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ABSTRACT. This paper introduces a representation of an integrated vec-
tor time series in which the coeflicient of multiple correlation computed from the
long-run covariance matrix of the innovation sequences is a primitive parame-
ter of the model. Based on this representation, a notion of near cointegration
is proposed and three separate applications of the model of near cointegration
are provided. As a first application, we give analytical corroboration of the
conjecture that the finite sample behavior of F-statistics based on OLS estima-
tors depends continuously on the aforementioned squared multiple correlation
coefficient. Hence, the notion of near cointegration helps to bridge the gap
between the polar cases of spurious regression and cointegration. Secondly, we
characterize the properties of conventional cointegration methods under near
cointegration, hereby investigating the robustness of cointegration methods.
Finally, we illustrate how to obtain local power functions of cointegration tests
that take cointegration as the null hypothesis.

KeEYywoORDS: Cointegration, spurious regression, near cointegration, cointegration
tests, local power function, brownian motion.
JEL CrassiricaTioN: C12, C13, C22.

1. INTRODUCTION
One of the most important contributions to modern time series econometrics is the
development of an asymptotic theory for the analysis of multiple integrated time
series. Much of this research has been inspired by the Monte Carlo study conducted
by Granger and Newbold (1974). That study considered regressions of independent
random walks on each other and found that the usual significance test based on the
regression F-statistic tends to overreject the null. To describe this phenomenon, the
term spurious regression was coined. The numerical findings of Granger and Newbold
were given an analytical explanation by Phillips (1986), while Park, Ouliaris, and Choi

*This paper has benefited from the comments of H. Peter Boswijk and seminar participants at
the Tinbergen Institute, Penn State University, and the 1998 European Meeting of the Econometric
Society.
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(1988) provided further clarification (see also Park (1990)). These authors considered
regressions involving quite general integrated processes and found that the asymptotic
properties of the appropriate F-statistic depend crucially on p?, the squared multiple
correlation coefficient computed from the long-run covariance matrix of the innovation
sequences. If p? < 1, the F-statistic diverges at rate T (where T is the sample size)
while 77! x F has a non-degenerate limiting distribution, which only depends on the
dimension of the system ( Park, Ouliaris, and Choi (1988, Corollary 2.2)). In other
words, the regression is spurious whenever the coefficient of correlation is less than
unity. In contrast, when p? = 1 the series are cointegrated and F = O, (1) with a
complicated limiting distribution (Phillips and Durlauf (1986, Theorem 5.1)).

This discontinuity is somewhat discomforting, since intuition suggests that the
finite sample distribution of the F-statistic depends continuously on p?. As a conse-
quence, there is reason to believe that conventional spurious regression asymptotics
provide a poor approximation to the finite sample behavior of the F-statistic when
the processes are "nearly” cointegrated in the sense that p? is ”close” to unity. In
the present paper we provide analytical corroboration of this conjecture. Specifically,
we introduce a model in which p? is a primitive parameter. This model allows us to
model p? as local to unity', hereby introducing a notion of near cointegration. Using
the model of near cointegration, we obtain a limiting distribution of the F-statistic
which depends continuously on the noncentrality parameter measuring the deviation
from exact cointegration. Therefore, the model of near cointegration seems to suggest
a useful way of bridging the gap between spurious regression and cointegration with
respect to the limiting behavior of the F-statistic.

More generally, our model makes it is possible to generalize existing results derived
under the assumption of exact cointegration. To demonstrate why such extensions to
local alternatives might be useful, we provide two further applications of the model.
As a first application, we investigate the robustness of cointegration methods. We do
so by characterizing the limiting behavior under near cointegration of the usual Wald
statistic devised to test hypotheses on a cointegrating vector. Hence, this application
complements Elliott’s (1998) study, where the implications of near-integration in ex-
actly cointegrated models are examined. Our finding is that under near cointegration
the limiting distribution is no longer x2. In fact, the results of a simulation study
indicate that substantial size distortions are encountered even for moderate values
of the noncentrality parameter. Secondly, we illustrate how to compute local power
functions of cointegration tests that take cointegration as the null hypothesis. In the
literature, several different classes of cointegration tests have been proposed. It is
therefore desirable to investigate what, if anything, can be said about the relative
power properties of these competing test procedures. As a first step in that direction
we characterize the behavior of several cointegration tests under local alternatives

'In the aforementioned papers, p? is computed from a long-run covariance matrix which is itself
defined by taking limits as 7' — oo. Therefore, it is not immediately obvious how to model p?
as a sequence of parameters that lie in (say) a 1/72 neighborhood of unity. By working with a
representation where p? is a primitive parameter, we circumvent this potential problem.
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and compute the corresponding local power functions. Among the six test statistics
under study, four are found to have virtually identical local power properties, while
the remaining two are significantly inferior in terms of local power.

The paper proceeds as follows. In Section 2, we present the general model and
discuss how the polar cases of spurious regression and cointegration arise as special
cases of that model. In addition to these familiar concepts, Section 2 introduces a
notion of near cointegration. Section 3 discusses the behavior of OLS estimators under
spurious regression, cointegration, and near cointegration, while Section 4 contains the
corresponding results for the F-statistic based on the OLS estimators. In particular,
Section 4 uses the model of near cointegration to provide analytical corroboration
of the conjecture that the finite sample behavior of F' depends continuously on p?
even when p? approaches unity. The two further applications of the model of near
cointegration alluded to in the previous paragraph are the subjects of Sections 5 and
6. Section 5 investigates the robustness of cointegration methods by characterizing
the behavior of a Wald statistic under local alternatives. Similarly, Section 6 reports
the behavior of several cointegration tests under near cointegration. Finally, Section
7 offers a few concluding remarks. Proofs of all results of the paper are collected in
an Appendix together with a list of notation and definitions of the various stochastic
processes appearing throughout the paper.

2. THE MODEL

We assume that {(yt, xg)’} is a (p + 1)-dimensional zero-mean integrated process gen-
erated by

()= (VI o) (&) o, 0

Xt Ql glt

where &, = (£,,,&},) is defined as £, == Zizl e, y; and &, are scalars, x; and &, are
p-vectors, and

Al. {e;} isii.d. with E(e;) =0 and E (ese}) = 1,14,

A2. C(L) := 32, C,;L" is a lag polynomial with > :° i\/tr (C;C;) < o0,

A3. wy>0,0<p<1, Q is an upper triangular, nonsingular matrix of dimension
p, and @y is a p-vector satisfying @), (U )™ @10 = W

When {(y;, %)’} is generated by (1), {(Ay, Ax})'} is a linear process. Conversely,
a representation very similar to (1) can be obtained whenever {(Ay;, Ax})'} is a lin-
ear process by applying the Beveridge-Nelson (1981) decomposition to the original
filter. For our purposes, representation (1) is very convenient because it allows us to
parameterize the long-run covariance matrix of {(Ay, Ax})'} directly. Assumption
A2 is satisfied whenever {(Ay;, Ax})'} is a stationary and invertible vector ARMA
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process. Together, A1l and A2 ensure that we can call upon well known results for
linear processes (e.g. Phillips and Solo (1992), Phillips (1988b)) when deriving the
results of the paper. At first, the parameterization of the matrix premultiplying &,
in (1) might seem slightly peculiar. Notice, however, that the long-run covariance
matrix of (Ay;, Ax}) is given by?

limg_ 7B ( VT V%
oo Xryr XXy

(woﬂ P (9/1)71 ) (WOM Py (9/1)71 )I
0 0

O O

2 —,/
_ Wy  PWig
B ( pwio > ' 2)
Therefore,

(wox/ P2 pdh, (9’1)_1>
931

1 —
0

is simply an upper triangular matrix ”square root” of the long-run covariance matrix
of (Ay;, Ax})". Moreover, the individual parameters have straightforward interpre-
tations: w3 is the long-run variance of Ay, and €2; is an upper triangular matrix
”square root” of the long-run covariance matrix of Ax;. The long-run covariance
between Ax; and Ay, is given by plqg, where @1q is a p-vector expressing the direc-
tion of the covariance. This vector is normalized in such a way that p is a unitless
quantity measuring the strength of the covariance. In fact, as the notation suggests,
p is the multiple correlation coefficient computed from the long-run covariance matrix
of (Ay;, Ax})'. Under Assumption A3, limy_., T7'E (y2) and limp_o, T7'E (x7x/)
are positive (definite) and finite. This implies that {y;} is an integrated process and
that {x;} is a non-cointegrated integrated process. Admittedly, the assumption that
{x;} is non-cointegrated (i.e. that €2; is nonsingular) is somewhat restrictive. On the
other hand, the assumption of non-cointegrated regressors is fairly standard in the
related literature®, so in order to facilitate comparisons with existing results we shall
maintain this assumption throughout.

A glance at (1) reveals that the only linear combination of y; and x; that removes
the &,, component from y, is y; — ByX;, where B, := (% Q,) " p@10. In other words,

2The following discussion assumes that wg, p, ; and &g are constants. When introducing a
notion of near cointegration (Assumption A4 below), we allow p to be a function of T

$Notable exceptions are Park and Phillips (1989, Section 5.2), Choi (1994), and McCabe, Ley-
bourne, and Shin (1997). See also Phillips (1995) and Chang and Phillips (1995).
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B, is the unique value of 3 for which the long-run covariance between the ”error”

Ay, — 8" (Ax,) and the "regressor” Ax; equals zero. For this reason, we shall follow

Park, Ouliaris, and Choi (1988) and refer to 3, as the fundamental coefficient.
Clearly, {(y,x})'} is cointegrated if and only if {y, — Byx,} is stationary. Now,

Yt — B/oXt = w1 — p*Ep, + ( 1 -8 ) C(L)e, (3)

and we deduce that the cointegration properties of {(yt,xi)/} depend solely on p.
When p < 1 (and fixed), {y; — B'x;} is an integrated process for all values of 3 and
we will refer to this as the case of spurious regression. On the other hand, {(yt, x;)'}
is cointegrated when p = 1, since {y; — Byx;} is stationary in this case. In addition
to these familiar concepts, we introduce a notion of near cointegration. We say that
{(yt, Xi)/} is nearly cointegrated if the following assumption holds:

A4. /1 — p? =min (k,T) /T for some x > 0 and o2 > 0, where

2= (1 -B,) (fj qc;) (5 ) @)

and B := (U Q) @p.*

Strictly speaking, p (and hence also the fundamental coefficient 3,) is a sequence of
parameters under near cointegration. Similarly, {(y¢,x})’} is a triangular array rather
than a sequence. Since no ambiguity is likely to arise, we have chosen to simplify the
notation slightly by omitting the additional subscript 7.

Under near cointegration, equation (2) remains valid, provided p is replaced with
1, it’s limiting value. So, near cointegration is similar to cointegration in the sense
that the long-run covariance matrix of (Ay,, Ax})" is independent of . In particular,
the long-run covariance matrix is singular under both exact cointegration and near
cointegration.

4The assumption 6% > 0 is needed to rule out the pathological case where ( 1 —Bg ) C(L)e; =

0. The crucial implication of Assumption A4 is that limp .., T/1 — p? exists and is positive. As a
consequence, A4 could be replaced with any of the following assumptions:

A4. p=1—min (n‘l,T) /T? for some x’ > 0 and o2 > 0.

A4". p?2 =1—min(k"”,T) /T? for some " > 0 and 02 > 0.
A4 p=exp (—K"[T?) for some & > 0 and o > 0.
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Of course, near cointegration reduces to cointegration when x = 0. Under near
cointegration both terms on the right hand side of (3) make a non-negligible con-
tribution to the limiting distribution of most statistics that involve {y; — Byx;} and
these limiting distributions therefore depend continuously on k.

In closely related work, Tanaka (1993; 1996, p. 449) has introduced a notion
of near cointegration which, although very similar in spirit, differs slightly from the
notion introduced here.® Essentially, those works consider the seemingly more general
case in which Assumption A1 is replaced with the following assumption:

AYl'. {e;} is i.i.d. with E (e;) = 0 and E (e,e}) is positive definite and finite.

As is readily verified, the only restrictions imposed on the long-run covariance matrix
of (Ay;, Ax})" in our model are that limy .o, T7'E (y2) and limy_., T7'E (x7x/) are
positive (definite) and finite. Therefore, representation (1) is more general than might
initially appear to be the case. In particular, working under Al rather than A1’ entails
no loss of generality. However, under A1’ one allows &, the stochastic trend driving
yr — ByXt, to be correlated with &;,, the stochastic trends driving x;. Therefore, an
important difference between Al and A1’ is that B, always equals the fundamental
coefficient under A1, whereas the (pseudo-)true value 3, typically differs from the fun-
damental coefficient under A1’. For this reason, the interpretation of the parameters
of the model seems to be more straightforward under A1l than under A1l’. Moreover,
it turns out that the various distributional results reported in sections 3-6 depend
on a scalar parameter under Al, whereas equivalent expressions computed under A1’
involve a (p 4 1)-dimensional parameter (e.g. Tanaka (1996, Theorem 11.11)). To
understand this, notice that under Al the decomposition y; = Bgx; + (y; — Byx;) is
orthogonal in the sense that the long-run covariance between A (y; — Byx;) and Ax,
is zero. Under Al’, in contrast, the long-run covariance between A (y; — Byx;) and
Ax; will typically be non-zero. Whenever this is the case, the limiting distributions
derived under A1’ depend on a parameter of dimension greater than one and the
interpretation of the results seems less straightforward.

3. BEHAVIOR OF OLS ESTIMATORS
Consider the OLS estimators & and 3 in the multiple regression

w=a+B8x +a, (t=1,...,T) (5)

where {(y,x})'} is generated by (1). It turns out that the limiting behavior of

® Alternative conditions of near cointegration have appeared in Quintos and Phillips (1993, Section
5) and Phillips (1988a, p. 1025). The (multivariate extension of the) notion of near cointegration
introduced by Quintos and Phillips (1993) is more general than the notion suggested here. On the
other hand, the notion of near cointegration discussed in Phillips (1988a, p. 1025) is fundamentally
different from ours, since the series h'y; generated by equation (5) of that paper is nearly integrated.
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N/
<d, BI> under near cointegration depends on the following parameters:

()= (h)

§i=m+0 (0 I,) (icic;) ( _1[-_}0 ) (7)

where B, := (0,) * @10. The parameter 7, is a scalar, and 7, and & are p-vectors.

To see why these parameters are important, notice that under near cointegration it
holds that

Tlggo T 'E <XT <Z (y: — ﬁﬁ&:))) =y, (8)

t=1
Hm E (e (yr — Boxr)) = 4. (9)

As is well known (e.g. Phillips and Durlauf (1986, Theorem 4.1 (a))), the limit-
ing distribution of OLS estimators under cointegration depends on these (nuisance)
parameters. A similar situation occurs under near cointegration.

Lemma 1. Suppose {(y;,x})'} is generated by (1) and suppose A1-A3 hold.
(a) If p < 1 and fixed (spurious regression), then as T — oo,

(5=
woﬂ( : 81 )_1 (/lel () X, (r)'dr)l (/lel (r) Wo (T)d?“) ,

(b) If A4 holds (near cointegration), then as T — oo,

(2(3-) )=
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((1) g;)_l (/Ole(r)Xl(r)'dr)

X (wo/-i /01X1 (r) Wq (r) dr +7r0/01 X, (r) dWq (r) + (/01 X, (r) dW, (r)’> T+ (

1

where (o, ;)" and § are defined in (6) and (7), and Wy, W, and X, are defined in
the Appendix.

Under spurious regression, the limiting distribution of (B — [30> has mean zero.

This provides us with another interpretation of the fundamental coefficient: Un-
der spurious regression, the fundamental coefficient is simply the limiting expected
value of 3. Under near cointegration, 3 is a super-consistent estimator of 3, since

B — Bo) = O, (T™'). In this sense, the near cointegration case is qualitatively sim-

ilar to the cointegration case. Since near cointegration reduces to exact cointegration
when x = 0, the distributional result in (b) is well known for that special case (e.g.
Phillips and Durlauf (1986, Theorem 4.1 (a))). When s # 0, the limiting distribution
in (b) is essentially a mixture of the spurious regression distribution reported in (a)
and the distribution corresponding to exact cointegration. A similar result has been
obtained by Tanaka (1993, Theorem 6). However, the distribution reported there
depends on a (p + 1)-dimensional noncentrality parameter rather than a scalar.

4. TEST STATISTICS BASED ON OLS ESTIMATORS
Based on the multiple regression (5), standard regression packages can be used to
compute the F-statistic

~ I -~

N (B=80) (ZL =) (i —%)) (B-8,)

F (ﬂ) = 2 ) (10)
p-s

where X ;=T '3 x;and s := (T —p—1) " S, @2

This is simply the F-statistic used to test the null hypothesis Hy : 3 = 3,. As the
following lemma shows, (usual) spurious regression asymptotics predict that F' (B
diverges at rate 1" whenever p < 1.

Lemma 2. Suppose {(yt, x;)'} is generated by (1) and suppose A1-A3 hold. If p < 1
and fixed, then as T — o0,

0
o

)
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(5 WE W ) (fo W@ WE Y dr) - (fi W) W () ar)

S W 2 dr— (W YW () dr) (W) WG dr) (W () W ()

)

where W and WY are demeaned Wiener processes defined in the Appendix.

Quite remarkably, the limiting distribution of 77! x F' (B) does not depend on

any unknown parameters. In particular, it does not depend on p. However, as
demonstrated by Phillips and Durlauf (1986, Theorem 5.1), the conclusion of the

lemma depends crucially on the assumption that p < 1, since F <B> = O, (1) with

a complicated limiting distribution depending on nuisance parameters when p = 1.
The following proposition generalizes that result to the case of near cointegration.

Proposition 3. If {(yt, xg)'} is generated by (1) and A1-A4 hold, then as T' — oo,

pxF<B>:>

U—<woﬁ/ W (r W“()dr+7ro/ W () dWo (r (/ W (r dWl())ﬂ'ﬁ—é)/
(fomire)
(woka/ W (r W“()dr+7r0/ W (1) AW, (r (/ W (r dWl()>ﬂ-1+6),

where (mo, 7}) and & are defined in (6) and (7), and Wy, W§, Wy, and WY are
defined in the Appendix.

This proposition provides analytical corroboration of the conjecture that the spu-
rious regression distribution reported in Lemma 2 provides a poor approximation to

the finite sample distribution of F’ (B) when {(yt, XQ)'} is nearly cointegrated in the
sense that p*? ~ 1. In fact, in accordance with common sense, Proposition 3 suggests
that in finite samples the behavior of F' (B) depends continuously on p even when
p? approaches unity. Near cointegration therefore seems to suggest a useful way of
bridging the apparent gap between spurious regression and (exact) cointegration.
Although the motivation underlying the notion of near cointegration is very sim-

ilar in spirit to the motivation underlying the notion of near integration, the associ-
ated asymptotic theory is different in a couple of respects. The asymptotic theory
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under near cointegration can be expressed in terms of simple functionals of Wiener
processes. In contrast, the relevant limiting distributions under near integration is
typically expressed in terms of functionals of diffusion processes.® Moreover, the lim-
iting behavior as the noncentrality parameter increases without bound is qualitatively
different, as we now discuss. Under near integration, the asymptotic behavior as the
noncentrality parameter approaches it’s boundary of definition coincides with the re-
sults for the stationary and explosive AR(1)’s (Chan and Wei (1987, Theorem 2),
Phillips (1987, Theorem 2)). As emphasized by Phillips (1987, pp. 542-543), these
findings do not constitute a rigorous proof of the results for stable and explosive
AR(1)’s. None the less, we might expect to discover a close connection between the
distributions described in Lemma 2 and Proposition 3.7 In some sense, the results
in Lemma 2 and Proposition 3 are similar, since both results can be interpreted as

suggesting that F <B> diverges under spurious regression (letting 7" — oo in Lemma

2 and k — oo in the distribution reported in Proposition 3). However, we notice that
1/k* times the limiting distribution in Proposition 3 converges to

“0‘_’_§<01W’f(r)w“ )(/ W (r) WH (r ) (/ Wi (r W“()d>

as k — 00. Therefore, Lemma 2 cannot be deduced from Proposition 3. As such, our
results provide an illustration of the point that one cannot deduce rigorous asymptotic
results that apply for T — oo with p? fixed by telescoping the limits as 7' — oo and
xk — oo (Phillips (1987, p. 543)).

Even under exact cointegration, when x = 0, the distribution reported in propo-
sition 3 is not useful in itself, since it depends on unknown nuisance parameters,
notably 7r; and §. In the subsequent sections, we will repeatedly make the simpli-
fying assumption that r; = § = 0. This is not because we believe it is a realistic
assumption in practice®, but rather because it is known that by using more sophisti-
cated estimation methods than OLS it is possible to obtain parameter estimates that
behave "as if” w; = § = 0. The question of how to do this is obviously of immense
interest and has attracted considerable attention in the literature.” However, since
the primary purpose of this paper is to investigate the properties of various known

6Since these diffusion processes can be represented as functionals of Wiener processes, it is of
course possible to express the asymptotic theory in terms of functionals of Wiener processes. Doing
so complicates the notation considerably, however.

"Heuristically, spurious regression corresponds to near cointegration with a ”large” .

¥Since ) is nonsingular, it follows from equations (8) and (9) that w; = § = 0 if and only

if limp_oo T7'E (xT (Z;il (yt - ﬂ{pq))) = limy_oo T71E (XT (yt — ﬂ&xt)) = 0. Therefore, a
sufficient condition is that {x;} is strictly exogenous in the sense that it is driven by a process which
is independent of the error process {yt — ﬂgxt}.

Y Among the available estimators are those proposed by Johansen (1988, 1991), Johansen and
Juselius (1990), Phillips and Hansen (1990), Park (1992), Saikkonen (1991, 1992), and Stock and
Watson (1993).
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inference procedures under near cointegration rather than to propose new methods,
we will focus on the simplest case in the hope that the fundamental messages will
be more transparent. Therefore, whenever we impose 7y = § = 0 (Assumption A5
below) in the sequel, we are implictly considering estimators and test statistics based
on more sophisticated procedures than OLS.

From (3) we notice that under exact cointegration, when p = 1, we have

T

Z (e — Boxe) = moor + ™i&ir + Op (1), (11)

t=1

where 7y and 7r; are the parameters defined in (6) . When 7, = 0, as will be assumed
throughout Sections 5 and 6, {22:1 (ys — Byxs) } is integrated if and only if 7y # 0.

More generally, {(22:1 (ys — ByXs) ,xg),} is non-cointegrated if and only if 7y # 0.
Therefore, the statistical properties of { (22:1 (ys — Bopxs) ,x;),} depend crucially on

the value of 7y.!Y These considerations, along with the arguments presented in the
previous paragraph, lead us to require the following throughout sections 5 and 6:

A5 mg#0and w; =6 = 0.

5. BEHAVIOR OF COINTEGRATION METHODS UNDER NEAR COINTEGRATION
A quite remarkable result from the literature on cointegration is the fact that for
the purpose of doing inference on cointegration coefficients, test statistics have been
developed whose limiting distributions are x.!'' Recently, Elliott (1998) has investi-
gated the robustness of this result by considering a model in which the regressors are
nearly integrated while some linear combination of the regressand and the regressors
is exactly stationary. It turns out that the y? result can break down when the regres-
sors are not exactly integrated. The model of near cointegration allows us to conduct
a complementary experiment: we can investigate the behavior of test statistics in a
model where the regressors are eractly integrated while some linear combination of
the regressand and the regressors is nearly stationary. To that end, we define the
following Wald statistic:

) B-8) (20, (x—%) (x— %)) (B- B
o ) )(-2)

B — ) (12)

To

where 77 is an estimator of 72 based on {7, }. We shall require that 73 is a consistent
estimator of 72 under near cointegration. Since none of our results depend on the

/
10When 7¢ = 0, i.e. when {(Zi_l (ys — Boxs) ,x,@) } is cointegrated, {(ye, xg)/} is multicointe-

grated in the sense of Granger and Lee (1990) and conventional cointegration results no longer hold.
Park (1992) refers to this case as singular cointegration.
1See e.g. Phillips (1991, Remark (i)) and the references listed in footnote 9.
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particular choice of estimator, it suffices to notice that such consistent estimators
exist.!?
Evidently, the test statistics F (ﬁ) and G <ﬁ> are very similar. In fact, apart

from the constant p the only difference between them is that the denominator of
F (B) contains a consistent estimate of o2, the (asymptotic) variance of (y; — Byx;),

whereas G ([3) contains a consistent estimate of 73, the conditional long-run variance

of (yt — ,B/OXt)
As the following corollary to Proposition 3 demonstrates, the x? result does not
hold under near cointegration.

Corollary 4. If {(y;,x})'} is generated by (1) and A1-A5 hold, then as T — o,

G(B) N

(/w“ )W (r dr+/W“ dWo())/
(/ Wt (r W“()d) h
« ()\ /0 WE () WE (1) dr + /0 W’f(r)dWo(r)>,

where X\ := wor/my, and Wy, W, and W are defined in the Appendix.

Conditional on (the o-algebra generated by) Wy, fol W4 (1) dWo (r) is distributed
( < fo W (r) W () dr)) and is independent of fol W (r)WE (r)dr. There-

fore, the limiting distribution of G (B) is X;% if and only if K = 0. So, under near

cointegration (with « # 0) the limiting distribution is not x.

121t follows from the proof of Proposition 3 that 7! Zt 182 —p 02 =E(uf) (as T — o0), where
Up 1= ( 1 _50 ) (L) e;. Similarly, T Zt:h+1 Uply—p, —p E (ugug—p) for h > 1. Therefore, the
usual variance estimators that are consistent under (exact) cointegration are also consistent under
near cointegration.

13The limiting distribution reported in Corrolary 4 could equivalently be written in the following
slightly more compact way:

([ wrirm) ([ wrersoro) ([ weormso).

where \ := wok/mo and W4 and V) are defined in the Appendix.
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For simplicity, we have only considered the null hypothesis Hy : B8 =3, Ex-
tending the result to cover more general (possibly nonlinear) restrictions on 3 is a
straightforward exercise, but we shall not do so here.

It is worth noting that the conclusion holds even though 7y = § = 0. In Elliott
(1998), the deviation from the x? distribution arises because the corrections made
in order to accomodate endogenous regressors fail to work for those regressors that
are nearly (but not exactly) integrated. Therefore, when 7; = d =0, i.e. when
no correction is needed, the y? result continues to hold even with nearly integrated
regressors. Here, the x? result breaks down because of the deviation from exact
cointegration and therefore also breaks down when 7r; = d = 0. Similarly, it always
breaks down for all subsets of 3, in contrast with the result in Elliott (1998). This
is important, since essentially it is this result that justifies the variable addition test
for cointegration due to Park (1990), which will by studied in the next section.

As already argued, the limiting distribution of G (B) deviates from the X% dis-

tribution whenever xk # 0. The severity of the deviation is seen to depend on
A = wok/mo. This scalar parameter reflects the relative size of two conditional vari-
ances, as we now explain. It follows from (11) that under exact cointegration, 73
can be interpreted as the long-run variance of (y; — ﬂ6xt) conditional on Ax;. More
generally, under near cointegration, 73 can be interpreted as the long-run variance of
( 1 -0 ) C (L) ey, the stationary component of the error y, — B;x;, conditional on
Ax;. As for wyk, notice that under spurious regression the long-run variance of Ay
conditional on Ax; is given by w? (1 — p?). Under near cointegration, w? (1 — p?) =
(T - wor)? and the numerator of A, wyk, represents (the square root of) this conditional
variance. So, the coefficient A on the ”spurious regression term” fol W4 (r) WE (r) dr

in the limiting distribution of G <@> reflects the relative magnitude of the two con-
ditional variances corresponding to the random walk part and the stationary part
of the error y; — Byx:, respectively. Unlike wy and , which are positive scalars by
assumption, my can be both positive and negative. Therefore, so can .

To illustrate the magnitude of the size distortions encountered under local al-
ternatives, we have simulated (the discrete time counterpart of) the limiting dis-

tribution of G (B) Specifically, we have generated &, = (£q,,&h,) = >.._, e, for
t=1,...,T = 2000, where e; ~ i.i.d. N (0,I,,1). Using these, integrals have been
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approximated by discrete sums.'* This procedure was repeated 20.000 times. In Fig-
ure 1, we have plotted the rejection frequencies for various values of p and A. The
nominal size of the tests is 5%.

| FIGURE 1 ABOUT HERE |

The evidence presented in Figure 1 suggests that severe size distortions can oc-
cur if conventional cointegration methods are being used when the series are nearly
cointegrated rather than exactly cointegrated. In fact, the size increases dramatically
as (the absolute value of) A increases from 0 and substantial size distortions are en-
countered even for values of A\ in the range 5 to 10. Whether or not this is a problem
obviously depends on whether or not researchers can be expected to be able to detect
such departures from exact cointegration. Therefore, it is of interest to know whether
or not tests for cointegration can be expected to reject the null hypothesis of coin-
tegration when ) is equal to 10, say. A partial answer to this question is provided
in the next section, where we illustrate how to obtain the local power functions of
several available tests for cointegration.

6. BEHAVIOR OF TESTS FOR COINTEGRATION UNDER NEAR COINTEGRATION
During the last decade, numerous cointegration tests taking cointegration as the null
hypothesis have been proposed. Since these test procedures utilize different properties
of cointegrated systems it seems desirable to know what, if anything, can be said about
the relative power properties of the different tests. Also, the evidence presented in the
previous section suggests that the absolute power properties of tests for cointegration
are worth investigating. In this section we take a first step in that direction by
characterizing the behavior of several regression based cointegration tests'® under
local alternatives and obtaining the corresponding local power functions. In their
original formulations, all of the test procedures under study here involve (typically
non-parametric) corrections in order to accomodate the case where the condition

UFor instance, fol W4 (r) WE (r) dr is approximated by

T

T T
72y (gu o zsls> (gm o zgos>
t=1 s=1 s=1

T T T
=T? Zﬁltht -77? <251t> <Z§0t> :
t=1 t=1

=1

Y Harris (1997) and Snell (1998) have proposed tests for cointegration that utilize principal com-
ponent methods, while Breitung (1998) has developed a test based on canonical correlation analysis.
These tests are not considered here. We note, however, that under cointegration the limiting dis-
tribution of the test proposed by Harris (1997) is the same as that of the CT test proposed by Shin
(1994) ( Harris (1997, Theorem 7)). We therefore conjecture that the local power properties of
Harris’ test are similar to those of the C1 test.
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w1 = 6 = 0 is violated. Since all tests can be based on simple OLS methods when
71 = & = 0 holds, we once more simplify the presentation by assuming w; = d = 0
throughout. This allows us to focus on the question of interest without complicating
the discussion unnecessarily. We emphasize, though, that all of the test statistics
studied here are simplified versions of the original tests.

We have divided this section into four parts. Section 6.1 deals with tests based
on the variable addition procedure, while Sections 6.2 and 6.3 study tests based on
residuals from I(1) and I(2) regressions, respectively. Finally, Section 6.4 compares
the local power properties of the different tests.

6.1. Variable Addition Tests.
The variable addition test procedure proposed by Park (1990) is extremely simple
to implement and can be motivated as follows. Under cointegration, appropriately

constructed Wald tests (such as G (B) defined in (12)) on (subsets of) regression

coefficients have limiting y? distributions, while they diverge under spurious regres-
sion. As a consequence, the null of cointegration can be tested by means of a variable
addition test where superfluous regressors are added to regression (5).

Therefore, let k; and ko be arbitrary non-negative integers such that ki + ko > 1
andfort=1,... T, letds := (¢,... ,t’“l)/ (if k&1 > 1) and let {z;} be a ko-dimensional
computer generated random walk such that {Az} ~ i.i.d. N (0,T,)).1

Based on the multiple regressions (5) and'”

Yt :54+B,Xt+’%dt+’%zt+at; t=1,....,7) (13)

we can construct the statistic

Jl (kl,kg) — Zt 1 Zt 1 (14)

7To

where 7 is some consistent estimator of 72 based on {4, }. This is simply the (appro-
priately standardized) Wald test used to test the null hypothesis Hy : v; = 0,4, = 0.

Proposition 5. If {(yt, xg)'} is generated by (1) and A1-A5 hold, then as T — oo,

= ([ o) ([ xaomors) ([ 5

where \ := wok/mg, and Xy 1 and V) are defined in the Appendix.

16This particular choice of superfluous regressors is advocated by Park (1990, Remark b). However,
little guidance on the optimal choice of k1 and ks is provided although Remark c of the paper suggests
that &y + kg > 2 is preferable.

"n (13), d; ( z) is omitted if k; = 0 (kg = 0).
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The limiting distribution of J; is xj ., if and only if £ = 0. Under fixed alter-
natives, i.e. under spurious regression, J; diverges at a rate depending on the kernel
and bandwidth used in constructing 72 (Park (1990, Theorem 4.1 (b))). In contrast,
the local power only depends on .

6.2. Tests Based on Residuals from an I(1) Regression.
Several cointegration tests based on the residuals {u;} from (5) have been proposed
in the literature. We shall consider the tests due to Shin (1994) and Hansen (1992b).
Closely related tests have been proposed by Harris and Inder (1994), Kuo (1998),
McCabe, Leybourne, and Shin (1997), Quintos and Phillips (1993), and Tanaka (1996,
Section 11.6.2).

The test proposed by Shin (1994) is based on

T2y 52
CI = —;;:1 -, (15)
To
where S 1= Zizl ius fort=1,...,T, and frg is a consistent estimator of 2. Essen-

tially, this is the stationarity test proposed by Kwiatkowski, Phillips, Schmidt, and
Shin (1992) applied to the residuals {;}.'®
Hansen (1992b) notes that a test of cointegration can be based on

T * —1Q* tr M_l ZT S*S*/>:|

S;'M7'S M7 (LSS

L, = T—th:l f2 TSt _ e A; 1 ’ (16)
o To

where

and 73 is a consistent estimator of 7.

18The simple version of the CI statistic considered here has appeared (at least) twice in the
literature. It was proposed by Tanaka (1993), who emphasizes that it is only applicable when
the regressors are strictly exogenous. Also, it has been derived by Leybourne and McCabe (1993)
(essentially) under the assumption of strictly exogeneous regressors.
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Proposition 6. If {(yt, x@)’} is generated by (1) and A1-A5 hold, then as T' — oo,

1
CI:>/ Vy (r)? dr,
0

L. :>/VA (/x1 )X, (s ds) V() dr
- | ([ooxra) ([ voviers)|

where \ := wyk/mo, and V., X4, and V7 are defined in the Appendix.

Tanaka (1996, Theorem 11.11) reports a result very similar to the result for CI.
However, the limiting distribution reported there depends on a (p + 1)-dimensional
parameter. In contrast, both limiting distributions reported here only depend on a
scalar parameter, A\. Under spurious regression, the rate of divergence of C'I and L.
depends on the growth rate of the lag truncation number (Shin (1994, Theorem 3),
Kuo (1998, Theorem 3)). The local power, on the other hand, only depends on .

6.3. Tests Based on Residuals from an I(2) Regression.
The cointegration tests proposed by Choi and Ahn (1995) are based on the residuals
from the multiple regression

SY=at+@Sr+S, (t=1,...,T) (17)

where SY := 3" y,and S¥:=3" x,fort=1,...,T.
Three different test statistics based on {St} are proposed:

2\ 2
(50685 52)
LM = = : (18)
0
7r—62 2
T, 6 a8 - )
LM][ = y (19)
s <T_2 Zt:Q Stzfl>
T2 T &2
SBDH; := # (20)
T

where 72 and 52 are consistent estimators of 72 and 0% based on {AS’t}. These tests
are intimately related to the stationarity tests proposed by Choi and Ahn (1998).
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Proposition 7. If {(yt, x@)’} is generated by (1) and A1-A5 hold, then as T' — oo,

LM, = (/01% (r)dV, (r)>2,

1
SBDH; = / V()2 dr,
0

where \ := wok /Ty and V, is defined in the Appendix.

Once more, the behavior under local alternatives depends solely on A, whereas
the behavior under spurious regression depends on the expansion rate of the lag
truncation number (Choi and Ahn (1995, Theorem 2)).

6.4. Local Power of Tests for Cointegration.

In order to obtain local power functions, we have simulated'® (the discrete time
counterparts of) the limiting distributions of the J; (2,2)2°, CI, L., LM;, LM;; and
SBDH test statistics. Figures 2-5 show the local power functions for p =1,... 4.
The size of the tests is 5%.

FIGURE 2 ABOUT HERE
FIGURE 3 ABOUT HERE
FIGURE 4 ABOUT HERE
FIGURE 5 ABOUT HERE

The figures suggest that the local power properties of .J; (2,2), CI, L. and SBDH,
are very similar. On the other hand, LM; and (in particular) LM;; are remarkably
inferior in terms of local power. In the case of LM, this is not surprising. In fact, it
follows from the proof of Proposition 7 that

LM;
SBDH;

19 As in Section 5, we set 7' = 2.000 and repeat the procedure 20.000 times.

20That is, d; = (t, t2)/ and z; is a two-dimensional random walk in regression (13). Changing the
values of £y and ks does not seem to affect the local power of the J; test much.

LM][: —I—Op(l)
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Under fixed alternatives (i.e. under spurious regression), LM, diverges at a faster
rate than SBDH; and a test based on LM is therefore consistent (Choi and Ahn
(1995, Theorem 2)). In contrast, since both LM; and SBDH; are bounded under
near cointegration, there seem to be no reasons whatsoever to expect that LM;;
should be better than LM; in terms of local power. In fact, if the local power of
SBDHYj is higher than the local power of LM;, LM might be expected to have
rather disastrous local power properties and this is indeed what the figures suggest.

This result illustrates an important point. As mentioned by Choi and Ahn (1998,
p. 46), the difference between LM; and LM;j; lies in how the estimate of the in-
formation matrix is chosen. Specifically, LM; is simply the square of the (scaled)
first derivative of the log-likelihood function, whereas LM/ involves the (scaled) sec-
ond derivative of the log-likelihood function. With integrated processes, the (scaled)
second-derivative of the log-likelihood function will typically converge weakly to a
random variable rather than a non-stochastic limit.2! Therefore, the asymptotic
properties of otherwise identical (Lagrange Multiplier) test statistics will often de-
pend on whether or not they involve the second derivate of the log-likelihood function
and some caution should be exercised whenever a test statistic involves the second
derivate of the log-likelihood function.

Another lesson to be learned from our findings is that the rate of divergence
under fixed alternatives might be a poor measure of the (local) power properties
of a test. In the present example, for instance, LM;; and SBDH; diverge at the
same rate under fixed alternatives and LM diverges faster than both of these (Choi
and Ahn (1995, Theorem 2)). Evidently, figures 2-5 tell an entirely different story.
A somewhat related point is that the local power of all the test under study here
depends solely on A, whereas the rate of divergence under fixed alternatives depends
on the particular non-parametric estimator used to estimate nuisance parameters.
Our results, in contrast with existing results, therefore suggest that trying to improve
power by letting the lag truncation number grow slowly (as suggested by e.g. Choi and
Ahn (1995, p. 966)) is not worthwhile. Instead, we suggest that the lag truncation
number number should be chosen so as to minimize finite sample size distortions.
Similarly, since the local power properties of J; (2,2), C1, L. and SBDH; are almost
indistinguishable, our tentative conclusion is that the choice among these tests should
be guided by finite sample considerations concerning size distortions.

In the previous section, we argued that Wald tests based on conventional coin-
tegration methods can encounter severe size distortions when the series are nearly
cointegrated and A exceeds 5. On the other hand, the evidence presented in figures
2-5 indicates that even when A = 10 the power of the tests for cointegration can be
well below 50%. This suggests that even if the departure from (exact) cointegration
is substantial (in the sense that it severely affects the size of the conventional tests),
tests for cointegration cannot be expected to detect such departures very frequently.

21I:Iere, for instance, the scaled second derivative of the log-likelihood function is SBDH; —
T-28%/#% = SBDH; + 0, (1).
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Therefore, whenever a reasearcher rejects a structural hypothesis (on the coefficient
() using cointegration methods, the result should be interpreted carefully, since it
might be the case that the hypothesis is correct, whereas the (possibly auxiliary)
assumption of cointegration is not. This of course leaves open the question of how
to interpret the coefficient vector in a non-cointegrated system, a question which we
shall not attempt to answer here.?

7. CONCLUDING REMARKS

A notion of near cointegration was proposed and three applications of the model
of near cointegration were provided. As these applications illustrate, the notion of
near cointegration is useful in a variety of settings. Throughout the paper, we have
deliberately made several simplifying assumptions with respect to the DGP in order
to focus specifically on the impact of cointegration failure. As a consequence, sev-
eral extensions of the analysis are possible. For instance, deterministic terms can
be included in the DGP and the condition w; = é = 0 can be relaxed with little
or no difficulty. Similarly, greater flexibility with respect to the cointegration rank
can be achieved by allowing {y;} to be a vector process and/or allowing {x;} to be
cointegrated. These and other extensions are currently being considered by one of
the authors and will be reported elsewhere.

8. APPENDIX
We start by establishing a useful lemma.

Lemma 8. Let &, be defined as &, := >_'_, e,, where {e;} is i.i.d. with E(e;) = 0
and E (eie}) = 1,41, and let C (L) := >"° C,L" be a lag polynomial such that {C;}
is a sequence of (p+ 1) x (p+ 1) matrices satifying > ;- i\/tr (C,C;) < oo. Then,
as ' — oo, the following hold jointly:

(a) T7V2,, = W (r),

(b) T2 C (L) e, = C(1)W (r) = C(1) [ dW (s),

(c) T, C(L)e (C(L)er) —, Y2 CiC,

(d) T '€ (C(L)e) = (Jy W (s)dW (s) +7L1) C (1),
where W is a (p + 1)-dimensional Wiener process.

Proof. Parts (a)-(c) are multivariate versions of Phillips and Solo (1992, The-
orems 3.4 and 3.7), while (d) can be established along the lines of Phillips (1988b)
and Hansen (1992a, Theorem 4.1). W

In representation (1), &, is partitioned as (&g, &,,)’, where &, is a scalar and &,
is a p-vector. Similarly, we shall typically partition W as (Wq, W/)", where W, and

22For a recent contribution to this discussion, see Phillips (1998).
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W, are of dimensions 1 and p, respectively. Throughout the appendix, integrals such
as fol W (r) dr and fol W (r) dW (r)" will often be abbreviated as [ W and [ WdW’,
respectively, in order to simplify the notation.

8.1. Proof of Lemma 1.
The OLS formula reads:

T -1 T
X D % > (5 Bix)
(5%5) | 2, ]

T
231 X¢ Z XtXf: Z Xt (yt - [%Xt)
t=

t=1 t=1
Let T4 be a diagonal normalization matrix defined as

Tp = (\/T o )

0o T-1,

From Lemma 8 (a)-(b), we have

T ()= o) (wien ) = (o 6 )

under both spurious regression and near cointegration. By the continuous mapping
theorem (CMT),

T
T Sx , N
_ - _ 1 0 p 1 0
pe=l I =1 Tl = ( 0 0 > (/ Xle) ( 0 O ) . (22)

X Y XX,
1

t= t=1

Similarly, we can use Lemma 8 (a)-(b) and CMT to show that

T
> (ye — Bloxt) /
T_IT;I %:1 = WoV/ 1-— p2 ( é 8 ) /X1W0.
> % (Y — Boxe) '

t=1

Therefore,
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T -1 T
T-1/24 . T t; ’ . et ; (Y — ﬂgxt)
( B - /60 > B TT L L / TT g TT L / =
t; Xt t; XXy t; X¢ (yt - /60Xt)

i (38 () (fm)

proving (a). Using Lemma 8 (a)-(b) and (d) and CMT, we get

T
T-1/2 Z (¢ — ﬁgxt) = won/WO + WO/dWO + (/ dWi) e,
=1

and

T
T*l th (yt - ,66Xt) = Ql (wOR/W1W0 + Wo/WldWO + (/ WldW/1> ™ + 6) X

t=1

under near cointegration. In other words,

T

> (Y — BBXt)

T;l t=1 =

T
tzzl Xt (yt - [%Xt)

( é 81 ) <w0/£/X1W0+7T0/X1dW0+ (/dewg> — ( g )) (23)

and we have

T
VTé . T > Xy . . > (e — [%Xt)
(T@_ﬂ)): L N L Rt I =
0 DX DL XXy > X (Y — BoXe)

t=1 t=1 t=1
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, -1 -1
((1) 8, ) (/XlXII) (wom/X1W0+7ro/X1dW0+</X1dW'1) 71'1—|—(g
1

proving (b).H
Before continuing with the proofs of Lemma 2 and Proposition 3, we note that
equation (21) along with CMT implies that

T2 (Z (x¢ — X) (x4 — >‘<)I> = T2 thxg o (T—3/2 th> (T—3/z th>

t=1

(o () () oo (i)

under both spurious regression and near cointegration.

8.2. Proof of Lemma 2.
By application of Lemma 1 (a), we have

(B-50) = oy [wewr') ([ wews)

under spurious regression. Along with (24), this implies that

7% (B~ B,) <Z (x¢ = %) (x - x)’) (B~ 50) =

t=1

wy (1= p?) ( / W’fof), ( / W‘fW‘f’) B ( / Wffwg> : (25)

Now,
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while

St - Fow s (o)

=1
- (8-8) (Z (5 = %) (x; = >—<>’) (B-8)-
=1
So, to complete the proof it suffices to notice that Lemma 8 (a)-(b) implies that
T

T Z (ye — ﬂbxt)z -7 (Z (ye — ﬂgxt)>

t=1 t=1

= wy(1—p )/(Wo) dr —wj (1 - p° (/W0> =wj(1-p )/(W“) |

8.3. Proof of Proposition 3.
By application of Lemma 1, we have

T <B - ﬂo) =
-1
- ( / W’fW’f’) <won / WHEWH + / WHIW, + ( / Wde'l) 73 +5> :

under near cointegration. Along with (24) this implies that

(B - ﬂo)l (i (x¢ — %) (x¢ — i)l) <B - ﬁo) =

t=1

(wol‘i/wlfwg + Wo/WlltdWO + (W’de’l) ™ + 5)

-1
()
X (wom/W’fWg +7T0/Wlde0 + (/ Wlfdwll) ™ + 5) .
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Therefore, the proof is complete once we have established that s* —, o%. Now, by
Lemma 8 (a)-(c),

T |
2 _ T*l ~2 —1 § : / 2
5 Z_p_]_ ;Ut 1 — P ]-X tl(yt ﬂO t) Op()

- T—Lp—l x(1 =By) (Tlt;cw)et (C <L>et>') ( _,1(—,0 ) +0, (1)

(1 =B)) (i cz-c;) ( 3, ) —o'm

8.4. Proof of Corollary 4.
Under the assumptions of the corollary, s> —, o and 72 —, 72 # 0. Therefore,

2

G(8) =% (v (3))

0

_ (Z_;Hp(l)) (pxF(B)).

and the result follows immediately from Proposition 3 by setting ;1 = d = 0.1

8.5. Proof of Proposition 5.
We shall prove Proposition 5 assuming k; > 1 and ks > 1. The case where k1 = 0 or
ks = 0 can be treated in exactly the same fashion. As is readily verified,

T T T /T L/
Z ﬂ? - Z fbf = (Z Xoa (Ye — ﬂg&)) (Z X2.1,tX/2.17t> (Z Ko (Ye — ﬂé&)) )
t=1 t=1 t=1 t=1

t=1

where
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Let U7 be a diagonal normalization matrix defined as

_ (VT -diag(T,...,T*) 0
WT“( 0 T~Ik2)'

Under the assumptions of Proposition 5, the following hold jointly with Lemma 8:

r
VT, e ) : =X, (r), (26)
Z[ry rk
W (1)
T
\I]Tl < ) Y — oxt) :>w0/<;/X2W0+7T0/X2dW0, (27)

where W5 is a kp-dimensional Wiener process independent of W. Recalling that
71 = 6 = 0 under the assumptions of Proposition 5, we deduce from (21), (23), (26),
and (27) that

T
‘I’}l Z Xoa (ye — Box:) = u)off/XmVVo + 7o /X2.1dW0 =Ty / X.1dVy,
t—1

and

<Z X21tX21t> Ut = /X2.1X/2.1-

Hence

T T ! —1
> ap—> ap=m (/ devk) (/ Xz,lx’m) (/ Xg,ldVA) :
t=1 t=1

and the conclusion follows since 73 —, 72.1
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8.6. Proof of Proposition 6.
Using (21), (23), and Lemma 1 (b), we have

(] '

(1] A
— - _ / _ _ ]_ (6]
T =13 o | T ()] (e (575, )
t=1 t 0

t=1

= 1oV (1) — 7o (/0 X, (s) ds)/ (/ X1X1> B (/ devA) = moVaa (r).

Therefore, by CMT,

I srog T S <T—1/23t>2 N / (W)Q,

o N 6 + 0p (1)
as claimed. Similar reasoning yields

(Tr]

S =T Y (5, )=
(82 (oo ([ xeveore) (fx) ()

:wo((l) 8;)/0er(3)(1\7)\(3):¢0((1) 8;)V§(r). (28)

From (22), we have

_ _ 1 0 1 0
o= (3 8) (/) (3 %)

Along with (28) and CMT, this implies that

i 18*’M 'S Ty (Y7'S;) (T M TR T (TS

L.=T"
s 6+ 0p (1)
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;s/ Vi (r (/ X, (s) X (s ds> 1V§(7~)dr,

as claimed.l

8.7. Proof of Proposition 7.
We have

T T -1 T

. S sy 1S,
( . ) —| iz = = ’
B =B SSF 3 SESY 5SS,
t=1

t=1 t=1

where S; := St (ys — ByX,) . By (21), (23) and CMT, we have

,1/2 —1 [TT] 1 OI ]_ OI <7
T /27, < S?Tr] ) ( 0 Q X1 )ds = 0 Q X (1), (29)
T’l/QS[TT] = woka/ Wy (s) ds + g / dWy (s) = moV (7). (30)
0 0

Consequently, it is easy to show that

(%) (b 8) (f38) (fn). o

Therefore,

oV (r) — X (r) (X, X) ! ( / XNA) — oV (1),

and by CMT we have

o T &2 1T —1/2& \?
sppH, = L Zﬁ:;:l % _ 1 2521 (T 75) = / (V)
0
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as claimed. Now,

LM,
LM =
"™ SBDH; + 0, (1)’
while
. . #2_52 2 B . . 222 2
(TS0, S A8 - T52) (T2, 5148 - 5% 40, (1))
LM[: 1 == .

o 7"% +0p (1)

Therefore, to complete the proof it suffices to establish that

2 2

T
T—l Z St—lASt = 7T(2) /VAd\V/A +

t=2

Upon defining

we have

T
T’i1 Z StflAS’t ==
t=2

T T T T
T S aAS =T S AS =T ') S AS+T ) 5, ,AS,.  (33)
t=2 t=2

t=2 t=2

It follows from Phillips (1988b) that the following holds jointly with Lemma 8:

(1 -B;) <T‘1ZT: <§C(L) es) (C(L) et)') ( —}30 ) N

t=2
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(1 -By) (0(1) (/WdW’) C(l)’+A> ( _1[_}0 )

:wg/wodwo+(1 _Bg)A(_}%), (34)
where
A= :o E(C(L)ey(C(L)ey)).
=l
Now,
A+N=C()C(1) - icicg,
i=0

and we therefore have

1
=3 (75— %) . (35)
Using (34), (35), and straightforward algebra, we arrive at

2 2
WO_U

2

T
,_T’_1 Z St_lASt = 7T(2J /V,\d\/,\ + (36)
t=2

Moreover, using (29), (30), (31), and integration by parts it is not hard to show that

71 iét_lASt o ( / lex)' ( / >‘<1>‘<g>1 ( / dew) e
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71 i S A = a2 ( / VAd)_(l)/ ( / Xlxg) B ( / leA) e

and

T
7! Z gt_lASt =

t=2

(fxm) (f) (fran) (fx) (fx0) o

Using (36) — (39), we obtain (32) from (33).H
8.8. Notation.

= definitional equality.

[ integer part of.

= weak convergence (of the associated probability measures).
—p convergence in probability.

0, (1)  tends to zero in probability.

O, (1) bounded in probability.

8.9. Processes Appearing in the Paper.

Let Wy and W, be independent Wiener processes of dimensions 1 and p > 1, respec-
tively. Moreover, for k; > 1 and ky > 1, let Xy := (f/, W), where f (1) := (r, o ,r’“l)/
and W is a ko-dimensional Wiener process independent of (Wo, W/)". When k; = 0
(ky = 0), £ (W3) is omitted from X,. Finally, let A be a scalar parameter. Using W,
W, Xy, and \, we define the following processes, listed in order of appearance in the

paper:
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Xg.l (T‘) = XQ (/ X1 X1 > (/ X1 XQ d ) 3

Vi(r) = )\/OTWO (s)ds + Wy (r),

NG ::VA(T)—(/OTXl( )(/ X, (s) X, (s ) (/ X (s)dV ( ))

- /Orx1 (s)dV5 (s).
- /OTXl(s)ds

Vy (1) = Vi (1) — X, (r) ( /0 % (9K () ds) h ( /0 R, () Vi (8) ds) |
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Figure 1: Rejection rates for G (B), Nominal Size is 5%.
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Figure 2: Local Power of Tests for Cointegration; p = 1.
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Figure 3: Local Power of Tests for Cointegration; p = 2.
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Figure 4: Local Power of Tests for Cointegration; p = 3.
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Figure 5: Local Power of Tests for Cointegration; p = 4.



