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Abstract

While the stochastic volatility (SV) generalization has been shown to improve the explanatory

power compared to the Black-Scholes model, the empirical implications of the SV models on op-

tion pricing have not been adequately tested. The purpose of this paper is to first estimate a mul-

tivariate SV model using the efficient method of moments (EMM) technique and then investigate

the respective effect of stochastic interest rate, systematic volatility and idiosyncratic volatility

on option prices. We compute option prices using both underlying historical volatilities obtained

through reprojection and volatilities implied from observed option prices and gauge each model’s

performance through direct comparison with observed market option prices. Our results suggest:

(i) While theory predicts that the short-term interest rates are strongly related to the systematc

volatility of the consumption process, our estimation results suggest that the short-term interest

rate fails to be a good proxy of the systematic factor; (ii) While allowing for stochastic volatility

of stock returns can in general reduce the pricing errors and allowing for asymmetry or “leverage

effect” in the SV models does help to explain the skewness of the volatility “smile”, allowing for

stochastic interest rate has minimal impact on option prices in our case; (iii) Similar to Melino

and Turnbull (1990), our empirical findings strongly suggest the existence of a non-zero risk pre-

mum for stochastic volatility of stock returns. Allowing for non-zero risk-premium of stochastic

volatility and based on implied volatility, the SV models can largely reduce the option pricing er-

rors, suggesting the importance of incorporating the information in the options market in pricing

options.
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1 Introduction

Acknowledging the fact that volatility is changing over time in time-series of asset returns as well as

in the empirical variances implied from option prices through the Black-Scholes model itself, there

have been numerous recent studies on option pricing with time varying volatility. Many authors have

proposed to model the asset return dynamics using the so-called stochastic volatility (SV) models.

Examples of these models in continuous-time include Hull and White (1987), Johnson and Shannon

(1987), Wiggins (1987), Scott (1987, 1991, 1997), Baily and Stulz (1989), Chesney and Scott (1989),

Melino and Turnbull (1990), Stein and Stein (1991), Heston (1993), Bates (1996), and Bakshi, Cao

and Chen (1997), and examples in discrete-time include Taylor (1986), Harvey, Ruiz and Shephard

(1994), Amin and Ng (1993), Andersen (1994), and Kim, Shephard and Chib (1996). A review ar-

ticle on SV models is provided by Ghysels, Harvey and Renault (1996). Due to intractable analyt-

ical likelihood functions and hence the lack of readily available efficient estimation procedures, the

general SV processes were viewed as an unattractive class of models in comparison to other time-

varying volatility models, such as ARCH/GARCH models, see Shephard (1996) for a comparison of

ARCH/GARCH models with SV models. Over the past few years, however, remarkable progress has

been made in the field of statistics and econometrics regarding the estimation of nonlinear latent vari-

able models in general and SV models in particular. Various estimation methods have been proposed,

we mention Quasi Maximum Likelihood (QML, Harvey, Ruiz and Shephard (1994)), which has been

improved to Monte Carlo Maximum Likelihood by Sandmann and Koopman (1997), GMM (Ander-

sen and Sørensen (1996)), MCMC methods (to name a few: Jacquier, Polson and Rossi (1994) and

Kim, Shephard and Chib (1996)) and the Efficient Method of Moments (EMM, Gallant and Tauchen

(1996)).

While the stochastic volatility generalization has been shown to improve the explanatory power

compared to the Black-Scholes model, the empirical implications of the SV models on option pricing

have not yet been adequately tested. Can such generalization help resolve well-known systematic em-

pirical biases associated with the Black-Scholes model, such as the volatility smiles (e.g. Rubinstein

(1985)), asymmetry of such smiles (e.g. Stein (1989), Clewlow and Xu (1993), and Taylor and Xu

(1993, 1994))? Is the gain, if any, from such generalization substantial compared to relatively simpler

models? Or, in other words is the gain worth the additional complexity or implementational costs? The

purpose of this paper is to study the empirical performance of stochastic volatility models in pricing

stock options, and investigate the respective effect of stochastic interest rates, systematic volatility and
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idiosyncratic volatility on option prices in a multivariate SV model framework. We specify and im-

plement a model extended in the line of Rubinstein (1976), Brennan (1979), and Amin and Ng (1993).

The model incorporates both the effects of idiosyncratic volatility and systematic volatility of the un-

derlying stock returns in option valuation and at the same time allows interest rates to be stochastic. In

addition, we model the short-term interest rate dynamics and stock returns dynamics simultaneously

and allow for the existence of the leverage effect through the correlation of shocks to stock returns and

the conditional volatility. We also observe a substantial correlation between the interest rate changes

and its conditional volatility and incorporate this effect in our model as well.

The first objective of this paper is to estimate the parameters of the multivariate SV model. Instead

of implying the model parameters from market option prices through an option pricing formula in a

risk-neutral specification, we directly estimate the model specified under the objective measure from

the observations of underlying state variables. Doing so, the underlying model specification can be

tested in the first hand for how well it represents the true DGP. In particular, we investigate the ef-

fects of the inclusion of systematic volatility components on the parameter estimates of both the stock

return process and the latent volatility process. We employ the efficient method of moments (EMM)

proposed by Gallant and Tauchen (1996) to estimate the multivariate SV model using historical obser-

vations of the state variables, namely the daily stock returns and daily short term interest rates. This

method shares the advantage of being valid for a whole class of models, with moment based estima-

tion techniques, and at the same time achieves the first order asymptotic efficiency of likelihood based

methods. In addition, the method offers information about the model specification.

The second objective of this paper is to examine the effects of different elements considered in the

model on stock option prices through direct comparison with observed market option prices, search-

ing the balance between the costs of extensive modelling and gains of more complex models. Inclu-

sion of both systematic components and idiosyncratic components in the model lend us the ability to

judge whether extra predictability or uncertainty is more helpful for pricing options. In gauging the

empirical performance of alternative option pricing models, we use both the relative difference and

the implied Black-Scholes volatility as measures of systematic errors. Our setup contains a variety

of option pricing models in the literature as special cases, for instance (i) the SV model of stock re-

turns and stochastic interest rate which considers no systematic effects on option values; (ii) the SV

model of stock returns with constant risk-free interest rate; (iii) the stochastic interest rate model with

constant conditional volatility of stock returns; and (iv) the Black-Scholes model with both constant

interest rate and constant conditional volatility of stock returns. We focus our comparison of the gen-

eral model setup with the above four submodels.

Note that every option pricing model has to make at least two fundamental assumptions: the stochas-

tic processes of underlying asset prices and efficiency of the markets. The latter assumption ensures

the existence of market price of risk for each factor that leads to a “risk-neutral” specification. The

joint hypothesis we aim to test in this paper is as following: the underlying model specification is cor-
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rect and option markets are efficient. If the joint hypothesis holds, the option pricing formula derived

from the underlying model under equilibrium should be able to correctly predict option prices, both in

sample and out of the sample. Obviously such a joint hypothesis is testable by comparing the model

predicted option prices with market observed option prices. The advantage of our framework is that

since we emphasize on the underlying model specification in its objective measure and more impor-

tantly, its efficient estimation from the observations of the underlying variables, it lends us the ability

to directly test whether the model specification is acceptable or not. Test of such a hypothesis, com-

bined with the test of the above joint hypotheses, can lead us to make conclusions about whether the

option markets are efficient or not, which is one of the most interesting issues to both practitioners and

academics. The framework in this paper is different in spirit from the implied methodology often used

in the finance literature in the following aspects. First, the implied methodology can at best offer a test

of the joint hypotheses, it fails going any further to test the model specification or the efficiency of the

market; Second, the reason for the first problem is due to the fact that implied in the option prices is

only the risk-neutral specification of the underlying model, thus only a subset of the parameters can be

estimated (or backed-out) from the option prices; Third, the implied methodology based on solely the

information contained in the option prices is purely objective driven, it is rather a test of stability of

certain relationship (the option pricing formula) between different input factors (the implied parameter

values) and the output (the option prices).

In judging the empirical performance of alternative models in pricing options, we perform two al-

ternative tests. First, we use in-sample historical volatility (through reprojection) to calculate a set of

option prices with different maturities and terms to expiration. The model-generated option prices are

compared to the observed market option prices in terms of relative percentage differences, as well as

implied Black-Scholes volatility. Second, we perform an out-of-sample comparison using observed

option prices to back out each day’s implied volatility as well as a market price of risk for the stochastic

volatility through fitting certain option pricing formula. Such values are used in the following day’s

volatility process to generate a set of option prices. Again, the model generated option prices are com-

pared to the observed market option prices. In the first comparison, all models only use the information

contained in the underlying state variables, while in the second comparison, the models use both infor-

mation contained in the underlying state variables and in the observed (previous day’s) market option

prices. The major findings of this paper include: (i) While theory predicts that the short-term interest

rates are strongly related to the systematic volatility of the consumption process, our empirical results

suggest that the short-term interest rate fails to be a good proxy of the systematic factor; (ii) Overall, all

models exhibit clear and significant discrepancies between model predicted option prices and market

observed option prices for different terms to expiration and degrees of moneyness based on (repro-

jected) underlying volatility. In particular, the Black-Scholes model underprices short-term maturity

call options and overprices long-term maturity call options, and underprices deep in-the-money options

and overprices deep out-of-the-money options based on both underlying historical volatility and im-
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plied volatility; (iii) While allowing for stochastic volatility of stock returns can in general reduce the

pricing errors, allowing for stochastic interest rates has minimal impact on option prices in our case;

(iv) Similar to Melino and Turnbull (1990), our empirical findings strongly suggest the existence of a

non-zero risk premium for stochastic volatility of stock returns. Allowing for non-zero risk-premium

of stochastic volatility and based on implied volatility, the models with stochastic volatility of stock

returns and in particular the asymmetric stochastic volatility models of stock returns can largely reduce

the option pricing errors.

The plan of this paper is as follows. Section 2 outlines the general multivariate SV model; Section

3 describes the EMM estimation technique and the volatility reprojection method; Section 4 reports the

estimation results of the general model and various submodels; Section 5 compares among different

models the performance in pricing options and analyzes the effect of each individual factor; Section 6

concludes.

2 The Model

The uncertainty in the economy presented in Amin and Ng (1993) is driven by the realization of a set of

random variables at each discrete date. Among them are a random shock to the consumption process,

a random shock to the individual stock price process, a set of systematic state variables that determine

the time-varying “mean”, “variance”, and “covariance” of the consumption process and stock returns,

and finally a set of stock-specific state variables that determine the idiosyncratic part of the stock re-

turn “volatility”. The investors’ information set at time t is represented by the �-algebra Ft which

consists of all available information up to t. Thus the stochastic consumption process is driven by, in

addition to a random noise, its mean rate of return and variance which are determined by the system-

atic state variables. The stochastic stock price process is driven by, in addition to a random noise, its

mean rate of return and variance which are determined by both the systematic state variables and id-

iosyncratic state variables. In other words, the stock return variance can have a systematic component

that is correlated and changes with the consumption variance. An important key relationship derived

under the equilibrium condition is that the variance of consumption growth is negatively related to the

interest rate, in other words interest rate can be used as a proxy of the systematic factor in the economy.

Therefore a larger proportion of systematic volatility implies a stronger negative relationship between

the individual stock return variance and interest rate. Given that the variance and the interest rate are

two important inputs in the determination of option prices and that they have the opposite effects on

call option values, the correlation between the variance and interest rate will therefore be important in

determining the net effect of the two inputs. In the following, we will specify an empirically imple-

mentable SV models of the interest rate and stock returns for the purpose of pricing individual stock

options.
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2.1 The Basic Model

The basic model we specify in this paper is as follows. Let St denote the price of the stock at time t and

rt the interest rate at time t, where rt is a systematic state variable and St is an individual state variable

which is subject to both systematic and idiosyncratic shocks. We model the dynamics of daily stock

returns and daily interest rate changes simultaneously as a multivariate stochastic volatility process.

Suppose rt is correlated to the trend or instantaneous mean of both state variables, then the de-trended

or the unexplained stock return yst is defined as

yst := 100��lnSt � �S � �Srt�1 (1)

and the de-trended or the unexplained interest rate change yrt is defined as

yrt := 100��ln rt � �r � 100 � �r ln rt�1 (2)

Next, yst and yrt are modeled as stochastic volatility processes

yst = �st�st (3)

yrt = �rt�rt (4)

where

ln�2st+1 = � ln rt + !s + 
s ln�
2
st + �s�st j
sj < 1 (5)

ln�2rt+1 = !r + 
r ln�
2
rt + �r�rt j
rj < 1 (6)

and 2
666664

�st

�rt

�st

�rt

3
777775 � IIN(

2
666664

0

0

0

0

3
777775 ;
2
666664

1 �1 �2 0

�1 1 0 �3

�2 0 1 �4

0 �3 �4 1

3
777775

so that Cor(�st; �rt) = �1;Cor(�st; �st) = �2;Cor(�rt; �rt) = �3 and Cor(�st; �rt) = �4: The model

resembles the standard multivariate SV model in discrete time (see e.g. Andersen (1994), Harvey,

Ruiz and Shephard (1994) and Taylor (1994)), but with a few extensions. For example, the inclusion

of the systematic component in the stock return volatility process, the leverage effect through both �2

and �3: The interest rate model admits mean-reversion in the drift and allows for stochastic conditional

volatility. We could also incorporate the “level effect” (see e.g. Andersen and Lund (1997)) into the

conditional volatility. Since in this paper we focus on the pricing of stock options and we find that

the specification of interest rate process is relatively less important in such applications, we do not

incorporate this level effect.
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The basic idea of the above SV model is guided by the empirical distribution implied in the op-

tion prices, i.e. to search alternative option pricing models which have the “right” distributional as-

sumption. The SV model, for instance, offers a flexible distributional structure in which the correla-

tion between volatility shocks and underlying stock returns serves to control the level of asymmetry

and the volatility variation coefficient serves to control the level of kurtosis. But since volatility in

the diffusion-type SV models only follows a continuous sample path, its ability to internalize enough

short-term kurtosis and thus to price short-term options properly is limited. The above model setup is

specified in discrete time and includes continuous-time models as special cases in the limit.

2.2 Statistical Properties

First of all, the above model is specified to catch the possible systematic effects through parameters

�S in the trend and � in the conditional volatility; Second, we model the dynamics of logarithmic in-

terest rates so that the nominal interest rates are restricted to be positive, as negative nominal interest

rates are ruled out by a simple arbitrage argument; Third, the above model specification allows the

movements in unconditional volatility to be correlated across the random noises �st and �rt via their

correlation �1. We also include the systematic factor in the conditional volatility of stock returns. It

is only the systematic state variable that affects the individual stock returns’ volatility not the another

way around. The parameters �2 and �3 are to measure the “leverage effects” for stock returns and in-

terest rates. It is noted that when �st and �st are allowed to be correlated with each other, the model can

pick up the kind of asymmetric behavior which is often found for stock price changes. In particular, a

negative correlation between �st and �st (�2 < 0) induces a leverage effect. It is noted that the above

model specification will be tested against alternative specifications and be investigated for its implica-

tions on option prices. The correlation �4 is to measure the correlation between the volatility shocks.

Although we judge this correlation to be a potentially important parameter for option pricing we set

this parameter a priori equal to zero. Since given the current state of knowledge of EMM, estimation of

this parameter is not feasible using EMM. This will become clear from section 3. Danielsson (1996)

claims that his Simulated Maximum Likelihood method can estimate this parameter. He finds esti-

mates that are about .3 and significantly different from zero for stock indices and for major exchange

rates.

Both the conditional volatility of stock returns and the change of logarithmic interest rates are as-

sumed to be AR(1) processes except for the additional systematic effect in the stock return’s condi-

tional volatility. The main statistical properties of the above model can be summarized as: (i) Both yst

and yrt are martingale differences, i.e. E[ystjFt] = 0;E[yrtjFt] = 0 andVar[ystjFt] = �2st;Var[yrtjFt] =
�2rt; (ii) yrt is stationary if and only if ln�2rt is stationary; (iii) Since �rt is assumed to be normally

distributed, then ln�2rt is also normally distributed, say ln�2rt � N(�; �2), given certain initial con-

ditions. Hence when �rt follows a standard normal distribution, using the fact E[expfa ln�2rtg] =
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expfa� + a2�2=2g, it can be derived that the variance of yrt is given by Var[yrt] = exp(�2=2) and

the fourth moment or Kurtosis of yrt is given by 3 exp(�2) which is greater than 3, so yt exhibits more

kurtosis and thus fatter tails than �rt; (iv) All the odd moments of yrt are zero. Conditional on rt or

� = 0, it can be shown that yst has the above same statistical properties as yrt.

2.3 Advantages of the Model

Advantages of the proposed model include: First, the model explicitly incorporate the effects of sys-

tematic volatility on option prices. Empirical evidence shows that the volatility of stock returns is not

only stochastic, but that it is also highly correlated with the volatility of the market as a whole. That is,

in addition to an idiosyncratic volatility for the returns of individual stock, there is also a systematic

component that is related to the market volatility. (see e.g. Black (1975), Conrad, Kaul, and Gultekin

(1991), Jarrow and Rosenfeld (1984), Jorion (1988), and Ng, Engle, and Rothschild (1992)). The em-

pirical evidence also shows that the biases inherent in the Black-Scholes option prices are different for

options on high and low risk stocks (see, e.g. Black and Scholes (1972), Gultekin, Rogalski, and Tinic

(1982), and Whaley (1982)), inclusion of systematic volatility in the option prices valuation model has

the potential contribution to reduce the empirical biases exhibited by prices computed from the Black-

Scholes formula; Second, since the variance of consumption growth is negatively related to the interest

rate in equilibrium, the dynamics of consumption process relevant to option valuation are embodied

in the interest rate process. The model is thus naturally extended to allow for stochastic interest rates.

Existing work of extending the Black-Scholes model has moved away from considering either stochas-

tic volatility or stochastic interest rates (examples include Merton (1973), Rabinovitch (1989), Sand-

mann (1993)) but to considering both, examples include Baily and Stulz (1989), Amin and Ng (1993),

Bakshi and Chen (1997a,b) and Scott (1997). Simulation results show that there can be a significant

impact of stochastic interest rates on option prices. (see e.g. Rabinovitch (1989)). Furthermore, due

to the relationship between interest rate and consumption process in the equilibrium, we only need to

directly model the dynamics of interest rates; Third, the above proposed model allows the study of

the simultaneous effects of both a stochastic interest rates and a stochastic stock return’s volatility on

the valuation of options. It is documented in the literature that when the interest rate is stochastic the

Black-Scholes option pricing formula tends to underprice the European call options (Merton, 1973),

while in the case that the stock return’s volatility is stochastic, the Black-Scholes option pricing for-

mula tends to overprice the at-the-money European call options (Hull and White, 1987). The combined

effect of both factors depends on the relative variability of the two processes (Amin and Ng, 1993).

Based on simulation, Amin and Ng (1993) show that stochastic interest rates cause option values to

decrease if each of these effects acts by themselves. However, this combined effect should depend on

the relative importance (variability) of each of these two processes. Finally, when the model is sym-

metric, i.e. there is no correlation between the shocks to stock returns and stock return conditional
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volatility, the closed form solutions of the option prices are available and are preference free in quite

general conditions, i.e., the stochastic mean of the stock return process, the stochastic mean and vari-

ance of the consumption process, as well as the covariance between the changes of stock returns and

consumption are predictable. These conditions are automatically satisfied in the continuous-time dif-

fusion models, but requires slight constraint imposed on the model specification in the discrete time.

In particular, when �2 = 0 in the general model setup, i.e. the assumption 2 in Amin and Ng (1993)

is satisfied, the following option pricing formula can be derived. Let C0 represent the value of a Eu-

ropean call option at t = 0 with exercise price K and expiration date T; Amin and Ng (1993) derive

that

C0 = E0[S0 �N(d1)�K exp(�
T�1X
t=0

rt)N(d2)] (7)

where

d1 =
ln(S0=(K exp(

PT
t=0 rt)) + 0:5

PT
t=1 �st

(
PT

t=1 �st)
1=2

d2 = d1 �
TX
t=1

�st

where the expectation is taken w.r.t. the objective measure and can be calculated from simulations.

As Amin and Ng (1993) point out, several option-pricing formulae in the available literature are

special cases of the above option formulae. They include the Black-Scholes (1973) formula, the Hull-

White (1987) stochastic variance stock option valuation formula, the Bailey-Stultz (1989) stochastic

variance index option pricing formula, and the Merton (1973), Amin and Jarrow (1992), and Turnbull

and Milne (1991) stochastic interest rate option valuation formulae. When the interest rate is constant,

(7) is then the Hull-White (1987) formula. If the stock variance is also constant, then we obtain the

Black-Scholes formula. In the above option pricing formula, the European call option prices depend

on the average expected volatility over the length of the option contract. Since averaging should re-

duce standard errors, even relatively large standard errors of the volatility estimates do not necessarily

carry over to option prices. In the limit, the average volatility over a long horizon converges to the un-

conditional variance when conditional on the parameters of the process and the interest rate process.

3 Estimation and Reprojection

The reason why an SV model cannot be estimated by standard maximum likelihood lies in the fact

that the time varying volatility is modeled as a latent or unobserved variable which has to be inte-

grated out of the likelihood. This is not a standard problem since the dimension of this integral equals

the number of observations, which is typically large in financial time-series. Standard Kalman filter

techniques cannot be applied either since the latent process is non-Gaussian and the resulting state-

space form does not have a conjugate filter. Therefore stochastic volatility models have become quite
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popular in the econometrics literature to try new estimation techniques. Key references on estima-

tion of stochastic volatility models include: Harvey, Ruiz and Shephard (1994), Harvey and Shephard

(1996), Fridman and Harris (1997) and Sandmann and Koopman (1997) for Kalman filter techniques1 .

Jacquier, Polson and Rossi (1994), Schotman and Mahieu (1994), Kim, Shephard and Chib (1997) on

Bayesian methods2 , Danielsson (1994) and Danielsson and Richard (1993) on Simulated Maximum

Likelihood methods3 . Finally, Gallant and Tauchen (1996) and Gallant, Hsieh and Tauchen (1994)

are the main references for EMM methods4 . These have been the most successful techniques. We

also mention Wiggins (1987), Scott (1987), Chesney and Scott (1987), Melino and Turnbull (1990)

and Andersen and Sørensen (1996) for GMM techniques and Monfardini (1996) for an application to

SV models using indirect inference (Gourieroux, Monfort and Renault (1993)). For foundations of

stochastic volatility models see Clark (1973), Tauchen and Pitts (1983), Taylor (1986) and Hull and

White (1987). Review articles on stochastic volatility models have been provided by Ghysels, Har-

vey and Renault (1996) and Shephard (1996b).5 . Recent techniques proposed by Jacquier,Polson and

Rossi (1994), Kim, Shephard and Chib (1997) have made tremendous improvements in the estimation

of SV models compared to the early GMM and standard Kalman filter techniques. Although these lat-

ter methods are essentially Bayesian, with standard arguments the posterior modes and the maximum

likelihood estimators converge, see e.g. Barndorff-Nielsen and Cox (1994, pp136). A strictly classi-

cal estimation method is EMM of Gallant and Tauchen (1996). The main practical advantage of this

technique is its flexibility, a property this technique inherits of other moment-based techniques. Once

the moments are chosen one may estimate a whole class of SV models. Theoretically this method is

ML efficient. In a stochastic volatility context recent Monte Carlo studies in Andersen, Chung and

Sørensen (1997) and van der Sluis (1997b) confirm this for sample sizes larger than 2,000, which is

rather small for financial time-series. For lower sample sizes there is a small loss in small sample ef-

ficiency compared to the likelihood based techniques such as Kim, Shephard and Chib (1997), Sand-

mann and Koopman (1997) and Fridman and Harris (1996). This is mainly caused by the imprecise

estimate of the weighting matrix for samples of size smaller than 2,000. The same phenomenon occurs

in ordinary GMM estimation.

Important criticism on EMM and on moment based estimation in general has been that the method

does not provide a representation of the observables in terms of their past, which we do get from, for ex-

ample, the prediction-error-decomposition in likelihood based techniques. Gallant & Tauchen (1997)

overcome this problem by proposing reprojection. The main idea is to get a representation of the ob-

1On Kalman filter techniques in this context we also mention Ruiz (1994).
2On Bayesian methods in this context we also mention Shephard (1996)’s SvPack.
3See also Danielsson (1996a,b), Richard and Zhang(1995a,b) for more on SML methods in this context. Danielsson

(1996a) actually contains the source code.
4Other references on EMM in this context are Andersen and Lund (1996), Andersen and Lund (1997), Gallant and Long

(1997) and van der Sluis (1997a,b,c,d & 1998) and Andersen, Chung and Sørensen (1997)
5See also Taylor (1994), Andersen (1994) and Andersen (1992).
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served process in terms of observables. In the same manner one can also get a representation for un-

observables in terms of the past and present observables. This is important in our application where

the unobservable volatility is needed in the option pricing formula. Using reprojection we are able to

get a representation of the unobserved variables.

3.1 Estimation

In short the EMM method goes as follows6: the sequence of densities for the structural model will be

denoted

fp1(x1 j �); fpt(yt j xt; �)g1t:=1g

The sequence of densities for the auxiliary process will be denoted as

ff1(w1 j �); fft(yt j wt; �)g1t:=1g

where xt andwt are observable endogenous variables. In particular the xt will be a vector of lagged yt

and the wt will also be a vector of lagged yt: The lag-length may differ, therefore a different notation

is used. We impose assumptions 1 and 2 from Gallant and Long (1997) on the structural model, these

are technical assumptions that imply standard properties of quasi maximum likelihood estimators and

properties of estimators based on Hermite expansions which will be explained below. Let us define

m(�; �) :=

Z Z
@

@�
ln f(y j w; �)p(y j x; �)dyp(x j �)dx

the expected score of the auxiliary model under the dynamic model. The expectation is written in

integral form to anticipate on the fact the we will approximate this integral by standard Monte Carlo

techniques. The simulation approach solely consists of calculating this function as

mN (�; �) :=
1

N

NX
� :=1

@

@�
ln f(y� (�) j w� (�); �)

Let n denote the sample size, the EMM estimator is defined as

b�n(In) := argmin
�2�

m
0

N (�; b�n)(In)�1mN (�; b�n)
where In is a weighting matrix and b�n denotes an estimator for the parameter of the auxiliary model.

The optimal weighting matrix here is obviously

I0 = lim
n!1

V0[
1p
n

nX
t:=1

f @

@�
ln ft(yt j wt; �

�)g]

where �� is a (pseudo) true value.

6We discuss case 2 from Gallant and Tauchen (1996).
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With the theory of misspecified models (White (1994)) one can prove consistency for the param-

eters of the auxiliary model under several assumptions posed in Gallant and Tauchen (1996) and in

Gallant and Long (1997),

lim
n!1

(b�n � ��) = 0 a.s.

and asymptotic normality

p
n(b�n � ��)

d! N(0; (J0)
�1(I0)(J0)

�1)

Here

In = V0[
1p
n

nX
t:=1

(
@

@�
ln ft(eyt j ewt; b�n)]

Jn = � @

@�
m

0

N (�0; b�n)
where �0 denotes the (pseudo) true value. Under standard regularity assumptions we have that

lim
n!1

In = I0
lim
n!1

Jn = J0

One can also prove for the scores

p
nmN (�0; b�n) d! N(0; I0)

Hence consistency and asymptotic normality of the estimator of the structural parameters b�n follows:

p
n(b�n(I0)� �0)

d! N(0; [M0

0(I0)�1M0]
�1)

where M0 := @
@�0

m(�0; �
�).

In order to obtain maximum likelihood efficiency7 it is required that the auxiliary model in some

sense embeds the structural model. The semi-nonparametric (SNP) density of Gallant and Nychka

(1987)8 may be a good choice, see Gallant and Tauchen (1996) and Gallant and Long (1997). The

auxiliary model is built as follows. The process yt(�0) is the process under investigation, �t(��) :=

Et�1[yt(�0)]; is the conditional mean of the auxiliary model, �2t (�
�) := Covt�1[yt(�0)� �t(�

�)] the

conditional variance matrix and zt(�
�) := R�1t (�)[yt(�0) � �t(�

�)] the standardized process. Here

Rt will typically be a lower or upper triangular matrix. The SNP density now takes the following form

f(yt; �) =
1

jdet(Rt)j
[PK(zt; xt)]

2�(zt)R
[PK(u; xt)]2�(u)du

7Maximum likelihood efficiency is used throughout meaning first order asymptotic efficiency.
8Building on earlier work of Phillips (1983). See also Fenton & Gallant (1996a, b) for recent results on SNP densities.
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where � denotes the standard multinormal density, x := (yt�1; :::; yt�L) and the polynomials

PK(z; xt) :=
KzX
i:=0

ai(xt)z
i :=

KzX
i:=0

[
KxX
j:=0

aijx
j
t ]z

i

We have to be careful what is exactly meant by zi in case z is a vector. Here we mean that i is a

multi-index, so for the k-vector z = (z1; : : : ; zk)
0

we have zi := zi11 � zi22 � � � zikk under the conditionPk
j=1 ij = i and ij � 0 for j 2 f1; :::; kg: A specific form for the polynomials is taken, namely orthog-

onal Hermite polynomials (see Gallant, Hsieh and Tauchen (1991) and Andersen and Lund (1997)).

Relevant formulae for the derivatives can be found in Abramowitz and Stegun (1972) and Fenton and

Gallant (1996a). The model �2t (�) and �t(�) is chosen as a leading term in the Hermite expansion to

relieve the expansion of some of its task, dramatically improving its small sample properties.

In this paper we will take p := dim(�); q := dim(�): The number of moment conditions q may be

determined using several criteria. For EMM, it is necessary that q increases with n:Note in this respect

the conceptual difference with GMM. It will automatically happen that q increases with n using any

of the model specification criteria such as the Akaike Information Criterion (AIC, Akaike (1973)), the

Schwarz Criterion (BIC, Schwarz (1978)) or the Hannan-Quinn Criterion (HQC, Hannan and Quinn

(1979) and Quinn (1980)). The theory of model selection in the context of SNP models is not very well

developed yet. Results in Eastwood (1991) may lead to believe AIC is optimal in this case. However, as

for multivariate ARMA models, the AIC may overfit the model to noise in the data so we may be better

off by following the BIC or HQC. The same findings were reported in Andersen and Lund (1997). In

their paper Gallant and Tauchen (1996) rely on the BIC in their applications. We will return on this

issue in section 4.1.

Under the null that the structural model is true one may deduce.

n �m0

N (b�n; b�n)(bIn)�1mN (b�n; b�n) d! �2q�p

This gives rise to the Hansen J-test for overidentifying restrictions that is well known in the GMM

literature. The direction of the misspecification may be indicated by the quasi-t ratios

bTn := bS�1n

p
nmN (b�n; b�n)bSn := [diag(bIn � cMn( cM0

n
bI�1n

cMn)
�1 cM0

n)]
1=2

Here bTn is distributed as tq�p:

Estimation was done using EmmPack (van der Sluis, 1998), and procedures from van der Sluis

(1997b) and van der Sluis (1997c). In the latter paper some encouraging Monte Carlo results for EMM

are given. The leading term in the SNP expansion is a(n) (multivariate) EGARCH model. Of course

one can simultaneously estimate all the parameters so including �S ; �r; �; �1; :::; �l and the volatility

parameters of y1;t and y2;t:This is optimal but too cumbersome and probably not necessary. Estimation

will be carried out in the following sub-optimal way:
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(i) Estimate �S and �; retrieve y1;t; Estimate �r; �1; :::; �l; retrieve y2;t: Both using standard re-

gression techniques.

(ii) Simultaneously estimate parameters of stochastic volatility model, including � via EMM

As we have mentioned, the EMM estimation of stochastic volatility models is rather cumbersome

and time-consuming. Moreover many of the above stochastic volatility models are never estimated

in practice. Therefore we use a multivariate variant of the EGARCH model of Nelson (1990) as a

guide to which of the above SV models is worth looking at. The EGARCH model is a convenient

choice since (i) it is an a very good approximation to the stochastic volatility model, see Nelson and

Foster (1994), (ii) we use the EGARCH model as a leading term in the auxiliary model of the EMM

estimation methodology and (iii) direct maximum likelihood techniques are admitted by this class of

models. We can thus view the following M-EGARCH model as a pendant to the structural SV models

that are proposed in section 2.1.2
4 y1;t

y2;t

3
5 =

2
4 �1;t 0

0 �2;t

3
5
2
4 z1;t

z2;t

3
5

2
4 ln�21;t

ln�22;t

3
5 =

2
4 �01

�02

3
5+

rX
i=1

Li

2
4 
11;i 
12;i


21;i 
22;i

3
5
2
4 ln�21;t

ln�22;t

3
5+ (1 +

qX
j=1

Lj

2
4 �11;j �12;j

�21;j �22;j

3
5)

�[

2
4 �1;11 �1;12
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3
5
2
4 z1;t�1

z1;t�1

3
5+

2
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p
2=�)
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p
2=�)

3
5]

E[�t�
0

t] =

2
4 1 �

� 1

3
5

where some parameters may be restricted. In the application the �ij;k, �ij;1 and �ij;2 for i 6= j will be

set zero. So we will have2
4 y1;t

y2;t

3
5 =

2
4 �1;t 0

0 �2;t

3
5
2
4 z1;t
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3
5
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4 ln�21;t
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3
5 =

2
4 �01

�02

3
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0 
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ln�22;t

3
5+ (1 +

qX
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2
4 �11;j 0

0 �22;j

3
5)

�[

2
4 �1;11 0

0 �1;22

3
5
2
4 z1;t�1

z1;t�1

3
5+

2
4 �2;11 0

0 �2;22

3
5
2
4 (b(z1;t�1)�

p
2=�)

(b(z1;t�1)�
p
2=�)

3
5]

E[�t�
0

t] =

2
4 1 �

� 1

3
5

The � parameter corresponds to �1: The �’s, possibly in combination with some of the parameters

of the polynomial, correspond to �2 and �3: This latter correspondence is further investigated in a
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Monte Carlo study in van der Sluis (1997b) with very encouraging results. In the same way an auxiliary

model is specified for the SV model with interest level rt included in the volatility process2
4 ys;t

yr;t

3
5 =

2
4 �1;t 0

0 �2;t

3
5
2
4 z1;t

z2;t

3
5

2
4 ln�2s;t
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3
5 =

2
4 � 0

0 0

3
5
2
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In this model the � corresponds to the � in the SV model.

It should be clear that the EGARCH model does not have a counterpart of the correlation parameter

�4 from the SV model. Asymptotically the cross-terms in the Hermite polynomial should account for

this. In practice, with no counterpart of the parameter in the leading term, we have strong reasons

to believe that the small sample properties of an EMM estimator for �4 will not be very satisfying.

Therefore, as was argued in section 2.2, we reluctantly set this parameter a priori equal to zero.

Here at this moment the innovations in the SV models to both the stock returns and spot interest

rates are assumed to be normally distributed random variables, which is related to the fact that our

sampling observations are daily data. The EGARCH model is expanded with a semiparametric density

which allows for nonnormality. This is a consequence of the EMM methodology. In section 4.1 we will

argue how to pick a suitable order for the Hermite polynomial for a Gaussian SV model. The efficient

moments for the SV model will come initially from the auxiliary model: bi-variate SNP density with

bi-variate EGARCH leading term. For an extensive evaluation of this bi-variate EGARCH model

and even of higher dimensional EGARCH models see van der Sluis (1997c). This model will also

serve as a guide in the specification of the structural SV model. Once the SV models is estimated the

moments of the M-EGARCH(p; q)-H(Kx;Kz) model will serve as diagnostics by considering the bTn
test-statistics.

3.2 Reprojection

After the model is estimated we use recent results from Gallant and Tauchen (1997) to obtain estimates

of the unobserved volatility process f�tgnt=1; as we need this series in our option pricing formula. Gal-

lant and Tauchen (1997) propose reprojection as a general purpose technique for characterizing the

dynamic response of a partially observed nonlinear system to its observable history. Reprojection is
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the third step in the EMM methodology. First data is summarized by projecting on Hermite polynomi-

als. Next system parameters are estimated where the criterion is based on these Hermite polynomials.

Reprojection can now be seen as projecting a long simulated series from the estimated system on the

Hermite polynomials. In short reprojection goes as follows. We calculate another set of auxiliary pa-

rameters as

e� = argmax
�2B

Eb�nf(y0jy�L; :::; y�1; �)
note Eb�nf(y0jy�L; :::; y�1; �) is calculated using one set of simulations y(b�n): Doing so, we reproject

a long simulation from the estimated model on the auxiliary model. Results in Gallant & Long (1997)

show that

lim
K!1

f(y0jy�L; :::; y�1; e�K) = p(y0jy�L; :::; y�1; b�)
where K is the overall order of the Hermite polynomials and should grow with the sample size n;

either adaptively as a random variable or deterministic. Therefore the following conditional moments

under the structural model can be calculated using the auxiliary model as follows

E(y0jy�L; :::; y�1) = s y0f(y0jx�1; e�)dy0
Var(y0jy�L; :::; y�1) = s(y0 � E(y0jy�L; :::; y�1))2f(y0jx�1; e�)dy0

For an estimate of the unobserved volatility we could use
p
Var(y0jy�L; :::; y�1): A more common

notion of filtration is to use the information on the observable y up to time t, instead of t � 1, since

we want a representation for unobservables in terms of the past and present observables. Indeed for

option pricing it is more natural to include the present observables yt: For today’s option value we want

to include todays’ stock price and todays’ interest rate in the information set. We follow Gallant and

Tauchen (1997) in their modification and repeat the above derivation replacing y with y�, where y� =

�0: Doing so we need to specify a different auxiliary model from the one we used in the estimation

stage. More precisely, we need to specify an auxiliary model for ln�2t using information up till time

t;instead of t � 1; as in the auxiliary EGARCH model. Since for the sample size we encounter in

this application projection on pure Hermite polynomials may not be a good idea due to small sample

distortions and issues of non-convergence, we use the following intuition to build a useful leading term.

We can write the SARMAV(1; 0) model as

ln y2t = ln�2t + ln �2t

where �t � N(0; 1) and the ln�2t follow a AR(1) process. Observe that the above process is a non-

Gaussian ARMA(1; 1) process. We therefore consider

ln�2t = �0 + �1 ln y
2
t + �2 ln y

2
t�1 + :::+ �r ln y

2
t�r�1 + error
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where the lag-length r will be determined by AIC. It may be an idea to project on

ln�2t = �0 + �1 ln y
2
t + �2 ln�

2
t�1 + error

In figure 3 we see that projection on this model is not a good idea, in the sense that it gives a very flat

projection of the volatility, which on average has good properties but does not capture the dynamics of

the underlying stochastic volatility model. In this picture a series of 5; 000 was simulated from an SV

model with realistic parameter values. Since we know the volatilities we can compare them with the

reprojected volatilities. Further research should be made on this issue because see that the projection

on the autoregressive series still can be improved. It should be noted that in the application two series

of antithetic variables of size 50; 000 were used instead of 5; 000 as in figure 3. This improves the

figure slightly.

For the asymmetric model, we would like to include the zt as well like in the EGARCH model.

Therefore we propose to consider

ln�2t = �0 +
rX

i=0

�i+1 ln y
2
t�i +

sX
j=1

�i
yt�j
�t�j

+ error

In the original set-up of Gallant and Tauchen (1997) one should as well project on the Hermite polyno-

mials. The auxiliary model here is then the SNP density, modified to include information up to time t:

So from an asymptotic point of view projection on the autoregressive series is sub-optimal. As in the

estimation stage we could specify an SNP density for the error term. We chose not to do so. In part be-

cause we think that as in the estimation stage a good leading term will pick up all the salient features in

the data (see section 4.1), in part because the resulting formulae get rather complicated, but would not

affect much of the resulting estimates of the volatility. From the above, ln b�20 = E(ln �20jy0; :::; y�L)
follows straightforward. In both the symmetric and asymmetric case, we have thus a projection on an

autoregressive series.

4 Empirical Results

4.1 Description of the data

Summary statistics of both interest rates and stock returns are reported in Table 1. The interest rates

used in this paper as proxy of riskless rates are daily U.S. 3-month Treasury bill rates and the under-

lying stock considered in this paper is 3 Com Corporation which is listed in NASDAQ. Both the stock

and its options are actively traded. The stock claims no dividend and thus theoretically all options on

the stock can be valued as European type options. The data covers the period from March 14, 1986

to July 14, 1997 providing 2,836 observations. From Table 1, we can see that both the first difference

of logarithmic interest rates and that of the logarithmic stock prices (i.e. the daily stock returns) are

skewed to the left and have positive excess kurtosis (>> 3) suggesting fat tails of the unconditional
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distributions. Similarly, the filtered interest rates Yrt as well as the filtered stock returns Y 1st (with

systematic effect) and Y 2st (without systematic effect) are also skewed to the left and have positive

excess kurtosis. However, the logarithmic squared filtered series, as proxy of the logarithmic condi-

tional volatility, all have negative excess kurtosis and appear to justify the normal driving noise as we

specified in the general model. As far as dynamic properties, the filtered interest rates and stock re-

turns as well as logarithmic squared filtered series are all temporally correlated. For the logarithmic

squared filtered series, the first order autocorrelations are in general low, but higher order autocorre-

lations are of similar magnitudes as the first order autocorrelations. This would suggest that all series

are roughly ARMA(1; 1) or equivalently AR(1) with measurement error, which is consistent with the

first order autoregressive SV model specification. Estimates of trend parameters in the general model

are reported in 2. For stock returns, it appears that interest rate has significant explanatory power,

suggesting the presence of systematic effect or certain predictability of stock returns. For logarithmic

interest rates, there is an insignificant linear mean-reversion, which is consistent with many findings

in the literature. 9

We further look at the data through specification of the score generator or auxiliary model, since

the score-generator is thought to give a good description of the data. Therefore we deal with the spec-

ification of the score-generator in this section. We use the score-generator as a guide for the structural

model, since there is a clear relationship between the parameters of the auxiliary model and the struc-

tural model. If some parameters in the score-generator or not significantly different form zero, we set

the corresponding parameters in the SV model a priori equal to zero. Various model selection crite-

ria and t-statistics of individual parameters of a wide variety of different auxiliary models that were

proposed in section 3 indicate (i) multivariate models are all clearly rejected on basis of the model se-

lection criteria and by looking at the t–values of the parameter �: We therefore set its corresponding

SV parameter �1 a priori equal to zero; (ii) The parameter � was marginally significant at a 5% level.

On basis of the BIC however inclusion of this parameter is not justified. We therefore set its corre-

sponding parameter � a priori equal to zero; (iii) The cross terms 
12;1 and 
21;1 were significantly

different from zero albeit small, again on basis of the BIC inclusion of these parameters was not jus-

tified; (iv) As it comes to picking a suitable order of the Hermite polynomial of the SNP expansion

we observe that for all models Kx should be equal to zero, more importantly according to the most

conservative criterion, which is the BIC, Kz > 10: For picking the size of Kz we argue as follows.

In van der Sluis (1997a,d) sample sizes of about 1,000 and 1,500 were under study. For these sample

sizes Kz of 4 or 5 was found to be BIC optimal. In this paper sample size of 3,000 are under study,

it is found here that BIC is in favour of Hermite polynomials of order Kz larger than 10. With recent

results of Andersen, Chung and Sørensen (1997) and van der Sluis (1997b) in mind, which tell that

for sample sizes of 3,000, convergence problems can occur in a substantial number of cases for such

9For instance, Stanton (1997) and Jiang (1997) both suggest that the U.S. short rate process has a non-linear mean-

reverting property.
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high order polynomials and that under the null of a Gaussian SV model, setting Kz = 0 will yield

virtually efficient EMM estimates, which are not necessarily dominated by setting Kz > 010 Still we

can learn something from the fitted SNP densities with Kz > 0. We plotted the conditional density

implied by the ML estimates of the parameters and compared the shape of these densities. See figures

4 till 9. We plotted the conditional densities implied by the ML estimates for Kz = 4; 6; 8 and 10

for both datasets. Clearly, there is evidence in the data that a Gaussian EGARCH model is not good

enough as was also indicated by the model selection criteria. One can also perform Likelihood Ratio

tests for a Gaussian EGARCH model against an Seminonparametric EGARCH model. This is clearly

in favour of a high order seminonparametric EGARCH model. In turn this indicates that a Gaussian

SV model is not adequate and one should consider a fat-tailed SV model or a jump diffusion process.

This can also be seen by comparing the sample properties of the data with the sample properties of

the SV model in the optimum. It also appears that for Kz > 6 the SNP density starts to put probabil-

ity mass at outliers. It remains an issue whether we should include such high orders in the auxiliary

model. For descriptive purposes such high orders can be desirable. However, since under the null of

Gaussian SV we cannot get such outliers, there is no need to consider them. Therefore we decided

for these sample sizes to set the Hermite polynomial equal to zero. It is interesting to see whether the

parameter values of the auxiliary EGARCH model are sensitive to the order of the polynomial may

also be an issue therefore in Table 3 and Table 4 we provide ML estimates for the leading term in the

EGARCH(1,1) model for both datasets for different Kz . We observe that the estimated parameters

values are sensitive to the choice of the Hermite polynomials. We performed EMM estimation for the

series using H(6,0) to see whether the results would differ from the ones with H(0,0). We shall later

see that the parameter estimates also differ somewhat. However under non-Gaussian SV the option

pricing formula will differ and is also sensitive to the choice of the distribution, so it is not only sensi-

tive to the parameters. Further research should therefore include this fact by using a structural model

with jump diffusions or fat-tails. For estimating fat-tailed SV models we would clearly need Kz > 0:

However such a non-Gaussian SV model will make the resulting option pricing formula even more

complicated. We therefore postpone the use of such structural models to future research.

4.2 Structural model and Estimation Results

The general model: the model specified in section 2.1 assumes stochastic volatility for both the stock

returns and interest rate dynamics as well as systematic effect on stock returns. This model nests the

Amin and Ng (1993) model as a special case when �2 = 0. We will investigate the implications of

leverage effect in particular on the skewness of implied Black-Scholes volatility.

Following are four alternative model specifications:

10Although in van der Sluis (1997b) for samples of size 4; 000 with Kz = 4 rather good results were obtained regarding

both convergence and efficiency.
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� Submodel 1: No systematic effect, i.e. �s = 0 and � = 0, i.e. a bi-variate stochastic volatility

model;

� Submodel 2: No stochastic interest rates, i.e. interest rate is constant. That is, rt = r, the H-W

model, the Baily and Stulz (1989) model.

� Submodel 3: Constant stock return volatility but stochastic interest rate. That is, �st = �, the

Merton (1973), Turnbull and Milne (1991) and Amin and Jarrow (1992) models.

� Submodel 4: Constant stock return volatility and constant interest rate. That is, �st = �; rt = r,

the Black-Scholes model.

Estimation was mainly done using EmmPack (van der Sluis (1998)). The interested reader is re-

ferred to this paper for details. The results reported here are all for H(0,0). These results have been

used in the paper. The models have also been estimated using higher order Hermite polynomials. No

big differences have been encountered between using H(6; 0) and H(0; 0):

� General model: The estimates for the mean terms are given in Table 2. We obtained the fol-

lowing estimates for the symmetric SV model using the EGARCH(1,1)-H(0,0) score generator

with the asymmetry parameter �1 a priori set equal to zero ;

yt = �t�t

ln�2t+1 = :005
(:065)

+ :955 ln �2t
(30:1)

+ :218�t
(16:2)

for the interest rates and

yt = �t�t

ln�2t+1 = :161
(30:8)

+ :940
(66:1)

ln�2t+ :161
(17:5)

�t

for the stock prices. In order to obtain the filtered series, we used an autoregressive model with

34 lags for the interest rate and an autoregressive model with 29 lags for the stock prices. For

the asymmetric model we used the EGARCH(1,1)-H(0,0) with an unrestricted asymmetry pa-

rameter �1 as a score generator to obtain the following estimates

yt = �t�t

ln�2t+1 = :004
(:107)

+ :959
(47:4)

ln�2t+ :222
(31:8)

�t

Cor(�t; �t+1) =�:270
(�156)

for the interest rates and

yt = �t�t

ln�2t+1 =:175
(121)

+ :935
(233)

ln�2t+ :161
(35:2)

�t

Cor(�t; �t+1) =�:424
(�164)
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for the stock prices. We observe common estimates for the parameters for these type of data.

The persistence parameter is close to unity. The asymmetry is moderate for both series and sig-

nificantly different from zero. The leverage effect is somewhat higher for the stock returns than

it is for the interest rate returns. It is noted that in both the symmetric and asymmetric models,

the estimator of � is insignificantly different from zero, rejecting that the short-term interest rate

is correlated with conditional volatility of the stock returns. The explanation of this finding can

be that either the stochastic volatility of the stock returns truly does not have a systematic com-

ponent or the short-term interest rate serves as a poor proxy of the systematic factor. We believe

the latter conjecture to be true as we re-ran the model with other stock returns and invariably we

found � insignificantly different from zero. For the reprojection we incorporated the asymme-

try and the AIC advocates to use 31 lagged ln y2t and 20 lagged zt: for the interest rates and 28

lagged ln y2t and 28 lagged zt for the stock prices. The filtered series for the stock-prices using

the symmetric and asymmetric models are displayed in figure 10. Filtered series for the interest

rates are displayed in figure 11.

� Submodel 1: The mean terms are given in 2. We obtained the following estimates for the sym-

metric SV model using the EGARCH(1,1)-H(0,0) score generator again with �1 = 0;

yt = �t�t

ln�2t = :004
(:094)

+ :959 ln �2t�1
(51:8)

+ :217 �t
(31:3)

for the interest rates and

yt = �t�t

ln�2t = :149
(83:5)

+ :944
(192)

ln�2t�1+ :148
(31:3)

�t

for the stock prices. In order to obtain the filtered series, we used an autoregressive model with

34 lags for the interest rate and an autoregressive model with 29 lags for the stock prices. For

the asymmetric model we used the EGARCH(1,1)-H(0,0) as a score generator to obtain the

following estimates

yt = �t�t

ln�2t = :004
(:110)

+ :959
(47:8)

ln�2t�1+ :223
(31:9)

�t

Cor(�t; �t+1) =�:275
(�158)

for the interest rates and

yt = �t�t

ln�2t = :154
(86:6)

+ :944
(186)

ln�2t�1+ :147
(25:4)

�t

Cor(�t; �t+1) =�:557
(�247)
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for the stock prices. The estimates do not differ much from the ones obtained for the general

model. For the reprojection we incorporated the asymmetry and the AIC advocates to use 31

lagged ln y2t and 20 lagged zt: for the interest rates and 28 lagged ln y2t and 28 lagged zt for the

stock prices. For reasons of space the filtered series for the submodel have not been displayed.

The series resemble the series for the general model very much as displayed in figure 10 and in

figure 11.

� Other Submodels: Estimation of the other submodels is fairly straightforward. Submodel 2

takes the SV part of the stock returns. Submodel 3 takes the SV part from the interest rate re-

turns.

In Table 5 the results for the Hansen J-test have been displayed for the models using EMM. As we

see all the models have been accepted at a 5% level11. Although a P -value is a monotonic function of

the actual evidence against H0; it is very dangerous to choose the best model of these specifications on

basis of theP -values (see Berger and Delampady (1987)). An LR test to test the asymmetric SV model

versus the symmetric SV model cannot be deduced from the difference in criterion values, since the

criterion values are based on different moment conditions. However from the t�values correspond-

ing to the asymmetry parameter we can deduce that the null hypothesis of symmetry will certainly be

rejected in favour of the alternative asymmetric model. For the submodel 1 we obtain similar results.

Using J-tests from the EGARCH(1,1)-H(6,0) model leads to rejection of the null hypothesis of the

J-tests. Monte Carlo results in van der Sluis (1997b) indicate that for this auxiliary model the null

hypothesis of an Gaussian(!) SV is rejected too often.

5 The Pricing of Stock Options

The presence of SV has important implications on option pricing. The effects of SV on stock op-

tion prices have been examined by Hull and White (1987), Johnson and Shanno (1987), Scott (1987),

and Wiggins (1987), among others. These authors demonstrate that model predicted European option

prices tend to be less than Black-Scholes options for at the money options and greater than Black-

Scholes option prices for deep in the money options. For deep out of the money options, the results

are sensitive to the parameters of the stochastic process describing changes in volatility and the correla-

tion between changes in volatility and stock prices. For instance, Chesney and Scott (1989) compared

the performance of the modified Black-Scholes model and a random variance option pricing model

in pricing European currency options through examination of model fit and the biases with respect to

the strike price, time to maturity, and volatility. They find that there is some evidence of mispricing

but the gains are small by trading with the random variance model. Melino and Turnbull (1990) found

11The fact that the individual t�values are all about same, is a consequence of the fact that there is only one degree of

freedom in the test. Asymptotically they should therefore be equal with probability one.

22



that the SV model did reduce the average and root mean squared pricing errors on predicted Canadian

dollar option prices over February 1983 to January 1985 relative to the continuously readjusted and ad

hoc Black-Scholes model. Most of the improvement appears attributable to superior predictions of the

term structure of implicit volatilities relative to the Black-Scholes assumption of a flat term structure.

They found evidence to support the notion that a non-zero risk premium on the variance process exists

in the Canadian $/U.S. $ exchange rate option markets. They restricted the price of variance risk to

be a constant. Lamoureux and Lastrapes (1993) suggested that such a risk premium is time-varying

in the stock market.

In this paper we will investigate the implications of model specification on option prices through

direct comparison with observed market option prices, while the Black-Scholes model is treated as a

benchmark model. Empirical evidence suggests systematic mispricing of the Black-Scholes call op-

tion pricing models. These biases have been documented with respect to the call option’s exercise

prices, its time to expiration, and the underlying common stock’s volatility. Since there is a one-to-one

relationship between volatility and option price through the Black-Scholes formula, the volatility is of-

ten used to quote the value of an option. An equivalent measure for the mispricing of Black-Scholes

model is thus the implied or implicit volatility, i.e. the volatility which generates the corresponding

option price. The Black-Scholes model imposes a flat term structure of volatility, i.e. the volatility

is constant across both maturity and strike prices of options. If option prices in the market were con-

firmable with the Black-Scholes formula, all the Black-Scholes implied volatilities corresponding to

various options written on the same asset would coincide with the volatility parameter � of the under-

lying asset. In reality this is not the case, and the Black-Scholes implied volatility heavily depends

on the calendar time, the time to maturity, and the moneyness of the options.12 The price distortions,

well-known to practitioners, are usually documented in the empirical literature under the terminology

of the smile effect, referring to the U-shaped pattern of implied volatilities across different strike prices.

5.1 Description of the Option Data

The sample of market option quotes covers the period of June 19, 1997 through August 18, 1997, with

first half of the sample overlaps with the sample of stock returns, which will be used for the study of the

models’ in-sample performance. Since we do not rely solely on option prices to obtain the parameter

estimates through fitting the option pricing formula, such a sample size is adequate for our comparison

purpose. The intradaily bid-ask quotes for the stock options are extracted from the CBOE database. To

ease computational burden, for each business day in the sample only one reported bid-ask quote during

the last half hour of the trading session (i.e. between 3:30 – 4:00 PM Eastern standard time) of each

option contract is used in the empirical test. The main considerations for the choice of the particular

12This may produce various biases in option pricing or hedging when Black-Scholes implied volatilities are used to eval-

uate new options with different strike prices and maturities.
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bid-ask quote include: i) The movements of stock price is relatively stable around the point of time so

that the option quotes are well adjusted; ii) Option quotes which do not satisfy arbitrage restrictions

are excluded. The stock prices are calculated as average of bid-ask quotes which are simultaneously

observed as the option’s bid-ask quote. Therefore they are not transaction data and the data set used

in this study avoids the issue of non-synchronous prices.

The sampling properties of the option data set are reported in Table 6. The data only include op-

tions with at least 5 days to expiration to reduce biases induced by liquidity-related issues. We divide

the option data into several categories according to either moneyness or time to expiration. In this

paper, we use a slight different definition of moneyness for options from the conventional one 13 fol-

lowing Ghysels, Harvey and Renault (1996), we define

xt = ln(St=Ke�
R
T

t
r�d� ) (8)

Technically if xt = 0, the current stock price St coincides with the present value of the strike price K ,

the option is called at-the-money; if xt > 0 (respectively xt < 0), the option is called in-the-money

(respectively out-of-the-money). In our partition, a call option is said to be at-the-money (ATM) if

�0:03 < x � 0:05; out-of-the-money (OTM) if x � �0:03; and in-the-money (ITM) if x > 0:05.

A finer partition resulted in six moneyness categories as in 6. According to the time to expiration,

an option contract can be classified as: i) short-term (T � t � 30 days); ii) medium-term (30 <

T � t < 180 days); and iii) long-term (T � t � 180 days). The partition according to moneyness and

maturity results in 18 categories as in 6. For each category, the average bid-ask midpoint price and its

standard error, the average effective bid-ask spread (i.e. the ask price minus the bid-ask midpoint) and

its standard deviation, as well as the number of observations in the category are reported. Note that

among 2120 total observations, about 26.56% are OTM options, 12.69% are ATM options, 60.75% are

ITM options; 26.23% are short-term options, 49.01% are medium-term options, and 24.76% are long-

term options. The average price ranges from $0.223 for short-term deep out-of-the-money options

to $25.93 for long-term deep in-the-money options, and the average effective bid-ask spread ranges

from $0.066 for short-term deep out-of-the-money options to $0.375 for log-term deep in-the-money

options.

Figure 12 plots the implied Black-Scholes volatility against moneyness for options with differ-

ent terms of maturity. The implied Black-Scholes volatilities are backed out from each option quote

using the corresponding stock price, time to expiration, and the current yield of U.S. treasury instru-

ments with maturity closest to the maturity of the option. Namely, we use 3-month T-bill rates for

options with maturity less than 4 months, and 6-month T-bill rates for options with maturity longer

13In practice, it is more common to call an option as at-the-money/in-the-money/out-of-the-money when St = K=St >

K=St < K respectively. For American type options with possibility of early exercise, it is more convenient to compare St

with K, while for European type options and from an economic point of view, it is more appealing to compare St with the

present value of the strike price K.
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than 4 months. The yields are hand-collected from the Wall Street Journal over the sample period and

the discount rates are converted to annualized compound rates. It is noted that the Black-Scholes im-

plied volatility exhibits an obvious U-shaped patterns (smiles) as the call option goes from deep OTM

to ATM and then to deep ITM, with the deepest ITM call option implied volatilities taking the high-

est values. Furthermore, the volatility smiles are more pronounced and more sensitive to the term to

expiration for short-term options than for the medium-term and long-term options. On the contrast,

the volatility smiles are more obviously skewed to the left for the long-term and medium-term options

than for the short-term options. The former observation indicates that short-term options are the mostly

severely mispriced ones by the Black-Scholes model and present perhaps the greatest challenge to any

alternative option pricing model, while the later observation indicates a possible skewness due to such

as the leverage effect is expected by the option traders on the dynamics of stock returns. These findings

of clear moneyness- and maturity-related biases associated with the Black-Scholes model are consis-

tent with the findings for many other securities in the literature. For instance, the following stylized

facts are extensively documented (see e.g. Rubinstein (1985), Clewlow and Xu (1993), Taylor and Xu

(1993)): i) The U-shaped pattern of implied volatility as a function of moneyness (or log moneyness)

has its minimum centered at near-the-money options; ii) The volatility smile is often but not always

symmetric as a function of log moneyness; iii) The amplitude of the smile increases quickly when

time to maturity decreases. Indeed, for short maturities the smile effect is very pronounced while it

almost completely disappears for longer maturities. However, as Ghysels, Harvey and Renault (1996)

point out, we have to be cautious about the temptation of interpreting asymmetric smile as evidence

of negatively-skewed stock return distribution with excess kurtosis.

5.2 Testing Option Pricing Models

As Bates (1997) points out, fundamental to testing option pricing models against time series data is

the issue of identifying the relationship between the true process followed by the underlying state vari-

ables in the objective measure and the “risk-neutral” processes implied through option prices in a arti-

ficial measure. Representative agent equilibrium models such as Rubinstein (1976), Brennan (1979),

Cox, Ingersoll and Ross (1985), Ahn and Thompson (1988), Bates (1988, 1991), and Amin and Ng

(1993) among others indicate that European options that pay off only at maturity are priced as if in-

vestors priced options at their expected discounted payoffs under an equivalent “risk-neutral” repre-

sentation that incorporates the appropriate compensation for systematic asset, volatility, interest rate,

or jump risk. Thus, the corresponding “risk-neutral” specification of the general model specified in

section 2 involves compensation for various factor risk. Namely, the “mean” of stock return in the

”risk-neutral” specification will be equal to the risk-free rate, the “mean” of the interest rate process

as well as the “means” of the stochastic conditional volatilities for both interest rate and stock return

will be adjusted for the interest rate risk and systematic volatility risk. Standard approaches for pricing
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systematic volatility risk, interest rate risk, and jump risk have typically involved either assuming the

risk is nonsystematic and therefore has zero price, or by imposing a tractable functional form on the

risk premium (e.g. the factor risk premiums are proportional to the respective factors) with extra (free)

parameters to be estimated from observed options prices or bond prices (for interest rate risk).

Under the “risk-neutral” distribution of the general framework, a European call option on a non-

dividend paying stock that pays off max(ST �X; 0) at maturity T for exercise price X is priced as

C0(S0; r0; �r0; �S0;T;X) = E
�
0[e

�
R
T

0
rtdtmax(ST �X; 0)jS0; r0; �r0; �S0]

where E�0 is the expectation using the “risk-neutral” specification for the state variables conditional

on all information at t = 0. In particular, when �2 = 0 in the general model setup, i.e. the assump-

tion 2 in Amin and Ng (1993) is satisfied, the option pricing formula can be derived as in (7). The

call option price is the expected Black-Scholes price with the expectation taken with respect to the

stochastic variance over the life of the option, i.e. the European call option prices depend on the aver-

age expected volatility over the length of the option contract. Furthermore, if the stock variance is also

constant, then we obtain the Black-Scholes formula. Since the underlying stock we consider in this

paper claims no dividend, all options on the stock can be valued as European type options. 14 Option

prices given in the formula can be computed based on direct simulations. Since our model is essentially

in a discrete-time framework, the only approximation involved in the simulation is the Monte Carlo

error. Such error can be reduced to any desired level buy increasing the number of path simulations.

The estimation error involved in our study is also minimal as we rely on large number of observations

over long sampling period to estimate model parameters. Our analysis for the implications of model

specification on option prices is outlined as follows:

First, we distinguish two types of volatility: volatility estimated from the actual stock returns, we

call it the underlying or historical volatility; and volatility implied from observed option prices through

certain option pricing formula, we call it the implied or implicit volatility. The underlying volatilities

are directly estimated for submodels 3 and 4 as constants, and are obtained through projection methods

for the general model and submodels 1 and 2;

Second, in our comparison, all option prices at certain time, say t, are calculated based on infor-

mation available at or before time t. For instance, when historical volatilities are used for each model a

set of European call option prices are generated based on Monte Carlo or the close form solution with

various maturities and degrees of moneyness using the current volatilities, while when the implied

volatilities are used, we use the previous day’s (t� 1) observed option prices to back out the volatility

level at that day (t � 1) which will then be used as the starting values for the volatility processes of

14For options with early exercise potential, i.e. the American options, one way to approximate its price is to compute

the Barone-Adesi and Whaley (1987) early-exercise premium, treating it as if the stock volatility and the yield-curve were

time-invariant. Adding this early-exercise adjustment component to the European option price should result in a reasonable

approximations of the corresponding American option price (e.g. Bates (1996a)).
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current day (t) in simulating option prices. The option prices calculated from the underlying volatility

use only information contained in the underlying processes, while those calculated from the implied

volatility use the information contained in both the underlying process and the observed option prices.

The use of implied volatility as the information extracted from the option market mimics the practice

of option traders who often quote option prices in terms of implied (Black-Scholes) volatilities;

Third, we measure the biases of model option prices with the observed market option prices in

terms of relative percentage difference and implied Black-Scholes volatilities.

5.3 Comparison based on In-Sample Historical Volatilities

The in-sample comparison of alternative option pricing models is different from those who use option

prices to imply all parameter values of the “risk-neutral” model, e.g. Bakshi, Cao and Chen (1997).

In their analysis, all the parameters and underlying volatility are estimated through fitting the option

pricing model into observed option prices. Then these implied parameters and underlying volatility

are used to predict the same set of option prices. It is rather a test of the flexibility of alternative models

in fitting option prices with various maturities and moneyness. Obviously models with more factors

(or more parameters) are given extra advantage. In our comparison, we use the reprojected in-sample

historical volatility, i.e., f�̂rt; �̂Stg, which are known information to price options. Since we aim to

compare among different models, in order to give each model an equal chance we will assume that

the risk premium in both interest rate and stock return processes as well as the conditional volatility

processes are all zero. It is noted that such an assumption will be tested in our empirical analysis.

Option pricing biases are compared to the observed market prices based on the mean relative per-

centage option pricing error (MRE) and the mean absolute relative option pricing error (MARE), given

by

MRE =
1

n

nX
i=1

CM
i � Ci

Ci

MARE =
1

n

nX
i=1

jCM
i � Cij
Ci

where n is the number of options used in the comparison, Ci and CM
i represents respectively the ob-

served market option price and the theoretical model option price. The MRE statistic measures the

average relative biases of the model option prices, while the MARE statistic measures the dispersion

of relative biases of the model prices. The difference between MARE and MRE suggests the direc-

tion of the bias of the model prices, namely when MARE and MRE are of the same absolute values, it

suggests that the model systematically misprices the options to the same direction as the sign of MRE,

while when MARE is much larger than MRE in absolute magnitude, it suggests that the model is in-

accurate in pricing options but the mispricing is less systematic. Since the percentage errors are very

sensitive to the magnitude of option prices which are determined by both moneyness and length of

maturity, we also calculate MRE and MARE for each of the 18 moneyness-maturity categories in 6.
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Table 7 reports the relative pricing errors (%) based on underlying volatility for alternative models.

In each cell, from top to bottom are the MRE (mean relative error) and MARE (mean absolute relative

error) statistics for: 1. the asymmetric general SV model with �2 6= 0; �3 6= 0; 2. the symmetric

general SV model with �2 = �3 = 0; 3. the asymmetric submodel I with �2 6= 0; �3 6= 0; 4.

the symmetric submodel I with �2 = �3 = 0; 5. the asymmetric submodel II with �3 6= 0; 6. the

symmetric submodel II �3 = 0; 7. the submodel III; and 8. the submodel IV. The conclusions we

draw from the above comparison are summarized as following.

First, the symmetric SV models in general outperform the Black-Scholes model, which we be-

lieve is due to the fact that the Black-Scholes model uses the average volatility over the sampling pe-

riod, while the SV models use the instantaneous volatility reprojected from the estimated process. It

is obvious from Figures 10 and 11 that both the stock return volatility and interest rate volatility are

time-varying and sometimes clustered, i.e. with bunching of high and low episodes. Therefore, the

SV model provides a better prediction of the volatility. While the reduction of pricing errors is more

significant for deep OTM options than for deep ITM options, for short maturity options within the

symmetric model framework, the pricing errors are actually higher for stochastic volatility models;

Second, surprisingly the asymmetric SV models do not outperform the Black-Scholes model and

actually underperform the symmetric SV models, i.e. it actually has higher relative option pricing er-

rors than their symmetric counterparts. Bearing in mind the possible Monte Carlo errors associated

with in particular the tail behaviour of the distribution, a similar mispricing pattern of the asymmetric

SV models as that of the Black-Scholes model for the OTM options but a different mispricing pattern

than the Black-Scholes model for the ITM options suggests the asymmetry of asset return distribu-

tions under correlated shocks to asset return and conditional volatility. A further look at the implied

Black-Scholes volatility of the asymmetric model prices, however, reveal that the implied volatility

curve of the asymmetric models against maturity, reported in Figure 13, has a curvature closer to the

implied volatility from observed market options prices in its shape, suggesting such pricing biases may

be easier to correct;

Third, consistent with simulation results in e.g. Hull and White (1987) and others, the symmetric

SV models tend to predict lower prices than the Black-Scholes model for ATM options and higher

prices than the Black-Scholes model for deep ITM options. However, such findings are not observed

for the asymmetric SV models;

Fourth, the effect of stochastic interest rates on option prices is minimal in both cases of stochastic

stock return volatility and constant stock return volatility, i.e. the simulation results between submod-

els I and II and those between submodels III and IV;

Fifth, the systematic effect on the “mean” of stock returns, namely the additional predictability of

stock returns, has a clear effect on option prices as evidenced in the simulation results between the

general model and submodel I. This is due to the fact that the reprojected underlying volatilities are

different in magnitude under alternative specifications of the ”mean” functions. In the asymmetric
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model framework, the predictability tends to reduce the overall option pricing errors. As discussed in

Lo and Wang (1995), predictability of asset returns can have significant impact on option prices, even

though the exact effect is far from being clear;

Finally, in general all the models share the similar pattern of mispricing as the Black-Scholes model,

i.e. underpricing of short-maturity options and overpricing of long-maturity options, overpricing of

deep OTM options and underpricing of deep ITM options. Since the simulation results in next section

suggest the existence of a non-zero risk premium for the stochastic volatility, the overall overpricing

of all SV models may be due to our assumption of zero risk premium for conditional volatility.

5.4 Out-of-Sample Comparison based on Implied Volatility

For out-of-sample analysis, since the underlying volatility is no longer observable, we will use market

option prices observed in the previous day (t-1) to imply the conditional volatilities at t � 1 which

are used as the initial values of the volatility processes at day t. In addition, we also assume a simple

functional form for the risk premium of stock return stochastic volatility, namely �t�s, i.e. the risk

premium is proportional to the conditional volatility of the stochastic volatility process. For each given

option pricing model, we imply a parameter set, �t = (�st; �rt; �t) or its subset depending on the

model specification, by minimizing the sum of squared error (SSE), i.e.

~�t�1 = Argmin�t�1

X
i

(CM
t�1(St�1; rt�1; �t�1;Ti;Xi)� Ct�1(Ti;Xi))

2 (9)

where Ct�1(Ti;Xi) is the option price observed at t�1 with maturity date Ti and strike price Xi. The

implied volatilities and risk premium at t� 1 are then used to price the options at t

CM
t (St; rt; �rt; �St;T;X) = E

�
t [e

�
R
T

0
rtdtmax(ST �X; 0)jSt; rt; ~�t�1] (10)

Our simulation results using the same data set as in the in-sample comparison show that, based on

implied volatility instead of underlying volatility, but maintaining the assumption of zero risk premium

for stock return stochastic volatility, can slightly reduce the relative pricing errors (not reported), and

the pricing errors for long-term options are still high. While allowing for non-zero risk premium for

stochastic volatility but relying on the historical underlying volatility can largely reduce the overall

relative pricing errors (not reported), but the relative pricing errors for short-maturity options remain

high. When both conditional volatility and risk premium are implied from previously observed market

option prices following the above procedure, the relative pricing errors (not reported) are very similar

to our findings in this section. The above evidence suggests that, similar to the findings in Melino

and Turnbull (1990), there exists a non-zero risk premium for stochastic volatility of stock returns.

However, the risk premium parameter �t appears to be rather stable over time. Due to the relatively

small number of time periods over short time span involved in our study, such finding is not surprising

and a rigorous test of the constant risk premium parameter is not performed.
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Table 8 reports the relative pricing errors (%) based on implied volatility and/or non-zero risk pre-

mium of stochastic volatility for alternative models. In each cell, from top to bottom are the MRE

(mean relative error) and MARE (mean absolute relative error) statistics for various models as listed

in Table 7. The basic conclusions we draw from the comparison are summarized as following. First,

all models have substantially reduced the pricing errors due to the use of implied volatility. The Black-

Scholes model exhibits similar pattern of mispricing, namely underpricing of short-maturity options

and over-pricing of long-maturity options, and overpricing of deep OTM options and underpricing

deep ITM options; Second, all SV models outperform non-SV models due to the use of implied volatil-

ity and more importantly the introduction of non-zero risk premium for conditional volatility. The

asymmetric model captures the curvature of the implied volatility curve better than the symmetric

models, as reflected in Figure 14. Its direct implication is the lower pricing errors for deep ITM op-

tions, which are of important economic meaning in terms of absolute price differences. However,

the asymmetric models still exhibit systematic pricing errors, namely underpricing of short-term deep

OTM options, overpricing of long-term deep OTM options, and underpricing of deep ITM options.

Furthermore, the MARE statistics, a measure of the dispersion of the relative pricing errors, are not

reduced as much as the MRE statistics; Third, the interest rate still only has minimal impact on option

prices; Fourth, the impact of the systematic effect in the “mean” of stock returns is much less obvious.

This is due to the fact that under risk-neutral specification, the models are equivalent regardless of the

specification of “mean” functions.

6 Conclusion

In this paper, we specify a SV asset pricing model in a multivariate framework to simultaneously

describe the dynamics of stock returns, stock return conditional volatility, interest rates, and interest

rate conditional volatility. In addition, the model assumes a systematic component in the stock return

volatility and “leverage effect” for both stock return and interest rate processes. The proposed model

is first estimated using the EMM technique based on observations of underlying state variables. The

estimated model is then utilized to investigate the respective effect of systematic volatility, idiosyn-

cratic volatility, and stochastic interest rates on option prices. The empirical results are summarized

as follows.

While theory predicts that the short-term interest rates are strongly related to the systematic volatil-

ity of the consumption process, our empirical results suggest that the short-term interest rate fails to

serve as a good proxy of the systematic factor. However, the short-term interest rate is significantly cor-

related with the “mean” of the stock returns, suggesting stock return is predictable to certain extent.

Such predictability, as shown in the empirical results based on the underlying volatility, has a clear

impact on option prices as the reprojected underlying volatilities are different in magnitude in alter-
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native model specifications. It is noted that when volatilities are implied from previously observed

option prices, such an effect disappears as the “risk-neutral” specifications under different conditional

“means” are essentially equivalent.

Overall, all models exhibit clear and significant discrepancies between model predicted option

prices and market observed option prices for different terms to expiration and degrees of moneyness

based on reprojected underlying volatility. In particular, the Black-Scholes model underprices short-

term maturity call options and overprices long-term maturity call options, and underprices deep ITM

options and overprices deep OTM options based on both underlying historical volatility and implied

volatility. While allowing for stochastic volatility of stock returns can in general reduce the pricing

errors, allowing for stochastic interest rates has minimal impact on option prices in our case.

Similar to Melino and Turnbull (1990), our empirical findings strongly suggest the existence of

a non-zero risk premium for stochastic volatility of stock returns. When a non-zero risk-premium of

stochastic volatility is introduced into the model and the implied volatility is used to price options, the

models with stochastic volatility of stock returns and in particular the asymmetric stochastic volatility

models of stock returns can largely reduce the option pricing errors.

Finally, the failure of short-term interest rate as a valid proxy of systematic volatility component

suggests that in the future study, an alternative state variable, say market index, should be used to study

the impact of systematic volatility on option prices. Our empirical results also suggest that normality

of the stochastic volatility model may not be adequate for this data set and other data sets as well.

We leave it in our future research to explore a richer structural model, for example the jump-diffusion

and/or the SV model with Student-t disturbances, to describe the dynamics of asset returns.
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Table 1: Summary Statistics of Interest Rates and Stock Returns

(a) Static Properties of Original Series

(100�) N Mean Std. Dev. Skewness Kurtosis Max Min Corr(�; rt�1)

�ln(rt) 2835 -9.759 10�3 1.042 -0.549 11.848 6.936 -9.137

�ln(St) 2835 1.051 10�1 3.719 -1.109 14.655 21.48 -36.67 -0.043

(b) Static Properties of Filtered Interest Rates and Stock Returns

N Mean Std. Dev. Skewness Kurtosis Max Min Corr(:; rt�1)

Yrt 2834 -6.10 10�10 1.042 -0.556 11.87 6.948 -9.154

ln(Y 2
rt) 2834 -2.199 2.995 -1.241 1.806 4.429 -20.16

Y 1St 2834 3.86 10�4 3.716 -1.107 14.56 21.34 -36.56

ln(Y 12St) 2834 0.766 2.525 -1.201 2.032 7.198 -14.19 -0.063

Y 2St 2834 4.38 10�4 3.719 -1.110 14.65 21.37 -36.77

ln(Y 22St) 2834 0.794 2.409 -0.850 0.279 7.209 -6.673 -0.046

(c) Dynamic Properties of Filtered Interest Rates and Stock Returns (autocorrelations (�10�1))

�(1) �(2) �(3) �(4) �(5) �(10) �(15) �(20)

Yrt 1.270 -0.118 -0.441 0.292 -0.271 0.250 0.837 0.197

ln(Y 2
rt) 1.120 0.981 0.662 0.795 1.180 0.216 0.199 0.419

Y 1St 0.653 -0.469 -0.554 0.050 0.011 -0.316 0.414 -0.233

ln(Y 12St) 0.644 0.479 -0.064 0.460 0.455 0.219 0.305 0.782

Y 2St 0.670 -0.451 -0.537 0.066 0.028 -0.346 0.430 -0.218

ln(Y 22St) 0.594 0.495 -0.090 0.363 0.285 0.193 0.247 0.653
Note: Y 1 represents the filtered series with systematic effects on stock returns, while Y 2 without systematic effects.

40



Table 2: Estimates of trend
Model Stock Return Parameter Interest Rate Parameter

�S �S �r �r

With Systematic Effect 0.667 -10.29 -0.215 -6.98 10�4

(2.60) (-2.28) (-1.119) (-1.075)

Without Systematic Effect 0.105 -0.215 -6.98 10�4

(1.505) (-1.119) (-1.075)
Note: The numbers in brackets are t-ratios of the above estimates. The blank cell indicates the parameter is pre-set as zero

in the corresponding model.

Kz �0 �1 
 �1 �2

0 :118
(1:91e�3)

�:305
(5:90e�2)

:957
(7:50e�4)

�:080
(1:41e�2)

:123
(1:44e�2)

1 :118
(6:18e�4)

�:305
(1:79e�2)

:957
(2:52e�4)

�:080
(7:41e�3)

:123
(3:92e�3)

2 :118
(6:18e�4)

�:305
(1:79e�2)

:957
(2:52e�4)

�:080
(7:41e�3)

:123
(3:92e�3)

3 ::097
(5:45e�4)

�; 433
(1:40e�2)

:968
(8:61e�3)

�:098
(8:61e�3)

:135
(4:00e�3)

4 :190
(1:32e�3)

�:256
(2:02e�2)

:949
(4:50e�4)

�:075
(1:45e�2)

:183
(5:26e�3)

5 :182
(1:27e�3)

�:254
(1:95e�2)

:952
(4:35e�4)

�:079
(1:43e�2)

:183
(5:06e�3)

6 :183
(1:37e�3)

�:382
(1:82e�2)

:955
(4:38e�4)

�:071
(2:04e�2)

:201
(6:11e�3)

7 :174
(1:36e�3)

�:365
(1:90e�2)

:957
(4:43e�4)

�:072
(1:94e�2)

:193
(5:97e�3)

8 :177
(1:37e�3)

�:364
(1:85e�2)

:957
(4:41e�4)

�:073
(1:98e�2)

:196
(5:89e�3)

9 :180
(1:47e�3)

�:384
(1:94e�2)

:956
(4:69e�4)

�:072
(2:10e�2)

:202
(6:56e�3)

10 :183
(1:69e�3)

�:297
(2:62e�2)

:954
(5:42e�4)

�:062
(1:99e�2)

:172
(6:60e�3)

Table 3: Sensitivity of the EGARCH(1,1) leading term parameters to the order of the polynomial for

the Stock returns. Standard errors are below between brackets.
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Kz �0 �1 
 �1 �2

0 :020
(3:35e�3)

:240
(8:09e�2)

:949
(7:30e�3)

�:029
(9:62e�3)

:191
(1:21e�2)

1 :020
(1:33e�3)

:241
(3:33e�2)

:949
(3:16e�3)

�:029
(4:13e�3)

:191
(4:49e�3)

2 :020
(1:33e�3)

:241
(3:33e�2)

:949
(3:16e�3)

�:029
(4:13e�3)

:191
(4:48e�3)

3 :030
(1:24e�3)

:141
(2:82e�2)

:957
(3:50e�3)

�:028
(4:67e�3)

:195
(4:34e�3)

4 :030
(1:42e�3)

:050�
(3:18e�2)

:959
(4:94e�3)

�:041
(6:53:e�3)

:185
(4:91e�3)

5 :031
(1:42e�3)

:051�
(3:16e�2)

:960
(5:01e�3)

�:039
(6:56e�3)

:185
(4:91e�3)

6 :056
(1:26e�3)

�:100
(1:88e�2)

:976
(2:54e�3)

�:024
(8:82e�3)

:232
(4:50e�3)

7 :057
(1:32e�3)

�:122
(1:87e�2)

:977
(2:49e�3)

�:024
(9:07e�3)

:246
(4:84e�3)

8 :060
(1:32e�3)

�:115
(1:83e�2)

:977
(2:42e�3)

�:024
(9:17e�3)

:248
(4:74e�3)

9 :045
(2:10e�3)

:161
(3:48e�2)

:934
(7:14e�3)

�:028
(6:04e�3)

:208
(5:46e�3)

10 :054
(1:75e�3)

:045�
(3:22e�2)

:964
(5:62e�3)

�:014�
(7:79e�3)

:204
(5:80e�3)

Table 4: Sensitivity of the EGARCH(1,1) leading term parameters to the order of the polynomial for

the Interest Rates. Standard errors are below between brackets. The values marked with an asterix are

insignificantly different from zero at a 5% level

42



Table 5: Test statistics for the SV models

(a) Interest rate returns

Asymmetric

General Model

Symmetric

General Model

Asymmetric

Submodel 1

Symmetric

Submodel 1

J-test .471 2.96 .471 2.96

df 1 1 1 1

P-value .493 .085 .493 .085

�0 -.709 -1.72 -.686 -1.72

�1 .715 -1.72 .685 -1.72


 .696 1.72 .685 1.72

�1 -.588 - -.684 -

�2 .704 1.72 .686 1.72

(b) Stocks returns

Asymmetric

General Model

Symmetric

General Model

Asymmetric

Submodel 1

Symmetric

Submodel 1

J-test .034 .416 .202 .841

df 1 1 1 1

P-value .854 .519 .653 .359

�0 .185 -.645 .451 -.917

�1 .180 -.645 .450 -.917


 .185 -.645 .451 -.917

�1 .193 - -.450 -

�2 -.187 -.645 -.450 -.917
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Table 6: Sample Properties of Stock Call Option

es

Moneyness Days-to-Expiration

x = ln(S=KB(t; T )) T-t [5, 215]

[�0:68; 1:11] �30 30 ��180 � 180 Subtotal

0.223 (0.112) 1.760 (0.819) 1.892 (0.911)

OTM x � �0:20 0.066 (0.035) 0.137 (0.033) 0.274 (0.038) 264

f33g f85g f146g
0.817 (0.577) 3.140 (1.364) 5.231 (0.989)

�0:20 < x � �0:03 0.090 (0.040) 0.149 (0.047) 0.173 (0.065) 299

f76g f164g f59g
1.783 (1.023) 4.911 (1.440) 7.042 (0.584)

ATM �0:03 < x � 0:00 0.114 (0.054) 0.183 (0.061) 0.250 (0.000) 151

f47g f48g f46g
2.997 (0.876) 5.843 (1.318) 7.976 (0.559)

0:00 < x � 0:05 0.143 (0.050) 0.195 (0.058) 0.190 (0.060) 118

f32g f65g f21g
9.114 (3.030) 10.61 (2.736) 11.90 (2.178)

ITM 0:05 < x � 0:30 0.264 (0.091) 0.294 (0.089) 0.306 (0.109) 566

f182g f283g f101g
21.23 (5.403) 23.99 (6.004) 25.93 (6.135)

x > 0:30 0.361 (0.053) 0.369 (0.049) 0.375 (0.066) 722

f176g f394g f152g
Subtotal 556 1039 525 2120(total)

Note: In each cell from top to bottm are: the average bid-ask midpoint call option prices with standard error in parentheses;

the average effective bid-ask spread (ask price minus the bid-ask midpoint) with standard error in parentheses; and the

number of option price observations (in curly brackets) for each moneyness-maturity category. The option price sample

covers the period of June 19, 1997 through August 18, 1997 with total 2120 observations. In calculating the moneyness,

we use U.S. 3-month T-bill rates for options with maturity less than 4 months and 6-month T-bill rates for options with

maturity longer than 4 months.
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Table 7: Relative Pricing Errors (%) of Alternative Models based on Underlying Volatility

Moneyness Days-to-Expiration

x = ln(S=KB(t; T )) T-t [5, 215]

[�0:68; 1:11] �30 30��180 � 180

-23.83 23.90 23.32 30.19 57.84 57.84 42.53 49.91

-26.47 26.47 17.45 17.45 47.09 47.09 33.46 41.63

-18.89 20.04 38.32 43.22 61.68 61.68 51.90 55.11

OTM x � �0:20 -27.12 27.12 16.68 24.01 46.38 46.38 32.76 42.11

-18.89 20.05 38.32 43.22 61.67 61.67 51.90 55.12

-27.12 27.12 16.68 24.01 46.38 46.38 32.76 42.11

-40.71 42.66 24.82 36.36 59.97 59.97 41.96 54.81

-40.72 42.67 24.77 36.31 59.64 49.64 41.47 54.56

-5.00 14.27 15.41 16.33 22.91 22.91 12.48 17.71

-6.26 12.56 12.27 13.30 17.76 17.76 9.22 14.40

-1.20 14.16 23.54 24.38 34.02 34.02 20.39 24.61

�0:20 < x � �0:03 -6.41 12.16 11.62 13.05 17.52 17.52 8.82 14.21

-1.20 14.16 23.54 24.38 34.02 34.02 20.39 24.61

-6.41 12.16 11.61 13.05 17.52 17.52 8.82 14.21

6.21 25.61 18.78 20.71 24.28 24.28 17.23 22.96

5.35 26.04 19.20 20.42 24.09 24.09 17.15 22.89

0.22 4.18 8.21 9.03 16.45 16.45 7.73 9.22

0.31 3.73 6.31 7.26 12.13 12.13 5.83 7.29

0.90 4.62 14.02 14.02 24.28 24.28 12.57 13.56

ATM �0:03 < x � 0:00 -0.95 4.43 6.90 6.90 11.96 11.96 5.82 7.26

0.90 4.62 14.02 14.02 24.28 24.28 12.57 13.56

-0.95 4.43 6.91 6.91 11.96 11.96 5.82 7.26

9.54 15.71 10.86 10.86 16.33 16.33 11.60 13.25

11.50 15.49 9.85 10.94 16.18 16.18 11.55 13.20

1.15 4.45 7.38 7.73 13.70 13.70 7.63 8.61

0.51 4.11 5.38 5.79 9.80 9.80 5.43 6.52

2.47 4.90 12.64 12.86 20.58 20.58 11.90 12.61

0:00 < x � 0:05 0.32 3.97 5.23 5.63 9.66 9.66 5.27 6.36

2.47 4.90 12.64 12.86 20.58 20.58 11.90 12.61

0.32 3.97 5.23 5.63 9.66 9.66 5.27 6.36

6.99 11.47 8.25 8.72 12.94 12.94 9.27 10.61

6.99 11.47 8.21 8.69 12.80 12.80 9.22 10.56
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-0.25 1.10 3.32 3.50 9.03 9.03 3.77 4.22

-0.59 1.16 1.89 2.16 5.87 5.87 2.21 2.81

0.08 1.08 5.59 5.70 13.67 13.67 6.10 6.43

ITM 0:05 < x � 0:30 -0.63 1.16 1.82 2.09 5.78 5.78 2.14 2.76

0.08 1.08 5.59 5.70 13.67 13.67 6.10 6.43

-0.63 1.16 1.82 2.09 5.78 5.78 2.14 2.76

-0.14 2.25 2.46 3.04 7.37 7.37 2.98 3.90

-0.13 2.25 2.44 3.02 7.26 7.26 2.94 3.87

-0.14 0.22 0.43 0.60 2.44 2.44 0.82 1.00

-0.30 0.33 -0.62 0.71 0.44 0.97 -0.21 0.61

-0.10 0.21 1.11 1.17 4.02 4.02 1.55 1.67

x > 0:30 -0.31 0.33 -0.63 0.72 0.42 0.96 -0.23 0.66

-0.10 0.21 1.11 1.17 4.02 4.02 1.55 1.67

-0.31 0.33 -0.63 0.72 0.42 0.96 -0.23 0.66

-0.54 0.61 -1.10 1.14 -0.04 1.13 -0.61 0.98

-0.54 0.62 -1.12 1.20 -0.10 1.13 -0.64 0.99

-2.60 4.53 5.73 6.37 25.38 25.38 10.29 12.43

-3.18 4.54 3.88 5.00 19.74 19.89 7.47 10.01

-1.53 4.25 9.31 9.75 39.51 39.51 16.84 18.54

Overall -3.33 4.58 3.74 4.86 19.43 19.59 7.27 9.86

-1.53 4.25 9.31 9.75 39.51 39.51 16.84 18.54

-3.33 4.58 3.74 4.86 19.44 19.60 7.27 9.86

-2.08 8.78 5.74 7.54 25.17 25.51 10.36 14.06

-2.08 8.07 5.71 7.51 24.99 25.34 10.29 13.99
Note: In each cell, from top to bottom are the MRE (mean relative error) and MARE (mean absolute relative error) statistics

for:

1. the asymmetric general SV model with �2 6= 0; �3 6= 0;

2. the symmetric general SV model with �2 = �3 = 0;

3. the asymmetric submodel I with �2 6= 0; �3 6= 0;

4. the symmetric submodel I with �2 = �3 = 0;

5. the asymmetric submodel II with �3 6= 0;

6. the symmetric submodel II with �3 = 0;

7. the submodel III; and

8. The sunmodel IV.
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Table 8: Relative Pricing Errors (%) of Alternative Models based on Implied Volatility

Moneyness Days-to-Expiration

x = ln(S=KB(t; T )) T-t [5, 215]

[�0:68; 1:11] �30 30��180 � 180

-17.16 17.16 -2.90 4.20 3.13 5.07 -4.77 10.72

-27.33 27.33 -3.18 3.85 2.50 4.76 -7.61 11.25

-17.20 17.20 -2.91 4.21 2.93 5.06 -4.87 10.73

OTM x � �0:20 -27.34 27.34 -3.19 3.86 2.31 4.75 -7.92 11.26

-17.15 17.15 -2.90 4.19 2.92 5.07 -4.86 10.71

-27.32 27.32 -3.18 3.84 2.30 4.76 -7.91 11.24

-40.01 40.80 3.92 8.18 22.41 22.55 5.16 15.47

-39.95 40.75 3.89 8.16 22.38 22.48 5.12 15.43

0.75 3.39 -0.58 1.57 -0.60 2.38 -0.40 2.31

0.81 3.41 -0.62 1.85 -0.66 2.76 -0.44 2.69

0.74 3.38 -0.60 1.59 -0.66 2.38 -0.45 2.32

�0:20 < x � �0:03 0.82 3.43 -0.64 1.85 -0.69 2.79 -0.45 2.72

0.75 3.39 -0.58 1.57 -0.65 2.36 -0.42 2.31

0.81 3.41 -0.62 1.85 -0.68 2.77 -0.44 2.70

-8.88 21.77 0.05 5.79 11.44 11.63 0.78 10.23

-8.79 21.72 0.06 5.77 11.39 11.58 0.75 10.20

0.60 2.44 -0.37 0.89 -0.24 0.86 0.12 1.46

1.76 2.45 -0.42 0.88 -0.52 0.87 0.62 1.52

0.63 2.46 -0.37 0.92 -0.24 0.87 0.13 1.48

ATM �0:03 < x � 0:00 1.75 2.43 -0.43 0.89 -0.54 0.90 0.61 1.53

0.59 2.44 -0.38 0.89 -0.24 0.85 0.12 1.46

1.77 2.45 -0.42 0.88 -0.51 0.87 0.63 1.52

-1.74 8.07 3.87 7.34 0.83 0.83 1.79 7.42

-1.75 8.71 3.87 7.33 0.79 0.79 1.83 7.42

1.13 1.45 -0.17 0.30 -.23 0.45 0.20 0.77

1.84 3.96 -0.33 0.71 -.45 0.87 0.33 1.45

1.11 1.44 -0.16 0.32 -.22 0.45 0.21 0.78

0:00 < x � 0:05 1.80 3.95 -0.32 0.74 -.44 0.86 0.33 1.44

1.13 1.45 -0.15 0.30 -.21 0.43 0.21 0.76

1.84 3.96 -0.33 0.71 -.45 0.87 0.33 1.45

-1.12 7.49 -1.99 3.96 9.59 8.11 0.57 5.18

-1.17 7.50 -1.97 3.95 7.50 8.08 0.59 5.17
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-0.07 0.16 -.24 0.86 -0.19 1.74 -0.18 1.26

-0.15 0.22 -.24 0.64 -0.22 1.01 -0.21 0.72

-0.08 0.17 -.26 0.90 -0.22 1.79 -0.21 1.31

ITM 0:05 < x � 0:30 -0.14 0.22 -0.25 0.66 -0.22 0.90 -0.23 0.70

-0.06 0.16 -0.27 0.88 -0.20 1.76 -0.19 1.28

-0.15 0.22 -0.25 0.64 -0.23 0.89 -0.23 0.69

-1.86 2.04 -1.33 2.40 1.48 3.23 -1.17 2.39

-1.83 2.02 -1.33 2.39 1.45 3.23 -1.16 2.37

-0.08 0.18 -0.04 1.06 -0.05 1.93 -0.06 1.16

-0.13 0.15 -0.06 0.94 -0.07 1.18 -0.08 0.90

-0.06 0.18 -0.04 1.10 -0.07 1.95 -0.05 1.19

x > 0:30 -0.10 0.17 -0.06 0.95 -0.10 1.21 -0.08 0.91

-0.06 0.16 -0.04 1.06 -0.06 1.93 -0.05 1.16

-0.11 0.15 -0.06 0.94 -0.09 1.18 -0.08 0.89

-1.19 1.19 -0.99 1.01 -0.95 1.48 -1.00 1.09

-1.18 1.18 -0.99 1.01 -0.97 1.48 -1.00 1.10

-0.07 1.36 -0.24 2.57 -0.35 3.80 -0.22 2.54

-0.12 1.41 -0.27 2.75 -0.37 3.53 -0.24 2.45

-0.08 1.37 -0.25 2.58 -0.37 3.80 -0.24 2.55

Overall -0.13 1.41 -0.28 2.75 -0.41 3.54 -0.27 2.46

-0.07 1.35 -0.25 2.57 -0.36 3.78 -0.23 2.52

-0.13 1.39 -0.27 2.74 -0.39 3.51 -0.25 2.43

-5.16 9.34 -0.32 3.22 7.28 8.62 -0.10 5.13

-5.15 9.31 -0.33 3.21 7.26 8.59 -0.10 5.12
Note: In each cell, from top to bottom are the MRE (mean relative error) and MARE (mean absolute relative error) statistics

for:

1. the asymmetric general SV model with �2 6= 0; �3 6= 0;

2. the symmetric general SV model with �2 = �3 = 0;

3. the asymmetric submodel I with �2 6= 0; �3 6= 0;

4. the symmetric submodel I with �2 = �3 = 0;

5. the asymmetric submodel II with �3 6= 0;

6. the symmetric submodel II with �3 = 0;

7. the submodel III; and

8. The sunmodel IV.
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Figure 1: Salient feature of interest rate returns
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Figure 2: Salient feature of stock returns
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Figure 3: Upper panel: reprojected ln�2t from reprojection on ln y2t and lagged ln y2t : Middle panel:

reprojected ln�2t from reprojection on ln�2t�1 and ln y2t : Lower panel: true ln�2t :
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Figure 4: Estimated conditional density for EGARCH(1,1)-H(4,0) model for interest rate returns
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Figure 5: Estimated conditional density for EGARCH(1,1)-H(6,0) model for interest rate returns
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Figure 6: Estimated conditional density for EGARCH(1,1)-H(8,0) model for interest rate returns
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Figure 7: Estimated conditional density for EGARCH(1,1)-H(4,0) model for stock returns
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Figure 8: Estimated conditional density for EGARCH(1,1)-H(6,0) model for stock returns
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Figure 9: Estimated conditional density for EGARCH(1,1)-H(8,0) model for interest rate returns
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Figure 10: Filtered stock returns volatility for the SARMAV(1,0) and ASARMAV(1,0) models using

reprojection
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Figure 11: Filtered interest returns volatility for the SARMAV(1,0) and ASARMAV(1,0) models using

reprojection
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Figure 12: Implied Black-Scholes Volatility from Observed Option Prices
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Figure 13: Implied Black-Scholes Volatility from Model Predicted Option Prices based on Underlying

Volatility
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Figure 14: Implied Black-Scholes Volatility from Model Predicted Option Prices based on Implied

Volatility
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