players do not heavily discount

the future. To analyze this case, we derive equilibrium for the limit case where players

do not discount the future at all. Since our equilibria will be described as solutions to

a finite number of equations in the same number of unknowns, for generic values of our

parameters, one can apply the implicit function theorem to derive equilibria nearby the

limit equilibrium as a function of the discount factor.

When a player proposes his middle or worst alternative, it will be accepted for sure by

the player for whom this is the best alternative. Since proposing his middle alternative

strictly dominates proposing his worst alternative, a player will never propose his worst

alternative in an SSPE, and the SSPE utility of a player conditional on being the pro-

poser weakly exceeds the utility of his middle alternative. When a player proposes his best

alternative, it may or it may not be accepted by the player for whom this is the middle

alternative, and it will be rejected by the player for whom this is the worst alternative. A

proposing player thereby effectively faces a trade-off between getting the utility of his mid-

dle alternative for sure and proposing his best alternative, which may result in a rejection

and thereby ultimately in the continuation probability distribution on alternatives.

We show that the continuation utility of a player is at most equal to the utility of

his middle alternative, from which it follows that there is an advantage to propose. This

implies that, except for degenerate cases, a player is never willing to give up his right to

propose. Similarly, a player responding to a proposal consisting of his middle alternative

may accept it, thereby securing the utility of his middle alternative, or may reject it,

ultimately leading to the continuation probability distribution on all the alternatives.

Essentially a player has to make two decisions: by what probability do I propose my

middle alternative and by what probability do I reject my middle alternative when it is

offered to me. We define an equilibrium type by the number of players that propose

their best alternative for sure, as well as the number of players that accept their middle

alternative for sure. We show that across all parameter values seven equilibrium types are

possible, three of which occur for a degenerate set of parameter values only, leaving four

generic equilibrium types.

We find that in the vast majority of cases, a proposer proposes his best alternative.

In two of the generic equilibrium types, all players behave in this way with probability
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one, and in the other two generic equilibrium types two out of three players follow this

behavior, whereas the third player randomizes between proposing his best and proposing his

middle alternative. Rejections of proposals occur more frequently. In two of the generic

equilibrium types, two players out of three reject their middle alternative with positive

probability, and in only one type of equilibrium none of the players rejects his middle

alternative. Still it is the case that in all SSPEs, each proposal is accepted with positive

probability and perpetual disagreement does not occur.

Our main results give a novel perspective on the indeterminacy of the simplest Con-

dorcet paradox when it is embedded in an institutional setting where a recognized player

puts up an alternative for majority voting. We discuss our main results pointwise:

Existence. We derive a very simple condition that is necessary and sufficient for the

existence of an SSPE in mixed strategy profiles. To express this condition, we define a

player’s risk coefficient as the ratio of the utility difference between his best and middle

alternative to the utility difference between his middle and worst alternative. The risk

coefficient of a player is less than or equal to one if and only if the player prefers his

middle alternative to the fair lottery over his best and worst alternative. Risk coefficients

are equal to a particular transformation of the risk limit of Zeuthen (1930) and Harsanyi

(1977). The condition for existence states that the geometric mean of the players’ risk

coefficients should be less than or equal to one. As a side result, we also identify the

smaller subclass of preferences for which pure strategy SSPEs exist.

Agreement within finite time with probability 1. Every SSPE implies a stochastic equi-

librium outcome that can be seen as a lottery over all three alternatives, each with positive

probability. More importantly, the probability of perpetual disagreement is zero. Conse-

quently, each player’s expected equilibrium utility lies strictly between the utility associated

with his worst and best alternative. We also establish the stronger result that each player’s

expected equilibrium utility is at most the utility level of getting the middle alternative for

sure.

Generic uniqueness. For generic parameter values, there is a unique SSPE, though in

degenerate cases multiple SSPE utilities may exist.

Delay depends crucially on the division of bargaining power. In bargaining models a

suitable way to express bargaining power is by the choice of recognition probabilities, where

more bargaining power corresponds to a higher recognition probability. The division of

bargaining power is a key factor to explain expected bargaining delay. For each specification

of the agents’ utility functions it is possible to divide bargaining power in such a way that

no delay occurs at all. At the same time, when almost all the bargaining power goes to a

single agent, expected delay goes to infinity.

Stochastic cycles. Infinite cycles occur according to the logic of the Condorcet paradox
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by assumption. However, within a cooperative game theoretic setting, Chwe (1994) argues

that cycles cannot occur when players are farsighted. We study SSPE cycles in the sense

of whether there is a positive probability that an equilibrium path can result in which all

three alternatives have been proposed and rejected before some alternative is accepted.

Generically, such SSPE cycles do not occur, though SSPE cycles are possible in degenerate

cases.

Risk aversion improves the bargaining position. The general conclusion of the bargain-

ing literature with unanimous approval and side–payments is that risk-aversion undermines

a player’s bargaining position, see e.g. Roth (1985), Safra, Zhou, and Zilcha (1990), and

Kihlstrom, Roth, and Schmeidler (1991). Harrington (1990) shows that without unani-

mous approval this result no longer holds, and when the preferences of players are not too

diverse a higher degree of risk-aversion is beneficial. We investigate changes in risk aversion

in our discrete choice model featuring the Condorcet paradox and obtain an unambiguous

result where we use the criterion of first-order stochastic dominance. A less risk-averse

player does worse in the sense that the probability of attaining his best alternative weakly

decreases, and the probability of attaining his worst alternative weakly increases.

The paper is organized as follows. Section 2 describes the bargaining model and Sec-

tion 3 presents four characteristic examples. Section 4 introduces the notion of SSPE and

characterizes the set of SSPEs as the solutions to a specific system of equations. In that

section, we also derive some of the general properties and reduce the complexity of the

problem at hand. Then, Section 5 analyzes this system by summarizing the various equi-

librium types discussed before. The details of the calculations are relegated to Appendix A.

All the other proofs can be found in Appendix B. Section 6 combines all the results of Sec-

tion 5 and studies the questions of SSPE existence and uniqueness. Section 7 analyzes the

potential for delay and cycles and Section 8 the role of risk aversion. Section 9 concludes.

2 The Model

Three players, labeled i = 1, 2, 3, have to decide which out of three possible outcomes, x1,

x2, and x3, should be implemented. The preferences of the players satisfy the following

restriction

x1 �1,3 x2 �1,2 x3 �2,3 x1. (2.1)

The formulation in (2.1) means that players 1 and 3 prefer the outcome x1 to x2, players

1 and 2 prefer the outcome x2 to x3, and players 2 and 3 prefer the outcome x3 to x1, so

the players are involved in a decision problem that gives rise to the Condorcet paradox. A

naive approach would lead to the claim that majority voting over the alternatives results

in a cycle.
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Here we model majority voting over the alternatives by means of an explicit extensive-

form game. We take the standard non-cooperative bargaining model from the literature,

based on the work by Rubinstein (1982) and in particular Binmore (1987). The same

bargaining protocol has been advocated in Banks and Duggan (2000) to analyze collective

choice problems, and has been used in their work on bargaining in legislatures by Baron

and Ferejohn (1989).

We assume that in each period t some player, say player i, is selected randomly according

to an a priori specified probability distribution. Player i then decides either to make a

proposal to the other two players, i.e. he proposes some outcome xj, or he decides not to

make a proposal, and the players reach period t+ 1. In the latter case, we say that player

i makes proposal x0. In the former case, the other two players vote sequentially.1 To avoid

inessential multiplicity of equilibria, we assume that the player who ranks the outcome

highest, is the first one to vote.2

Table 1 illustrates the order in which players vote given a proposal by some player,

where in the table (xj, i) means that proposal xj is made by player i. If player 1 proposes

x1, then we assume that first player 3 votes and next, conditional on a vote against by

player 3, player 2. After player i makes proposal xj, the first player to respond is denoted

by fji, the second by sji.

Proposal Sequence Proposal Sequence Proposal Sequence

(x1, 1) (3,2) (x1, 2) (1,3) (x1, 3) (1,2)

(x2, 1) (2,3) (x2, 2) (1,3) (x2, 3) (2,1)

(x3, 1) (3,2) (x3, 2) (3,1) (x3, 3) (2,1)

Table 1: The order of voting.

A voter casts a vote either in favor or against xj. If the first voter casts a vote in favor

of xj, then together with the proposer he forms a majority in favor of xj, the outcome xj

is accepted, and bargaining ends. If the first voter votes against xj, then the second voter

is allowed to vote. If the second voter casts a vote in favor of xj, then again a majority is

in favor of xj, the outcome xj is accepted, and bargaining ends. Otherwise, period t+ 1 is

1Simultaneous voting may lead to undesirable equilibria due to coordination failures. For instance, the

case where all players vote in favor of all proposals leads to an equilibrium, as there is no player who can

gain by deviating. To avoid this problem, it is standard to assume either sequential voting or simultaneous

voting with players use stage–undominated voting strategies.
2Suppose player 1 proposes x2, the best outcome for player 2, and suppose that player 3 votes before

player 2. The outcome x2 is the worst outcome for player 3. Player 3 may nevertheless decide to vote in

favor of x2 since he knows that the proposal will be accepted anyhow by player 2 next and is therefore

indifferent as far as his own voting behavior is concerned.
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reached. In period t+ 1 a new proposer is selected, and the entire procedure is repeated.

We assume that the probability of being recognized as a proposer is given by ρ =

(ρ1, ρ2, ρ3) in each period t, where ρ1 +ρ2 +ρ3 = 1 and ρi > 0 is the probability that player

i is recognized.

The preferences of the players are represented by von-Neumann Morgenstern utility

functions. We normalize utilities in such a way that the utility of disagreement forever is

0 for all players.

We are interested in the case where bargaining occurs relatively fast, so players do not

heavily discount the future. To analyze this case, we derive equilibrium for the limit case

where players do not discount the future at all. For generic values of our parameters, one

can apply the implicit function theorem to derive equilibria nearby the limit equilibrium as

a function of the discount factor. Player i’s utility of acceptance of proposal xj in period

t is equal to ui(xj). To satisfy (2.1), we have that

u1(x1) > u1(x2) > u1(x3) ≥ 0, (2.2)

u2(x2) > u2(x3) > u2(x1) ≥ 0, (2.3)

u3(x3) > u3(x1) > u3(x2) ≥ 0. (2.4)

For i = 1, 2, 3, and j = 0, 1, 2, 3, we define uij = ui(xj), uj = (u1
j , u

2
j , u

3
j), u

i = (ui0, u
i
1, u

i
2, u

i
3)>,

and u = (u1, u2, u3). For i = 1, 2, 3, we define bi,mi, and wi as the number of the alternative

related to the best, middle, and worst outcome for player i. For instance, we have b1 = 1,

m2 = 3, and w3 = 2.

Each sequence of proposers, proposals, and votes defines a history. A pure behavioral

strategy of a player assigns an action to each history where he has to take a decision, and

mixed behavioral strategies are defined in the usual way. Every strategy implies a prob-

ability distribution (π0, π1, π2, π3) over the four possible final outcomes, being perpetual

disagreement, agreement on x1, agreement on x2, and agreement on x3. Any mixed strat-

egy therefore implies expected payoffs that are a weighted average of uj, j = 0, 1, 2, 3, with

weights πj. Note that π0 > 0 implies a positive probability of the players’ worst possible

outcome of perpetual disagreement.

Utility functions u and recognition probabilities ρ satisfying (2.2)–(2.4) determine a

game G = (u, ρ) in extensive form. The class of all such games is denoted G.

3 Four Characteristic Examples

In this section we present four examples that give rise to the four equilibrium types that

occur across generic parameter values. We will show in Section 5 that up to degeneracies,

the four examples represent all the possible cases.
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Assume players use strategies that are time and history independent. We use pibi ,

pimi
, and piwi

to denote the probability that player i proposes his best, middle, and worst

alternative, respectively. In this section we ignore the possibility that player i proposes x0,

i.e. gives up the right to propose, so pibi + pimi
+ piwi

= 1. Similarly, we use aibi , a
i
mi
, and

aiwi
to denote the probability that player i accepts his best, middle, and worst alternative,

respectively, when offered to him, so 0 ≤ abi ≤ 1, 0 ≤ ami
≤ 1, and 0 ≤ awi

≤ 1.

For all the examples in this section, we assume that recognition probabilities are uni-

form, i.e. every player is recognized with probability 1/3 to be the proposer. Table 2

presents Example 3.1, a typical case where the Condorcet paradox applies.

u1 u2 u3 p1 p2 p3 a1 a2 a3

x1 3 0 2 1 0 0 1 0 1

x2 2 3 0 0 1 0 1 1 0

x3 0 2 3 0 0 1 0 1 1

Table 2: Parameter values and equilibrium strategies in Example 3.1.

In Example 3.1, if a player i proposes his middle alternative, he is sure it will be

accepted by the player for whom this is the best alternative. It follows that conditional on

being the proposer, his payoff is at least uimi
. It is then clear that no player would like to

propose his worst alternative, since it would be accepted by the player for whom this is the

best alternative, leading to a payoff uiwi
. On the other hand, it is not a priori clear what

happens if a player proposes his best alternative. For sure it will be rejected by the player

for whom this is the worst alternative. However, the player for whom this is the middle

alternative may or may not accept it.

Consider for Example 3.1 the pure strategy combination illustrated in Table 2 where

every player proposes his best alternative for sure and always accepts his middle and best

alternative when offered to him. At this strategy combination there is immediate agreement

and all outcomes occur with probability 1/3.

We claim, and prove formally later on in Theorem A.4.4, that such a strategy com-

bination is an equilibrium. The intuition following from the consideration of one-stage

deviations is as follows. When a player is selected as a proposer, he obtains a utility of 3

and clearly has no incentive to deviate. When a player has to vote on his middle alternative

he gets a utility of 2 when he follows the equilibrium strategy. A one-shot deviation to

a rejection leads to a uniform probability distribution on each outcome, giving rise to an

expected utility of 5/3, and is therefore not attractive.

Table 3 presents Example 3.2. The only modification in this example when compared

to Example 3.1 is that the utility of the middle alternative of player 2 has dropped from
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u1 u2 u3 p1 p2 p3 a1 a2 a3

x1 3 0 2 1 0 0 1 0 1

x2 2 3 0 0 1 0 1/2 1 0

x3 0 1 3 0 0 1 0 1/2 1

Table 3: Parameter values and equilibrium strategies in Example 3.2.

2 to 1. The pure strategy combination of Example 3.1 is no longer an equilibrium. The

reason is that player 2 no longer has an incentive to accept when the middle alternative

is offered to him. Indeed, accepting leads to a utility of 1, whereas a one-shot deviation

to rejection gives rise to the uniform probability distribution on all alternatives, and an

expected utility of 4/3. The problem, in a sense, is that the continuation utility is too

favorable for player 2. In order to make him accept his middle alternative, he should be

disciplined by rejections of his proposal x2 by player 1. Indeed, if player 1 rejects an offer

of x2 with probability 1/2, the ex ante probabilities π1 and π2 of outcomes x1 and x2 are

proportional to (2/3, 1/3), so the continuation utility of player 2 following a rejection is 1,

as desired to make player 2 indifferent between accepting and rejecting x3.

If player 2 would accept x3 for sure, then player 1 has no incentives to reject x2 with

probability 1/2. Indeed, following a rejection the expected continuation utility of player 1

is below 2 since the outcomes x1 and x3 are occurring with equal probability. To improve

upon the continuation utility of player 1, player 2 should reject x3 with probability 1/2

when offered to him, making outcomes x1 and x3 occur with probability proportional to

(2/3, 1/3), making player 1 indifferent between accepting and rejecting x2. The equilibrium

strategy combination is given in Table 3. It is formally proved to be an equilibrium in

Theorem A.4.2. In this case there is agreement with probability 2/3 per bargaining round

and the players reach an agreement within finite time with probability 1. It is impossible

that cycles across players occur because the proposal x3 by player 3 is accepted for sure

by player 1.

We turn next to Example 3.3, which is illustrated in Table 4. It has a similar structure

as Example 3.2, except that the ratio of the utility differences between best and middle,

and middle and worst, have gone down for players 1 and 3 from 1/3 to 1/4, and for

player 2 from 2 to 5/4. These ratios will be formally defined in Section 4 and are called

risk coefficients. Risk coefficients are a crucial tool to understand the strategic situation

of the players involved in the bargaining process. One of our main results is for instance

that equilibria exist if and only if the product of the risk coefficients, or equivalently,

their geometric mean, is less than or equal to 1, a property that is readily verified for the

examples of this section.
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u1 u2 u3 p1 p2 p3 a1 a2 a3

x1 5 0 4 1 0 1/4 1 0 1

x2 4 9 0 0 1 0 1 1 0

x3 0 4 5 0 0 3/4 0 4/7 1

Table 4: Parameter values and equilibrium strategies in Example 3.3.

Suppose we had the same equilibrium type as in Example 3.2. As before Player 2

has to be disciplined in order to accept x3. If player 1 rejects x2 with probability 1/5,

we have π1 : π2 = 5/9 : 4/9, which leads to an expected continuation utility of 4 for

player 2 following a rejection, which makes him indifferent between accepting and rejecting

x2, as desired. To make player 1 willing to reject x2, his continuation utility following a

rejection should be brought up to 4, which can be achieved by having player 2 reject x3 with

probability 3/4. The resulting strategy profile results in (π1, π2, π3) = (20/41, 16/41, 5/41).

However, now player 3 is no longer willing to propose x3. Proposing x3 leads to acceptance

and utility 5 with probability 1/4, but to rejection and utility 105/41 with probability 3/4.

The expected utility is then below 4, which player 3 could obtain by proposing x1.

The alternative to make player 2 accept x3 is to have player 3 randomize between

proposing x1 and x3. Indeed, if player 3 proposes x1 with probability 1/4 and x3 with

probability 3/4, we have π1 : π2 = 5/9 : 4/9, which makes player 2 indifferent between

accepting and rejecting x3. To make player 3 willing to randomize between proposing x1

and proposing x3, his proposal x3 should be rejected by player 2 with probability 3/7. We

then have (π1, π2, π3) = (35/75, 28/75, 12/75), and player 3 is indeed indifferent between

proposing x1 and getting utility 4 for sure, or proposing x3, getting an acceptance and a

utility of 5 with probability 4/7, and getting a rejection and an expected utility of 8/3 with

probability 3/7. We have derived the strategy profile presented in Table 4. It is proved to

be an equilibrium in Theorem A.3.2. We can make similar observations as in Example 3.2.

An agreement is reached in finite time with probability 1 and Condorcet cycles do not

occur.

We finally turn to Example 3.4. It is identical to Example 3.3, except that the risk

coefficient of player 2 has gone up from 5/4 to 2. Suppose we had the same equilibrium

type as in Example 3.3, so we have player 3 mix between proposing x1 and x3.

To make player 2 indifferent between accepting and rejecting x3, player 3 should propose

x1 with probability 1. However, since now π3 = 0, player 1 will only accept the proposal x2

by player 2 if π1 = 0, which is not possible, since player 3 proposes x1 with probability 1.

To make player 2 indifferent between accepting and rejecting x3, we need a combination

of player 3 randomizing between proposing x1 and x3, and by having player 1 rejecting
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u1 u2 u3 p1 p2 p3 a1 a2 a3

x1 5 0 4 1 0 1/3 1 0 1

x2 4 3 0 0 1 0 2/3 1 0

x3 0 1 5 0 0 2/3 0 1/2 1

Table 5: Parameter values and equilibrium strategies in Example 3.4.

x2 with positive probability. Moreover, to make player 3 willing to propose x1, we need

player 2 to reject x3 with positive probability. Solving the resulting system of equations,

leads to the equilibrium strategy in Table 5. This strategy profile is proved to be an

equilibrium in Theorem A.3.1. Also in this example, the Condorcet paradox is resolved.

We will show in Section 5 that up to degeneracies, the four examples represent all the

possible cases, even when recognition probabilities are not required to be uniform. Except

for degenerate cases, it holds that the equilibrium either has the structure of Example 3.1

with all players proposing their best alternative and accepting their middle alternative for

sure, or the structure of Example 3.2 with all players proposing their best alternative,

one player accepting his middle alternative for sure and two players randomizing between

acceptance and rejection of their middle alternative, or the structure of Example 3.3 with

one player randomizing between proposing his best and middle alternative, and a positive

chance of a rejection when he chooses to propose his best alternative, or the structure of

Example 3.4 with one player randomizing between proposing his best and middle alterna-

tive, and the other two players randomizing between accepting and rejecting their middle

alternative.

We see that players propose their best alternative in the vast majority of cases, either

since we are in a situation like Example 3.1 or 3.2 where all players propose their best

alternative for sure, or since we are in a situation like Example 3.3 or 3.4 where two out of

three players propose their best alternative for sure and the third player proposes his best

alternative with positive probability. It is also clear that a player who proposes his middle

alternative with positive probability, expects rejections with positive probability when he

proposes his best alternative. Such a player will never reject when his middle alternative is

proposed to him. Also, as Example 3.2 demonstrates, even if everybody proposes his best

alternative, rejections can occur, but there is at most one player who considers to do so.

Finally, when a player proposes his best alternative, it is never rejected for sure, but there

is always a positive probability that it be accepted.

We will show in Section 6 that for generic parameter values equilibria are unique. The

equilibrium strategies exhibited in the examples are the only equilibrium strategies.
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4 Stationary Subgame Perfect Equilibria

We analyze the extensive-form game of Section 2 by examining its stationary subgame

perfect equilibria. Suppose a player has to take an action at two subgames that are iso-

morphic. Then stationarity requires that the player take the same probability mix over

actions in both subgames. In defining two subgames to be isomorphic, we follow the ap-

proach of Maskin and Tirole (2001), which corresponds to the coarsest way of doing so. A

subgame perfect equilibrium in stationary strategies is called a stationary subgame perfect

equilibrium (SSPE).

Since the continuation game following the selection of a proposer is history independent,

we can restrict ourselves to strategies where the proposal is history independent. We denote

by pij the probability that player i proposes xj when he is recognized as proposer. Since the

continuation game following a proposal by some player depends only on the proposal made

and the identity of the proposer, the rejection probability may only depend on the identity

of the proposer and the proposal made, but not on any other aspect of the history. The

continuation game starting with the last responder to a proposal depends on the proposal

made, but does not depend on the identity of the proposer. We therefore require the

response of the last responder to be independent of the identity of the proposer.

The probability that player i rejects a proposal xj by player h is denoted rijh. As

explained in the previous paragraph, the notion of a stationary strategy imposes the re-

quirement r1
32 = r1

33, r
2
11 = r2

13, and r3
21 = r3

22. For notational simplicity, we define ri0h = 1.

We define the set P of admissible proposals by P = P 1 × P 2 × P 3, where

P i = {pi ∈ R4
+ |

∑
j=0,1,2,3

pij = 1}, i = 1, 2, 3,

and the set R of admissible rejection probabilities by R = R1 ×R2 ×R3, where

Ri = {ri ∈ [0, 1]4×2 | for h, h′ 6= i, ri0h = 1 and riwih
= riwih′

}.

Given stationary strategies, we can compute the expected utilities of the players. It will be

useful to do so conditional on the identity of the proposer. The expected utility of player i

conditional on the proposer being player h is denoted by vih. Unconditional expected utility

of player i is zi and satisfies zi =
∑3

h=1 ρhv
i
h.

Stationarity of the strategies implies that the following recursive system holds,

vih =
3∑
j=0

phj (1− rh−1
jh rh+1

jh )uij +
3∑
j=0

phj r
h−1
jh rh+1

jh zi, i = 1, 2, 3, h = 1, 2, 3, (4.1)

zi =
3∑

h=1

ρhv
i
h, i = 1, 2, 3. (4.2)

12



In the definition of rejection probabilities above, we identify player 0 with player 3, and

player 4 with player 1. Equation (4.1) expresses that the expected utility of player i

conditional on the proposer being player h is equal to the sum over all proposals of the

probability that player h makes this proposal and that it is accepted by the other players

times the utility of the proposal plus the probability that player h makes a proposal that

is rejected times the continuation utility zi.

For the remainder of this section, let (p, r) be an SSPE inducing continuation utilities

v and z. No player has a profitable deviation at any decision node, so in particular, no

player has a profitable one-shot deviation at any decision node. The absence of a profitable

one-shot deviation is equivalent to the following set of implications, where in (4.3) it holds

that i ∈ {1, 2, 3} and j ∈ {0, 1, 2, 3},

pij > 0 ⇒ (1− ri−1
ji r

i+1
ji )uij + ri−1

ji r
i+1
ji z

i = max
k∈{0,1,2,3}

(1− ri−1
ki r

i+1
ki )uik + ri−1

ki r
i+1
ki z

i, (4.3)

rijh > 0 ⇒ zi ≥ uij or ri
′

jh = 0, j = 1, 2, 3, h = 1, 2, 3, i = fjh, i
′ = sjh, (4.4)

rijh < 1 ⇒ zi ≤ uij or ri
′

jh = 0, j = 1, 2, 3, h = 1, 2, 3, i = fjh, i
′ = sjh, (4.5)

rijh > 0 ⇒ zi ≥ uij, j = 1, 2, 3, h = 1, 2, 3, i = sjh, (4.6)

rijh < 1 ⇒ zi ≤ uij, j = 1, 2, 3, h = 1, 2, 3, i = sjh. (4.7)

Equality (4.3) expresses that a proposal that is made with positive probability maximizes

the sum of instantaneous and continuation utility. We obtain (4.4) by observing that

rijh > 0 implies (1 − ri′jh)uij + ri
′

jhz
i ≥ uij; the utility to player i of rejecting proposal j by

player h should weakly exceed the utility of acceptance. This inequality is equivalent to

zi ≥ uij or ri
′

jh = 0. The derivation of (4.5)–(4.7) is analogous. Observe that (4.4)–(4.5)

correspond to the cases where player i is the first voter to accept or reject a proposal, and

(4.6)–(4.7) to the cases where player i is the second voter to make such a decision.

We now derive several properties of SSPEs, thereby reducing (4.3)–(4.7) to a consider-

ably simpler system. The first property states that forever delay with probability 1 is not

an SSPE. Indeed, forever delay with probability 1 implies, for every i, zi = 0 and vi = 0.

By (4.3), player 1 should obtain expected utility 0 from proposing x1, which can only be

the case if r2
11 = r3

11 = 1. By (4.4), r3
11 = 1 implies z3 ≥ u3

1 or r2
11 = 0. This leads to a

contradiction as z3 = 0 < u3
1 and r2

11 = 1. It follows that forever delay with probability 1

is not an SSPE.

We have derived that some player makes with positive probability a proposal that is

accepted with positive probability. Since such a player is recognized with positive probabil-

ity, the probability that negotiations have not terminated at period t goes to zero as t goes

to infinity. In other words, at any SSPE there is an agreement in finite time with probabil-

ity 1. In SSPE, even perfectly patient players do not cycle forever with positive probability.
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Theorem 4.1 It holds that π0 = 0, every SSPE leads to agreement in finite time with

probability 1.

Since π0 = 0, each zi is therefore a weighted average of uij, j = 1, 2, 3, with πj ∈ [0, 1]

such that π1 + π2 + π3 = 1 independent of i. It holds in particular that πj > 0 for some

j = 1, 2, 3 and (z1, z2, z3) 6= 0.

This result shows that bargaining under exogenous recognition probabilities is a road

map to overcome the Condorcet paradox. Given the indeterminacy of many cooperative

theories about the Condorcet paradox, this result already suggests a great potential in

further elaborating the bargaining approach.

Conditions (4.1)–(4.7) are necessary conditions for an SSPE. For games with discount-

ing, these necessary conditions are also sufficient. Since we abstain from discounting, we

need the slightly stronger necessary and sufficient conditions as presented in Theorem 4.2.

Theorem 4.2 The strategy profile (p, r) ∈ P × R is an SSPE if and only if there is h

such that
∑3

j=0 p
h
j r
h−1
jh rh+1

jh < 1 and there is v ∈ R3×3 and z ∈ R3 such that (4.1)–(4.7) hold.

In the next step, we use the characterization of SSPE given in Theorem 4.2 to derive a

number of intuitive properties that equilibria should satisfy.

Theorem 4.3 Let the strategy profile (p, r) be an SSPE with continuation utilities z

and outcome probability distribution π. Then

piwi
= 0, i = 1, 2, 3, (4.8)

riwih
= 1, i = 1, 2, 3, h 6= i, (4.9)

r2
21 = r3

32 = r1
13 = 0, (4.10)

r2
31r

3
31 = r1

12r
3
12 = r1

23r
2
23 = 0, (4.11)

zi > uiwi
, i = 1, 2, 3, (4.12)

zi < uibi , i = 1, 2, 3, (4.13)

π1, π2, π3 > 0. (4.14)

According to (4.12), each player i has zi strictly exceeding the utility uiwi
of his worst

outcome and, according to (4.13), has zi strictly lower than the utility of his best outcome,

uibi . It then follows that any voter rejects his worst alternative for sure as expressed in (4.9).

It follows from (4.10) that the middle alternative is accepted by the player for whom this

is the best alternative, whereas (4.11) claims that proposing the worst alternative leads

to an acceptance. The recognized player can therefore always conclude the bargaining for
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sure by proposing his worst or his middle alternative. As a corollary, a recognized player

will never propose his worst alternative, because he can do strictly better by proposing his

middle alternative, and (4.8) follows. Finally, (4.14) states that, ex ante, every alternative

is accepted with strictly positive probability.

The next result claims that there is no loss of generality in restricting the analysis to

proposer-independent rejection probabilities.

Theorem 4.4 If (p, r) ∈ P × R is an SSPE inducing utilities v and z, then there is

also an SSPE (p, r̄) ∈ P ×R inducing utilities v and z such that r̄ is proposer-independent,

i.e. r̄ijh = r̄ijh′ for all i, j, h, and h′. Moreover, r̄ can be defined by setting, for i = 1, 2, 3,

r̄ibii+1 = 0, r̄imii−1 = rimii+1, and r̄ijh = rijh, otherwise.

By virtue of Theorem 4.4, we may drop the subscript indicating the proposer from the

notation of a rejection probability. It is also more convenient now to express all equations in

terms of acceptance probabilities rather than rejection probabilities. The set of proposer-

independent acceptance probabilities is A = A1 × A2 × A3, where

Ai = {ai ∈ [0, 1]4 | ai0 = 0}.

It follows from Theorem 4.3 that at an SSPE (p, ā) ∈ P ×A, for every player i, piwi
= 0,

āiwi
= 0, and āibi = 1. The only variables that have not yet been determined are pi0, p

i
mi
, pibi ,

and āimi
. It seems intuitive that the recognized player is better off making some proposal

instead of not making a proposal, so pi0 should be equal to 0. As we will show in Section A.1,

for some parameter values we can have pi0 > 0 for some i. In such cases, however, there

also exists an SSPE (p̄, ā) ∈ P × A with p̄i0 = 0 for all players i that yields exactly the

same utilities. This implies that in characterizing the set of SSPEs, we may first search

for SSPEs (p̄, ā) ∈ P × A with p̄i0 = 0 for all players i. Indeed, if (p, ā) is an SSPE with

pi0 6= 0 for some i, then (p̄, ā) is also an SSPE, where p̄ibi = pibi + pi0, p̄
i
0 = 0, and p̄ij = pij for

j 6= 0, bi. By the definition of SSPE it should not be profitable to propose xbi instead of x0.

This means that either xbi is rejected with probability 1 when proposed or zi = uibi . The

latter case contradicts (4.13), so we only have to consider the former case. Since we are

considering SSPEs, the change in strategy from not making a proposal to proposing one’s

best outcome, which is rejected with probability 1, is not affecting the payoffs of anyone,

and is also an SSPE.

The next proposition gives an easy characterization of SSPEs (p̄, ā) ∈ P ×A where no

player gives up the right to make a proposal, i.e. p̄i0 = 0 for all players i.

Theorem 4.5 The strategy profile (p̄, ā) ∈ P × A is an SSPE where all players make

a proposal with probability one if and only if for i = 1, 2, 3, p̄i0 = p̄iwi
= 0, āibi = 1, āiwi

= 0,
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and there is π̄ ∈ R3
++ and z̄ ∈ R3 such that

p̄imi
> 0⇒ uimi

≥ āi−1
mi−1

uibi + (1− āi−1
mi−1

)z̄i, i = 1, 2, 3, (4.15)

p̄ibi > 0⇒ āi−1
mi−1

uibi + (1− āi−1
mi−1

)z̄i ≥ uimi
, i = 1, 2, 3, (4.16)

āimi
< 1⇒ z̄i ≥ uimi

, i = 1, 2, 3, (4.17)

āimi
> 0⇒ z̄i ≤ uimi

, i = 1, 2, 3, (4.18)

π̄1u
i
1 + π̄2u

i
2 + π̄3u

i
3 = z̄i, i = 1, 2, 3, (4.19)

π̄1 + π̄2 + π̄3 = 1, (4.20)

π̄1 : π̄2 = ρ1p̄
1
b1
ā3

1 + ρ3p̄
3
m3

: ρ2p̄
2
b2
ā1

2 + ρ1p̄
1
m1
, (4.21)

π̄2 : π̄3 = ρ2p̄
2
b2
ā1

2 + ρ1p̄
1
m1

: ρ3p̄
3
b3
ā2

3 + ρ2p̄
2
m2
. (4.22)

5 Equilibrium Types

The results of the previous section show that player i faces two dilemmas. First, by what

probability pimi
will I propose my middle alternative xmi

knowing it will be accepted for

sure instead of taking the risk involved in proposing my best alternative. Second, by what

probability aimi
will I accept my middle alternative xmi

when offered to me knowing that

rejecting it leads to a gamble over my top three alternatives including my worst. These

dilemmas concern the SSPE values of pimi
and aimi

that also pin down pibi = 1− pimi
.

The answer to the first dilemma results in four possible types of equilibrium. The first

one is where all players i have a positive p̄imi
. This case is analyzed in Appendix A.1. The

other types of equilibria are characterized by two, one, and none of the players having a

positive p̄imi
and are treated in Appendix A.2, A.3, and A.4, respectively. The answer to the

second dilemma is intimately related to the value of the equilibrium continuation utility z̄i.

We will show that all SSPEs have the property that z̄i ≤ uimi
. Then it follows that āimi

= 1

if z̄i < uimi
, whereas values for āimi

strictly below 1 are admitted when z̄i = uimi
.

Theorem A.1 collects the conditions under which an SSPE with three players having a

positive p̄imi
exists. These conditions hold in degenerate cases only. Moreover, in any such

SSPE it holds that z̄i = uimi
for all players i. We show that SSPEs with two players having

a positive p̄imi
do not exist. For the case with one of the players having a positive p̄imi

there exist two equilibrium subtypes, depending on the number of players with z̄i = uimi
.

These subtypes are treated in the subsections A.3.1, when there is one such player, and

A.3.2, when there are two such players. Theorem A.3.1 and A.3.2 provide conditions under

which such SSPEs exist. For the case with none of the players having a positive p̄imi
there

exist four equilibrium subtypes, again depending on the number of players with z̄i = uimi
.
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Theorem Example Proposals Utilities Occurrence

A.1 p̄1
2 > 0 p̄2

3 > 0 p̄3
1 > 0 z̄1 = u1

2 z̄2 = u2
3 z̄3 = u3

1 Degenerate

A.3.1 3.4 p̄1
2 = 0 p̄2

3 = 0 p̄3
1 > 0 z̄1 = u1

2 z̄2 = u2
3 z̄3 < u3

1

p̄1
2 = 0 p̄2

3 > 0 p̄3
1 = 0 z̄1 = u1

2 z̄2 < u2
3 z̄3 = u3

1

p̄1
2 > 0 p̄2

3 = 0 p̄3
1 = 0 z̄1 < u1

2 z̄2 = u2
3 z̄3 = u3

1

A.3.2 3.3 p̄1
2 = 0 p̄2

3 = 0 p̄3
1 > 0 z̄1 < u1

2 z̄2 = u2
3 z̄3 < u3

1

p̄1
2 = 0 p̄2

3 > 0 p̄3
1 = 0 z̄1 = u1

2 z̄2 < u2
3 z̄3 < u3

1

p̄1
2 > 0 p̄2

3 = 0 p̄3
1 = 0 z̄1 < u1

2 z̄2 < u2
3 z̄3 = u3

1

A.4.1 p̄1
2 = 0 p̄2

3 = 0 p̄3
1 = 0 z̄1 = u1

2 z̄2 = u2
3 z̄3 = u3

1 Degenerate

A.4.2 3.2 p̄1
2 = 0 p̄2

3 = 0 p̄3
1 = 0 z̄1 = u1

2 z̄2 = u2
3 z̄3 < u3

1

p̄1
2 = 0 p̄2

3 = 0 p̄3
1 = 0 z̄1 = u1

2 z̄2 < u2
3 z̄3 = u3

1

p̄1
2 = 0 p̄2

3 = 0 p̄3
1 = 0 z̄1 < u1

2 z̄2 = u2
3 z̄3 = u3

1

A.4.3 p̄1
2 = 0 p̄2

3 = 0 p̄3
1 = 0 z̄1 = u1

2 z̄2 < u2
3 z̄3 < u3

1 Degenerate

p̄1
2 = 0 p̄2

3 = 0 p̄3
1 = 0 z̄1 < u1

2 z̄2 = u2
3 z̄3 < u3

1 Degenerate

p̄1
2 = 0 p̄2

3 = 0 p̄3
1 = 0 z̄1 < u1

2 z̄2 < u2
3 z̄3 = u3

1 Degenerate

A.4.4 3.1 p̄1
2 = 0 p̄2

3 = 0 p̄3
1 = 0 z̄1 < u1

2 z̄2 < u2
3 z̄3 < u3

1

Table 6: Characteristics of the various types of equilibrium.

These subtypes are treated in the Subsections A.4.1, A.4.2, A.4.3, and A.4.4 of Appendix

A.4, where Subsection A.4.k treats the case when there are k − 1 players with z̄i = uimi
.

Theorem A.4.1, A.4.2, A.4.3, and A.4.4 collect the conditions under which such SSPEs

exist.

Table 6 summarizes the characteristics of the SSPEs as found in the Appendix. The

equilibrium types and subtypes lead to a total of seven cases, with three cases being

degenerate. The cases A.3.1, A.3.2, A.4.1, and A.4.2 have three rows, corresponding to

permutations of the players’ roles. Four cases, A.3.1, A.3.2, A.4.2, and A.4.4, are robust

in the sense of having positive Lebesgue measure in the parameter space. Case A.4.4

corresponds to an SSPE in pure strategies.

Table 7 shows the conditions for which particular types of equilibria exist. To explain

these conditions, it is instructive to define the risk coefficient αi of player i by

αi =
uibi − u

i
mi

uimi
− uiwi

, i = 1, 2, 3.

Moreover, for notational convenience, we define

β1 =
1− α1α2α3

α1 + α1α3 + α1α2α3

, β2 =
1− α1α2α3

α2 + α1α2 + α1α2α3

, and β3 =
1− α1α2α3

α3 + α2α3 + α1α2α3

.
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Theorem Example Conditions on α Conditions on ρ Occurrence

A.1 α1α2α3 = 1 Degenerate

A.3.1 3.4 α1α2α3 < 1 ρ1
ρ3
< β1 ρ2 ≥ α3β3

ρ3
ρ2
< β3 ρ1 ≥ α2β2

ρ2
ρ1
< β2 ρ3 ≥ α1β1

A.3.2 3.3 α1α2α3 < 1 ρ1
ρ2
< α2 ρ2 < α3β3

ρ3
ρ1
< α1 ρ1 < α2β2

ρ2
ρ3
< α3 ρ3 < α1β1

A.4.1 α1α2α3 = 1 Degenerate

A.4.2 3.2 α1α2α3 < 1 ρ1
ρ3
≥ β1

ρ1
ρ2
≤ α2

ρ3
ρ1
≥ α1

ρ3
ρ2
≥ β3

ρ3
ρ1
≤ α1

ρ2
ρ3
≥ α3

ρ2
ρ1
≥ β2

ρ2
ρ3
≤ α3

ρ1
ρ2
≥ α2

A.4.3 α1α2α3 < 1 ρ3
ρ1

= α1 ρ1 <
1

1+α1+α1α3
Degenerate

ρ1
ρ2

= α2 ρ2 <
1

1+α2+α1α2
Degenerate

ρ2
ρ3

= α3 ρ3 <
1

1+α3+α2α3
Degenerate

A.4.4 3.1 α1α2α3 < 1 ρ1
ρ2
> α2

ρ2
ρ3
> α3

ρ3
ρ1
> α1

Table 7: Conditions under which various types of equilibria exist.

Table 7 demonstrates that the conditions for SSPE existence can be formulated in terms

of the players’ risk coefficients (since also βi can be expressed in terms of α1, α2, and α3)

and the recognition probability vector ρ only.

The risk coefficient is closely related to the concept of risk limit as introduced in Zeuthen

(1930) and further developed in Harsanyi (1977). The risk limit is defined in a setting with

two players and three outcomes. There is the outcome proposed by the player himself, say

y1, the outcome proposed by his opponent, say y2, and the disagreement outcome, say y0.

The risk limit of a player is then defined as the probability on the disagreement outcome

for which he would be indifferent between getting the disagreement outcome with that

probability and y1 with the remaining probability, and getting outcome y2 for sure. In a

formula the risk limit ` is given by

` =
u(y1)− u(y2)

u(y1)− u(y0)
.

This paper involves three players and four alternatives (we now count the disagreement

outcome as one alternative), so the risk limit is not directly applicable. However, if we

define y1 as the best alternative xbi for player i, y2 as his middle alternative xmi
, and y0 as
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his worst alternative xwi
, then a straightforward calculation reveals that

`i =
αi

1 + αi
.

Alternatively, we can write αi = `i/(1− `i).
A player i who is indifferent between getting xmi

for sure and a fair lottery on xbi and

xwi
has a risk coefficient of 1. A player with a risk coefficient above 1 prefers the lottery,

a player with a risk coefficient below 1 prefers getting his middle outcome for sure. It is

immediate from Table 7 that the a necessary condition for SSPE existence is α1α2α3 ≤ 1,

or equivalently, 3
√
α1α2α3 ≤ 1. In words this condition expresses that the geometric mean

of the players’ risk coefficients is less than or equal to 1. In the next section this condition

is also shown to be sufficient for SSPE existence.

The robust cases have the following defining characteristics: First, conditional on being

recognized, at most one player randomizes between his best and middle alternative, and the

other players always propose their best alternative for sure. To put it differently, at most

one player proposes cautiously and the others aggressively. Second, the number of players

who propose their best alternative and get it accepted for sure can be any number ranging

from one to three, but it cannot be zero. Third, at the start of any bargaining round

during ongoing negotiations, all players can realize, in expectation, an SSPE utility that is

at most the utility of the middle alternative, so z̄i ≤ uimi
. In case the inequality is strict,

player i accepts his middle alternative for sure, whenever it is on the table. In any SSPE,

this will provoke player i+ 1, for whom mi is the best alternative, to propose aggressively

whenever he is recognized. Fourth, conditional on being recognized, a player realizes a

utility weakly exceeding the utility of his middle alternative, so v̄ii ≥ uimi
. Moreover, it can

be shown that there is a strict advantage in being recognized, so v̄ii > z̄i.

6 Existence and Uniqueness of SSPEs

Table 7 shows that SSPEs can only exist if the geometric mean of the risk coefficients is

less than or equal to 1. The next result states that this condition is not only necessary,

but also sufficient for the existence of SSPEs.

Theorem 6.1 There exists an SSPE if and only if α1α2α3 ≤ 1.

The necessary and sufficient condition for SSPE existence requires risk coefficients to

be sufficiently low on average. It allows for one or two risk coefficients that are larger

than one, but then at least one player’s risk coefficient should be sufficiently below one.

A player with a low risk coefficient prefers his middle outcome over a lottery involving his
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worst and best outcome, and is therefore more inclined to accept proposals offering his

middle outcome. The uncertainty over outcomes resulting from the rejection of a proposal

helps to avoid the Condorcet paradox and leads to equilibrium existence.

What can be said when α1α2α3 > 1? An SSPE does not exist by Theorem 6.1. Nev-

ertheless, it is conceivable that weaker versions of equilibrium do exist. Suppose that we

change the utilities in the game in the following way. Whenever an agreement is reached,

players receive the payoff related to this agreement in every period following the agreement

and the utility of a player is determined by the average reward criterion. The resulting

game thereby falls into the class of average reward stochastic games. Since the game also

belongs to the subclass of three-player absorbing games, it follows from Solan (1999) that

an ε-equilibrium payoff exists for every ε > 0. Since our game also belongs to the class of

perfect information stochastic games, the existence of a Nash equilibrium follows from the

results of Thuijsman and Raghavan (1997). Finally, our game is also a recursive perfect

information game with non-negative payoffs, a class for which Flesch, Kuipers, Schoen-

makers, and Vrieze (2010) demonstrate the existence of a subgame-perfect ε-equilibrium

for every ε > 0.

In our model, SSPE may not be unique and there might be infinitely many SSPE utili-

ties. This occurs under the conditions of Theorem A.4.3. The following result demonstrates

that such examples are degenerate in the sense that this set of games has a closure with

Lebesgue measure zero. To compute the Lebesgue measure of a set of games, we consider

a game (u, ρ) as an element of R9 × R2, where we identify ρ by its first two coordinates.

To require the zero Lebesgue measure property for the closure of a set of games, evidently

implies this property for the set of games itself, but not vice versa, as for instance illus-

trated by the set of rational numbers.

Theorem 6.2 Consider the set of games (u, ρ) ∈ G such that α1α2α3 ≤ 1. Except for

a subset of games whose closure has Lebesgue measure zero, there is a unique SSPE.

The generic uniqueness of SSPEs enables us to carry out meaningful comparative statics

exercises, the subject of the next two sections.

7 Delay and Cycles

We analyze the extent to which there can be delay in the SSPE. If the probability of delay

in a single bargaining round is δ, then the expected delay is equal to δ/(1−δ) periods. Using

the results of the Appendix, it is a straightforward exercise to compute the probability of

delay in a single bargaining round. Table 8 gives an overview of the delay probabilities.
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Theorem Example Delay probability Occurrence

A.1 [1− (1 + α2 + α1α2) min{ρ1,
ρ2
α1α2

, ρ3
α2
}, 1) Degenerate

A.3.1 2.4 ρ2 + (α1α2α3(1 + β2)− β2)(1− ρ2)

ρ1 + (α1α2α3(1 + β1)− β1)(1− ρ1)

ρ3 + (α1α2α3(1 + β3)− β3)(1− ρ3)

A.3.2 2.3 α3−(1+α2)α3ρ2
α3+ρ2

α2−(1+α1)α2ρ1
α2+ρ1

α1−(1+α3)α1ρ3
α1+ρ3

A.4.1 1− (1 + α2 + α1α2) min{ ρ1
α2
, ρ2,

ρ3
α1α2
} Degenerate

A.4.2 2.2 1− 1+α2+α1α2

α2
ρ1

1− 1+α1+α1α3

α1
ρ3

1− 1+α3+α2α3

α3
ρ2

A.4.3 D1 Degenerate

D2 Degenerate

D3 Degenerate

A.4.4 2.1 0

D1 = [max{0, 1− 1+α2+α1α2ρ1
α2

}, 1− 1+α2+α1α2

α2+ρ1
ρ1] ∩ [max{0, 1− 1+α2+α1α2ρ1

α2
}, 1− (1 + α1 + α1α3)ρ1)

D2 = [max{0, 1− 1+α3+α2α3ρ2
α3

}, 1− 1+α3+α2α3

α3+ρ2
ρ2] ∩ [max{0, 1− 1+α3+α2α3ρ2

α3
}, 1− (1 + α2 + α1α2)ρ2)

D3 = [max{0, 1− 1+α1+α1α3ρ3
α1

}, 1− 1+α1+α1α3

α1+ρ3
ρ3] ∩ [max{0, 1− 1+α1+α1α3ρ3

α1
}, 1− (1 + α3 + α2α3)ρ3)

Table 8: Delay probabilities.

In the case of Theorem A.1 and A.4.3 the delay probability is given by an interval. This

means that for every value of delay in the interval, there is an SSPE with that probability

of delay.

An important question is whether there always exists some vector of recognition prob-

abilities ρ such that the corresponding SSPE does not involve delay.

Theorem 7.1 Let u be such that α1α2α3 ≤ 1. Then there is a ρ such that the game

(u, ρ) has an SSPE without delay.

If we think of the parameters ρi as a measure of bargaining power, then Theorem 7.1

makes clear that irrespective of the players’ utility functions, delay in bargaining can be

avoided under an appropriate distribution of bargaining power.

The intuition behind Theorem 7.1 is the following. Suppose that every player proposes

his best outcome with probability 1, meaning that outcomes are implemented according

to probability vector ρ. Under the condition α1α2α3 ≤ 1 it is always possible to choose
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ρ in such a way that every player i’s continuation payoff is less than or equal to uimi
. In

particular, this means that players with high risk coefficients should have low recognition

probabilities. Given a continuation payoff below uimi
, player i accepts outcome xmi

with

probability 1, which in turn makes it optimal for every player to propose his best outcome

with probability 1.

The next result shows that the expected delay in bargaining goes to infinity when one

player has almost all the bargaining power. We model this by taking a sequence of recog-

nition probability vectors that converges to a unit vector and show that the limit of the

SSPE delay probability is equal to 1.

Theorem 7.2 Let u be such that α1α2α3 ≤ 1. Consider a sequence of recognition prob-

ability vectors (ρn)n∈N which converges to ei, the i-th unit vector, for some i = 1, 2, 3. For

n ∈ N, let (pn, an) be an SSPE of (u, ρn) and denote the corresponding delay probability by

δn. Then limn→∞ δn = 1.

Theorem 7.2 complements Theorem 7.1 and shows that extreme SSPE delay may occur

for certain distributions of bargaining power. To explain the result of Theorem 7.2, it

should be recalled that SSPE continuation payoffs are always less than or equal to uimi
.

Assume player i has ρi close to one. When he proposes his first-best, it should be turned

down with probability close to 1, to avoid his continuation payoff reaching values above

uimi
. His continuation payoff will actually be equal to uimi

in an SSPE, implying that player i

proposes his best outcome with probability 1 and his middle outcome with probability 0.

On the equilibrium path it therefore holds that player i is recognized as a proposer almost

all the time, he proposes his best outcome with probability 1, which is subsequently turned

down with probability close to 1. The probability of delay is therefore close to 1 in every

bargaining round.

We also analyze whether cycles can occur. Cycles should occur according to the Con-

dorcet logic. Other authors like Chwe (1994) have argued using tools from cooperative

game theory that cycles should not occur when players are farsighted. We say that a par-

ticular play of the game has resulted in a cycle if all three alternatives have been proposed

and rejected, before some alternative is accepted. An SSPE is said to have a cycle if there

is a positive probability that the equilibrium path has resulted in a cycle. If an SSPE

has a cycle, then clearly there is also a positive probability on an equilibrium path where

consecutively alternatives 1, 2, 3, and 1 are proposed and rejected.

Theorem 7.3 The set of games (u, ρ) ∈ G admitting SSPEs with cycles has Lebesgue

measure zero.
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Cycles occur with positive probability in the SSPEs of Theorem A.1 and A.4.3. It is

easily verified that for Theorem A.1 there is always an SSPE where the equilibrium path

results in a cycle with probability arbitrarily close to one. But the conditions of these

theorems hold in degenerate cases only.

8 The Role of Risk Aversion

In this section we investigate the role of risk aversion. We concentrate on the impact of

risk aversion on the SSPE outcome probability vector (π̄1, π̄2, π̄3) . Player 1 is at least as

well off with the lottery (π̄′1, π̄
′
2, π̄

′
3) instead of (π̄1, π̄2, π̄3) when π̄′1 ≥ π̄1 and π̄′3 ≤ π̄3, which

corresponds to the criterion of first-order stochastic dominance.

The standard approach to risk aversion in bargaining is to take a concave transformation

of one of the player’s utility functions. Taking such a transformation for player i will reduce

his risk coefficient, because the gap between uimi
and uiwi

will become relatively larger than

the gap between uibi and uimi
. The SSPE probability vector (π̄1, π̄2, π̄3) can be rewritten

in terms of risk coefficients only and for that reason we perform the comparative statics

exercise with respect to changes in risk aversion as changes in the player’s risk coefficients.

Table 9 reports the SSPE outcome probability vectors. For Theorem A.4.3, first line,

λ ≥ 1 should be chosen to satisfy

α2

1 + α2 + α1α2

< λρ1 ≤
α2 + ρ1

1 + α2 + α1α2

and

λρ1 <
1

1 + α1 + α1α3

.

For the other two lines corresponding to Theorem A.4.3, λ ≥ 1 should satisfy the appropri-

ate analogues of these inequalities. We evaluate the local effects of a change in a player’s

risk coefficient for the non-degenerate cases.

Consider the first line of Theorem A.3.1 and A.4.23 for which

(π̄1, π̄2, π̄3) = (
α2

1 + α2 + α1α2

,
1

1 + α2 + α1α2

,
α1α2

1 + α2 + α1α2

).

We have that

∂π̄1
∂α1

< 0, ∂π̄2
∂α1

< 0, ∂π̄3
∂α1

> 0,
∂π̄1
∂α2

> 0, ∂π̄2
∂α2

< 0, ∂π̄3
∂α2

> 0,
∂π̄1
∂α3

= 0, ∂π̄2
∂α3

= 0, ∂π̄3
∂α3

= 0,

3The second and third line corresponding to Theorem A.3.1 and A.4.2 are obtained by a permutation

of the players and lead to analogous results.
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Theorem Utilities π̄1 π̄2 π̄3 Occurrence

A.1 z̄1 = u1
2 z̄2 = u2

3 z̄3 = u3
1

α2

1+α2+α1α2

1
1+α2+α1α2

α1α2

1+α2+α1α2
Degenerate

A.3.1 z̄1 = u1
2 z̄2 = u2

3 z̄3 < u3
1

α2

1+α2+α1α2

1
1+α2+α1α2

α1α2

1+α2+α1α2

z̄1 = u1
2 z̄2 < u2

3 z̄3 = u3
1

1
1+α1+α1α3

α1α3

1+α1+α1α3

α1

1+α1+α1α3

z̄1 < u1
2 z̄2 = u2

3 z̄3 = u3
1

α2α3

1+α3+α2α3

α3

1+α3+α2α3

1
1+α3+α2α3

A.3.2 z̄1 < u1
2 z̄2 = u2

3 z̄3 < u3
1

α2(α3+ρ2)
1+α3+α2α3

α3+ρ2
1+α3+α2α3

1−ρ2(1+α2)
1+α3+α2α3

z̄1 = u1
2 z̄2 < u2

3 z̄3 < u3
1

α2+ρ1
1+α2+α1α2

1−ρ1(1+α1)
1+α2+α1α2

α1(α2+ρ1)
1+α2+α1α2

z̄1 < u1
2 z̄2 < u2

3 z̄3 = u3
1

1−ρ3(1+α3)
1+α1+α1α3

α3(α1+ρ3)
1+α1+α1α3

α1+ρ3
1+α1+α1α3

A.4.1 z̄1 = u1
2 z̄2 = u2

3 z̄3 = u3
1

α2

1+α2+α1α2

1
1+α2+α1α2

α1α2

1+α2+α1α2
Degenerate

A.4.2 z̄1 = u1
2 z̄2 = u2

3 z̄3 < u3
1

α2

1+α2+α1α2

1
1+α2+α1α2

α1α2

1+α2+α1α2

z̄1 = u1
2 z̄2 < u2

3 z̄3 = u3
1

1
1+α1+α1α3

α1α3

1+α1+α1α3

α1

1+α1+α1α3

z̄1 < u1
2 z̄2 = u2

3 z̄3 = u3
1

α2α3

1+α3+α2α3

α3

1+α3+α2α3

1
1+α3+α2α3

A.4.3 z̄1 = u1
2 z̄2 < u2

3 z̄3 < u3
1 λρ1 1− λρ1 (1 + α1) α1λρ1 Degenerate

z̄1 < u1
2 z̄2 = u2

3 z̄3 < u3
1 α2λρ2 λρ2 1− λρ2 (1 + α2) Degenerate

z̄1 < u1
2 z̄2 < u2

3 z̄3 = u3
1 1− λρ3 (1 + α3) α3λρ3 λρ3 Degenerate

A.4.4 z̄1 < u1
2 z̄2 < u2

3 z̄3 < u3
1 ρ1 ρ2 ρ3

Table 9: SSPE outcome probabilities.

and ∂π̄1/∂αi + ∂π̄2/∂αi + ∂π̄3/∂αi = 0 for i = 1, 2, 3.

An increase in α1 yields player 1 lower probabilities for obtaining his best and middle

alternatives and an increased probability for obtaining his worst alternative. So, a less

risk averse type of player 1 is unambiguously worse off. The next question is whether

one or both other players benefit from such a change. This issue is straightforward for

player 3, who would face an increased probability for obtaining his best alternative and

lower probabilities for obtaining his middle and worst alternatives. Therefore, player 3

is unambiguously better off if player 1 becomes less risk averse. Player 2 faces lower

probabilities for both his best and worst alternatives and an increased probability for his

middle alternative. Notice however that player 2 obtains an SSPE utility of z̄2 = u2
3, which

is not affected by a change in the risk coefficient of player 1.

Next, an increase in α2 yields player 2 a lower probability for obtaining his best alter-

native and increased probabilities for attaining his middle and worst alternatives. A less

risk averse type of player 2 is unambiguously worse off, albeit that player 2 is affected in a

different manner than player 1 is affected by changes in α1. Since player 3 faces increased

probabilities for obtaining his best and middle alternatives and a lower probability for ob-

taining his worst alternative, player 3 is unambiguously better off if player 2 becomes less

risk averse. Player 1’s SSPE utility is not affected by player 3’s risk coefficient.
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Finally, changes in player 3’s risk coefficient have no effect on the outcome probability

vector, so both situations are unambiguously equivalent for all the players.

The crucial insight for changes in α1 and α2 is that when at an SSPE a player’s con-

tinuation value is equal to the utility of his middle alternative, this property is preserved

under small changes of the player’s utility function. When the player’s risk coefficient

increases, the only way to keep his continuation utility equal to the utility of the middle

alternative, is to improve the probability by which he obtains his best outcome and lower

the probability by which he obtains his worst outcome. It follows that an increase in a

player’s risk aversion improves his bargaining position. The effect of a change in α3 is more

subtle. Since player 1 and 2 have a continuation value equal to the utility of their middle

alternative, the ratio of the probability of receiving the best outcome and the probability

of receiving the worst outcome should not be affected by a change in α3. Since freezing

both ratios means that the outcome probability vector does not change, we find that a

change in α3 has no effects.

Our result here contrasts the finding of the bargaining literature with unanimous ap-

proval and side-payments that risk-aversion undermines a player’s bargaining position, see

e.g. Roth (1985), Safra, Zhou, and Zilcha (1990), and Kihlstrom, Roth, and Schmeidler

(1991). Harrington (1990) shows that under majority voting with side-payments, such a

result is no longer unambiguously true and higher degrees of risk aversion may be beneficial

to a player under certain circumstances. The reason there is that it is less costly to make

an offer to a more risk averse player, so a more risk averse player is more likely to be part

of a winning coalition. The total effect for a risk averse player is therefore ambiguous since

he receives lower offers, but at a higher frequency. We see here that in the context of

bargaining over a finite number of alternatives, higher degrees of risk aversion are always

beneficial.

We verify that also in the case of Theorem A.3.2 and A.4.4 higher degrees of risk aversion

improve the bargaining position. Consider the first line corresponding to Theorem A.3.2

for which

(π̄1, π̄2, π̄3) = (
α2 (α3 + ρ2)

1 + α3 + α2α3

,
α3 + ρ2

1 + α3 + α2α3

,
1− ρ2 (1 + α2)

1 + α3 + α2α3

).

We have that

∂π̄1
∂α1

= 0, ∂π̄2
∂α1

= 0, ∂π̄3
∂α1

= 0,
∂π̄1
∂α2

> 0, ∂π̄2
∂α2

< 0, ∂π̄3
∂α2

< 0,
∂π̄1
∂α3

> 0, ∂π̄2
∂α3

> 0, ∂π̄3
∂α3

< 0,

and ∂π̄1/∂α1 + ∂π̄2/∂α1 + ∂π̄3/∂α1 = 0 for i = 1, 2, 3. For this derivation, observe that

∂

∂α3

α2 (α3 + ρ2)

1 + α3 + α2α3

=
α2 (1− ρ2 (1 + α2))

(1 + α3 + α2α3)2 =
α2

1 + α3 + α2α3

π̄3 > 0.
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First, changes in player 1’s risk coefficient have no effect. Second, in case player 2 becomes

less risk averse then this player is always worse off and player 1 is always better off. The

marginal effect of a change in α2 on the SSPE utility of player 3 is given by

∂π1
∂α2

u3
1 + ∂π2

∂α2
u3

2 + ∂π3
∂α3

u3
3 = (α3+ρ2)(1+α3)

(1+α3+α2α3)2
u3

1 −
(α3+ρ2)α3

(1+α3+α2α3)2
u3

2 −
α3+ρ2

(1+α3+α2α3)2
u3

3

= α3+ρ2
(1+α3+α2α3)2

α3(u3
1 − u3

2)− α3+ρ2
(1+α3+α2α3)2

(u3
3 − u3

1) = 0.

Third, in case player 3 becomes less risk averse then this player is always worse off and

player 1 is always better off. The marginal effect of a change in α3 on the SSPE utility of

player 2 is given by

∂π1
∂α3

u2
1 + ∂π2

∂α3
u2

2 + ∂π3
∂α3

u2
3 = α2(1−ρ2(1+α2))

(1+α3+α2α3)2
u2

1 + (1−ρ2(1+α2))
(1+α3+α2α3)2

u2
2 −

(1−ρ2(1+α2))(1+α2)
(1+α3+α2α3)2

u2
3

= − 1−ρ2(1+α2)
(1+α3+α2α3)2

α2(u2
3 − u2

1) + 1−ρ2(1+α2)
(1+α3+α2α3)2

(u2
2 − u2

3) = 0.

The second and third line corresponding to Theorem A.3.2 are obtained by a permutation

of the players and lead to analogous results.

Since z̄2 = u2
3, an increase in α2 is detrimental for player 2 by the same reasoning as

before. To explain the effect of an increase in α3 requires a new insight. Player 1 and 2

propose their best alternative for sure, followed by acceptance with probability 1, a feature

that is preserved following changes in α3. Player 3 randomizes as a proposer between his

best and his middle alternative, and his continuation utility conditional on being a proposer

is equal to u3
1, a property that is preserved under small changes in α3. An increase in α3

therefore results in a worse probability mix on outcomes for player 3 conditional on being

the proposer, and given unchanged behavior following the recognition of player 1 and 2 as

a proposer, this result in a worse ex ante probability mix on outcomes for player 3. Since

player 1 plays a pure strategy, a change in α1 has no effect.

Consider Theorem A.4.4 for which (π̄1, π̄2, π̄3) = (ρ1, ρ2, ρ3). Then changes in any

player’s risk aversion have no effect on the outcome probability vector and for each player

the situation before and after such a change is unambiguously equivalent. This result is

caused by the fact that all players play a pure strategy.

In summary, we obtain for the three cases of Theorem A.3.1, A.3.2, and A.4.2 that less

risk aversion leads to a worse outcome in the sense that the probability of attaining the best

alternative decreases while the probability for obtaining the worst alternative increases. In

the remaining main case, the one of Theorem A.4.4, changes in risk attitudes have no

effect. So, combining these four cases, we find beneficial effects for risk aversion on the

own bargaining position.
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9 Concluding Remarks

We have modeled decision making by three players over a set consisting of three alternatives

as a bargaining game in extensive form with exogenous recognition probabilities. The set-

up corresponds to the well-known Condorcet paradox in the sense that the players’ utility

functions are such that naive majority voting over the alternatives results in a Condorcet

cycle. We have derived the conditions under which rational players will defy the Condorcet

logic and reach agreement in finite time with probability one whenever the geometric mean

of their risk coefficients is less than or equal to one.

The message that risk-averse players are willing to accept second-best alternatives,

thereby defying the Condorcet logic, is valid well beyond the simple case analyzed in this

paper. In a general setting with many players and many alternatives, players may accept

unfavorable alternatives, if they face the risk of ending up with an outcome that is even

worse. It also holds with great generality that the situation where an agreement is never

reached cannot be supported in an SSPE. Indeed, such a situation cannot occur whenever

there is an outcome that a majority of players prefers over not reaching an agreement, and

at least one such player has a positive recognition probability.

Many SSPEs feature delay before an agreement is reached. We show that for any

specification of the players’ risk coefficients, there are recognition probability vectors for

which no delay occurs before an agreement is reached, but also that expected delay goes

to infinity when in the limit a single player is the only proposer. To what extent such

results hold in more general settings is an open issue, but our conjecture is that under

quite general circumstances players with high bargaining power will be disciplined by the

other players by means of frequent rejections of their proposals.

We have argued that increasing risk aversion unambiguously strengthens the bargaining

position of a player. This insight is also valid in more general set-ups. If a player uses a pure

strategy in equilibrium, then small changes in risk aversion will not affect his equilibrium

behavior. Consider a player who randomizes when responding to a particular proposal. If

an increase in risk aversion affects his utility of this proposal positively, then the player’s

continuation utility has to increase to keep him indifferent between accepting and rejecting.

But then the player’s equilibrium utility increases as well, so he benefits from an increase

in risk aversion.
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Appendix A

A.1 Three Players with p̄imi
> 0.

In this subsection we are analyzing SSPEs where every player makes a proposal with

probability one, proposes his middle alternative with positive probability, does not propose

his worst alternative, and may propose his best alternative with positive probability less

than one.

Consider a game (u, ρ) ∈ G and let ((p̄ibi , p̄
i
mi
, āimi

, z̄i)i=1,2,3, π̄) be a solution to (4.15)–

(4.22) with p̄imi
> 0, i = 1, 2, 3. From (4.15), for every i, uimi

≥ āi−1
mi−1

uibi + (1 − āi−1
mi−1

)z̄i,

so z̄i ≤ uimi
. We argue next that for every i, z̄i = uimi

. Suppose, for some i, z̄i < uimi
.

Then āimi
= 1 by (4.17), so p̄i+1

mi+1
= 0 by (4.15), a contradiction since we are considering

the case p̄i+1
mi+1

> 0. It follows that for every i, z̄i = uimi
, and by (4.15), āi−1

mi−1
= 0, so the

proposal xmi
by a player i is accepted with probability 1 and the proposal xbi by a player i

is rejected with probability 1. Note that since a proposal xbi by player i is rejected for sure,

player i is indifferent between making such a proposal and giving up the right to propose,

i.e. propose x0.

Equations (4.19)–(4.20) now reduce to the system

π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 = u1

2, (A.1)

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 = u2

3, (A.2)

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 = u3

1, (A.3)

π̄1 + π̄2 + π̄3 = 1. (A.4)

Equations (4.21) and (4.22) can be simplified to

π̄1 : π̄2 : π̄3 = ρ3p̄
3
m3

: ρ1p̄
1
m1

: ρ2p̄
2
m2
. (A.5)

Whenever utilities are such that (A.1)–(A.4) has a solution π̄ � 0, an equilibrium of the

type we are looking for in this subsection exists. We derive now under what assumptions

on utilities such a solution π̄ exists. We will show that there is at most one solution, so a

solution, if it exists, is unique.

From equalities (A.1) and (A.4), we obtain

(1− π̄2)(u1
2 − u1

3) = π̄1(u1
1 − u1

3). (A.6)

Combining (A.2) and (A.4) leads to

π̄1(u2
3 − u2

1) = π̄2(u2
2 − u2

3) (A.7)

= (u2
2 − u2

3)− π̄1(u2
2 − u2

3)
u1

1 − u1
3

u1
2 − u1

3

,
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where the second equality follows using (A.6). Rewriting the last equality leads to

π̄1 =
α2

1 + α2 + α1α2

.

It is immediate that 0 < π̄1 < 1.

By (A.7) we have π̄2 = π̄1/α2, and we find that

π̄2 =
1

1 + α2 + α1α2

.

Since π̄3 = 1− π̄1 − π̄2, we find that

π̄3 =
α1α2

1 + α2 + α1α2

.

Obviously, it holds that 0 < π̄2 < 1 and 0 < π̄3 < 1. At this point we have established that

there is at most one solution to (A.1)–(A.4). For there to be some solution, (A.3) should

hold. Using the already derived expressions for π̄1, π̄2, and π̄3, we find that (A.3) holds if

and only if α1α2α3 = 1. This equation holds in degenerate cases only. It requires that the

product over the players of the utility difference between their best and middle alternative

be exactly equal to the product of the utility difference between the middle and the worst

alternative.

A game (u, ρ) with α1α2α3 = 1 has many equilibria (p̄, ā) of the type described in

this subsection. All such equilibria can be constructed as follows. Let π̄ be the uniquely

determined probabilities by which the alternatives are implemented at equilibrium. Let

λ > 0 be such that, for i = 1, 2, 3, λπ̄mi
≤ ρi. If player i is selected as proposer, he proposes

xmi
with probability λπ̄mi

/ρi and xbi with probability 1 − λπ̄mi
/ρi. The former proposal

is accepted, the latter rejected. This construction ensures that (A.5) holds. The higher λ,

the less delay before an outcome is accepted. The highest possible choice of λ occurs when

there is at least one player i for which p̄imi
= 1. In that case, the selection of player i as a

proposer leads to a proposal that is accepted for sure.

Summarizing, we have the following. Let utilities be such that α1α2α3 = 1, so there is

a unique solution π̄ � 0 to (A.1)–(A.4). Then the set of SSPEs with all players making a

proposal with probability one is given by

p̄ =

 1− p̄1
m1

0 p̄3
m3

p̄1
m1

1− p̄2
m2

0

0 p̄2
m2

1− p̄3
m3

 (A.8)

ā1 =

 1

0

0

 , ā2 =

 0

1

0

 , and ā3 =

 0

0

1

 , (A.9)
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where p̄ satisfies (A.5). The other SSPEs are obtained by transferring part or all of the

probability 1 − p̄imi
by which xbi is proposed by player i to the option not to make a

proposal, x0.

In this SSPE, each player randomizes between his security utility uimi
, knowing it will

be accepted for sure by player i+ 1, and some gamble among all three alternatives in case

he either proposes his best alternative, knowing the latter will be rejected for sure, or does

not make a proposal at all. In this gamble, at some future date either player i−1 proposes

player i’s best alternative and player i accepts, or player i + 1 may propose player i’s

worst alternative but since this is player i− 1’s best alternative the latter player accepts,

or player i proposes his middle alternative, which is accepted by player i + 1. Notice that

all SSPEs are symmetric whenever the recognition probabilities (ρ1, ρ2, ρ3) are identical

to (π̄2, π̄3, π̄1), because the latter ensures that the probabilities of proposing the middle

alternative are equal. In that case there is one SSPE without delay, i.e. pimi
= 1 for all i.

All other SSPEs involve delay.

All SSPEs (p̄, ā) lead to the same equilibrium payoffs z̄ given by z̄i = uimi
. We have

uniqueness in equilibrium utilities but multiplicity in the supporting equilibrium strategies.

therefore, as mentioned before, the multiplicity of SSPEs is inessential. Since also v̄ii =

uimi
= z̄i, there is no advantage in being the proposer. The recognition probabilities ρ do

not influence the probability π̄j that the bargaining process ends with outcome xj. These

probabilities depend on the utilities only.

We can summarize our findings regarding SSPE existence in the following theorem.

Theorem A.1 There is an SSPE (p̄, ā) ∈ P × A with p̄imi
> 0, i = 1, 2, 3, if and

only if α1α2α3 = 1. In this case, there is a unique SSPE with minimal expected delay,

given by the solution (p̄, ā) to (A.5), (A.8), and (A.9) with p̄imi
= 1 for at least one player

i, where (π̄1, π̄2, π̄3) is the unique solution to (A.1)–(A.4). Other SSPEs are obtained by

proportionally lowering p̄imi
across players i, as well as by shifting probability weight from

p̄ibi to p̄i0. All SSPEs induce the same equilibrium utilities, given by z̄i = uimi
, i = 1, 2, 3.

A.2 Two Players with p̄imi
> 0.

Next we consider SSPEs where one player, without loss of generality player 1, proposes

his best outcome for sure, and the other two players put positive weight on their middle

outcome. We argue that no such SSPEs exist.

Consider a game (u, ρ) ∈ G and let ((p̄ibi , p̄
i
mi
, āimi

, z̄i)i=1,2,3, π̄) be a solution to (4.15)–

(4.22) with p̄1
1 = 1, p̄2

3 > 0, and p̄3
1 > 0. By (4.15), ā1

2u
2
2 + (1 − ā1

2)z̄2 ≤ u2
3, so z̄2 ≤ u2

3.

Suppose z̄2 < u2
3. Then ā2

3 = 1 by (4.17), so p̄3
1 = 0 by (4.15), a contradiction to p̄3

1 > 0. It

follows that z̄2 = u2
3. Now (4.15) implies u2

3 ≥ ā1
2u

2
2 +(1− ā1

2)u2
3, so ā1

2 = 0. It follows that if
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player 2 proposes his best alternative, it is rejected for sure. No other player ever proposes

this alternative. The bargaining process never ends with outcome x2, i.e. π̄2 = 0. This

is a contradiction to π̄2 > 0. We conclude that there are no SSPEs with the properties as

stated in this subsection.

Theorem A.2 There is no SSPE (p̄, ā) ∈ P × A with for some i = 1, 2, 3, p̄imi
= 0,

p̄i−1
mi−1

> 0, and p̄i+1
mi+1

> 0.

A.3 One Player with p̄imi
> 0.

Now we consider SSPEs with two players proposing their best outcome for sure, and where

one player, without loss of generality player 3, puts positive weight on his middle outcome.

Consider a game (u, ρ) ∈ G and let ((p̄ibi , p̄
i
mi
, āimi

, z̄i)i=1,2,3, π̄) be a solution to (4.15)–

(4.22) with p̄1
1 = 1, p̄2

2 = 1, and p̄3
1 > 0. So, player 1 proposes x1, player 2 proposes x2, and

player 3 mixes over x3 and x1. To obtain π̄j > 0, j = 1, 2, 3, we must have p̄3
3 > 0, ā1

2 > 0,

and ā2
3 > 0. By (4.15) and (4.16) we find

ā3
1u

1
1 + (1− ā3

1)z̄1 ≥ u1
2,

ā1
2u

2
2 + (1− ā1

2)z̄2 ≥ u2
3,

ā2
3u

3
3 + (1− ā2

3)z̄3 = u3
1.

Since ā2
3 > 0 and u3

3 > u3
1, the equality implies ā2

3 ∈ (0, 1) and z̄3 < u3
1. It follows by (4.17)

and (4.18) that z̄2 = u2
3. Since z̄3 < u3

1, we have ā3
1 = 1 by (4.17), so the proposal of player 1

is accepted for sure. By ā1
2 > 0 and (4.18), we also must have z̄1 ≤ u1

2. There are now two

possible cases. Case 1 where z̄1 = u1
2 and Case 2 with z̄1 < u1

2. In Case 2 we have ā1
2 = 1

by (4.17).

A.3.1 Case 1

It holds that (p̄, ā) ∈ P × A is an SSPE if and only if there is π̄ such that

p̄ =

 1 0 1− p̄3
3

0 1 0

0 0 p̄3
3

 (A.10)

ā1 =

 1

ā1
2

0

 , ā2 =

 0

1

ā2
3

 , and ā3 =

 1

0

1

 , (A.11)

ā2
3u

3
3 + (1− ā2

3)(π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3) = u3

1, (A.12)
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π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 = u1

2, (A.13)

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 = u2

3, (A.14)

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 < u3

1, (A.15)

π̄1 + π̄2 + π̄3 = 1, (A.16)

π̄1 : π̄2 : π̄3 = ρ1 + ρ3(1− p̄3
3) : ρ2ā

1
2 : ρ3p̄

3
3ā

2
3, (A.17)

where 0 < p̄3
3 < 1, 0 < ā1

2 ≤ 1, and 0 < ā2
3 < 1.

Using the same derivation as in Subsection A.1, it can be shown that there is a solution

π̄ � 0 to the system (A.13)–(A.16) if and only if

α1α2α3 < 1. (A.18)

Moreover, each specification of utilities satisfying (A.18) leads to a unique solution π̄ � 0

to (A.13)–(A.16). Indeed, as before it holds that

π̄1 =
α2

1 + α2 + α1α2

,

π̄2 =
1

1 + α2 + α1α2

,

π̄3 =
α1α2

1 + α2 + α1α2

.

Inequality (A.18) specifies that the product over the players of the utility difference between

their best and middle alternative should be less than the product of the utility difference

between the middle and worst alternative.

Rewriting (A.12), we obtain

ā2
3 =

π̄2 − α3π̄3

α3 + π̄2 − α3π̄3

,

and substitution of the expressions for π̄2 and π̄3 results in

ā2
3 =

1− α1α2α3

1 + α3 + α2α3

. (A.19)

Notice that 0 < ā2
3 < 1. By (A.17) we have

α1 =
ρ3p̄

3
3ā

2
3

ρ1 + ρ3(1− p̄3
3)
.

Substitution of the expression for ā2
3 in the latter equation, and then solving for p̄3

3 results

in

p̄3
3 =

ρ1 + ρ3

ρ3

α1 + α1α3 + α1α2α3

1 + α1 + α1α3

. (A.20)
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Obviously, it holds that p̄3
3 > 0. Moreover, we have that p̄3

3 < 1 if and only if

ρ1

ρ3

<
1− α1α2α3

α1 + α1α3 + α1α2α3

(<
1

α1

). (A.21)

By (A.17) we have

α2 =
ρ1 + ρ3(1− p̄3

3)

ρ2ā1
2

.

We substitute the expression found for p̄3
3 and solve the resulting equation for ā1

2, and

obtain that

ā1
2 =

ρ1 + ρ3

ρ2

1− α1α2α3

α2 + α1α2 + α1α2α3

. (A.22)

This expression is clearly positive. It is less than or equal to one if and only if

ρ2 ≥
1− α1α2α3

1 + α2 + α1α2

. (A.23)

Since all players i propose their best outcome xbi with positive probability, and since ā3
1 = 1,

ā1
2 > 0, and ā2

3 > 0 implies that such a proposal is accepted with positive probability, no

player wants to use the option not to make a proposal. Finally, the SSPE utilities satisfy

z̄1 = u1
2, z̄

2 = u2
3, and z̄3 < u3

1.

We summarize our findings in the following theorem.

Theorem A.3.1 There is an SSPE (p̄, ā) ∈ P × A with p̄1
2 = 0, p̄2

3 = 0, p̄3
1 > 0, and

z̄1 ≥ u1
2 if and only if α1α2α3 < 1 and ρ is such that (A.21) and (A.23) are satisfied. In

this case, such SSPE is unique. It is given by (A.10), (A.11), (A.19), (A.20), and (A.22).

The equilibrium utilities satisfy z̄1 = u1
2, z̄

2 = u2
3, and z̄3 < u3

1.

For given utilities satisfying (A.18), (A.21) requires ρ3 to be sufficiently high compared

to ρ1, and (A.23) requires ρ2 to be sufficiently high.

To summarize, players 1 and 2 propose their best alternative whenever they are the

recognized player. Player 1’s best alternative is accepted for sure, whereas player 2’s best

alternative may be rejected with positive probability. By proposing his best alternative,

this player chooses the risky option over his riskless security utility u2
m2

. Player 3’s proposal

consists of randomizing between his best and middle alternative. Notice that, unlike the

SSPEs of Theorem A.1, players never use the option to refrain from making a proposal, i.e.,

pi0 = 0, i = 1, 2, 3. Since conditional equilibrium utilities satisfy v̄ii > z̄i, i = 1, 2, 3, each

player enjoys an advantage whenever he is the recognized player. Moreover, conditional

on being the recognized player, player 1 achieves his best alternative, player 2 is strictly
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better off compared to his security level, and player 3 is kept at his security level. In

many bargaining models, the advantage to propose vanishes in taking the limit to the no

discounting case. Here the advantage is present under no discounting.

The SSPE leads to a positive expected delay. The reason is that player 3 is recog-

nized with positive probability and proposes x3 with positive probability. This proposal

is rejected by both players with positive probability. Player 1 always proposes x1, which

is accepted by player 3. Player 2 always proposes x2, which is accepted by player 1 with

positive probability ā1
2 and is rejected by both players otherwise.

Using a straightforward relabeling of the players, we find fully symmetric results for

SSPEs with p̄2
2 = p̄3

3 = 1 and player 1 mixing between x1 and x2, and SSPEs with p̄1
1 =

p̄3
3 = 1 and player 2 mixing between x2 and x3.

A.3.2 Case 2

It holds that (p̄, ā) ∈ P × A is an SSPE if and only if there is π̄ such that

p̄ =

 1 0 1− p̄3
3

0 1 0

0 0 p̄3
3

 (A.24)

ā1 =

 1

1

0

 , ā2 =

 0

1

ā2
3

 , and ā3 =

 1

0

1

 , (A.25)

ā2
3u

3
3 + (1− ā2

3)
(
π̄1u

3
1 + π̄2u

3
2 + π̄3u

3
3

)
= u3

1, (A.26)

π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 < u1

2, (A.27)

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 = u2

3, (A.28)

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 < u3

1, (A.29)

π̄1 + π̄2 + π̄3 = 1, (A.30)

π̄1 : π̄2 : π̄3 = ρ1 + ρ3(1− p̄3
3) : ρ2 : ρ3p̄

3
3ā

2
3, (A.31)

where 0 < p̄3
3 < 1 and 0 < ā2

3 < 1.

We can rewrite (A.26)–(A.29) as

α3 − (1− ā2
3)(π̄1 + π̄2(1 + α3)) = 0, (A.32)

π̄1α1 − π̄3 < 0, (A.33)

−π̄1 + π̄2α2 = 0, (A.34)

−π̄2 + π̄3α3 < 0. (A.35)
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We have a system (A.30), (A.31), (A.32), (A.34) with five equations in the five unknowns

π̄1, π̄2, π̄3, p̄
3
3, and ā2

3. Solving this system results in outcome probabilities

π̄1 =
α2(α3 + ρ2)

1 + α3 + α2α3

, π̄2 =
α3 + ρ2

1 + α3 + α2α3

, and π̄3 =
1− ρ2(1 + α2)

1 + α3 + α2α3

,

and SSPE action probabilities

p̄3
3 =

ρ1 − α2ρ2 + ρ3

ρ3

, (A.36)

ā2
3 =

ρ2

α3 + ρ2

. (A.37)

It is immediate that the solution satisfies 0 < ā2
3 < 1.

The inequality (A.33) is equivalent to

ρ2 <
1− α1α2α3

1 + α2 + α1α2

(<
1

1 + α2

). (A.38)

The inequality (A.35) is always satisfied.

The requirement p̄3
3 > 0 is equivalent to ρ2 < 1/(1 + α2), which implies π̄3 > 0. This

requirement follows from (A.38). The requirement p̄3
3 < 1 is equivalent to

ρ1

ρ2

< α2. (A.39)

Since all players i propose their best outcome xbi with positive probability, and since ā3
1 = 1,

ā1
2 = 1, and ā2

3 > 0 implies that such a proposal is accepted with positive probability, no

player wants to use the option not to make a proposal. We summarize our findings in the

following theorem.

Theorem A.3.2 There is an SSPE (p̄, ā) ∈ P × A with p̄1
2 = 0, p̄2

3 = 0, p̄3
1 > 0, and

z̄1 < u1
2 if and only if α1α2α3 < 1 and ρ is such that (A.38) and (A.39) are satisfied. In this

case, an SSPE is unique. It is given by (A.24), (A.25), (A.36), and (A.37). Equilibrium

utilities satisfy z̄1 < u1
2, z̄

2 = u2
3, and z̄3 < u3

1.

For given utilities satisfying (A.18), (A.38) requires ρ2 to be sufficiently low. It com-

plements (A.23) which implies that SSPEs as in Case 1 cannot coexist with those as in

Case 2. Inequality (A.39) requires ρ1 to be sufficiently low compared to ρ2. Notice that,

like the SSPE of Theorem A.3.1, the option not to make a proposal cannot be chosen with

any positive probability.

The SSPE leads to a positive expected delay. The reason is that player 3 is recognized

with positive probability, proposes x3 with positive probability, which is rejected by both

players with positive probability. The proposals of players 1 and 2 are accepted for sure.
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Similar to the previous case, all three players have an advantage to propose. Conditional

on being the recognized player, player 3 cannot do better than getting the utility of his

middle alternative. Conditional on being the proposer, both player 1 and player 2 achieve

the utility of the best alternative.

By a relabeling of the players, we find fully symmetric results for SSPEs with p̄2
2 =

p̄3
3 = 1 and player 1 mixing between x1 and x2, and SSPEs with p̄1

1 = p̄3
3 = 1 and player 2

mixing between x2 and x3.

A.4 No Player with p̄imi
> 0.

We finally consider SSPEs where all players propose their best outcome for sure. Let

(p̄ibi , p̄
i
mi
, āimi

, z̄i) be a solution to (4.15)–(4.22) with p̄1
1 = p̄2

2 = p̄3
3 = 1. To obtain π̄j > 0,

j = 1, 2, 3, we must have ā3
1 > 0, ā1

2 > 0, and ā2
3 > 0. If follows from (4.18) that z̄1 ≤ u1

2,

z̄2 ≤ u2
3, and z̄3 ≤ u3

1. Since all players propose their best outcome with positive probability,

and since such a proposal is accepted with positive probability, no player wants to use the

option not to make a proposal. We distinguish four possible cases of interest. In Case 1,

there are three players with z̄i = uimi
, in Case 2 there are two such players, without loss

of generality, players 1 and 2, in Case 3 there is one such player, without loss of generality

player 1, and in Case 4 all players have z̄i < uimi
.

A.4.1 Case 1

It holds that (p̄, ā) ∈ P × A is an SSPE if and only if there is π̄ such that

p̄ =

 1 0 0

0 1 0

0 0 1

 (A.40)

ā1 =

 1

ā1
2

0

 , ā2 =

 0

1

ā2
3

 , and ā3 =

 ā3
1

0

1

 , (A.41)

π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 = u1

2,

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 = u2

3,

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 = u3

1,

π̄1 + π̄2 + π̄3 = 1,

π̄1 : π̄2 : π̄3 = ρ1ā
3
1 : ρ2ā

1
2 : ρ3ā

2
3. (A.42)
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As in Section A.1 we obtain that

α1α2α3 = 1, (A.43)

π̄1 =
α2

1 + α2 + α1α2

, (A.44)

π̄2 =
1

1 + α2 + α1α2

, (A.45)

π̄3 =
α1α2

1 + α2 + α1α2

. (A.46)

The SSPE is not unique. Let λ > 0 be such that, for i = 1, 2, 3, λπ̄mi
≤ ρmi

. If player i

has to respond to the proposal xmi
, he accepts with probability āimi

= λπ̄mi
/ρmi

> 0 and

rejects with probability 1 − λπ̄mi
/ρmi

< 1. This construction ensures that (A.42) holds.

The higher λ, the less delay before an outcome is accepted. The highest possible choice

of λ occurs when there is at least one player i for which āimi
= 1. In that case, selection

of player i + 1 as proposer leads to a proposal that is accepted for sure. Note that λ = 0

would violate π̄mi
> 0. The set of SSPEs is not closed. The no discounting case differs in

this respect from the discounting case where the set of SSPEs is compact.

By definition of this case, the equilibrium utilities satisfy z̄i = uimi
, i = 1, 2, 3. Since

also āimi
> 0 and z̄i = uimi

, the conditional equilibrium utilities satisfy v̄ii ∈ (uimi
, uibi),

i = 1, 2, 3. We conclude that there is an advantage in becoming the recognized player and

that a recognized player does strictly better than his security level uimi
.

Theorem A.4.1 There is an SSPE (p̄, ā) ∈ P × A with p̄imi
= 0, i = 1, 2, 3, and

z̄i ≥ uimi
, i = 1, 2, 3, if and only if α1α2α3 = 1. In this case, there is a unique SSPE

with minimal delay. It is given by the solution (p̄, ā) to (A.40), (A.41), and (A.42) with

āimi
= 1 for at least one player i, where (π̄1, π̄2, π̄3) is defined in (A.44)–(A.46). Other

SSPEs are obtained by proportionally lowering āimi
across players i. All SSPEs induce the

same equilibrium utilities, given by z̄i = uimi
, i = 1, 2, 3.

A.4.2 Case 2

It holds that (p̄, ā) ∈ P × A is an SSPE if and only if there is π̄ such that

p̄ =

 1 0 0

0 1 0

0 0 1

 (A.47)

ā1 =

 1

ā1
2

0

 , ā2 =

 0

1

ā2
3

 , and ā3 =

 1

0

1

 , (A.48)

37



ā2
3u

3
3 + (1− ā2

3)(π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3) ≥ u3

1, (A.49)

π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 = u1

2,

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 = u2

3,

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 < u3

1,

π̄1 + π̄2 + π̄3 = 1,

π̄1 : π̄2 : π̄3 = ρ1 : ρ2ā
1
2 : ρ3ā

2
3. (A.50)

As in Subsection 9 we obtain that

α1α2α3 < 1, (A.51)

π̄1 =
α2

1 + α2 + α1α2

, π̄2 =
1

1 + α2 + α1α2

, and π̄3 =
α1α2

1 + α2 + α1α2

.

From (A.50) it then follows that

ā1
2 =

ρ1

α2ρ2

, (A.52)

ā2
3 =

α1ρ1

ρ3

. (A.53)

To satisfy (A.49) we need that

ρ1

ρ3

≥ 1− α1α2α3

α1 + α1α3 + α1α2α3

(≤ 1

α1

). (A.54)

The requirements ā1
2 ≤ 1 and ā2

3 ≤ 1 lead to

ρ1

ρ2

≤ α2, (A.55)

ρ3

ρ1

≥ α1. (A.56)

By definition of the case, the equilibrium utilities satisfy z̄1 = u1
m1
, z̄2 = u2

m2
, and z̄3 < u3

m3
.

For i = 1, 2, āi−1
bi

> 0 and z̄i = uimi
imply that the conditional equilibrium utilities satisfy

v̄ii > uimi
. Since z̄3 < u3

m3
, it follows that player 3 has an advantage to propose.

We can summarize our findings in the following theorem.

Theorem A.4.2 There is an SSPE (p̄, ā) ∈ P × A with p̄imi
= 0, i = 1, 2, 3, z̄1 ≥ u1

2,

z̄2 ≥ u2
3, and z̄3 < u3

1 if and only if α1α2α3 < 1 and ρ is such that (A.54), (A.55), and

(A.56) are satisfied. In this case, there is a unique SSPE. It is given by (A.47), (A.48),

(A.52), and (A.53). The equilibrium utilities satisfy z̄1 = u1
2, z̄

2 = u2
3, and z̄3 < u3

1.
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For given utilities satisfying (A.51), (A.54) requires ρ1 to be sufficiently high compared

to ρ3, and (A.56) requires ρ1 to be sufficiently low. Moreover, ρ1 should be sufficiently low

compared to ρ2 by (A.55). Notice that, unlike the SSPE of Theorem A.1, the option not

to make a proposal cannot be chosen with any positive probability.

By (A.50), the SSPE does not involve delay if and only if ρi is equal to π̄i for ALL

i = 1, 2, 3.

By a relabeling of the players, we obtain fully symmetric results for SSPEs with p̄imi
= 0,

i = 1, 2, 3, z̄1 ≥ u1
2, z̄

2 < u2
3, and z̄3 ≥ u3

1, and for SSPEs with p̄imi
= 0, i = 1, 2, 3, z̄1 < u1

2,

z̄2 ≥ u2
3, and z̄3 ≥ u3

1.

A.4.3 Case 3

It holds that (p̄, ā) ∈ P × A is an SSPE if and only if there is π̄ such that

p̄ =

 1 0 0

0 1 0

0 0 1

 (A.57)

ā1 =

 1

ā1
2

0

 , ā2 =

 0

1

1

 , and ā3 =

 1

0

1

 , (A.58)

ā1
2u

2
2 + (1− ā1

2)(π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3) ≥ u2

3, (A.59)

π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 = u1

2, (A.60)

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 < u2

3, (A.61)

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 < u3

1, (A.62)

π̄1 + π̄2 + π̄3 = 1,

π̄1 : π̄2 : π̄3 = ρ1 : ρ2ā
1
2 : ρ3. (A.63)

Rewriting (A.60) and using (A.63), we find that

ρ3 = α1ρ1. (A.64)

It follows that Case 3 admits SSPEs in degenerate cases only, more precisely, when (A.64)

holds. In these degenerate cases, there is a continuum of SSPEs, inducing a continuum of

SSPE utilities for players 2 and 3. We parametrize the SSPEs by means of the positive

real number λ and using (A.63) we write

π̄1 = λρ1 and π̄3 = α1λρ1.
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Suppose by means of contradiction that λ < 1. Using (A.63), we find that

π̄1 = λρ1 < ρ1, π̄2 =
π̄1ρ2ā

1
2

ρ1

= λρ2ā
1
2 < ρ2, and π̄3 =

π̄1ρ3

ρ1

= λρ3 < ρ3.

We obtain the contradiction 1 = π̄1 + π̄2 + π̄3 < ρ1 + ρ2 + ρ3 = 1. Consequently, we have

shown that λ ≥ 1.

Since ρ1 + ρ2 + ρ3 = 1 and π̄1 + π̄2 + π̄3 = 1, we have

ρ2 = 1− (1 + α1)ρ1, and π̄2 = 1− (1 + α1)λρ1.

Using (A.63), we have

ā1
2 =

1− (1 + α1)λρ1

λ− (1 + α1)λρ1

. (A.65)

The denominator of (A.65) is positive if and only if ρ1 < 1/(1 + α1). The inequalities in

(A.61) and (A.59) are satisfied if and only if

α2

1 + α2 + α1α2

< λρ1 ≤
α2 + ρ1

1 + α2 + α1α2

(<
1

1 + α1

). (A.66)

The inequality in (A.66) in parentheses implies that ā1
2 and π̄2 are positive.

The inequality (A.62) is satisfied if and only if

λρ1 <
1

1 + α1 + α1α3

. (A.67)

The first inequality of (A.66) together with (A.67) imply that α1α2α3 < 1. There is some

λ ≥ 1 such that (A.66) and (A.67) are satisfied if and only if α1α2α3 < 1 and

ρ1 <
1

1 + α1 + α1α3

. (A.68)

The lowest possible value of λ ≥ 1 such that (A.66) and (A.67) are satisfied is given by

max{1, 1

ρ1

α2

1 + α2 + α1α2

}. (A.69)

We can summarize our findings in the following theorem.

Theorem A.4.3 There is an SSPE (p̄, ā) ∈ P × A with p̄imi
= 0, i = 1, 2, 3, z̄1 ≥ u1

2,

z̄2 < u2
3, and z̄3 < u3

1 if and only if α1α2α3 < 1, ρ3 = α1ρ1, and ρ1 satisfies (A.68). In this

case there is a continuum of SSPEs. Any λ ≥ 1 satisfying (A.66) and (A.67) induces an

SSPE given by (A.57), (A.58), and (A.65). Equilibrium utilities depend on λ and satisfy

z̄1 = u1
2, z̄

2 < u2
3, and z̄3 < u3

1.
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Notice that, unlike the SSPE of Theorem A.1, the option not to make a proposal cannot

be chosen with any positive probability. The SSPE does not involve delay if and only if

λ = 1. Whenever ρ1 <
α2

1+α2+α1α2
, the lowest possible choice for λ strictly exceeds 1, and

delay cannot be avoided.

Fully symmetric results hold for SSPEs with p̄imi
= 0, i = 1, 2, 3, z̄1 < u1

2, z̄
2 ≥ u2

3, and

z̄3 < u3
1, and for SSPEs with p̄imi

= 0, i = 1, 2, 3, z̄1 < u1
2, z̄

2 < u2
3, and z̄3 ≥ u3

1.

A.4.4 Case 4

It holds that (p̄, ā) ∈ P × A is an SSPE if and only if there is π̄ such that

p̄ =

 1 0 0

0 1 0

0 0 1

 (A.70)

ā1 =

 1

1

0

 , ā2 =

 0

1

1

 , and ā3 =

 1

0

1

 , (A.71)

π̄1u
1
1 + π̄2u

1
2 + π̄3u

1
3 < u1

2, (A.72)

π̄1u
2
1 + π̄2u

2
2 + π̄3u

2
3 < u2

3, (A.73)

π̄1u
3
1 + π̄2u

3
2 + π̄3u

3
3 < u3

1, (A.74)

π̄1 + π̄2 + π̄3 = 1,

π̄1 : π̄2 : π̄3 = ρ1 : ρ2 : ρ3. (A.75)

The equalities in (A.75) immediately lead to the conclusion that π̄1 = ρ1, π̄2 = ρ2, and

π̄3 = ρ3. The inequalities in (A.72)–(A.74) are equivalent to the following conditions:

ρ3

ρ1

> α1, (A.76)

ρ1

ρ2

> α2, (A.77)

ρ2

ρ3

> α3. (A.78)

It is immediate to verify that (A.76)–(A.78) imply that α1α2α3 < 1.

By definition of the case, the equilibrium utilities satisfy z̄1 < u1
m1
, z̄2 < u2

m2
and z̄3 <

u3
m3
. Since each player accepts his middle alternative for sure, the conditional equilibrium

utilities satisfy v̄1
1 = u1

1, v̄
2
2 = u2

2 and v̄3
3 = u3

3. Therefore, each player has an advantage to

propose and, as the recognized player, each player can realize his best alternative for sure.

We can summarize our findings in the following theorem.
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Theorem A.4.4 There is an SSPE (p̄, ā) ∈ P × A with p̄imi
= 0, i = 1, 2, 3, z̄1 < u1

2,

z̄2 < u2
3, and z̄3 < u3

1 if and only if α1α2α3 < 1 and ρ is such that (A.76)–(A.78) are satis-

fied. In this case there is a unique SSPE. It is given by (A.70) and (A.71). The equilibrium

utilities satisfy z̄1 < u1
2, z̄

2 < u2
3, and z̄3 < u3

1.

Notice that, unlike the SSPE of Theorem A.1, the option not to make a proposal

cannot be chosen with any positive probability. The SSPE is in pure strategies in which

each player always proposes his best alternative and always accepts his best and middle

alternative. These strategies imply immediate agreement and the probability distribution

over the three alternatives coincides with the recognition probabilities, i.e. π̄i = ρi. The

SSPE utilities are below the utility of the middle alternative, which makes accepting the

middle alternative the unique best response. The recognized player takes full advantage of

this response by proposing his best alternative knowing it will be accepted for sure.

Appendix B

Proof of Theorem 4.2:

⇒ After observing that
∑3

j=0 p
h
j r
h−1
jh rh+1

jh < 1 for some player h, i.e. player h makes with

positive probability a proposal that is accepted with positive probability is equivalent to

π0 = 0, this direction follows from the derivations in this section.

⇐ We first argue that a solution (p, r, v, z) to (4.1)–(4.7) corresponds to a strategy profile

(p, r) inducing utilities (v, z) and satisfying the one–shot deviation property. To show that

(v, z) are the utilities induced by (p, r) we have to show that given the strategy profile (p, r)

the system (4.1)–(4.2) has a unique solution. We substitute the expression for vih given in

(4.1) in (4.2) and obtain a system of three equations and three unknowns of the form

zi = ci + dzi, i = 1, 2, 3.

The constant d is given by

d =
3∑

h=1

ρh

3∑
j=0

phj r
h−1
jh rh+1

jh < 1,

where the inequality follows from the fact that ρh is positive for all h. Since d < 1, the

uniqueness of z follows immediately, leading to the uniqueness of v. Now it follows from

(4.1)–(4.7) that (p, r) has the one–shot deviation property.

We argue next that the absence of a profitable one-shot deviation implies the absence

of a profitable deviation, proving that (p, r) is an SSPE. The usual proofs do not apply

because future payoffs are not discounted. Nevertheless, the property that for some h it
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holds that
∑3

j=0 p
h
j r
h−1
jh rh+1

jh < 1 coupled with the observation that ρh > 0 implies that

every round there is a positive probability that negotiations terminate. Suppose there is

some player, say i, who has a profitable deviation from (p, r) at some decision node. The

feature that every round there is a positive probability that negotiations terminate implies

that player i also has a profitable deviation from (p, r) that coincides with the strategy

prescribed by (pi, ri) except for a finite number of decision nodes, exactly as in the case

with discounting. Finally, the usual backwards induction argument shows that player i

must then also have a profitable one–shot deviation. Q.E.D.

Proof of Theorem 4.3: We show first that each player i has zi strictly exceeding

the utility uiwi
of his worst outcome. Suppose, on the contrary, that player i has zi = uiwi

.

The probability is therefore 1 that the outcome xwi
is accepted at some point in time,

since otherwise the utility of i strictly exceeds uiwi
. Therefore, it follows that zi−1 = ui−1

bi−1

and zi+1 = ui+1
mi+1

. Since ui−1
mi

= ui−1
wi−1

< ui−1
bi−1

= zi−1, (4.7) yields that player i − 1 rejects

proposal xmi
by player i with probability 1, so ri−1

mii
= 1. Since ri−1

mii
= 1 and zi+1 = ui+1

mi+1
<

ui+1
bi+1

= ui+1
mi
, (4.4) yields that player i+1 rejects proposal xmi

by player i with probability 0.

Proposal xmi
by player i is therefore accepted with probability 1, so vii ≥ uimi

> uiwi
. Since

vii−1 ≥ uiwi
and vii+1 ≥ uiwi

, we find that uiwi
= zi = ρ1v

i
1+ρ2v

i
2+ρ3v

i
3 > uiwi

, a contradiction.

We conclude that each player has zi strictly exceeding uiwi
, i.e.

zi > uiwi
, i = 1, 2, 3. (4.12)

We show next that each player i has zi strictly lower than the utility of his best outcome,

uibi . If some player i has zi = uibi , then outcome xbi is accepted with probability 1, so

zi+1 = ui+1
bi

= ui+1
wi+1

, a contradiction to (4.12). We have found that

zi < uibi , i = 1, 2, 3. (4.13)

Next, we argue that any voter rejects his worst alternative for sure. To see this, when

player h proposes outcome xwi
, i 6= h, then player i is the last one to vote. It holds by

(4.12) that zi > uiwi
, so by (4.7), riwih

= 1. We have shown that

riwih
= 1, i = 1, 2, 3, h 6= i. (4.9)

We continue by establishing that, independent of who proposes, the recognized player

can always conclude the bargaining for sure by proposing either his worst or his middle

alternative. Consider a proposal xmi
by player i, so player i proposes his middle outcome

and player i+ 1, for whom this is the best alternative, votes before player i− 1. We argue

that this proposal will be accepted with probability 1 by player i + 1, i.e. ri+1
mii

= 0. By
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(4.9), since mi = wi−1, r
i−1
mii

= 1. Using that mi = bi+1, we know by (4.13), ui+1
mi

> zi+1.

Since ri−1
mii

= 1, we use (4.4) to conclude that ri+1
mii

= 0. We have derived that

r2
21 = r3

32 = r1
13 = 0. (4.10)

Consider now a proposal xwi
by player i meaning player i proposes his worst outcome. We

argue that this proposal will be accepted with probability one, i.e. ri−1
wii
ri+1
wii

= 0. Since

wi = bi−1, it follows from (4.13) that ui−1
wi

> zi−1, so by (4.4), ri−1
wii

= 0 or ri+1
wii

= 0. We

have derived that

r2
31r

3
31 = r1

12r
3
12 = r1

23r
2
23 = 0. (4.11)

As a corollary, a recognized player will never propose his worst alternative, because he can

do strictly better by proposing his middle alternative, i.e.

piwi
= 0, i = 1, 2, 3. (4.8)

We have already argued that each zi is a weighted average of uij, j = 1, 2, 3, with

weights πj independent of i. We argue next that all these weights are positive. If only one

weight would be positive, we would get a contradiction to (4.12) for some i. Suppose that

exactly two weights are positive, without loss of generality the weights π1 on outcome x1

and π2 on x2 sum up to one and π3 = 0, so zi = π1u
i
1 + π2u

i
2. For the equality π3 = 0 to

hold, the proposal x3 by player 3 should be rejected with probability 1. The proposal x1

by player 3 is accepted with probability 1 according to (4.10). We can now use (4.3) to

conclude that p3
0 = p3

3 = 0, and since p3
2 = 0 by (4.8), we know that p3

1 = 1. From (4.4) and

(4.9), the proposal x1 by player 1 is accepted with probability 1 by player 3. The proposal

x2 by player 1 is accepted with probability 1 according to (4.10). We can now use (4.3) to

conclude that p1
0 = p1

2 = 0, and since p1
3 = 0 by (4.8), we know that p1

1 = 1. A proposal x2

by player 2 would be rejected with probability 1 by player 1 using (4.5) and the fact that

r3
22 = 0 by (4.9). It now follows that π1 = 1, a contradiction to (4.12). We conclude that

all weights are positive,

π1, π2, π3 > 0. (4.14)

Q.E.D.

Proof of Theorem 4.4: Assume that (p, r) ∈ P ×R satisfies (4.1)–(4.7). We show

that (p, r̄) satisfies (4.1)–(4.7), where r̄ is as defined in Theorem 4.4. We verify first that

r̄ is proposer independent. Indeed, for i = 1, 2, 3, we have the following. It holds by

definition that r̄i0h = 1, h 6= i. We have by definition that r̄ibii+1 = 0 and r̄ibii−1 = ribii−1 = 0,

where the last equality holds by (4.10). Also it holds by definition that r̄imii+1 = rimii+1
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and r̄imii−1 = rimii+1, so r̄imii+1 = r̄imii−1. Finally, we have riwih
= 1, h 6= i, by (4.9), and

r̄iwih
= riwih

, h 6= i, by definition.

We show next that

rh−1
jh rh+1

jh = r̄h−1
jh r̄h+1

jh , h = 1, 2, 3, j = 0, 1, 2, 3. (B.1)

For j = 0, this follows immediately from the definition of R. Three possible cases remain:

(i) j = bh, (ii) j = mh, and (iii) j = wh.

Case (i), j = bh. Since bh = mh−1 = wh+1, we have

r̄h−1
bhh

r̄h+1
bhh

= r̄h−1
mh−1h

r̄h+1
wh+1h

= rh−1
mh−1h

rh+1
wh+1h

= rh−1
bhh

rh+1
bhh

,

where the second equality follows by definition of r̄.

Case (ii), j = mh. Since mh = wh−1 = bh+1, we obtain

r̄h−1
mhh

r̄h+1
mhh

= r̄h−1
wh−1h

r̄h+1
bh+1h

= rh−1
wh−1h

rh+1
bh+1h

= rh−1
mhh

rh+1
mhh

,

where the second equality follows by definition of r̄.

Case (iii), j = wh. By (4.11), it holds that rh−1
whh

rh+1
whh

= 0. Since wh = bh−1, we have

that r̄h−1
whh

= r̄h−1
bh−1h

= 0, where the last equality follows by definition of r̄. It follows that

r̄h−1
whh

r̄h+1
whh

= 0.

Using (B.1) we have that (p, r̄, v, z) satisfies (4.1), (4.2), and (4.3). We verify next that

(p, r̄, v, z) satisfies (4.4)–(4.7). Consider some r̄ijh. If j = bi, then r̄ijh = 0 and i = fjh, so

(4.4), (4.6), and (4.7) hold trivially. Implication (4.5) holds as well, since zi < uibi by (4.13).

If j = wi, then r̄ijh = rijh = 1 by (4.9), so (4.5) and (4.7) hold trivially. Since by (4.12)

zi > uiwi
, we find that (4.4) and (4.6) also hold. If j = mi and h = i + 1, then i = fjh, so

(4.6) and (4.7) hold trivially. We have that r̄ijh = rijh and r̄i
′

jh = r̄i−1
wi−1i+1 = ri−1

wi−1i+1 = ri
′

jh,

so (4.4) and (4.5) hold. Finally, we consider the case where j = mi and h = i−1, so i = sjh

and (4.4) and (4.5) hold trivially. Assume r̄ijh > 0. Since by definition r̄ijh = r̄imii−1 = rimii+1,

we have rimii+1 > 0, so by (4.4) zi ≥ uimi
or ri−1

mii+1 = 0. Since mi = wi−1, (4.9) implies

ri−1
mii+1 = 1, so zi ≥ uimi

. It follows that (4.6) holds. Assume r̄ijh < 1. Since by definition

r̄ijh = r̄imii−1 = rimii+1, we have rimii+1 < 1, so by (4.5) zi ≤ uimi
or ri−1

mii+1 = 0. Since

mi = wi−1, (4.9) implies ri−1
mii+1 = 1, so zi ≥ uimi

. It follows that (4.7) holds. Q.E.D.

Proof of Theorem 4.5:

(⇒) This direction follows immediately from the results derived in this section.

(⇐) This direction follows from Theorem 4.2 by defining, for h = 1, 2, 3, i = 1, 2, 3, and

j = 0, 1, 2, 3,

v̄ih = p̄hmh
uimh

+ p̄hbh ā
h−1
bh

uibh + p̄hbh(1− āh−1
bh

)z̄i,

r̄ijh = 1− āij,
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and verifying that a solution (p̄, ā, π̄, z̄) to (4.15)–(4.22) inducing expected utilities v̄ and

rejection probabilities r̄ leads to a solution (p̄, r̄, v̄, z̄) to (4.1)–(4.7) with π̄ = 0. Q.E.D.

Proof of Theorem 6.1: Necessity follows by Table 7. We now turn to sufficiency

of the condition. By Theorem A.1 an SSPE exists if α1α2α3 = 1. It remains to be shown

that an SSPE exists if α1α2α3 < 1.

By Theorem A.4.4 an SSPE exists if ρ1/ρ2 > α2, ρ2/ρ3 > α3, and ρ3/ρ1 > α1. Consider

now the cases where the conditions of Theorem A.4.4 are not satisfied. We claim that then

(
ρ3

ρ1

≥ α1 and
ρ1

ρ2

≤ α2) or (
ρ1

ρ2

≥ α2 and
ρ2

ρ3

≤ α3) or (
ρ2

ρ3

≥ α3 and
ρ3

ρ1

≤ α1). (B.2)

Indeed, assume, without loss of generality, ρ1/ρ2 ≤ α2. Either it holds that ρ3/ρ1 ≥ α1 or

ρ3/ρ1 < α1. In the former case the first formula in (B.2) is true, in the latter case it should

hold that ρ2/ρ3 ≥ α3, since otherwise

1 =
ρ1

ρ2

ρ2

ρ3

ρ3

ρ1

< α2α3α1 < 1,

and the third formula in (B.2) is true.

We show next that an SSPE exists whenever ρ3/ρ1 ≥ α1 and ρ1/ρ2 ≤ α2. The other

two cases in (B.2) follow by symmetry. If ρ3/ρ1 = α1 and ρ1/ρ2 ≤ α2, then line 1 in

Theorem A.4.3 implies the existence of an SSPE since ρ1/ρ2 ≤ α2 implies ρ1 < 1/(1 +α1 +

α1α3). Suppose, by contradiction, that ρ1 ≥ 1/(1 + α1 + α1α3). Then

1 = ρ1 + ρ2 + ρ3 ≥
1

1 + α1 + α1α3

+
1

α2 + α1α2 + α1α2α3

+
α1

1 + α1 + α1α3

=
1 + α2 + α1α2

α2 + α1α2 + α1α2α3

> 1,

a contradiction. If ρ1/ρ2 = α2 and ρ3/ρ1 > α1, then line 2 in Theorem A.4.3 implies

the existence of an SSPE since ρ3/ρ1 ≥ α1 implies ρ2 < 1/(1 + α2 + α1α2). Suppose, by

contradiction, that ρ2 ≥ 1/(1 + α2 + α1α2). Then

1 = ρ1 + ρ2 + ρ3 >
α2

1 + α2 + α1α2

+
1

1 + α2 + α1α2

+
α1α2

1 + α2 + α1α2

= 1,

a contradiction.

It remains to be shown that an SSPE exists if ρ3/ρ1 > α1 and ρ1/ρ2 < α2. By line 1 in

Theorem A.4.2, an SSPE exists if ρ3/ρ1 ≥ α1, ρ1/ρ2 ≤ α2, and ρ1/ρ3 ≥ β1, and by line 1

in Theorem A.3.1 an SSPE exists if ρ1/ρ3 < β1 and ρ2 ≥ α3β3.

It remains to be shown that an SSPE exists if ρ3/ρ1 > α1, ρ1/ρ2 < α2, ρ1/ρ3 < β1, and

ρ2 < α3β3. This follows from line 1 in Theorem A.3.2. Q.E.D.
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Proof of Theorem 6.2: Existence follows from Theorem 6.1. Leave out the games

satisfying the conditions of Theorem A.1, Theorem A.4.1, and Theorem A.4.3. This cor-

responds to a set of games whose closure has Lebesgue measure zero. Comparing the

conditions in any two distinct rows (that do not correspond to Theorem A.3.1) of Table 7

leads to the conclusion that the corresponding two sets of parameters have an empty inter-

section. This conclusion follows directly in most cases. In some cases one has to make use of

the property that αiβi < 1, which implies that we cannot have simultaneously ρj/ρk < αi

and ρk/ρj < βi. Finally, each of the Theorem A.3.1, A.3.2, A.4.1, and A.4.4 identify a

unique SSPE. Q.E.D.

Proof of Theorem 7.1: First we consider the case where α1α2α3 = 1. From Table 8

and Theorem A.1 it follows that we can choose

ρ1 =
1

1 + α2 + α1α2

, ρ2 =
α1α2

1 + α2 + α1α2

, and ρ3 =
α2

1 + α2 + α1α2

,

which leads to a delay probability of 1-1=0.

Next we consider the case where α1α2α3 < 1. We show that ρ can be chosen such that

the conditions of Theorem A.4.4 as listed in Table 7 are satisfied, which demonstrates the

absence of delay. We define γ = 1/ 3
√
α1α2α3 > 1 and

ρ1 =
γ2α2α3

1 + γα3 + γ2α2α3

, ρ2 =
γα3

1 + γα3 + γ2α2α3

, and ρ3 =
1

1 + γα3 + γ2α2α3

.

It therefore holds that

ρ1

ρ2

= γα2 > α2,
ρ2

ρ3

= γα3 > α3, and
ρ3

ρ1

=
1

γ2α2α3

= γα1 > α1.

Q.E.D.

Proof of Theorem 7.2: Without loss of generality, we may assume that for all

n ∈ N, (u, ρn) satisfies the conditions of exactly one of the theorems, i.e. one of the 15

subcases displayed in Table 8.

According to Table 8, the lower bound on the delay probability following from an SSPE

of Theorem A.1 is given by

1− (1 + α2 + α1α2) min{ρn1 ,
ρn2
α1α2

,
ρn3
α2

}.

Clearly, this lower bound converges to 1 when n→∞.
According to Table 7, the first line of conditions in Theorem A.3.1 states that ρn2 ≥ α3β3,

so limn→∞ ρ
n
2 = 1. Then Table 8, first line corresponding to A.3.1, yields that limn→∞ δn =

1. The other cases corresponding to Theorem A.3.1 follow by symmetry.
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According to Table 7, the first line of conditions in Theorem A.3.2 states that ρn2 <

α3β3, so it is impossible that limn→∞ ρ
n
2 = 1, so limn→∞ ρ

n
2 = 0. Then Table 8, first

line corresponding to A.3.2, yields that limn→∞ δn = 1. The other cases corresponding to

Theorem A.3.2 follow by symmetry.

It is evident from Table 8 that the delay probability following from Theorem A.4.1 goes

to 1 when n goes to infinity.

According to Table 7, the first line of conditions in Theorem A.4.2 states that ρn1 ≤ α2ρ
n
2 ,

so limn→∞ ρ
n
1 = 0. Then Table 8, first line corresponding to A.4.2, yields that limn→∞ δn =

1. The other cases corresponding to Theorem A.4.2 follow by symmetry.

According to Table 7, the first line of conditions in Theorem A.4.3 states that ρn1 <

1/(1+α1 +α1α3), so limn→∞ ρ
n
1 = 0. Then Table 8, first line corresponding to A.4.3, yields

that the lower bound on the delay probability following from an SSPE converges to 1. The

other cases corresponding to Theorem A.4.3 follow by symmetry.

Table 7 demonstrates that (u, ρn)n∈N cannot satisfy the conditions of Theorem A.4.4.

Suppose without loss of generality that limn→∞ ρ
n
1 = 0. Since ρn2 < ρn1/α2, we have

limn→∞ ρ
n
2 = 0. Since ρn3 < ρn2/α3, we have limn→∞ ρ

n
3 = 0. It follows that ρ converges

to the zero vector, a contradiction. Q.E.D.

Proof of Theorem 7.3: It is easily verified that, with the exception of Theorem A.1

and A.4.3, there is always an alternative that, in an SSPE, is never rejected when being

proposed. The Conditions in Theorem A.1 and A.4.3 are only satisfied for sets of games

having a closure with Lebesgue measure zero. Q.E.D.
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