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Abstract. In this paper we present a method for using rational expectations in a linear-
quadratic optimization framework. Following the approach put forward by Sims, we solve
the model through a QZ decomposition, which is generally easier to implement than the
more widely used method of Blanchard and Kahn.

1. Introduction

Starting with the work of Kydland and Prescott (1976) and Lucas (1976), much criti-
cism was made about the use of control theory in economics. One of the major drawbacks
of the use of the so called classical control theory is that it cannot deal with rational expec-
tations. The are a number of generic methods to solve models with rational expectations
(RE). For instance, Fair and Taylor (1983) use an iterative method for solving RE models
and, in the tradition of Theil, Fisher, Holly and Hughes Hallett (1986) uses a method
based on stacking the model variables. A hybrid method based on the saddlepoint prop-
erty is presented in Anderson and Moore (1985).

The Blanchard and Kahn method (1980) is another well known method for solving linear
models with RE in discrete time. By decomposing the model into stable and unstable
parts, the unstable part can be solved forward in time and the stable part backward in
time. Although the BK approach is theoretically a powerful method, for practical im-
plementation it has some serious drawbacks. First, not all linear RE models can be put
into first order linear form as required by the Blanchard and Kahn method, and second,
the method is based on the Jordan canonical form. The procedure to put the model into
the Jordan canonical is not widely available in software libraries and is known to be
numerically unstable, see Moler (1994).

In recent work, Amman, Kendrick and Achath (1995), Amman (1996), we presented
a procedure that introduces RE in a linear-quadratic (LQ) control framework based on
the Blanchard and Kahn method. Due to the limitations of the Blanchard and Kahn
approach and the fact that we had to rely on the diagonalization of the transition matrix,
this work could only deal with a limited set of models. Recently, Sims (1996) proposed
a different method for solving linear models with RE allowing for a broader range of
models. This method is not based on the Jordan canonical form, but uses the more
widely available QZ form that is based on generalized eigenvalues and which is more
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numerically stable. In this paper we will follow the paper of Sims and incorporate his
approach into the LQ framework.

2. Problem statement and solution

Following Kendrick (1981), the standard single-agent linear-quadratic optimization
problem is written as:

Find the set of admissible instruments 8  IX
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The vector [
W

� �Q is the state of the economy at time W and the vector X
W

� �P

contains the policy instruments. The initial state of the economy [
�

is known, x[
W

and
xX
W

are target values. :
W

, 5
W

and )
W

are penalty matrices of conformable size, n being a
discount factor.

The above model is straightforward to solve and there are a number of packages available,
see Amman and Kendrick (1997a). However, a serious drawback for economics is that
equation (2) does not allow for rational expectations. One way of allowing RE to enter
the model is to augment equation (2) in the following fashion
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where the matrix '
M�W

is a parameter matrix, (
W

[
W��

is the expected state for time
W � M at time W, N the maximum lead in the expectations formation and q

W

is a white
noise vector. In order to compute the admissible set of instruments we have to eliminate
the rational expectations from the model. In a previous paper Amman, Kendrick and
Achath (1995), we used the Blanchard and Kahn method to solve the RE in the model.
However, as mentioned above, the Blanchard and Kahn method has some features that
impede practical implementation. First, the method requires that the model may be put
into first order linear form, so '

N

should be invertible. Second, the BK approach uses
the Jordan canonical form method. This method is applicable to any transition matrix.
However, it is not widely available in software libraries and is known to be numerically
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unstable.

Sims (1996) proposes a different route by applying a generalized eigenvalue approach.
In order to apply Sims’ method we first put equation (2) in the form�
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Taking the generalized eigenvalues of equation (3) allows us to decompose the system
matricesb

��W
andb

��W
in the following manner,viz. Coleman and Van Loan (1988) or

Moler and Stewart (1973) ,
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�Note that in contrast to Sims (1996) the variable ]W contains exogenous variables and not random variables.
Hence, the matrix g in Sims’ paper is set to zero.
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It is possible to reorder the matrices =
W

and 4
W

in such a fashion that we diagonals
elements of the matrices e

W

and l
W

contain the generalized eigenvalues in ascending
order. In that case we can write equation (4) as follows

�
e
���W

e
���W

� e
���W

w �
Z
��W��

Z
��W��

w
 

�
l
���W

l
���W

� l
���W

w �
Z
��W

Z
��W

w
�

�
4
��W

4
��W

w
b
��W
X
W

�

�
4
��W

4
��W

w
b
��W
]
W

�

�
4
��W

4
��W

w
b
�
q
W

(6)

where the unstable eigen values are in lower right corner, that is the matrices e
���W

and l
���W

. By forward propagation and taking expectations, it is possible to derive Z
��W

as a function of future instruments and exogenous variables, Sims (1996, page 5)

o
W

 Z
��W
 b

�;
M �

a0
W�M

lb�
���W�M

4
��W�M

�b
��W�M

X
W�M
� b

��W�M
]
W�M
�(7)

The matrix a0
W�M

is defined as
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contains the eigenvalues outside the unit circle, we have
applied the follow condition in deriving equation (7)
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In contrast to Sims, 0
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is not time invariant since we explicity want to allow for time
varying parameters in the model. Reinserting equation (7) into equation (6) gives us
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We have to make the assumption here that e
���W

is nonsingular. However, the diagonal
elements will generally be nonzero, so it is very likely that the matrix is nonsingular. With
equation (9) we have transformed equation (2a) into the form required by equation (2)
enabling us to set up an iterative scheme using the LQ framework in equations (1)-(2).
Knowing that o

W

depends on the future the basic algorithm works like this �

Step 0. Set the iteration count y  � and set the instruments Xy
W

, W  I�� �� � � � � 7�Vb�J,
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(see below).
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Step 2. Apply the LQ framework in equations (1)-(2) to compute a new set of optimal
instruments Xy��

W

using the equation below in place of equation (2)
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Step 3. Set y  y � � and go to Step 1 until convergence has been reached.

There is still one remaining issue we have to take care of. In order to apply the
algorithm for y  � we need to have an initial value of the augmented state vector, which
is
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However, at the beginning of the first iteration step the expectational variables are not
known, so we have to give the expectational part of a[�

�
an arbitrary value. Once we have

completed the first iterations we can the computed states to reinitialize a[�
�
. In the next

section we will apply this algorithm using a simple macro model.

�The Matlab implementation of this algorithm can be obtained through the corresponding author.
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3. An example

Consider a simple macro model with output, [
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, consumption, F
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, investment, L
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, gov-
ernment expenditures, J
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, and taxes ~
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. The problem can then be stated as:
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If we reduce the above model to one equation for output we get
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where ]
W

 � � W. Applying the QZ factorization, Coleman and van Loan (1988), to
compute the generalized eigen values of the model gives us the time invariant solution
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Note that we have set (
�
[�
�
 ����. For this simple model we can compute the steady

state of the system being [
�
 ������� and X

�
 �����, see Amman and Kendrick

(1997b). Hence, 8�  I������ � � � � �����J is an educated guess for the instruments. The
solution to the model is in Table 1.

Table 1.
Solution of the LQ optimization model with RE

W 0 1 2 3 4 5 6 7 8 9 10
[
W

1500 1556 1576 1584 1587 1588 1589 1589 1587 1584 1578
X
W

40 26 21 19 18 18 18 17 16 11

4. Summary

In this paper we have presented a single agent Linear-Quadratic optimization model
that allows for rational expectations. Based on Sims’s paper we have used a generalized
eigenvalue method for solving the variables that involve the unstable roots. By using
an iterative scheme, the reduced model can be fitted into a standard Linear-Quadratic
framework that allows us to derive the optimal policy instruments for the model with
rational expectations.
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Appendix A
Derivation of Equation 5

Begin with equation (3), i.e.
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which is equation (5) in the body of the paper.
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Appendix B
Derivation of Equation 7

Begin with the bottom half of equation (6), i.e.
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Repeat the process above for Z
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Then substitution of equation (B-10) into equation (B-9) yields
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This process can be continued for s periods until one obtains
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Substitution of equation (B-2) into equation (B-18) then yields after taking expectations
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which is the same as equation (7) in the body of the paper.
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