
ON SENSITIVITY OF CENTRAL SOLUTIONS IN SEMIDEFINITE PROGRAMMING

J.F. Sturm1 and S. Zhang2

March, 1998

ABSTRACT

In this paper we study the properties of the analytic central path of a semide�nite programming

problem under perturbation of a set of input parameters. Speci�cally, we analyze the behavior of

solutions on the central path with respect to changes on the right hand side of the constraints,

including the limiting behavior when the central optimal solution is approached. Our results are

of interest for the sake of numerical analysis, sensitivity analysis and parametric programming.

Under the primal-dual Slater condition and the strict complementarity condition we show that

the derivatives of central solutions with respect to the right hand side parameters converge as the

path tends to the central optimal solution. Moreover, the derivatives are bounded, i.e. a Lipschitz

constant exists. This Lipschitz constant can be thought of as a condition number for the semide�nite

programming problem. It is a generalization of the familiar condition number for linear equation

systems and linear programming problems. However, the generalized condition number depends on

the right hand side parameters as well, whereas it is well-known that in the linear programming case

the condition number depends only on the constraint matrix. We demonstrate that the existence of

strictly complementary solutions is important for the Lipschitz constant to exist. Moreover, we give

an example in which the set of right hand side parameters for which the strict complementarity

condition holds is neither open nor closed. This is remarkable since a similar set for which the

primal-dual Slater condition holds is always open.
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1 Introduction

In recent years, semide�nite programming (abbreviated as SDP hereafter) has emerged as an im-

portant subject in optimization. It turns out that SDP has many applications; see e.g. [1, 2, 3, 7,

10, 26, 27]. Recent intensive research indicates that the interior point method can be an e�cient

means to solve SDPs and related problems. One may consult the interior point homepage at URL

http://www.mcs.anl.gov/home/otc/InteriorPoint/ and the related links for historical devel-

opments of SDP. Extensive treatments on the primal-dual interior point methods for SDP can be

found in De Klerk [4] and Sturm [23].

These developments can be traced back to a few pioneering works. Among them are Nesterov

and Nemirovsky [18] and Nesterov and Todd [19], who introduced the concepts of self-concordant

barriers for convex cones and self-scaled barriers for symmetric cones, respectively. This gives rise to

the possibility of solving SDP by interior point methods. A key observation is that SDP can be seen

as linear program (LP) over the cone of positive semide�nite matrices. Indeed, many similarities

between LP and SDP have been revealed ever since, and are used in the design of solution methods.

Recognizing their similarities, SDP is also known as \LP for the 90's and 00's", [28]. However, there

still exist some fundamental di�erences between the two problem classes. For a discussion on this

subject, we refer to Luo, Sturm and Zhang [16]. In particular, LP possesses a very important

property which is combinatorial in nature, i.e. if an LP problem has an optimal solution then it

always has a basic optimal solution. Although some attempts are made to generalized concepts

like basic solutions from LP to SDP (cf. Pataki [20]), there does seem to be lots of complications

still. As a consequence, classical results for sensitivity analysis and parametric programming for

LP cannot be carried over easily to the SDP case, since most of these classical results are based on

the analysis of a basic optimal solution. So far, not much is published about perturbation theory

for SDP. Recently Goldfarb and Scheinberg [9] investigated the properties of the optimal value of

an SDP as a function of a perturbation parameter. In particular, they showed that all directional

derivatives of the optimal value function exist, and furthermore how the directional derivatives

can be computed. Just as in linear programming, this amounts to computing dual multipliers on

the boundary of the dual optimal face. Helmberg [11] demonstrated how to use dual solutions to

estimate the optimal objective value when new constraints are added.

As is well known, each iteration of the interior point method involves the resolution of a scaled

system of normal equations, typically of the form

�nd y such that (ADAT)y = b;

where A is an m �N matrix of rank m. The matrix D is an iteratively updated positive de�nite

matrix; in linear programming it is further known to be diagonal. If the optimization problem is de-

generate, then the matrix ADAT gets increasingly ill{conditioned as the iteration process continues.

1



Fortunately, this ill{conditioning does not result in any numerical problems. In fact, computational

experience has shown that the interior point method produces highly accurate solutions for linear

programming problems, with or without degeneracy.

Now that degeneracy is no longer a major concern, one may look at another sort of nasty situation:

What if the problem is almost infeasible, unbouned or unsolvable? If a tiny perturbation in the

data can make the optimal solution set empty, then this may certainly be point of concern, and this

leads to the \distance to ill{posedness" measure, as introduced by Renegar [21]. The \distance to

ill{posedness" has been used in global convergence analysis [21] and also in the context of sensitivity

analysis; see Nunez and Freund [17].

Other approaches are based on the classical perturbation theory for linear systems of equations.

Recall that the (matrix) condition number �(A) measures the sensitivity of the least squares solution

xLS of \Ax = b", with respect to changes in the right hand side b. Ho�man's error bound provides a

possible way to generalize this condition number to linear equality and inequality systems. Namely,

consider a polyhedral set

P = fx j Ax = b; x � 0g;
with A an m�N matrix and P 6= ;. The result of Ho�man states that there exists some (Lipschitz)

constant K > 0 such that

dist (x;P) � K(kAx� bk+ k[�x]+k) for all x 2 <N ;

were [�]+ denotes the positive part. Thus, the Lipschitz constant K is a measure of sensitivity to

the right hand sides in \Ax = b" and \x � 0". Since the optimal solution set of a linear program

can be described as a set of linear equalities and inequalities (viz. by using LP duality), we obtain

a sensitivity measure for linear programming.

In the context of interior point methods, the constant in Ho�man's error bound may be a very

conservative measure of sensitivity. Namely, interior point methods typically trace the central path

towards the analytic center of the optimal solution set. We are thus interested in the sensitivity

of central solutions, which are presumably less sensitive than boundary solutions. In fact, we will

encounter many similarities between the concept of central solutions in linear and semide�nite

programming and the concept of least squares solutions in systems of linear equalities. For linear

programming, it was shown by Holder, Sturm and Zhang [12] that all directional derivatives of the

central optimal solution with respect to right hand side perturbations exist. An upper bound on

the norm of the derivatives can be estimated as �LP(A)=kAk2, where

�LP(A) = supfkAk2kDAT(ADAT)�1k2 j D is a positive diagonal matrixg:

The quantity �LP(A) is always �nite, and is called the condition number for linear programming [25].

Notice in particular that if A is invertible, then �LP(A) reduces to the standard condition number
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of A for linear equation systems (and any associated linear program also reduces to a system of

linear equations). The condition number for linear programming is an important quantity in the

complexity theory of linear programming under the real-number computational model; see Vavavis

and Ye [25].

The concept of centrality is important in perturbation theory for semide�nite programming. If we

have a pair of primal and dual solutions (X;Z) with duality gap trXZ, then the distance to the

optimal solution set can be of the same order as
p
trXZ, even if a pair of strictly complementary

solutions exists. However, if (X;Z) is on the central path, then the distance to the central optimal

solution is at most O(trXZ) (see Luo, Sturm and Zhang [15]). Thus, solutions on the central path

are signi�cantly less sensitive to perturbations in the duality gap. In this paper, we will show that

a similar phenomenon occurs when analyzing the sensitivity of central solutions with respect to

perturbations in the right hand side.

The organization of the paper is as follows. In the next section we introduce two equivalent pre-

sentations of semide�nite programming. The �rst presentation is conventional and directly uses a

matrix linear subspace in de�ning the domain of the problem. The second one, however, explicitly

uses a vector subspace to indicate the domain. These two forms are, of course, equivalent. An

advantage of using the second form is to make the formulae to be developed in the paper easy

comparable to their linear programming counterparts. There is a crucial di�erence between the

existence of an interior point solution (the Slater condition) and the existence of strictly complemen-

tary primal-dual optimal solutions. In fact, it is possible that with whatever small perturbations on

the right hand vector, a semide�nite program satisfying the strict complementarity may loose this

property. In contrast, this can never happen in the case of Slater type properties. This and other

related issues will be discussed in Section 3. In Section 4, we analyze the sensitivity of solutions on

the central path with a positive path parameter � > 0. We will give a geometric interpretation to

the sensitivity measure. Section 5 provides an extensive treatment of the limiting behavior as we

approach the central optimal solution. We conclude the paper with a discussion in Section 6.

2 Semide�nite programming

Let Sn�n denote the linear space spanned by all n� n real symmetric matrices. Let Sn�n+ denote

the cone of positive semide�nite matrices, and Sn�n++ be the cone of positive de�nite matrices.

Consider the following semide�nite program in standard form:

(P ) minimize C �X
subject to A[i] �X = bi; for i = 1; :::; m

X � 0
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where C; A[i] 2 Sn�n for i = 1; :::; m. The standard inner product for two symmetric matrices is

A �B = trAB =
P

i;j AijBij , and A � B means that A� B 2 Sn�n+ .

The dual of (P ) reads

(D) maximize
Pm

i=1 yibi

subject to
Pm

i=1 yiA[i] + Z = C

Z � 0:

In this paper, however, we choose to use the vector representation of semide�nite programming

problems. This means that we will restrict ourselves to semide�nite programming in the N =

n(n+1)=2 dimensional Euclidean space of real symmetric n�n matrices. Let fU [1]; U [2]; : : : ; U [N ]g
be an orthonormal basis in <N which is isomorphic to the space of n � n real symmetric matrices

Sn�n. Obviously, under a nonsingular linear mapping the matrix space and its vector representation

is equivalent. In this paper, we will use these two presentations interchangeably when there is no

confusion.

We consider the image of the cone Sn�n+ in <N :(
x 2 <N

�����
NX
i=1

xiU [i] � 0

)
: (2.1)

Its interior is the image of Sn�n++ (
x 2 <N

�����
NX
i=1

xiU [i] � 0

)
:

If no confusion is possible, we will also denote these two images by Sn�n+ and Sn�n++ respectively.

Note that the cone Sn�n+ is self{dual.

In the vector form we can reformulate the primal-dual semide�nite programming problems as

(Pb) minimize cTx

subject to Ax = b;

x 2 Sn�n+ ;

where c 2 <N , b 2 <m, A 2 <m�N , and the decision variable is x 2 <N . Without loss of generality,

we assume that A has full row rank. Associated with (Pb) is its dual problem

(Db) maximize bTy

subject to ATy + z = c

z 2 Sn�n+ :

Since we shall frequently use the matrix and vector form of the problem formulation in an inter-

changeable way, we shall �rst explain our notation.
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Let a[i] 2 <N denote the i-th row of A, i.e.

AT =
h
a[1]; � � � ; a[m]

i
:

We adopt the convention that lower case symbols x; c; a[i] denote vectors in <N , and the cor-

responding upper case symbols X;C;A[i] denote their symmetric matrix representations. Under

isomorphism, we have

X =
NX
k=1

xkU [k]; C =
NX
k=1

ckU [k]

and

A[i] =
NX
k=1

ak [i]U [k]:

Conversely, we have

xk = U [k] �X; ck = U [k] � C (2.2)

and

ak[i] = U [k] �A[i]; for all k = 1; 2; : : : ; N:

In some places we will use the convention to write x = vecS X to state explicitly that xk = U [k]�X ,

k = 1; 2; : : : ; N , when U [k]'s are the usual unit symmetric matrices. More discussions on the notion

of vecS and vec will be given in Section 4.

Denote the primal feasible set to be

FP (b) = fx j Ax = bg \ Sn�n+

and the dual feasible set

FD = fz j ATy + z = c for some y 2 <mg \ Sn�n+ :

We will only consider those values of b such that (Pb) is feasible, i.e. b 2 ASn�n+ , and we assume

that FD contains a positive de�nite solution:

Assumption 1 FD \ Sn�n++ 6= ;.

The above condition is known as the dual Slater condition. As shown in Luo, Sturm and Zhang [16],

this condition is equivalent to stating that the set of primal optimal solutions is nonempty and

bounded for all b 2 ASn�n+ . Therefore, Assumption 1 holds if and only if the primal has a central

optimal solution which is sometimes also called the analytic center of the optimal face, denoted by

x�(b). For linear programming, the central optimal solution is known to be Lipschitz continuous; see

Holder, Sturm and Zhang [12]. Moreover, it is well known that the primal and dual central optimal
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solutions always satisfy the so called strict complementarity condition. Unfortunately, neither of

these properties carry over to semide�nite programming. In particular, the set of b values for

which the strict complementarity holds can be neither open nor closed. This is in contrast with

the primal-dual Slater condition. The set of b values for which the primal and dual problems both

satisfy the Slater condition obviously forms an open set. Next section will be devoted to these

issues with an example.

3 Properties of the primal-dual central optimal solutions

Consider the following SDP instance:

( �P ) minimize C �X
subject to A[i] �X = bi; for i = 1; 2; 3

X 2 S5�5 and X � 0

where

C =

2
66666664

0 0 0 0 0

1 0 0 0

0 0 0

1 0

0

3
77777775
; A[1] =

2
66666664

1 0 0 0 0

0 0 0 0

0 0 0

�1 0

0

3
77777775
;

A[2] =

2
66666664

0 �1=2 0 0 0

0 0 0 0

1 0 0

0 0

0

3
77777775
; A[3] =

2
66666664

0 0 1=2 0 0

0 0 0 0

0 0 0

0 0

�1

3
77777775
:

Since all matrices are symmetric, we only indicate the upper-triangle part of the above matrices.

In fact, ( �P ) can also be explicitly written as

( �P ) minimize x22 + x44

subject to

2
66666664

x44 + b1 x33 � b2 x55 + b3 x14 x15

x22 x23 x24 x25

x33 x34 x35

x44 x45

x55

3
77777775
� 0:

The dual of ( �P ) is

( �D) maximize b1y1 + b2y2 + b3y3

subject to y1A[1] + y2A[2] + y3A[3] � C;
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which is equivalent to:

( �D) maximize b1y1 + b2y2 + b3y3

subject to Z =

2
66666664

�y1 y2=2 �y3=2 0 0

1 0 0 0

�y2 0 0

y1 + 1 0

y3

3
77777775
� 0:

First of all, it is obvious that for any values of b1, b2 and b3 the problems ( �P ) and ( �D) always

satisfy the Slater condition.

Moreover, if b1 = b2 = b3 = 0, then ( �P ) has a unique optimal solution X� = 0. At the same time,

any dual feasible solution, including any solutions satisfying the Slater condition, is optimal. This

shows that the strict complementarity is satis�ed at optimality.

Now consider any triple b1 = b3 = 0 and b2 > 0. In that case the optimal solution for ( �P ) must

satisfy

X� =

2
66666664

x�44 + b1 x�33 � b2 x�55 + b3 x�14 x�15
x�22 x�23 x�24 x�25

x�33 x�34 x�35

x�44 x�45
x�55

3
77777775
=

2
66666664

0 0 0 0 0

0 0 0 0

b2 0 0

0 0

0

3
77777775
:

Due to the strong duality relation under the primal-dual Slater condition, we know that the optimal

value of ( �D) will be zero as well, and thus y�2 = 0. Because

2
66666664

�y�1 y�2=2 �y�3=2 0 0

1 0 0 0

�y�2 0 0

y�1 + 1 0

y�3

3
77777775
� 0;

this implies in particular that the third column will be zero and so y�3 = 0. As a consequence, the

last column must also be zero. Therefore, the last column of the above matrix and the last column

of the primal optimal matrix X� are both zero, and thus they cannot be strictly complementary.

This example shows the following somewhat surprising result:

Proposition 3.1 The set of b vectors for which (Pb) and (Db) satisfy the strict complementarity

condition is neither closed nor open in general.
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Nevertheless, in our example the Slater condition always holds for any value of b1, b2 and b3.

Therefore, both the primal and the dual central optimal solutions exist. Now we consider the

primal central optimal solution X�(b) with b = (b1; b2; b3) 2 <+ � <++ � f0g.
In fact, for such b it is easy to characterize the primal optimal solutions X�:

X� =

2
66666664

x�44 + b1 x�33 � b2 x�55 + b3 x�14 x�15
x�22 x�23 x�24 x�25

x�33 x�34 x�35
x�44 x�45

x�55

3
77777775
=

2
66666664

b1 0 x�55 0 x�15
0 0 0 0

b2 0 0

0 0

x�55

3
77777775
� 0:

Furthermore, X� is the central optimal solution X�(b) if it maximizes the determinant of the

3� 3 submatrix formed by the �rst, third and �fth rows and columns in the above matrix. Thus,

x�15(b) = 0 and x�55(b) maximizes

x55 det

"
b1 x55

b2

#
= x55(b1b2 � x255):

Hence,

x�55(b) =
q
b1b2=3:

Clearly, X�(b) cannot be Lipschitz continuous because

@x�55(b)

@b1
=

s
b2
3b1

!1 for b1 # 0 and b2 � � > 0:

To summarize, we have shown the following:

Proposition 3.2 The central optimal solution for (Pb) is in general not Lipschitz continuous in b.

Remark that unlike the above situation, the central optimal solution to a linear programming

problem must always be Lipschitz continuous in b; see Holder, Sturm and Zhang [12].

4 Sensitivity on the central path

In this section, we study the sensitivity of solutions on the central path, with respect to changes in

the right hand side vector b. In Section 5, we will study the limiting behavior if the central optimal

solution is approached.

Denote the family of central paths for the parametic problem pair (Pb), (Db) by

f(X(b; �); Z(b; �)) 2 FP (b)�FD j X(b; �)Z(b; �) = �I; � > 0; b 2 ASn�n++ g: (4.1)
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Thus, we have by de�nition that X(b; �)Z(b; �) = �I .

It is now useful to work with the so-called Knonecker products of matrices for ease of deriving

various formulae later. A comprehensive discussion on the linear algebra of Knonecker products

can be found in Chapter 4 of Horn and Johnson [14] (see also Horn and Johnson [13] for related

background information). Below we will sketch some basic facts to serve our discussion.

For matrices A 2 <m�n and B 2 <p�q, the standard \vec" operator on A is de�ned as

vec (A) = (a11; � � � ; am1; a12; � � � ; am2; � � � ; a1n; � � � ; amn)
T

and the Knonecker product between A and B is de�ned as

A 
B =

2
664

a11B � � � a1nB
...

. . .
...

am1B � � � amnB

3
775 :

The following lemma proves to be useful in many applications; its proof can be found in Chapter 4

of Horn and Johnson [14].

Lemma 4.1 It holds that

� (A
B)(C 
D) = AC 
 BD

� vec (AB) = (I 
 A)vecB = (BT 
 I)vecA

� vec (AXB) = (BT 
 A)vecX.

Notice that for a symmetric matrix X 2 Sn�n , we have that vec (X) is an n2-dimensional vector,

whereas vecS (X) is an N -dimensional vector, with N = n(n+ 1)=2, see (2.2).

Di�erentiating with respect to b on both sides of the identity

�I = X(b; �)Z(b; �)

yields (with abuse of notation)

0 = Xb(b; �)Z(b; �) +X(b; �)Zb(b; �):

Applying Lemma 4.1 we obtain

0 = (I 
X(b; �))rbvecZ(b; �) + (Z(b; �)
 I)rbvecX(b; �):
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Pre-multiplying the above identity with the matrix (X(b; �)
 I) yields

0 = (X(b; �)
X(b; �))rbvecZ(b; �) + (X(b; �)Z(b; �)
 I)rbvecX(b; �)

= (X(b; �)
X(b; �))rbvecZ(b; �) + �rbvecX(b; �): (4.2)

Applying Lemma 4.1 again, for any n� n symmetric matrix W , we have

(X(b; �)
X(b; �))vecW = vec (X(b; �)WX(b; �))

which is a linear transformation within the space of symmetric n�n matrices. Notice further that

if W 6= 0 then

W � (X(b; �)WX(b; �))> 0:

Therefore, we can �nd a positive de�nite matrix D(b; �) 2 <N�N such that

D(b; �)w = vecS (X(b; �)WX(b; �)) for all W 2 Sn�n:

Di�erentiating the feasibility relations

Ax(b; �) = b; ATy(b; �) + z(b; �) = c;

and using (4.2), we conclude that (rbx(b; �);rby(b; �);rbz(b; �)) satis�es the system (4.3){(4.5):

Arbx(b; �) = I (4.3)

ATrby(b; �) +rbz(b; �) = 0 (4.4)

D(b; �)rbz(b; �) + �rbx(b; �) = 0: (4.5)

Since D(b; �) is positive de�nite, and A has full row rank, it follows that the system (4.3){(4.5)

is invertible. In other words, the Jacobian with respect to b is nonsingular for the central path

equations. Moreover, (x(b; �); y(b; �); z(b; �)) is uniquely de�ned by (b; �); see [18]. Using the

classical inverse function theorem, it follows that (x(b; �); y(b; �); z(b; �)) is a smooth function of b

on the domain ASn�n++ .

Combining (4.4) and (4.5), we have

rbx(b; �) =
1

�
D(b; �)ATrby(b; �): (4.6)

Substituting this expression into (4.3) yields

AD(b; �)ATrby(b; �) = �I: (4.7)

Since D(b; �) is nonsingular, this further implies that

rby(b; �) = �(AD(b; �)AT)�1:
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Now substitute the above expression into (4.6) to obtain

rbx(b; �) = D(b; �)AT(AD(b; �)AT)�1: (4.8)

We de�ne for D 2 SN�N++ a matrix Q(D) as

Q(D) := DAT(ADAT)�1A; (4.9)

which is sometimes called a pseudo projection matrix. Remark that Q(D) is well de�ned, since A

has full row rank and D is positive de�nite. Furthermore, we see from (4.8) that

rbx(b; �) = Q(D(b; �))AT(AAT)�1; (4.10)

so that

kAk2krbx(b; �)k2 � kQ(D(b; �))k2�(A); (4.11)

where

�(A) = kAk2 � kAT(AAT)�1k2
is the (matrix) condition number of A. We are thus naturally led to investigate the norm of the

pseudo projection Q(D(b; �)). Note that in the case when D(b; �) is a positive diagonal matrix,

then the norm of Q(D(b; �)) is known to be uniformly bounded. This is an important fact used in

the complexity analysis of interior point methods for linear programming. We will come back to

this point in Proposition 4.1.

In the following, we let 6 (x; z) denote the angle between two nonzero vectors x; z 2 <N , i.e.

6 (x; z) := arccos
xTz

kxk2kzk2 :

Clearly, for any given positive de�nite matrix D, the range space of Q(D) intersects the null space

of A only at the origin. It is unclear, however, to what extend the range space of Q(D) can lean

towards the null space of A. This issue is addressed in the next theorem.

Theorem 4.1 Let A 2 <m�N have full row rank. Then for any

Q 2 cl fQ(D) j D 2 SN�N++ g

it holds that

minfsin 6 (x;Qz) j Ax = 0; x 6= 0; z 6= 0g = 1

kQk2 > 0:

Moreover,

AQ = A; rank (Q) = m:
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Proof. Let P denote the orthogonal projection onto the image of AT, i.e.

P := AT(AAT)�1A:

Since Q(D)P = Q(D), AQ(D) = A and PQ(D) = P , for all positive de�nite D, we must also have

QP = Q; AQ = A and PQ = P: (4.12)

Therefore, Qz = QPz for all z 2 <N . Thus, for any z 2 <N there is y 2 <m such that

Qz = QPz = QATy; kATyk2 = kPzk2 � kzk2:
By de�nition of the matrix 2-norm, we further get

kQk2 = max
z 6=0

kQzk2
kzk2 = max

y 6=0

kQATyk2
kATyk2 : (4.13)

From (4.12) we know that AQ = A, and so ATy?(Q� I)ATy. Therefore, we can apply the basic

relations of a rectangular triangle to conclude that

sin 6 ((Q� I)ATy;QATy) =
kATyk2
kQATyk2 :

Together with (4.13), this implies further that

minfsin 6 (x;Qz) j Ax = 0; z 2 <Ng � 1

kQk2 : (4.14)

Conversely, for any y 2 <m and x with Ax = 0, we have

sin 6 (x;QATy) =
kQATy � txk
kQATyk (4.15)

where t 2 < is chosen such that QATy � tx ? x. However,

kQATy � txk � kP (QATy � tx)k = kPQATyk: (4.16)

Recall now from (4.12) that

PQAT = QAT = AT: (4.17)

Combining (4.15){(4.17), we obtain

sin 6 (x;QATy) � kPQATyk
kQATyk =

kATyk
kQATyk �

1

kQk2 ; (4.18)

where the last step follows from (4.13). The lemma follows from (4.18) and (4.14) by inclusion.

Q.E.D.

If we restrict D to be a positive diagonal matrix, then 6 (x;DATy) with Ax = 0 is bounded from

below by a positive constant, independent of x, y and D:
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Proposition 4.1 Let A 2 <m�N have full row rank. Then the set

fQ(D) j D is a positive diagonal matrixg

is bounded. Therefore, the angle 6 (x;DATy) with Ax = 0, x 6= 0, y 6= 0 and D a positive diagonal

matrix is bounded below from zero by a positive constant, which is independent of x, y and D.

The above result is well-known (cf. [5, 6, 22, 24]) and is widely used for the analysis of interior point

methods in linear programming. The minimum angle between KerA and ImgDAT is also used as

a condition number for linear programs whose constraint matrix is A; see Vavasis and Ye [25].

If Q is a limit point of the (bounded) set fQ(D) j D is a positive diagonal matrixg, one might

expect that ImgQ = ImgDAT for some (possibly non-positive) diagonal matrix D. However, this

is not true; consider for instance the case

A =

"
�1 1 0

0 1 1

#
:

Writing D = diag(d1; d2; d3), we see that

AD =

"
�d1 d2 0

0 d2 d3

#
:

Hence, if we choose d1 = d2 = � > 0 and d3 = 1 then for � # 0 we have

Imgdiag(�; �; 1)AT ! Img

"
�1 1 0

0 0 1

#T
:

But it is clear that this limiting image cannot be written as ImgDAT for any diagonal matrix D.

In the setting of semide�nite programming however, the scaling matrix is a linear transformation

of the form W ! XWX with X positive de�nite. Proposition 4.1 is thus only applicable if we

restrict to a �xed eigenvector basis for X . Still, one may wonder whether Proposition 4.1 can be

extended to positive de�nite transformations D of the form D(W ) = XWX for general positive

de�nite X . This turns out not to be the case.

Consider an example with

A[1] =

"
0 1

1 0

#
; A[2] =

"
0 0

0 1

#

and

(X�)
�1 =

"
1 1=�

1=� 2=�2

#
; Z� =

"
1 0

0 ��2
#
:

13



We see that

X�1
� Z�X

�1
� =

"
0 �1=�

�1=� �3=�2
#
= �1

�
A[1]� 3

�2
A[2]:

But,

Z� !
"
1 0

0 0

#
2 fX j A[1] �X = 0; A[2] �X = 0g:

However, if we consider the scaling matrices on the central path, then the result holds true again for

those b 2 ASn�n++ where a strictly complementary solution exists. We will make this claim precise

in Lemma 5.1. In order to prove this result, we �rst need to study the limiting behavior of the

central path and its derivatives. All these will be topics of discussion for the next section.

5 Limiting behavior

Throughout this section, we consider a �xed right hand side vector b 2 ASn�n++ for which a strictly

complementary solution exists.

Since b is �xed, we can drop it as an argument in (X(b; �); Z(b; �)) and D(b; �), arriving at the

central path

f(X(�); Z(�)) 2 FP (b)� FD j X(�)Z(�) = �I; � > 0g;
(see (4.1)). In our setting, the primal-dual analytic central path is a well de�ned smooth curve [18],

and it converges to the central optimal solution (X�; Z�) = lim�#0(X(�); Z(�)); see [15, 8]. Luo,

Sturm and Zhang [15] showed that

kX(�)�X�k = O(�) and kZ(�)� Z�k = O(�) with 0 < � < 1: (5.1)

The existence of strictly complementary solutions is essential for the above relation to hold.

Applying a basis transformation if necessary, we may assume that the central optimal solutions X�

and Z� can be partitioned as

X� =

"
X�
B 0

0 0

#
; Z� =

"
0 0

0 Z�N

#
;

where X�
B and Z�N are both positive de�nite. The subscripts B and N are reminiscent of linear

programming, where they stand for \basic" and \nonbasic" respectively. Using this notation we

can partition a given n � n symmetric matrix M as

"
MB MU

MT
U MN

#
:

14



In particular, we have

�I = X(�)Z(�) =

"
XB(�) XU(�)

XU(�)
T XN (�)

#
�
"

ZB(�) ZU(�)

ZU (�)
T ZN (�)

#
: (5.2)

Let _X(�) denote the derivative of X(�) with respect to the parameter �, and _Z(�) denote the

derivative of Z(�). Di�erentiating equation (5.2) with respect to � and comparing each component

in the resulting matrix equation, yields:8>><
>>:

IB = _XB(�)ZB(�) + _XU(�)ZU(�)
T +XB(�) _ZB(�) +XU(�) _ZU(�)

0 = _XB(�)ZU(�) + _XU(�)ZN (�) +XB(�) _ZU(�) +XU(�) _ZN (�)

IN = _XU(�)TZU (�) + _XN (�)ZN (�) +XU(�)T _ZU(�) +XN (�) _ZN (�):

Due to (5.1), the sequence f( _X(�); _Z(�)) j 0 < � < 1g must be bounded. Therefore, letting �! 0

in the above equations results in

IB = lim
�!0

(X�
B
_ZB(�)) (5.3)

0 = lim
�!0

( _XU(�)Z
�
N +X�

B
_ZU(�)) (5.4)

IN = lim
�!0

( _XN (�)Z
�
N ): (5.5)

Relations (5.3) and (5.5) show that

_ZB(�)! (X�
B)
�1; _XN (�)! (Z�N )

�1: (5.6)

The next theorem states that the other parts of the derivatives _Z(�) and _X(�) converge as well.

Theorem 5.1 Suppose that the primal and dual have interior solutions and also a strictly comple-

mentary solution pair. Then, the following limits exist:

_X(0) := lim
�!0

_X(�); _Z(0) := lim
�!0

_Z(�):

Proof. We have already observed that f( _X(�); _Z(�)) j 0 < � < 1g is a bounded sequence. Let

( �X; �Z) and ( ~X; ~Z) denote two arbitrary limit points of this sequence. We will prove the theorem

by establishing the identity ( �X; �Z) = ( ~X; ~Z).

Since A _x(�) = 0 and AT _y(�) + _z(�) = 0 for all �, it follows that ( �X � ~X)?( �Z � ~Z). Furthermore,

we know from (5.6) that ( �X � ~X)N = 0 and ( �Z � ~Z)B = 0. Therefore, we must have that

0 = ( �X � ~X) � ( �Z � ~Z) = 2( �X � ~X)U � ( �Z � ~Z)U : (5.7)
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However, relation (5.4) states that

0 = �XUZ
�
N +X�

B
�ZU = ~XUZ

�
N +X�

B
~ZU ;

which together with (5.7) implies that

0 = ( �X � ~X)U � [(X�
B)
�1( �X � ~X)UZ

�
N ]:

Hence, �XU = ~XU , and also �ZU = ~ZU = (X�
B)
�1 ~XUZ

�
N . This proves that the o�-diagonal parts of

_X(�) and _Z(�) converge as �! 0.

Next step is to establish the existence of lim�!0
_XB(�).

Without loss of generality, assume that the matrices fAB[i] j i = 1; 2; :::; pg form a maximally

linearly independent subset of fAB[i] j i = 1; 2; :::; mg, where p � m.

By (5.2) we have

XB(�)
�1 =

1

�
ZB(�) +

1

�
XB(�)

�1XU(�)ZU (�)
T

=

 
pX

i=1

�i(�)AB[i]

!
+

1

�
XB(�)

�1XU(�)ZU(�)
T (5.8)

where the last equality follows from the fact that ZB(�) can be expressed by AB[i]'s due to Z
�
B = 0.

Moreover, by feasibility we have

AB[i] �XB(�) = bi �AN [i] �XN (�)� 2AU [i] �XU(�); i = 1; 2; :::; p: (5.9)

Di�erentiating the equations (5.8) and (5.9) with respect to � we obtain8>>>>><
>>>>>:

(XB(�))�1 _XB(�)(XB(�))�1 =
Pp

i=1 _�i(�)AB[i]� 1
�2
XB(�)�1XU(�)ZU(�)T

� 1
�
XB(�)�1 _XB(�)�1XB(�)�1XU(�)ZU(�)T

+ 1
�
XB(�)

�1 _XU(�)ZU(�)
T + 1

�
XB(�)

�1XU(�) _ZU(�)
T

AB[i] � _X(�)B = �AN [i] � _XN (�)� 2AU [i] � _XU(�); for i = 1; 2; :::; p:

Let � ! 0. Since lim�!0
_XU(�) and lim�!0

_ZU (�) exist, it follows that any limit point of _XB(�),

say _XB, must satisfy the following equations:(
(X�

B)
�1 _XB(X�

B)
�1 +

Pp
i=1 �iAB[i] = �(X�

B)
�1 _XU(0) _ZU(0)T

AB[i] � _XB = �AN [i] � _XN (0)� 2AU [i] � _XU(0); for i = 1; 2; :::; p:

This futher implies that the di�erence ( �X � ~X)B must satisfy the equations:(
(X�

B)
�1( �X � ~X)B(X�

B)
�1 +

Pp
i=1 �iAB[i] = 0

AB[i] � ( �X � ~X)B = 0; for i = 1; 2; :::; p:
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Therefore �XB = ~XB.

Similar arguments can be applied to the dual part to obtain the identity �ZN = ~ZN . This completes

the proof. Q.E.D.

For the case that there is no strictly complementary solution, it is known from Goldfarb and

Scheinberg [8] that k _X(�)k ! 1 and k _Z(�)k ! 1 for � # 0. Therefore, the existence of a strictly
complementary solution pair is crucial in establishing Theorem 5.1. We will now use the existence

of _X(0) and _Z(0) to prove that the pseudo projection matrix Q(D(�)) is bounded under strict

complementarity.

Lemma 5.1 Suppose that the primal and dual have interior solutions and also a strictly comple-

mentary solution pair. Then

fQ(D(�)) j 0 < � � 1g
is bounded. Therefore, the angle 6 (x;D(�)ATy) with Ax = 0, x 6= 0, y 6= 0 and 0 < � � 1 is

bounded below from zero by a positive constant, which is independent of x, y and �.

Proof. Recall that X(�) � 0 and consequently D(�) � 0 for all � > 0. Hence, we know from

Theorem 4.1 that

minfsin 6 (x;Q(D(�))z) j Ax = 0; x 6= 0; z 6= 0g = 1

kQ(D(�))k2 :

This means that we need only to be concerned with the situation when � # 0.
Suppose to the contrary that there exists a sequence f�k j k = 1; 2; : : :g with �k ! 0 and a sequence

z(k) = D(�k)A
Tu(k); k = 1; 2; : : : ;

and that the sequence of the corresponding matrices fZ(k) j k = 1; 2; : : :g is convergent with limit

Z1 = lim
k!1

Z(k) and Az1 = 0; Z1 6= 0: (5.10)

Since X(�k)Z(�k) = �kI , we have vecS (Z(�k)Z(k)Z(�k)) = �2kD(�k)�1z(k) = �2kA
Tu(k), whereas

Az1 = 0. This implies the identity

Z1 � (Z(�k)Z(k)Z(�k)) = 0 for k = 1; 2; : : : ; (5.11)

which will play a crucial role throughout the proof. Letting k !1 in (5.11) yields

0 = Z1 � (Z�Z1Z�) = Z1N � (Z�NZ1N Z�N );
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implying that Z1N = 0.

Since kZ(�k)� Z�k = O(�k) (see (5.1)), we have

Z(�k)Z
(k)Z(�k) = Z�Z(k)Z� + (Z(�k)� Z�)Z(k)Z� + Z�Z(k)(Z(�k)� Z�) +O(�2k): (5.12)

Notice further that Z1 � (Z�Z(k)Z�) = 0, because Z1N = 0. Hence, we get from (5.11) and (5.12)

that

0 = lim
k!1

Z1 � (Z(�k)Z(k)Z(�k))

�k

= 2 lim
k!1

tr
Z1(Z(�k)� Z�)Z(k)Z�

�k

= 2 trZ1 _Z(0)Z1Z�;

where we used Theorem 5.1. As Z�B = 0, Z�U = 0 and Z1N = 0, we can simplify the above expression

to

0 = trZ1 _Z(0)Z1Z� = tr (Z1U )T _ZB(0)Z
1
U Z

�
N :

Since Z�N � 0 and _ZB(0) = (X�
B)
�1 � 0 (see (5.6)) we conclude that Z1U = 0.

Having established that Z1U = 0 and Z1N = 0, we obtain from (5.11) that

0 = Z1B � (Z(�k)Z(k)Z(�k))B

= Z1B � (ZB(�k)Z(k)
B ZB(�k) + ZU(�k)Z

(k)
N ZU (�k)

T) + 2trZ1B ZB(�k)Z
(k)
U ZU(�k)

T:(5.13)

Now divide (5.13) by �2k on both sides and let k ! 1. Noticing that Z
(k)
U ! 0 as k ! 1, we

obtain

0 = Z1B � _Z�BZ
1
B

_Z�B

and so Z1B = 0. This �nally implies that Z1 = 0, which contradicts (5.10). The theorem is thus

proven. Q.E.D.

Below, we show that the pseudo projection Q(D(�)) is not only bounded, but in fact it converges

to a certain matrix Q� if � # 0.

Theorem 5.2 Suppose that the primal and dual semide�nite programs (P ) and (D) have interior

solutions and also have a strictly complementary solution pair. Then the following limit exists:

Q� := lim
�#0

Q(D(�)):
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Proof. From Lemma 5.1 we know that Q(�) is bounded, and hence it has a cluster point for

�! 0. Let �Q and ~Q denote two such cluster points. Let r 2 <N be arbitrary, and de�ne

w(�) := Q(�)r; �w := �Qr; ~w := ~Qr:

Notice that �w and ~w are both cluster points of w(�) for � ! 0. We will prove the theorem by

showing that �w = ~w, irrespective of the choice of r, �Q and ~Q.

Recall from Theorem 4.1 that A �Q = A ~Q = A, and hence

A( �w� ~w) = 0: (5.14)

As X(�)Z(�) = �I , we also have

vecS (Z(�)W (�)Z(�)) = �2D(�)�1Q(�)r = �2AT(AD(�)AT)�1Ar

which together with (5.14) implies that

( �W � ~W ) � (Z(�)W (�)Z(�)) = 0 for all � > 0: (5.15)

Letting �! 0, we further obtain that

0 = ( �W � ~W ) � (Z� �WZ�) = ( �W � ~W ) � (Z� ~WZ�);

and thus

tr ( �W � ~W )Z�( �W � ~W )Z� = 0:

Hence, ( �W � ~W )N = 0.

Similar as in (5.12), we have

Z(�)W (�)Z(�) = Z�W (�)Z� + (Z(�)� Z�)W (�)Z� + Z�W (�)(Z(�)� Z�) +O(�2);

and ( �W � ~W ) � (Z�Z(k)Z�) = 0 because ( �W � ~W )N = 0. Thus, dividing in (5.15) by � and letting

� # 0, we obtain that

0 = 2 tr ( �W � ~W ) _Z(0) �WZ� = 2 tr ( �W � ~W ) _Z(0) ~WZ�;

and so

0 = tr ( �W � ~W ) _Z(0)( �W � ~W )Z�:

As Z�B = 0, Z�U = 0 and ( �W � ~W )N = 0, we can simplify the above expression to

0 = tr ( �W � ~W ) _Z(0)( �W � ~W )Z� = tr ( �W � ~W )TU _ZB(0)( �W � ~W )UZ
�
N :
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Since Z�N � 0 and _ZB(0) = (X�
B)
�1 � 0, this implies that ( �W � ~W )U = 0.

Having established that �WU = ~WU and �WN = ~WN , we obtain from (5.15) that

0 = ( �W � ~W )B � (Z(�)W (�)Z(�))B

= ( �W � ~W )B � (ZB(�)WB(�)ZB(�) + ZU (�)WN (�)ZU (�)
T)

+2 tr ( �W � ~W )BZB(�)WU(�)ZU(�)
T: (5.16)

Dividing (5.16) by �2 on the both sides and letting � # 0 yields(
0 = ( �W � ~W )B � ( _ZB(0) �WB

_ZB(0) + _ZU(0) �WN
_ZU (0)T) + 2 tr ( �W � ~W )B _ZB(0) �WU

_ZU(0)T

0 = ( �W � ~W )B � ( _ZB(0) ~WB
_ZB(0) + _ZU(0) �WN

_ZU(0)
T) + 2 tr ( �W � ~W )B _ZB(0) �WU

_ZU (0)
T;

where we used that �WU = ~WU and �WN = ~WN . Substracting the above two identities from each

other yields

0 = ( �W � ~W )B � _Z�B( �W � ~W )B _Z�B;

and so ( �W � ~W )B = 0. This �nally implies that �W = ~W and therefore �Q = ~Q, since r 2 <N is

arbitrary. Hence, �Q = ~Q = lim�#0Q(�).

Q.E.D.

We remark that similar to (4.3){(4.5), it holds that

A _x(�) = 0 (5.17)

AT _y(�) + _z(�) = 0 (5.18)

D(�) _z(�) + � _x(�) = x(�): (5.19)

Thus, we easily arrive at the identities

_x(�) =
1

�

�
x(�)�D(�)AT(AD(�)AT)�1b

�
; _z(�) = AT(AD(�)AT)�1b: (5.20)

Recalling the de�nition of Q(D) and using the fact that Ax(�) = b, we further get

_x(�) =
1

�

�
x(�)�Q(D(�))AT(AAT)�1b

�
: (5.21)

Similarly, since D(�)z(�) = �x(�), z(�) = c�ATy(�) and AQ(D(�)) = A,

_z(�) =
1

�
Q(D(�))Tz(�) =

1

�

�
Q(D(�))Tc� ATy(�)

�
=

1

�

�
z(�)� [I �Q(D(�))]Tc

�
: (5.22)

Since _X(�) and _Z(�) are bounded, it follows from (5.21) and (5.22) that

kx(�)� Q(D(�))AT(AAT)�1bk = O(�); kz(�)� [I � Q(D(�))]Tck = O(�): (5.23)
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The solutions x(�) and z(�) are interior solutions with a positive duality gap x(�)Tz(�) = n�. On

the other hand, the solutions x̂(�) := Q(D(�))AT(AAT)�1b and ẑ(�) := [I � Q(D(�))]Tc satisfy

the optimality condition (x̂(�))Tẑ(�) = 0, but may violate the semide�niteness condition by an

amount less than �k _X(�)k and �k _Z(�)k respectively.
Letting �! 0 in (5.23) yields the following result.

Theorem 5.3 Suppose that the primal and dual have interior solutions and also a strictly comple-

mentary solution pair. Then

x� = Q�AT(AAT)�1b; z� = (I �Q�)Tc:

6 Discussion

We have derived a neat formula for the central optimal solution, viz. x�(b) = Q�(b)xLS(b), where

xLS(b) := AT(AAT)�1b is the least squares solution to \Ax = b". This identity holds true if (Pb)

and (Db) have a strictly complementary solution pair and satisfy Slater's condition; see Theo-

rem 5.3. Since the condition number �(A) of the matrix A measures the sensitivity of xLS(b) with

respect to perturbations in b, it is tempting to use kQ�(b)k2�(A) as a measure of sensitivity in

x�(b) = Q�(b)xLS(b); see also (4.11). Moreover, kQ�(b)k has an intuitively attractive geometric

interpretation; see Theorem 4.1. Also, (4.10) implies that

lim
�#0

rbx(b; �) = Q�(b)AT(AAT)�1:

However, the central optimal solution x�(b) is obviously not everywhere di�erentiable in b, and

the matrix Q�(b) is not everywhere continuous in b, even in the case of linear programming. It is

therefore relevant to know something about Q�(�) in the neighborhood of b. Unfortunately, Q�(�)
may fail to exist for arbitrarily small perturbations in b as we discussed in Section 3.
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