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Bram van Os† Rasmus Lönn‡ Dick van Dijk§
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Abstract

We put forward a Dynamic Regularized Parametric (DRP) approach for active port-

folio policies. We build upon the parametric policy framework of Brandt et al. (2009)

that directly links the portfolio weights to a limited set of asset characteristics. This

yields a parsimonious specification that avoids modeling the joint distribution of

returns, and as such remains applicable for large asset universes. We relax the as-

sumption that policy coefficients are constant over time, to accommodate that the

relevance of specific characteristics for future asset performance may vary. Dynamic

policy coefficients are obtained by maximizing the conditional expected utility for

each time period, with transaction costs being limited through a trading regular-

ization. This regularized optimization problem results in an elegant filter to update

the policy coefficients, balancing between adapting to valuable new, yet inherently

noisy, information and providing a stable strategy that avoids costly re-balancing.

We demonstrate that for a mean-variance utility investor, our framework yields an

intuitive analytical solution. In an empirical application using the full universe of

stocks from the NYSE, AMEX and Nasdaq, we find that the DRP approach produces

substantial gains in out-of-sample portfolio performance, where both incorporating

dynamics and regularization are important to achieve this.
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1 Introduction

Mean-variance allocation across large cross-sections of assets often provides poor out-of-sample

performance due to estimation uncertainty in expected returns and the covariance matrix.

Brandt, Santa-Clara, and Valkanov (2009) propose an approach that avoids the need to es-

timate these return moments by directly modeling portfolio weights as (linear) functions of

asset characteristics. In this paper, we generalize these parametric portfolio policies to allow for

time-varying policy coefficients and incorporate cost mitigation into the optimization. This en-

ables flexible portfolio allocations that accommodate time variation in the relationship between

the joint distribution of returns and firm characteristics while remaining cost-efficient.

The parametric portfolio framework of Brandt et al. (2009) starts from a benchmark al-

location, e.g., a value-weighted or equally-weighted portfolio, and then uses a relatively small

set of asset characteristics to determine adjustments of the portfolio weights. Regardless of the

number of assets in the portfolio, this method requires only as many coefficient estimates as

the number of characteristics. These parametric portfolio policies are, therefore, well suited

to accommodate large cross-sections of assets and produce robust performance out-of-sample.

However, the policy coefficients are typically assumed to be constant over time. Brandt et al.

(2009) comment that while fixed coefficients are convenient, “there is no obvious economic

reason for the relation between firm characteristics and the joint distribution of returns to be

time-invariant”. In fact, they find that adjusting the policy coefficients dependent on the sign

of the slope of the yield curve provides economic gains.

We propose a flexible framework that updates the policy coefficients at each point in time

using the conditional expectation of next period’s utility. The resulting Dynamic Regular-

ized Parametric (DRP) portfolio policies recursively maximize conditional expected utility aug-

mented with a cost-mitigation term defined by a weighted ℓ2 penalization on changes in indi-

vidual portfolio weights. Using this optimization setup, the DRP framework directly balances

rapid adjustment to new information with maintaining cost efficiency by avoiding excessive

trading. The form of the penalization provides tractable updates and connects our framework

to the popular class of stochastic proximal-point methods (e.g., Bianchi, 2016).

Allowing for time variation in the policy coefficients enables the portfolio allocation to adjust

to changing opportunities afforded by the firm characteristics. Such changes in opportunities

may arise from changes in expected returns and variances or from shifts in covariances that

create potential hedging benefits. There are many possible sources of such variation; particular
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concerns include time-varying or disappearing risk premia (see, e.g., Schwert, 2003; Green et al.,

2011; McLean and Pontiff, 2016; Smith and Timmermann, 2022) and the tendency of certain

characteristics, such as Momentum, to experience occasional crashes (Barroso and Santa-Clara,

2015; Daniel and Moskowitz, 2016). The DRP policies rapidly adapt to changes in the joint

efficacy of characteristics without the need to specify an exogenous economic model for the time

variation in their underlying properties.

An important feature of our methodology is that the DRP framework incorporates regular-

ization, which enables cost mitigation directly within the portfolio optimization. Novy-Marx

and Velikov (2016) study the costs of maintaining portfolios based on single characteristics and

find that many prominent factors are associated with high trading costs. Further, recent lit-

erature including Detzel et al. (2023), Jensen et al. (2024), and Li et al. (2024) emphasize the

importance of costs when assessing the joint performance of multiple investment strategies. Up-

dating portfolio policies based on the conditional expectation of future utility exacerbates these

complications. Including cost mitigation helps us address these concerns and produce portfolios

that target practically achievable investment opportunities. A key aspect of our DRP framework

is the regularization of changes in individual portfolio weights. This conveniently accommodates

different cost-mitigation strategies, for example, to regularize trading proportionally to trading

costs on individual assets or to concentrate trading on a subset of assets.1

We focus our analysis on the mean-variance investor allocating wealth across a large num-

ber of assets in the presence of transaction costs. The classical solution obtained by Markowitz

(1952) requires estimates of expected returns and the covariance matrix, and a large litera-

ture documents how parameter uncertainty undermines mean-variance portfolios.2 This has

triggered a parallel literature developing shrinkage estimators for return moments in high-

dimensional settings. For example, Fan et al. (2013) exploit conditional sparsity for covariance

estimation, while Ledoit and Wolf (2017) advocate nonlinear shrinkage.3 Hautsch and Voigt

(2019) study mean-variance optimization accounting for transaction costs and highlight the con-

nections to statistical shrinkage.4 Other contributions, such as Goto and Xu (2015) and Callot

et al. (2021), propose shrinkage estimators for the precision matrix. The DRP portfolio policies

we propose in this paper offer an alternative approach that avoids direct moment estimation,

1Novy-Marx and Velikov (2019) study the performance of a number of popular cost-mitigation strategies.
2See, among many others, Merton (1980), Jobson and Korkie (1980), Michaud (1989), Kan and Zhou (2007),

DeMiguel et al. (2009), and Tu and Zhou (2011).
3Ledoit and Wolf (2022) review many related estimators.
4Jagannathan and Ma (2003) similarly link weight constraints to statistical shrinkage in mean-variance port-

folios.
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making them especially well suited to high-dimensional allocation problems.

Our work extends the literature building on the framework introduced by Brandt et al.

(2009). For example, Hjalmarsson and Manchev (2012) explore the mean–variance perspective,

while Ammann et al. (2016) study the impact of leverage constraints. Caldeira et al. (2023)

allow portfolio weights to be non-linear functions of characteristics, using regularized splines.

DeMiguel et al. (2020) address the challenges posed by transaction costs and a large set of

financial characteristics by including costs in the objective function and regularizing the pol-

icy coefficients with a lasso penalty to promote shrinkage and variable selection. Other recent

studies addressing high-dimensional characteristic spaces include Moura et al. (2025), who use a

linear boosting framework for minimum-variance optimization, and Bianchi and Venturi (2024),

who develop a Bayesian regularization approach. Our key contribution to the literature is to

focus on time-varying relations between characteristics and returns, allowing for dynamic policy

coefficients (for a relatively small number of characteristics) and introducing a flexible regular-

ization on individual portfolio weights that accommodates different cost-mitigation strategies.

We implement our approach to construct DRP portfolios for the full cross-section of stocks

traded on the NYSE, AMEX, and Nasdaq between January 1965 and December 2024. Us-

ing Size, Value, Investment, Operating Profitability, Momentum, and Short-Term Reversal as

characteristics, the estimated policy coefficients display both short-term fluctuations and grad-

ual long-run drifts. Examining the marginal contributions of each policy to the mean-variance

objective, we find that these long-run drifts largely reflect declining expected returns on the

corresponding characteristic-managed portfolios. However, although the expected returns asso-

ciated with several characteristics decrease over time, some characteristics continue to deliver

positive value to the investor through their covariances with other characteristic-managed port-

folios and with the market. In other words, the dynamic policies allow the portfolio to adjust

quickly and exploit the hedging opportunities embedded in these characteristics. One such

example is the Momentum portfolio, which, following the dot-com bubble, experienced a sub-

stantial decline in expected returns, yet its covariances with other managed portfolios provide

sizable positive contributions for the mean-variance investor.

The out-of-sample performance of our DRP portfolio policy over the period from January

1985 through December 2024 reveals large economic gains relative to the standard parametric

policy proposed by Brandt et al. (2009). Importantly, we find that incorporating cost mitiga-

tion yields dynamic policy adjustments that generate economic gains that are achievable in the
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presence of transaction costs. When Size, Value, Operating Profitability, and Investment are

included in the portfolio optimization, our methodology delivers an annual net-of-cost certainty-

equivalent rate of 9.05 percent. The corresponding rate for a portfolio optimized without dy-

namic adjustments or regularization is 0.93 percent. Intuitively, limiting the amount of trading

becomes even more important when adding the costly Momentum and Reversal characteristics.

In this case, our method continues to be successful and achieves a net certainty-equivalent rate

of 8.12 percent. By contrast, unregularized portfolio policies produce rates below zero.

The paper is structured as follows. Section 2 develops our framework of dynamic regularized

parametric portfolio policies. Section 3 discusses the set-up of our empirical analysis. Results

are presented in Section 4. Section 5 concludes.

2 Methodology

2.1 Parametric portfolio policies

Parametric portfolio policies address the wealth allocation challenge for an investor without

explicitly modeling the joint distribution of all asset returns. Following Brandt et al. (2009),

we define the parametric portfolio policies in terms of a linear relationship between portfolio

weights and asset characteristics, such that

wt = wt(θ) = wb,t +
1

Nt
Xtθ, (1)

where wt denotes the Nt × 1 vector of positions in a set of Nt risky assets available at time t.

Specifically, wt is constructed by tilting a benchmark portfolio with weights wb,t using K < Nt

observed asset characteristics, with values (that are known and available at time t) contained

in the Nt ×K matrix Xt and sensitivities in the K × 1 vector θ. These policy coefficients θ are

unknown and need to be estimated. The benchmark portfolio is assumed to be fully invested

in the risky assets, i.e., ι′Nt
wb,t = 1, where ιNt is a Nt × 1 vector of ones. To maintain this

property for wt the characteristics Xt are centered to have cross-sectional mean zero at each

date t. Finally, the scaling factor 1/Nt ensures that the portfolio policy does not become more

or less aggressive as the number of assets in the portfolio varies.

Using the weights specification in (1), we obtain the following portfolio return from time t

to t+ 1:

rp,t+1 = w′
trt+1 = (wb,t +

1

Nt
Xtθ)

′rt+1 = rb,t+1 + θ′rc,t+1, (2)
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where rt+1 is the vector of returns on the risky assets, rb,t+1 := w′
b,trt+1 is the return on the

benchmark portfolio, and rc,t+1 := 1
Nt
X ′

trt+1 is the K × 1 vector of returns on a set of K

(zero-investment) portfolios managed on the respective characteristics.

The policy specification in (1) importantly assumes that the adjustment intensity θ is con-

stant across the cross-section of assets and constant over time. Keeping θ constant across

assets implies that the investor disregards the identity of the included assets. Instead, the (ad-

justments in the) portfolio weights (relative to the benchmark) are exclusively based on the

characteristics Xt. Assuming the policy coefficients θ to be constant over time greatly facil-

itates their estimation. In general, the portfolio weights wt (and thus θ) are determined by

maximizing the conditional utility of the portfolio return rp,t+1. Assuming θ to be constant

over time implies that we can instead optimize the unconditional expected utility. This results

in a straightforward optimization problem of maximizing a sample moment estimator:

max
θ∈Θ

1

T

T−1∑
t=0

U

(
(wb,t +

1

Nt
Xtθ)

′rt+1

)
, (3)

where U(·) denotes the investor’s utility function and Θ ⊆ RK a space of admissible policy

coefficients.

While assuming policy coefficients to be constant over time is convenient, it excludes the abil-

ity to adapt the allocation as performance associated with the respective characteristics changes.

Brandt et al. (2009) comment that there is no economic reason to maintain the assumption of

constant parameters, and propose an augmented characteristics set to incorporate time-varying

parameters. In particular, the augmented set includes interactions of the asset characteristics

with business cycle indicators, enabling the policies to vary with economic conditions.5 There

are three drawbacks to this approach. First, the number of parameters to be estimated in-

creases rapidly with the number of business cycle indicators. Second, these indicators have to

be specified exogenously and may be imperfect proxies for changing economic conditions that

affect the portfolio policies. Third, it need not be economic conditions that affect the portfolio

policy; it could be other reasons specific to a characteristic (e.g. post-publication effects) that

are inherently hard to capture with exogenous interaction variables. Our aim is to circumvent

these issues and provide a flexible dynamic framework that can be applied to directly forecast

an investor’s optimal policy for the period to come.

5In their empirical application they use the sign of the slope of the yield curve to indicate if the economic
state is expansionary or contractionary at time t.
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2.2 Dynamic portfolio policies

We relax the assumption of constant policy coefficients by formulating the dynamic regularized

parametric (DRP) portfolio weights as

wt = wt(θt) = wb,t +
1

Nt
Xtθt. (4)

For the dynamics of θt, we propose a simple filter that recursively updates the investor’s be-

lief about the policy coefficients by moving towards a portfolio that maximizes the conditional

expectation of the portfolio return’s utility, similar to how the static approach uses the uncon-

ditional expectation, as shown in (3). In order to avoid excessive re-balancing, we constrain the

dynamic policy update to keep the updated portfolio weights close to the current ones. Specifi-

cally, for the mean-variance utility, which will be the default choice throughout this paper, the

DRP update reads:

θt = argmax
θ∈Θ

{
wt(θ)

′µt+1 −
γ

2
wt(θ)

′Σt+1wt(θ)−
1

2
∥wt(θ)− (ι+ rt)⊙ wt−1(θt−1)∥2Pt

}
, (5)

where µt+1 := Et[rt+1] and Σt+1 := Et [(rt+1 − Et[rt+1])(rt+1 − Et[rt+1])
′] denote the condi-

tional mean and covariance matrix of the asset returns rt+1 and γ > 0 is the risk-aversion

parameter.6 In addition, ⊙ is the Hadamard product and ∥x∥2Pt
:= x′Ptx denotes the weighted

ℓ2-norm of some x ∈ RNt with respect to a positive definite Nt ×Nt penalty matrix Pt ≻ ONt ,

where ONt denotes a zero-matrix of dimensions Nt × Nt. Section 2.4 presents a parsimonious

specification of Pt that is useful in practice. The quadratic form of the penalty term on the

changes in portfolio weights in (4) is particularly appealing as it allows for tractable updates

and connects our framework to the well-established class of stochastic proximal-point algo-

rithms widely employed in optimization (e.g. Bianchi, 2016; Ryu and Boyd, 2016; Toulis et al.,

2021). By formulating the policy update as the solution to an optimization problem involving

a regularized objective function, we are able to directly balance adapting to valuable new, yet

inherently noisy, information and providing a stable strategy that avoids costly re-balancing.

The parametric portfolio structures in (1) and (4) circumvent the estimation of the Nt-

6We note that the available assets at time t− 1 and time t need not match and in general Nt−1 ̸= Nt. With
slight abuse of notation, we have that the difference wt(θ) − (ι + rt) ⊙ wt−1(θt−1) in the penalty term is thus
understood to use the unified universe of assets with zero weights assigned to unavailable assets. Specifically,
assets that were available at time t−1, but not at time t receive 0 weight at time t, that is, we completely divest.
Similarly, assets that are available at time t but were not at time t− 1 are understood to carry 0 weight at time
t− 1 for calculation purposes. Differences over assets that are available at both time points proceed as usual.
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dimensional quantities µt and Σt. Specifically, using the DRP policy weights specification in

(4), it is straightforward to show that optimization (5) is equivalent to

θt = argmax
θ∈Θ

{
θ′µc,t+1 −

γ

2
θ′Σc,t+1θ − γθ′σb,c,t+1 −

1

2
∥θ − θt−1∥2Pc,t

− θ′δt

}
, (6)

with

Pc,t :=
1

N2
t

X ′
tPtXt, δt =

1

Nt
X ′

tPt [wt(θt−1)− (ι+ rt)⊙ wt−1(θt−1)] , (7)

where µc,t+1 := Et[rc,t+1] and Σc,t+1 := Et [(rc,t+1 − Et[rc,t+1])(rc,t+1 − Et[rc,t+1])
′] are the K-

dimensional conditional mean and covariance matrix of the returns on the characteristic port-

folios rc,t+1. Similarly, σb,c,t+1 := Et [(rb,t+1 − Et[rb,t+1])(rc,t+1 − Et[rc,t+1])] denotes the K × 1

vector of conditional covariances between the characteristic portfolios returns rc,t+1 and the

return on the benchmark portfolio rb,t+1. Section 2.3 describes how these K-dimensional con-

ditional moments can be modeled using standard time-series techniques.

For wt(θt) = wb,t+
1
Nt
Xtθt, comparing (5) with (6) shows that the quadratic penalty specified

at the individual-weight level reduces to two terms: 1) a quadratic penalty at the characteristic

portfolio level with K×K penalty matrix Pc,t, and 2) a linear correction term θ′δt that accounts

for the returns at time t and the differences between wt(θt−1) and wt−1(θt−1). The latter is

in turn attributable to changes in the characteristics from Xt−1 to Xt and changes in the

benchmark weights from wb,t−1 to wb,t. The first term reflects that reducing fluctuations in

policy coefficients generally reduces changes in portfolio weights, while the second term results

from the fact that even constant policies require rebalancing. In fact, if the latter term dominates

due to large changes in the characteristics, then varying the policies appropriately may partially

counteract these effects and produce lower tradings costs than a static policy. For this reason,

the DRP update (5) regularizes the weight changes and not the policy changes, as we are

ultimately interested in reducing trading costs.

In addition, equation (6) shows that the optimization problem of interest only involves K-

dimensional quantities. This dimension reduction, from Nt to K, is key and is what enables our

DRP approach to remain applicable to large cross-sectional asset universes. We note that our

approach could be further extended with, among others, leverage constraints as in Ammann

et al. (2016), which can be reformulated as an additional ℓ2 penalty on θ centered at zero in

(6), rather than the previous policy θt−1; we leave such combinations for future research.

The quadratic nature of the optimization problem (6) allows us to derive an intuitive ana-
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lytical solution.7 The first-order conditions (FOCs) with respect to θ are given by

µc,t+1 − γσb,c,t+1 − δt − γΣc,t+1θt − Pc,t(θt − θt−1) = 0. (8)

From these conditions, we find that the update can be viewed as a stable exponentially weighted

moving average of the mean-variance portfolios without regularization:

θt = Λtθt−1 + [IK − Λt](θMV,t − δ̃t), (9)

θMV,t =
1

γ
(Σc,t+1)

−1µc,t+1 − (Σc,t+1)
−1σb,c,t+1, (10)

Λt = [Pc,t + γΣc,t+1]
−1Pc,t, (11)

δ̃t =
1

γ
(Σc,t+1)

−1δt, (12)

where Λt is a K×K autoregressive smoothing matrix with all eigenvalues between 0 and 1 and

θMV,t is the mean-variance portfolio on the characteristic portfolios based on our estimates of

its moments for the coming period, adjusted for the covariances with the benchmark portfolio

via γσb,c,t+1. That is, θMV,t has the same form as the static estimator in DeMiguel et al. (2020),

but replaces the unconditional moment estimators with conditional quantities. The DRP policy

θt can then be viewed as a smoothed version of these conditional mean-variance policies θMV,t.

Furthermore, δ̃t is a correction term that accounts for changes in the characteristics and the

benchmark portfolio, allowing for a proper comparison between policies at different points in

time.

The smoothing matrix Λt in (11) takes an intuitive form and is comprised of the covariance

matrix of the characteristic portfolios Σc,t+1, the risk-aversion parameter γ and the penalty

matrix Pc,t, whereby higher values of Pc,t place more weight on the previous policy θt−1. Vice

versa, if the volatilities of the characteristic portfolios increase the investor adjusts the policy to

increase emphasis on θMV,t, which in this case will provide a less aggressive investment policy.

More risk averse investors will similarly put more weight on θMV,t with a greater emphasis on

the minimum-variance term.

To summarize, our framework extends the parametric portfolio approach of Brandt et al.

(2009) in three important ways. First, we accommodate time-varying moments of returns, such

that we optimize the conditional utility of the investor. Second, our framework estimates a

7A step-by-step derivation is provided in Appendix A.1

8



time-varying policy θt which is recursively updated at each point in time, in contrast to a static

policy. This feature allows for time-varying (relative) importance of the different characteristics.

Third, policy updates account for trading costs and promote stable allocations of wealth across

individual assets.

2.3 Conditional moment estimators

The dynamic regularized mean-variance optimization (6) requires the first and second condi-

tional moments of the characteristic portfolios and the conditional covariances with the bench-

mark portfolio. Below we describe the estimators we employ in our empirical application,

involving monthly optimization utilizing monthly and daily returns. For alternative data fre-

quencies, other estimators may be considered.

For the conditional means of the characteristic portfolio returns, we propose the following

specification for month t > L:

µc,t+1 = (1− ϕ1 − ϕ2)
1

L

L−1∑
j=0

rc,t−j + ϕ1 rc,t + ϕ2µ̃t, (13)

where L is a lag length, ϕ1 and ϕ2 are parameters to be estimated satisfying ϕ1 ≥ 0, ϕ2 ≥ 0,

and ϕ1 + ϕ2 ≤ 1, and µ̃t is a K × 1 shrinkage target. In words, (13) specifies the conditional

mean for time t + 1, µc,t+1, as a convex mixture of a long-run component in the form of the

average return over the past L periods, a short-run component represented by the most recent

return, and a shrinkage target. In our main analysis, we set µ̃t equal to a zero vector, which

thereby pulls our conditional mean towards zero. Mean shrinkage has a long history in finance

and combats the large uncertainty typically found in expected return estimates (e.g., Jorion,

1986; Pástor, 2000).

Next, we consider the conditional covariance matrix of rb,c,t := [rb,t rc,t]
′, which is the

(K + 1) × 1 vector that stacks the returns on the benchmark and the characteristic portfolios

at time t. We denote this (K + 1)× (K + 1) conditional covariance matrix by Σb,c,t+1 and use

the monthly realized covariance matrices RCOVt to drive its time variation ∀t > L, as follows:

Σb,c,t+1 = (1− ψ)
1

L

L−1∑
j=0

rb,c,t−j r
′
b,c,t−j + ψQtRCOVtQ

′
t, (14)

where RCOVt is obtained by summing the outer products of the daily returns in month t8 and

8Specifically, we use daily buy-and-hold returns of the characteristic portfolios, as opposed to the returns of
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ψ ∈ [0, 1] a parameter to be estimated. In words, the conditional covariance matrix Σb,c,t+1 is a

convex mixture of long- and short-run components, represented by the sample second moment

over the past L months and the realized covariance matrix for the most recent month RCOVt.

The matrix Qt in (14) is a bias-correction term constructed as

Qt =

 1

L

L−1∑
j=0

rb,c,t−j r
′
b,c,t−j

1/2 1

L

L−1∑
j=0

RCOVt−j

−1/2

, (15)

where A1/2 denotes that symmetric square root of some positive definite matrix A. This

bias correction adjusts the long-run expectation of RCOVt to the appropriate level such that

E[Σcb,t+1] ≈ E[rcb,t r′cb,t], without the need to model daily dynamics; see Oomen (2004) for de-

tails on this issue. The well-known improved precision of realized estimators (e.g. Noureldin

et al., 2012) is an important facilitator of our dynamic approach.

Specifications (13) and (14) nest an important special case. Namely, if ϕ1 = ϕ2 = ψ = 0,

we obtain sample moments from a moving window of length L. Our conditional moment

framework is thus chosen to be both simple and interpretable. Of course, various alternative and

possibly more complicated models can be entertained if one is purely interested in out-of-sample

performance; we leave this for future research.

2.4 Penalty specification

An important component of the DRP update in (5) is the Nt × Nt penalty matrix Pt, which

controls how strongly changes in the weights away from the current portfolio are regularized.

This penalty matrix can conveniently be specified in accordance with different cost mitigation

strategies or trading restrictions that an investor faces.

In our baseline analysis, we use a simple parsimonious specification that does not distinguish

between costly and cheap assets.9 This avoids the need to estimate a large number of parameters.

Specifically, we set

Pt = ρINt , (16)

where ρ > 0 is a scalar regularization parameter to be estimated, and INt is an Nt×Nt identity

daily-rebalanced portfolios. This is important, because the former aggregate correctly to the monthly returns,
whereas the latter do not; see Appendix A.2 for details.

9Appendix B.6 demonstrates how asset transaction costs can be incorporated in the penalty specification.
For our selection of characteristics the empirical performance differences are generally found to be small.
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matrix. As a result, the relative penalization at the policy level takes the form

Pc,t := ρ
1

N2
t

X ′
tXt, (17)

yielding aK×K penalty matrix that is a scalar multiple of the cross-sectional sample correlation

matrix of the characteristics, provided Xt is appropriately normalized (i.e. zero means and unit

variances) as further discussed in Section 3. This penalty matrix ensures that policy updates

for characteristics positively correlated with other characteristics are attenuated. Conversely,

for characteristics negatively correlated with others the policy updates are increased. In this

manner, the policy updates maintain stable allocations of wealth across assets.

3 Empirical setup

We evaluate the DRP approach in an empirical application to U.S. equity portfolios. We consider

a mean-variance investor who adjusts her portfolio weights at a monthly frequency, starting from

an asset universe that comprises all stocks traded on the NYSE, AMEX and Nasdaq. The full

sample period for which we collect data stretches from January 1965 to December 2024.

In the empirical assessment, we focus on two different aspects of the proposed DRP method-

ology. First, we evaluate the out-of-sample performance alongside that of nested alternatives.

Second, we examine the policy coefficients and the time-varying contributions of the respective

characteristics from the perspective of a mean-variance investor.

3.1 Data

Our construction of the dataset of returns and firm characteristics for U.S. common stocks

largely follows the approach of Green et al. (2017).10

Estimation of the moments of the managed portfolios relies on daily return data, which

we obtain from CRSP.11 The empirical analysis considers a small set of well-established firm

characteristics (formed using data from both CRSP and Compustat): the book-to-market ratio

(bm), size (me), investment (inv), operating profitability (op), momentum (mom), and short-

term reversal (rev). Momentum is measured as the cumulative return over the preceding year

10We are grateful to the authors of Green et al. (2017) for making their replication code publicly available. We
extend their sample to cover the period from 1965 through 2024. Further, since we consider only a small number
of characteristics, we omit certain filters originally intended to ensure sufficient information when analyzing a
broad cross-section of characteristics.

11Daily returns are sourced from CRSP Version 2.
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excluding the last month, while short-term reversal is measured as the previous month’s return.

Consistent with Green et al. (2017) and DeMiguel et al. (2020), annual (quarterly) accounting

data are assumed to be available at the end of month t− 1 once six (four) months have elapsed

since the firm’s fiscal year-end.

A stock is excluded from the cross-section at time t if any of its characteristics or returns are

missing for that month. Following Brandt et al. (2009), stocks falling below the 20th percentile

of the cross-sectional distribution of market capitalization, as well as those with negative book-

to-market ratios, are excluded from the sample. Finally, assets with monthly returns below

−100% are dropped. The final sample comprises 16,410 unique stocks, with an average of 2,844

available at any given point in time. At the beginning of the sample period, the cross-section

contains approximately 1,020 stocks, increasing rapidly to 2,195 by January 1975. The cross-

section peaks at 4,541 stocks in 1998 and subsequently declines to roughly 2,500 by December

2024.

Consistent with DeMiguel et al. (2020), the firm characteristics are winsorized to mitigate

the influence of extreme observations. The upper (lower) threshold is defined as the third

(first) quartile plus (minus) three times the interquartile range, and any values outside these

bounds are replaced with the corresponding threshold value. Each characteristic is subsequently

demeaned and standardized on a monthly basis so that it has a cross-sectional mean of zero and

a standard deviation of one. The time series of cross-sectional means and standard deviations

of the raw characteristics are reported in Appendix B.5.

Table 1 reports the average returns, volatilities, and pairwise correlations of portfolios man-

aged at a monthly frequency based on the underlying firm characteristics. When the sample is

partitioned into four 15-year subperiods, the estimates reveal economically significant variation

over time. In particular, the magnitudes of the average returns on all portfolios except the

market portfolio decline markedly in the later portions of the sample. Correlations also change

substantially: For example, while the correlation between the size and momentum portfolios

is −0.41 in the first 15 years, it gradually increases and becomes positive at 0.47 in the final

subperiod.

In the out-of-sample analysis, portfolio performance is evaluated net of transaction costs.

Following Brandt et al. (2009), trading costs are assumed to decline over time until January

2002, with smaller-cap stocks incurring higher costs. Specifically, we define the transaction cost

of asset i at time t as κi,t = ctt × (0.006− 0.0025[me]i,t), where [me]i,t denotes the normalized

12



Table 1: Summary of managed portfolios

1965 / 1979 1980 / 1994
mkt me bm op inv mom rev mkt me bm op inv mom rev

Avg. 7.35 −3.31 2.67 6.41 −6.79 −0.42 −2.59 14.43 2.16 4.32 6.64 −6.09 2.02 −4.41
Vol. 15.59 5.75 3.59 5.68 4.56 2.86 2.62 15.37 4.67 3.42 4.17 3.16 2.11 2.30

Correlation Correlation
mkt 1 1
me −0.31 1 0.1 1
bm −0.13 −0.41 1 −0.51 −0.18 1
op −0.03 0.27 −0.18 1 0.27 0.15 −0.23 1
inv −0.33 0.35 −0.09 0.36 1 −0.27 0.16 0.12 0.26 1
mom 0.40 −0.41 −0.38 0.04 −0.23 1 0.43 −0.04 −0.33 0.32 −0.09 1
rev 0.49 −0.13 −0.62 −0.01 −0.20 0.62 1 0.45 0.05 −0.79 0.01 −0.11 0.23 1

1995 / 2009 2010 / 2024
mkt me bm op inv mom rev mkt me bm op inv mom rev

Avg. 9.11 −1.29 2.49 2.83 −1.65 0.94 −2.82 14.55 0.41 0.54 1.77 −1.03 1.33 −0.89
Vol. 15.77 5.35 4.59 9.39 8.07 3.16 3.67 15.06 4.33 4.71 5.03 4.65 2.58 2.92

Correlation Correlation
mkt 1 1
me −0.04 1 −0.24 1
bm −0.33 −0.05 1 0.11 −0.51 1
op −0.20 0.20 −0.13 1 −0.29 0.40 −0.23 1
inv −0.23 0.18 0.05 0.35 1 −0.50 0.25 −0.08 0.33 1
mom 0.01 0.23 0.20 −0.21 −0.26 1 0.08 0.47 −0.12 0.07 −0.07 1
rev 0.42 0.04 −0.37 −0.38 −0.28 0.25 1 0.41 −0.18 0.01 −0.32 −0.39 0.19 1

The table reports annualized mean returns (Avg.), volatilities (Vol.), and correlations for portfolios managed
based on characteristics, as well as the market portfolio (mkt). Market returns are gross of the risk-free rate.

Annualization is done by multiplying monthly means by 12 and volatilities by
√
12.

market capitalization, scaled to range between zero and one.12 The time-varying cost factor ctt

declines linearly from the beginning of the sample period (January 1965) until January 2002.

The calibration sets ctt = 4.0 in January 1974 and ctt = 1.0 in January 2002, after which it

remains constant.

3.2 Estimation

We employ a standard tuning scheme to estimate the parameters in the conditional mean model

(ϕ1 and ϕ2 in (13)), volatility model (ψ in (14)) and the DRP penalty parameter (ρ in (16)).

Specifically, we consider L = 120 months for the conditional moment models and tune ϕ1,

ϕ2 and ψ to minimize the squared loss and Frobenius loss, respectively, for 120 one-step ahead

forecasts from t = L+1 = 121 to t = 240. Next, we determine ρ by maximizing the net certainty

equivalent rate accounting for transaction costs when running the DRP filter (5) from t = 121

to t = 240 using the one-step ahead predictions provided by the conditional mean and volatility

12For a characteristic xt, normalization is computed as [x]t = (xt −min(xt))/(max(xt)−min(xt)).
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models (using risk aversion γ = 5, see below). Finally, we use these estimated hyperparameters13

to evaluate the real-time performance of the DRP strategy starting at t = 241. In terms of

calendar dates, this means that the tuning period spans from January 1965 until December

1984, while the evaluation periods starts in January 1985 and ends in December 2024.

3.3 Performance evaluation

We evaluate the out-of-sample performance of several parametric portfolio policies. The primary

focus is on our proposed DRP methodology for a mean-variance investor based on (5), which

combines dynamic policy updates with a regularization term that penalizes transaction costs.

To gauge the contributions of each model component, we examine three nested variants of

the DRP policy. The first variant (labeled Dynamic) incorporates dynamic policy coefficient

updates but without cost regularization, i.e. using (5) but with Pt = ONt . The second variant

(Static Regularized) regularizes transaction costs but assumes constant policy coefficients, i.e.

essentially using (3) with mean-variance utility augmented with the regularization term from

(5). For this policy, the coefficients are allowed to vary over time, in the sense that at each month

in the out-of-sample period we use a ten-year rolling window to estimate policy coefficients. As

such, we have that the Static Regularized variant can be obtained from the DRP methodology

by setting the moment model parameters to zero, i.e. ϕ1 = ϕ2 = ψ = 0 in (13)-(14). The

third variant (Static) is the baseline parametric policy approach of Brandt et al. (2009), i.e.

assuming constant policy coefficients and ignoring trading costs, based on (3), where again we

use a window of 120 months for estimation at each point in time. We implement all four policies

with five distinct subsets of the characteristics discussed before. The risk aversion coefficient in

the investor’s mean-variance utility function is set to γ = 5. Finally, to benchmark performance

we include a simple value-weighted portfolio (VW ).

For each portfolio allocation k, we compute the corresponding out-of-sample returns in

month t+1 as r
(k)
t+1 = r′t+1w

(k)
t , excess returns14 as r

(k),excess
t+1 = r′t+1w

(k)
t −rft+1, and transaction

costs as tc
(k)
t+1 =

∑Nt
i=1 ci,t+1 |wi,t+1 − wi,t(1 + ri,t+1)|. If an asset with a non-zero portfolio

weight becomes unavailable, the position is assumed to be liquidated using the most recent cost

observation.

The mean–variance performance of each portfolio is evaluated using both the Sharpe ratio

13The full set of parameter estimates can be found in Appendix B.1.
14Excess returns are based on the one-month Treasury bill rate obtained from Kenneth French’s data library.
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and its net-of-cost counterpart,

SR(k) =
E
[
r
(k),excess
t+1

]
√
V
[
r
(k),excess
t+1

] , SR(k),net =
E
[
r
(k),excess
t+1 − tc

(k)
t+1

]
√
V
[
r
(k),excess
t+1

] , (18)

and by the net certainty equivalent rate (CER),15

CER(k),net = E
[
r
(k),excess
t+1 − tc

(k)
t+1

]
− γ

2
V
[
r
(k),excess
t+1

]
. (19)

All population moments are estimated using their sample analogs over the out-of-sample period,

from L+ 1 through T .

To quantify the economic gains associated with our approach relative to competing para-

metric portfolio policies, we follow Fleming et al. (2001, 2003); Kirby and Ostdiek (2012) and

consider the management fee that would render an investor indifferent between our approach

and an alternative. Formally, ∆γ denotes the fee satisfying

E
[
U(r

(p)
t+1)

]
= E

[
U(r

(k)
t+1 −∆(k)

γ )
]
,

where p denotes the DRP portfolio obtained from the optimization problem in (5). Within a

mean–variance utility framework, the indifference fee is given by

∆(k)
γ = γ−1

(
1− E

[
r
(k)
t+1 − tc

(k)
t+1

])
+ γ−1

√(
1− E

[
r
(k)
t+1 − tc

(k)
t+1

])2
− 2γ E

[
Ũ
(
r
(p)
t+1 − tc

(p)
t+1

)
− Ũ

(
r
(k)
t+1 − tc

(k)
t+1

)]
, (20)

where Ũ(rt+1) = rt+1 − γ
2 r

2
t+1. Statistical inference for ∆

(k)
γ follows the block bootstrap proce-

dure of Kirby and Ostdiek (2012). Inference on differences in Sharpe ratios is based on the test

of Ledoit and Wolf (2008).16

15The certainty equivalent rate represents the lowest risk-free return that renders an investor indifferent
between the risky and risk-free portfolios.

16We are grateful to the authors for making their code available.
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4 Results

4.1 Out-of-sample gross and net performance

Table 2 presents the gross and net performance of the respective portfolio policies using different

combinations of the asset characteristics. We emphasize the certainty equivalent rate, since it

incorporates the risk preferences of the mean-variance investor. For all subsets of characteristics

considered, we find that the DRP approach outperforms all nested methods. The highest rate

is obtained for the policy function that makes use of Size, Value, Operating Profitability, and

Investments, where the DRP portfolio generates a certainty equivalent rate of 9.05 percent

annually. This presents a substantial gain over the value-weighted market portfolio, which

delivers a net rate of 3.19 percent. Across all specifications of the policy function, the gains of

the DRP portfolio over the VW benchmark range from 1.71 to 5.86 percentage points.

The joint benefit of dynamic policy updates and cost regularization is found in the com-

parison with the Static policy. This comparison reveals that regularized dynamic updates are

important for all combinations of characteristics considered, but especially critical when Momen-

tum and Reversal characteristics are included. This is economically intuitive, because portfolios

managed on these characteristics are known to be costly and sensitive to market reversals (Bar-

roso and Santa-Clara, 2015; Novy-Marx and Velikov, 2016). However, relying solely on either

dynamic updates or regularization is not sufficient. This becomes clear when comparing the

Dynamic and Static Regularized policies. Dynamic updates without regularization do not yield

positive net rates in any policy function specification. While the rates obtained with regulariza-

tion alone are positive, the gap relative to the DRP approach is often substantial.The smallest

gains achieved by the DRP policy over the Static Regularized alternative equal 0.26 percentage

points, and occur when the policy function includes Size, Value, Momentum, and Reversals. In

contrast, when only Size, Value, and Momentum are considered, the net certainty equivalent

rate rises from 3.18 to 6.09 percent once dynamic updates are incorporated.

We can dissect the economic performance starting from the average excess returns and

volatilities reported in Panels B and C of Table 2. The gross mean excess returns of the regu-

larized policies (DRP and Static Regularized) are lower than those of the Static and Dynamic

methods. Their portfolio volatilities are also lower. This is due to the constraints on aggres-

sive trading. Without regularization of trading, it is possible to more effectively adjust the

portfolio to obtain higher premia, but at the expense of much higher portfolio volatility. The
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Dynamic method, which adjusts the portfolio in response to changes in the joint distribution

of returns on characteristic-managed portfolios, is the most extreme case. The annual (gross)

mean excess return and volatility of the Dynamic method are extraordinarily high, especially

when Investments are included in the policy function.

Panel D of Table 2 presents the transaction costs of the differrent policies. These convinc-

ingly demonstrate that regularization provides very effective cost mitigation. The DRP and

Static Regularized policies incur similar average costs, ranging from 0.40 to 0.92 percent per

month. These costs are significantly lower than those obtained using the Dynamic and Static

methods. When the policy function uses all six characteristics, the costs associated with the

Dynamic approach are more than seven times higher than the DRP costs, at 5.70 and 0.76 per-

cent per month, respectively. Taken together, the performance measures presented in Panels B,

C, and D show that dynamically updating portfolios produces large effects on average returns

and volatility, but also substantially increases transaction costs. The DRP methodology enables

fast-adjusting policies without excessively increasing transaction costs; this allows our method

to find mean-variance opportunities that are both economically significant and achievable.

The net Sharpe ratios are presented in Panel E. Similar to the certainty equivalent rates, we

find that updating the policy coefficients in a dynamic manner under cost mitigating regulariza-

tion enables the DRP approach to obtain higher net Sharpe ratios than the nested alternatives.

Using a policy function that include Momentum and Short-term Reversals, we find that the

DRP approach provides sizable gains relative to methods without regularization. These differ-

ences are also statistically significant in most cases. The importance of allowing for dynamically

varying policies is found in the comparison between the DRP policy and the Static Regularized

alternative. Dynamic updates provide economic gains across all policy function specifications,

with the largest improvements for specifications that rely on accounting characteristics such as

Size, Value, Operating Profitability, and Investments.

Turning to the gross Sharpe ratios of the portfolios reported in Panel F of Table 2, we

find that the unregularized Dynamic policy provides the best performance. This result again

showcases the possible gains of allowing the relations between characteristics and the joint

distribution of returns to be time-varying. The high out-of-sample gross performance highlights

an important nuance: when predicting the moments of returns on managed portfolios, overfitting

is not the foremost concern. Rather, the investment opportunities that emerge are not achievable

in the presence of costs unless regularization is incorporated into the optimization problem. The

17



Table 2: Gross and net financial performance

DRP Dynamic StaticReg Static VW

Panel A: Annualized net certainty equivalent rates (%)
Me/bm 4.90 −8.98 3.58 0.16 3.19
Me/bm/mom 6.09 −8.70 3.18 −1.82 3.19
Me/bm/mom/rev 5.22 −33.12 4.96 −30.09 3.19
Me/bm/op/inv 9.05 −26.44 7.08 0.93 3.19
Me/bm/mom/rev/op/inv 8.12 −47.31 7.76 −26.55 3.19

Panel B: Annualized mean excess returns (%)
Me/bm 17.49 26.94 17.00 22.54 9.37
Me/bm/mom 27.80 42.67 31.28 39.50 9.37
Me/bm/mom/rev 24.83 48.28 24.78 49.71 9.37
Me/bm/op/inv 24.85 56.36 22.09 46.40 9.37
Me/bm/mom/rev/op/inv 28.11 64.91 27.31 58.41 9.37

Panel C: Annualized volatility (%)
Me/bm 17.35 23.72 18.52 23.44 15.36
Me/bm/mom 21.53 29.95 26.15 32.15 15.36
Me/bm/mom/rev 20.71 34.58 20.93 36.09 15.36
Me/bm/op/inv 18.57 33.85 19.03 33.43 15.36
Me/bm/mom/rev/op/inv 20.88 41.84 20.77 38.21 15.36

Panel D: Monthly transaction costs (%)
Me/bm 0.42 1.82 0.40 0.72 0.02
Me/bm/mom 0.84 2.41 0.92 1.29 0.02
Me/bm/mom/rev 0.74 4.29 0.74 3.94 0.02
Me/bm/op/inv 0.60 4.51 0.50 1.46 0.02
Me/bm/mom/rev/op/inv 0.76 5.70 0.73 4.04 0.02

Panel E: Annualized Net Sharpe ratios
Me/bm 0.72 0.21∗∗∗ 0.66 0.59 0.59
Me/bm/mom 0.82 0.46∗∗∗ 0.78 0.75 0.59
Me/bm/mom/rev 0.77 −0.09 ∗∗∗ 0.76 0.07∗∗∗ 0.59
Me/bm/op/inv 0.95 0.06∗∗∗ 0.85 0.86 0.59∗∗

Me/bm/mom/rev/op/inv 0.91 −0.08 ∗∗∗ 0.89 0.26∗∗∗ 0.59∗∗

Panel F: Annualized Sharpe ratios
Me/bm 1.01 1.14 0.92 0.96 0.61∗∗

Me/bm/mom 1.29 1.42 1.20 1.23 0.61∗∗∗

Me/bm/mom/rev 1.20 1.40 1.18 1.38 0.61∗∗∗

Me/bm/op/inv 1.34 1.67∗∗ 1.16∗ 1.39 0.61∗∗∗

Me/bm/mom/rev/op/inv 1.35 1.55 1.31 1.53 0.61∗∗∗

The table reports performance of different portfolio policies using combinations of financial firm characteristics.
The out-of-sample period starts in January 1985 and ends in December 2024. We test the differences in Sharpe
ratios of the Dynamic Regularized method and the Static, Dynamic and Static Regularized policies using the
time-series bootstrap procedure proposed by Ledoit and Wolf (2008). The number of bootstrap draws is set to
10,000. We indicate significant differences at 1 percent, 5 percent and 10 percent significance levels by ∗∗∗, ∗∗ and
∗, respectively. Annualizations are by simple scaling of 12 and

√
12. The certainty equivalent rates are computed

for mean-variance investors with risk aversion γ = 5.
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DRP policy does not deliver the highest gross performance, but the investment opportunities

exploited in this portfolio are to a greater extent realizable in the presence of costs.

In sum, we find that dynamically adjusting the parametric portfolio policies provides eco-

nomically significant out-of-sample performance gains.17 Our results emphasize the importance

of costs. Specifically, we find that the regularization used in the DRP approach is crucial to

avoid excessive trading costs. For risk-averse investors, the net gains from using regularized

dynamic updates are economically large and consistent across policy function specifications.

4.1.1 Financial performance over time

The out-of-sample period is fairly long, stretching across four decades. We use the evolution

of the cumulative returns over time to examine whether the differences between the DRP and

Static portfolios are stable or perhaps linked to specific economic and financial conditions. We

focus here on the policy function specification that includes all firm characteristics. Figures 1

and 2 present the cumulative (net of costs) returns and (gross) squared returns over time. The

out-of-sample period is divided into four subperiods to make the contrast between the series

clearer.

The cumulative net returns presented in Figure 1 reveal that the portfolio formed using the

DRP approach accumulated very high returns net of costs during the first twenty years of the

out-of-sample period. In contrast, the Static portfolio does not realize cumulative net returns

in excess of the market in the first decade, but generates extraordinary net returns during the

ten-year period starting in 1995. In the final twenty years, we observe that the DRP net returns

largely follow the market. The Static portfolio yields lower cumulative net returns overall, with

a notable exception being the years immediately preceding the COVID pandemic. These results

highlight that the premia obtainable net of costs are highly time-varying.

To assess the variability of our portfolios returns, we further consider Figure 2, displaying the

cumulative squared returns of the portfolios. These graphs reveal that, for most of the sample,

the DRP portfolio achieves squared returns largely in line with the market, due to timely and

regularized policy updates. Importantly, major shocks (including the downturn following the

dot-com bubble and the Great Financial Crisis) are largely mitigated. The Static portfolio,

however, does not adapt in such a timely manner and accumulates significantly higher squared

returns, especially during periods of economic and financial turmoil.

17Appendix B.3 presents time-series regressions of returns on the CAPM, along with estimates of unexplained
mean returns. Appendix B.2 evaluates differences in portfolio diversification, short-selling, and large positions.
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These patterns imply that the achievable mean-variance opportunities based on firm char-

acteristics vary substantially over time. The Static policy cannot accommodate this variation,

resulting in rather unstable performance. In particular, during the first twenty years of the

out-of-sample period, the Static policies deliver much higher mean-variance performance than

in the latter twenty years. This suggests that the scope for active policies was much more lim-

ited during the second half of the sample. In this period, dynamic portfolio policies that limit

aggressive trading provide a crucial extension to the parametric policy framework.

4.1.2 The economic value of dynamic regularized policy updates

To complement the out-of-sample results reported in Table 2, we assess the relative economic

value of the DRP approach compared to the nested alternatives by estimating the fee that an

investor is willing to pay for switching to the DRP portfolio. To account for differences in trading

costs between the policies, we compute the fees using the net-of-cost returns of the respective

portfolios. Table 3 reports the estimated percentage fees for the mean-variance investor with

risk aversion γ = 5.

Table 3: Performance fees (%)

Dynamic StaticReg Static VW
Me/bm 13.92∗∗∗ 1.38∗ 4.92∗∗∗ 1.73
Me/bm/mom 14.31∗∗∗ 3.18∗ 8.31∗∗∗ 3.06
Me/bm/mom/rev 34.31∗∗∗ 0.24 31.47∗∗∗ 2.11
Me/bm/op/inv 34.08∗∗∗ 2.02∗ 8.97∗∗∗ 5.90∗∗

Me/bm/mom/rev/op/inv 49.54∗∗∗ 0.34 31.21∗∗∗ 5.02∗

The table reports annualized fees ∆̂γ , for γ = 5. Inference is performed using a stationary bootstrap
procedure following Kirby and Ostdiek (2012), with an expected block length of 10 and 10,000 boot-
strap draws. The null hypothesis is that the fee is equal to zero, and we indicate significant differences
at 1 percent, 5 percent and 10 percent significance level by ∗∗∗, ∗∗ and ∗, respectively.

The final column of Table 3 reveals that the DRP approach provides substantial economic

value for investors who are holding the market portfolio. Relying solely on Size and Value,

the annualized fee is 1.73 percent. Although statistically insignificant, this fee is economically

sizable.18 Including additional characteristics in the policy function enhances the economic

value of the proposed DRP methodology. Utilizing Size, Value, Investments, and Operating

Profitability characteristics, an investor would be willing to pay an annualized fee of 5.90 percent

18Note that in some cases, the level of ∆̂γ is substantial, but the evidence against the null hypothesis is
relatively weak. One such case is when all characteristics are included and we assess the gains relative to the
value-weighted portfolio. The annualized fee is over 5 percent, but the p-value summarizing the evidence against
the null hypothesis of a fee equal to zero is not below the conventional 5 percent significance level. This is due to
the correlation between the net-of-cost returns of the portfolios. Standard errors of ∆̂γ decrease as the correlation
between returns on the strategies increases. We find that the correlation between the net returns on the market
and the DRP portfolio is substantially lower than the correlation between the DRP and the other strategies.
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Figure 1: Cumulative net returns,
∏
(1 + r

(p)
t − tc

(p)
t ), across four 10-year periods.

Notes: The solid (green) line denotes the performance of the DRP portfolio, the dashed (blue) line denotes the Static
portfolio, and the dotted (red) line is the Value-Weighted portfolio. The DRP and Static portfolios are formed using
Size, Value, Operating Profitability, Investments, Momentum, and Short-term Reversals.
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Figure 2: Cumulative squared returns (gross),
∑

(r
(p)
t )2, across four 10-year periods.

Notes: The solid (green) line denotes the performance of the DRP portfolio, the dashed (blue) line denotes the Static
portfolio, and the dotted (red) line is the Value-Weighted portfolio. The DRP and Static portfolios are formed using
Size, Value, Operating Profitability, Investments, Momentum, and Short-term Reversals.
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to switch from the passive VW portfolio to the active DRP strategy.

Considering methods that do not employ cost mitigation through statistical regularization

(i.e. Static and Dynamic), the DRP approach adds large and statistically significant economic

gains across all policy function specifications. Utilizing Value and Size characteristics, the in-

vestor following the Static policy would be willing to pay an annualized fee of 4.92 percent to

switch to the policies of the DRP approach. In specifications that include high-cost characteris-

tics such as Momentum and Reversals, the fees are extremely large, ranging from 31.21 percent

to 49.54 percent. When incorporating cost mitigation (StaticReg), we find that the economic

value of the dynamic updates ranges from 0.24 percent to 3.18 percent. Although these fees are

relatively low compared to those found for the unregularized policies, they remain substantial

in economic terms.

Our results highlight that the economic value of the DRP approach is substantial but varies

depending on the set of characteristics in use. The lowest economic gains are obtained by

investors who incorporate cost mitigation while including Reversals in the model. Because the

Reversal characteristic is very costly, the regularization attenuates policy updates to the degree

that the opportunities offered by dynamic updates are left small. In all other cases, we find that

the combination of dynamic policy updates and cost mitigation yields economically meaningful

gains, which are in most cases statistically significant, relative to the nested alternatives.

4.2 Policy coefficients over time

The gains in out-of-sample performance delivered by our DRP portfolio stem from more efficient

policy adjustments to changes in the properties of the firm characteristics. In this section, we

contrast the DRP policy with those obtained in a static setting using an expanding window.

Unlike the rolling window employed in our earlier analysis, the expanding window accumulates

all available historical data as time progresses. We use this comparison because it provides

the sharpest contrast between the static policies in which trading costs are neglected, and our

dynamic framework where portfolio weight changes are regularized to limit trading costs.

We plot the DRP policy coefficient estimates over time in Figure 3, along with estimates

obtained in the Static approach (i.e. using sample moments) with an expanding window. To fo-

cus the discussion, we only display the estimates obtained with the (‘kitchen sink’) specification

where the policy function includes all characteristics: Size, Value, Profitability, Investments,
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Momentum, and Reversals.19 The time-series averages of the portfolio policies are presented in

Appendix B.4.

The DRP policies deliver coefficients that differ due to both regularization and dynamic

updates. Figure 3 shows that cost mitigation strongly regularizes the coefficients associated with

the Momentum, Reversal, and Investment policies. The effect on the Reversal policy is striking:

the static approach using the expanding-window estimator assigns a large negative weight to this

strategy, whereas the DRP method assigns only a modest negative weight throughout the entire

period. Similarly, cost mitigation greatly reduces the emphasis on the Investment characteristic.

The fluctuations in the Investment policy appear systematic. Rather than reflecting timing

opportunities in expected returns, risk, or hedging, they may stem from time-varying effects of

the cost mitigation feature of the DRP policy. We elaborate on this in Section 4.2.1.

For other characteristics, dynamic updates produce profound differences in policies. The

conditional Size policy is large and positive in the mid-1990s, but turns strongly negative in the

mid-2000s. Similarly, the large positive Value policy of the 1990s reverses to a large negative

policy at the start of the 2020s. In contrast, estimating static policies on an expanding window

leaves the coefficients largely unchanged after the dot-com bubble. Thus, the DRP approach

provides a very different interpretation of the Value portfolio from a mean-variance perspective.

Treating the Value policy as static would almost eliminate this portfolio from risky holdings in

2020, whereas the DRP policy at the same time indicates a strong emphasis on Value.

The DRP policies also exhibit notable short-term fluctuations. These reflect perceived tim-

ing opportunities in the respective managed portfolios. A concern is that such changes could

result from overfitting. However, the performance measures reported in Table 2 indicate that,

on balance, these adjustments provide economic gains.

Notable periods of short-term variation include the dot-com bubble and the COVID pan-

demic. These episodes, however, do not affect all policies equally. During the dot-com bubble,

we observe substantial shifts in the Reversal and Momentum policies (and, to a lesser extent,

Operating Profitability). The DRP approach yields long positions in the Momentum portfolio

at the end of the 1990s, which are rapidly reduced in the early 2000s. In contrast, during the

COVID period, we find pronounced adjustments in the Size, Operating Profitability, and Value

policies.

19We present policy coefficent estimates for other specifications in Appendix B.7.
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Figure 3: Policy coefficients (θt) for Me/bm/mom/rev/op/inv

Notes: The graphs show policy coefficient estimates obtained with the DRP approach (solid black line) and with the
Static approach using an expanding estimation window (dashed red line).
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Figure 4: Marginal contributions - Mean returns (left) and variances (right)

Notes: Marginal contributions by mean returns (µ̂c,t+1) and variances (−γdiag(Σ̂c,t+1)θ̂t) are both displayed mul-
tiplied by the sign of the respective policy (sign(θt)).
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4.2.1 Marginal contributions

The changes in the policy coefficient estimates in Figure 3 are driven by time-variation in the

relationships between firm characteristics and the joint distribution of returns. These evolving

relations alter how a mean–variance investor perceives each characteristic. In some periods a

characteristic may serve primarily as a hedge against risk, while in others it may generate a

substantial premium. To capture these shifts, we trace the properties of each characteristic

through the lens of the investor by examining the marginal contributions to the optimization

problem in (6). This analysis is related to DeMiguel et al. (2020), but our focus is on time-

variation in the marginal contributions. Specifically, the terms of the first-order condition in

(8) provide the marginal effects associated with an increase in the respective policy coefficients.

For a positive policy coefficient, a positive marginal contribution improves the mean–variance

objective, while a negative contribution deteriorates it. The inverse applies when the policy

coefficient is negative.

We present time-series of marginal contributions in Figures 4, 5, and 6. Figure 4 shows

contributions from mean returns and variances of the managed portfolios, Figure 5 captures

contributions through covariances, and Figure 6 reflects the effect of cost mitigation. To aid

interpretation, all contributions are multiplied by the sign of the corresponding policy coefficient,

so that the resulting sign directly indicates the effect on the mean–variance objective. As before,

the displayed results concern the full specification with the policy function including all six

characteristics.

We begin with the marginal contributions from mean returns of the characteristic-managed

portfolios. These are shown in Figures 4a, 4e, and 4c. As expected, the estimated contributions

from mean returns are highly noisy, with µ̂Mom,t+1 and µ̂Rev,t+1 particularly volatile during the

period 2000–2010. Even so, a striking pattern emerges. Specifically, during the first 15 years

of the sample, the characteristics tend to deliver larger contributions through portfolio returns,

with Value, Momentum, and Investment portfolios averaging around 0.5 percent per month. By

contrast, after the millenium change most contributions to the mean–variance objective decay

and nearly vanish by 2010. As a result, the mean–variance investor derives far less utility from

the mean returns of the managed portfolios toward the end of the out-of-sample period.

Next, we turn to the variances, which capture the risk of the managed portfolios. Figures 4b,

4f, and 4d illustrate their negative impact across characteristics. Especially eye-catching are

the severe utility losses due to Momentum crashes during the dot-com bubble and the global
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Figure 5: Marginal contributions - factor covariances (left) and benchmark covariance (right)

Notes: Marginal contributions by covariances with other managed portfolios (−γ(Σ̂c,t+1 − diag(Σ̂c,t+1))θ̂t) and
the covariance with the benchmark (−γσb,c,t+1) are both displayed multiplied by the sign of the respective policy
(sign(θt)).
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financial crisis and due to Reversals in periods of turmoil. Among the accounting-based char-

acteristics, Operating Profitability stands out. The unconditional policy coefficient is large (see

Table B.4 in Appendix B.4), but the small contributions through −γ diag(Σ̂c,t+1)θ̂t indicate

that this characteristic provides a relatively low-risk policy for the mean-variance investor.

Third, we consider covariances, which describe the possible hedging opportunities that may

reduce total risk in the investors risky holdings. Starting with the Momentum and Reversal

portfolios, Figure 5f shows, however, that covariances between the market and the Momentum

portfolio generally increase total risk, particularly during momentum crashes. However, the

Reversal portfolio shifts its role around the dot-com bubble: between 2000 and 2015, Reversals

reduce the risk of risky holdings through their covariances with the market. Interestingly, this

pattern is inverted when considering Reversals’ covariances with other managed portfolios (see

Figure 5e) in the early 2000s, where they instead contribute to higher overall risk.

Similarly, marginal contributions from accounting characteristics through covariances ex-

hibit substantial time variation. Figures 5b and 5d show that correlations between the market

portfolio and the Value and Investment portfolios generally benefit the mean–variance investor

by reducing risk, with significant spikes in periods of financial turmoil. In contrast, the correla-

tion of Operating Profitability with the market tends to increase total risk in the early sample,

becoming negligible in the latter part. For Size, correlation with the market typically reduces

the mean–variance objective over long stretches, but at times the sign reverses and Size con-

tributes positively. Finally, Figure 5c shows that the hedging contributions of Investment with

other managed portfolios increased total risk early in the sample, but that this effect has largely

disappeared over the past 15 years. Taken together, this significant time variation highlights

that the properties of firm characteristics within an investor’s risk–return trade-off are highly

dynamic.

Lastly, we turn to the impact of cost mitigation on the mean–variance objective, shown in

Figure 6. The term δt captures the effect of changes in firm characteristics, asset prices, and

benchmark weights under the previous policy coefficient θt−1. The adjustment term Pc,t(θt −

θt−1) reflects the impact of updating the policy on the portfolio weights.

The time series of contributions through cost mitigation reveal several notable patterns. For

example, the asset-level characteristics underlying the Momentum portfolio generate negative

contributions to the mean–variance investor in the early part of the sample. During the same

period, the Value portfolio is associated with large and volatile marginal contributions through
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Figure 6: Marginal contributions - asset level changes (left) and policy changes (right)

Notes: Marginal contributions by penalized adjustments on the asset level (−δt) and penalized adjustments on the
policy level (−Pc,t(θt − θt−1)) are both displayed multiplied by the sign of the respective policy (sign(θt)).
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δt. Most prominently, however, the Investment characteristic exhibits strong seasonality, with

sharp spikes in June when most firm characteristics are updated in our dataset. At these

times, large changes in firms’ Investment characteristics reduce the mean–variance objective.

This effect is offset by the penalized policy adjustments, Pc,t(θt − θt−1), which respond to

these firm-level shocks. As a result, the marginal contributions from δt and Pc,t(θt − θt−1) are

strongly negatively correlated, with coefficients ranging from −0.697 to −0.931, the latter for

the Investment characteristic. In all, these patterns highlight that cost mitigation is a critical

feature of dynamic portfolio policies in general, and particularly so during periods of sharp

shifts in firm characteristics, which are most pronounced for Investment.

In summary, dissecting the time-variation in the DRP policies reveals additional nuances

of the conditional roles that firm characteristics play for the mean–variance investor. The

Investment policy, for instance, initially delivers reliable mean returns with comparably low

variance, but also raises total risk through its covariances with other managed portfolios. At

the firm level, Investment characteristics are volatile, prompting cost mitigation to offset these

shocks with short-term policy adjustments. Toward the end of the sample, the Investment

policy is significantly attenuated, yet it retains economic relevance in the years following the

COVID pandemic through its hedging opportunities against the market portfolio.

5 Conclusion

In this paper, we propose the Dynamic Regularized Parametric (DRP) framework, which ex-

tends the methodology of Brandt et al. (2009) to accommodate time variation in the joint

distribution of characteristic-managed portfolios. Specifically, the DRP approach recursively

solves, at each point in time, an optimization problem that combines (i) the investor’s ex-

pected next-period utility and (ii) a regularization term centered on the pre-rebalancing portfo-

lio weights. This formulation yields a flexible dynamic policy that mitigates excessive turnover

and associated transaction costs. Under mean–variance preferences, the DRP update admits an

intuitive analytical solution that can be interpreted as a smoothed version of the unregularized

mean–variance portfolio.

Our empirical analysis relies on a set of prominent financial characteristics, including size,

value, operating profitability, investment, momentum, and reversal. In an empirical applica-

tion using all assets listed on the NYSE, AMEX, and NASDAQ, we find that accommodating

time-varying relations between characteristics and the joint distribution of returns provides
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substantial economic gains for mean-variance investors. Investors who dynamically adjust in-

vestment policies based on accounting characteristics while mitigating transaction costs obtain

an annual net certainty-equivalent rate of 9.05 percent, which is more than 8 percentage points

higher than what is obtained under the unregularized static approach.

Examining the time-varying contributions of these characteristics to the investor’s mean–variance

objective reveals how their relative importance evolves over time. In the early part of the sample,

we find that the premia on the characteristic-managed portfolios are larger, yielding substan-

tial marginal contributions to the investor’s utility. These premia decline over time, but the

contributions of the respective characteristics to the total variance of risky holdings exhibit

considerable variation. Such variation is largely driven by changes in the covariances among the

characteristic-managed portfolios and their covariances with the market benchmark. For exam-

ple, while the variance of the Momentum portfolio sharply reduces the mean–variance objective

following the dot-com bubble, its covariances with other characteristics mitigate this effect for

the investor. These results underscore the economic relevance of dynamically adapting portfolio

policies. Moreover, we find that the impact of transaction costs on the mean–variance objective

also varies substantially over time. The Investment characteristic, in particular, exhibits pro-

nounced spikes in its negative contribution to investor utility when the characteristic updates.

The cost mitigation in our method is therefore essential for preserving performance.

Several interesting extensions remain for our DRP framework. In this paper, we focus on

a relatively small set of financial characteristics, which allows us to avoid estimating a high-

dimensional covariance matrix and mean return vector. The case involving many characteristics

is examined by DeMiguel et al. (2020) in a non-dynamic setting. Similarly, we restrict our

analysis to an investor with mean–variance preferences, which provides a foundation for the

intuitive analytical solutions derived from our optimization problem. Extending the framework

to accommodate alternative utility functions that capture higher-order moments represents a

promising direction for future research.
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A Theoretical details

A.1 Derivation of the DRP update

The dynamic regularized portfolio (DRP) policy update is given as:

θt = argmax
θ∈Θ

{
wt(θ)

′µt+1 −
γ

2
wt(θ)

′Σt+1wt(θ)−
1

2
∥wt(θ)− (ι+ rt)⊙ wt−1(θt−1)∥2Pt

}
. (A.1)

Substituting wt(θ) = wb,t +
1
Nt
Xtθ and wt−1(θt−1) = wb,t−1 +

1
Nt−1

Xt−1θt−1 into the mean and

variance terms above gives

θt = argmax
θ∈Θ

{
w′
b,tµt+1 + θ′

1

Nt
X ′

tµt+1 −
γ

2
w′
b,tΣt+1wb,t − γθ′

1

Nt
X ′

tΣt+1wb,t (A.2)

− γ

2
θ′

1

Nt
X ′

tΣt+1
1

Nt
Xtθ −

1

2
∥wt(θ)− (ι+ rt)⊙ wt−1(θt−1)∥2Pt

}
, (A.3)

where dropping terms that do not depend on θ (and hence do not influence the optimization)

and writing µc,t+1 =
1
Nt
X ′

tµt+1, Σc,t+1 =
1
Nt
X ′

tΣt+1
1
Nt
Xt and σb,c,t+1 =

1
Nt
X ′

tΣt+1wb,t gives

θt = argmax
θ∈Θ

{
θ′µc,t+1 − γθ′σb,c,t+1 −

γ

2
θ′Σc,t+1θ −

1

2
∥wt(θ)− (ι+ rt)⊙ wt−1(θt−1)∥2Pt

}
.

(A.4)

Next, defining w+
b,t−1 := (ι+ rt)⊙wb,t−1 and X+

t−1 = diag(ι+ rt)Xt−1 and again using wt(θ) =

wb,t +
1
Nt
Xtθ and wt−1(θt−1) = wb,t−1 +

1
Nt−1

Xt−1θt−1, we may write the penalty term as

1

2
∥wt(θ)−(ι+ rt)⊙ wt−1(θt−1)∥2Pt

=
1

2
∥wb,t − w+

b,t−1 +
1

Nt
Xtθ −

1

Nt−1
X+

t−1θt−1∥2Pt
(A.5)

=
1

2
∥wb,t − w+

b,t−1∥
2
Pt

+
1

2
∥ 1

Nt
Xtθ −

1

Nt−1
X+

t−1θt−1∥2Pt
(A.6)

+
(
wb,t − w+

b,t−1

)′
Pt

(
1

Nt
Xtθ −

1

Nt−1
X+

t−1θt−1

)
, (A.7)

where the second term can be further decomposed as:

1

2
∥ 1

Nt
Xtθ −

1

Nt−1
X+

t−1θt−1∥2Pt
(A.8)

=
1

2
∥ 1

Nt
Xtθ −

1

Nt
Xtθt−1 +

1

Nt
Xtθt−1 −

1

Nt−1
X+

t−1θt−1∥2Pt
(A.9)

=
1

2
∥θ − θt−1∥2Pc,t

+
1

2
∥ 1

Nt
Xtθt−1 −

1

Nt−1
X+

t−1θt−1∥2Pt
(A.10)

+

(
1

Nt
Xtθ −

1

Nt
Xtθt−1

)′
Pt

(
1

Nt
Xtθt−1 −

1

Nt−1
X+

t−1θt−1

)
, (A.11)
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where Pc,t :=
1
N2

t
X ′

tPtXt. In total, we may therefore write the penalty term as:

1

2
∥wt(θ)− (ι+ rt)⊙ wt−1(θt−1)∥2Pt

=
1

2
∥θ − θt−1∥2Pc,t

+ θ′δt + c, (A.12)

where δt := 1
Nt
X ′

tPt [wt(θt−1)− (ι+ rt)⊙ wt−1(θt−1)] and c a remainder term that does not

depend on θ. The DRP update can thus be written as

θt = argmax
θ∈Θ

{
θ′µc,t+1 −

γ

2
θ′Σc,t+1θ − γθ′σb,c,t+1 −

1

2
∥θ − θt−1∥2Pc,t

− θ′δt

}
, (A.13)

where the first-order condition (FOC) with respect to θ yields:

µc,t+1 − γσb,c,t+1 − δt − γΣc,t+1θt − Pc,t(θt − θt−1) = 0, (A.14)

which can be solved in terms of θt:

θt = (γΣc,t+1 + Pc,t)
−1 (µc,t+1 − γσb,c,t+1 − δt + Pc,tθt−1) . (A.15)

This solution can be rewritten as exponentially weighted moving average, which gives the final

result:

θt = Λtθt−1 + [IK − Λt](θMV,t − δ̃t), (A.16)

where θMV,t, Λt and δ̃t are given as

θMV,t =
1

γ
(Σc,t+1)

−1µc,t+1 − (Σc,t+1)
−1σb,c,t+1, (A.17)

Λt = [Pc,t + γΣc,t+1]
−1Pc,t, δ̃t =

1

γ
(Σc,t+1)

−1δt. (A.18)

A.2 Monthly realized covariances using daily data

Let rt,d denote the Nt × 1 daily asset returns on day d = 1, 2, . . . , Dt of month t. Then, the

(K + 1)× 1 daily returns on the benchmark portfolio and characteristic portfolios rb,c,t+1,d for

d = 1 is rb,c,t+1,d =
[
wb,t

1
Nt
Xt

]′
rt+1,1. For d = 2, . . . , Dt+1 the buy-and-hold return is given

by,

rb,c,t+1,d =

(
ι+

[
wb,t

1

Nt
Xt

]′
r̃t+1,d

)
⊘
(
ι+

[
wb,t

1

Nt
Xt

]′
r̃t+1,d−1

)
− ι, (A.19)
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where ⊘ is the Hadamard division, r̃t+1,d :=
∏d

l=1(ι + rt+1,l) − ι denotes the Nt × 1 vector

of cumulative daily asset returns in month t + 1 up to and including day d and the product

operator is understood to act component-wise. The first and second term of (A.19) capture the

cumulative buy-and-hold returns up to and including day d and day d − 1, respectively, when

taking positions according to the benchmark and characteristics at the end of the prior month

(Dt).

Note that these buy-and-hold returns rb,c,t+1,d are not equal to
[
wb,t

1
Nt
Xt

]′
rt+1,d (except

for d = 1), which would correspond to the returns on portfolios with daily rebalancing. The

former returns, when aggregated, correctly match the monthly returns on the characteristic

portfolios, while the latter do not. To see this note that

Dt+1∏
d=1

(ι+ rb,c,t+1,d)− ι (A.20)

= (ι+ rb,c,t+1,1)

Dt+1∏
d=2

(
ι+

[
wb,t

1

Nt
Xt

]′
r̃t+1,d

)
⊘
(
ι+

[
wb,t

1

Nt
Xt

]′
r̃t+1,d−1

)
− ι

(A.21)

=

(
ι+

[
wb,t

1

Nt
Xt

]′
r̃t+1,Dt+1

)
− ι =

[
wb,t

1

Nt
Xt

]′
rt+1 = rb,c,t+1,

where the second line uses that rb,c,t+1,1 =
[
wb,t

1
Nt
Xt

]′
rt+1,1 =

[
wb,t

1
Nt
Xt

]′
r̃t+1,1 and that

c1
∏D

d=2
cd

cd−1
= cD for non-zero sequence c1, c2, . . . , cD. The penultimate expression uses that

the daily asset-level returns aggregate to the monthly asset-level returns, i.e. r̃t+1,Dt+1 = rt+1.

Finally, the realized covariance matrices are constructed under the standard assumption

that daily mean returns are zero:

RCOVt =

Dt∑
d=1

rb,c,t,d r
′
b,c,t,d. (A.22)
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B Additional empirical results

B.1 Hyperparameters

ϕ1 ϕ2 ψ ρ, DRP ρ, StaticReg
Me/bm 0.11 0.37 0.06 32.65 36.59
Me/bm/mom 0.10 0.41 0.05 17.96 11.90
Me/bm/mom/strev 0.10 0.13 0.05 27.40 28.09
Me/bm/oprof/inv 0.14 0.40 0.13 22.25 37.43
Me/bm/mom/strev/oprof/inv 0.11 0.15 0.07 29.01 32.34

The table reports the estimated parameters of the conditional moment models (ϕ1, ϕ2,
and ψ) and the estimated penalty parameter ρ for the DRP and StaticReg approaches.

Table B.1: Hyperparameter estimates

B.2 Portfolio weights

To evaluate the impact of dynamic adjustments and regularization on portfolio composition,

we compute the average sum of squared portfolio weights, together with the average minimum

and maximum weights. The average sum of squared weights is interpreted as a measure of

diversification. A summary of these results is provided in Table B.2.

Panel A shows that methods incorporating regularization (i.e., DRP and StaticReg) yield

portfolios with greater diversification than the Static and Dynamic methods, as shown by a

substantially lower average sum of squared weights. Panel B indicates that average maximum

weights are largely unchanged, whereas Panel C demonstrates that the size of the largest short-

selling positions is markedly reduced. Thus, cost mitigation has the practically appealing side

effect of enhancing diversification primarily by limiting short-selling positions.

Restricting attention to the Static and Dynamic portfolios, the inclusion of Operating Prof-

itability and Investment characteristics without regularization substantially raises the average

sum of squared weights and generates more extreme long and short positions. By contrast,

under the DRP and Static Regularized methods, cost mitigation offsets much of the resulting

decline in diversification, though the increase in extreme positions persists in part when these

characteristics are included.

Without cost mitigation, allowing policies to update dynamically marginally increases the

average sum of squared weights, primarily through larger short-selling positions. When regu-

larization is introduced, however, the effect of dynamic updates becomes ambiguous and varies

across models. The largest difference in diversification between the Static Regularized and DRP

methods comes in the specification that includes the Size, Value, and Momentum characteristics.

S5



Table B.2: Portfolio weights

VW Static Dynamic DRP StaticReg

Panel A: Average sum of squared weights
Me/bm 0.69 1.76 1.95 1.11 1.10
Me/bm/mom 0.69 2.14 2.50 1.35 1.53
Me/bm/mom/strev 0.69 2.66 2.72 1.17 1.19
Me/bm/oprof/inv 0.69 5.12 5.58 1.35 1.24
Me/bm/mom/strev/oprof/inv 0.69 4.61 5.25 1.26 1.28

Panel B: Average maximum weights (%)
Me/bm 3.56 3.54 3.56 3.57 3.57
Me/bm/mom 3.56 3.51 3.52 3.54 3.53
Me/bm/mom/strev 3.56 3.54 3.55 3.56 3.56
Me/bm/oprof/inv 3.56 3.63 3.64 3.59 3.59
Me/bm/mom/strev/oprof/inv 3.56 3.60 3.61 3.58 3.57

Panel C: Average minimum weights (%)
Me/bm 0.00 -0.32 -0.37 -0.19 -0.19
Me/bm/mom 0.00 -0.46 -0.54 -0.30 -0.35
Me/bm/mom/strev 0.00 -0.76 -0.79 -0.27 -0.28
Me/bm/oprof/inv 0.00 -1.47 -1.47 -0.52 -0.46
Me/bm/mom/strev/oprof/inv 0.00 -1.47 -1.54 -0.48 -0.49

The table reports summary statistics for the portfolio weights across different characteristics and
methods. The minimum, maximum and sum of squared weights are computed over the cross-section
of assets at each time period, the time-series average is presented in the table.

B.3 CAPM regressions

In Table B.3, we present results from time-series regressions of the excess returns of the portfolio

policies on the market factor. The monthly unexplained returns using the Dynamic Regularized

Policy (DRP) range from 0.91 to 1.85 percent across model specifications. These estimates are

all significantly different from zero at conventional levels. Dynamic policy updates without

cost mitigation increase mean returns to 5.17 percent. However, this increase is unlikely to be

realizable in practice due to higher transaction costs (see Table 2).

Incorporating cost mitigation in the policy updates greatly increases market exposures and

reduces residual variance under the CAPM. Market exposures of portfolios obtained using Dy-

namic policy updates vary between 0.32 and 0.51, with the CAPM explaining at most 11 percent

of the variance in portfolio excess returns. In contrast, the exposures of the DRP policies lie

between 0.64 and 0.73, with linear fit in the range of 0.25 to 0.44.

Overall, the results indicate that while DRP returns align more closely with the CAPM, they

continue to generate economically and statistically significant abnormal returns not captured

by market exposure.
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Table B.3: CAPM regression

α se(α) β se(β) R2

Panel A: Static
Me/bm 1.46 0.46 0.56 0.13 0.14
Me/bm/mom 2.87 0.52 0.58 0.16 0.08
Me/bm/mom/rev 3.59 0.56 0.77 0.16 0.11
Me/bm/op/inv 3.66 0.59 0.30 0.18 0.02
Me/bm/mom/rev/op/inv 4.53 0.67 0.50 0.18 0.04

Panel B: Dynamic
Me/bm 1.87 0.42 0.51 0.11 0.11
Me/bm/mom 3.19 0.53 0.51 0.12 0.07
Me/bm/mom/rev 3.59 0.64 0.58 0.16 0.07
Me/bm/op/inv 4.46 0.54 0.35 0.14 0.03
Me/bm/mom/rev/op/inv 5.17 0.70 0.32 0.21 0.01

Panel C: DRP
Me/bm 0.91 0.27 0.73 0.06 0.44
Me/bm/mom 1.82 0.34 0.67 0.08 0.24
Me/bm/mom/rev 1.54 0.31 0.71 0.09 0.29
Me/bm/op/inv 1.60 0.29 0.64 0.07 0.29
Me/bm/mom/rev/op/inv 1.85 0.33 0.67 0.09 0.25

Panel D: Static Regularized
Me/bm 0.84 0.29 0.77 0.08 0.42
Me/bm/mom 2.08 0.42 0.71 0.13 0.18
Me/bm/mom/rev 1.48 0.32 0.79 0.09 0.35
Me/bm/op/inv 1.30 0.32 0.73 0.08 0.36
Me/bm/mom/rev/op/inv 1.72 0.34 0.75 0.09 0.32

The table reports the coefficients of a time-series regression of the excess portfolio returns
on the market factor from Kenneth French’s data library. The α denotes the intercept of
the regression and β the expose to the factor. Standard errors are estimated using the
Newey-West estimator. The linear fit is measured by the coefficient of determination (R2).

B.4 Average policy coefficients

We find that the policy signs are generally consistent across methods and, for the most part,

align with our prior expectations. The main exception is the Size policy. Conventional expec-

tations suggests that its sign should be negative, reflecting the inverse relation between market

capitalization and expected returns. In our sample, however, the average Size policy is small in

magnitude, and Figure 3 shows substantial time variation under the DRP approach. By con-

trast, the other policies behave as expected. The positive Value policy is consistent with Fama

and French (1995), who argue that high book-to-market ratios are associated with financial

distress, for which investors require a risk premium. The Momentum policy tilts the portfolio

toward firms with high cumulative past returns, while the Reversal policy reduces exposure

to assets with unusually high short-term returns. Finally, high operating profitability and low

investment are both linked to higher expected returns, consistent with Fama and French (2015).

In Table B.4, we compare the regularized methods with the Static and Dynamic bench-
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marks. We observe that the policies associated with Momentum and Reversal characteristics

are attenuated under regularization, which is intuitive given that these strategies are known to

be costly. Similarly, cost regularization reduces the weight placed on Operating Profitability

and Investment. In models that include these characteristics, the regularized methods shift em-

phasis toward the Book-to-Market characteristic. By contrast, the smallest differences across

methods arise in the Size policy, which appears more robust to cost regularization than any

other characteristic in our set.

Panels A and B show that although the performance gains from Dynamic policy updates can

be economically large (see Table 2), the average policy coefficients differ little across methods.

This underscores the value of dynamic updates that allow policies to adapt quickly and to time

short-term changes in the conditional moments of returns.

Table B.4: Policy coefficients

θme θbm θmom θrev θop θinv

Panel A: Static
Me/bm 0.84 4.32
Me/bm/mom 0.34 4.39 2.77
Me/bm/mom/strev 0.64 4.36 2.77 -2.99
Me/bm/oprof/inv -0.16 0.33 5.39 -9.36
Me/bm/mom/strev/oprof/inv -0.02 1.17 1.77 -2.94 3.14 -7.50

Panel B: Dynamic
Me/bm 0.99 4.28
Me/bm/mom 0.35 4.52 2.91
Me/bm/mom/strev 0.66 4.11 2.65 -2.71
Me/bm/oprof/inv -0.03 0.48 4.52 -8.36
Me/bm/mom/strev/oprof/inv 0.02 1.06 1.74 -2.53 2.76 -6.86

Panel C: DRP
Me/bm 0.82 2.65
Me/bm/mom 0.45 3.04 1.72
Me/bm/mom/strev 0.61 2.56 1.11 -0.30
Me/bm/oprof/inv 0.55 1.86 1.67 -2.57
Me/bm/mom/strev/oprof/inv 0.42 1.74 0.79 -0.30 1.36 -2.09

Panel D: Static Regularized
Me/bm 0.72 2.59
Me/bm/mom 0.40 3.34 2.02
Me/bm/mom/strev 0.55 2.63 1.19 -0.29
Me/bm/oprof/inv 0.52 1.75 1.44 -2.20
Me/bm/mom/strev/oprof/inv 0.37 1.77 0.85 -0.27 1.42 -2.10

The table reports the portfolio policies for the respective characteristics across different estimation
methods. The averages are computed over the out-of-sample period, December 1984 to November
2024.
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B.5 Means and standard deviations of firm characteristics
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Figure B.1: Cross-sectional mean (left) and standard deviation (right) of firm characteristics

Notes: Firms with market capitalization below the 20th percentile are removed.
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B.6 Alternative penalization

In this section, we evaluate some alternative specifications for the penalty matrix, which we

set to Pt = ρINt for the main analysis. Let κt denote the Nt × 1 vector of transaction costs

at time t. We consider two alternatives: (1) assigning costs to individual assets such that

Pt = ρdiag(κt), and (2) a cost mitigation strategy that focuses trading on cheaper assets,

Pt = ρdiag(1κt>κ∗
t
⊙ κt). Here 1κt>κ∗

t
denotes an Nt × 1 vector of indicator functions, where

element i ∈ {1, 2, . . . , Nt} is 1 if and only if κt,i > κ∗t .

We refer to the policies obtained under the penalty matrix Pt = ρdiag(κt) as the κ cost

mitigation strategy, denoted DRPκ and StaticRegκ. The second strategy places stronger reg-

ularization on expensive assets, thereby targeting cheaper assets in the policy updates. In

the application we set κ∗t equal to the median of κt, such that we direct trading toward the

cheapest half of the assets for each month t. We refer to the policies under this strategy as

DRPQ50 and StaticRegQ50. Table B.5 reports the results, with the first two columns repeating

the performance found under the initial cost mitigation strategy.

Panel D of Table B.5 presents the trading costs associated with the respective portfolio

allocations. The results indicate that of the three cost mitigation strategies, the equal-cost

approach generally yields the lowest average costs. The DRPκ policies account for costs across

the whole cross-section of assets. However, under this penalty specification, we find that the

average monthly cost is 1.10 percent, which is 0.40 percentage points higher than the equal-cost

approach when all characteristics are utilized. A possible explanation is that κt is, on average,

decreasing for a large part of the out-of-sample period (up to 2002, see Section 3 for details). This

means regularization decreases over time, relative to the fixed baseline specification Pt = ρINt .

Indeed, in an unreported additional analysis we find that using relative costs penalization,

i.e. using Pt = ρκ̄−1
t diag(κt), where κ̄t := N−1

t

∑Nt
i=1 κi,t the cross-sectional average of the

transaction costs at time t, yields performance that closely mimics the baseline specification.

The gross performance reported in Panels B and C reveal that the two alternative cost mit-

igation strategies tend to produce riskier portfolios with greater expected returns. Specifically,

the policies obtained under the penalty matrix Pt = ρdiag(κt) produce greater mean returns,

ranging from 18.39 to 34.88 percent, but the equal-cost approach provides lower portfolio volatil-

ity. It follows that the differences in gross Sharpe ratios are small, even when costs are included.

In terms of certainty equivalent rates, on the other hand, we find that the equal-cost specification

provides more attractive investment opportunities than both alternatives.
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Table B.5: Performance under alternative cost mitigation

DRP StaticReg DRPκ StaticRegκ DRPQ50 StaticRegQ50

Panel A: Annualized net certainty equivalent rates (%)
Me/bm 4.90 3.58 4.64 2.18 4.19 2.29
Me/bm/mom 6.09 3.18 4.50 0.98 5.69 1.89
Me/bm/mom/rev 5.22 4.96 2.28 2.47 2.48 2.19
Me/bm/op/inv 9.05 7.08 8.59 5.81 7.79 5.36
Me/bm/mom/rev/op/inv 8.12 7.76 5.28 5.28 4.91 4.22

Panel B: Annualized mean excess returns (%)
Me/bm 17.49 17.00 19.85 18.39 17.93 17.59
Me/bm/mom 27.80 31.28 32.15 34.88 28.62 31.92
Me/bm/mom/rev 24.83 24.78 29.75 29.53 28.09 28.37
Me/bm/op/inv 24.85 22.09 30.74 26.22 23.10 22.42
Me/bm/mom/rev/op/inv 28.11 27.31 34.82 33.61 33.39 33.85

Panel C: Annualized volatility (%)
Me/bm 17.35 18.52 18.70 20.47 18.19 19.93
Me/bm/mom 21.53 26.15 24.28 29.22 22.54 27.61
Me/bm/mom/rev 20.71 20.93 24.61 24.75 24.57 25.02
Me/bm/op/inv 18.57 19.03 21.70 22.34 18.64 20.68
Me/bm/mom/rev/op/inv 20.88 20.77 25.53 25.36 25.78 26.58

Panel D: Monthly transaction costs (%)
Me/bm 0.42 0.40 0.54 0.48 0.46 0.45
Me/bm/mom 0.84 0.92 1.08 1.05 0.85 0.91
Me/bm/mom/rev 0.74 0.74 1.03 0.98 0.88 0.88
Me/bm/op/inv 0.60 0.50 0.86 0.66 0.55 0.53
Me/bm/mom/rev/op/inv 0.76 0.73 1.10 1.02 0.99 1.00

Panel E: Annualized Net Sharpe ratios
Me/bm 0.72 0.66 0.72 0.62 0.69 0.61
Me/bm/mom 0.82 0.78 0.79 0.76 0.82 0.76
Me/bm/mom/rev 0.77 0.76 0.71 0.72 0.72 0.71
Me/bm/op/inv 0.95 0.85 0.94 0.82 0.88∗ 0.78
Me/bm/mom/rev/op/inv 0.91 0.89 0.85 0.84 0.84∗ 0.82

Panel F: Annualized Sharpe ratios
Me/bm 1.01 0.92 1.06 0.90 0.99 0.88
Me/bm/mom 1.29 1.20 1.32 1.19 1.27 1.16
Me/bm/mom/rev 1.20 1.18 1.21 1.19 1.14 1.13
Me/bm/op/inv 1.34 1.16∗ 1.42 1.17 1.24∗ 1.08∗

Me/bm/mom/rev/op/inv 1.35 1.31 1.36 1.33 1.30 1.27

The table reports performance of different portfolio allocations using combinations of financial firm characteristics
for different choices of the penalty matrix Pt. The out-of-sample period starts in January 1985 and ends in
December 2024. We test the differences in Sharpe ratios of the baseline Dynamic Regularized (DRP, using
Pt = ρINt) method with the alternative penalty specifications using the time-series bootstrap procedure proposed
by Ledoit and Wolf (2008). The number of bootstrap draws is set to 10,000. We indicate significant differences
at 1 percent, 5 percent and 10 percent significance level by ∗∗∗, ∗∗ and ∗, respectively. Annualizations are by
simple scaling of 12 and

√
12. The certainty equivalent rates are computed for mean-variance investors and risk

aversion γ = 5.
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B.7 Policy coefficients for other selections of characteristics
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Figure B.2: Policy coefficients (θt) for Me/bm/op/inv

Notes: The policy coefficients estimated using extending window (dashed red line) and the Dynamic Regularized
approach (solid black line).
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Figure B.3: Policy coefficients (θt) for Me/bm/mom/rev

Notes: The policy coefficient estimated using extending window (dashed red line) and the Dynamic Regularized
approach (solid black line).
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Figure B.4: Policy coefficients (θt) for Me/bm/mom

Notes: The policy coefficient estimated using extending window (dashed red line) and the Dynamic Regularized
approach (solid black line).
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Figure B.5: Policy coefficients (θt) for Me/bm

Notes: The policy coefficient estimated using extending window (dashed red line) and the Dynamic Regularized
approach (solid black line).
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