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Abstract. For certain goods, higher levels of congestion imply higher levels of expected future 

entry costs. This provides current users of the good with an incentive to hoard, that is, to 

lengthen their duration of good use, in order avoid entry costs later on. We test for hoarding of 

university computers by students. Endogeneity of congestion is acknowledged by using an 

instrumental variable approach. Our results indicate that congestion has a strong effect on 

hoarding behaviour. More specifically, it is shown that the congestion elasticity of computer 

duration is about 0.57. 
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1. Introduction 

For many congestible goods, the individuals' costs of using the good are an increasing 

function of number of current users. Important examples include recreational places, public 

transport, and road transport.1 However, for other congestible goods, congestion increases 

new users’ costs of entry, for example through a higher waiting time. Relevant examples 

include curbside parking places, public housing, and airport landing slots which are allocated 

using grandfather rights.2  

In this paper, we focus on the latter group of congestible goods. The demand for these 

goods, and therefore congestion, is usually strongly autocorrelated over time. For example, if 

the demand for parking is high at three o'clock in a certain street, it is likely also high one 

hour later. Current levels of congestion are therefore a signal of future entry costs. Congestion 

then provides current users with an incentive to lengthen the period of good use, in order to 

reserve a place for later use. This hoarding strategy receives no attention in the public 

economics literature (e.g., Atkinson and Stiglitz, 1980; Scotchmer, 2002). The main exception 

is Arbatskaya et al. (2005) who study hoarding in a model where drivers compete for parking 

spaces in an all-pay auction, based on the schedule delay costs of arriving earlier than the 

preferred arrival time. They show that, when there are few parking spaces available, there are 

substantial welfare costs of hoarding. In general, hoarding results in inefficiencies in the way 

congestible goods are employed, particularly during peak times.  

To the best of our knowledge, there are no empirical papers on hoarding of congestible 

goods, although there are many anecdotal examples. For example, car drivers have been 

observed to hoard curbside parking places (Shoup, 2005, p. 443); students have been reported 

to hoard university computers (Straathof, 2011); airlines have been observed to hoard landing 

                                                           
1 See Gilbert and Hudson (2000), Lyons and Urry (2005), Small and Verhoef (2007), Ohmori and Harata (2008) 
and Proost and Dender (2008). 
2 See Currie and Yelowitz (2000), Doganis (2002), Shoup (2005), Arnott and Inci (2006); Givoni and Rietveld 
(2009) and Van Ommeren and Koopman (2011).  
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slots at airports (Doganis, 2002). For landing slots at airports, the literature focuses on the 

effect of congestion on current users, but due to grandfather rights, the effect may even be 

stronger for new users, because incumbent carriers continue to use landing slots that are 

nonprofitable in the short run (Doganis, 2002; Givoni and Rietveld, 2009). 

In the current paper, we test for university computer hoarding by students. Although 

computers play a very prominent role in modern-day life (and universities spend large 

amounts of money on ICT-facilities for students), little is known about the way in which 

computers are used at campuses. Descriptive studies on campus computer use include Sevtsuk 

et al. (2009); Burke et al. (2008); Henderson et al. (2008); Spennemann et al. (2007) and Kotz 

and Essien (2005). 

In essence, we estimate the effect of computer occupancy rates on computer outflow 

rate, i.e. the rate at which students stop using a university computer, which is inversely related 

to the duration of computer use.3 Our key assumption to identify hoarding is that students use 

the current occupancy rate to predict future entry costs.4  

We emphasise that students may hoard computers even when the occupancy rate of 

computers is substantially less than one. The main reason is that many students prefer to sit in 

groups (to work on assignments or for other reasons), and likely aim to avoid a situation 

where they return to computer rooms and cannot sit together. To illustrate this point, we will 

show later on that students with similar characteristics are more likely to sit next to each 

other. As a result, students who prefer to work in groups of two may already have an incentive 

to hoard when the occupancy rate exceeds about 0.50 (when occupied computers are evenly 

spread out in each room). For students that prefer to work in a larger group, hoarding may 
                                                           
3 There are also other ways in which the occupancy rate in a computer room may affect the use duration. A high 
occupancy rate might lead to noise and an unpleasant atmosphere, making computer use less attractive so that 
sessions become shorter than they would otherwise be. Furthermore, some students may feel uneasy when they 
realise that there is a queue of people that wish to start computer use, and therefore they might reduce their 
session length. Our results only show the net result of the various effects of occupancy rates, so we may 
underestimate the hoarding effect.  
4 In a previous version of this paper, we also extensively examine the effect of occupancy on the inflow. In line 
with theory, this analysis shows that congestion reduces inflow.  
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start at even lower levels. Furthermore, because students use current computer occupancy as 

predictor for future occupancy, students working individually may hoard at moments when 

occupancy is still relatively low (e.g., 0.70), because there may be a substantial risk for them 

that the occupancy rate is much higher later on when they prefer to return. At the same time, 

the costs of hoarding a computer may be low for students. For example, a student may leave 

the computer room for a while without logging off from the computer. 

By making use of computer log information, we observe computer use by thousands of 

students over a long time period. Heterogeneity of students is taken into account by including 

student fixed effects. Our identification strategy to deal with the endogenous effect of 

congestion on demand is based on exogenous variation in computer supply (as an instrument 

we use the number of computers that are reserved for lectures). We will estimate the effect of 

congestion on computer outflow rate using both linear and semiparametric regression 

techniques. The results show that hoarding is important: the congestion elasticity of computer 

duration is about 0.57. We also investigate alternative explanations for this, but do not find 

strong evidence for them.  

The structure of the paper is as follows. Section 2 discusses the data and provides 

descriptive statistics. Section 3 elaborates on the estimation techniques and Section 4 

discusses the results. Section 5 concludes. 

2. The data and descriptive statistics  

2.1 The data and selections 

Our log data refer to the economics students' use of  university computers located in nine 

computer rooms that are all in one building of the VU University, Amsterdam.5 Information 

                                                           
5 The Economics Department had 3,874 student registrations for the academic year 2008 – 2009. Including floor 
space costs, annual costs are about €1,200 per computer. The computers are used, on average, 3.5 hours per day, 
so the costs are about € 1.50 per hour of use. The annual costs per student are about € 67. 
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monitors in corridors provide information on the number of vacant computers per room.6 We 

employ computer use data from January 2008 to April 2009. So, we know for each student 

which computer is used at what time. For analysing computer hoarding, it is important to 

make a distinction between voluntary and involuntary outflow. Involuntary outflow occurs 

when a computer room is closed in the late afternoon or evening, forcing students to move to 

other rooms. Because we are interested in voluntary outflow, we select data about computer 

use before 3 pm.  

We make two additional data selections. First, we exclude 105 holidays and 

examination days in order to avoid identification based on atypical days. Second, we exclude 

students who participate in computer-aided lectures during that day, as for these students, our 

identification strategy that relies on exogenous variation in computer supply might be invalid 

(these students are likely to flow out in order to use reserved computers during computer 

lectures). Given these data selections, we observe computer use by 3,369 students during 206 

weekdays. We measure computer use, so inflow and outflow behaviour, per 15-minutes 

intervals. In total, we have 412,178 observations over 5,448 intervals. 

2.2 Descriptive statistics 

Table 1 provides descriptive statistics on computer use. The average aggregate inflow (per 15 

minutes) is 14 users (on average, the aggregate outflow is slightly lower, because at 3pm, 

there are still 54 users, on average). The outflow rate per student (per 15 minutes) is 0.176, 

corresponding to an average session duration of 85 minutes. The reported occupancy rate 

reflects the occupancy of computers available to students (so excluding computers in rooms 

that are reserved for lectures). 

In total, there are 217 computers. The number of computers that are out of order is 

unknown, but, in general, only very few computers are out-of-order, which implies that we 
                                                           
6 The monitors do not contain information on computers that are out-of-order or on future availability of 
computers.  
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underestimate occupancy rate slightly. For example, we observe maximally 215 (non-

reserved) computers occupied at the same time, so slightly less than maximum capacity.7 Of 

the 217 computers, on average 83 are used by students, 27 are reserved for lectures (and not 

available to students) and 107 are vacant. The average occupancy rate per user is 0.622. 

Frequently, the occupancy rate is very high. For example, in 30 percent of our observations, it 

exceeds 0.80 (see Figure A1). On many days, at least once during a 15-minutes time interval, 

occupancy is high. For example, on almost half of the days, the occupancy rate exceeds 0.90, 

and in one of five days, it exceeds 0.95. 

Students use computers rather infrequently: on average, students use computers on one 

out of nine weekdays. However, importantly, multiple use on the same day is common: 

conditional on use on a given day, 34 percent of users have multiple sessions (see Table 2) 

and 11 percent have at least three sessions. These results indicate that additional computer use 

later on the same day is important, which makes hoarding behaviour likely when the 

occupancy is high.  

Table 2: Daily number of sessions conditional on use  

Number of sessions 1 2 3 4 5 or more 
Frequency (%) 66 22 7 3 1 
Note: information based on 83,801 computer-use days 

                                                           
7 Another reason why we do not observe non-reserved computers being used to their full capacity is that some 
computers are usually reserved for lectures. For example, around one o'clock, which is a peak period, at least one 
computer room is reserved about half of the time.  

Table 1: Descriptive statistics  

  Mean Std. dev. Min Max 
Inflow (aggregate) 14 10 0 161 
Outflow (aggregate) 12 10 0 83 
Outflow rate (per user) 0.176 0.141 0 1 
Occupied computers by students 83 55 0 215 
Reserved computers (instrumental variable) 27 40 0 182 
Vacant computers 107 67 0 217 
Occupancy rate (non-reserved rooms; per user) 0.622 0.245 0 1 
Note: based on 15 minutes time intervals 
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The occupancy rate fluctuates strongly over the day: it is highest by the end of the 

morning and beginning of the afternoon (see Figure A2 in the Appendix).8 The occupancy 

rate is strongly autocorrelated: the correlation of the occupancy rate with the rate one hour 

later is 0.60 (conditional on hour of the day, week, and day fixed effects). This makes it likely 

that students use the current level of occupancy rate to predict future occupancy.  

To understand the statistical relationship of the current occupancy rate with the future 

rate, we have regressed the occupancy rate on its (one-hour) lag and the square of this lag. It 

appears that the coefficients are 0.86 (s.e. 0.03) and -0.23 (s.e. 0.03) respectively. So, the 

current occupancy rate has a less than proportional effect on the future occupancy rate. 

Furthermore, it thus appears that this effect is concave (this makes sense because the 

occupancy rate is less than one and therefore has  a finite variance). For example, when the 

occupancy rate is 0.62 (the average), the marginal effect is 0.57, and the marginal effect is 

0.40 when the occupancy rate reaches 1.  

In the introduction we mentioned that many students prefer to sit in groups (so 

students may hoard computers even when the occupancy rate of computers is substantially 

less than one). To demonstrate this, we have estimated models (for one computer room 

containing 30 computers) to show that students with similar characteristics sit together in 

computer rooms. For example, we have estimated linear probability models which show that 

the probability that the user is a master student increases by about 0.1 when another master 

student is using one of the adjacent computers (either to the left, or to the right). In these 

models, we include hour dummies to control for the share of master students per hour. The 

results are provided in Table A1 of the Appendix. Similar results are obtained if we do not 

focus on master students, but on other types of students that are more likely to sit together 

                                                           
8 This is in line with Spennemann et al. (2007) and Tang and Baker (2000). 
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(e.g., the year during which the student commenced his/her study, the course in which the 

student is registered). 

3. Estimation methods 

3.1 Identification and local treatment effects 

Hoarding can be modelled by assuming that utility-maximising individuals use a computer at t 

but prefer to stop using the computer until t + s (e.g., to have a break). The occupancy rate at t 

is denoted by Xt, where 0 ≤ Xt ≤ 1. The individual decides whether to continue using the 

computer (hoarding strategy) or to leave the computer and return later on at t + s, where s > 0. 

The cost of entry at t + s, denoted by Ct+ s, are assumed to depend positively on the occupancy 

rate at the moment of re-entry, denoted Xt+s. We assume that the occupancy rate Xt is 

positively correlated over time, so the expected costs of entry at t + s depend on the 

occupancy rate at t. For example, when occupancy follows a random walk, then the expected 

cost Ct+s is Ct+s(Xt). When the utility function is additive and has a random component, then 

the probability of hoarding at t depends positively on congestion levels, Xt. In the current 

paper, the probability of computer hoarding is determined by the computer outflow rate. 

We estimate the effect of the occupancy rate on the computer outflow rate, using 

linear and semiparametric regression models.9 Here, t refers to a 15 minutes time interval (so, 

we ignore variation in occupancy rate within the interval). Our dependent variable, Sit, is a 

dummy indicator whether the student leaves the computer during the time interval of 

observation.  

In the analysis, we include student fixed effects and room fixed effects (as different 

regulations apply in rooms regarding silence). In addition, we control for elapsed computer-

time (using a flexible 15 minutes interval dummy specification). Moreover, we interact two-

                                                           
9 These models are less efficient than maximum likelihood based models (e.g., hazard models or logit models), 
which are cumbersome to estimate given the large number of fixed effects. Given the large number of 
observations, efficiency of estimation  is not our main concern. 
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hours dummies (e.g., 8:00 – 10:00 am) with weekday (e.g., Monday) and study semester (e.g., 

September and October, 2008). In this way, we control for time-varying unobserved aggregate 

heterogeneity, including students' course schedules which vary over time in a regular way 

(e.g., third-year bachelor students have Public Economics lectures on Wednesday morning in 

the fall). We emphasise that it is potentially relevant to control for time-varying aggregate 

heterogeneity, because the occupancy rate is an aggregate variable which varies over time. 

It is also important to instrument for the occupancy rate, Xt. Endogeneity of Xt may be 

present in our estimates due to unobserved factors (that may affect both Xt and the outflow 

rate). In addition, and more importantly, endogeneity may be present because Xt is the result 

of outflow behaviour. For that reason, we use the number of computers that are reserved for 

lectures as an instrumental variable. So, the identification assumption is that there is no direct 

effect of the number of reserved computers on the outflow of computer users in the non-

reserved rooms. One reason why there may be a direct effect of the number of reserved 

computers on the outflow is when the number of computer lectures is correlated with the 

number of other (non-computer) lectures. Given the many time-controls included in the 

model, we believe that this is very unlikely to occur. In addition, we will show in the 

sensitivity analysis that including additional time controls hardly changes the results, which 

indicates that this bias is extremely limited. We emphasise that this bias, if present, would 

lead to an underestimate of the hoarding effect. Hence, our estimates on the congestion 

elasticity of computer duration are, if anything, on the conservative side. 

3.2 Parametric estimation 

In the parametric estimates, we will assume that the occupancy rate, Xticr, is linearly related to 

the outflow probability, Sit. Let ηt denote fixed effects of interactions between two-hours 

dummies, weekday and study semester, θi captures student fixed effects, κc and λr denote 

elapsed computer duration and room fixed effects. The model we will estimate is then: 
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Sticr = βXticr + ηt + θi + κc + λr + εticr ,       (1) 

where β is the parameter of interest and εticr denotes an error term.  

A potential objection to (1) is that, due to a queuing mechanism, students who flow in 

during moments of peak occupancy may have a high computer need, which may in turn be 

correlated with longer computer durations (and therefore a lower quitting probability). To 

avoid this potential endogeneity problem, we control for the occupancy rate during the 

moment of login, denoted X0icr. So, we include the terms βXticr
 and ζ X0icr, where β and ζ are 

coefficients to be estimated. This specification is identical to a specification with γXticr
 + 

δ[X0icr –Xticr], where β = γ - δ. We continue to assume that X0icr is endogenous, but we assume 

that the term [X0icr –Xticr] is exogenous, which seems a reasonable assumption because the 

computer outflow rate at t is unlikely to depend on the change in Xticr over time.  

So, in addition to (1), we estimate the following equation: 

Sticr = γXticr + δ[X0icr – Xticr] + ηt + θi + κc + λr + εticr,    (2) 

where γ and δ are estimated directly in the regression equation, and β = γ - δ is the parameter 

of interest. 

3.3 Semiparametric estimation 

Our parametric estimates rely on a the assumption that the effect of Xticr on Sticr is linear. This 

assumption may however be inappropriate, for example when hoarding is only important for 

high occupancy rates. So, we will also estimate semiparametric models. One complication is 

that when the relationship between Xticr and Sticr is of an unknown form, one cannot use 

standard instrumental variable techniques.  

In our semiparametric estimates, we employ a control function approach to control for 

endogeneity of Xticr (see Blundell and Powell, 2003; Yatchew, 2003).10 This approach treats 

                                                           
10 In linear models, the control function approach, instrumental variables, and plugging in fitted values in the 
second stage are identical. The (intuitive) approach to plug fitted values of the first stage into the second stage 
leads to inconsistent estimates for semiparametric functions (Ameniya, 1974; Angrist and Pischke, 2009). 
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endogeneity as an omitted variable problem, comparable to Heckman’s correction for 

selectivity bias, through the introduction of a control function (Heckman, 1979). An important 

prerequisite of the control function approach is that the endogenous variable must be 

(approximately) continuously distributed, which is fulfilled in our application (see Figure A1). 

The procedure to apply the control function is to first regress the endogenous independent 

variable on all independent variables and instruments. The predicted errors of this step are 

used as a semiparametric control function that is additive to the dependent variable in the 

second stage. We denote the instrument by Pt. The first stage is then:   

Xticr = Δ(Pticr) + δ(X0icr – Xticr) + ηt + θi + κc + λr +ξticr,     (3) 

where Δ( · ) denotes a nonparametric function of Pticr, and ξticr denotes the first-stage error 

term. We estimate Δ( · ) using series approximation, so we write Δ( · ) = ∑N
n=1αnPn

ticr  where αn 

are parameters to be estimated and n denotes the order of the polynomial to be estimated. The 

second stage encompasses: 

Sticr = Γ(Xticr) + δ(X0icr – Xticr) + Λ(ξticr) + ηt + θi + κc + λr + εticr,   (4) 

where Γ( · ) = ∑N
n=1βnXn

ticr and Λ( · ) = ∑N
n=1φnξn

ticr and βn and φn are parameters to be 

estimated.11  

We estimate the semiparametric functions using fifth-order polynomials, so N=5. The 

results are very similar for a different choice of N. The standard errors are obtained by a 

bootstrapping procedure.12 

 In our semiparametric estimation procedure, we select observations with an occupancy 

rate higher than 30 percent, because it is not insightful to study the local treatment effect when 

the computer rooms are almost completely empty, and including these observations strongly 
                                                           
11 The marginal effect is calculated as ∂Sticr / ∂Xticr = ∂Γ( ∙ ) / ∂Xticr – δ = ∑N

n=1
nβnXn

ti
-
c
1
r  

– δ. 
12 We use 250 bootstrap replications. To calculate the standard errors, we take into account that N is in principle 
unknown. For each bootstrap replication we draw N from a uniform distribution, where N=U[3,7]. This leads to 
an overestimate of the standard errors if N=5 is correct. So, our test of a congestion effect is conservative. For 
values of N lower than 3, the function is not flexible enough to capture nonlinearities. For values larger than 7, 
multicollinearity occurs.  
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inflates standard errors (there are few observations with an occupancy rate less than 30 

percent). For the parametric estimation, we will show that this data selection does not 

influence the estimated effect of congestion. 

4. The empirical results  

4.1 Parametric estimate on outflow 

Table 4 reports the effect of current occupancy, Xt, on the probability that a user flows out 

(during a 15-minutes interval) for several specifications.13 We emphasise that the instrument, 

the number of reserved computers, is strong. 14  

In column [1], we show the results of a specification where we control for student 

fixed effects, as well as two-hours dummies interacted with weekday and study semester. The 

effect is -0.1364 (with a standard error of 0.0143). In column [2],we also control for elapsed 

computer time and room fixed effects. The effect is now somewhat smaller: the effect is now -

0.1095 (s.e. 0.0117). In column [3], we also include [X0 - Xt], so we control for the occupancy 

rate at the time of login, X0. We emphasise that we are now interested in the overall effect of 

current occupancy rate, Xt, reported at the bottom of the table. The effect is now -0.0921 (s.e. 

0.0100), so only slightly lower than the previous specifications. These results also hold when 

we exclude observations when the occupancy rate is small. For example, column [4] shows 

that excluding observations when the occupancy rate is less than 30 percent, the results hardly 

change.15 

The results of Table 3 imply that users are less likely to flow out at moments of higher 

occupancy, which provides strong evidence of computer hoarding.16 To be more precise, our 

                                                           
13 For convenience, we refer now to Xticr as Xt

 and X0icr
 as X0. 

14 An F-test of the strength of the instrument indicates that the F-value is 503, so far above the minimum of 10 
usually recommended. The first stage coefficient of Xt is positive and is equal to 0.002014 (s.e. 0.000001).  
15 This is important because we focus on occupancy rates above 30 percent in the semiparametric specification. 
16 There may also be a slight positive effect, when congested rooms are considered less comfortable, so hoarding 
is underestimated. High occupancy may also be thought to cause the internet to run slower (which may increase 
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estimates imply that a 10 percent increase in occupancy decreases the outflow probability by 

roughly one percent point, thus about 5.7 percent of the mean outflow rate. This implies that 

the congestion elasticity of computer duration is about 0.57. A longer computer duration 

increases congestion, so hoarding creates congestion externalities to new users, at least during 

peak-hours. Hence, our findings favour congestion pricing of computer use (as suggested in 

the context of parking, by Vickrey in 1954). Because congestion pricing may be difficult to 

implement for university computers, a second-best policy which puts limits on computer 

duration might be considered, despite the other inefficiencies created by such limits (Calthrop, 

2001; Arnott and Rowse, 2009b).  

4.2 Sensitivity analyses  

One point of concern is that computer congestion may impede students to move to more 

favourable computers (e.g., less noisy). This ‘undesirable computer’ effect could be an 

alternative explanation for our findings.17 To test for this, we have re-estimated the model on 

a sample which excludes 35,000 observations of computer users who use two different 
                                                                                                                                                                                     
or decrease the outflow probability). This second effect is likely negligible, because the university internet 
connection is equipped for a much larger group than economics students.   
17 A priori, one expects the alternative explanation not to be of importance, in particularly because we have 
included computer rooms fixed effects, so the undesirable computer effect mainly applies to within-room 
variation of computers. 

Table 3: Parametric estimate on outflow probability 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

[1] [2] [3] [4] 
Data selection    Xt > 0.3 
Xt, occupancy rate -0.1364*** -0.1095*** -0.1216*** -0.0918*** 
 (0.0143) (0.0117) (0.0134) (0.0177) 
X0 - Xt, occupancy rate difference    -0.0294*** -0.0107* 
   (0.0061) (0.0064) 
Two hours interval fixed effects (180) Yes Yes Yes Yes 
Student fixed effects (3,335) Yes Yes Yes Yes 
Elapsed computer time dummies (28) No Yes Yes Yes 
Room dummies (9) No Yes Yes Yes 
Number of observations 412,178 412,178 412,178 362,288 
Overall effect of Xt -0.1364*** -0.1095*** -0.0921*** -0.0811*** 
 (0.0143) (0.0117) (0.0100) (0.0136) 
Note:  standard errors in parentheses; *** p<0.01; *  p<0.1. 
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computers within a short time period (either in the same room within 5 minutes or another 

room within 10 minutes). We then obtain an almost identical effect of -0.0847 (s.e. 0.012).18  

Another point of concern with our identification strategy may be that our instrumental 

variable, the number of computers that are reserved for computer lectures, may be correlated 

with the number of other lectures. Our exclusion restriction may then be invalid, because 

users may log off to attend lectures. We are not too concerned about this because the bias 

would likely lead to an underestimate of hoarding. More importantly, the bias must be 

minimal, because we include many time dummies which control for regular time patterns in 

congestion. Nevertheless, we have tested for this by estimating the model with even more 

controls (in particular, week and year combination dummies, e.g. week 1 in 2008), and 

without time controls, but the results hardly change (i.e., -0.1094, s.e. 0.0107 and -0.1163, s.e. 

0.0093, respectively). This strongly suggests this bias is extremely limited.  

4.3 Semiparametric estimate on outflow 

The effect of the occupancy level on computer outflow depends, among others, on the 

autocorrelation of occupancy over time. The functional form of the effect of occupancy on 

computer outflow is unknown. A priori, one may imagine that the effect of occupancy on 

computer outflow is convex, because at low occupancy rates, the (marginal) hoarding effect 

must be close to zero and becomes negative for higher levels of occupancy. However, we 

have seen above that the effect of occupancy rate on the future occupancy rate is concave. 

This makes it less plausible that the occupancy rate has a convex effect on the probability of 

hoarding, and even allows for the possibility that the effect is concave. 

In order to estimate the total effect of Xt for different levels of Xt, we have applied 

semiparametric regression techniques, see (4). We use the same control variables as before 

(see, column [4] of Table 3). The estimated total effect of the occupancy rate is presented in 
                                                           
18 When we exclude 22,837 observations of students who conducted resets (i.e. logged on to the same computer 
within 5 minutes of the last logoff), we find that the effect is -0.0886 (s.e. 0.0104). 
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Figure 1, which indicates that there is no effect up to 0.5, in line with the idea that hoarding is 

not important for low levels of congestion. For occupancy rates higher than 0.5, the total 

effect follows roughly a linear specification.19 Consequently, this suggests that the effect of 

occupancy rate is convex over the whole interval, but approximately linear for higher levels.  

 

 

 

 

 

 

 

 

Figure 1: Effect of occupancy rate on outflow probability (with 95% conf. interval) 

Because the number of observations with occupancy rates below 0.5 is limited (see Figure 

A1), the linear model is quite accurate in its estimates. Consequently, the semiparametric and 

parametric estimates provide similar insights about the presence of hoarding. 

5. Conclusion 

We have argued that for certain types of goods, congestion may induce current users to 

lengthen their period of use, to reserve a place for later. We have tested for hoarding of 

university computers by students. Using parametric and semiparametric regression models, 

we have shown that computer occupancy rates have a strong positive effect on computer use 

duration. Our results show that the congestion elasticity of computer duration is about 0.57.  

  

                                                           
19 We also estimated models excluding X0 – Xt, which leads to almost identical results. 
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Appendix A: Background Information 

 

Figure A1: The distribution of occupancy rates 

 

 

Figure A2: Occupancy level per hour of the day  
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Table A1: Probability that computer user is a master student  
User of adjacent left pc is a master student 0.109***  
 (0.015)  
User of adjacent right pc is a master student 0.082***  
 (0.015)  
User two pc’s to left is a master student -0.013  
 (0.014)  
User two pc’s to right is a master student -0.013  
 (0.015)  
Hour dummies (1500) yes  
Number of observations 4,821  
Notes: standard errors in parentheses; *** p < 0.01, * p < 0.1 

 

 


