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Abstract

We apply the dynamic stochastic framework proposed by recent evolutionary literature
to the class of strict supermodular games when two simple behavior rules coexist in the
population, imitation and myopic optimization. We assume that myopic optimizers are
able to see how well their payoff does relative to what they can get in the stage game and
therefore experiment more in low payoff states. A clear-cut equilibrium selection result is
obtained: the payoff dominant equilibrium emerges as the unique long run equilibrium.
Furthermore, the expected waiting time until the payoff dominant equilibrium is reached is

relatively short, even in the limit as the population size grows large.
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1. Introduction

This paper studies how the long run prediction of the evolutionary model of Kandori and Rob
(1995) (hereafter KR) changes for the class of strict supermodular games when two simple
behavioral rules coexist in the population, namely imitation and myopic optimization. KR

predict the long run behavior of an adaptive adjustment process in which myopic and boundedly
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rational players base their strategy in the stage game (their action) on the expected payoff from
the current population state. This adjustment process is perturbed by mutations whose effect is
to introduce a stochastic flow of players adopting any action. By using this framework KR show
how evolutionary forces and mutations interact to pin down the set of equilibria that is most
likely to be observed in the long run, assuming that players are repeatedly randomly matched in
pairs to play a strict supermodular stage game. Specifically, they show how the geometry of the
best response correspondence helps to identify the set of long run equilibria. One contribution
of this paper is to demonstrate that when the two simple behavior rules, imitation and myopic
optimization, coexist in the population, a much more clear-cut equilibrium selection result is
obtained: the payoff dominant equilibrium (see Harsanyi and Selten (1988)) is selected as the
unique long run equilibrium for the class of strict supermodular games. Furthermore we show
that the expected waiting time until the long run equilibrium is reached is relatively short,
even in the limit as the population size grows large. Hence convergence may in fact be rapid
even though the mutation rate is small.

Our results do (of course) depend on the specific assumptions made on the behavior rules,
imitation and myopic optimization. As in Vega-Redondo (1995), the different types of players
(or different behavior rules) are interpreted as representing different degrees of sophistication.
We call players with the lowest degree of sophistication imitators. They are fairly unsophis-
ticated in the sense that they have no knowledge whatsoever about the stage game they are
playing. When they imitate, they are implicitly hoping that the players they decide to mimic
are already well adapted. For simplicity, we pose that imitators observe average payoff to
each action played in the last period and copy the action that got the highest average payoff.
Myopic optimizers (or best reply players) are somewhat more sophisticated. They know the
payoffs in the stage game and their best-reply correspondence. They play a best response to
the population state they observe, which can thus be seen as their expectation of next period’s
state, i.e. we assume that myopic optimizers believe their opponents to stay with their current
actions. Hence, myopic optimizers form adaptive expectations. Furthermore, we pose that
myopic optimizers, who are able to see how well their payoff does relative to what they can
get in stage game, experiment more in situations in which they have realized a lower relative
payoff, since they ‘reason’ that experimenting is potentially more rewarding in such a situation
than in a situation in which high relative payoffs are realized. This way the mutation rate
of myopic optimizers is state dependent. In contrast, imitators do not know the stage game
and thus have a flat mutation rate over the different states. Alternatively, like in Gale and

Rosenthal (1999), we may specify the two different types by how they learn: either a player



learns indirectly (i.e. copies another player and hopes that this player is well adapted), or she
learns directly (i.e. looks around and tries to do the best she can). Furthermore, when a player
learns directly, she evaluates her payoff relative to what she might get and experiments more
in situations with lower relative payoffs. The former type of learning is imitation, the latter is
what we call myopic optimization.

The motivation for this paper is threefold. First, the dynamic stochastic framework pro-
posed by Kandori, Mailath, and Rob (1993) (KMR) and Young (1993) (together labelled as
KMRY) focuses attention on rare mutations as an equilibrium selection device. They incorpo-
rate myopic and boundedly rational players who base the action they will play on the expected
payoff from the current population state. Neglecting mutations, the population state evolves
through a Darwinian! difference equation in KMR and through adaptive play in Young (1993).
Basically, in KMRY players can be considered to play a best reply, given their limited infor-
mation and bounded rationality. The important result KMRY obtain on 2 X 2 games is the
selection of the risk dominant equilibrium as the unique long run equilibrium. In contrast,
Robson and Vega-Redondo (1996) model players that imitate the strategy whose average pay-
off was highest in the previous period. This model yields selection of the payoff dominant
equilibrium as the unique long run equilibrium in the class of symmetric 2 x 2 coordination
games. Moreover, convergence is much faster in this model than in KMRY.?

However, non of these models provide explains why players use a specific update rule, like
imitation or myopic optimization.Vega-Redondo (1995) does address this issue implicitly. He
argues that when players update their expectations according to different update rules, any
Nash equilibrium in the stage game can get positive measure in the invariant distribution when
the mutation rate goes to zero. Vega-Redondo (1996), Section 6.7, studies a more specific
version of this model, in which there explicitly is competition between imitators, myopic opti-
mizers, and so called ‘dynamic optimizers’. Dynamic optimizers are very sophisticated players.
They form self-confirming expectations about next period’s state and play a best-reply to
these expectations. We define self-confirming expectations as expectations against which no
evidence occurs as long as play remains on the equilibrium path. Along the equilibrium path
self-confirming expectations are thus consistent with observed play. Thus playing a best-reply
to self-confirming expectations yields maximal payoff as long as play remains on the equilibrium
path. According to Vega-Redondo (1996), the most interesting results emerge when a narrow

range of sophistication is studied, i.e. when only imitators and myopic optimizers compete.

!We define Darwinian dynamics in the same way as Kandori, Mailath, and Rob (1993).
“Robson and Vega-Redondo (1996) also extend these results to games of common interest.



A restriction of these models of Vega-Redondo is that they focus on symmetric coordination
games only.

Our paper unifies the approaches taken above. It provides an evolutionary framework in
which selection among the rules of behavior myopic optimization and imitation takes place for
general m x m strict supermodular games. Furthermore, we believe that in general players
are not sophisticated enough to form self-confirming expectations.? Therefore we focus on
competition between the behavioral rules imitation and myopic optimization.

Second, the theory of supermodular games provides a framework for the analysis of systems
marked by complementarities. This class of games, introduced by Topkis (1979) and further
explored by Milgrom and Roberts (1990) and Vives (1990), includes models of oligopolistic
competition, macroeconomic coordination failure, Bertrand price competition, bank runs, and
R&D competition. Supermodular games are characterized by the fact that each player’s action
set is partially ordered, the marginal returns to increasing one’s action rise with increases in
the opponents’ actions. In the case of multidimensional actions, the marginal returns to any
one component of the player’s action rise with increases in the other components. As a result,
these games exhibits strategic complementarities that yield monotone increasing individual best
responses, as the actions are completely ordered. Furthermore, as remarked by e.g. Milgrom
and Roberts (1990), an analysis of supermodular games like ours is entirely ordinal in character,
since it focuses on inequalities between payoffs. Thus, the payoffs in a supermodular stage game
can be regarded as ordinal utility levels, which is often neglected in economic theory, as it tends
to focus on Von Neumann-Morgenstern expected utility theory. We analyze strict supermodular
games under the assumption that we restrict payoffs to be within certain bounds. That this
is without loss of generality follows directly from the argument above on the ordinal nature of
utility levels.

Finally, we follow the suggestion of Bergin and Lipman (1996) and incorporate an explicit
model of the mutation process.* The striking result of Bergin and Lipman (1996) is that any
invariant distribution of the ‘mutationless’ process can be obtained in a setting with muta-

tions, as in the limit the probability of mutation approaches zero, if in the model the relative

3Note that the presence of dynamic optimizers can upset any selection result among symmetric Nash equilib-
ria, through expectational drift (see Vega-Redondo (1995)). However, when we assume dynamic optimization to
come with a (computational) cost, in any equilibrium, selection pressure will see to it that dynamic optimizers

become extinct from a population.
‘van Damme and Weibull (1998) also suggest a model of varying mutation rates. However, they focus

attention on mistakes, while we focus attention on experimentation. Moreover, they restrict attention to 2 x 2

games. Robles (1998) also suggests a model of varying mutation rates.



probabilities of the actions to which a mutation can change a player’s action can approach zero
or infinity. Hence, to generate more precise equilibrium selection predictions, economically
interesting conditions on mutation rates must be incorporated in the model. In particular,
if mutations reflect experimentation (as in our model), and the game has a payoff dominant
equilibrium (as in strict supermodular games), Bergin and Lipman (1996) (p. 944) suggest
that one might expect experimentation to occur at a lower rate in the state where all players
play according to the payoff dominant equilibrium than in any other states. Of course this only
holds for players that are able to rank the payoffs in the stage game.

The structure of the paper is as follows. Section 2 provides the general model. In sections
3 and 4, we analyze convergence in the absence and presence of mutations. Finally, in Section

5, we discuss our results.

2. The Model

We consider a finite population N := {1,2, ..., N} consisting of N players with N even. In each

period t = 1,2, ... all players are randomly matched in pairs to play a stage game.

2.1. The Stage Game

We consider a one population model. Thus, there is no difference in role between being the
row or the column player and therefore, the stage game is symmetric. The stage game we posit
is a strict supermodular game. The set M of pure actions in a strict supermodular stage is by
definition partially ordered. Here we follow KR and assume that M is finite and completely
ordered from low (action 1) to high (action M), i.e. M :={1,2,...,M}. A player’s payoff when

she and her match choose action m and m’ respectively, is denoted by u(m,m').

Definition 2.1. The stage game is a strict supermodular game if for any pair of strategies

1 <m <m' < M the payoff differences u(m’,m") — u(m, m") are strictly increasing in m".

The ordering of the actions and the supermodularity of the stage game ensures that all
diagonal payoffs in the stage game are rankable in the Pareto sense, i.e. for all m,m' e M, 1 <
m <m' < M, it holds that u(m,m) < u(m/,m’). We constrain off-diagonal payoffs to action
M, u(M,m) and u(m, M), with m # M, to exceed a certain lower bound, specified in Section
4.

The following proposition states some well known results for strict supermodular games.



Proposition 2.2. (KR, Proposition 6) After all strictly dominated strategies have been iter-
atively removed from the game, then

i) the smallest and largest strategies are pure action Nash Equilibria (NE for short),

ii) no asymmetric NE in pure actions exists, and

iii) for a generically selected supermodular game all pure action NE are strict.

Thus, in a symmetric strict supermodular game, the set of pure action NE is a subset of

the main diagonal.

Definition 2.3. M* := {m* € M | (m*,m*) is a pure action NE}.

2.2. The Players’ Types and the State Space

At every time t = 1, 2, ... each player in the population uses a particular update rule, which we
refer to as a player’s type. An update rule specifies how a player updates the action she plays
in the stage game, when given the possibility to revise her action. We consider the update rules
“4mitation’ (1) and ‘myopic optimization’ (u) and thus we accommodate two types of players.
Players that update according to ¢ are called imitators, while players that update according to
1 are called myopic optimizers.

In every period t each player is characterized by a pair (m,i), m € M, i € {¢,u},
identifying the action m she currently plays and her type i. For every period ¢, the state
s(t) = (85(2), 85 (1), ..., s4(¢), shy (1)) is a vector of summary statistics, whose element, s&,(t),
m € M, i = 1,4, represents the number of type i-players using action m at time t. Thus,
the state space is given by & = {1,2,...,N}2M, where for every s € S, we have that
Y mem (St + 8m) = N. We take account of the state s(¢) at the start of period ¢. The total

number of players playing action m at time t is s,,(t) = st,(t) + st (t) and the number of

M
m=1

at time ¢ is N} = N — NJ'. We refer to the vector with entries s, (¢) by 5(t) = (8m(t))mem

myopic optimizers in the population at time ¢ is Nf' = 8m(t). The number of imitators
and define the vector s™™(t) = (5;,"(t))mem 2 the vector representing the total number of
players playing action m at time ¢, when player n, n € N, is excluded from the population and
we denote the m-th entry of s~"(¢) by s;,"(t). Note that both 5(¢) and s~"(t) are frequency
distributions and thus the concept of first order stochastic dominance between states is well
defined.

As stated before, at each time ¢, all players are matched in pairs once to play the stage

game. All possible matches® have the same probability of occurring.. By gi(m,m’) we denote

°Tt can be shown by induction that there are (N —1) - (N —3)-...-3- 1 possible matches.



the number of matches at time ¢ between a player of type ¢, ¢ = ¢, 4, playing action m and
a player playing action m’. Note that all matches m-m/ are counted twice, namely once as a
match of an m-player with an m/-player and once as a match of an m/-player with an m-player.
Furthermore, we define g; (m,m') = gi{(m,m’) + gi'(m,m’). From the above it follows that
gt (m,m) is twice the number of m-m matches. Since all players are matched once, we have
that sm (£) = Y wem gt (Mm,m') . Now, let T, (t) denote average payoff of action m € M, at

time t. lLe.,
1

Um(t) == @

Z u(m,m’)g; (m,m’) .

m/emM
2.3. The Mutation-Free Dynamics

The mutation-free dynamics operate on two levels. At the first level, at each time ¢, some
players get the possibility to revise their action. They do so according to a particular update
rule. At the second level, at each time ¢, some players get the possibility to switch update

rules, i.e. to update their types. We now specify both processes in detail.

2.3.1. Updating Actions

At every t = 1,2, ... and before play is conducted each player takes an independent draw from
a Bernoulli trial. With probability v € (0,1) this draw produces the outcome ‘learn’, and the
player chooses the new action as dictated by her type. With the complementary probability
1 — v, the draw produces the outcome ‘do not learn’ and the player stays with her action. The

possibility to update is called a learning draw.

Assumption A (on imitators). Imitators only observe average payoff to each action played
in the last period and imitate the action that performed best, (i.e. got the highest average

payoff). In case of ties, there is a positive probability of choosing each of the best actions.

Assumption B (on myopic optimizers). Myopic optimizers observe the fraction of players
playing each action in the last period and choose a myopic pure best reply to the state from
which she herself is excluded. In case of ties, there is a positive probability of choosing each of

the best actions.

Now we are able to define the update rules in terms of the state space. An imitator that
gets the learning draw switches to action m* € arg max,, Tm(t). Thus an imitator that plays
action m at time ¢ and updates, contributes to a change in the population state by decreasing

sy, by 1 and increasing s.,. by 1. A myopic optimizer that is currently playing action m and
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N-1

updates, switches to action m* € arg maxy, u(m,m’) . When m™* is not unique, both types
pick an arbitrary action from their set of argmax-es. For both types it is possible that m* = m,

i.e. they remain with their current action when updating.

2.3.2. Updating Types

After the stage game has been played by all pairs of players, we calculate average payoffs among
myopic optimizers and imitators. We label these values %} and u:. Hence,
= % Z Z u(m,m)gi(m,m'), i=1t, .
t meMm/em
We posit that with probability 8 € (0,1) each player receives the opportunity of revising her
type. In that case, she changes type if and only if the average payoff to the other type in the
last period is strictly higher that the average payoff her own type received in the same period,
i.e. a player of type i, i = ¢, u, switches type iff @t < a{, j=1t,1, j # 1. When a player changes
type we assume that she starts to play an action picked at random from the set of actions

played by players of her new type.

2.4. Mutation Dynamics

At both levels we allow the above described mutation-free dynamics to be slightly perturbed
by deviations. We refer to these deviations as a birth & death process on the type level and
as mutations on the action level. Before we specify both processes in details, we present figure

2.1, a graphic overview of the sequence of events during a time period ¢.

Administration

of Play Stage Game.
Learning Draws Mutations Occur Average payoffs realized  Birth & Death
| I | I | I |
| ! I | | I | |
s(t) Players Matching of Players Type Adjustment s(t+1)
choose
actions

Figure 2.1: The sequence of events during a time period.

2.4.1. Birth & Death at the Type Level

The birth & death process sees to it that some randomly chosen players ‘die’ and are replaced

by new players of either type. This event occurs after the type adjustment according to the



mutation-free dynamics has taken place.

We assume that at each time ¢ there is a positive probability 1 > 26 > 0 that a player dies.
Setting § = 0 means that no birth & death takes place. When § > 0 and a player dies, she
is replaced by a newborn player, who is either an imitator or a myopic optimizer, both with
probability % This formulation boils down to each player having a probability § > 0 of being
replaced by a new player of a different type. Formally, let the random variables V; (N{ , 6) and
Wi (th” , 6) denote the number of imitators and myopic optimizers respectively that switch type
at time ¢ and thus become myopic optimizers or imitators at time £+1. Note that V; (Nf{, 6) and
Wi (th” , 6) both have binomial distributions with parameters n = NtL and n = Nt” respectively
and p = 6, where NZ, is the number of type ¢ players in the population at time ¢ after players
were able to revise their type according to the mutation-free type adjustment dynamics. Now,
we have that

Nioy = N = Vi (N, 8) + Wi (N, 6)
and

N =N+ Y, (Nf;,(s) W, (Nt“, 5) :

2.4.2. Mutations at the Action Level

At each time ¢, each player is subject to some common and independent (across players and
time) probability of making a mistake in the implementation of her action. On top of that,
myopic optimizers experiment with an independent (across players and time) probability. In
both cases the player chooses any action in a purely arbitrarily manner. These mutations
happened after action adjustments but prior to play being conducted. We interpret them as

the joint result of mistakes and experimenting.

Assumption C (on mistakes). At every time ¢, each player makes a mistake in the imple-
mentation of her action with some common and independent probability £ > 0. In that case

she plays an action m € M with positive probability on each m € M.

Imitators are rather unsophisticated players that simply observe average payoff to each
action played in the last period and imitate the one that performed best (Assumption A).
They thus learn in an indirect way by copying another player’s action, hoping that this player
is well adapted. Hence, an imitator has no knowledge whatsoever concerning the structure
of the game. Specifically, imitators do not even know the payoffs in the stage game. Thus,

imitators only make mistakes and do not experiment.



Myopic optimizers are more sophisticated. They use a (myopic) best-reply to the last-period
population state. So, presumably they know their best-reply correspondence. We assume that
on top of their best-reply correspondence they also know the payoffs in the stage game and
thus that they are able to evaluate their payoff relative to other payoffs in the stage game. We
assume that myopic optimizers experiment less (more) when they receive relatively high (low)
payoffs. In particular, since the stage game analyzed here has a payoff dominant equilibrium,
experimentation occurs at a lower rate in the state where all players play according to the payoff
dominant equilibrium than in any other equilibrium state. Note that also Bergin and Lipman
(1996) (p. 944) argue for introducing state dependent mutations which reflect experimentation

in a similar way.

Assumption D (on experimentation). The higher the payoff myopic optimizers receive, the

lower their rate of experimentation.

For myopic optimizers, the combination of making mistakes in the implementation of their
action and experimenting is modelled as a base rate reflecting the e-probability of making a
mistake and an additional state dependent mutation rate representing experimentation.

To operationalize assumptions D, we rank the payoffs that are obtainable in the stage game
from low (1) to high (M\E) We introduce a strictly increasing function 0 < 3(-) < 1 of these
ranked payoffs (T to M\E) The mutation rate of each myopic optimizer is taken to be e8() > ¢.

The composition of the adjustment processes generates a discrete-time Markov-process over
the finite state space S, whose transition matrix is denoted by P(e, ) = (pss (€, 8)). An element
pss' (€, 6) represents the transition probability of moving to state s’ at time ¢+ 1 conditional on
being in state s at time ¢. The dynamics without mutations at the action level and without
birth & death corresponds to P(0,0).

The occurrence of mutations and birth & death implies that every transition has positive
probability. It is a standard result that such Markov chains have a unique stationary (invari-
ant) probability distribution. Let ¢s(e) denote the unique invariant distribution of P(g, §) for
each ¢ > 0 and fixed § > 0. Our aim is to characterize the unique invariant distribution
@} = lime_0 ¢5(€).5 The states that have strict positive measure under ¢} are called long run

equilibria.

Using arguments in Freidlin and Wentzell (1984), Young (1993) has shown that this limit exists.
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3. Convergence to Limit Sets

As a fist step towards compution the set of long run equilibria we will identify the limit sets
under the adjustment process without mutations. These are the supports of the invariant
distributions of P(0,0). First we consider a population consisting of only imitators. Second,

we identify the limit sets in populations consisting of both imitators and myopic optimizers.

Proposition 3.1. Consider the case in which all players are imitators. Then the only limit

sets (of the mutation-free dynamics) are the singletons consisting of monomorphic states.

Proof.

Obviously, every monomorphic state defines, as a singleton, a limit set. To see that no other
limit sets exist, it is sufficient to show that starting from any other state, the process converges
to a monomorphic state with positive probability.

Again let m* € arg max,, Un(t). Take a polymorphic state s(t), and let all players receive
learning draw (on the action level). In period ¢ + 1, they will all switch to an action in
arg maXy, Um,(t). If m* is unique, the state in period ¢+ 1 is by definition monomorphic. If not,
by Assumption A, there is a positive probability that all players choose the same action, and

the proposition is established. O

Before we proceed we state two propositions from KR. The first proposition is on monotonic-
ity of best responses over the simplex of mixed actions, while the second proposition says that
states which mimic mixed action equilibria are strongly unstable in the sense that they are not

even stationary points of the best-response dynamic.

Proposition 3.2. (KR, Proposition 7). Given two states s and s', with (s')™" = s™", where >
refers to first-order stochastic-dominance. For myopic optimizer n,n =1,2,...,N, let br(s™")

denote the set of best responses to s~". Then min br ((s’ )_n) > maxbr(s™").

Proposition 3.3. (KR, Proposition 8). Suppose all myopic optimizers are taking best re-

sponses under s. Then in a strict supermodular game, only one action is played under s.

We now state the convergence result for a population consisting of both imitators and

myopic optimizers.

Proposition 3.4. Consider the case in which the population consists of both imitators and
myopic optimizers. Then, the limit sets of the mutation-free dynamics correspond one-to-one

with the collection of pure strategy NE.

11



The following lemma is useful in the proof of Proposition 3.4.

Lemma 3.5. Suppose s = {0, .., s&,, $m, -, 0}, with st + sh, = N, and that m' € br(s™") for
all myopic optimizers, where m' # m. If i) m' > m then u(m’,m) > u(m,m), ii) m' < m then

u(m',m) > u(m,m) > u(m',m') > u(m,m).

Proof.

i) follows directly from the optimality of m/ relative to s™", as is the case for the first inequality
in ii). The second inequality in ii) follows from the Pareto rankability of the diagonal payoffs.
Finally, the third inequality follows from the definition of a strict supermodularity stage game,
and can be shown as follows.

From the strict supermodular structure of the stage game, we have that for m’ < m,
u(m,m) —u(m',m) > u(m,m’) —u(m',m’).
Using u(m/,m) > u(m,m), we get
w(m,m) —u(m,m’) > u(m',m) —u(m/,m’) > u(m,m) —u(m',m),

and hence u(m,m’) < u(m’,m’). O

Proof (Proposition 3.4).
Obviously, every pure (symmetric) Nash equilibrium, which is a monomorphic state that is a
best reply to itself, is a limit set. To see that no other limit sets exist, it is sufficient to show
that starting from any other state, the process converges to a pure strategy Nash equilibrium
with positive probability.

The proof has two parts. First we will show that starting in any monomorphic state, a
path that leads to a pure strategy Nash equilibrium with positive probability exists. Secondly,
we show that starting in any polymorphic state, with positive probability, the system ends in

a monomorphic state.

Part 1: Suppose the system is in a monomorphic state at time ¢. Le., s(t) = {0, .., s&,, $m, -, 0},
with st, + sh, = N. (Remember that we identify the state at the beginning of each period.)
Consider now the following possibilities: (of course, if m € br(s™"(t)), the state is a pure action

Nash equilibrium, and we are done).

1A) m = min{m|m € br(s™™(¢))} > m and N* is even. Let all myopic optimizers learn and
get matched with other myopic optimizers. Since m’ > m and because of the specific matching,

Uy (t) = u(m/,m') > u(m,m) = Uy (t). Suppose no type adjustments occurs. The state at

12



t+1is s(t+1) ={0,..s4, = N*,...,sh, = N# ..,0}. Now let all imitators learn. Since
Upy (t) > Um(t), they all change action from m to m’. Hence, the system is in a monomorphic

state s(t +2) = {0, .. .., 0}, with s& , + sm, = N.

] m’7 m’?
1B) m = min{m|m € br(s™™(¢))} > m and N* is odd. In this case let (N* — 1) myopic
optimizers learn and get matched with one of the other myopic optimizers that just got a
learning draw. Since m’ > m and because of the specific matching, @, (t) = u(m/,m’) >
u(m, m) = Um(t). Furthermore, let one imitator receive the opportunity of adjusting her type.

Since

N — Du(m/,m!

she becomes a myopic optimizer. Suppose she starts to play action m at t + 1.7 Now let all
imitators learn. Since Uy (t) > Tm(t), they all change action from m to m’. The state at t + 1

thus is s(t +1) = {0, ...,sm = 2,..., s ., 0}, with st , +sb, = N — 2. Suppose the two

m'? m” .
myopic optimizers playing m get matched. Average type payoffs then are
(Nt“+1 — u(m’,m’) + 2u(m,m) .

—L ! !
Uy q = u(m,m’) > = Upyq-
Nt+1

Now, let the two myopic optimizers playing m receive the opportunity of adjusting their prior
type. Since the imitators are earning the highest average payoff, the two players will change type
and become imitators. Furthermore, they will start to play action m’ in period ¢ + 2. Hence,

the system is in a monomorphic state s(¢ + 2) = {0, .. ..,0}, with st , +sh, = N.

-y m’a m’a

We have now shown that when m/' = min {m|m € br(s™™(¢))} > m, the system moves to
the monomorphic state with s,,, = N with positive probability. If m’ € M*, by definition m/
is a pure action Nash equilibrium. If not, hand all myopic optimizers the possibility to learn on
the action level again. They now all face a state s™™ (¢ + 2) > s ™(t), since m’ > m. Hence, for
each myopic optimizer n, minbr (s~ (¢ + 2)) > maxbr (s~ (¢)) > m/, which was their minimal
best reply in period ¢. (This fact follows from Proposition 3.2). Furthermore, since m’ is not a
Nash equilibrium, min br (s™" (¢ 4 2)) # m/, leading to minbr (s™™ (¢t +2)) > m’. By repeating
the procedures given above, and using the fact that the state space is finite, we conclude that

the system converges to a monomorphic state which is a pure strategy Nash equilibrium.

1C) m' = max{m|m € br(s™"(¢))} < m. Since m is a monomorphic state, all myopic opti-

mizers choose the same best reply m’ < m with positive probability. From lemma 3.5 we now

"Remember that when a player changes her type, she starts to play one of the actions that her new type

already is playing.
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have the following payoff ranking

u(m’,m) > u(m,m) > u(m',m') > u(m,m’).

i) If N* < %, let all myopic optimizers learn on the action level. With positive probability
they all switch to playing action m’'. Now, let them all get matched with imitators in period
t. These matches give the following average payoff ranking: @, (¢t) = u(m/,m) > u(m,m’) =
Um(t). Suppose no players receive the opportunity of revising their type in period ¢. The
state in period ¢t + 1, is st + 1) = {0,...,sh, = Nf',...,st, = Nf,...,0}. Now, let no myopic
optimizers and all imitators learn at the action level. Since U,y () > Um(t), they start to
play action m'. Further, let no player receive a learning draw on the type level. Hence,

sit+2)={0,...,0,s,,8,,0,...,0}, with s, + b, = N

il) Nf > % Let % myopic optimizers learn. With positive probability, they all switch to
action m’ < m. Let these myopic optimizers be matched with the % players who still play
action m. From lemma 3.5, @y, (t) = u(m’,m) > u(m,m’) = T (¢). Let no players change type
in period ¢. The state at ¢t +1is s(t +1) = {0, ...,s5, = %, e, S = % — N¢{, s, = Nf,...,0}.
Let all imitators learn at the action level in period ¢ + 1. Since Ty, () > Tm(t), they change
action from m to m/. Let the outcomes of the matching process be such that ¢ players are
matched with p players playing action m. We now show that u; ; > ul; e

First, suppose N} < % — N¢. Then @; ; = u(m/,m) > ul; 1, from the first inequality of lemma
3.5. Second, suppose Ny > % — N{. Then

(3 — Nyl m) + (2N = Byl ) _ (5 = Nulom, ) + Futlm) __,
ut+1 NL > Ntll Upi1s

where the inequality follows from lemma 3.5 and from the fact that Nf < %

Let all the u players playing action m, be offered the opportunity to revise their type. They
will change type and become ¢ players playing action m/. Hence, the state in period ¢ + 2, is

sit+2)={0,...,s4,,s,,...,0}, with s, + s/, = N.

We have now shown that when m' = max {m|m € br(s™™(t))} < m, the system converges to
a monomorphic state with s,y = N. If m’ € M*, i.e. m/ is a pure action Nash equilibrium.
If not, let all myopic optimizers learn again. They now all face a state s~ (¢t +2) < s7"™(¢),
since m/ < m. Hence, for each myopic optimizer n, maxbr (s (t +2)) < minbr (s (¢)) <
maxbr (s™™ (t)) = m’ < m. Furthermore, since m’ is not a Nash equilibrium, maxbr (s7" (¢t 4+ 2)) #

m/, leading to minbr (s7™ (¢t +2)) < m/. By repeating the procedures given above, and using
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the fact that the state space is finite, we conclude that the system ends up in a monomorphic

state which is a pure strategy Nash equilibrium. This ends part 1 of the proof.

Part 2: Suppose the state is in any polymorphic state at time ¢. Let all imitators learn. With
positive probability they all switch to the same action m/. From now, do not administer any
learning draws to these imitators. They thus stay with their action m’. In consecutive periods,
asg long as not all myopic optimizers are taking a best reply against the current population
state, let only one myopic optimizer update at a time.8 In these periods, let no players get the
opportunity to revise their type. From KR’s Proposition 8 and Theorem 2, we know that the
system converges to a state where all myopic optimizers are playing the same action, say action
m, which is a best reply to the polymorphic state s(t') = {0, ..., s%, = N*,..., s = N#, ..., 0}.
Since m € br(s(t')), there exist outcomes of the matching process such that @* > . Let such
a match be realized. In the next period, let all imitators learn. They will switch to the action
with highest average payoff. Hence, with positive probability all imitators switch to m and the

monomorphic state s (' + 1) = {0, ..., s&,, S, ..., 0}, with st + sk, = N is reached. O

4. Selection in the Presence of Mutations

We now focus on the model with mutations, i.e. we fix § > 0 and set ¢ > 0. Then we
characterize the limit invariant distribution ¢§ = lim._,o ¢s (¢) of the Markov chain P (e, §)
specified by the model. First we show that when a population consisting of only imitators play
a strict supermodular game the equilibrium selection procedure proposed by KMRY has almost
no predictive power at all. This result should be contrasted with our main results, where we
no longer restrict the model, in the sense that we let both imitators and myopic optimizers be
present. In this case we obtain a clear-cut selection result: the payoff dominant equilibrium is
selected as the unique long run equilibrium, and convergence is fast.

Before we proceed, we focus attention on the restriction of payoffs in the stage game. We
assume that no off-diagonal payoff is large enough (in absolute value) to be able to upset an
equilibrium with only one mutation. In a large population setting, this is equivalent to only
restricting the off-diagonal payoff to the highest action. The supermodular structure of the

stage game then ensures that the other off-diagonal payoffs are within the required range. So,

#Since the myopic optimizers are taking best responses to the (possible mixed) population state, the outcomes

of the matching process are irrelevant for these players’ calculation of best replies.
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we assume that

oM _ (N —2)u(M, M) + u(M,m’)
N-1

> u(m’, M) for all m’' # M.

This in fact restricts u(M, m’) to be above the lowerbound (N — 1) u(m/, M) — (N —2)u(M, M),
which is guaranteed when we assume that u(M, m’) > maxgz (N — 1) u(m, M)—(N—-2)u(M, M).

Note that when N is large the above expression simplifies to TM ~ u(M, M) > u(m/, M),
which is satisfied since M is a (strict) Nash equilibrium. Furthermore note that supermodularity
alone does not restrict all payoff pairs in the stage game and permits that e.g. u(M, 1) becomes
small enough to upset the equilibrium (M, M) with only one mutant who plays action 1. As
a last point, note that even in cases where the assumption is violated, we can e.g. raise the
payoff u(M, M) to a level at which again the assumption is met, without changing the set of

pure action NE or the Pareto ranking of the elements in this set.

Proposition 4.1. Let only imitators be present in the population at all times. Then, there
exists some N > 0, such that for all N > N, the payoff dominant equilibrium is one of the long
run equilibrium states and convergence is of order €2, for small enough ¢ > 0. Furthermore,

the set of long run equilibria contains at most m — 1 monomorphic states.

Proof.

The proof has two parts. First, we show that two mutations suffice to reach the payoff dominant
equilibrium from any other state. Second, we show that two mutations are enough to upset
the payoff dominant equilibrium. Note that since we are in a large population setting, one

mutation is not enough to upset any strict Nash equilibrium.

Part 1: From Proposition 3.1 we know that from any state s € S, the unperturbed dynamics
will bring the system to a monomorphic state. In a monomorphic state, @, (t) = u(m,m) for
m € {1,2,..., M}. Furthermore, since u(M,M) > u(m,m) for m € {1,2,...,M — 1}, two
mutations to M, which are matched realize the highest average payoff. Finally, with positive
probability all players get the learning draw in the next period and switch to playing action

M. Hence, the state s = {0, ...,0, N} is reached with two mutations.

Part 2: We now show that 2 mutations are enough to upset the payoff dominant equilibrium.
Suppose the state at time ¢ is s(¢) = {0,...,0, N}, and two players mutate to strategy m’ and
m/ respectively, where u(m', m"”) > uw(M, M). Generically, such payoffs may be present in the
stage game. Now suppose further that these two mutant players are matched. Again, let all

players receive learning draw. Since %y, (t) = u(m’,m") > uap(t) = u(M, M), all players switch
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action. Now, it might be that Ty, () > Um (t) = u(m”,m'), leading to all players adopting
action m’ in period ¢ 4 1, or it might be that @,y () < T (), leading to all players adopting
action m” at time £+ 1 (of course there is also the non-generic possibility that @y, (t) = Ty (¢),
in which case with positive probability all players switch to m’ or m”). Thus, we can reach
any monomorphic state s = {0,...,0,st,, = N,0,...,0} (or s = {0,...,0,st,, = N,0,...,0})
from s = {0, ...,0, N} with two mutations, as long as there is an entry u(m/,m") > u(M, M),
m' # M, (and of course m” # M and m’ # m”, which has to hold since (M, M) is the
payoff dominant Nash equilibrium in the stage game) somewhere in the payoff matrix of the
stage game. Once the system is in a monomorphic state s = {0,...,0,s:, = N,0,...,0},
we can repeat the above argument. This way, with two mutations, the system can reach
monomorphic states s = {0, ...,0, s, = N,0,...,0}, when a payoff pair u(m/, m") > u(m’,m’),
m' # m/, is present in the stage game. Note that it is possible that u(m/,m") < u(M, M),
i.e. with two mutations, the system can reach certain monomorphic states it could not reach
directly from s = {0, ...,0, N} via other ‘intermediate’ monomorphic states s = {0, ...,0,s%,, =
N,0,...,0}. Although the move trough an ‘intermediate’ monomorphic state requires a total

of four mutations, it still only requires two simultaneous mutations at a time, which makes

L

it an order 2 event for small € > 0, just as switching directly to a state s = {0, ...,0, st

N,0,...,0}.

In general strict supermodular games, this argument leads to many (almost all) monomor-

; =

phic states being reachable with only two simultaneous mutations being necessary at a time.
Also, strict supermodular stage games exists, in which the selection result is ‘stronger’ in
the sense that less monomorphic states can be reached, since for these monomorphic states
s = {0,...,0,8t, = N,0,...,0} it holds that u(m,m’) < u(m”,m”), for any m”",m' € M,
m’ # m”. Obviously, such a state cannot be reached through having two simultaneous muta-
tions occur. Note that this is always the case for m = 1, since (1,1) is a Nash equilibrium,
which guarantees that u(m,1) < u(1,1) < u(m/,m’) for any m’ > 1. Thus, we have that the
set of long run equilibria when only imitators are present in the population, contains at most
m — 1 monomorphic states and no other states. Depending on the exact specification of the
stage game, the set of long run equilibria may contain strictly less than m — 1 states.
Furthermore, it follows directly from the above arguments that the order of convergence is

2. O

Thus, we see that selection through a mutation process in a setting where only imitators are

present does not lead to any clear-cut equilibrium predictions, as was the case in the absence of
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mutations. Note that a similar result would hold in a setting with both imitators and myopic
optimizers being present, when myopic optimizers would have a flat mutation rate equal to
that of the imitators. In such a setting, a procedure similar to the one described in part 2
of the proof above, would lead to the selection of a strict subset of the set of symmetric pure
action Nash equilibria of the stage game.

These results are contrasted by our main proposition below, which does lead to a clear-cut

selection of a single equilibrium.

Proposition 4.2. Consider a strict supermodular game satisfying Assumption A-D. Then,
there exists some N > 0, such that for all N > N the payoff dominant equilibrium is selected
as the unique long run equilibrium and the expected wait is of an order less than =2, for all

small enough e.

Proof.

The structure of the proof is as follows. First, we show that two mutants are enough to get
the system to the payoff dominant (PD) equilibrium. Then we argue that for a large subclass
of supermodular games, more than two mutants are needed in order to get the system out of
this equilibrium. However, there also exist strict supermodular games for which two mutants
can get the system out of the PD equilibrium. As a last point we show that even for these
games the probability of moving out of the PD equilibrium is arbitrarily much smaller than
that of moving towards the PD equilibrium, when the probability of mutations goes to zero in
the limit.

Consider a small probability of mutation, € > 0. We have from Proposition 3.4 that the
system moves to a monomorphic state costlessly, i.e. without any mutations being involved,
and stays there as long as no mutations occur. Consider the system in such a monomorphic
state labelled all — m, not being a state in which all players play action M. Note that in a
monomorphic state myopic optimizers (imitators) can costlessly invade a population consisting
solely of imitators (myopic optimizers) and most of the time the population fractions of myopic
optimizers and imitators will both be approximately % Suppose at time ¢ two mutants occur.
They both play M, meet and realize a payoff above the average payoff of all other players. Now,
let an even number of imitators get the learning draw on the action level at time ¢ + 1. They
will switch to action M. Also let an even number of myopic optimizers get the learning draw at
time ¢+ 1. They may or may not update their action, depending on what is a best reply to the
(now) mixed population state. Let all of these myopic optimizers update to the same action

m/. Thus, at time ¢ + 1, the number of M-playing players has increased compared to time ¢,
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both from imitators updating to action M and possibly from myopic optimizers updating to
action M. Since we still have an even number of M-playing individuals, let each M-playing
player be matched to another M-playing player. The same line of reasoning as above again
leads to (the possibility of) an increase of the number of players playing action M from time
t + 1 to time ¢ + 2. Furthermore, with positive probability all myopic optimizers that play m/
are matched to another m/-playing myopic optimizer. In case m’ # M, u} < ut at t + 2 and
then let some myopic optimizers receive a learning draw on the type level. They will switch
type and become imitators and will choose to play either action m or action M, since both of
these actions are still played by imitators®. If m’ = M, it depends on the numbers shy(+1)
and sy, (t + 1) whether @}’ < W} (or equality), and thus it depends on these numbers whether
myopic optimizers that get the learning draw on the type level will change type. However, in
this case a best reply to the population state will remain to play M, because of the monotonicity
of the best responses. Thus with positive probability, the number of M-playing players strictly
increases along this path and with positive probability the increase in the number of M-playing
individuals continues until all players play M. The system has now reached a population state
in which in each match the PD equilibrium is played. Note that in this state there can be either
only imitators or both imitators and myopic optimizers present in the population. Furthermore,
note that the transition to the PD equilibrium along this path only involved two mutations
and that it does not matter which players have mutated. Since in a monomorphic state myopic
optimizers (imitators) can costlessly invade a population consisting solely of imitators (myopic
optimizers), when the probability of mutation goes to zero, the most likely two players to
mutate are two myopic optimizers, since they mutate at a rate ePlm) > ¢,

If there are no out-of equilibrium payoff in the stage game which are higher than the payoff
in the PD equilibrium, more than two mutants are needed in order to lead the system to a
different equilibrium. In case there are out-of-equilibrium payoffs which are higher than the
PD equilibrium payoff, at least two mutants are needed. We now show that there exist strict
supermodular games for which exactly two mutants are needed. W.l.o.g. label m and m’ such
that u(m,m’) > u(M, M) and u(m,m’) > u(m’,m) and let, at time ¢, one player mutate to
action m # M and another one to action m’ # M, m’ # m. Furthermore, let these two players
be matched. This leads to Um(t) > Tam(t) and U (t) > Ty (). Consequently at time ¢ + 1, the
imitators that get the learning draw will update to action m. With positive probability enough

imitators in the population get a learning draw to shift the best reply (to the new population

®Of course there is the possibility that no imitators playing action m are present any longer, in which case

all type-switching myopic optimizers start to play action M.
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state at time ¢ + 2) to be to play m. Then myopic optimizers will also update to action m as
soon as they get a learning draw on the action level. Furtheron this path, we let the m-players
be matched among themselves and let one of the M players be matched to the m/-player, who
has not yet received a learning draw and therefore still plays action m’. Then, there exist strict
supermodular stage games for which the payoffs are such that still @, () > @ar(¢) (these are
games for which e.g. u(M,m') < u(M,M)). Continuing along such a path, with positive
probability leads to the equilibrium in which all players play action m. Thus there are strict
supermodular games for which the PD equilibrium can be upset by just two mutations. For
these games, we provide exact calculations showing that the PD equilibrium is harder to upset
than other equilibria.

We now determine the probability that two mutations take place. Label the random variable
X as the number of mutants among the imitators and Y as the number of mutants among the

myopic optimizers. Thus

Pr(X,(e) =k) = (JZtL)s’f 1—e)M'* k=0,1,..., N}
and
N
Pr(Y; (7, i=1,....,Nl')=k) =) Z (%),
=1
where

—_

. , with prob 6'8(%i),

a@y=4 "

0, with prob 1 — 6'3(7rt),

and where %i is the rank number of the payoff 7¢ at time ¢ of the myopic optimizers labelled as
player 7. Note that Y is an addition of independent Bernoulli trials with different parameters.
Therefore, Y (-) is a function of the (rank number of) the payoffs to all myopic optimizers.
Thus, when all myopic optimizers get the same payoff 7?%, and consequently have the same
Jé] (ﬁ) , Y has a binomial distribution (just like X), with parameters 3 (%i) and N}'. Therefore,
at any equilibrium state, Y (-) is a binomial random variable. The higher the equilibrium
payoff, the lower the p = eB() parameter of this binomial variable.

Two mutations arise with probability
PriX+Y=2)=Pr(X=2Y=0)+Pr(X=1,Y=1)+Pr(X=0,Y =2).

At the PD equilibrium, all myopic optimizers play the PD equilibrium action and, as such,
they receive the highest possible equilibrium payoff in the stage game. Therefore, their 3(7)

has reached it’s maximum among equilibrium payoffs. Label this maximum g™* = max
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{B (%) |7 is an equilibrium payoff} < 1. This causes the (implicit) mutation rate among myopic
optimizers to be at its minimum among equilibrium payoffs, namely e? . The probability of
having a myopic optimizer mutate is thus of a lower order in the PD equilibrium than it is in
any other equilibrium. Now, consider what happens when we take € to zero in the limit.

At the PD equilibrium ®™ > ¢ and thus all myopic optimizers have a higher mutation rate
than all imitators (Note that the birth & death process sees to it that the system can always
costlessly move to a state with N}* > 2). Therefore, Pr (X =2,Y =0) and Pr(X =1,Y = 1)
go to zero at a higher rate than Pr(X =0,Y =2), and we only have to focus on this last
probability. The same is true for a move towards the PD equilibrium. Now, note that this
probability is of a lower order when we look at a move away from the PD equilibrium than
it is when we look at a move towards the PD equilibrium, since at the PD equilibrium (per
definition) the equilibrium payoff is higher. Thus we have shown that

_ - ; Brmex ,
P OY A b e~ 0@y, O () 0 e
since 0 < 3 < 8™ < 1 and thus 0 < 2™ — 23 < 2. This means that the PD equilibrium is

the unique long run equilibrium. Furthermore, from the above considerations, (see also Ellison
(1993)), it follows directly that the expected wait until this equilibrium is reached is of an order
strictly less than 2. O

5. Discussion

Ideally, what one would like to obtain in an evolutionary model with noise is a clear-cut equi-
librium selection result for a general class of games combined with fast convergence, (to make
the equilibrium prediction plausible). Our main results, stated in Proposition 4.2 have such a
flavor: when the two simple behavior rules, imitation and myopic optimization, coexist in the
population and the latter type experiments more in low payoffs states, the payoff dominant
equilibrium is selected as the unique long run equilibrium for the class of strict supermodu-
lar games. Furthermore, the expected waiting time until the payoff dominant equilibrium is
reached is relatively short, even in the limit as the population size grows large. To understand
the mechanisms underlying these results, Proposition 4.2 should be contrasted with the equi-
librium selection and convergence results obtained in a population consisting of only myopic
optimizers (Kandori and Rob (1995)) and with only imitators (Proposition 4.1). In the former,
the geometry of the best response correspondence helps to identify the long run equilibrium

(which may or may not be the payoff dominant one), and the convergence time increases with
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the population size. Therefore, the waiting time until the long run equilibrium is reached is
relatively long. In the latter, the interaction of evolutionary forces and mutations has almost
no selection power at all, but convergence to the set of long run equilibria is fast even when
the population size grows large. Imitation is therefore the force that drives the convergence
result: imitators react to payoff differences and amplify the power by which mutations may
upset any equilibrium configuration. Myopic optimizers, on the other hand, increase the equi-
librium prediction in the class of strict supermodular games by ensuring that the limit set of the
unperturbed dynamics is in one-to-one correspondence with the set of pure (symmetric) Nash
equilibria in the stage game. Finally, the specific mutation model used in this paper, further
improves the equilibrium prediction by ensuring that when the mutation rate approaches zero,

the payoff dominant equilibrium is selected as the unique long run equilibrium.
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