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1. Introduction

Modelling financial time series has recently received considerable attention. Many
of these series are "high frequency”, that is, they consist of weekly, daily or even
intradaily observations. In this paper, "high frequency” simply means that the con-
ditional variance of the process is not constant over time. As many high frequency
series show little or no linear dependence, the focus has been on modelling the condi-
tional variance. The idea of conditional autoregressive heteroskedasticity (ARCH;
Engle, 1982) has led to a large number of extensions of the original model and
applications. Bollerslev, Engle and Nelson (1994) and Palm (1996) are examples
of recent surveys of the area. Another variant of ARCH, the so-called Stochastic
Volatility model (Taylor, 1986, p. 73ff.) has gained popularity recently, and the
latest developments were surveyed in Ghysels, Harvey and Renault (1996). It has
been argued, however, that despite the absence of linear dependence there may be
nonlinear dependence in the conditional mean. This should then be appropriately
modelled in order to avoid misspecification of the conditional variance. Tong (1990,
p. 116) suggested combining the Self Exciting Threshold Autoregressive (SETAR)
model for the conditional mean with an ARCH model for the conditional variance.
Li and Lam (1995) followed this suggestion and also devised a specification strategy
for building SETAR-ARCH models. They applied their model to the daily Hong
Kong Hang Seng stock index and reported nonlinearities in the conditional mean.
The original ARCH model and its most important extension, the generalized
ARCH (GARCH), are symmetric: while the size of the shock matters, the sign
does not. Many authors have argued that shocks may have asymmetric effects to
volatility: the dynamic response to a positive shock is not necessarily the mirror
image of the response to a negative shock of the same size. Pagan (1996), in
his survey of developments in financial econometrics, provided a useful review of
models that can handle this type of asymmetry. A natural idea would be to combine
such a parameterization of the conditional variance with a nonlinear model for the
conditional mean. Li and Li (1996) did exactly that by defining a double threshold
autoregressive heteroskedastic (DTARCH) time series model. A DTARCH model
has a SETAR-type conditional mean. The conditional variance is parameterized
similarly, and the authors called their specification the threshold ARCH (TARCH)
model. Note, however, that it differs from the TARCH model of Zakoian (1994) in
that the latter is a parameterization of the conditional standard deviation. Li and

Li (1996) also provided a comprehensive modelling strategy for DTARCH models.



Tt was based on the idea of ordered autoregressions which Tsay (1989) successfully
applied to the specification of SETAR models. The authors fitted their DTARCH
specification to the daily Hong Kong Hang Seng stock index.

Recently, Lee and Li (1998) generalized the DTARCH model by allowing the
transition of the first and second regime to be smooth. They called this model the
Smooth Transition Double Threshold model. In this paper we follow Lee and Li
(1998) by adopting the idea of smooth transition in the conditional mean which
first appeared in Bacon and Watts (1971). Our paper may be seen as an extension
of Lee and Li’s work in the sense that we simultaneously allow a rather flexible
specification for the conditional variance as well. Besides, misspecification testing
will receive plenty of attention in this paper. The conditional mean is thus speci-
fied as a Smooth Transition Autoregressive (STAR) model; see, for example, Chan
and Tong (1986), Granger and Terdsvirta (1993) and Terdsvirta (1994). The con-
ditional variance is specified as a Smooth Transition GARCH (STGARCH) model;
see Hagerud (1997) and Gonzdlez-Rivera (1998). Our STGARCH model is a gen-
eralization of the GJR-GARCH model (Glosten, Jagannathan and Runkle, 1993)
and the Generalized Quadratic ARCH model of Sentana (1995). It allows plenty
of scope for explaining asymmetries in volatility. Our aim is to construct a com-
plete modelling cycle for our STAR-STGARCH family of models, consisting of three
stages: specification, estimation and evaluation.

The plan of the paper is as follows. We define the model in Section 2 and
discuss its specification, estimation and evaluation in Sections 3 and 4. In Section 5
we apply the STAR-STGARCH model to daily returns of the Swedish OMX index
and the daily JPY/USD exchange rate and study properties of one-step-ahead out-

of-sample forecasts. Section 6 concludes.

2. The model

The logistic smooth transition version of the AR(m)-GARCH(p,q) parameterization
is a special case of the following additive nonlinear model in which the conditional

mean has the following structure:

ye = @'we + f (W;0) + uy (2.1)

where ¢ = (pg,¢71, .-, ¢,) 18 the parameter vector for the autoregressive part of
the model and w; = (1,y¢_1, ..., ¥¢—m)’ is the corresponding lag vector. Function

f (wy; ) is nonlinear and assumed to be at least twice continuously differentiable



for 8 € ® everywhere in w; € R". The error process of this model is parametrized

as

Uy = &¢ h(WtaQOaOaT’aC) (22)

where {e;:} ~ nid(0, 1) and hy = h(w, ,0,m,C) = 1'2: + g(2z¢; €) is the conditional
variance not dependent on ¢; and positive for every ¢t with probability one. Defini-
tion (2.2) precludes linear dependence in {u;}. Settingn = (ag, a1, ..., ag, By, ..., B,)’
and z; = (Luf |,...uf , he—1,....he_p) where hy > 0 for all ¢ with probabil-
ity one, makes the linear part of (2.2) a GARCH(p,q) model. Furthermore, u; =
yr — @'wWr — f (wy; 0) such that neither ¢ nor € is assumed to depend on either
n or ¢. Function g(z;¢) is nonlinear and at least twice continuously differen-
tiable for ¢ € Z everywhere in z; € RP+9+!. The normality assumption of er-
rors {e:} is not necessary but is retained for inference. It is also assumed that
the moments necessary for the inference exist and that the parameters are sub-
ject to restrictions such that the model is stationary and ergodic. The usual
restrictions imposed on 1 to ensure nonnegative conditional variance have been
ap > 0,05 20,5 =1,..,g — L,y > 0,8; > 0,7,...,p. They can be relaxed as in
Nelson and Cao (1992); see also He and Terdsvirta (1999b).
In order to define f (wy; @) and g(z¢; C), let

n ~1
H,(st;7,¢) = (1 + exp(—y H (s8¢ — cl))> ¥ > 0,01 << ¢y (2.3)
1=1

where s; is the transition variable, v is a slope parameter and ¢ = (cy,...,cn)" a
location vector. The parameter restrictions v > 0 and ¢; < ... < ¢, are identifying
restrictions. The value of the logistic function (2.3), which is bounded between a
and 1, 0 < a < 1/2 depends on the transition variable s;. Note that for v = 0,
H,(ss;7v,¢) = 1/2 and when v — oo, and n = 1, Hy,(st;7,¢) becomes a step-
function. It becomes a "multistep” function as v — oo, if n > 1.

In this paper, f (w¢;8) is defined as a product of the logistic function (2.3) of
order n and another linear combination including lags of y;. Setting 8 = (¢’,v,c’)’,

the function can be written as
f (Wt; 0) = d)/WtHn (St; v C) (24)

Function (2.4) is bounded only in probability. In this paper the transition variable
is 8¢ = y¢+_q most of the time but s; = ¢ is another important case. Other definitions

such as s; being a linear combination of variables are possible as well. By inserting



(2.4) into (2.1) we obtain the LSTAR(n) model which by definition becomes linear
if v = 0. Setting n = 2 and ¢; = ¢o yields a model that closely approximates
the exponential STAR or ESTAR model; see Teriisvirta (1994). STAR models are
capable of characterizing asymmetric series and series with sudden upswings and
downturns. Chappell and Peel (1998) recently showed that they can also generate
realizations that appear chaotic. Bacon and Watts (1971) were the first ones to
apply the idea of smooth transition to statistical modelling.

Our conditional variance specification is a generalization of the GJR-GARCH
model of Glosten, Jagannathan and Runkle (1993). We make the transition be-
tween the extreme regimes smooth by assuming that g (z; ¢) has the same logistic
structure as f (wy;80). This is a natural extension of the idea of smooth tran-
sition to modelling conditional variance. Thus by setting ¢ = (a*,é,k’) where

a*=(ay, ..., Qog, Qa1, ..., Qaq)’, the nonlinear function g (z,; ¢) may be written as
q q
9(2;¢) =) _ g Hpe (ur—j; 6, K)+ > agj Hpe (ugj; 6, K)up (2.5)
j=1 j=1

In practice we restrict ourselves to cases n* = 1,2. No nonlinear structure is imposed
on h;_j, 7 =1,...,p, since the model is very flexible even without such an extension.
The model can characterize processes with an asymmetric response to shocks with
the same magnitude but opposite signs. With n = 2 and k; = k2, a symmetric but
nonlinear response may be characterized as well. The first sum on the right-hand
side is a nonlinear variant of the corresponding structure in the GQARCH model
of Sentana (1995). Conditions for positivity of the conditional variance are simpler
than in the GQARCH model: a9 > 0, ag+ Zq: ag; > 0, o > 0, o + ag; > 0,
J=1,.,¢08;>0,j=1,..p, form a set of sil}llicient conditions. We denote (2.5)
inserted into (2.2) as the Logistic Smooth Transition GARCH (LSTGARCH(n*))
model which by definition collapses into the standard GARCH model if § = 0. The
nonlinear GARCH model in Hagerud (1997) may be viewed as a special case of this
parametrization with ag; = ... = agq = 0.

Assuming normally distributed errors, Engle (1982) showed that the information
matrix of the conditional mean-ARCH model is block-diagonal if some regularity
conditions hold and if the parameterization of the conditional variance is symmetric
in the sense that the model responds similarly to positive and negative inputs of
the same size. This in turn implies that if the conditional mean is estimated with a
consistent estimator, the conditional variance can be estimated from the residuals

of the conditional mean model without loss of asymptotic efficiency. The classical



GARCH parameterization is symmetric and satisfies the regularity conditions, see
Bollerslev (1986), so that the LSTAR-linear GARCH model has this property. But
then, the general smooth transition GARCH model may not be symmetric, in which
case the usual two-stage estimation strategy leads to consistent but not asymptot-
ically efficient estimates. However, if n* = 2 and ¢; = —cg in (2.3), the STGARCH

model is symmetric.

3. Specification and estimation of a STAR-STGARCH model

The nonlinear STAR-STGARCH model defined in (2.1-2.5) is the most general
parameterization considered in this paper. It is nevertheless possible that the time
series under consideration may be adequately characterized by a submodel of the
general STAR-STGARCH one. For instance, the conditional mean may be linear
or the conditional variance constant. Furthermore, even if we eventually select a
general model there are still choices to be made that have to be based on the data.
The delay d in the conditional mean usually has to specified from the data as well
as the maximum lag length and the type of the transition function (n = 1 or 2).
We also have to select the lag length and the type of transition function (n* =1 or
2) in the STGARCH specification of the conditional variance. All this requires a
coherent specification strategy such as, for example, in Box and Jenkins (1970), Li
and Li (1996), Tsay (1989, 1998) and Terésvirta (1994).

Our general rule is to specify the conditional mean first, followed by the con-
ditional variance. The reason is that we may estimate the parameters of the con-
ditional mean consistently even if the conditional variance is not specified, that is,
even if it is assumed constant. On the other hand, it is not possible to estimate the
parameters of the conditional variance consistently if the conditional mean is mis-
specified. The specification of the STAR-STGARCH model consists of the following

stages:

1. Test linearity of conditional mean and, if rejected, choose d and n.

2. Estimate the parameters of the conditional mean assuming that the condi-
tional variance remains constant and test the null hypothesis of no linear
ARCH against ARCH of a given order. If the hypothesis of no ARCH is re-
jected, tentatively assume that the conditional variance follows a low-order

standard GARCH process.

3. Estimate the parameters of the STAR-GARCH model and test the adequacy of



the STAR (conditional mean) and the GARCH (conditional variance) specifi-
cations by various misspecification tests. If rejected, specify a STAR-STGARCH

model.

4. Estimate the parameters of the STAR-STGARCH model and test the ad-
equacy of both the conditional mean and the conditional variance of that

specification by appropriate misspecification tests.

5. If the model passes the tests tentatively accept it. In the opposite case try

another specification search or choose another family of models.

It should be noted that by following the above modelling scheme we proceed
from restricted models to more general ones. This may be simpler than to start
from the most general model and gradually reduce its size, but there is also a
statistical rationale behind this choice of direction. If the conditional mean is linear
then no STAR specification is identified. As for the conditional variance, the same
is true for any STGARCH specification if the linear GARCH already is a valid
parameterization. The lack of identification leads to lack of consistency in the
parameter estimation, which, in turn, is likely to create numerical difficulties in
estimation. See Hansen (1996) for a recent discussion of this problem. To avoid
estimating unidentified models we have to proceed from specific to general. In the

following we consider the specification stages in detail.

3.1. Testing linearity of the conditional mean

We begin the modelling cycle with the specification of the conditional mean. In
order to carry out the linearity tests we have to determine the maximum lag, m, of
the linear AR model.

Following Terésvirta (1994), linearity against a logistic STAR model of order n
is tested with an LM-type test, where the null hypothesis is a linear AR model and
the alternative an LSTAR(n) model. The null hypothesis is v = 0. As mentioned
above, function f(wy; @) is not identified under the null hypothesis. To circumvent
this problem, (2.4) is Taylor-expanded around v = 0. Setting s; = y+—q in (2.4),

assuming d < m without loss of generality, leads to
Yo = TWoWs + T Wiy a + ToWeyy_g + oo+ T, Wiyl g + Ri(wes 0) +up (3.1)

where Wy = (Y4—1, .., Yt—m)’, 7; is a function of v such that m; = 0, i = 1,....,n,

when v = 0 and Rj(wy;0) is the remainder. The new null hypothesis thus is



Ho:7; =0,i=1,...,n. Note that under Hy, R;(w¢;8) = 0 so the remainder does
not affect the distribution theory when the test is based on the LM-principle. When
the conditional variance is constant the LM-type statistic with an asymptotic x?
distribution (we assume that the necessary moments exist) under the null hypothe-
sis, can be computed by two auxiliary regressions. The F-version of the test is often
recommended as it has better small sample properties than the x2-version; see, for
example, Granger and Teriisvirta (1993, p. 66). The sample sizes in the analysis of
high-frequency series are usually so large, however, that in the present context this
recommendation has no practical value. Both tests may be carried out in stages as

follows.

1. Regress y; on w; and compute the sum of squared residuals, SSRy.

2. Regress y; on Wy, Wi, Wey2_ g, -, Wiy, and compute the sum of squared

residuals, SSR;.

(SSRo—SSR:1)/mn

SSRl/(T—'m('n+1)_1)7 or the

3. Compute the F-version of the test statistic F' =

_ 7(9SR_SSRy)
o SSRo

2 ; 2
X“-version, x

This linearity test assumes constant conditional variance, and is therefore not
robust against conditional heteroskedasticity. If Hy cannot be rejected then the
conclusion is that the conditional mean is linear. The problem arises when Hy is
rejected because then we do not in principle know if that is because of nonlinearity
in the conditional mean or because of conditional heteroskedasticity. However, when
the heteroskedasticity is of GARCH type, the size of the test may in some cases
be affected. This would suggest using a robust version of the linearity test such as
the one in Granger and Terdsvirta (1993, p. 69). We consider this possibility by
a small simulation study whose results can be found in Appendix A. The results
do show some size distortion in situations where the GARCH-type error process
has fat tails, i.e., the kurtosis is high. On the other hand, the power simulations
indicate that in those cases the robustification may remove most of the power, so
that existing nonlinearity may remain undetected by a robustified linearity test. As
our objective is to find and model any existing nonlinearity also in the conditional
mean, robustification therefore cannot be recommended. We expect to discover false
rejections of the null hypothesis of linearity, due to heteroskedasticity of GARCH
type, at the evaluation stage of model building.

In order to carry out the linearity test(s) we have to determine the order of

the linear stationary AR model representing the conditional mean under the null



hypothesis. Teréisvirta (1994) suggested that the order could be determined by an
order selection criterion such as the AIC, see Akaike (1974). The problem is that for
high-frequency economic series the usual order selection criterion would typically
select a model with no lags because there is normally little or no linear dependence
in the series. To avoid the problem the maximum lag (m > 6 is used for daily
observations) is fixed in advance. If the null hypothesis is not rejected we assume

that the conditional mean is linear.

3.2. Specification and estimation of the conditional mean model and test-

ing for ARCH

The specification of the STAR model for the conditional mean is carried out as
follows. First, the linearity test above is used to select the delay parameter, d. This
is followed by choosing n, that is, selecting the type of the STAR(n) model. After
that, the estimated model is tested for ARCH in the error process.

The linearity test (3.1) is computed for different values of d, and the one for
which the null hypothesis, v = 0, has the smallest p-value is selected, see Teriisvirta
(1994). This requires the smallest p-value to be lower than a pre-determined value
chosen by the researcher. After fixing the delay parameter the order, n < 2, of the
LSTAR model is selected. We can choose between the LSTAR(1) and the LSTAR(2)
model by testing a sequence of nested hypotheses. The sequence is defined within
(3.1) assuming n = 3:

Hos: 75 =0

Hypg : 7 =0|n =0

Hpg : 7} = 0|nh =75 = 0.
If Hos is most strongly rejected the LSTAR(2) model is selected. In the other two
cases the choice is the LSTAR(1) model; for the rationale of this rule, see Terésvirta
(1994). This selection rule is not balanced as it sometimes has a tendency to favour
the LSTAR(1) model. In practice this happens when the true model is LSTAR(2)
and there are no (or very few) observations in one of the tails of the transition func-
tion. In such cases, the LSTAR(1) model is a good approximation to the LSTAR(2)
model in the relevant subset of the sample space so that an erroneous choice has
little practical significance. Escribano and Jordd (1996) recently presented a rule
that purports to remedy this problem, and it could be applied here.

The idea of these selection rules has been to avoid estimating a possibly large
number of nonlinear models, but with the steady increase in computational power an

average modeller has at his/her disposal this step is no longer crucial. If nonlinear



estimation is not considered a time-consuming task one may simply estimate an
LSTAR(n) model for n = 1,2, and make the choice between the LSTAR(1) and
LSTAR(2) families at the evaluation stage. This can be done by considering the
estimation results themselves and the results of the misspecification tests to be
discussed in Section 4.1. The logistic part (2.3) of f (wy; 6) should also be examined
when determining n. If an element in the estimated location vector ¢ = (¢, ¢2)” of
the LSTAR(2) model in practice does not affect the values of f (wy;6) in the sample
then n may be reduced from two to one.

The estimation of the parameters of the STAR model is carried out by maxi-
mum likelihood. Our algorithm also checks if the size of the model can be reduced.
The autoregressive parameters whose estimates are insignificant according to a pre-
determined level are removed using a backward elimination algorithm. In practice
this is done by repetitively removing the parameter corresponding to the least sig-
nificant (if nonsignificant) parameter estimate and reestimating the reduced model.
This algorithm also considers restrictions of the form ¢; = —¢; which are exclusion
restrictions comparable to ¢, = 0. They allow an autoregressive parameter to be
cancelled out smoothly in the transition between the two regimes. The backward
elimination terminates when all the remaining autoregressive parameter estimates
are significant.

The assumption that the error sequence {u;} in (2.1) has a constant conditional
variance is normally not realistic when modelling high-frequency financial series
and has to be tested. We first test it against the alternative that {u;} follows an
ARCH(s) process. As a GARCH(p, ¢) model can be adequately approximated by
a long ARCH specification we choose a large s (> 8) for the alternative. Engle
(1982) suggested an LM-test which is used here. The asymptotically equivalent test
of McLeod and Li (1983) is another possibility. If the null hypothesis is not rejected
and the estimated conditional mean model passes the appropriate evaluation tests
the modelling sequence terminates. On the other hand, if the null is rejected, as we
generally expect when dealing with high-frequency economic series, we continue by

assuming that the conditional variance follows a low-order GARCH process.

3.3. Estimation of the STAR-GARCH model

If the conditional variance is not constant the next step is to fit a STAR-GARCH
model to the data. The usual way of obtaining the estimates for the conditional
mean and the conditional variance when the latter has a standard GARCH repre-

sentation is to make use of the block-diagonality of the information matrix. The



conditional mean model is estimated first. This is followed by the estimation of
the conditional variance model using the residuals from estimating the conditional
mean. This procedure yields consistent estimates, but in this paper all parameters
are ultimately estimated simultaneously. One advantage with simultaneous esti-
mation is that it may lead to more parsimonious models, at least if the series are
not very long. The two-step estimation has a tendency to yield over-parameterized
models because some effects due to the nonconstant conditional variance may at
first be captured by the estimated conditional mean. The autoregressive parame-
ters turning out to be redundant are eliminated during joint estimation by applying
the previous backward elimination algorithm. The estimation is carried out using
analytical second derivatives which gives numerically reliable estimates for the in-
formation matrix. This is needed at the evaluation stage when the estimated model
is tested for misspecification.

However, the two-step estimation is useful for obtaining initial values for the
joint estimation. We proceed as follows. First estimate the STAR model for the
conditional mean and then estimate a GARCH(1, 1) model for the residuals. As a
first-order GARCH model has very often been found to be adequate in practice, it
is only expanded if necessary. The decision to do that is based on a misspecifica-
tion test of the functional form which together with other evaluation procedures is
discussed in Section 4. To enforce the conditional variance generated by any higher-
order GARCH model to be nonnegative, the constraints in Nelson and Cao (1992)
for parameters of such models are imposed. The validity of restrictions constraining

linear combinations of estimated parameters is verified after the estimation.

3.4. Specification and estimation of the STAR-STGARCH model

The STAR-GARCH model has to be subjected to misspecification tests. We post-
pone the discussion of such tests to Section 4. At this stage we assume that the
linear GARCH specification is rejected in favour of STGARCH and proceed to dis-
cuss STAR-STGARCH models. We have to consider specification, estimation and
evaluation of these models and begin by specification.

For the smooth transition type alternative (2.5) the problem of selecting the
transition variable is not present. We only have to select the order, n* < 2, of the
logistic part in (2.5). One way of doing that is to apply a decision rule similar to
that suggested for the STAR model. But then, one may instead simply estimate
the STGARCH(n*) model for n* = 1,2 and make the choice on the basis of the

results, including the results of the misspecification tests in Section 4. The logistic
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function in g(z; €) should also be examined when determining n*. If an element in
the estimated location vector k = (k1, k2)’ of the STGARCH(2) model in practice
does not affect the values of g(z; ¢) in the sample then n* may be reduced from two
to one. Furthermore, the same type of exclusion restrictions that were considered
for the STAR model are relevant for the STGARCH model.

When estimating STAR-STGARCH models it is not certain that the conditional
variance is symmetric with respect to the error terms (most often it is not) and there-
fore the assumption of block diagonality of the information matrix may not hold.
This implies that the two-stage estimation algorithm does not yield asymptotically
efficient estimates. We maintain our previous strategy and ultimately estimate the

conditional mean and the conditional variance jointly.

4. Model evaluation

As discussed above, the validity of the assumptions used in the estimation of pa-
rameters must be investigated once the parameters of the STAR-STGARCH model

(or a submodel) has been estimated. These assumptions include:

1. The errors and the squared (and standardized) errors of the model are not

serially correlated.
2. The parameters of the model are constant.

3. The squared (and standardized) errors of the model are independent and

identically distributed.

These assumptions are testable. Furthermore, it is useful to find out whether or
not there are any nonlinearities left in the process after fitting a STAR-STGARCH
model to the series under consideration. In this paper that possibility is investigated
by testing the hypothesis of no additive nonlinearity against this type of nonlinearity.

As for the three testable assumptions, the first two may be tested following
Eitrheim and Terdsvirta (1996). These authors have also suggested a test of no
additive nonlinearity for the conditional mean. We only have to generalize these
tests to the case where the conditional variance follows a STGARCH process. As to
the independence hypothesis, the BDS test, see Brock, Dechert, Scheinkman and

LeBaron (1996), is applicable if the number of observations is sufficiently large.
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4.1. Misspecification tests
4.1.1. General

This section follows Eitrheim and Terésvirta (1996) and the companion paper Lund-
bergh and Terdsvirta (1998). Consider the estimated additive STAR-STGARCH
model as defined in (2.1) and (2.2). An additive extension of the model may be

written as

y = A(wyme) +@'we+ f(we; 0) + uy

= es/n'z + 9(24;C) + B(ze; ) (4.1)

where f(wy;0) and g(z¢;¢) are defined in (2.4) respectively (2.5) and {e:} is a
sequence of independent standard normal variables. Model (4.1) forms a unifying
framework for our tests. Set w = (¢’,0',m’,¢’)’ which comprises all the parameters
of the model. Functions A(wy;m,) and B(z¢; 7p) are assumed twice continuously
differentiable for all 7w, and m; everywhere in the corresponding sample spaces. For
notational simplicity and without loss of generality we assume A(wy;m,) = 0 for
7o=0 and B(z;m) = 0 for wp=0. Tests for various types of misspecification
are obtained by different parameterizations of A and B. It is assumed that the
maximum likelihood estimator of w is consistent and asymptotic normal under any
null hypothesis to be considered, which implies that {y:} satisfies the regularity
conditions for stationary and ergodicity. Also, the necessary moments needed for
{u¢} that are required for the asymptotic distribution theory to work are assumed
to exist. The null hypothesis of no additional structure is Hg : w,= 0 and 7,= 0.

The Lagrange multiplier (or score) test statistic is defined as

/

Nl=
35
fas]

[=}
Sl=

Z %‘: Ho
LM =T 0 T (e, @, m0) |, 0 (4.2)
% Z gflfb |H0 % Z gflfb |H0

where 1 is a consistent estimator of the information matrix under the null hypoth-
esis. We use the estimated negative expectation of the Hessian as our estima-
tor the information matrix. The partial derivatives forming the Hessian may be
found in Appendix B. The test statistic (4.2) is asymptotically x2- distributed with
dim(7r,)+dim(7,) degrees of freedom under the null hypothesis. If the information
matrix is block-diagonal the test statistic may be computed simply by two artificial

regressions; see Lundbergh and Terdsvirta (1998). This approach does not always
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apply to the STAR-STGARCH model, because the GARCH component may be
asymmetric. Note that by letting either A(wy;m,) or B(z:;mp) to be identically
equal to zero also under the alternative amounts to testing the conditional mean
and the conditional variance specifications separately. From the modeller’s point of
view, this is often the most practical alternative. The above structure may also be
used for evaluating submodels within the STAR-STGARCH parameterization. For
example, by setting g(z:; ) =0 in (4.1) we can, among other things, test a STAR-
GARCH specification against a STAR-STGARCH model nesting the former.

4.1.2. Test against serial dependence

To test the joint null hypothesis of no serial dependence in either the conditional
mean or in the conditional variance or in both, the alternative is stated as re-
maining serial dependence of order p in the ordinary error process and of order
p* in the squared (and standardized) errors. In the general case, this gives the
extended model (4.1) with A(wy;m,) = 7w, vy and B(wy; ) = m,v; where m, =
(Taty o Tap) s Ve = (U1, o U—p) s To = (T 15y T pe ), a0d VI = (Ry—1, .o, hpe ).
The null hypothesis of no remaining serial dependence in neither the conditional
mean nor in the conditional variance is equivalent to 7, = 0 and 7, = 0. Under the
null hypothesis and assuming that the necessary moments exits, the LM-statistic
(4.2) is asymptotically x3- distributed with dim(7,) + dim(7;,) degrees of freedom.
The details of an LM-test of this hypothesis for the squared standardized errors are

given in Lundbergh and Ter#svirta (1998).

4.1.3. Test against nonconstant parameters

We assume that the alternative to constant parameters in either the conditional
mean or in the conditional variance or in both is that the parameters change
smoothly over time, see Lin and Teréisvirta (1994) and Lundbergh and Terdsvirta

(1998). This gives rise to the following model:

Yo = @(t)'we+ f(wi; 0(t)) + e
Uy = st\/n(t)’zt + g(zt; C(t)) (43)

where 0(t) = (¢(t)',v,¢') and ¢(t) = (¥(t),6,K). All time-varying parame-
ter vectors are assumed to have the same structure. For instance, ¢(t) = ¢* +
g Hy, (t;7,,€p) where the transition function H,, (t;7,,¢y) is a logistic function

of order n, defined in (2.3) with s, = ¢. If v, — oo while n, = 1, function
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H, (t; Yo ¢, ) becomes a step function and the alternative to parameter constancy a
single structural break. The null hypothesis of parameter constancy can be stated
as Ho : 7, =74 =7 = 7 = 0. We circumvent the identification problem under
the null hypothesis as before by expanding H,, (t;7;, ¢;) into a Taylor series around
v; = 0. A realistic assumption in a test situation is to assume that n, =ng =I; and

Ny = Ny = lo. Using the first-order expansion we obtain, after reparameterization,

Yo = TVt J/Q,OWt + J/a,llHWtHn(St;%C) + Ry(Wi; W) + uy

u = 81&\/%{),021‘, + %1/7,12+1th”* (s¢;6,k) + vy + Ro(ze; Tp, w)

where the logistic transition functions for the STAR-STGARCH are estimated with
H,(st;7,¢€) and Hp» (sf,;g, ﬁ) For notational simplicity we denote these functions
by H, and H,«. This gives the extended model (4.1) with A(wy;m,) = @, v,
and B(wymp) = m,vy where o = (50, 1,30, 10 M 1 12 o Hgar, 11) s Wb =
(14{)71, ey %{)712 , %2,124-2’ ey %7212+1), vy = (th, o weth witH,,, ...,thllHn)/ and v} =
(ztt, e 7, th2 JZitHops ..oy Zttlen*)/.

The joint null hypothesis of parameter constancy both in the conditional mean
and variance consists of the restrictions 7w, = 0 and 7, = 0. Note that if the null
hypothesis holds, 57, o = ¢/, %Zz,l]—i-l = ¢, %{)70 =7, J{ll),lz-i-l = ¢y’. Furthermore,
then the two remainder terms Ry (W7o, w) = Ro(z¢; 7, w) = 0 so that they do
not affect the asymptotic distribution theory. Under the null hypothesis, the LM-
statistic (4.2) is asymptotically x2- distributed with dim(m,) + dim(r;) degrees of
freedom. Again, it is useful to test the constancy of the parameters of the conditional
mean and the conditional variance separately. More details about the test of the
latter hypothesis and its finite-sample properties can be found in Lundbergh and
Terdsvirta (1998). These tests may also be applied to a given subset of parameters
by assuming that the remaining ones are constant even under the alternative. This

often helps locate the nonconstancy if it exists.

4.1.4. Test against remaining nonlinearity

As we are searching for an adequate nonlinear specification for our time series it is of
considerable interest to try and check whether or not our estimated parametrization
adequately characterizes all nonlinearity in the series. To keep things simple, we
focus on the null hypothesis of no remaining additive nonlinearity. The alternative

to this null hypothesis is assumed to be an additive smooth transition component
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of the same type as before. This alternative may be written as

Y = fa(wt; ea) + Solwt + f(Wt; 9) +uy (44)

up = eo/nze + 9(z5C) + gv(2; )

where the functions f,(wy; 0,) and gp(2z¢; ¢,) represent any remaining nonlinearity
and have the same parameter structure as (2.4) and (2.5). Set 8, = (¢,,7,,¢.)
and ¢, = (v, 6b,k;’)/. The null hypothesis of no remaining nonlinearity can be
written as Hy : v, = 6 = 0. Even here, functions f,(wy;0,) and gp(z; () are
Taylor-expanded to circumvent the identification problem, and we assume that the
orders of the smooth transitions are l; and I3, respectively. This yields, after repa-

rameterization, the transformed model

Ve + @' Wi + f(We;0) + Ry(wWy; g, w) + wy (4.5)

Yt

Uy e/ N2 + 9(24; C) + TV + Ralzg; 5, w).

Model (4.5) is a special case of model (4.1) with A(w,;m,) = 7, v, where

_ / / _ lin ne ne, b1/ :
To = (34,00 o105 %yy,) and ve = (W Wiy, .., Wiy, ). Any linear

terms (lags) that are not included in the estimated smooth transition AR part
of the model are denoted by w!" whereas w; = (1,(wp€)’)’. We assume that
the nonlinearity in the conditional variance part is of smooth transition type and
therefore given by B(wy;my,) = m,vy where w1, = (36,1, ..., %, (141,)g) and v; =
(ut_l,ug’_l,...,ui{?,...,ut_q,ug’_q,...,u?_f)'. The two remainders Rg(wy; 7, w)
and Ry4(z¢; mp, w) do not affect the distribution theory because both are identically
equal to zero under Hg. The null hypothesis is 7, = 0 and 7, = 0, under which the
LM-statistic (4.2) is asymptotically x?- distributed with dim(m,)+dim(7y) degrees
of freedom. As for the conditional mean the test statistic is the same as in Eitrheim
and Teréisvirta (1996). The corresponding test for the adequacy of the conditional
variance is discussed in detail in Lundbergh and Terisvirta (1998).

If we assume g(z+;¢p) = f(wy;60) = 0 in (4.4) and only test Hp : v, = 0 then
the test is a linearity test for the conditional mean under nonconstant GARCH-
type conditional variance. Wong and Li (1997) recently presented a linearity test

for a related situation where the conditional mean follows a threshold autoregressive

process under the alternative.
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4.2. Test of independent, identically distributed disturbances

The misspecification tests of the previous section are tests against a parametric al-
ternative. This is useful in model-building because a rejection or a set of rejections
normally contain information about the nature of the misspecification. Neverthe-
less, we may complete our set of tests by a general test of independence of the
(standardized) errors. The BDS statistic (Brock et al., 1996), appears a suitable

large-sample test for this purpose. It is based on the mt?

correlation integral which
represents the fraction of all possible pairs of m consecutive points of the series that
are closer than € > 0 to each other. Closeness ¢ is defined by the Euclidean norm.
Let T denote the number of observations and Cy, 7 (¢) the m*" correlation integral.

The test statistic is

Wonir () = VT St €)= Cur (&) (4.6)

O, (€)

where 7,, 7 (¢) is an estimate of the standard deviation under the null hypothesis.
Statistic (4.6) has an asymptotic N (0,1) distribution under this hypothesis. For
details see Brock et al. (1996). In this paper, we have used the C-code of LeBaron
(1997) to compute the values of the test statistic.

The null distribution of the statistic depends on the two nuisance parameters,
m and . In this paper the BDS statistic is computed with m = 2 and ¢ is chosen
as the standard deviation of the residual series. These nuisance parameters cause
problems in small samples because then the size of the test is a function of these
two parameters. In order to have the size of the test under control we perform a
simple bootstrap to generate an empirical null distribution of the test statistic for
the selected combination of m and e. At the sample sizes (> 1000) we are primarily

interested in, however, this precaution seems no longer necessary.

5. Application to two high frequency series

As an illustration we apply the STAR-STGARCH modelling strategy to two series
consisting of daily observations. The first series is the Swedish OMX index which
consists of the values of the 30 most traded stocks at the Stockholm Stock Exchange.
The observation period is December 30, 1983 to September 30, 1998, with a total
of 3693 observations. The period until October 4, 1994, is used for estimating the
model, whereas the remaining period of 1000 observations is reserved for studying

the predictive properties of the model. The second series is the exchange rate for
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the Japanese yen (JPY) against the US dollar (USD). The observations extend from
December 28, 1978 to September 30, 1997, a total of 4756 observations. The period
until December 31, 1991, is the estimation period, and the remaining period of
1460 observations is used for a study of the predictive properties of the estimated
STAR-STGARCH model.

Both series are transformed to percentage changes in continuously compounded
rates. This is done by differencing the logarithms of the original series. Plots of

the closing-bid and the percentage changes for both series can be found in Figures

C.1-C4.

5.1. Swedish OMX index

If the errors of a linear model are IID, then the skewness and leptokurtosis may
be directly characterized by a nonsymmetric fat-tailed distribution; see for instance
Mittnik and Rachev (1993). In such a case there is no need for further modelling.
To consider linear dependence in the OMX series, we specified a linear AR model.
This AR model was augmented by weekday and holiday dummies to account for
possible weekday and holiday effects. An LM-test of no autocorrelation of order at
most m, Breusch and Pagan (1980), was then applied to the residuals and there
were no evidence of remaining serial dependence. On the other hand, the errors
were found to be leptokurtic. Characteristics of the errors of the linear model can
be found in Table C.1. The BDS test applied to the residuals from the linear model
heavily rejected the null hypothesis of IID errors; see Table C.1. This rejection
indicates that there may be some nonlinear structure to be modelled in the OMX

index.

5.1.1. Estimation and evaluation

Following the specification strategy outlined above a linearity test, assuming con-
stant conditional variance, was performed where the maximum lag of the linear
autoregressive part was 7 and the alternative an LSTAR(3) model. The results of
this linearity test for delay parameter values 0 < d < 5, appear in Table C.1. The
tests strongly rejects linearity. The strongest rejection occurs at d = 1, which is the

delay we select. The STAR-STGARCH model we consider has the following form:

Yt = D]\,{OMO + DTuTu + DWeWe + DT]-LTh + DHOlHol (51)

+Yo + Pr1Yt—1 + ... T PaYt—a

17



(o + Prye—1 + oo + baye—a) (1 + exp(—y(ye—a — ) /5Y)) " + v/
hy = ao+anul g+ Brhi (5.2)

+(aor + agruf_y)(1+ exp(—=6(ur— — k)/5(u)) ™"

where 5(y) and 7(u) are the sample standard deviations of {y:} and {u;} making
~ and 6 scale-free.

We first estimated the STAR-STGARCH model (ag; = ao; = 0 in (5.2)) for
the returns and tested it against the STAR-STGARCH specification. The results in
Table C.5 show that the standard GARCH(1,1) model for the conditional variance is
inadequate so that an extension to smooth transition GARCH was necessary. Model
(5.2) was thus re-estimated without the symmetry restrictions, and the maximum
likelihood estimates (standard deviations in parentheses) of the parameters based
on analytical first and second derivatives are reported in Table C.2. A missing value
in Table C.2 means that the corresponding parameter in (5.1) or (5.2) has been set
to zero.

A few characteristic features of the standardized residuals of the estimated model
can be found in Table C.3. The standardized residuals are less leptokurtic than the
original observations. The results of the misspecification tests for the conditional
mean of the STAR-STGARCH model can be found in Table C.4. The null hy-
pothesis of the LM-test of no remaining autocorrelation cannot be rejected and
the results of the parameter constancy tests indicate that parameters are constant,
except for the daily dummies. This rejection has not been followed up, however.
As for the LM-test of no additional nonlinearity against additional nonlinearity of
LSTAR(3) type, the hypothesis of no additional nonlinearity cannot be rejected.
This is remarkable given the very low p-values of the linearity tests.

The results of the misspecification tests for the conditional variance of the model
appear in Table C.6. The null hypothesis no remaining multiplicative ARCH struc-
ture, which is asymptotically equivalent to the test of Li and Mak (1994), in the
squared and standardized errors cannot be rejected. The test of the functional form
indicates no remaining serial dependence of GARCH type. There is still some evi-
dence of nonlinearity in the conditional variance, see Table C.6, but it is now very
weak compared to the previous results in Table C.5. The parameter constancy test
does not indicate nonconstancy at the 1% level of significance. Finally, it can be
seen from Table C.3 that the hypothesis of IID errors cannot be rejected for the
standardized errors of the STAR-STGARCH model.

18



5.1.2. Interpretation

Having obtained a satisfactory model for the OMX index we proceed to interpret
the estimation results. A conspicuous feature in the model is that both a Monday
and a Tuesday effect seem to exist at a 5 percent significance level. In general
there appears to be a weak tendency for the index to display growth towards the
end of each week. No holiday effect is found. The conditional mean model is
asymmetric. A sufficiently large negative shock causes a secondary negative effect
after four days. For positive shocks there is no similar positive secondary effect
because @, + 54 changes sign and becomes slightly negative as the value of the
transition function increases towards unity. Figure C.5 shows that both extreme
regimes are invoked quite often. As to the conditional variance, the STGARCH
model responds asymmetrically to positive and negative errors from the conditional
mean part of the model. For positive residuals the behaviour is locally represented
by a standard GARCH model, but for negative residuals the local dynamics are
close to the dynamic behaviour of an IGARCH process.

Under the assumption of constant conditional variance, a model spectrum for
each value of the observed logistic transition function in f(wy; 5) is plotted in Figure
C.6. This ’sliced’ spectrum was introduced by Skalin and Terdsvirta (1999). It is
a model spectrum conditional on the value of the transition function and describes
change in the local dynamics of the conditional mean with the transition from one
of the two extreme regimes to the other in the estimated STAR model. The slight
peak at the frequency corresponding to four days reflects the situation at H 1 =0.
This peak fades away as ﬁl — 1, and thus we obtain another description of the
asymmetry in the conditional mean discussed above. Note, however, that the sliced
spectrum characterizes local behaviour and cannot be interpreted as representing
the ”global” dynamic behaviour of the series. If one wants to estimate the global
spectrum of the conditional mean process it has to be done numerically; see Skalin
and Ter#svirta (1999) for discussion.

It should also be noted that the conditional variance of the model is clearly
asymmetric. Positive and negative shocks, i.e, news, of the same size do not have

the same impact on the conditional variance.

5.1.3. Forecasting one business day ahead

We computed 1000 one-day-ahead predictions of the conditional mean. The root

mean square error (RMSE) equals 0.32 for the conditional mean part of the esti-
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mated STAR-STGARCH model while the corresponding linear model has RMSE
of 0.39. We evaluate the predictive properties of the model in two ways. First we
compare the forecasts from our model with those from a linear AR(7) model by
applying the test in Granger and Newbold (1986, pp. 278-280) which is based on
the correlation coefficient, r, of the sums and differences of the forecast errors. If
this correlation coefficient equals zero then both forecast processes have the same
RMSE. The null hypothesis of no correlation is Hy : » = 0 and the alternative
H; : » > 0. The alternative corresponds to the situation where the forecasts from
the nonlinear model have a smaller RMSE than those from the linear model. For

inference we use the well-known transformation

1 1+7r
:—1 .
w 211(1_?”) (5.3)

where w ~ N(0, ﬁ) under the null hypothesis, N being equal to the number
of one-step-ahead forecasts. The test provides very strong evidence of a positive
correlation, see Table C.7. It seems that the nonlinear structure captured by the
model is useful in forecasting one step ahead.

Another way of evaluating the one-step-ahead forecasts is to compare them with
the true outcomes using ordinal data. Positive returns and forecasts that are greater
than 0.002 are given value 1. If a forecast or realization is less than -0.002 it obtains
value -1. The remaining observations have value zero. This classification may be
useful if we think that an agent facing transaction costs only acts upon a forecast if
it deviates sufficiently much from zero. Considering prediction accuracy in such a
framework may then be of interest. The ordinal data obtained this way are cross-
tabulated in Table C.8. Following Agresti (1984, pp. 156-165), the association
between the one-step-ahead forecasts and the corresponding outcome is measured
using concordant and discordant pairs of observations. For example, a forecast-
outcome combination (1,1) forms a concordant pair with any (0,0), (0,-1), (-1,0),
or (-1,-1) combination. The discordant pairs are the ones where one of the two
elements is higher and the other lower than the corresponding element in the other
observation forming the pair. The remaining paired observations are ties. Two
measures of association that are based on the differences between concordant and
discordant pairs, Somers’ d and Kendall’s tau-b equal 0.65 and 0.66, respectively.
This indicates a positive association between the sign of the one-step-ahead forecasts
with the true outcome. An ordinal test of independence based on concordant and

discordant pairs can be found in Agresti (1984, pp. 180-181). If we denote the
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number of concordant and discordant pairs by C and D the test statistic is

C—-D
- = 5.4
T 5(C-D) (5.4)
where o(C — D) is the standard error of C'— D. Under the null hypothesis of no
association the statistic (5.4) is approximately normally distributed in large samples
with zero mean and unit variance. For the OMX index the value of this statistic

equals z = 22.9, which is strong evidence in favour of positive ordinal association

between the forecasts and outcomes.

5.2. JPY/USD exchange rate

Even here, the analysis was started by estimating an AR model including weekday
dummies and a constant term for the series. No remaining serial dependence was
found. Various characteristics of the (leptokurtic) errors for the linear models can
be found in Table C.1 as well as the result that the BDS test heavily rejects the

null hypothesis of IID errors.

5.2.1. Estimation and evaluation

As before, testing linearity was the first step of the specification procedure. In these
tests the maximum lag of the linear autoregressive part was 7 and the alternative
an LSTAR(3) model. The results from these linearity tests for delay parameter
0 < d <5 appear in Table C.1, and show that linearity is rejected.

As before, we first estimated a STAR-GARCH model without asymmetry in the
conditional variance. As in the linear model, the weekday effects in the conditional
mean are represented by daily dummies and a dummy for holiday effects. The
parameter estimates (standard deviations in parentheses) of the model are reported
in Table C.2 and shows that linearity is rejected. A few characteristic features of
the standardized residuals of the estimated model can be found in Table C.3. The
leptokurtosis has increased compared to that in the original series. This is because
with our univariate model we cannot predict the actual shock, but we can model
the average response to it. The actual shock may thus become more conspicuous
in the standardized residuals than in the original data, which leads to increased
leptokurtosis in the residuals. The condition for the error process having a finite
fourth moment, given in Bollerslev (1986) or, more generally, He and Terisvirta
(1999a), is valid for the estimated parameter combination.

The results of the misspecification tests in Section 4 for the conditional mean can
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be found in Table C.4. There is no remaining autocorrelation, the parameters seem
constant, and there is no evidence of remaining additional nonlinearity either. The
results of the misspecification tests for the conditional variance appear in Table C.6.
The test against remaining multiplicative ARCH structure indicates that there is
some structure left that the STAR-GARCH model does not capture. On the other
hand, the test of the functional form does not indicate remaining serial dependence
of GARCH type and the results of the parameter constancy test are satisfactory.
The BDS test in Table C.3 does not reject the IID hypothesis of the errors. Finally,
the linearity test against smooth transition GARCH in Table C.6 does not reject
the null of symmetry. Thus we tentatively accept the STAR-GARCH model and
do not consider the STAR-STGARCH one.

5.2.2. Interpretation

A feature of the results is that the coefficient estimates of all weekday dummies
are negative and significant as a 5 percent level which suggests a positive ”Friday
effect”. The conditional mean of the model is asymmetric. Most of the time there
exists some linear structure in the process. However, a sufficient large positive
shock causes a nonlinear response in the series. This is clearly seen from the sliced
spectrum in Figure C.8 which demonstrates the emergence of a local cycle with the
period of about 8 days. On the other hand, such a large shock is a relatively rare
event. This is best seen from the graph of the transition function in Figure C.7
where every circle represents a single observation. As discussed above there is no

asymmetry to be modelled in the conditional variance.

5.2.3. Forecasting one business day ahead

We computed 1460 one-step-ahead predictions of the returns of the JPY/USD ex-
change rate both with a linear and a nonlinear model. We did not find any linear
dependence in the conditional mean and assume therefore in the linear case the
process to be a random walk. The RMSE for the conditional mean part of the
STAR-GARCH model and the deviation of the actual observations from zero are
both 0.27. We computed the Granger and Newbold (1986) RMSE test using statistic
(5.3). It is seen from Table C.7 that we cannot reject the null hypothesis Hy : » =0
against Hy : » > 0. As nonlinearity is only required to characterize the response
of the process to large shocks, there is no general improvement in the predictive
performance compared to the random walk model.

We use the same ordinal observations as to compare one-step-ahead forecasts
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with the true outcomes. The boundaries for ”zero” are now -0.0005 and 0.0005.
These ordinal data are cross-tabulated in Table C.9. The Somers’ d and the
Kendall’s tau-b equal 0.02 and 0.01 respectively, and do not suggest any associ-
ation between the direction of the one-step-ahead forecasts and that of the true
outcome. For the JPY/USD exchange rate the value of the ordinal test statistic

(5.4) is Z = 0.57, which strengthens this conclusion.

6. Conclusions

Our STAR-STGARCH model is intended to help us characterize the behaviour of
high-frequency economic time series. Many modellers of such series tend to ignore
the first moment, but in this paper the first and the second moment are modelled
jointly. A coherent modelling strategy is a key to doing that in a systematic way,
and such a strategy is designed and applied to data here. An advantage of the
proposed strategy is that the specification and misspecification tests we use only
require standard asymptotic theory and are easy to perform. The tests for the
conditional variance are discussed in detail in the companion paper Lundbergh and
Terésvirta (1998).

The empirical examples indicate that there is nonlinear structure in the condi-
tional mean to be modelled. In the case of the OMX index this leads to improved
forecasts. For the JPY/USD exchange rate return series the nonlinear parame-
ters only characterize some extreme events in the series. Because such events by
definition are rare, the forecast accuracy, when measured from a large number of
forecasts, is not improved by extra parameters. The aftermath of a large positive
shock is the only occasion in which the estimated STAR-STGARCH model may

generate better forecasts than a linear autoregressive model for this series.
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A. The linearity test in presence of GARCH

The linearity test in Section 3 is derived under the assumption of constant variance.
The aim with this simple simulation study is to examine how the test performs
when the conditional variance follows a GARCH-type process.

We let the conditional mean follow an AR(4) model, with parameter values that
correspond to one of the estimated regimes found in the Swedish OMX index. This
yields the conditional mean model y; = 0.0055 — 0.038y;_4 + u; where u; = \/h_tet.
The IID error term, e, is assumed N (0, 1). In the simulations we let the conditional
variance follow the asymmetric GJR-GARCH specification suggested by Glosten
et al. (1993). This model may be written as

hy = ag + ay [Jug_1| + wu_1]* + Brhe—1 (A1)

where w is the asymmetry parameter. If w = 0 the model reduces to the standard
GARCH(1,1) model, and with ag > 0, @1 = $; = w = 0 the model has a con-
stant conditional variance. The values of the parameters match the estimated ones
for the Swedish OMX-index. The parameter values for the different conditional
variance DGPs can be found in Table A.1, where a missing value denotes that the

corresponding parameter value in (A.1) equals zero.

DGP Parameter

o || B8] m+s Jw
DGPO | 2x 10 * . . .
DGP1 | 7x107% | 0.15 | 0.84 0.99
DGP2 | 7x107% | 0.06 | 0.84 0.90 .
DGP3 | 7x107% | 0.15 | 0.84 | 0.90 or 0.99 | -0.10

Table A.1: Simulation design for the GARCH model (A.1).

The number of replications in the simulation study is set to 5000. The length of
the generated time series is 1000 observations after removing the first 500 observa-
tions from the beginning of the series to eliminate the effects of the initial values.
For each replicate we compute two versions of the linearity test (3.1), one described
in Section 3 and another one mentioned in Granger and Terésvirta (1993, p. 69)
which is robust against unspecified heteroscedasticity.

The empirical size of the standard linearity test can be found in Table A.2.
When the conditional variance is generated by DGP2 it is found that the size is
only marginally affected. As to DGP1 and DGP3, the standard linearity test quite

often erroneously detects nonlinear structure in the conditional mean, whereas the
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corresponding robust version is slightly undersized.

Standard version Robust version
T=1000 | 1% 5% 10% | 1% 5% 10%

DGPO 0.008 0.043 0.085 | 0.004 0.032 0.069
DGP1 0.166 0.276 0.356 | 0.003 0.023 0.062
DGP2 0.011 0.054 0.100 | 0.004 0.035 0.079
DGP3 0.189 0.312 0.391 | 0.003 0.024 0.063

Table A.2: Empirical size of the linearity test. Each cell represents the proportion
of rejections at the given nominal significance level. The alternative to linearity is
a nonlinearity of LSTAR(3)-type. The transition variable used in the linearity test
is 1.

To see how the two versions of the linearity test behave when a nonlinearity is
present in the conditional mean we generated data from an LSTAR model whose
parameters values match the estimated ones for the Swedish OMX index, see Table

C.2. The model is
Yz = 0.072yz_4 + (0.0055 — 0.11y;—4) (1 +exp(—6.1(ys—1 — 0.0039))/(?(3/))71 + 1/ hies

where 7(y) = 0.013. The conditional variance is generated by the DGPs in Table
A.1. In this situation we find that the robustification against heteroskedasticity
partly absorbs the nonlinearity in the conditional mean, see Table A.3. In the case
when the conditional variance follows DGP1 or DGP3 the robust version of the
linearity test has very little power against the nonlinearity in the conditional mean.

Because of this disadvantage we shall not apply the robust linearity test in this

paper.

Standard version Robust version

T=1000 | 1% 5% 10%| 1% 5% 10%

DGPO 0.10 0.26 0.38 | 0.065 0.22 0.36
DGP1 0.81 090 0.93 | 0.014 0.073 0.15
DGP2 040 063 0.73 | 0.13 033 049
DGP3 082 091 094 | 0.012 0.069 0.15

Table A.3: Empirical power of the linearity test. Two versions are computed, the
standard linearity test for the conditional mean and a version robust against unspec-
ified heteroskedasticity. The alternative to linearity is a nonlinearity of LSTAR(3)-
type. The transition variable used in the linearity test is y;_1.
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B. Gradient and Hessian of the log-likelihood function

The analytical gradient and the analytical Hessian of the STAR-GARCH model
are reported here. The specification tests in Section 4.1 consists of, at most, two

additional linear terms and are thus straight forward to implement.

Consider the STAR-STGARCH model defined in (2.1) and (2.2).

vy = @wi+ f(wi;0)+u

Uy = €& h(wt;govevnvC)

where h(wy, 0, 0,m,¢) = hy = 1'z:+ g(z¢; €). The nonlinear functions f (wy; 8) and
9(z;¢) are defined in (2.4) respectively (2.5). Assuming that the sequence {e;} is

identically normal distributed, the log-likelihood function at time t is

1 1 102
l, = —=In2r — = Inh, — =2
D R A Y

where u; = y; — ¢'wy — f (wy; 0) as neither ¢ nor 0 is assumed to depend on either
7 or {. The derivatives of the log-likelihood function are reported in B.1 and the
derivatives of the nonlinear functions f (wy; 0) and g(z; ¢) are reported in B.2 and

B.3.

B.1. Partial derivatives of the log-likelihood function

The first and second order partial derivatives is to be found in this section. The
second order partial derivatives are also given in expectation which is useful when
computing the specification tests. Also recall that E [u;] = 0 and E [uf] = E [g¢] =

unconditional variance.

B.1.1. First order partial derivative of [;

The gradient of the log-likelihood function at time ¢ is given by the derivative with

respect to the parameters of; the nonlinear function, the linear part and the variance

model.
(2 o o ol
=\ o0 o o 9¢
where
O wdf(wi) 1 (w0
80  hy 00’ 2hs \ hy 00’
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8175 ﬂ ’ 1 <U% 1> 3ht

oo et o \ Iy og'
o 1 (u_?1>%
on’ 2he \ Iy on’
o 1 (u_?1>%
a¢ 2 \ Iy o¢’

B.1.2. Second order partial derivative of [,

The Hessian of the log-likelihood function at time ¢ is given by:

2%l %L, 22l o2,
Op Dy’ O 00’ dpdn’ dp ¢’
8%, 3%, %1, 3%,
_ 000’ 0006’ 969n’ 900¢’
H, = . . . .
8%l 9%l 8%l 9%l
ondy’ onoe’ anon’ anog’
2%l 0%l 22l 0%,
¢ O’ 0¢ 08’ a¢on’ ¢ ¢!

We first report the derivatives with respect only to the parameters in the conditional
mean block, followed by the derivatives with respect only to the parameters of the
conditional variance block. Then we report the cross-term derivatives.

Derivative with respect to the parameters of the linear part in the conditional

mean

Pl 1 i OheOhe ue (Ohe o Ohu
dpdp’  —  hy Ut 213 0p 0¢' K2\ g

L1 (Y (P Lok
2hy \ Iy Opdy’ gt Op Op’

and the expectation of it,

0%l 1 , 1 Oh: Ohy
E {690830’] =-F [h—tWtWt + ﬁ%aﬁpl]

Derivative with respect to the parameters of the nonlinear function in the con-

ditional mean

8%l B 7i6f(wt;0) 8f(wt;0)+ﬂ 0% f (wy; 0) 7&%%
0000’ he 00 00’ he 0000’ 2h7 00 06’
_ut (Oh Of (wi;6) | Of (wi;0) Ohu
RZ\ 00 00 00 00

L () (P 1 ohon
th ht 6060/ ('3 00 80'
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and the expectation of it,

l: 82lt :l __E {l@f (wf,B) 6f (wt;O) 1 Oh 6ht:|

06006’ hy 00 00’ 212 00 06

Cross-term derivative within the conditional mean

&l _ 1, 0f(wi8)  uf OhOhe ui (OheOf (Wii0) o Ol
0000 —  h, 00 2h3 dp B¢’ h2 \dp 06 “o0’

LU (N (P 10O
th ht 69089/ ht 830 69/

and the expectation of it,

021, _ 5 iw of (w;0) 1 Ohy Oly
000’ | he 't 00 212 Dp 00’

Derivative with respect to the parameters of the linear part of the conditional

variance

hy

anon 213 om o' | 2k, omom’  hy on o'

and the expectation of it,

821, 1 Oh, Ohy
E | = _p | ST
[977677/} {%? on 677/}

Derivative with respect to the parameters of the nonlinear part of the conditional

variance
Ol _ i OhyOhy L (uj (0% 1 OhOhy
0¢a¢’” — 2hf ¢ ¢ 2hy \ I acac’  hy oC ac’
and the expectation of it,
Pl 7L onon,
aco¢’ | 2h7 0¢ ¢’

Cross-term derivative within the conditional variance

Ol uE ok | L
omo¢’ — 2n3 on o’ 2y

he ) \omd¢" e om o¢’

and the expectation of it,

E[ 02l ]——E[ 1 ahtaht}

¢’ 2n7 on o¢
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Cross-terms derivatives between the conditional mean and the conditional vari-

ance.
Pl OhOh e O L (uR N (Ph 1 Oh Ok
dp0n 23 dp O’ K2 om | 2k \ hs 0pdn’  hy O O’
Pl Oh Oy we Dhe | L () (9% 1 0heOh,
0p0C 2030 9 hAC T 2k \ Iy 9p0C  hy 0 OC'
Pl Ohy Db w 0F (wi0)Ohy | L (up |\ (Oh 10k Ohy
000y’ 2300 0y’ hZ 90  On' ' 2k \ hy 000n' g, 00 oy
0%} Ohdh w Of (wif)Oh L (uf \\( 0h 10k Oh
200¢ 2n3 00 8¢ R 00  O¢  2hy \ hy 000¢"  g; 00 9’
and the corresponding expectations of them,
9l [ L Ohe O]
dpom'| | 297 O O’ |
921, [ 1 Ohy Ohy]
E - —F|——2t=1t
[39084'_ | 297 9 OC' |
021, [ 1 Ohy Ohy]
l;{aeang - ‘lf_§ﬁg?%iang
921, 1 [ 1 Ohy Ohy]
l;[aaacﬁ B ‘l;_iﬁg?ﬁiac{

If the conditional variance model is symmetric and satisfies certain regularity con-

ditions then the expectation of these matrices will be zero; see Theorem 4 in Engle

(1982).

B.2. Partial derivatives of the nonlinear function f (w;;8).

As neither ¢ nor 8 is assumed to depend on either 1 or {, the partial derivatives
of the conditional mean does not depend of the parameterization of the conditional
variance. Assume that the nonlinear function f (w;6) in the conditional mean is

parameterized as in (2.4):
n -1
f(we:0) = ¢'w, (1 +exp(— [ (vs—a - Cz))>
=1
To simplify the calculation of the derivatives rewrite function f (wy; @) as:

1

2exp(—3 lli[l (Yt—a — c1)) cosh(3 l]ill (Yt—a — 1))

f(wy;0) = ¢'w,

n
Let & (Ye—a;V,¢1,-v¢n) = 3 [] (Yt—a — ), drop the arguments and write the
=1
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function as
b

-0) = &
f (wi;6) ¢Wt2005h§t
B.2.1. First order partial derivative of f (wy;8)

Derivative with respect to the parameters of the autoregressive part, the slope and

the location vector.

Of (wi;0) (5f (wi;0) 0f (wi;0) 9f(Wt;9)>

00 o¢’ oy oc’
where

of (wy;0) , ek
o = "9 cosh &,

of (wi;0) w0,
0 2cosh? ¢, Oy

of (wi8) _ dlwi g
oc’ 2cosh? ¢, Oc¢/

by letting ¢; denote the i*” element in the location vector ¢, we can write the first

order derivative of £, as

) L 3
ol oea—a) =3 11 Gaa)
= =1,l#%

B.2.2. Second order partial derivative of f (wy;6)

These derivatives are only interesting when computing the full Hessian, they are

not needed for the expectation.

% f(wi;0) 0% f(wi;0)  9%f(wii8)

9 . dpOPp’ Doy’ dpoc’
FIWe0) | 2pwio) fwid) 8 f(wio) (B.1)
0006’ OO’ oy a~yoc! .
9 flwi8)  Of(wiB)  0%f(w.:)
dcdep’ dcdy’ dcdc’

where the elements in (B.1) are given by:

0% f (wy;0) _ 0
e’
Pf(wi;0) wi 9§,
0v0g ~ 2cosh®¢ p 3_7
0% f (wy; 0) B W 0¢,
dcog’ ~ 2cosh? &, dc
Pllwct) _ S (1060608 )
o0y cosh?¢, \20v0y 0y v
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82f (Wta 0) — ¢lwt <l 82575 aft aft tanh €t>

Ocory cosh?¢, \20cdy  dc Oy
?f(wi;0)  Pwe (10%, 96, 9¢, nhé
Ococ’ cosh? &, 2 dcoc’ dc oc’ ‘)

Let c¢;, c¢; denote the it" respectively j'* element of the location vector c. The

second order derivative of &, is then

0%, _
oyoy —

¢,
8’}/80,1

T

1 ~ 8%¢ ’
=3 Il W-a—a) so5=3 Il  (-a—a)

Il
~

AFd ) 1=1,l%4,1%£5

B.3. Partial derivative of the conditional variance h;.

Assume that the conditional variance, h(w; ¢, 0,7, ) = hy, is parameterized as in

(2.2) and (2.5):

he = 'z + Q(Zt3 <)

q
- a01+za0j n* ul‘ 7 +Z Q5 +O‘2j n* (ul‘ ]) uf ]+ZB ht 7
j=1 j=1

j=1

To initialize the iterative computation pre-sample values of h; are estimated by the

sample (unconditional) variance. This is done for all ¢ < 0 by setting hy = u? =
T

% > u? where ug = ys — @'w, — f (W, 60).

s=1

B.3.1. First order partial derivative of h;

The first order derivatives may be computed iteratively by using the following ex-

pressions

ohy
00’

Ohy
Jy’

ohy
oan’

M=

1

.
Il

q P
Of(wi_;;0 Ohy—;
-9 E (a1j + g Hyp (Utfj))utfj_f(Wt . )+ Z B; o
= =t

M=

1

RN
Il

-2
J

z,+

RN

(aoj + agjui ;)

(aoj + cvu; ;)

M L0

6Hn* (ut,j)
06’

00’ 700

OH,, (utfj)
Oy’

Ohy
(v + agjHpe (ug—j) ) jwt j Zﬁj agaj
J=1
8Hn*(ut_‘)
(ao; + agjui ;) —"5—2=
—1 on’
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J
Jj=1 o
Ohy L 9oy + i) O 2\ OHne (u_j)
- j; ac + j; (ag; + anut—j)a—C/
+ 30 0, s
g 7
= o
T
where the pre-sample values are given by fQUt%av;’,—';ez = gz& =-2% usﬂawé#l,
s=1
—2usw, = gZ‘ = —% Z wé, Ohy _ ()

B.3.2. Second order partial derivative of h; = h(w;; ¢, 0,1, ()

- 90 00 T 5900 9000’

h ! Of (Wi—i;0) Of (Wi—i; 6) Pf(wii; 0 &n
aea;/_QZai( ‘ t 900 ) ZB’ 7

8% f(wy;0)

Of (wei0) 9f(we;0) Y —
o8 00’ t—1" 5660’ -

where the pre—sample values are given by 2(

82 ‘ _ 2 3f(WS, 3f(WS,9> 82f<ws;9>
26007 — Z ( — Us— 5500 )

I Z QW W+ Zﬁja fuj

890630 — Opdy’
here th le val iven by 2wew) = 20— 2 3 v !
where the pre-sample values are given by 2w, w} = 554 = 7 32::1 W W/,
Phy 0z, < (08, 0n, Phy
C =T S (s 5, S
onon an = on 0n onon
where the pre-sample values are given by ﬁf- = 0. The partial derivative
of z is: %_,;; = (0,0,...,0,%,...7%) and the derivative of 3, is: %—[737" =

(0,0,...,1%, ...,0)" where 1* correspond to element 1 4 ¢ + .

82ht Wt i 0) P tht— i
=2 7 7 : 1 ]
200 Z o T ; b5 000’

. 2 . T
where the pre-sample values are given by 2w, of E;’;f’e) = % :557 = % > ws 9f(wsi8)

62ht 6Zt 8 ht —j
Opon’ jz:: Fj Opon’
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. 8%hi_; . . .
where the pre-sample values are given by o an-,’ = 0. The partial derivative of z;
. oz, Ohy Ohi_y
is: 50 = (O, —2Up W1, .o, —2Us_gWi—g, 8190 Lo, #)

Phy %+iﬁ 0?hy_;
j=1

000ny — 90 7 900m’
25
where the pre-sample values are given by 889’35;’ = 0. The partial derivative of z,
.. 0z Af(wi_1;0 Af(wi—q;8) Ohie dhy_y
is: Gt = (0, =2up LGt gy, ALra®) B | Se)

B.4. Partial derivatives of the logistic function H,(s:;~,c)

The logistic function (2.3) is the key term in the parameterization of the nonlin-
earities in both the conditional mean and the conditional variance. On the one
hand, the nonlinear function in the conditional mean is constructed as f (w;0) =
¢'wiH,(s4;7,¢), with s; = y;_4. On the other hand, the logistic function H,«(s; 8, k)
that imposes the nonlinearity in the conditional variance is parameterized with

s¢ = uy—g which depends on ¢ and 6. The logistic function is defined as:

n -1
H,(s¢7,¢) = (1 + exp(—y H (st — cl))> 7> 0,00 << ey
=1

To simplify the calculation of the derivatives the logistic function is rewritten as:

1
Hn (St; v, C) = n n
2exp(—3 [] (st —c))cosh(F [] (st — 1))
=1 =1
Let & (s5;7,¢1,..,¢n) = 3 [] (8¢ — c1) , drop the arguments and write the function
=1
as:
3y
e
Hn(st; 710) ~ 5. 1
2cosh¢,

B.4.1. First order partial derivative of H,(s:;7,c)

All of the first order derivatives have the same structure, as an example we consider

the derivative with respect to ¢.

8Hn(st) . 1 %
0¢’  2cosh? & Op

Let ¢; denote the i*" element of the location vector c, then the derivatives of £, with

respect to the parameters of the model are
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i=1 \i=1,1%j

%‘ = 0 and %‘ = 0 in the conditional mean case due to the fact that s; = y;_4

which depends neither on ¢ nor 6.

where Sum =5 ( IT (st — cl)> if n > 1, otherwise Sum = 1. Note that
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C. Tables and Figures

| [ OMX index | JPY/USD |

Characteristics:
Min -0.083 -0.049
Mazx 0.091 0.039
Mean 0 0
Variance 1.6x1074 4.7x10°°
Skewness 0.056 -0.38
Kurtosts 8.7 6.4
Non-parametric test of IID (BDS)
statistic | 12.4 | 7.8
LM-test against nonlinearity of STAR type:
p-value p-value
d=1 7.9x107%% 0.0014
d =2 9.5x1071 0.00017
d=3 1.8x10—20 0.00044
d=4 3.6x10°° 7.6x10°¢
d =5 7.6x1016 0.17

Table C.1: Certain characteristics, the BDS test and linearity tests for the OMX-
index and the JPY/USD exchange rate. The characteristics and the BDS test
are computed from the residuals of a linear model (a constant, daily dummy vari-
ables and an AR polynomial). The BDS statistic is asymptotically normally dis-
tributed with zero expectation and unit variance. The LM test against nonlinear-
ity of LSTAR(3) type uses a lag length 7 for the autoregressive part. The test
is computed, assuming constant conditional variance, against the alternative for,
1 < d < 5. The null hypotesis is given in the table.
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Figure C.1: The daily Swedish OMX index, December 30, 1983 to September 30,
1998. The dashed vertical line corresponds to October 5, 1994. Observations pre-
ceding this date are used for estimation and the remaining ones for one-step-ahead
forecasting.
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Figure C.2: Returns of the daily Swedish OMX index (first differences), December
31, 1983 to September 30, 1998. The dashed line corresponds to October 5, 1994.
Observations preceding this date are used for estimation and the remaining ones
for one-step-ahead forecasting.
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| Parameter | OMX index | JPY/USD |

Conditional mean model
Do —0.0033 —0.00092
(0.00052) (0.00034)
Dy, —0.0023 —0.00070
(0.00050) (0.00035)
Dyy. —0.00048 —0.0010
(0.00050) (0.00035)
Dy, —0.00083 —0.0013
(0.00052) (0.00035)
Dy —0.00073 —0.0015
(0.0028) (0.0013)
0.00082
Yo (0.00025)
0.029
2 (0.019)
0.042
3 (0.019)
0.072
P4 (0.028)
Po 0.0055 —0.011
(0.00063) (0.0043)
o —0.55
(0.32)
o —0.43
(0.30)
o —0.11
(0.049)
d 1 4
6.1 4.2
7 (21) (3.7
c 0.0039 0.019
(0.00087) (0.0024)
Conditional variance model
ag 71x107% | 3.7x10°°
(1.2x10-6) (6.4x10-7)
11 016 0094
(0.021) (0.013)
o 0.84 0.83
(0.018) (0.022)
Qo1 .
Q91 —0.10
(0.021)
1) 7.7
(5.5)
k

Table C.2: Parameter estimates of the STAR-STGARCH models (standard devia-
tions in parentheses) for the OMX-index and the JPY/USD exchange rate.
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| | OMX index | JPY/USD |

Characteristics:

Min -9.2 -9.1
Mazx 5.6 4.2
Mean -0.018 -0.0089
Variance 1.0 1.0
Skewness -0.44 -0.63
Kurtosis 7.7 7.9
Nonparametric test of IID (BDS)

BDS statistic 0.28 1.1
p-value (asymptotic) 0.78 0.29
p-value (bootstrap) 0.78 0.30

Table C.3: Characteristics of the standardized residuals of the STAR-STGARCH
model and the BDS test of independence for the standardized errors. For the BDS
test a bootstrapped probability value based on 1000 resampled series is reported as
well.

| | OMX index | JPY/USD |

Remaining autocorrelation (p-values)
=1 0.27 0.11
=2 0.54 0.037
=3 0.69 0.086
=4 0.81 0.15
=5 0.90 0.13
Parameter constancy (p-values)

All 0.076 0.13
Dummies 0.0080 0.80
Linear 0.73 0.033
Non-linear 0.82 0.57
Remaining nonlinearity (p-values)
d=1 0.11 0.49
d=2 0.44 0.36
d=3 0.38 0.019
d=4 0.17 0.36
d=>5 0.35 0.72

Table C.4: p-values of specification tests for the conditional mean for the estimated
STAR-STGARCH model. LM tests for the conditional mean: The test of no remain-
ing autocorrelation is computed against the alternative of remaining autocorrelation
up to the given lag, . The test of parameter constancy is computed against the
alternative of time-dependence given by an LSTAR(3) parametrization with time
as the transition variable. The test against nonlinearity of LSTAR(3) type uses a
lag length 7 for the autoregressive part. The test is computed separately against
the alternatives 1 < d < 5.
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| | OMX index |
Remaining nonlinearity of STGARCH type (p-values)

All parameters 1.8 x 1078
Constant intercept 9.9 x 1077
Remaining nonlinearity with a fixed delay (p-values)
d=1 1.8 x 1073

d =2 2.3x107°

d=3 0.017

Table C.5: p-values of the test against nonlinearity in the conditional variance for
a STAR-GARCH model estimated for the OMX index. The tests against remain-
ing nonlinearity make use of a third order Taylor approximation of the transition
function. One test is against a STGARCH structure and the other one against
a nonlinearity with a fixed delay. The latter one is computed separately against
1<d<3.

| | OMX index | JPY/USD |

Remaining ARCH (p-values)

=1 0.15 0.17
[ =2 0.32 0.18
1=3 0.51 0.0013
[ =10 0.45 0.022
Test of the functional form (p-values)

=1 0.60 0.49
=2 0.44 0.52
=3 0.45 0.15
[ =10 0.11 0.33
Parameter constancy (p-values)

All 0.012 0.053
Intercept 0.060 0.090
Alfa 0.13 0.74
Beta 0.055 0.38
Smooth 0.25 .
Remaining nonlinearity of STGARCH type (p-values)
All parameters 0.0021 0.080
Constant intercept 0.0013 0.69
Remaining nonlinearity with a fixed delay (p-values)
d=1 0.0021 0.080
d=2 0.60 0.53
d=3 0.13 0.21

Table C.6: p-values of specification tests for the conditional variance of the estimated
STAR-STGARCH model. LM tests for the conditional variance: The tests of no
remaining serial dependence in the squared and standardized residuals are computed
against the alternative of remaining dependence up to the given lag, I. The test of
parameter constancy is computed against the alternative of time-dependence given
by an LSTAR(2) parametrization with time as the transition variable. The tests
against remaining nonlinearity make use of a third order Taylor approximation of
the transition function. One test is against a STGARCH structure and the other
one against a nonlinearity with a fixed delay. The latter one is computed separately
against the alternatives 1 < d < 3.
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Asset RMSE Test
Our model | Competitor | p-value

OMX index 0.32 0.39 0
JPY/USD 0.27 0.27 0.99

Table C.7: Root mean square errors (RMSE) of the conditional mean part of the
STAR-STGARCH model and its linear competitor. Also the p-value of the test of
the nullhypothesis Hg : 7 = 0 against Hy : r > 0 is given. For the Swedish OMX
index we use a linear AR(7) model as the competitor. For the JPY/USD exchange
rate we use the deviation of the actual observations from zero as the competitor.

The model
-1 0 1 Total
The -1 108 281 3 392
observed 0 27 117 3 147
data 1 1 126 334 461
Total | 136 524 340 | 1000

Table C.8: Cross-tabulation of the ordered actual observations and one-step-ahead
forecasts of the Swedish OMX index. A value between -0.002 and 0.002 is denoted
0, otherwise positive and negative values are represented by 1 and -1.

The model
-1 0 1 Total
The -1 89 453 104 646
observed 0 18 89 18 125
data 1 95 471 123 689
Total | 202 1013 245 | 1460

Table C.9: Cross-tabulation of the ordered actual observations and one-step-ahead
forecasts of the JPY/USD exchange rate. A value between -0.0005 and 0.0005 is
denoted 0, otherwise positive and negative values are represented by 1 and -1.
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Figure C.3: The JPY/USD daily exchange rate, December 28, 1978 to September
30, 1997. The dashed vertical line corresponds to January 1, 1992. Observations
preceding this date are used for estimation and the remaining ones for one-step-
ahead forecasting.
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Figure C.4: Returns of the JPY/USD daily exchange rate (first differences), De-
cember 29, 1978 to September 30 1997. The dashed line corresponds to January 1,
1992. Observations preceding this date are used for estimation and the remaining
ones for one-step-ahead forecasting.
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Figure C.5: Values of the transition function for the conditional mean part of model
(2.4) for the Swedish OMX index return series. Each circle indicates an observation.
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Figure C.6: The estimated ’sliced’ spectrum of model (2.4) for the Swedish OMX
index return series. The x-axis gives the frequency and the y-axis gives the value of
the transition function. A slice (solid curve) represents at least one observed value
of the transition function.
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Figure C.7: Values of the transition function for the conditional mean part of model
(2.4) for the JPY/USD exchange rate return series. Each circle indicates an obser-
vation.
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Figure C.8: The estimated ’sliced’ spectrum of model (2.4) for the JPY/USD ex-
change rate return series. The x-axis gives the frequency and the y-axis gives the
value of the transition function. A slice (solid curve) represents at least one observed
value of the transition function.
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