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1. Introduction

Measuring the competitiveness of a market is of great importance in competition policy

and merger control. As early as halfway the previous century, economists have tried to find

aggregate measures that can provide information on the competitiveness of a market. Several

measures have been developed and used, of which the Hirschmann-Herfindahl index (HHI)

is without doubt the most popular, due to its straightforward interpretation and light data

requirements. The measurement of competition is not without problems however. Both the

HHI and other competition measures are based on assumptions that limit their validity to

specific cases. Moreover, all measures rely heavily on the definition of the relevant market,

which is often problematic as well.

The commonly used concentration index HHI was formally linked to profitability by

Cowling and Waterson (1976). They showed the HHI to be proportionate to the Lerner

index (price cost margin) in the case of a symmetric Cournot model. Many studies (see

Schmalensee (1989) for an overview) failed to empirically establish this relationship. The

conduct parameter method (CPM) does not require strict assumptions on the type of model

to establish the relationship with the Lerner index and became rather popular in the 1980s

(see Bresnahan (1989) for an overview) and 1990s. It requires more data than the HHI, as

well as some empirical work, which might be a hurdle for some to use it. Moreover, as shown

by Corts (1999), the simultaneous estimation of a demand and cost functions may lead to

incorrect results. The relative profit differences measure (RPD, Boone (2008)) measures

change in the competitiveness of the market by changes in relative profits of firms with

different profit levels. The measure can be used for many types of markets, but it is sensitive

to changes in efficiency levels.

We contribute to the literature by developing a measure that is as intuitive as market

concentration measures and has the same limited level of data requirements. Based on a

very limited set of non-restrictive assumptions, it will pick up the intensity of competition,
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whether it follows from observed or unobserved aspects of product differentiation, differences

in firm’s beliefs or information; costs or quality differences. The measure is directly applicable

to almost any type of market or model, can be applied at various levels of aggregation

and its interpretation is consistent over time and markets. An important strength of our

framework is that the impact of imperfect substitutes is endogenously determined. This way

our framework also provides valuable information that may help regulators in determining

the relevant market.

Our measure follows the intuition embedded in game theoretical models, without having

to specify the model in much detail. We show that firms’ best responses are related both to

the profitability of the firms as well as the dead weight loss due to imperfect competition.

We therefore develop a measure based on best responses, and hence label it the best response

measure (BRM). We introduce the concept of quasi equilibrium, where all firms are assumed

to play their best response and one firm is considered to play an unobserved strategy. This

allows us to determine the slope of the best response functions in (quasi) equilibrium. Best

responses are determined at the level of pairs of firm-product combinations, allowing in

principal to obtain firm-pair specific responses. Firms that do not respond to each other,

can be considered as not being in each other’s relevant market. By means of illustration,

we apply the general framework to a Cournot oligopoly with exogenous horizontal product

differentiation. Interestingly, we find that the BRM for a symmetric Cournot oligopoly equals

the inverse of the number of firms, which can serve as a useful benchmark.

We apply our measure to short haul airline markets in Europe. These markets provide

several challenges that put our measure to a serious test. Unlike in the US, publicly available

data is very limited for European airline markets. Airline markets exhibit both observed and

unobserved product differentiation, both in terms of the airports that airlines fly from and

in terms of the level of service. Moreover, cost differences are likely to be present and the

behavior of some of the airlines (i.e. the network carriers) is likely to be affected by their
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network structure. Specifically in our study area, the high speed rail forms an influential

substitute that should also be taken into account.

We estimate a hurdle model for airline-route output levels, consisting of a logit model

for the decision whether to fly a certain route and a count model for the number of seats

offered. We account for product differentiation by distinguishing between types of airlines,

as well as through the distance between airports on both sides of the route. Earlier studies

(Brander and Zhang (1990); Oum et al. (1993); Fischer and Kamerschen (2003)) applying the

conduct parameter method to aviation find that airline conduct resembles Cournot behavior

in duopoluy routes in the US. Fageda (2006) finds that competition in Spanish aviation is less

competitive, as he also takes monopoly routes into account. None of these studies accounts

for the possibility that airport pairs may be imperfect substitutes. We do take this into

account and find that the vast majority of airline markets in our sample is less competitive

than a homogeneous Cournot duopoly but more competitive than a monopoly.

Disaggregated results from our analysis also provide us with information on the geographic

boundaries of the relevant market. In aviation, these are normally approximated by the

catchment areas of airports, (generally defined as circle around an airport, see e.g. Marcucci

and Gatta (2011), a more refined approach is developed by Lieshout (2012)). Apart from

the geographical aspect, our results also take into account current output levels and the

possibility that airlines of a different signature may have a stronger or weaker response. A

special case of the relevant market definition is that of the high speed rail. Existing empirical

evidence on rail-air interdependence is route specific (Gonzalez-Savignat (2004), Park and Ha

(2006), and Behrens and Pels (2012)) or lacks theoretical support (Dobruszkes et al., 2014).

Our results suggest that the impact of a change in capacity on a the high speed rail link

between London and Brussels has a wider geographical scope.

The remainder of this paper is organized as follows. Section 2 discusses commonly used

competition indicators and the problems associated with them. We develop the theoretical
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framework in section 3. The empirical setting is outlined in section 4. We present and discuss

our empirical results in section 5. In section 6 we present the computed indicators, followed

by a conclusion in section 7.

2. Competition indicators

All commonly used competition indicators are in some way linked to industry profitability,

implying that they measure more or less the same thing. Nevertheless, Carbó et al. (2009)

find only weak cross-country correlations between a set of profit and competition indicators,

based on data from the same set of European banks.1 These, and similar results makes one

question the validity of the assumptions that link competition indicators to profitability. In

this section, we will discuss the most common indicators to measure the level or intensity of

competition and the problems they run into.

Concentration measures, such as the HHI, the Gini-coefficient and market shares of the

largest firms, provide easy-to-measure and highly intuitive measures of competitiveness and

have been very popular among regulators for decades. The indicators measure concentration

rather than competition, but the HHI has been formally linked to the Lerner index by Cowling

and Waterson (1976) for a symmetric Cournot oligopoly, establishing that more concentrated

markets are less competitive. If cost or quality differences between firms exist, concentration

may however be the outcome of the competitive process. Consider a Cournot duopoly

with homogeneous goods and cost differences. The low cost firm will have a higher market

share and hence the HHI will be larger than 0.5. In this static example, the HHI correctly

approximates industry profitability. Suppose however, that the intensity of competition

increases. The market share of the low cost firm increases, as does the HHI. The increase of

the HHI suggests that competition has become less intense, whereas the opposite has occurred.

1See Schmalensee (1989) for an overview of similar findings in earlier literature.
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One can think of many cases where the HHI certainly or maybe provides an incorrect image

of the intensity of competition. Only in the case of a homogeneous goods Cournot market,

the link between concentration and profitability is guaranteed.

Another approach that has been popular with regulators and academics for quite some

time is the conduct parameter method (CPM), which was used extensively in the 1980s

and 1990s (see Bresnahan (1989) for an overview). Like the HHI, this measure is linked to

the Lerner index (it is also referred to as the elasticty adjusted price-cost margin), but the

assumptions that establish this link are less restrictive. The measure is established empirically

by simultaneous estimation of the industry’s cost function and demand function. Estimating

these functions may lead to a loss of information, especially if firms set different prices or

have different cost levels. Moreover, Corts (1999) shows that the conduct parameter method

can lead to mis-measurement, as a result of incomplete information when simultaneously

estimating the cost- and conduct parameters.

The relative profit differences (RPD) measure (Boone, 2008) is a fairly new addition to the

collection of competition indicators. Consider three firms ranked by their level of efficiency.

The RPD is then defined as the profit difference between the first and third firm, divided by

the profit difference between the second and third firm. An increase in competition will lead

to an increase in the RPD as long as it reallocates output from less efficient firms to more

efficient firms. This holds for a great number of markets and models, giving the measure

a wide validity. The RPD measure may also lead to misleading results however. Rather

than being exogenous, the efficiency levels of firms may be an outcome of the competitive

process. If, for example, an increase in competition leads to an increase of efficiency levels,

the RPD might provide an incorrect conclusion on the development of competition. This

is especially the case if the least efficient firms improve their efficiency more than the most

efficient firm does. Other factors might influence the result as well. Suppose that, in a

horizontally differentiated market, consumer preferences change. This would cause a change
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in relative profits without any relationship with the intensity of competition.

One of the reasons that the HHI became so popular is probably that it only requires

market shares to be computed, which are fairly easy to come by. The CPM requires more

data, as both the demand and cost functions need to be estimated. At the minimum, this

requires total costs, prices and outputs. Several control variables (e.g. demand and cost

shifters) might be needed too. If the good is produced by multiproduct firms, estimating

the cost function will require even more data. The RPD requires similar data, but can

be applied to a smaller number of firms, provided that each firm sells only one product.

For multi-product firms, identifying efficiency levels for firms will require more data and

additional analysis.

In the following section, we will construct a measure that does not suffer from the problems

described above. Additionally, our measure does not require the researcher to define the

relevant market ex ante, as it follows naturally from the analysis.

3. Theoretical Framework

3.1. The general model

The aim of this section is to derive a measure that unambiguously reflects the intensity of

competition in a market, using only a small number of widely accepted assumptions. The

development of that measure runs along similar lines as the development of the conduct

parameter, but we avoid the problems mentioned in the previous section by focusing on best

responses rather than attempting to estimate an elasticity-adjusted Lerner index.

Consider an industry where n profit maximizing firms face a downward sloping aggregate

demand curve and have non-negative marginal costs. Furthermore, we assume that the level

of demand is positive if price equals marginal costs. U nder these very general assumptions,

the welfare loss due to market power results directly from aggregate output being below

its optimal level. This implies that any measure that correctly expresses the difference
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between the actual output in a market and the welfare maximizing level of output, provides

an adequate measure for the welfare loss due to market power, on which we will base our

measure for the intensity of competition.

Every individual firm j maximizes profits and hence equals marginal costs, c′j(qj), to

marginal revenues:

pj(Q) +
∂pj(Q)

∂qj
qj = c′j(qj) (1)

where qj denotes firm j’s output, Q =
∑
j

qj denotes market output and pj(Q) resembles the

inverse of the demand relationship Q(pj) that firm j faces. Reshuffling and multiplying both

sides by
∂Q(pj)

∂pj
yields the impact on (aggregate) output associated with the price cost margin

of firm j:

∂Q(pj)

∂pj

(
p(Q)− c′j(qj)

)
= −dQ

dqj
qj, (2)

Where the right hand side equals the market response to any change in firm j’s output

times firm j’s output level. Since Q = qj +
∑

i 6=j qi, we can express the market response as:

dQ

dqj
= 1 +

∑
i 6=j

dq∗i
dqj

(3)

Where q∗i reflects the (Nash) equilibrium output of firm i. Given the characteristics of the

Nash equilibrium, the observed behavior of every firm is its best response to the other firms’

actions. However, if we were to derive the equilibrium analytically, we could not determine

the value of dQ/dqj, since equilibrium outcomes of a Nash game do not contain decision

variables of other players. To work around this issue, we assume that firm j follows a strategy

that is unobserved by both the researcher and the other firms. Hence, this strategy will be

treated as exogenous in the model. The strategy of firm j might still be the best response

to the other firms’ actions, or it might be based on different strategies, other objectives, or

differences in information and so on. The other firms are assumed to play a best response,
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both to firm j’s observed output and to each other’s strategies. Solving the model, while

assuming firm j’s strategy to be exogenous, yields a quasi equilibrium that allows us to

determine the value of dQ/dqj.

Summation of (2) over all firms provides the total effect, i.e. the difference between the

actual and the optimal aggregate output levels. We drop the minus for ease of interpretation

and, in order to compare the indicator over markets and over time, divide the total effect by

total industry output. This leads to our (inverse) measure of competition, the best response

measure (BRM):

BRM =
∑
j

dQ

dqj

qj
Q
, (4)

which is the sum of the elasticities of market responses to any firm’s change in output, as well

as a weighted average of the individual measure dQ
dqj

. Note that in a competitive market (as

well as in a Bertrand oligopoly market), ∂Q
∂qi

= 0∀i whereas it takes a unity value in the case

of a monopoly. In a homogeneous symmetric Cournot market, the outcome would be 1
n
, as

we will show later on. This implies that the BRM has a very straightforward interpretation:

The market is as competitive as a symmetric Cournot market with 1
BRM

firms would be. By

coincidence, the often used HHI has the same interpretation, albeit that the HHI measures

concentration rather than competitiveness.

The framework above is clearly related to the framework of the conduct parameter

method.2 In fact, under the assumption that firms have equal costs and outputs, (2) may

be rewritten to the elasticity adjusted Lerner index (Bresnahan, 1989). We feel that this

assumption would however sincerely limit the generality of our approach. Moreover, we

note that our measure does not require information on the industry’s demand function, thus

avoiding the problem of mismeasurement in the simultaneous estimation, as discussed by

Corts (1999).

2See Bresnahan (1989) for a review of papers using this method.

9



3.2. An illustration: Cournot with horizontal product differentiation

So far, we didn’t specify a cause for differences in the intensity of competition. Although

we feel that knowing these causes is useful in understanding the nature of market power, they

are not crucial for measuring the intensity of competition. We will however further illustrate

our framework, using a model where horizontal product differentiation lowers the intensity

of competition in a Cournot framework. Consider an n-firm oligopoly, where firms i and j

produce their own variant of a good and the remaining n− 2 identical firms produce a third

variant. The following inverse demand function for good i is assumed to hold:

pi = αi − βiqi − γijqj −
∑

k 6=i,k 6=j

γikqk. (5)

with parameters αi and βi strictly positive and γij = γji. For γij > 0, goods i and j

are substitutes. The parameters provide information on the degree of substitutability. If

αi = αj and βi = βj = γij, goods i and j are perfect substitutes. For βiβj > γ2ij > 0, goods

are imperfect substitutes.

Firms maximize profits by setting quantities and have linear cost functions. From the first

order condition of firm i’s profit maximization problem, we can derive firm i’s best response

function in output:

qi =
αi − ci − γijqj

2βi
− (n− 2)

γik
2βi

qk. (6)

Treating firm j’s output as exogenous as discussed earlier and deriving similar best

responses for all firms k, we find the quasi equilibrium output for firm i by solving the system

of n − 1 equations (see Appendix C). The slope of the quasi equilibrium output of firm i

with respect to qj is equal to:

dq∗i
dqj

=
−γij
2βi

(n− 1)2βiβk
(n− 1)2βiβk − (n− 2)γ2ik

+
(n− 2)γikγkj

(n− 1)2βiβk − (n− 2)γ2ik
. (7)
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The slope of the best response of firm in quasi equilibrium, as represented by (7) coincides

with the same term on the right hand side in (3) and quantifies the intensity of competition

between firms i and j. A further exploration of the properties of this slope is provided in

Appendix C, here we limit ourselves to noting that the case of full symmetry (i.e. all β’s and

γ’s equal) yields the outcome of −1/n. Substituting that result in 3 yields a value of 1/n

for the BRM, the outcome of a symmetric Cournot oligopoly with homogeneous products,

ranging from 1/2 in duopoly to 0 if the number of firms is very large.

4. Empirical Setting

4.1. Aviation in the North Sea area

We test our theoretical framework by examining the aviation industry, in particular, we

analyze flights between the United Kingdom on the one hand and Belgium, France, Germany,

The Netherlands, and Switzerland on the other hand.3 Figure 1 provides a map of our study

area and the airports in our sample. Civil aviation markets provide a great opportunity to

illustrate our framework, as capacity decisions reflect strategic choices in a quantity game.4

Moreover, product differentiation is a common feature of civil aviation, both in terms of

branding and product quality and in terms of access to the nodes in the network. Other

factors that might influence the intensity of competition in aviation are cost differences,

imperfect information, conjectural variations, airport capacity restrictions and the place

that a specific link may have in the broader network of an airline. Furthermore, imperfect

substitutes are available, in the form of high speed rail, conventional rail or road transport.5

Both the UK and mainland Europe have a fairly high density of airports, as well as good

3Airports that do not have landside access to other airports are excluded from the analysis.
4Airlines set their schedules for 6-months periods. Once the schedule is set, capacity may be altered

slightly by applying smaller or larger plains, but most of the adjustments are made through advanced pricing
mechanisms.

5A special feature of our study area is that the UK is not accessible by road or conventional rail. We
assume that ferries are too distinct from airlines to take into account.
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Figure 1: Study area

infrastructure to access these airports. This allows travelers to choose from several airports

on both sides of the trip. Any flight between an airport pair is therefore considered to be

an imperfect substitute to a flight between any other airport pair. This raises the question

to what (geographical) extent substitution is present. A flight from London Luton to Paris

Charles de Gaulle is likely to compete with a flight from London Heathrow to Paris Orly.

But to what extent do these flights compete with a flight from Manchester to Amsterdam?

Our analysis is able to answer that question empirically by looking at firms’ best responses.

This allows us to endogenously determine the relevant market. Moreover, we can assess the

geographical scope of the impact of the High speed rail links to London on air routes. Apat

from fliughts being imperfect substitutes, the ’signature’ of the airline plays a role

4.2. Empirical model

The theoretical framework developed in the previous sections, provides an expression for

the slope of the best response function in quasi equilibrium. We now translate this theoretical
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finding into an expression that we can estimate and test empirically. We assume that airlines

set their schedules without knowing the new schedule of their competitors and base their

decision on the current schedule. We treat previous period schedules as exogenous, just as in

the theoretical framework. Under the assumption that the slope of the best response function

does not depend on the level of output, we write the equilibrium output of any firm-market

pair i as the sum of the products of the slopes and quantities of all other firms’ outputs in

the previous period, plus a constant:6

qi,t = A+
∑
j 6=i

dq∗i
dqj

qj,t−1, (8)

where A reflects a set of error terms and control variables including a constant, which we

will specify later on. For now, we would like to stress that
∂q∗i
∂qj

depends on the level of

substitutability of products i and j. We distinguish between two sources that affect this level;

the geographical distance between the routes and the ’signature’ of the airline.

Geographical distance matters because the catchment areas of airports sometimes overlap.

The closer the airports are, the larger this overlap is. We choose not to use predefined multiple

airport regions, but use a distance decay function to account for the impact of distance on

substitutability. We define:

dq∗i
dqj

= Bij · e−λ·dij , (9)

where dij is defined as the distance between both origin airports plus the distance between

both destination airports of flights i and j and λ is a distance decay parameter. The distance

decay parameter can not be estimated directly, but has to be chosen based on model fit.

With respect to the ’signature’ of airlines, we are mainly interested in how this ’signature’

affects the response to other airline’s behaviour. We expect similar firms to respond in a

6Given the assumption that the slope of the best response function does not depend on the level of output,
this is equivalent to the sum of the integrals of the best response functions.
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similar manner and hence have a homogeneous Bij parameter. The set M contains all airlines

and M =
F⋃
f=1

Mf . In other words, each airline belongs exclusively to one of the F groups,

for which we use indices f . This allows us to write the summation of (9) for a homogeneous

group f as: ∑
i

dq∗i
dqj

= Bij

∑
i

e−λ·dij . (10)

We add several controls to the model. First of all, we control for economic growth by adding

the wighted average of the GDP of the origin and destination countries. Moreover, we use

dummy variables (leading to an unconditional fixed effects specification) for every airline,

year, airport pair and mainland airport-period combination (e.g. CDGJan2009) in the data.

The combination of the lag structure and the controls used adequately deals with any possible

endogeneity problem. The relationship between the equilibrium supply q in period t of firm v

in group f on route k serving origin origin and destination dest, now reads as follows:

qfvr,t =BfO · ln qfvr,t−1 +Bf ·
∑
s 6=r

qvs,t−1
eλ·dsr

+
F∑
h=1

Bfh ·
∑
w 6=v
w∈Mh

∑
s

qws,t−1
eλ·dsr

+Bfhsr ·
∑
s

qhsrs,t−1

eλ·dsr
+BGDPGDPr,t + µv + µyear + µr + µdest,t + εvr,t,

(11)

with qhsrs denoting the output of the high speed rail. The first two terms specify the group

specific reactions to airline v’s own output on the same route and other routes respectively.

The third term captures airline v’s reaction to the output of all other competitors, the reaction

is specified to be group specific, including the group airline v belongs to. The fourth term

captures the reaction of airline v on the output setting of the high speed rail.

4.3. Empirical strategy

The empirical estimation uses the monthly number of seats provided by carrier v on route

r as the dependent variable. Although the data are monthly, we specify delayed variables
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by taking the value of that variable one year ago, i.e. in the same month a year ago. The

number of potential route-carrier combinations is much bigger than the actual route-carrier

combinations where flights are offered. This implies that the dataset holds an excessive

number of observations that have value zero, for which we have to account in our analysis.

We estimate a hurdle model, with in the first step a logit model and in the second step the

zero truncated negative binomial count model. This two step model relaxes the assumption

that the zeros and positive outcomes come from the same data generating process (Cameron

and Travedi, 2010). In other words, we see the decision to quit or enter a route as a different

process than adjusting the number of seats or monthly flights to changes in the competitive

environment. The binomial count model has the set of explanatory variables as defined

in (11). The logit model uses the same specification, except for the exclusion of the route

dummies and the inclusion of an extra variable indicating whether or not the airline already

serves other destinations from the UK-airport in the route.

4.4. Data

Table 1 provides the core descriptives of our data set. We obtain monthly aviation service

levels for 2004-2010, using OAG Market Analysis (OAG, 2011), for the rail schedules we use

the European Rail Timetable (Thomas Cook, 2011). We obtain GDP figures from Eurostat

(Eurostat, 2015). The base year for the GDP index is 2005. We weight this index over the

origin and destination country using absolute GDP levels. As a measure for the proximity of

routes, we add up the Eucledian distance between the airports on both sides of the route.7

Table 1 provides information on the groups of airlines that we distinguish between.

Full service airlines in our sample serve a total of 148 route-airline combinations (the level

7For example the distance between routes Amsterdam-Manchester and Rotterdam Liverpool is defined as
the Eucleadian distance between Amsterdam and Rotterdam (46 km) plus the distance between Manchester
and Liverpool (39 km) and hence amounts to 85 km. The mean distance within our sample is 768 kilometers,
with a standard deviation of 333 km. Mean and standard deviation are based on the unweighted average of
all elements in the distance matrix, including high speed rail stations.
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Table 1: Descriptives.

Variable Route-airline Total Total observations Mean Standard deviation
combinations observations (Seats>0) (Seats>0) (Seats>0)

Seats FSA (monthly) 148 12432 6983 12014.93 11125.06
Seats LCC, (monthly) 451 37884 13255 5174.23 4349.53
Seats RA, (monthly) 53 4452 2470 8001.06 8168.09
Seats Other, (monthly) 86 7224 514 1707.08 1354.21
GDP (index) 738 61992 23222 102.64 2.91

of observation in our analysis). With 84 time periods in our data, this leads to 12 432

observations. Many of the observations have zero values however, since not every route-airline

combination was served every month. 6983 Observations have a positive capacity level for

full service airline and the average number of monthly seats offered was slightly more than

12 thousand (i.e. about 70 Boeing 737-800s a month). For low cost carriers, the number of

observations is much higher, but the mean number of seats per observation is lower, suggesting

that -in our study area- low cost carriers fly more routes at a lower output level than full

service airlines. The latter is not surprising, as the hubs of the four largest full service airlines

are within our study area. The descriptives also reveal that the ’other’ airlines are a small

and very heterogeneous group. Despite their large number (see Appendix A), they serve a

low number of routes and offer a low number of seats compared to the other airlines in our

sample.

5. Estimation results and interpretation

Table 2 provides the results of the second step of the hurdle model for three different

levels of distance decay parameter lambda (the first step can be found in Appendix B).

The most important parameters are statistically significant and have the expected sign

and order of magnitude. Within-group responses for full service airlines, low cost carriers

and regional airlines are significant and negative and their absolute values are larger than

those for between group-responses. Responses regarding ’other’ airlines are generally not

significant, which is caused by the highly heterogeneous nature of this group. Judging by

the lack of statistical significance, full service airlines do not seem to react to the actions of
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Table 2: Zero truncated negative binomial model, seats

(1) (2) (3)
λ = 0.003 λ = 0.007 λ = 0.01

BFSA −0.153∗∗ −0.237∗ −0.436∗∗

(0.0478) (0.108) (0.152)
BFSA,FSA −0.558∗∗∗ −1.111∗∗∗ −1.393∗∗∗

(0.0534) (0.101) (0.132)
BFSA,LCC −0.0784∗ −0.487∗∗∗ −0.801∗∗∗

(0.0309) (0.0615) (0.0868)
BFSA,RA 0.0275 0.00860 −0.213

(0.110) (0.160) (0.196)
BFSA,Other 0.00302 −0.689 −0.927

(0.292) (0.444) (0.643)
BLCC 0.110 0.504∗∗∗ 0.826∗∗∗

(0.0641) (0.150) (0.225)
BLCC,FSA −0.0705 −0.218∗ −0.457∗∗∗

(0.0460) (0.0959) (0.138)
BLCC,LCC −0.132∗∗∗ −0.271∗∗ −0.303∗

(0.0357) (0.0875) (0.135)
BLCC,RA −0.302∗∗ −0.620∗∗∗ −0.756∗∗∗

(0.110) (0.170) (0.216)
BLCC,Other −0.123 −0.148 −0.140

(0.285) (0.557) (0.797)
BRA 0.964∗∗∗ 2.476∗∗∗ 2.672∗∗∗

(0.266) (0.455) (0.561)
BRA,FSA −0.130 −0.439∗∗∗ −0.732∗∗∗

(0.0732) (0.112) (0.132)
BRA,LCC −0.00252 −0.0526 0.0176

(0.0582) (0.165) (0.261)
BRA,RA −0.958∗∗∗ −2.230∗∗∗ −3.060∗∗∗

(0.188) (0.309) (0.393)
BRA,Other −0.533 −0.0601 −0.930

(0.700) (1.414) (2.151)
BOther 64.14 124.5∗ 194.0∗

(34.71) (60.73) (86.46)
BOther,FSA −0.386 −1.449 −2.208

(0.267) (0.863) (1.261)
BOther,LCC −0.331∗ −0.337 −0.267

(0.162) (0.536) (1.047)
BOther,RA 0.703 1.595 1.884

(0.735) (1.446) (1.923)
BOther,Other 1.766 1.474 −3.071

(1.660) (5.157) (8.850)
BFSA,HSR −0.0583 −0.149∗∗ −0.245∗∗∗

(0.0346) (0.0534) (0.0662)
BLCC,HSR −0.115∗∗ −0.210∗∗∗ −0.275∗∗∗

(0.0367) (0.0596) (0.0797)
BRA,HSR −0.199∗∗∗ −0.248∗∗∗ −0.251∗∗

(0.0472) (0.0676) (0.0849)
BOther,HSR 0.216 1.824 3.863∗

(0.215) (1.002) (1.875)
BFSA,Lag(Seats) 0.621∗∗∗ 0.609∗∗∗ 0.601∗∗∗

(0.0310) (0.0328) (0.0342)
BLCC,Lag(Seats) 0.274∗∗∗ 0.259∗∗∗ 0.254∗∗∗

(0.0164) (0.0164) (0.0164)
BRA,Lag(Seats) 0.562∗∗∗ 0.550∗∗∗ 0.551∗∗∗

(0.0399) (0.0372) (0.0366)
BOther,Lag(Seats) −0.116 −0.0829 −0.0496

(0.183) (0.153) (0.139)
GDP 0.0424∗∗∗ 0.0530∗∗∗ 0.0579∗∗∗

(0.00669) (0.00646) (0.00638)

Dispersionparameter −2.590∗∗∗ −2.610∗∗∗ −2.612∗∗∗

(0.0289) (0.0285) (0.0285)

Observations 16679 16679 16679
ll −145070.7 −144900.7 −144887.4

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

regional airlines, whereas the latter do not respond to the output of low cost carriers. The

parameter for the low cost response to full service airlines is significant only in model (3), i.e.

where the impact of distance is assumed to be strong.
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The estimated coefficients are semi-elasticities, hence in model (1) in table 3, the coefficient

BFSA,FSA = −0.558 implies that when distance between both OD pairs is arbitrarily small,

adding one extra seat by a full service airline would result in a decrease in seats offered of

0.558 per cent by any other full service airline. This effect decreases as the distance between

the OD pairs increases.

The difference between the three models seems not to be too large in terms of parameter

values and -significance or in terms of model fit, but we do note that some parameters are

statistically significant in model (2) and (3) but not in model (1).

Using the estimated results, we can calculate best responses at the route-carrier level, e.g.

how does Air France on Manchester-Paris Charles de Gaulle react to a capacity increase of

Easyjet on Liverpool-Paris Charles de Gaulle? These values represent the slope of the quasi

equilibrium output,
dq∗i
dqj

, and are expected to vary between 0 and −1/n. For some route-carrier

pairs, the best response was positive rather than negative however. The percentage of positive

outcomes for model (1), (2) and (3) are 8.8%, 4.2% and 2.9% respectively, and all these cases

relate to flights leaving from London. We note that distance is not a perfect indicator for

access and egress time, especially in the case of London, where five airports are located in

and around a dense metropolitan area.

The information on best responses can be used to see the responses to any output change

by a particular carrier on a particular route, as is done in Figure 2 below, showing the best

responses to an increase of Ryanair’s output on the London Stansted to Marseille route by 1

seat.

The figure shows best responses by British Airways and Easyjet on routes from other

London airports to Marseille and the fairly nearby airports of Geneva (323 km) and Nice

(155 km). Note that the (absolute) size of the response depends on the distance between the

airports on both sides of the routes, the type of airline and the current volume of seats that

the responding carrier offers. Individual best responses already provide a first indication as to
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Figure 2: Best responses to Ryanair’s capacity on STN-MRS (≤ −0.005)

what extent products are still substitutes and hence belong to the same relevant market. The

threshold value for this level is arbitrary, but the level of the best responses is determined

empirically. In Figure 2, we use -0.005 as the threshold value. Should we have used -0.01

instead, then only the BA flights from London Gattwick to Marseille and from London

Heathrow to Nice would belong to the same relevant market.

We stress that the relevant market concept is more than a geographical concept; it also

depends on the signature of the airlines involved, as well as on their relative size. This can

be demonstrated by figures 3 and 4 below, representing a 1-seat output increase on the

Manchester Frankfurt route by Lufthansa and Flybe respectively.

It is immediately clear from figures 3 and 4 that the relevant market for the full service

airline (Lufthansa) is different from that of the low cost carrier (Flybe), despite the fact that

they serve the exact same route.

As a policy relevant extension of the results above, we focus on the high speed rail

connection between the UK and the European mainland, providing high speed links from

London to Brussels and Paris. Similar to what we did for airlines above, we can determine

the relevant market for one of the high speed rail links. Apart from the regulatory significance
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Figure 3: Best respones to Lufthansa’s capacity on MAN-FRA (≤ −0.005).

of this analysis, it also provides information on how strong the substitution between air and

high speed rail is. Figure 5 provides the impact of adding one seat to the output of the high

speed rail between London and Brussels.

Although the effects on individual route-carrier combinations are fairly small, the impact

of high speed rail on aviation is substantial, especially if one keeps in mind that the capacity

of a train is considerably larger than that of an airplane. We also note that the geographical

impact in the UK is limited to London, whereas it spreads out considerably on the European

mainland.
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Figure 4: Best responses to Flybe’s capacity on MAN-FRA (≤ −0.005).

6. The intensity of competition on short haul airline markets in western Europe

From the best responses presented in the previous section, we can derive the intensity of

competition measure, BRM, as defined in (3) and (4). We choose to determine the BRM at

the city pair level rather than the airport level, as we feel that this better reflects the choices

made by consumers.8 Table 3 presents the top 10 and bottom 3 most competitive city pairs

in our sample for different levels of the distance decay parameter λ.

Table 3: Competitiveness ranking by city-pair level, for different distant decay values.

Rank λ = 0.003 λ = 0.007 λ = 0.01

1 London-Antwerp [-0.569] London-Antwerp [-0.136] London-Amsterdam [-0.126]
2 London-Brussels [-0.212] London-Amsterdam [-0.063] London-Antwerp [0.112]
3 London-Frankfurt [-0.210] London-Dusseldorf [0.002] London-Frankfurt [0.116]
4 Manchester-Antwerp [-0.138] London-Frankfurt [0.002] London-Dusseldorf [0.142]
5 London-Dusseldorf [-0.113] London-Brussels [0.105] London-Paris [0.216]
6 London-Paris [-0.073] London-Paris [0.179] London-Rotterdam [0.242]
7 London-Amsterdam [0.002] London-Cologne [0.209] London-Brussels [0.281]
8 Birmingham-Frankfurt [0.015] London-Rotterdam [0.220] London-Cologne[0.382]
9 Birmingham-Brussels [0.041] East Midlands-Brussels [0.307] East Midlands-Brussels[0.427]
10 Norwich-Amsterdam [0.044] London-Stuttgart [0.315] Birmingham-Amsterdam [0.437]
. . .
. . .
213 Glasgow-Berlin [0.928] Edinburgh-Nice [0.984] Edinburgh-Toulouse [0.997]
214 Edinburgh-Nice [0.934] Edinburgh-Lyon [0.984] Exeter-Rennes [0.997]
215 Edinburgh-Lyon [0.935] Edinburgh-Toulouse [0.985] Manchester-Brest [0.999]

8This choice is not fundamental, it merely determines the level at which best responses are weighted.
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Figure 5: Best responses to HSR capacity on London-Brussels (≤ −0.005)

Several city pairs in the table have negative values for the BRM, especially for the lowest

value of λ. The values for London-originating flights might be downward biased as discussed

before. The ranking of city pairs does however make sense, as the high ranking city pairs

indeed have larger numbers of carriers serving them and have centrally located mainland

airports, implying the presence of relatively close substitutes. On the lower end of the ranking

we see city pairs that are more to the periphery of our study area, where alternatives are

located further apart.

Figure 6 presents the levels of the BRM, ranked by their magnitude for different levels of

the distance decay parameter λ.

Recall that the BRM can be interpreted as the inverse of the number of symmetric Cournot

firms that would yield an equally competitive market. This implies that, for λ = 0.007,
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Figure 6: Intensity of competition on city-pair level, ranked by magnitude.

about 90 percent of the markets in our sample is less competitive than a symmetric Cournot

duopoly would be.

7. Conclusion

We have developed an intuitive and highly flexible indicator to measure the intensity

of competition, labeled BRM, and apply it to short haul airline markets in Europe. The

theoretical foundation of the indicator requires just a few assumptions, all of which are widely

accepted and used. This results in a highly general indicator that can be applied in many

markets. Moreover, and quite uniquely, our indicator does not require any a priori market

definition, as the boundaries of the relevant market can be derived from the disaggregated

inputs to the indicator.

In this paper, we illustrate the working of our indicator in the case of a Cournot oligopoly

market with exogenous horizontal product differentiation, showing that our indicator is

capable of capturing the effect that product differentiation has on the intensity of competition.

We then proceed to apply the model to real life data of airlines crossing the North Sea between

the UK and the European mainland. In the application, we show how the relevant market
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for any specific connection can be determined, based on the estimated best responses of the

competitors of the airline offering the connection. We show how both the distance between

alternative airports and the signature of the airline affect those best responses. In the case of

the high speed rail, airline responses to the high speed rail also provide information on the

modal substitution potential of high speed rail, which is an important reason for governments

investing in the associated infrastructure. Moreover, we calculate and present the BRM on

the city pair level. The results suggest that the vast majority of the city pair markets is less

competitive than a symmetric Cournot duopoly.

The development of our new indicator opens up a wide variety of opportunities for further

research. First of all, our claim that the indicator can be used in many market types, calls for

a more in-depth investigation. These investigations may be aimed at adopting the indicator

in the case of e.g. contestable markets, monopolistic competition, markets with information

asymmetry, markets with uncertainty and so on. Moreover, and more specific to the empirical

application presented here, further research might focus on finding a more elegant way of

modeling distance decay, in such a way that it can be estimated empirically.
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Appendix A. Classification of carriers

Table A.1: Carriers classification

Full Service Airlines (FSA) Low Cost Carriers (LCC) Regional Airlines (RA) Other

Air France Air Berlin Aer Lingus Aer Annan
British Airways BMI baby BMI British Midland Air Europa
KLM-Royal Dutch Airlines Britannia Airways Brussels Airlines Air Exel Netherlands
Lufthansa German Airlines EasyJet Swiss Internation Air Lines Air Scotland

EasyJet Switzerland VLM Airlines Air Turquoise
Fybe British European Air Wales
Flyglobespan Astraeus
Germanwings Baboo
Hapag-Lloyd Express Cirrus Airlines
Jet2.com Condor Flugdienst
Ryanair Darwin Airline
Thomsonfly DBA Luftfahrtgesellschaft mbH
Transavia Airlines Duo Airways Ltd
TUIfly Eastern Airways

EUjet
European Air Express
First Choice Airways
Hamburg International
Helvetic Airways
Mytravel Airways
OLT Ostfriesische Lufttransport
Palmair
ScotAirways
SkySouth
Thomas Cook Airlines
Titan Airways
V Bird
Vladivostock Air
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Appendix B. Result of logit estimation

Table B.1: Logit model, seats

(1) (2) (3)
λ = 0.003 λ = 0.007 λ = 0.01

BFSA −0.442∗∗ −0.0255 −0.453
(0.147) (0.209) (0.265)

BFSA,FSA −1.341∗∗∗ −1.179∗∗∗ −0.978∗∗∗

(0.135) (0.168) (0.189)
BFSA,LCC −0.570∗∗∗ −1.383∗∗∗ −1.767∗∗∗

(0.128) (0.227) (0.296)
BFSA,RA 4.019∗∗∗ 3.381∗∗∗ 2.855∗∗∗

(0.331) (0.305) (0.309)
BFSA,Other 3.096∗ 6.177∗ 8.384∗

(1.557) (2.911) (3.995)
BLCC 1.884∗∗∗ 3.412∗∗∗ 3.792∗∗∗

(0.179) (0.371) (0.549)
BLCC,FSA 0.189 0.474∗∗ 0.866∗∗∗

(0.126) (0.178) (0.224)
BLCC,LCC −0.290∗∗ −0.970∗∗∗ −1.915∗∗∗

(0.109) (0.205) (0.284)
BLCC,RA 0.243 1.091∗∗ 1.656∗∗∗

(0.354) (0.408) (0.489)
BLCC,Other −1.170 −5.042 −7.091

(1.247) (2.693) (3.762)
BRA 1.902∗∗ 3.268∗∗∗ 4.568∗∗∗

(0.618) (0.832) (0.971)
BRA,FSA 0.611∗∗∗ 0.970∗∗∗ 1.258∗∗∗

(0.171) (0.269) (0.318)
BRA,LCC −0.829∗∗∗ −3.322∗∗∗ −4.971∗∗∗

(0.201) (0.434) (0.608)
BRA,RA 3.988∗∗∗ 7.323∗∗∗ 7.666∗∗∗

(0.576) (0.824) (0.988)
BRA,Other −7.306∗∗ −10.16∗ −14.50∗∗

(2.569) (4.250) (5.370)
BOther −93.40∗∗∗ −143.6∗∗ −159.4∗

(22.53) (50.22) (75.15)
BOther,FSA −0.170 0.655 0.845

(0.476) (0.832) (0.980)
BOther,LCC −0.974∗∗ −1.842∗ −2.371∗

(0.333) (0.718) (1.013)
BOther,RA 2.017 1.675 2.522

(1.359) (2.162) (2.838)
BOther,Other 8.762∗ 6.212 −3.779

(4.244) (8.518) (11.83)
BFSA,HSR 0.0195 −0.0179 0.00466

(0.0541) (0.0521) (0.0575)
BLCC,HSR −0.123∗ −0.287∗∗∗ −0.424∗∗∗

(0.0603) (0.0753) (0.0984)
BRA,HSR −0.787∗∗∗ −0.984∗∗∗ −1.075∗∗∗

(0.0940) (0.110) (0.135)
BOther,HSR −0.0763 0.0871 0.432

(0.360) (0.643) (0.916)
GDP −0.0153 −0.0173∗ −0.0208∗

(0.00832) (0.00847) (0.00832)
Already serving UK airport 2.386∗∗∗ 2.455∗∗∗ 2.448∗∗∗

(0.0330) (0.0332) (0.0325)

Observations 51194 51194 51194
AIC 47517 47519 47673
ll −22964.5 −22965.4 −23042.3

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Appendix C. An exploration of the properties of the heterogenous Cournot case

We start from firm i’s best response in 6. Treating firm j’s output as exogenous as discussed

earlier and deriving similar best responses for all firms k, we find the quasi equilibrium output

for firm i by solving the system of n− 1 equations:

q∗i =
αi − ci − γijqj

2βi

(n− 1)2βiβk
(n− 1)2βiβk − (n− 2)γ2ik

− γik(n− 2)(αk − ck − γkjqj)
(n− 1)2βiβk − (n− 2)γ2ik

. (C.1)

The slope of the quasi equilibrium output of firm i with respect to qj is equal to:

dq∗i
dqj

=
−γij
2βi

(n− 1)2βiβk
(n− 1)2βiβk − (n− 2)γ2ik

+
(n− 2)γikγkj

(n− 1)2βiβk − (n− 2)γ2ik
. (C.2)

Which is equal to (7) in the main text of the paper. It is straightforward to check that

this slope decreases in gammaij, implying that the intensity of competition between firms i

and j decreases if the level of substitutability decreases. Let us now discuss a few special

cases.

We first consider the case where i and j are perfect substitutes (γij = βi = βj, this also

implies that γjk = γik), substitution yields:

dq∗i
dqj

=
γ2ik(n− 2)− (n− 1)βiβk
(n− 1)2βiβk − (n− 2)γ2ik

, (C.3)

which increases in γik. If γik = 0 (meaning that i and k are not substitutes), this reduces to

−1/2, representing a symmetric duopoly, since products k become irrelevant. If on the other

hand γ2ik = βiβk, all goods are perfect substitutes, and the outcome reduces to the symmetric

Cournot outcome −1/n.

We continue our exploration by considering i and j to be imperfect substitutes (γij < βi),
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while i and k are perfect substitutes (i.e. γik = βi = βk) We find:

dq∗i
dqj

= −γij(n− 1)

βin
+
γjk(n− 2)

γikn
. (C.4)

Given that i and k are perfect substitutes,
γij
βi

=
γjk
γik

, leading to dqi
dqj

> −1/n. In other

words, the absolute value of
dq∗i
dqj

, and hence the intensity of competition between firms i and

j, decreases in the level of product homogeneity, which is in line with common economic

intuition. If i and j are very heterogeneous, i.e γij (and hence also γjk) tends to zero,
dq∗i
dqj

also

tends towards zero. This also refers to common economic intuition that goods that are hardly

substitutes, hardly compete. The latter notion leads us to the concept of the relevant market

We start by imposing full symmetry on the model, i.e. all goods are perfect substitutes,

implying that all γs and βs are equal. This allows us to simplify (7) substantially:

dq∗i
dqj

= − n− 1

(n− 1)2− (n− 2)
+

n− 2

(n− 1)2− (n− 2)
= −1/n. (C.5)

Substituting this result into (3) yields 1− (n−1)/n = 1
n
, the outcome of a symmetric Cournot

oligopoly with homogeneous products, ranging from 1/2 in duopoly to 0 if the number of

firms is very large.
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