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ABSTRACT

In this paper we consider optimization problems de�ned by a quadratic objective function and

a �nite number of quadratic inequality constraints. Given that the objective function is bounded

over the feasible set, we present a comprehensive study of the conditions under which the optimal

solution set is nonempty, thus extending the so-called Frank-Wolfe theorem. In particular, we

�rst prove a general continuity result for the solution set de�ned by a system of convex quadratic

inequalities. This result implies immediately that the optimal solution set of the aforementioned

problem is nonempty when all the quadratic functions involved are convex. In the absence of the

convexity of the objective function, we give examples showing that the optimal solution set may

be empty either when there are two or more convex quadratic constraints, or when the Hessian

of the objective function has two or more negative eigenvalues. In the case when there exists

only one convex quadratic inequality constraint (together with other linear constraints), or when

the constraint functions are all convex quadratic and the objective function is quasi-convex (thus

allowing one negative eigenvalue in its Hessian matrix), we prove that the optimal solution set is

nonempty.
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1 Introduction

In this paper we are concerned with the question whether an optimization problem has an optimal

solution or not. The answer to this question can be trivial if, for instance, all the feasible solutions

form a compact set, or if the objective function is unbounded over the feasible region. In the former

case, the well-known Weierstrass theorem applies and so the answer is positive. In the latter case,

clearly no optimal solution can exist, and the problem is called unbounded by convention. The

situation becomes more subtle if the set of feasible solutions is not bounded in norm, and yet the

objective function value is bounded for all the feasible solutions. In the setting of primal-dual

convex conic programs, a detailed discussion on issues related to this and others can be found in

Luo, Sturm and Zhang [9].

In mathematical terms we consider the following constrained optimization problem:

(P) minimize f0(x)

subject to fi(x) � 0; i = 1; 2; :::;m

where all fi's are continuous di�erentiable functions, i = 0; 1; :::;m. In case these functions are all

a�ne linear, the problem is called linear programming. It is well-known that for linear programming,

a bounded feasible problem always has an optimal solution. This property is remarkable, and fails

to hold for general nonlinear programs. That is why it is also known as the fundamental theorem of

linear programming (see Chv�atal [4]). Frank and Wolfe [6] showed that if fi's remain a�ne linear

for i = 1; 2; :::;m and f0 is an arbitrary quadratic function, then (P) being feasible and bounded

from below over the feasible region implies that an optimal solution exists. This result is known

as the Frank-Wolfe theorem and can be considered as a generalization of the fundamental theorem

of linear programming. Several alternative proofs for the Frank-Wolfe theorem were proposed; see

[3, 5]. Perold [13] further generalized the Frank-Wolfe theorem to a class of non-quadratic objective

functions (but the constraints are still a�ne linear).

In this paper we consider generalizations of the Frank-Wolfe theorem as well. However, we will

restrict ourselves to the case where all the functions involved are either a�ne linear or quadratic.

We also assume the problem under consideration always has a non-empty feasible set.

As a �rst and important step we consider the solution set de�ned by convex quadratic inequal-

ities; that is, we consider the feasible set of (P) where

f1(x) := 1

2
xTQ1x+ qT1 x+ c1

f2(x) := 1

2
xTQ2x+ qT2 x+ c2

...

fm(x) := 1

2
xTQmx+ qTmx+ cm

with each Qi 2 <n�n being positive semide�nite, qi 2 <n, and ci 2 <. More speci�cally, for each

� = (�1; �2; :::; �m)
T � 0, we let X(�) denote the feasible set of the following perturbed quadratic

system:

X(�) := fx 2 <n : fi(x) � �i; i = 1; 2; :::;mg: (1.1)
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In that case we prove that the following implication holds:

X(�k) 6= ; for some sequence �k # 0 ) X(0) 6= ;: (1.2)

This result was �rst established in an unpublished report by Luo [8] and is documented here for

ease of future reference. As a corollary of this result, we readily establish the attainability of the

in�mum (assumed to be �nite) of (P) when f0, f1, ..., fm are all convex. Since convex quadratically

constrained quadratic programming can be viewed as a special case of the so-called lp programming,

this attainability result also follows from the strong duality relation for lp programming established

in Terlaky [15].

Starting from the above attainability result for Convex Quadratically Constrained Quadratic

Programming (CQCQP), which can be called the fundamental theorem for CQCQP as parallel

to the LP case, we seek possibilities of removing some of the convexity assumptions either in the

objective function or in the constraints. Our �ndings are summarized below:

(1) Even if f0 is convex, and at least one of the constraint functions fi (i = 1; 2; :::;m) is non-

linear (Qi 6= 0) and non-convex, the in�mum of (P) (assumed to be �nite) is in general not

attainable.

(2) If f0 is non-convex and at least two or more functions fi (i = 1; 2; :::;m) are nonlinear (but

convex), then the in�mum of (P) is in general not attainable.

(3) If f0 is nonconvex and at most one of the constraint functions fi (i = 1; 2; :::;m) is nonlinear

(but convex), then the in�mum of (P) (assumed to be �nite) is always attained.

(4) If f0 is quasi-convex over the feasible region and all of the constraint functions fi (i = 1; 2; :::;m)

are convex, then the in�mum of (P) (assumed to be �nite) is always attained.

To put the above results in perspective, our results (3){(4) can be viewed as natural exten-

sions of the Frank-Wolfe theorem. Secondly, the continuity of the feasible set de�ned by convex

quadratic inequalities is an extension of a similar result for the polyhedral set. The latter is a

direct consequence of Ho�man's well known error bound [7] for linear inequality systems and also

of Robinson's theorem [14] on the upper Lipschitzian continuity of polyhedral multi-functions.

The organization of the paper is as follows. Next section is devoted to the discussion on the

feasible set de�ned by convex quadratic inequalities. In Section 3 we extend the Frank-Wolfe

theorem to the case where at most one constraint function is nonlinear and convex (while the other

constraints are all linear). In Section 4 the fundamental theorem of CQCQP is extended to the

case where the objective function is quasi-convex. Finally we conclude the paper in Section 5.

Our notations are standard. For example, the vector notation x � 0 means that each component

of x is nonnegative. The superscript \T" indicates either vector or matrix transpose. Also, for any

square matrix Q, the notation Q � 0 indicates Q positive semide�nite. In addition, for any

optimization problem (OP), we use inf((OP)) to denote the in�mum of (OP). The notation k � k
denotes the usual Euclidean norm. Finally, we write �k # 0 when the sequence �k approaches to

zero monotonically from above.
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2 Convex quadratic inequality systems

We start our discussion by �rst investigating the continuity of the solution set de�ned by convex

quadratic inequalities. The proof of this result �rst appeared in the unpublished report [8] by the

�rst author, and is included here for completeness.

Theorem 1 Suppose that the perturbed solution set X(�) (as de�ned by (1:1)) is nonempty for

some positive sequence f�kg approaching to zero. Then the unperturbed feasible set X(0) is also

nonempty.

Proof: We prove by induction on m, the number of quadratic inequalities. Let m = 1. Suppose

f1(x) � �k1 has a solution xk, where �k1 # 0. In other words,

1

2
(xk)TQ1x

k + qT1 x
k + c1 � �k1; 8k: (2.1)

If fxkg has a bounded subsequence, then the cluster point of this subsequence must be a solution

of f1(x) � 0. Otherwise, we have kxkk ! 1. In this case, we divide (2.1) by kxkk2, let k ! 1
and use Q1 � 0 to obtain

0 � lim sup
k!1

(xk)TQ1x
k

kxkk2 � 0; and lim sup
k!1

qT1 x
k

kxkk � 0:

Since Q1 � 0, we further deduce

lim
k!1

Q1x
k

kxkk = 0:

By passing to a subsequence if necessary, we assume

u := lim
k!1

xk

kxkk :

We consider two cases.

Case 1.1. qT1 u < 0. Since Q1u = 0, we see u is a recession direction for f1(x) � 0. For t > 0, we

consider

f1(tu) =
t2

2
uTQ1u+ tqT1 u+ c1

= c1 + tqT1 u;

which is nonpositive with

t =

����� c1qT1 u

����� :
Case 1.2. qT1 u = 0 and Q1u = 0. Let us assume, with out loss of generality, that fxkg is the

smallest norm solution to f1(x) � �k1 . Consider the linear system

Q1x = Q1x
k; qT1 x = qT1 x

k : (2.2)
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Clearly, there exits a solution �xk to (2.2) such that

k�xkk � �
�
kQ1x

kk+ jqT1 xk j
�

where � > 0 is a constant independent of n. Since f1(�x
k) = f1(x

k) � �k1 and xk is the smallest

norm solution, we have

kxkk � k�xkk � �
�
kQ1x

kk+ jqT1 xkj
�
:

Dividing both sides by kxkk and letting k! 1, we get

1 � �
�
kQ1uk+ jqT1 uj

�
;

contradicting Q1u = 0 and qT1 u = 0. This completes the proof for the case m = 1.

Now we assume, by induction, that the theorem holds with m � l. Consider the case m = l+1.

Let fxkg be the smallest norm solution in X(�). If the sequence fxkg has a bounded subsequence,

then any cluster point of this bounded subsequence lies in X(0) and the theorem holds trivially. It

remains to consider the case kxkk ! 1. As before, we let u := limk!1 xk=kxkk. By an argument

similar to that used in Case 1.1, we can obtain

uTQiu = 0; qTi u � 0; i = 1; 2; :::; l+ 1:

Since Qi � 0, this further implies Qiu = 0 for all i. We once again consider two cases.

Case 2.1. There exists an j such that qTj u < 0. Without loss of generality, let j = l+1. Since the

system

f1(x) � �k1 ; f2(x) � �k2 ; :::; fl(x) � �kl

has a solution for each k, the induction hypothesis implies there exists some �x satisfying

f1(�x) � 0; f2(�x) � 0; :::; fl(�x) � 0:

Consider the vector x(t) = �x+ tu, for t > 0. Then, we have

fi(x(t)) = fi(�x) + trfi(�x)Tu+
t2

2
uTQiu

= fi(�x) + t (Qi�x+ qi)
T u

� fi(�x) � 0; for t > 0; i = 1; 2; :::; l:

Furthermore, we have

fl+1(x(t)) = fl+1(�x) + t (Ql+1�x+ ql+1)
T u+

t2

2
uTQl+1u

= fl+1(�x) + tqTl+1u

� 0; for t �
�����fl+1(�x)qTl+1u

����� :
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Let

t� =

�����fl+1(�x)qTl+1u

����� :
Then x(t�) is a solution in X(0).

Case 2.2. qTi u = 0, Qiu = 0, for i = 1; 2; :::; l+ 1. Consider the linear system

qTi x = qTi x
k; Qix = Qix

k ; i = 1; 2; :::; l+ 1: (2.3)

Then there exists some �xk satisfying (2.3) such that

k�xkk � �

 
l+1X
i=1

�
kQix

kk+ jqTi xkj
�!

;

where � > 0 is independent of k. By equation (2.3), we have

fi(�x
k) = fi(x

k) � �ki ; i = 1; 2; :::; l+ 1:

Since xk is the smallest norm solution in X(�k) (i.e., the least norm solution satisfying the above

inequalities), we have

kxkk � k�xkk � �

 
l+1X
i=1

�
kQix

kk+ jqTi xkj
�!

; 8k:

Dividing the both sides by kxkk and letting k !1 yields

1 � �

 
l+1X
i=1

�
kQiuk+ jqTi uj

�!
:

This contradicts the conditions qTi u = 0, Qiu = 0, for i = 1; 2; :::; l+ 1. The proof is complete.

Q.E.D.

The following example shows that the convexity of the functions fi, i = 1; 2; :::;m, is necessary

for Theorem 1 to hold.

Example 1. Consider the following quadratic inequality system:

1 � xy � 1; 0 � x � 0:

Clearly the above system does not have a solution, i.e., X = ;. On the other hand, the perturbed

system

1 � xy � 1; 0 � x � �

has a solution for each � > 0. Thus X(�) 6= ;. This shows that Theorem 1 cannot hold if the

convexity of the functions fi, i = 1; 2; :::;m, is removed.

The following is a corollary of Theorem 1. It is kindly pointed out to us by Professor Olvi

Mangasarian who, in an early paper [11, Thereom 3.2], derived a similar result for the polyhedral

case.
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Corollary 1 A linear (or a�ne) map of a convex region in <n de�ned by convex quadratic con-

straints is closed.

Proof: Let the convex region X := X(0), and let y = Ax+ a be an a�ne mapping where A and a

are some matrix and vector of matching dimension. To prove the claim, we must show that the set

Y := fy : y = Ax+ a; for some x 2 Xg

is closed. Consider a convergent sequence fykg � Y with limk!1 yk = y�. Then there exists some

fxkg � X such that

ky� �Axk � ak2 � ky� � ykk2; fi(x
k) � 0; i = 1; 2; :::; m; 8k: (2.4)

Consider the following convex quadratic inequality system (in the variable x):

ky� � Ax� ak2 � 0; fi(x) � 0; i = 1; 2; :::; m:

From (2.4), this system has a solution when the right hand side of the �rst inequality is perturbed

to ky� � ykk2, for all k. Letting k !1 and using Theorem 1, we conclude that the above system

has a solution x�. In other words, there exists some x� 2 X such that y� = Ax� + a, showing that

y� 2 Y . Thus, Y is closed. Q.E.D.

We can use Theorem 1 to establish the attainability of the in�mum when all the quadratic

functions (objective and constraints) are convex.

Corollary 2 Consider the following convex quadratically constrained quadratic program:

minimize f0(x) :=
1

2
xTQ0x+ qT0 x

subject to 1

2
xTQ1x+ qT1 x+ c1 � 0

1

2
xTQ2x+ qT2 x+ c2 � 0

...

1

2
xTQmx+ qTmx+ cm � 0

(2.5)

where each Qi is symmetric positive semide�nite, i = 0; 1; :::;m. Suppose the objective function is

bounded from below over the feasible region. Then (2:5) has an optimal solution.

Proof: Let f� > �1 denote the in�mum of f0(x) over the feasible region of (2.5). Then there

exists a sequence fxkg in the feasible region such that8<
:

f0(x
k) � f� + 1

k

fi(x) � 0; i = 1; 2; :::;m:
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By Theorem 1, this implies that 8<
:

f0(x) � f�

fi(x) � 0; i = 1; 2; :::;m:

has a solution. This shows that (2.5) has an optimal solution. Q.E.D.

Corollary 2 was �rst established by Terlaky [15] in his study of duality for lp programming. The

approach in this reference is by regularization so that constraint quali�cation holds and no duality

gap exists. In contrast, our proof of this result is more direct and relies on the continuity property

of the solution set de�ned by convex quadratic inequalities. It is natural to ask if it is possible to

remove the convexity of the objective function f0. The following example shows that this is not

possible.

Example 2. Consider the following minimization problem in <4:

minimize f0(x1; x2; x3; x4) := �2x1x2 + x3x4 + x21

subject to f1(x1; x2; x3; x4) := x21 � x3 � 0;

f2(x1; x2; x3; x4) := x22 � x4 � 0:

Clearly, f0 is nonconvex, but f1 and f2 are both convex. Moreover, since x3 � x21 and x4 � x22, we

have x3x4 � x21x
2
2. Thus, for any feasible vector (x1; x2; x3; x4)

T , there holds

f0(x1; x2; x3; x4) � �2x1x2 + x21x
2
2 + x21 = (x1x2 � 1)2 + x21 � 1 > �1: (2.6)

On the other hand, consider the sequence

(xk1; x
k
2; x

k
3; x

k
4) = (1=k; k; 1=k2; k2); k = 1; 2; :::

It can be easily checked that (xk1; x
k
2; x

k
3; x

k
4)

T is feasible and

f(xk1; x
k
2; x

k
3; x

k
4) =

�
1

k2
� 1

�
! �1:

This, together with (2.6), shows that the in�mum of f0 over the feasible set is �1. However, the

inequality (2.6) shows that this in�mum cannot be attained by any feasible vector.

The above example indicates that if the feasible set involves two nonlinear convex quadratic

inequalities and the Hessian matrix of the objective has two negative eigenvalues, then the in�mum

may not always be attained. Thus, the most we can hope for, as far as the extension of Frank-

Wolfe Theorem is concerned, is that it holds when there is at most one nonlinear convex quadratic

inequality constraint, or alternatively, if the constraints are all convex and the objective function

allows only one negative eigenvalue in its Hessian matrix. In the next two sections we will show

respectively that in these two cases a Frank-Wolfe type theorem indeed holds true.
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3 One convex quadratic constraint case

In this section we will consider the quadratically constrained quadratic programming problem

(QCQP) in which only one quadratic constraint is nonlinear and convex, and all the other con-

straints are simply a�ne linear. By applying an orthonormal transformation if necessary, we assume

the QCQP is given in the following form:

minimize f0(x; y0; y) :=
1

2
xTQx+ qTx+ (gT + xTG)y + 1

2
yTHy

subject to kxk2 � hT y + d; Ax+By � c
(3.1)

where y is a vector variable, g, h, c, q are vectors, d is a scalar, and A, B, G, H , Q are matrices of

appropriate size.

Throughout this section we wish to establish that if (3.1) is bounded from below over the feasible

region, then the in�mum of (3.1) is attained. The proof is rather involved and is broken into several

intermediate steps. The main idea of the proof is to �rst perform several variable transformations

and problem reformulations so that the essential features of the problem are explicitly revealed, and

then apply Ho�man's error bound and Frank-Wolfe Theorem to the resulting problem. The main

tool to be used in such process is the following lemma which shows that, under certain conditions,

the process of variable restriction and transformation does not change the in�mum of the problem

nor its attainability.

Lemma 1 Consider the following minimization problem

minimize f(x; y)

subject to (x; y) 2 

(3.2)

where f is a given function bounded from below over the feasible region 
. Let y = g(x) be a given

function and consider a restricted version of (3:2):

minimize h(x) := f(x; g(x))

subject to x 2 �
; (x; g(x)) 2 

(3.3)

where �
 is some subset of <n. Suppose inf((3:3)) � inf((3:2)) and problem (3:3) attains its in�mum.

Then inf((3:3)) = inf((3:2)) and the in�mum of (3:2) is also attained.

Proof: Let fxkg � �
 be a sequence such that

(xk; g(xk)) 2 
 and lim
k!1

h(xk) = inf((3:3)):

Since (xk; g(xk)) is feasible for (3.2), we obtain

h(xk) = f(xk; g(xk)) � inf((3:2)):

This implies inf((3:3)) = limk!1 h(xk) � inf((3:2)). By assumption, we have the inequality in the

reverse direction. Thus, inf((3:3)) = inf((3:2)).
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If the in�mum of (3.3) is attained, say at a feasible vector x�, then

f(x�; g(x�)) = h(x�) = inf((3:3)); and (x�; g(x�)) 2 
:

Thus, (x�; g(x�)) is feasible for (3.2). Since inf((3:3)) = inf((3:2)), it follows (x�; g(x�)) attains the

in�mum of (3.2). The proof is complete. Q.E.D.

We �rst consider a special case of (3.1). Namely we consider the case where y consists of only

one scalar variable y0. Later we will show that this in fact can be extended to the general setting.

Speci�cally, we �rst consider the following version of problem (3.1):

minimize f(x; y0) :=
1

2
xTQx+ qTx+ (f0 + fTx)y0 + �y20

subject to kxk2 � y0; Ax+ ay0 � c
(3.4)

where y0 is a scalar variable, a, c are vectors and A is a matrix of appropriate size. Suppose that

(3:4) is bounded from below over the feasible region. We like to show that the in�mum of (3.4) is

attained.

Let f(xk; yk0)g be a sequence of feasible vectors such that

f(xk; yk0)! inf((3:4)):

If fyk0g is bounded, then so is fxkg. In that case any limit point of f(xk; yk0)g attains the in�mum
of (3.4). Now we assume yk0 ! 1. We consider several separate cases.

Case 1. � 6= 0. In this case, the term �(yk0)
2 will dominate in the objective function since

kxkk2 � yk0 . Thus, if � > 0, then we should have f(xk; yk0) ! 1, a contradiction. Similarly, if

� < 0, then f(xk; yk0)! �1, contradicting the fact that f is bounded from below over the feasible

region.

Case 2. � = 0 and ai > 0 for some i. In this case, we claim that the feasible region is bounded.

In fact, consider the ith linear constraint: Aix+ aiy0 � ci. Since y0 � kxk2 and ai > 0. It follows

Aix+ aikxk2 � ci;

implying x is bounded. (Here Ai denotes the ith row of A.) Furthermore, we have 0 � y0 �
(ci�Aix)=ai, showing that y0 is also bounded. Therefore, the feasible region is bounded, in which

case the desired property holds trivially.

Case 3. � = 0 and ai � 0 for all i. In this case, (x; y0) = (0; 1) is a recession direction for the

feasible set. Thus, for the objective to be bounded, we must have (f0 + fTx) � 0 for all (x; y0)

feasible. We �rst consider a subcase in which kxkk is bounded. Then we can select a �nite �y0 such

that (xk; �y0) is feasible for all k. Since y
k
0 ! 1, it follows that yk0 � �y0 for all large k. Moreover,

since (f0 + fTxk) � 0, we have f(xk; �y0) � f(xk; yk0). Thus,

lim inf
k!1

f(xk; �y0)! inf((3:4)):

As a result, �y0 together with any limit point of fxkg will attain the in�mum of (3.4).
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It remains to consider the case kxkk ! 1. Let I = fi : ai = 0g and let ~I = fi : ai <

0g. Since yk0 � kxkk2 and a~I < 0, the constraints A~I
x + a~Iy0 � c~I are automatically satis�ed

once y0 � d for some large enough d > 0. Consequently, the vector (xk; kxkk2) is feasible for

large k. Moreover, f(xk; kxkk2) � f(xk; yk0) since (f0 + fTxk) � 0 and yk0 � kxkk2. This shows

lim infk!1 f(xk ; kxkk2)! inf((3:4)). Thus, without loss of generality we may assume yk = kxkk2.
Since kxkk ! 1, we may assume without loss of generality that xk1 ! 1 (or xk1 ! �1; but

this case can be treated symmetrically and thus omitted). Now consider the following minimization

problem obtained by restricting y0 = kxk2 and x1 �
p
d in (3.4):

minimize f(x; kxk2) := 1

2
xTQx+ qTx + (f0 + fTx)kxk2

subject to x1 �
p
d; AIx � cI :

(3.5)

Notice that in our case we have � = 0 which explains the absence of the term �ky0k2. Also, the

constraints A~I
x + a~Ikxk2 � c~I are absent since they are satis�ed automatically due to the fact

kxk2 � x21 � d. Clearly, if x is a feasible solution of (3.5) then (x; kxk2) is a feasible solution of

(3.4). Thus, inf((3:5)) � inf((3:4)), and so the problem (3.5) is bounded from below. On the other

hand, since xk is feasible for (3.5) and

lim
k!1

f(xk; kxkk2) = inf((3:4));

it follows inf((3:5))� inf((3:4)). However, (3.5) is restricted from (3.4). Therefore, by Lemma 1 if

problem (3.5) attains its in�mum, then so does problem (3.4). Thus, the key of our analysis will

be to show that the in�mum of (3.5) is attainable. To this end, we concentrate on the problem of

the form:
minimize g(x) := 1

2
xTQx+ qTx+ (f0 + fTx)kxk2

subject to Ax � c
(3.6)

where c is a vector and A is a matrix of appropriate size.

We now prove the following result.

Lemma 2 Suppose that (3:6) is bounded below over the feasible region, then the in�mum of (3:6)

is attained.

Proof: Let fxk : k = 1; 2; :::g be a sequence of feasible vectors such that g(xk) # inf((3:6)) as

k !1. Clearly, if this sequence is bounded then the lemma holds trivially. In what follows, let us

assume kxkk ! 1 as k !1.

First we note that the sequence ff0 + fTxk : k = 1; 2; :::g is bounded. This is because

jg(xk)j �
�
jf0 + fTxkj � 1

2
kQk � kqk=kxkk

�
kxkk2

and so if ff0 + fTxk : k = 1; 2; :::g were not bounded then the subsequence fg(xk)g would tend to

in�nity, contradicting the selection of fxk : k = 1; 2; :::g.
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Without loss of generality, we assume (f0 + fTxk) ! f� for some scalar f�, as k ! 1.

Furthermore, by a rescaling of objective function if necessary, we assume kfk = 1. De�ne an a�ne

orthonormal coordinate transformation L : <n 7! <n:0
BBBB@

z1
z2
...

zn

1
CCCCA := L(x) =

"
fT

H

#
0
BBBB@

x1
x2
...

xn

1
CCCCA+

0
BBBB@

f0 � f�

0
...

0

1
CCCCA ;

where H is an (n � 1) � n matrix whose rows are mutually orthogonal, normalized (to 1) and

orthogonal to f . Let us denote �z = (z2; z3; :::; zn)
T . Then, under the transformation L, we have

z1 = (f0 + fTx)� f�. Furthermore, using the orthonormality, we have

kxk2 = (z1 � f0 + f�)2 +
nX

i=2

�z2i = (z1 � f0 + f�)2 + k�zk2:

Substituting this and the expression of L into the problem (3.6), simplifying the expressions and

renaming the matrices and vectors, we can rewrite the objective function in the form

g(x) = h(z) = 1

2
zTQz + qTz + z1kzk2;

and rewrite the constraints as

A�z + az1 � c

for some new matrices Q, A and new vectors a and q. In this way, the problem (3.6) is transformed

into
minimize h(z) := 1

2
zTQz + qTz + z1kzk2

subject to A�z + az1 � c
(3.7)

with inf((3:6)) = inf((3:7)). Since g(xk)! inf((3:6)) and (f0 + fTxk)! f�, we obtain a sequence

fzkg which is feasible for (3.7) and

h(zk)! inf((3:6)); zk1 ! 0 and kzkk ! 1: (3.8)

Clearly, (3.7) has a �nite in�mum. Moreover, if this in�mum is attained, then under the inverse

mapping of L, the in�mum of (3.6) is also attained.

To show that the in�mum of (3.7) is attainable, we consider the following linearly constrained

QP (in the variable �z) obtained by restricting z1 = 0 in (3.7):

minimize h(0; �z) := 1

2
(0; �z)TQ

 
0

�z

!
+ qT

 
0

�z

!

subject to A�z � c

(3.9)

Since (3.9) is bounded from below, we have

� := min

(
1

2
(0; �u)TQ

 
0

�u

!
: A�u � 0; k�uk = 1

)
� 0:

11



We consider two cases. First, if � > 0, then we consider any vector z = (z1; �z) satisfying A�z+z1a �
c. By Ho�man's bound, there exists some y with Ay � 0 such that

ky � �zk � �(kck+ jz1jkak);

where � > 0 is a constant independent of z; i.e.

ky � �zk = O(1 + jz1j): (3.10)

Therefore, we obtain

1

2
(z1; �z)

TQ

 
z1
�z

!
� 1

2
(0; �z)TQ

 
0

�z

!
�O(jz1jk�zk+ z21)

� 1

2
(0; y)TQ

 
0

y

!
� O(k�zkky � �zk+ ky � �zk2))�O(jz1jk�zk+ z21)

� �kyk2 � O(jz1j+ 1 + jz1jk�zk+ z21)

for all z = (z1; �z) satisfying A�z + z1a � c. By (3.10) we further obtain

1

2
(z1; �z)

TQ

 
z1
�z

!
� �k�zk2 � O(jz1j+ 1 + jz1jk�zk+ z21):

This implies

h(zk) =
1

2
zk

T
Qzk + qT zk + zk1kzkk2

� (� + zk1)k�zkk2 �O(jzk1 j+ 1 + (jzk1 j+ kqk)k�zkk+ (zk1)
2)

! 1; as k !1;

where the last step is due to � > 0, kzkk ! 1 and zk1 ! 0, This contradicts the assumption that

h(zk)! inf((3:6)).

Now consider the case � = 0. In this case, there exists some u = (0; �u) with kuk = 1 such that

1

2
(0; �u)TQ

 
0

�u

!
= 0; and A�u � 0: (3.11)

We claim zk1 � 0 for all k. Indeed, suppose zk1 < 0 for some k. Then let wk(t) = zk + tu, for t > 0.

For each t > 0, we note that wk(t) is a feasible vector of (3.9), and h(wk(t)) is a quadratic function

of t. Moreover, it can be checked using the condition (3.11) that the coe�cient of the t2 term in

this quadratic polynomial is equal to zk1 . Now if zk1 < 0, then h(w
�k(t)) would tend to �1 for large

t, contradicting the boundedness assumption for the problem (3.7). Thus, we have zk1 � 0 for all

k. Without loss of generality we assume zk1 # 0.
As noted before, (3.9) must have a �nite in�mum as well. By the Frank-Wolfe theorem, this

in�mum is attained. Thus, by Lemma 1, if we can show inf((3:9)) = inf((3:7)), then any minimum
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solution of (3.9) also achieves minimum for (3.7) (Lemma 1). Clearly, inf((3:9)) � inf((3:7)). It

remains to show inf((3:9))� inf((3:7)). Consider the linear system in �z:

A�z � c:

By Ho�man's error bound [7], there exists �yk such that

A�yk � c; k�yk � �zkk = O(zk1); (3.12)

where the constant in the big \O" notation is independent of k. Let yk = (0; (�yk)T )T . Then, by

Taylor expansion, we obtain

h(yk)� h(zk) = 1

2
(yk � zk)TQ(yk � zk) + (Qzk + q)T (yk � zk)� zk1kzkk2

� O(kyk � zkk2) +O(kyk � zkkkzkk)� zk1kzkk2

� O((zk1)
2) +O(kzkkzk1)� zk1kzkk2

< 0; for large k;

where the second last step follows from (3.12) and the last step is due to kzkk ! 1 and zk1 # 0.
Taking limit as k !1, we obtain

lim inf
k!1

h(yk)� inf((3:7)) � 0:

This implies inf((3:9)) � inf((3:7)). By Lemma 1 the desired result follows. Q.E.D.

Using Lemma 2 we immediately obtain the next result.

Lemma 3 If (3:4) is bounded below over the feasible region, then the in�mum of (3:4) is attained.

Proof: We continue our discussion preceding Lemma 2. The only remaining case to be consid-

ered there is: � = 0, ai � 0 for all i, and that the norm of the sequence approaching inf((3.4))

is unbounded. Now we apply Lemma 2 to conclude that (3.5) has an optimal solution. Since

inf((3:5)) = inf((3:4)), it follows that an optimal solution for (3.4) also exists. Q.E.D.

Now we are in a position to discuss the general problem (3.1). But before we start the discussion,

we �rst note a property for quadratic programming with linear constraints.

Lemma 4 Consider the following QP:

(QP) minimize 1

2
yTQy + qTy

subject to By � c:

Suppose that there exist in�nite sets U and V such that for any q 2 U and c 2 V , the problem

(QP ) has an optimal solution. Then, there exist in�nite subsets U 0 � U , V 0 � V , and an a�ne

linear mapping L independent of U and V such that for all q 2 U 0; c 2 V 0, an optimal solution y

of (QP ) can be expressed as:

y = L(q; c):

13



Proof: First of all, by the Frank-Wolfe theorem, optimal solutions for (QP) are always attainable.

Secondly, any optimal solution of (QP) will be a solution to the following LCP, which is the KKT

condition, necessary for all optimal solutions to satisfy:

(LCP )

8>>>>><
>>>>>:

Qy + q +BT x = 0

By + s = c

sixi = 0; for all i

s � 0; x � 0

For convenience, assume that B has full-column rank. Let I be such an index set that BI is

invertible. Let J be the complement of I . Eliminating variables y we get an equivalent formulation

of (LCP) as follows:

(LCP )0
(

xI = �B�TI (QB�TI cI + q) + B�TI QB�TI sI � B�TI BT
J xJ

sJ = cJ �BJB
�T
I cI +BJB

�T
I sI :

Interchanging variable(s) from right to left side is called pivoting. We call variables on the left

side basic and variables on the right side nonbasic.

Observe that any complementary solution (x; s) can be obtained by simple linear transformation

(pivots) from (LCP )0.

Since there are only �nite number of possible ways to partition the whole index set, we conclude

that there must be in�nite subsets U 0 � U and V 0 � V such that for any q 2 U 0 and c 2 V 0 the

basic-nonbasic partition on the vector variable (x; s) remains constant. As long as basic-nonbasic

partition remains unchanged, the solution (x; s) can be expressed as an a�ne linear function in q

and c. Finally, noting that the variable y is related to s a�ne linearly, i.e. y = B�1I cI �B�1I sI , the

lemma thus follows. Q.E.D.

For ease of further discussion we introduce an auxiliary variable y0 in (3.1) and consider

minimize f(x; y0; y) :=
1

2
xTQx+ qTx+ (gT + xTG)y + 1

2
yTHy

subject to kxk2 � y0; Ax+ By � c

y0 = hT y + d:

(3.13)

Lemma 5 Suppose (3:13) is bounded below over the feasible region, then the in�mum of (3:13) is

attained.

Proof: Consider a sequence f(xk; yk0 ; yk)g in the feasible region of (3.1) such that

f(xk; yk0 ; y
k) # inf((3:13)):

For each �xed k, consider the following linearly constrained QP:

minimize (gT + (xk)TG)y + 1

2
yTHy

subject to By � c�Axk; hT y = yk0 � d:
(3.14)
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Problem (3.14) is bounded from below since (3.13) is bounded from below. It follows from the

Frank-Wolfe theorem that its in�mum is attained. Now we apply Lemma 4 to conclude that there

exists an in�nite subset K � f1; 2; 3; :::g such that for all k 2 K an optimal solution of (3.14) can

be expressed as

�yk = L1x
k + yk0 l2 + l3

for some �xed matrix L1 and �xed vectors l2, l3. Substituting the above relation

y = L1x+ y0l2 + l3

into (3.13) we get a problem in the form of (3.4). That problem is bounded below and has the same

in�mum as (3.13). By Lemma 3 and Lemma 1 we conclude that the in�mum of (3.13) is attained

too. Q.E.D.

By Lemma 5, using some simple variable transformation we have proven the following main

theorem of this section:

Theorem 2 Suppose Q1 � 0 and Qi = 0 for i = 2; 3; :::;m. Then if the objective function f0(x) is

bounded over the feasible set X, then the in�mum of (P ) is attained.

Theorem 2 shows that if there is only one nonlinear convex quadratic inequality in the con-

straints, then the (�nite) in�mum of the quadratic objective function is always attained. The

following example shows that the convexity of this quadratic inequality constraint cannot be re-

laxed.

Example 3. Consider the following quadratically constrained QP in <2:

minimize x2

subject to xy � 1; y � 0:

Clearly, the in�mum of the above problem is equal to 0, but it is never attained by any feasible

solution. Notice in this case, the quadratic constraint xy � 1 is nonconvex, even though the feasible

region is convex.

4 Quasi-convex objective function

Example 2 shows that Frank-Wolfe type theorem cannot hold for convex quadratically constrained

problem if the Hessian of the quadratic objective function has more than one negative eigenvalues.

A natural question arises: Can there still be such a theorem when the Hessian of the objective has

no more than one negative eigenvalue? In this section we will show that under some conditions the

answer to this question is positive.

A thorough treatment on concavity and various extensions can be found in [2]. In particular,

conditions have been derived for the characterization of a quadratic quasi-convex or pseudo-convex
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function. Consider a general quadratic function f(x) = 1

2
xTQx + qTx with x 2 <n. Then, by

performing a sequence of orthonormal, scaling and a�ne transformations it can be put into the

following canonical form:

�f(y) = �1

2

pX
i=1

y2i +
1

2

rX
i=p+1

y2i +
nX

i=r+1

�iyi:

If p � 1, this function is in general not convex. Furthermore, it is shown that this function can be

quasi-convex or pseudo-convex on a solid domain only if p � 1. Thus, the interesting case left is

p = 1. In that case consider two (convex) second-order cones (also known as ice-cream cones):

C1 = fy : y21 �
rX

i=2

y2i � 0; y1 � 0g

and

C2 = fy : y21 �
rX

i=2

y2i � 0; y1 � 0g:

Lemma 6 The function �f(y) is quasi-convex on a convex set C if and only if

� p � 1;

� C � C1 or C � C2;
� If r < n then �i = 0 for i = r + 1; :::; n.

In simple words, the Hessian of a quasi-convex quadratic function has exactly one negative

eigenvalue. Moreover, its gradient must always be contained in the range space of the Hessian

matrix.

A similar characterization can be given for pseudo-convex quadratic functions. In fact, the only

di�erence is that for a pseudo-convex function the domain C must be strictly contained in either

C1 or C2.
Now we consider the following problem:

(P )0 minimize f0(x) =
1

2
xTQ0x+ qT0 x

subject to fi(x) =
1

2
xTQix+ qTi x+ ci � 0; i = 1; 2; :::;m

Ax � b

where f0(x) is a quasi-convex function over the polyhedral set fx : Ax � bg and all the quadratic

constraint functions fi(x)'s are convex (i = 1; :::; m). Notice that compared with (P ), problem (P )0

has its polyhedral constraints explicitly stated. Also, we have required that f0(x) is quasiconvex

over a polyhedral set containing the feasible set of (P )0 rather than just over the feasible set itself.

Such a requirement is not restrictive, since the recession directions of convex quadratic inequality

constraints form a polyhedral set. Therefore, by adding cutting planes if necessary we can contain
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the feasible set of (P )0 by a polyhedron inside the second-order cone. In this way, the quasi-

convexity of f0(x) over the feasible region of (P )0 is the same as the quasi-convexity of f0(x) over

the containing polyhedral set (Lemma 6).

Theorem 3 If (P )0 is bounded below and f0(x) is quasi-convex over the polyhedral set fx : Ax �
bg, then the optimal solution set of (P )0 is nonempty.

Proof: The proof is quite similar, in spirit, to the analysis in Section 2. We will apply induction

on m: the number of quadratic constraints. If m = 1, the theorem reduces to a special case of

Theorem 2, and hence is true.

Assume that the theorem holds true for m � l. Also, by the quasi-convexity of f0(x), we can

assume without loss of generality that f0(x) (upon a linear transformation) is given by

f0(x) = �x21 + x22 + � � �+ x2n (4.1)

and

Ax � b ) f0(x) � 0 and x1 � 0. (4.2)

Now consider the case when m = l+ 1. We construct a sequence of truncated problems as follows:

(P )0k minimize f0(x) =
1

2
xTQ0x+ qT0 x

subject to fi(x) =
1

2
xTQix+ qTi x+ ci � 0; i = 1; 2; :::; l+ 1;

Ax � b;

kxk � k

with k = 1; 2; ::: . For each (P )0k an optimal solution exists due to the compactness of the feasible

region. Let xk denote the minimum norm solution of (P )0k.

Certainly, if a subsequence of fxk : k = 1; 2; :::g is bounded, then the theorem follows immedi-

ately. Without loss of generality we assume that kxkk ! 1 and

lim
k!1

xk

kxkk = u; for some u with kuk = 1:

Since ff0(xk) : k = 1; 2; :::g is a monotonically decreasing sequence and that fi(x) is convex

quadratic for i = 1; 2; :::; l+ 1 it follows that

uTQ0u = 0 (4.3)

uTQiu = 0; for i = 1; 2; :::; l+ 1; (4.4)

qTi u � 0; for i = 1; 2; :::; l+ 1; (4.5)

Au � 0: (4.6)

Now we consider two separate cases:
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Case 1. There exists j 2 f1; 2; :::; l+ 1g such that qTj u < 0. Without loss of generality, assume

j = l+ 1. In this case we consider

minimize f0(x) =
1

2
xTQ0x+ qT0 x

subject to fi(x) =
1

2
xTQix+ qTi x+ ci � 0; i = 1; 2; :::; l

Ax � b:

There are two possibilities with the above minimization problem: Either it is unbounded, or it has an

attainable minimum solution by the induction hypothesis. In both situations due to quasiconvexity

there exists a solution x0 such that f0(x
0) = infk�1 f0(x

k) and

fi(x
0) � 0; for i = 1; 2; :::; l;

Ax0 � b:
(4.7)

If fl+1(x
0) � 0, then x0 is an optimal solution for (P )0, and so the theorem follows. Now consider

the other possibility, i.e. fl+1(x
0) > 0. Let us denote x0 = (x01; �x

0), where �x0 = (x02; x
0
3; :::; x

0
n). The

notation of �xk is de�ned similarly: �xk = (xk2; x
k
3; :::; x

k
n). Recall that f0(x

k) # f0(x0) and f0(x) is

quasi-convex over the domain. We claim that

uTrf0(x0) � 0: (4.8)

To see this we recall from (4.2) that

x01 � k�x0k; xk1 � k�xkk; 8k:

By the de�nition of f0(x) (cf. (4.1)), we have

rf0(x0)T (xk � x0) = 2(�x01; �x0)T (xk � x0)

= 2(�x01; �x0)Txk � 2f0(x
0)

= �2x01xk1 + 2
nX

i=2

x0ix
k
i � 2f0(x

0)

� �2x01xk1 + 2k�x0kk�xkk � 2f0(x
0)

� �2k�x0k(xk1 � k�xkk)� 2f0(x
0)

=
2k�x0k

xk1 + k�xkkf0(x
k)� 2f0(x

0);

where the second last step follows from the preceding bound. Dividing both sides by kxk�x0k and
letting k !1, we immediately obtain

lim sup
k!1

rf0(x0)T (xk � x0)

kxk � x0k � 0;

implying (4.8) holds.
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Now we let

t� := �fl+1(�x)

qTl+1u
(> 0) (4.9)

and

x0(t�) := x0 + t�u:

Clearly,

fl+1(x
0(t�)) = fl+1(x

0) + t�(rfl+1(x0))Tu
= fl+1(x

0) + t�qTl+1u = 0; (4.10)

where we used Ql+1u = 0 and (4.9). By (4.4) and (4.5), we have

fi(x
0(t�)) = fi(x

0) + t�(rfi(x0))Tu
= fi(x

0) + t�qTi u

� fi(x
0) � 0 (4.11)

for all i = 1; 2; :::; l. Finally, by (4.3) and (4.8) we get

f0(x
0(t�)) = f0(x

0) + t�uTrf0(x0) � f0(x
0) = inf((P )0): (4.12)

Summarizing (4.10), (4.11) and (4.12) we conclude that x0(t�) is an optimal solution for (P )0.

Case 2. qTi u = 0 for all i = 1; 2; :::; l+ 1. In this case, we know that both u and �u are recession

directions for (P )0.

For any �xed k, since f0(x
p) < f0(x

k) for all p > k, it follows from the quasi-convexity of f0
that

(xp � xk)Trf0(xk) � 0; for all p > k:

Dividing kxpk on both sides and letting p!1 we have

uTrf0(xk) � 0:

Since u is a recession direction and (P )0 is bounded below, we conclude that

uTrf0(xk) = 0 (4.13)

for all k = 1; 2; :::.

Now, because u = limk!1 xk=kxkk, it follows that for su�ciently large k we have

uTxk > 0;

and also we have the implication:

(Au)i < 0 ) (Axk � b)i < 0 (4.14)
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for each index i. This means that there exists �0 > 0 such that for all 0 < � � �0,

xk(�) := xk � �u

is a feasible solution for (P )0 and (P )0k. By (4.13),

f0(x
k(�)) = f0(x

k)

for 0 < � � �0. However,

kxk(�)k2 = kxkk2 � 2�(uTxk) + �2

and so we can choose � > 0 su�ciently small such that

kxk(�)k < kxkk:
This contradicts the fact that xk is the minimum norm solution for (P )0k, implying that Case 2

can never occur. The proof is complete. Q.E.D.

5 Conclusions

Unboundedness and existence of solutions are important issues in optimization theory; see Auslen-

der [1] for an extensive survey. In this paper we have provided a comprehensive study of the

existence of optimal solutions for quadratically constrained quadratic programs in the absence of

convexity. Our results extend the classical Frank-Wolfe theorem for linearly constrained QP to the

case where the constraints are convex quadratic. As a basic step we �rst established a continuity

property of the feasible set de�ned by a set of convex quadratic inequalities. By example we showed

that if the Hessian of the objective function has more than one negative eigenvalue or if there are

more than one quadratic inequality constraints, then optimal solution may not exist. On the other

hand, we showed that an optimal solution always exists when either there is one convex quadratic

constraint (plus linear constraints) or the objective function is quasi-convex.

Note that our results do not address the issue of how an optimal solution can be obtained. For a

linearly constrained quadratic program this is a hard problem in general. For example Matsui [12]

showed that minimizing the product of two linear functions over a polyhedron is NP-hard.

The problem of minimizing the quartic polynomial (x1x2 � 1)2 + x21 over the whole plane does

not have an optimal solution. This means that Frank-Wolfe type theorem cannot be generalized to

the situation where the objective function is a fourth (or higher) order multi-variate polynomial,

even though the constraint set is polyhedral. However, as shown in Section 3, this generalization is

possible for a special type of multi-variate polynomial function of degree three. Thus, an open ques-

tion still remains: Can we prove or disprove the same result for a general multi-variate polynomial

function of degree three?
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