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Summary We propose a nonparametric framework for estimating the extremal

index that captures the persistence of extreme observations. The framework provides

unified and simple procedures for verifying the well-known local dependence condition

D(d)(un), which characterizes the extremal index yet is often assessed through heuris-

tic checks, and for selecting d (a key parameter for estimation) when the condition

holds. Under a general ω-mixing condition, we establish the asymptotic normality of

the proposed estimator and prove the consistency of both the tuning parameter selec-

tion and the verification procedure for the D(d)(un) condition. Simulation studies show

improved performance relative to two commonly used methods in terms of empirical

mean squared errors. We analyze summer apparent temperature data for nine European

cities from 1940 to 2025. The results show strong evidence of persistence in extreme

temperatures for all cities, with such extremes typically lasting at least two days. The

probability of two-day extreme-temperature events is two to four times higher in the

most recent three decades relative to 1940–1974.

Keywords: Extremal index, extremal serial dependence, nonparametric, heatwaves.

1. INTRODUCTION

Heatwaves can have severe impacts on human health, infrastructure, and economic ac-

tivity, making their modeling and prediction a matter of scientific and policy interest.

Definitions often combine local high-temperature thresholds with a minimum duration,

1An earlier version of this paper, focusing primarily on the methodological aspects, was circulated

under the title “Statistical inference on D(d)(un) condition and estimation of the extremal index.”
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typically two or more consecutive days.2 From a statistical perspective, estimating heat-

wave occurrence probabilities is challenging due to scarce tail observations and the need

for a dependence notion suited to extremes.

We propose a nonparametric approach to estimate the probability of severe heatwaves,

using extreme value theory that accounts for persistence in extremes. Our framework cen-

ters around the so-called D
(d)(un) condition (Chernick et al., 1991), a local dependence

condition which restricts the occurrence of multiple exceedances above a high threshold

(un) to lie within a time window (d) and thereby captures the dependence structure

of extreme events. In particular, we propose a procedure that unifies the validation of

the D(d)(un) condition, the data-driven selection for the time-window parameter d when

the condition holds, and nonparametric estimation of the extremal index ω (Leadbetter,

1983). We show empirical evidence that daily summer temperature extremes satisfy the

D
(2)(un) condition, yielding a simple estimator of the heatwave probability.

Several key theoretical results are established. In particular, we show that under the

D
(d)(un) condition, the minimal value exists at which a distinct switching behavior arises

in the asymptotic order of the extremal index estimator: the order changes at this value

while remaining identical both below and above it. We exploit this dichotomous pattern,

reminiscent of the classical I(0)/I(1) distinction in trend analysis (e.g., Canjels and Wat-

son, 1997; Harvey et al., 2007; Perron and Yabu, 2009), to jointly validate the D
(d)(un)

condition and select d, and we establish consistency of both procedures together with

asymptotic normality of the estimator under a flexible ε-mixing condition for strictly

stationary time series. Simulation results support the theoretical findings.

We adopt the framework to investigate extreme summer apparent temperatures for

nine European cities. Comparing an early period (1940–1974) with a recent one (1991–

2025), we document that extreme temperatures have become substantially higher, which

is in line with the Intergovernmental Panel on Climate Change’s findings on global warm-

ing in Europe (IPCC, 2021). Furthermore, we find statistically significant evidence for

both periods that temperature extremes exhibit persistence, typically lasting at least

two days when they occur. On the other hand, we do not find evidence that the per-

2The World Health Organization, for instance, adopts a minimum duration of two days in its

Heat–Health Action Plan (Matthies, 2008). Definitions used by national meteorological institutes usually

range from three to six days, see European Centre for Medium-Range Weather Forecasts (2023).
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sistence levels di!er across the two periods. Under the D
(2)(un) condition, which holds

for all periods and cities, we estimate heatwave severity as the probability that extreme

temperatures persist for at least two consecutive days. We find statistically significant

increases for all cities in 1991–2025 relative to 1940–1974, which are driven mainly by

changes in marginal exceedance probabilities.

Our work relates to two strands of literature. First, changes in heatwave occurrence

attributable to anthropogenic climate change have been widely studied in the extreme

event attribution literature in climate science, initiated by Stott et al. (2004). Most ex-

isting statistical approaches to heatwave attribution rely on univariate extreme value

models, applied either to daily temperatures or to temporally aggregated indices such

as block maxima or rolling multi-day averages (e.g., Naveau et al., 2020; Vautard et al.,

2020). Aggregation provides a pragmatic way to reflect duration, but it compresses the

temporal structure of extreme events into a single scalar quantity and does not explic-

itly model tail persistence. Although we do not make causal claims in this paper, our

heatwave severity estimator can be readily incorporated into attribution studies. More

closely related are the hierarchical model by Reich et al. (2014) and the Markov-switching

model for heatwaves by Shaby et al. (2016). While flexible, both of these Bayesian frame-

works are fully parametric and computationally intensive. In contrast, our framework is

nonparametric and straightforward to implement.

The second strand of literature we relate to is the statistical literature on dependence

in time series extremes. The D
(d)(un) condition underpins a substantial body of work

(see, e.g., Ferreira and Ferreira, 2018; Holešovskỳ and Fusek, 2020), yet its verification

commonly relies only on diagnostic plots proposed by Süveges (2007) and Ferreira and

Ferreira (2018) that lack theoretical justification. Regarding the estimation of the non-

parametric estimation of the extremal index ω, the work most closely related to ours

is Hsing (1993), where asymptotic results are obtained under the assumptions that the

window parameter d is known and that the data generating process is m-dependent. Both

requirements are more restrictive than those imposed in our framework. Similarly to the

verification of the D
(d)(un) condition, Holešovskỳ and Fusek (2025) propose graphical

diagnostics and several tests building on Süveges and Davison (2010) for the censored

estimator of ω, which di!ers from our nonparametric formulation. A related strand of

literature studies extremal index estimation without imposing the D
(d)(un) condition.
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Classical approaches include the blocks and runs estimators (Smith and Weissman, 1994;

Weissman and Novak, 1998). Their asymptotic approximation is developed under a de-

terministic threshold un, which implicitly assumes knowledge of the unknown stationary

distribution (Robert, 2009). In contrast, our thresholds are data-dependent and therefore

random, which renders the theoretical analysis considerably more involved, as uniform

convergence results are required to accommodate threshold randomness. Further ap-

proaches include the inter-exceedance times estimator of Ferro and Segers (2003), the

(pseudo) maximum likelihood estimators studied in Northrop (2015) and Berghaus and

Bücher (2018), and the recent moment estimators developed by Bücher and Jennessen

(2020). We find in our extensive simulations that our estimator, which explicitly ex-

ploits the D
(d)(un) condition, outperforms the widely used inter-exceedance times and

maximum likelihood estimators in terms of empirical mean squared errors.

The rest of the paper is organized as follows. Section 2 introduces the proposed non-

parametric framework and its associated asymptotic theory. Simulation results are re-

ported in Section 3, and Section 4 examines the persistence of extreme summer temper-

atures across nine European cities. Section 5 concludes. The main proofs are collected

in the Appendix, while additional proofs and supplementary simulation and empirical

results are provided in Online Supplement. All code used for the simulation study and

empirical application is available at https://github.com/ohhwangch/persistence_ts.

2. THE NONPARAMETRIC FRAMEWORK

Let {Xt, t → Z} be a strictly stationary sequence of random variables with a continuous

marginal distribution function F . Whenever no confusion arises, we write {Xt} to denote

{Xt, t → Z}. We observe a subset of this sequence with sample size n → Z+. In our

empirical application, the data {X1, . . . , Xn} correspond to daily maximum apparent

temperatures during summer seasons. Since the persistence level of extreme events can

have severe consequences, for instance in the climate system, it is important to assess

the strength of extremal serial dependence in {Xt}, which is the aim of this paper.

To this end, we define Ut = F (Xt), which maps the marginal distribution to the

standard uniform distribution on [0, 1]. This standardization isolates the extremal se-

rial dependence structure in the sequence, as the marginal distribution F itself carries

no information about extremal temporal dependence. That is, the two processes {Xt}

https://github.com/ohhwangch/persistence_ts
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and {Ut} share the same extremal serial dependence structure. We say that {Xt} (or

equivalently {Ut}) has an extremal index ω → (0, 1], if

lim
n→↑

P
(

max
1↓t↓n

Ut ↑ 1↓
u

n

)
= e

↔ωu
, u > 0, (2.1)

see, for instance, Leadbetter (1983). Clearly, when there is no extremal serial dependence

in {Xt}, the left-hand side of (2.1) reduces to limn→↑ P
(
max1↓t↓n Ut ↑ 1 ↓ u/n

)
=

limn→↑ (1↓ u/n)n = e
↔u. Accordingly, ω = 1 characterizes the case of no extremal

serial dependence, with smaller values of ω reflecting stronger dependence.

However, the existence of the extremal index ω is not immediate. To guarantee its

existence, the literature commonly imposes the following two “mixing” conditions on

the dependence structure of the sequence (see, e.g., Leadbetter et al., 1983; Smith and

Weissman, 1994). These conditions underpin our approach.

Condition D(un) Let {un} be a sequence of constants. For any integers 1 ↑ i1 <

· · · < iq < j1 < · · · < jq→ ↑ n such that j1↓ iq ↔ l ↔ 1, the following condition is assumed

to hold:
∣∣∣∣P

(
max
1↓t↓q

Uit ↑ un, max
1↓t↓q→

Ujt ↑ un

)

↓ P
(

max
1↓t↓q

Uit ↑ un

)
P
(

max
1↓t↓q→

Ujt ↑ un

)∣∣∣∣ ↑ ϑn,l, (2.2)

where limn→↑ ϑn,ln = 0 for some sequence ln = o(n) and ln ↗ ↘.

Condition D(un) is reminiscent of the common ϑ-mixing condition (see, e.g., Davidson,

1994, Chapter 14) and describes the long-range dependence of extremes. This condition is

mild and widely used, and it is implied by several other mixing assumptions, for instance

by the uniform mixing property introduced in Section 2.1 below. Next, we present the

second key condition, often referred to as the local dependence condition.

Condition D
(d)(un) For ϑn,ln specified in the D(un) condition, there exists a

sequence of integers rn such that rn ↗ ↘, with nϑn,ln/rn ↗ 0 and ln/rn ↗ 0 as

n ↗ ↘. Moreover, for a positive integer d ↔ 1,

lim
n→↑

nP
(
U1 > un ↔ U

max
2,d , U

max
d+1,rn > un

)
= 0, (2.3)

where U
max
i,j := ↓↘ for i > j and U

max
i,j := maxi↓t↓j Ut for i ↑ j.

Intuitively, D(d)(un) limits the local occurrence of multiple exceedances over a thresh-
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old, thereby constraining the dependence among extremes; the extremes separated by a

gap of d steps are approximately independent. We shall discuss a formal approach for ver-

ifying this local dependence condition in Section 2.3. The following lemma, adapted from

Chernick et al. (1991, Corollary 1.3), provides the necessary and su”cient conditions for

the existence of an extremal index ω for {Xt} under Conditions D(un) and D
(d)(un).

Lemma 2.1. (Existence of ω) Let {Xt} be a strictly stationary sequence of random

variables such that for some d ↔ 1 the conditions D(un) and D
(d)(un) hold for un =

un(u) = 1↓ u/n for all u > 0. Then the extremal index of {Xt} exists and is equal to ω

if and only if

lim
n→↑

P
(
U

max
2,d ↑ un

∣∣U1 > un

)
= ω, ≃u > 0. (2.4)

The condition (2.4) further illustrates the role of ω. For example, setting d = 2 and ω = 1

in (2.4) implies that, conditional on U1 exceeding a high threshold un, the probability

that the subsequent variable U2 also exceeds the same threshold is approximately zero.

Hence, the extremal behavior can be regarded as independent.

It is important to note that the value of d satisfying both (2.3) and (2.4) is not unique.

First, observe that if the D(d)(un) condition holds, then D
(s)(un) also holds for any finite

s ↔ d. Indeed, given (2.3), we have, as n ↗ ↘,

nP
(
U1 > un ↔ U

max
2,s , U

max
s+1,rn > un

)
↑ nP

(
U1 > un ↔ U

max
2,d , U

max
d+1,rn > un

)
↗ 0.

Second, for d → Z+, if the limit of P
(
U

max
2,d ↑ un

∣∣U1 > un

)
exists, we denote it by

#(d) := lim
n→↑

P
(
U

max
2,d ↑ un

∣∣U1 > un

)
. (2.5)

Lemma 2.1 implies that #(s) = ω for all s ↔ d. Since the choice of d is not unique, we

assume for now that there exists a minimal value dL such that

dL = min
{
d → Z+ : #(d) = ω

}
. (2.6)

Then any estimator of #(d) with d ↔ dL can be used as an estimator of ω. We establish

the conditions that ensure the existence of dL in Theorem 5.1 in Appendix A. Without

loss of generality, we assume throughout the paper that there also exists an upper bound

dU ↔ dL such that #(d) exists for all d ↑ dU .

The remainder of this section proceeds as follows. First, under the D
(d)(un) condition

for some d (the D(un) is imposed throughout), we propose a nonparametric estimator
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of #(d) and establish its asymptotic properties. Building upon these results, we show

that the first di!erence of the estimator of #(d) exhibits a change in asymptotic order at

d = dL under the D(d)(un) condition. By exploiting this property, we construct a selector

of dL. If such a change in asymptotic order is not observed, then the D
(d)(un) condition

can be considered violated, which provides a way to validate Condition D
(d)(un).

2.1. Nonparametric estimation of #(d)

We first approximate #(d) in (2.5) by taking un = un(k) = 1 ↓ k/n, where k = k(n)

is an intermediate sequence satisfying k ↗ ↘ and n/k ↗ ↘ as n ↗ ↘. Since P(U1 >

un) = k/n, an approximation of #(d) can be obtained as follows:

#(d) ⇐
n

k
P
(
U

max
2,d ↑ 1↓

k

n
< U1

)
⇐

n

k
·
1

n

n↔d+1∑

t=1

1

{
U

max
t+1,t+d↔1 ↑ 1↓

k

n
< Ut

}

=
1

k

n↔d+1∑

t=1

1

{
X

max
t+1,t+d↔1 ↑ F

↔1

(
1↓

k

n

)
< Xt

}
,

(2.7)

where Xmax
i,j = maxi↓t↓j Xt, and 1{·} denotes an indicator function. The quantity on the

right-hand side above is not yet an estimator, as it depends on the unknown marginal

cumulative distribution function (CDF) F , which can be naturally estimated via the

empirical CDF. This leads to our estimator of #(d) given by

#̂n(d) :=
1

k

n↔d+1∑

t=1

1
{
X

max
t+1,t+d↔1 ↑ Xn↔k,n < Xt

}
, (2.8)

where X1,n ↑ X2,n ↑ . . . ↑ Xn,n denote the order statistics of the sample. It is worth

highlighting a key distinction: (2.7) uses a deterministic threshold F
↔1(1 ↓ k/n), while

(2.8) relies on the random threshold Xn↔k,n, which introduces additional complications

in the proofs as discussed later.

In what follows, #̂n(d) is used as an estimator of the persistence level ω for extreme

observations. However, as previously discussed, any estimator of #(d) with d ↔ dL can be

used to estimate ω. Before developing a selector of dL, we first establish the asymptotic

properties of #̂n(d). Our theory builds on a ε-mixing condition that characterizes the

extremal dependence structure of the process {Ut}, or equivalently {Xt}. Let H
s
l =
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ϖ
(
1{Ut ↔ 1↓ k/n}, l ↑ t ↑ s

)
and define the uniform mixing coe”cient

εn(l) = max
s↗1

sup
A↘H

s
1,B↘H

n
s+l,P(A)>0

∣∣P(B | A)↓ P(B)
∣∣. (2.9)

We now introduce the required assumptions.

Assumption 2.1. Let x, y → [1/2, 3/2] be some constants.

A1 There exist positive sequences rn and ln such that rn ↗ ↘, rn/n ↗ 0, ln/rn ↗ 0,

and nεn(ln)/rn ↗ 0, as n ↗ ↘.

A2 For rn satisfying Condition A1,

lim
n→↑

n

k

rn∑

t=d+1

P
(
U

max
2,d < 1↓

kx

n
< U1, Ut > 1↓

ky

n

)
= 0.

A3 For rn satisfying Condition A1,

lim
n→↑

n

k

rn∑

t=1

P
(
U1 > 1↓

kx

n
, Ut+1 > 1↓

ky

n

)
= $1(x, y) → [0,↘),

lim
n→↑

n

k

rn∑

t=1

P
(
U1 > 1↓

k

n
, U

max
t+2,t+d < 1↓

k

n
< Ut+1

)
= ϱ1 → [0,↘).

A4 For j = d and j = d↓ 1, there exist constants ςj > 0 and φ > 0 such that as t ↗ 0,

t
↔1P

(
U

max
1,j > 1↓ t

)
↓ ςj = O

(
t
ε
)
. (2.10)

Note that Assumption A1 implies Condition D(un) and also ensures the absolute reg-

ularity of the sequence; see Bradley (2005). This assumption arises from the use of the

common Bernstein blocking technique in the time series literature to establish a central

limit theorem (see, e.g., Davidson, 1994, Chapter 24.5). Assumption A2 is a strengthened

version of D(d)(un), with a similar assumption found in Chernick et al. (1991, Eq. (1.2)).

When d = 1, Assumption A2 reduces to the so-called D
≃(un) condition in Leadbet-

ter et al. (1983, Chapter 3), which implies ω = 1, and when d = 2, it coincides with

the D
≃≃(un) condition in Leadbetter and Nandagopalan (1989). Assumption A3 imposes

technical conditions on the tail dependence structure of (X1, . . . , Xrn) for deriving the

asymptotic long-run variance of #̂n(d). In practice, both limiting quantities in A3 can be

estimated by substituting the probabilities with their empirical counterparts. Assump-

tion A4 ensures the existence of ω (see (A.2) in Appendix A) and removes the asymptotic

bias of the estimator.

Theorem 2.1 below establishes the asymptotic normality of #̂n(d) for any d → Z+.
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Theorem 2.1. Suppose that
∑n

t=rn
(1↓ t/n)εn(t) = o(1), rn k/n = o(1), and that k =

o
(
n
2ε/(2ε+1)

)
. Under Assumption 2.1,

⇒

k
(
#̂n(d)↓ ω

) d
↓↗ N (0,ϖ2), n ↗ ↘, (2.11)

for any d → Z+
, where ϖ

2 = ω(1↓ 2ϱ1) + ω
2(2$1(1, 1)↓ 1).

Building on Theorem 2.1, we construct a consistent selector of dL in the following sec-

tion, which subsequently leads to our final estimator of the extremal index ω; see (2.21)

below. It is worth highlighting that Hsing (1993) derives a related result under the more

restrictive assumption of m-dependence (and assuming dL is known), whereas we work

under a general mixing condition. Weissman and Novak (1998) establish the asymptotic

normality of the runs and blocks estimators using a deterministic threshold, namely

F
↔1(1↓k/n), rather than the data-dependent threshold Xn↔k,n considered here, as seen

by the contrast between (2.7) and (2.8). Employing F
↔1(1↓k/n) substantially simplifies

the proofs, as it uses additional unknown information in F , whereas deriving asymptotic

results under a data-dependent threshold requires us to derive some uniform convergence

results; see Proposition 5.1–5.2 in Appendix A.

2.2. Determination of the lower bound dL

Estimating #(d) for d ↔ dL necessitates selecting an appropriate value of dL. We exploit

the properties of #(·) to estimate the minimal value dL such that #(d) = ω for d →

[dL, dU ], as defined in (2.6). By construction, the function d ⇑↗ #(d) is non-increasing.

Then it is immediate that #(d) > ω for 1 ↑ d < dL, and #(d) = ω for d → [dL, dU ]. This

dichotomy provides a straightforward approach to select dL. Let ↼(•) := #(•)↓#( • + 1)

be a di!erence operator. Then ↼(dL↓1) > 0 and ↼(d) = ω↓ω = 0 for any dL ↑ d ↑ dU↓1.

We can select dL once ↼(•) can be estimated. Following the plug-in principle, we define

↼̂n(•) := #̂n(•)↓ #̂n( • + 1), (2.12)

where #̂n(•) is provided in (2.8). Next, we examine the asymptotic behavior of ↼̂n(d)

for a given d ↔ 1. To this end, we employ techniques similar to those used in the proof

of Theorem 2.1, and therefore require that the conditions of Theorem 2.1, or analogous

ones, hold for both d and d+ 1.
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Assumption 2.2. For some d → Z+
, the following conditions are assumed to hold jointly

for the pair (d, d+ 1).

B1 Assumption A4 holds for j = d, and for x, y → [1/2, 3/2], there exist nonnegative

constants $2(x, y), ϱ2, ϱ̃1, and ϱ3 such that the following limits exist:

lim
n→↑

n

k

rn∑

t=d+1

P
(
U

max
2,d < 1↓

kx

n
< U1, U

max
t+1,t+d↔1 < 1↓

ky

n
< Ut

)
= $2(x, y), (2.13)

lim
n→↑

n

k

rn∑

t=d+1

P
(
U

max
2,d < 1↓

k

n
< U1, U

max
t+1,t+d < 1↓

k

n
< Ut

)
= ϱ2, (2.14)

lim
n→↑

n

k

rn∑

t=1

P
(
U1 > 1↓

k

n
, U

max
t+2,t+d < 1↓

k

n
< Ut+1

)
= ϱ̃1, (2.15)

lim
n→↑

n

k

rn∑

t=d+1

P
(
U

max
2,d < 1↓

k

n
< U1, Ut > 1↓

k

n

)
= ϱ3. (2.16)

B2 Assumption 2.1 also holds when d is replaced by d+ 1.

For a given pair (d, d + 1) that satisfies Assumption 2.2, we immediately obtain that

the result of Theorem 2.1 holds with d replaced by d + 1, owing to Assumption B2.

Meanwhile, Assumption B1 ensures the existence of the asymptotic long-run variance for

this given d by constraining the probabilities of threshold exceedances, in the spirit of

ConditionD
(d)(un), thereby yielding an asymptotic approximation. Taken together, these

two assumptions imply the following limiting distribution of ↼̂n(d), which is subsequently

used to establish the consistency of our selection of dL.

Theorem 2.2. For some d → Z+
, if Assumption 2.2 holds for the pair (d, d+ 1), then

⇒

k
(
↼̂n(d)↓ ↼(d)

) d
↓↗ N

(
0,↽2(d)

)
, n ↗ ↘,

where ↽
2(d) = ↼

2(d)[2$1(1, 1)↓ 1]↓ 2↼(d)
(
ϱ̃1 ↓ ϱ1 + ϱ3 ↓ 1/2

)
+ 2$2(1, 1)↓ 2ϱ2.

Building on Theorem 2.2, we immediately obtain that for any d ↔ dL such that the

pair (d, d+1) satisfies Assumption 2.2, the limiting distribution in Theorem 2.2 becomes

degenerate. This observation underlies the construction of our selector for dL, which will

be formalized later.

Corollary 2.1. Suppose Assumption 2.2 holds for the pair (d, d + 1) for some d ↔
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dL ↔ 1, and Assumption A2 holds with d replaced by dL. Then we have

⇒

k ↼̂n(d) = oP(1). (2.17)

If dL ↔ 2 and Assumption 2.2 holds for the pair (dL ↓ 1, dL), then

↼̂n(dL ↓ 1) = ↼(dL ↓ 1) +OP

(
1
⇒
k

)
, (2.18)

where ↼(dL ↓ 1) > 0.

The proof of Corollary 2.1 is straightforward. For d ↔ dL, ↼(d) = 0 as noted earlier. If

Assumption A2 holds with d replaced by dL, then $2(1, 1) = 0 and ϱ2 = 0, implying

↽
2(d) = 0, hence (2.17). Eq. (2.18) follows directly from Theorem 2.2 and the definition

of dL in (2.6).

In view of Corollary 2.1, ↼̂n(d) exhibits a change in asymptotic order at d = dL.

Specifically, we have ↼̂n(d) = oP(k↔1/2) for d ↔ dL and ↼̂n(d) = OP(1) for d = dL ↓ 1.

This is similar to the unit root literature, where the asymptotic orders of estimators,

such as trend coe”cient estimators in regression models, di!er depending on whether

the error process is I(0) or I(1) (see, e.g., Harvey et al., 2007; Perron and Yabu, 2009).

Exploiting this change in asymptotic orders, we propose the following selector for dL

based on the intermediate sequence k:

d̂L(k) = min

{
d → Z+ : max

d↓s↓dU

↼̂n(s) <
1
⇒
k

}
. (2.19)

If the assumptions in Corollary 2.1 hold, the consistency of d̂L(k) follows.

Proposition 2.1. Let dU ↔ dL. Suppose the conditions of Corollary 2.1 hold, then

lim
n→↑

P
(
d̂L(k) = dL

)
= 1. (2.20)

where d̂L(k) is defined in (2.19).

Substituting d̂L = d̂L(k) into (2.8) gives our final estimator ω̂n = ω̂n(d̂L) of ω, where

ω̂n(d̂L) := #̂n(d̂L) =
1

k

n↔d̂L+1∑

t=1

1
{
X

max
t+1,t+d̂L↔1

↑ Xn↔k,n < Xt

}
. (2.21)

Given the consistency of d̂L, it follows that ω̂n(d̂L) preserves the asymptotic normality

established in Theorem 2.1 with d = dL.

A remark on practical implementation is in order. Two parameters, k and dU , must
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be specified in advance when computing d̂L(k) in (2.19). The parameter dU defines the

upper bound of the search range, and its specific choice is not sensitive to the procedure,

as dL is typically small in empirical applications. Regarding the parameter k, di!erent

values may be used for selecting d̂L(k) and for estimating ω̂n, respectively. In practice, we

recommend first selecting dL and then substituting its estimate into (2.21). The optimal

choice of k depends on the convergence rate of the underlying model; nevertheless, our

simulation study below shows that the proposed procedure performs robustly over a

broad range of k values.

2.3. The verification of Condition D
(d)(un)

Corollary 2.1 also suggests a way to conduct inference for validating the D
(d)(un) con-

dition. This condition is fundamental not only to our estimation of the persistence pa-

rameter ω, but also to several existing methods in the literature. For instance, Süveges

(2007) studies a likelihood-based estimator of ω under Condition D
(2)(un). Ferreira and

Ferreira (2018) propose an estimator of ω by linking a stationary sequence satisfying Con-

dition D
(d)(un) to a regenerative process satisfying Conditions D

(1)(un) or D
(2)(un).

Finally, Holešovskỳ and Fusek (2020) consider an estimator of ω based on censoring

inter-exceedance times under Condition D
(d)(un). In view of (2.17), for any given inte-

ger d0 ↔ 1, Condition D
(d0)(un) can easily be validated by checking whether

max
d0↓d↓dU

↼̂n(d) <
1
⇒
k
. (2.22)

This procedure is consistent in the following sense: if Condition D
(d0)(un) holds, then

(2.22) will hold with probability tending to one. If Condition D
(d0)(un) is violated, two

scenarios may arise. First, dL exists but dL > d0, in which case Condition D
(dL)(un)

holds; then, by (2.18), we have

⇒

k max
d0↓d↓dU

↼̂n(d) ↔
⇒

k↼̂n(dL ↓ 1) ⇓ 1, n ↗ ↘.

Thus, the procedure remains consistent under this scenario. In this case, one proceeds to

check d0 +1, and so on. The second scenario arises when Condition D
(d)(un) fails for all

d → Z+. In this case, the assumptions required for Corollary 2.1 are no longer satisfied,

implying that all existing methods relying on Condition D
(d)(un) are not applicable.
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Table 1: Simulation DGPs and their corresponding theoretical properties

Model DGP Parameter ω dL

AR-N Xt = ⇀Xt↔1 + ⇁t, t ↔ 1, X0 ⇔ N (0, 1/(1↓ ⇀
2)), |⇀| < 1 1 1

⇁t
i.i.d.
⇔ N (0, 1)

Moving Maxima Xt = max0↓i↓m ⇁t+i, t ↔ 1, m ↔ 2 1/m 2

⇁t
i.i.d.
⇔ Fϑ, Fϑ(x) = P(⇁t ↑ x) = exp

(
↓ 1/(mx)

)

Max AR Xt = max{⇀Xt↔1, ⇁t}, t ↔ 2, X1 = ⇁1/(1↓ ⇀), ⇀ → [0, 1) 1↓ ⇀ 2

⇁t
i.i.d.
⇔ Fϑ, Fϑ(x) = P(⇁t ↑ x) = exp(↓1/x)

AR-C Xt = ⇀Xt↔1 + ⇁t, t ↔ 1, X0 ⇔ Cauchy(0, 1), |⇀| < 1 1↓ ⇀ if ⇀ ↔ 0 2 if ⇀ ↔ 0

⇁t
i.i.d.
⇔ Cauchy(0, 1↓ |⇀|) 1↓ ⇀

2 if ⇀ < 0 3 if ⇀ < 0

ARCH Xt =
(
2↖ 10↔5 + 0.7X2

t↔1

)1/2
⇁t, t ↔ 1, — 0.721 not exist

⇁t
i.i.d.
⇔ N (0, 1)

We further examine the finite sample performance of the procedure above under both

scenarios in the simulation study.

3. SIMULATIONS

We first evaluate the finite sample performance of the procedure for verifying Condition

D
(d)(un) in Section 2.3, and then assess the performance of our estimator ω̂n(d̂L) in (2.21)

using empirical mean squared errors (MSE). The data-generating processes (DGPs) and

their corresponding properties are summarized in Table 1. Derivations of these theoretical

properties are provided in Online Appendix S2.

Given the DGPs in Table 1, we further distinguish several cases based on the parame-

ter settings used in the simulations. Setting ⇀ = 0 in the AR-N model yields the IID case.

For the AR-N and MAX-AR models, we set ⇀ = 0.5, and for the Moving Maxima model

we take m = 3. For the AR-C model, we use ⇀ = ↓0.5. We note that the marginal distri-

butions of the DGPs do not a!ect the simulation results. Any continuous transformation

that alters the marginal distribution, and thereby changes the max-domain of attraction,

leaves the outcomes unchanged. Throughout, we fix the sample size at n = 5000 and

dU = 10, and all reported results are based on 1000 Monte Carlo repetitions.

Table 2 reports the empirical acceptance rates obtained by applying the verification

procedure in Section 2.3. Specifically, we sequentially verify whether D(d0)(un) holds for

d0 = 1, 2, 3. If (2.22) is satisfied for a given d0, we say that D
(d0)(un) is accepted. For

the IID and AR-N models, D(d0)(un) holds theoretically for all three values of d0, since
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Table 2: Empirical acceptance rate (in percent) for condition D(d0)(un).

k = 50 k = 100

Model dL d0 = 1 d0 = 2 d0 = 3 d0 = 1 d0 = 2 d0 = 3

IID 1 100 100 100 100 100 100

AR-N 1 56 100 100 2.5 99.8 100

Moving Maxima 2 0 100 100 0 100 100

MAX-AR 2 0 100 100 0 100 100

AR-C 3 3.5 3.6 100 0 0 100

Transformed AR-C 3 4.5 4.9 100 0 0 100

ARCH not exist 16 99.1 100 0.4 91.6 100

the minimal theoretical value is dL = 1. The procedure performs well for the IID case,

whereas for the AR-N model it often fails when d0 = 1: the failure rates are 44% for

k = 50 and 97.5% for k = 100. However, for d0 = 2 and 3, the failure rate is (nearly)

zero for both choices of k. For the Moving Maxima and MAX-AR models, the procedure

reaches optimal accuracy: it correctly fails to support d0 = 1 and succeeds when d0 ↔ 2.

For the AR-C model, since the transformation keep the extremal dependence structure

unchanged, the procedure performs optimally for k = 100 for both versions, and the

failure rates remain below 5% for k = 50. Finally, for the ARCH model, which does

not satisfy D
(d)(un) for any finite d (see Proposition S.2 in the supplement), and for

which all existing methods relying on D
(d)(un) therefore break down, we observe that

D
(2)(un) and D

(3)(un) are frequently accepted for both choices of k. This is mainly due

to the somewhat limited sample size. For example, when n = 50, 000 and k/n = 0.1, the

acceptance rate is zero for d0 = 1, . . . , 9 in simulation results not reported here.

Next, we evaluate the performance of ω̂n(d̂L), using the same threshold k for construct-

ing d̂L. For comparison, we include two benchmark estimators: ω̂intn , the interval estimator

of Ferro and Segers (2003, p. 549), and ω̂
B,sl
n , the sliding-block pseudo–maximum likeli-

hood estimator of Berghaus and Bücher (2018, p. 2314). The block length for ω̂B,sl
n is set

to n/k. The results are displayed in Figure 1. The sharp increase in the empirical MSE

of our estimator ω̂n(d̂L) for the IID model occurs because d̂L(k) tends to overestimate

the true dL when k is relatively large. This issue can be largely mitigated by a two-step

procedure: first estimate dL using a smaller k, and then use this estimate as an input for

estimating ω without relying on the same k in both steps. For the other four models that
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Figure 1: Empirical MSE of three estimators across six models, where ω̂n(d̂L) is defined in (2.21),

ω̂intn denotes the interval estimator of Ferro and Segers (2003, p. 549) and ω̂B,sl
n is the pseudo maximum

likelihood estimators based on the sliding blocks proposed by Berghaus and Bücher (2018, p. 2314).

satisfy D
(d)(un) condition, our estimator outperforms the two alternatives, as it has the

smallest MSE over a su”ciently wide range of k.

Even for the ARCH model, the minimum MSE of our estimator remains smaller than

that of the other two methods. For the ARCH model, we remark that ω can be well

estimated by the runs estimator #̂n(rn), where #̂n(•) is given in (2.8) and rn denotes a

block length. Our procedure produces an estimator d̂L such that the di!erence between

#̂n(d̂L) and #̂n(dU ) is very small. Therefore, in finite samples, d̂L can be used as a

data-driven method for selecting the block length rn.

4. EMPIRICAL STUDY

Our empirical analysis addresses two questions. First, we ask whether extreme summer

temperatures in Europe exhibit dependence consistent with the D
(d)(un) condition and,

if so, whether the strength of this persistence has changed over time. Second, we assess

whether the severity of heatwaves, measured as the probability of observing multi-day

exceedances of high thresholds, has increased in recent decades.

We analyze daily maximum apparent temperature (Xt) during the summer months

(June, July, and August) for nine European cities (London, Paris, Munich, Budapest,

Milan, Barcelona, Rome, Valencia, and Athens), following D’Ippoliti et al. (2010). These
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Figure 2: Left panel: Map of the nine selected cities. Right panel: Time series of Xt during summer days

from 1940 to 2025 for three representative cities in the north, central, and southern regions of Europe:

London, Milan, and Athens. The two subsamples covering 1940–1974 and 1991–2025 are shown as solid

green lines, while observations in the intervening gap, denoted by Xt(Gap), are plotted as a gray dotted

line. The red dashed lines labeled T95 represent the 95th percentiles within each subsample, and the

purple dots mark observations exceeding these respective thresholds.

cities span a broad range of climatic environments across Europe, enabling meaningful

comparisons between northern, central, and Mediterranean conditions. A map is shown

in the left panel of Figure 2. Apparent temperature combines air temperature and dew-

point temperature and thus reflects both thermal intensity and humidity-induced heat

stress, which is the key determinant of adverse health impacts. Since our interest is the

persistence of hazardous heat exposure rather than dry-bulb temperature alone, apparent

temperature is more appropriate for defining extreme events (Steadman, 1979).

We obtain daily observations spanning 1940–2025 from the ERA5 reanalysis.3 To sat-

isfy the stationarity requirement underlying the D(d)(un) framework, we split the sample

into two locally stationary subsamples: an early period from 1940 to 1974 (Period 1) and

a recent period from 1991 to 2025 (Period 2), leaving 1975-1990 as a transition gap.

Each period comprises 35 summers, corresponding to n = 3220 daily observations per

3See the link https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=

overview. We use ERA5 hourly single-level data, including the 2m dewpoint temperature Tdewpt and

the 2m air temperature Tair, covering the period from 1940 to 2025 and accessed on November 25, 2025.

The apparent temperature Xt is computed as Xt = →2.653 + 0.994Tair + 0.0153T 2
dewpt.

https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
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city. Augmented Dickey-Fuller tests, both with and without a deterministic trend, reject

the null hypothesis of unit-root nonstationarity for all time series in both periods at the

1% significance level.

The right panel of Figure 2 displays the time series Xt for three representative cities:

London from northern Europe, Milan from central-southern Europe, and Athens from

southern Europe. The green solid lines indicate the observations in the two subperiods,

while the gray dotted lines correspond to the temporal gap. The clustering of exceedances

above extreme percentiles in the two subperiods provides visual insight into the strength

of extremal serial dependence within each period. The red dashed lines mark the 95%

percentiles of Xt computed separately for the two subperiods. Two observations emerge.

First, the 95% percentile in Period 2 is clearly higher than in Period 1, indicating an

overall increase in temperature levels. In other words, extreme temperatures have become

more extreme in recent decades. This pattern holds across all nine cities for extreme

thresholds, see also Table 3. Second, although the cities exhibit higher temperatures in

the later period, there is no visual evidence that the dependence structure of the most

extreme 5% of observations within each subperiod undergoes a marked change across the

two periods.

To analyze these observed patterns formally, we estimate ω in each period using the

estimator ω̂n introduced in Section 2, which relies on a data-driven selection of dL. For

each city and period, we determine d̂L by applying the procedure in (2.22). Figure 3 plots

↼̂n(s) for s = 1, . . . , 4, as defined in (2.12), over a range of k/n → [0.02, 0.08] for the three

representative cities London, Milan, and Athens. The curve for s = 1 (green solid) stands

out clearly from those for s = 2, 3, 4. According to our selection procedure in (2.19), and

by comparing the curves of ↼̂n(s) with 1/
⇒
k (dashed lines), we conclude that d̂L = 2

for both periods, all three cities, and all considered values of k/n. Additional results for

all cities also support d̂L = 2 in almost all cases, with the exceptions of Barcelona in

Period 1 and Valencia for k/n ↔ 6% (see Figure S.3 in the Online Supplement). We

conclude that Condition D
(d)(un) holds with dL = 2.

We subsequently compute ω̂n using the top 3%, 5%, and 7% observations of Xt within

each period as the threshold. Table 3 reports the resulting estimates of the extremal index

ω along with the corresponding temperature thresholds. As noted earlier, all cities exhibit

a pronounced rise in high temperatures: the top 3% threshold in Period 1 is approximately
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Figure 3: ε̂n(s) for s = 1, . . . , 4, as defined in (2.12), over a range of k/n ↑ [0.02, 0.08] for the three

representative cities London, Milan, and Athens. The fact that ε̂n(1) lies above 1/
↓
k while ε̂n(s) for

s = 2, 3, 4 lie below 1/
↓
k indicates that d̂L = 2 according to the selection procedure in (2.19).

Table 3: Estimates of ω from Section 2 for k/n ↑ {3%, 5%, 7%}, together with corresponding thresholds

Xn→k,n. The cities are ordered from the northernmost to the southernmost latitude when read from top

to bottom and from left to right.

Period City
ω̂ Xn↔k,n (in ⇐C)

City
ω̂ Xn↔k,n (in ⇐C)

3% 5% 7% 3% 5% 7% 3% 5% 7% 3% 5% 7%

1940–1974
London

0.54 0.45 0.39 27.30 25.94 25.04
Rome

0.52 0.44 0.42 34.92 34.32 33.84

1991–2025 0.60 0.53 0.45 29.34 28.04 27.12 0.43 0.36 0.35 38.14 37.49 37.06

1940–1974
Paris

0.55 0.48 0.45 31.52 30.15 29.01
Barcelona

0.60 0.46 0.40 31.38 30.86 30.56

1991–2025 0.61 0.58 0.53 33.90 32.29 31.36 0.51 0.48 0.40 34.46 33.81 33.36

1940–1974
Munich

0.54 0.48 0.48 31.32 30.32 29.56
Valencia

0.69 0.65 0.55 34.27 33.64 33.25

1991–2025 0.62 0.56 0.51 32.88 31.81 31.17 0.69 0.57 0.47 37.14 36.51 36.07

1940–1974
Budapest

0.58 0.52 0.50 33.44 32.49 31.79
Athens

0.46 0.43 0.43 36.63 35.86 35.37

1991–2025 0.54 0.48 0.44 35.56 34.77 34.14 0.51 0.45 0.38 38.00 37.14 36.68

1940–1974
Milan

0.54 0.46 0.41 35.14 34.46 33.89

1991–2025 0.46 0.40 0.33 38.08 37.25 36.62

at the same level as, and for some cities even lower than, the top 7% threshold in Period 2.

We do not, however, observe substantial changes in ω across periods in Table 3. The

variation that does appear is loosely related to latitude: for northwestern and central

European cities, from London to Munich, persistence levels decline slightly, whereas a

tendency toward higher persistence is evident for eastern cities (e.g., Budapest) and

southern cities (from Milan to Valencia), with Athens as an exception. These patterns

are not unexpected, given that the relevant percentiles in Period 2 are substantially
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Figure 4: Estimates and 90%-level bootstrap confidence intervals of ω (top panel) and S(T fs
97) (bottom

panel). For both panels, k/n = 5% and confidence intervals are based on 999 bootstrap replications.

higher than in Period 1. At such extreme temperature levels in Period 2, large shifts in

persistence would be less likely to occur.

To further quantify the estimation uncertainty of ω, we adapt the block-type boot-

strap procedure of Ferro and Segers (2003). Note that this bootstrap scheme also allows

us to construct confidence intervals for the severity probability introduced later, within

the same unified framework. Specifically, for a given time period, blocks (or clusters) are

constructed using the estimated dependence parameter d̂L. The key idea of this bootstrap

scheme is to preserve extremal temporal dependence within each block, while generating

a su”cient number of approximately independent blocks to induce randomness. This

approach di!ers from the conventional block bootstrap, where blocks typically have (ap-

proximately) equal lengths. Instead, block construction in our resampling scheme depends

on the timing of exceedances, with exceedances assigned to the same extremal cluster

according to the estimate d̂L. Full details of the resampling procedure and an accompa-

nying simulation study are provided in Online Supplement, where we find satisfactory

finite sample performance in terms of empirical coverage. Figure 4 presents the point

estimates ω̂ for k/n = 5% in both periods, together with the corresponding 90% boot-

strap confidence intervals. The intervals overlap across periods for all cities, indicating

no evidence of changes in extremal serial dependence.

We can further estimate the heatwave severity probability S(T ), defined as the joint

exceedance probability at a high temperature threshold T . Given d̂L = 2, it is reasonable

to define, for a high threshold T , S(T ) := P(X1 ↔ T , X2 ↔ T ) = P(X1 ↔ T )P(X2 ↔

T | X1 ↔ T ), i.e., the probability that two consecutive days exceed the threshold T . The

second term is related to the tail copula of (X1, X2). However, classical estimators of
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tail copulas are developed under the assumption of i.i.d. observations and are therefore

not directly applicable to time series data. In the context of heatwave analysis, several

parametric approaches have been proposed to model and estimate this quantity. For

instance, Reich et al. (2014) employ a multivariate logistic copula, while Shaby et al.

(2016) introduce a Markov-switching model to capture the tail dependence of (X1, X2).

We take a fully nonparametric approach, linking this quantity to the extremal index.

Given that the D(2)(un) condition is supported by our data, we have limT →x↑ P(X2 ↔ T |

X1 ↔ T ) = 1↓ ω, where x
⇒ denotes the right endpoint of the temperature distribution.

Let PT = P(X1 ↔ T ) denote the marginal exceedance probability, and let P̂T be its

estimator; see Online Supplement for details. A plug-in estimator of S(T ) is then given by

Ŝ(T ) = P̂T (1↓ ω̂). Let T fs
p denote the p% percentile of the full sample from 1940 to 2025.

We take k/n = 5% and use T
fs
97 as T for evaluating the probability of joint occurrence

above this extremal level. The bottom panel of Figure 4 displays the estimated values

of Ŝ(T fs
97) for the two periods, together with bootstrap 90%-level confidence intervals

constructed using the same resampling scheme as for ω. Across all cities, the probability

of a two-day exceedance above T
fs
97 increases significantly in recent decades. In several

cases, the point estimates for the later period are two to four times larger than those

in the earlier period. This indicates a substantial increase in the probability of short

heatwave spells in the last three decades compared with 1940–1974. Importantly, these

increases are primarily due to changes in the marginal exceedance probability, largely

through shifts in the location parameter of the marginal distributions; see Table S.1

in Online Supplement. Note also that the supplement provides a comparison with an

alternative estimator of S(T ) based on the empirical distribution function. For a very

high T , this estimator frequently yields zero, as the sample may contain no exceedances.

5. CONCLUSION

We proposed a unified nonparametric framework that enables validation of the core local

dependence condition D
(d)(un) and provides procedures for tuning parameter selection

and extremal index estimation. We established the asymptotic normality of the proposed

extremal index estimator by deriving fundamental weak convergence results for empiri-

cal processes to accommodate random thresholds in our construction of the estimator.

We showed the consistency of the validation procedure for the D
(d)(un) condition and,
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conditional on this condition holding, proved the consistency of the tuning parameter

selection procedure for the parameter that determines the lower bound required for the

D
(d)(un) condition to hold. An extensive simulation study supported our asymptotic re-

sults and showed that the proposed estimator substantially outperformed two commonly

used existing estimators in terms of empirical MSE. We studied summer apparent tem-

perature data for nine European cities over the period 1940–2025. The results reveal two

important takeaways. First, there is clear evidence of extremal serial dependence: the

D
(d)(un) condition holds with d ↔ 2 for all countries in both subperiods (1940–1974 and

1991–2025). This implies that when an extreme temperature event occurs, it persists for

at least two days. Second, the heatwave severity probability increases substantially, with

two-day exceedance probabilities typically two to four times larger in the more recent

period compared with 1940–1974. These increases, however, are primarily due to shifts in

the marginal exceedance probability, meaning that extreme temperatures become more

extreme in the recent period rather than changes in the extremal index.
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APPENDIX A: MAIN PROOFS

We provide the proofs of Theorems 2.1 and 2.2. We first present several auxiliary results.

Theorem 5.1 establishes a useful identity and ensures the existence of a minimal value



24 J.-J. Cai et al.

as defined in (2.6). The auxiliary results in Propositions 5.1 and 5.2 establish weak con-

vergence properties that allow our asymptotic approximations to accommodate random

thresholds Xn↔k,n, in contrast to, for example, Weissman and Novak (1998). Detailed

proofs of these auxiliary results are provided in the supplement.

Theorem 5.1. Suppose that for all 1 ↑ s ↑ dU , the limit of t
↔1P

(
U

max
1,s > 1↓ t

)
exists

as t ↗ 0, and define ςs := limt→0 t
↔1P

(
U

max
1,s > 1↓ t

)
. Let ς0 := 0. Then

#(s) = ςs ↓ ςs↔1, 1 ↑ s ↑ dU . (A.1)

Moreover, if the D(un) and D
(d)(un) conditions hold for some d ↔ 1, then there exists a

dL ↑ d such that

ω = #(s) = ςs ↓ ςs↔1, dL ↑ s ↑ dU , (A.2)

and #(s) > ω for 1 ↑ s < dL.

Proof. The proof is provided in the online supplement. ↭

To proceed, define, for x → [1/2, 3/2] =: X ,

#̃n(x, d) =
1

k

n↔d+1∑

t=1

1

{
U

max
t+1,t+d↔1 < 1↓

kx

n
< Ut

}
. (A.3)

Note that #̃n(·) is a pseudo estimator because the Ut’s are unobservable when F is

unknown. By the strict stationarity of the Ut’s, one has

E
(
#̃n(x, d)

)
=

n↓ d+ 1

k
P
(
U

max
2,d < 1↓

kx

n
< U1

)
↗ xω,

by Assumption A4 and (A.1). By (2.8), we also have

#̂n(d) =
1

k

n↔d+1∑

t=1

1
{
U

max
t+1,t+d↔1 ↑ Un↔k,n < Ut

}
= #̃n

(
n

k
(1↓ Un↔k,n) , d

)
.

Since (n/k) (1↓ Un↔k,n)↓1 = oP(1), we first derive the asymptotic properties of #̃n(x, d)

for x → X . Specifically, for d → Z+, we aim to establish the weak convergence of νn(x, d)

as a process indexed by x → X , where

νn(x, d) :=
⇒

k
(
#̃n(x, d)↓ #̃0,n(x, d)

)
, (A.4)

and #̃0,n(x, d) = (n/k)P
(
U

max
2,d < 1 ↓ kx/n < U1

)
. To this end, let ↙ denote weak

convergence in the space of functions on the compact interval X having at most dis-
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continuities of the first kind and endowed with the Skorokhod J1 topology (see Aldous,

1978, for details), denoted by D(X ).

Proposition 5.1. Under the assumptions of Theorem 2.1, for d → Z+
, we obtain the

weak convergence of νn(x, d) as a process indexed by x → X :

{
νn(x, d)

}
x↘X

↙
{
Wd(x)

}
x↘X

, n ↗ ↘, (A.5)

where Wd denotes a zero-mean continuous Gaussian process with covariance function

E
(
Wd(x)Wd(y)

)
= lim

n→↑

n

k

d↔1∑

t=0

P
(
U

max
2,d < 1↓

kx

n
< U1, U

max
t+2,t+d < 1↓

ky

n
< Ut+1

)
,

for x ↑ y. In particular, E
(
W

2
d (x)

)
= xω.

Proof. The proof is provided in Online Supplement. ↭

By a similar but simpler proof, we can obtain the weak convergence for the empirical

tail process: νn(x, 1) =
⇒
k
(
k
↔1

∑n
t=1 1

{
Ut > 1↓ kx/n

}
↓ x

)
.

Proposition 5.2. Under the conditions of Theorem 2.1, we have {νn(x, 1)}x↘X ↙

{W̃ (x)}x↘X , as n ↗ ↘, where W̃ is a zero-mean continuous Gaussian process with

covariance function E
(
W̃ (x)W̃ (y)

)
= min(x, y) + $1(x, y) + $1(y, x).

Proof. The proof is similar to that of Proposition 5.1 and is therefore omitted. ↭

Note that this result is generally di!erent from Proposition 5.1 with d = 1. The

di!erence lies in the covariance structure. The two coincide with each other only when

Condition A2 holds with d = 1, which implies D
(1)(un) condition holds. Recall that

ω̂n = #̃n(en, d), where en := (n/k) (1 ↓ Un↔k,n). We suppress the dependence of en on

k, as k itself depends on n. We now derive some asymptotic properties of en. First, by

de Haan and Ferreira (2006, Theorem A.0.1 and Lemma A.0.2), Proposition 5.2 implies

that
⇒
k (en ↓ 1)

d
↓↗ ↓W̃ (1), as n ↗ ↘. In particular, one has en↓1 = oP(1). Note that

convergence in the Skorokhod topology implies uniform convergence when the limiting

process is continuous (see, e.g., Billingsley, 1999, Chapter 12). Using the continuity of W̃
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together with the triangle inequality, we obtain

∣∣∣
⇒

k (en ↓ 1) + νn(1, 1)
∣∣∣ ↑

∣∣∣νn(en, 1)↓ W̃ (en)
∣∣∣+

∣∣∣νn(1, 1)↓ W̃ (1)
∣∣∣+

∣∣∣W̃ (1)↓ W̃ (en)
∣∣∣

= oP(1). (A.6)

Proof. (Proof of Theorem 2.1) For clarity of presentation, all processes involved in

the proof are defined on a common probability space using the Skorohod representation

theorem (see, e.g., Pollard, 1984). We use the same notation for these versions, although

they are only equal in distribution to the original processes. We begin with the following

decomposition, which follows from the definitions of #̃n and νn(x, d):
⇒
k
(
#̂n(d)↓ ω

)
=

⇒
k
(
#̃n(en, d)↓ ω

)
= νn(en, d) +

⇒
k
(
#̃0,n(en, d)↓ ω

)
. Let Rn :=

⇒
k
(
#̃0,n(en, d)↓ ω

)
. It

su”ces to show: (a) |νn(en, d)↓ νn(1, d)|
p

↓↗ 0; (b) |Rn + ωνn(1, 1)|
p

↓↗ 0; (c) νn(1, d)↓

ωνn(1, 1)
d

↓↗ N (0,ϖ2) , where ϖ
2 is defined in Theorem 2.1.

Proof of (a) By applying Proposition 5.1 and Billingsley (1999, Chapter 12), we have

|νn(en, d)↓ νn(1, d)| =
∣∣∣
(
νn(en, d)↓Wd (en)

)
+

(
Wd(1)↓ νn(1, d)

)
+
(
Wd (en)↓Wd(1)

)∣∣∣

↑ 2 sup
x↘X

∣∣νn(x, d)↓Wd(x)
∣∣+

∣∣Wd(en)↓Wd(1)
∣∣ p
↓↗ 0,

by the continuous mapping theorem, the continuity of Wd, and the fact that en
p

↓↗ 1.

Proof of (b) We first consider Rn. Define ςd,n(x) := (n/k)P
(
U

max
1,d > 1 ↓ kx/n

)
. Then

by Assumption A4 , we have limn→↑ ςd,n(x) = xςd and also #̃0,n(x, d) = ςd,n(x) ↓

ςd↔1,n(x). Therefore, Rn =
⇒
k
(
ςd,n(en)↓ ςd↔1,n(en)↓ ω

)
=: Rn,1 +Rn,2, where Rn,1 =

⇒
k
(
ςd,n(en) ↓ enςd

)
↓

(
ςd↔1,n(en) ↓ enςd↔1

)
and Rn,2 =

⇒
k

en(ςd ↓ ςd↔1) ↓ ω


. By

Assumption A4, k = o
(
n
2ε/(2ε+1)

)
, and en

p
↓↗ 1, we have Rn,1 = oP(1). Moreover, by

(A.2) and (A.6), we obtain Rn,2 = ω
⇒
k (en ↓ 1) = ↓ωνn(1, 1) + oP(1).

Proof of (c) We denote Vt = 1
{
U

max
t+1,t+d↔1 < 1↓ k/n < Ut

}
↓ ω1

{
Ut > 1↓ k/n

}
, then

νn(1, d) ↓ ωνn(1, 1) = k
↔1/2

∑n↔d+1
t=1

(
Vt ↓ E(V1)

)
+ OP

(
k
↔1/2

)
. Analogous to the proof

of Proposition 5.1, we apply the main theorem of Utev (1991) to establish the CLT for

the partial sum
∑n↔d+1

t=1

(
Vt ↓ E(V1)

)
. We begin with the asymptotic variance:

Var


n↔d+1∑

t=1

(
Vt ↓ E(V1)

)


=
n↓ d+ 1

k
Var(Vt) +

2

k

n↔d+1∑

t=1

(n↓ t) Cov(V1, V1+t).
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Note that (n/k)E(V1) ↗ ω ↓ ω = 0. By the D
(d)(un) condition, we have

n↓ d+ 1

k
Var(Vt) =

n

k


P
(
U

max
2,d < 1↓

k

n
< U1

)
+ ω

2P
(
U1 > 1↓

k

n

)

↓ 2ωP
(
U

max
2,d < 1↓

k

n
< U1

)
+ o(1) ↗ ω ↓ ω

2
.

Furthermore, under the mixing condition, it is clear that the tail sum (2/k)
∑n↔d+1

t=rn+1(n↓

t) Cov(V1, V1+t) = o(1). Note that

2

k

rn∑

t=1

(n↓ t) Cov(V1, V1+t) =: 2
(
Q1,n ↓Q2,n ↓Q3,n +Q4,n

)
+ o

(
rnk

n

)
,

where Q1,n = ω
2 (n/k)

∑rn
t=1 P

(
U1 > 1 ↓ k/n, Ut+1 > 1 ↓ k/n

)
, Q2,n =

ω (n/k)
∑rn

t=1 P
(
U1 > 1 ↓ k/n, U

max
t+2,t+d < 1 ↓ k/n < Ut+1

)
, Q3,n =

ω (n/k)
∑rn

t=1 P
(
U

max
2,d < 1↓k/n < U1, Ut+1 > 1↓k/n

)
,Q4,n = (n/k)

∑rn
t=1 P

(
U

max
2,d < 1↓

k/n < U1, U
max
t+2,t+d < 1↓k/n < Ut+1

)
. By Assumptions A2–A3, limn→↑(2/k)

∑rn
t=1(n↓

t) Cov(V1, V1+t) = 2(ω2$1(1, 1) ↓ ωϱ1). The Condition (2) in Utev (1991) follows from

the same argument as that for (S.4). This completes the proof of Part (c). ↭

Proof. (Proof of Theorem 2.2) For some given d → Z+, since Assumption 2.2 holds

for the pair (d, d+1), we have Assumption 2.1 holds for d+1, imply that #(d+1) = ω and

the result in Proposition 5.1 holds for d+1. Note that for this specific pair (d, d+1), we do

not require Assumption 2.1 to hold for d. Nevertheless, we also need a similar weak con-

vergence result for
⇒
k
(
#̃n(x, d)↓#̃0,n(x, d)

)
. Clearly, the asymptotic variance is not nec-

essary in the same form becauseD(d)(un) condition is no longer guaranteed. However, the

conditions in Theorem 2.2 ensure that the asymptotic variance exists and the tightness of

the process continues to hold for d specified above. Following the same line of argument as

in the proof of Proposition 5.1, we have
{⇒

k
(
#̃n(x, d)↓#̃0,n(x, d)

)}
x↘X

↙ {G(x)}x↘X ,

as n ↗ ↘, where G is a zero-mean continuous Gaussian process with covariance function:

E
(
G(x)G(y)

)
= lim

n→↑

n

k

d↔1∑

t=0

P
(
U

max
2,d < 1↓

kx

n
< U1, U

max
t+2,t+d < 1↓

ky

n
< Ut+1

)

+ $2(x, y) + $2(y, x),

for x ↑ y. If Assumption A2 also holds for d, then $2(x, y) = 0 and G
d
= Wd, where Wd

is defined in Proposition 5.1. It is clear that E
(
G

2(1)
)
= #(d)+2$2(1, 1). The remaining

steps are similar to those in Theorem 2.1. Full details are deferred to the supplement. ↭
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Proof. (Proof of Proposition 2.1) By the definition of d̂L(k),
{
d̂L(k) ↔ dL + 1

}
∝

{
maxdL↓s↓dU ↼̂n(s) ↔ 1/

⇒
k
}
. Note that the latter event has a probability tending

to zero by Corollary 2.1. On the other hand, for any j ↑ dL ↓ 1,
{
d̂L(k) = j

}
∝

{
maxj↓s↓dU ↼̂n(s) < 1/

⇒
k
}

∝
{
↼̂n(dL ↓ 1) < 1/

⇒
k
}
, which also has a probability

tending to zero. Therefore, P(d̂L(k) ′= dL) ↗ 0. ↭
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Summary Section S1 provides detailed proofs for the propositions and lemmas

used in the main results, as well as the full steps for Theorem 2.2. Section S2 then illus-

trates the computation of dL for the simulation DGPs and presents additional results

showing that the D(d)
(un) condition is not fulfilled for an ARCH model. Section S3

provides the detailed steps of the bootstrap algorithm used in our empirical analy-

sis. Section S4 reports the complete set of empirical results for the study of summer

apparent temperatures in Europe.

S1. ADDITIONAL PROOFS OF THE MAIN RESULTS

Proof. (Proof of Theorem 5.1) Recall the definition of !(·) in (2.5). Then (A.1)

follows from that for any ω > 0,

lim
n→↑

P
(
U

max
2,s → 1↑ ω

n

∣∣∣∣U1 > 1↑ ω

n

)
= lim

n→↑

n

ω
P
(
U

max
2,s → 1↑ ω

n
, U1 > 1↑ ω

n

)

= lim
n→↑

n

ω

{
P
(
U

max
2,s → 1↑ ω

n

)
↑ P

(
U

max
1,s → 1↑ ω

n

)}

= lim
n→↑

n

ω

{
P
(
U

max
1,s > 1↑ ω

n

)
↑ P

(
U

max
2,s > 1↑ ω

n

)}

= εs ↑ εs↓1.

Thus, under the assumption that εs exists, !(s) is well defined for any s → dU . Since

s ↓↔ !(s) is non-increasing, we have, for any dU ↗ d,

!(d) ↗ !(dU ) ↗ lim
n→↑

P
(
U

max
2,rn → 1↑ ω

n

∣∣∣∣U1 > 1↑ ω

n

)
.
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On the other hand, D(d)(un) condition is equivalent to the following equality:

!(d) = lim
n→↑

P
(
U

max
2,rn → 1↑ ω

n

∣∣∣∣U1 > 1↑ ω

n

)
. (S.1)

Therefore, one has ϑ = !(d) = !(d + 1) = · · · = !(dU ). Thus, dL exists and dL =

min
{
d ↘ Z+ : !(d) = ϑ

}
as given in (2.6). By the definition of dL and the monotonicity

of !, we have for any 1 → s < dL, !(s) > ϑ. ↭

Proof. (Proof of Proposition 5.1) When no ambiguity arises, we omit the subscript

d in the notation of Wd(·) and write ϖn(·, d) simply as ϖn(·), where d ↘ Z+ is fixed.

We establish the weak convergence in (A.5) by verifying the convergence of the finite-

dimensional distributions together with uniform tightness.

Finite-dimensional distributional convergence Let m ↘ Z+. By the Cramér-Wold

device, it su”ces to show that for any xi ↘ X and ai ↘ R, i = 1, . . . ,m,

m∑

i=1

aiϖn(xi)
d↑↔

m∑

i=1

aiW (xi), n ↔ ≃. (S.2)

We present the proof for the case m = 2. The argument for m > 2 is more in-

volved but proceeds analogously. Let 1/2 → x → y → 3/2, and for convenience,

It = 1
{
U

max
t+1,t+d↓1 < 1↑ kx/n < Ut

}
and Jt = 1

{
U

max
t+1,t+d↓1 < 1↑ ky/n < Ut

}
for

t = 1, . . . , n↑ d+ 1. By the definition in (A.4), we have

a1ϖn(x) + a2ϖn(y) =
1⇐
k

n↓d+1∑

t=1

(
a1It + a2Jt ↑ E

(
a1It + a2Jt

))
+O

(
1⇐
k

)

=:
n↓d+1∑

t=1

ϱt,n +O

(
1⇐
k

)
, (S.3)

where ϱt,n =
(
a1It + a2Jt ↑ E(a1It + a2Jt)

)
/
⇐
k. We apply the central limit theorem

(CLT) developed by Utev (1991) to prove that
∑n↓d+1

t=1 ϱt,n
d↑↔ a1W (x) + a2W (y). We

begin by deriving the asymptotic variance. Note that

Var
(

n↓d+1∑

t=1

ϱt,n

)
=

a
2
1

k
Var

(
n↓d+1∑

t=1

It

)
+
a
2
2

k
Var

(
n↓d+1∑

t=1

Jt

)
+
2a1a2
k

Cov

(
n↓d+1∑

t=1

It,

n↓d+1∑

t=1

Jt

)
.

Note that E(I1) = P
(
U

max
2,d < 1 ↑ kx/n < U1

)
= O(k/n), and Var(I1) = E(I1)

(
1 ↑
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O(k/n)
)
. Hence, by the strict stationarity and Lemmas S.1(i) and S.2, we have

Var
( n↓d+1∑

t=1

It

)
= (n↑ d+ 1)Var(I1) + 2

∑

i<j

Cov(Ii, Ij)

= (n↑ d+ 1)E(I1)
(
1↑O

(
k

n

))
+ 2

n↓d∑

t=1

(n↑ d+ 1↑ t) Cov(I1, I1+t)

= (n↑ d+ 1)E(I1)
(
1↑O

(
k

n

))
+ o(k).

Therefore, (a21/k)Var
(∑n↓d+1

t=1 It

)
= a

2
1 (n/k)E(I1)+o(1). Similarly, one can also obtain

(a22/k)Var
(∑n↓d+1

t=1 Jt

)
= a

2
2 (n/k)E(J1)+o(1). For the covariance term, we have, again

by the strict stationarity and by Lemmas S.1(i) and S.2,

1

k
Cov

(
n↓d+1∑

t=1

It,

n↓d+1∑

t=1

Jt

)
=

1

k

n↓d∑

t=↓(n↓d)

(n↑ d+ 1↑ |t|) Cov
(
I1, J1+t

)

=
1

k

d↓1∑

t=↓(d↓1)

(n↑ d+ 1↑ |t|) Cov
(
I1, J1+t

)

=
1

k

d↓1∑

t=0

(n↑ d+ 1↑ t)E
(
I1J1+t

)
+ o(1)

=
n

k

d↓1∑

t=0

E
(
I1J1+t

)
+ o(1),

where the second equality follows from Cov
(
I1, J1+t

)
= 0 for |t| ↗ d. The third equal-

ity follows from k
↓1

∑d↓1
t=1 (n ↑ d + 1 ↑ t) Cov

(
It+1, J1

)
= o(1), using the facts that

E(I1)E(J1) = O(k2/n2) and E(It+1J1) = 0 for x → y and t = 1, . . . , d ↑ 1. Putting

together, we obtain

Var
(

n↓d+1∑

t=1

ϱt,n

)
= lim

n→↑

(
a
2
1
n

k
E(I1) + a

2
2
n

k
E(J1) + 2a1a2

n

k

d↓1∑

t=0

E (I1J1+t)

)

= a
2
1 E(W 2(x)) + a

2
2 E(W 2(y)) + 2a1a2 E

(
W (x)W (y)

)
.

Next, we verify Condition (2) in Utev (1991), which is essentially Lindeberg’s condition.

Let ς2
n = Var

(∑n↓d+1
t=1 ϱt,n

)
. By choosing jt = 1 for all t ↘ Z+ in Utev (1991), we obtain,
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for any φ > 0,

ς
↓2
n

n↓d+1∑

t=1

E
(
ϱ
2
t,n1{|ϱt,n| ↗ φςn}

)
→ ς

↓3
n n φ

↓1E(|ϱ1,n|3)

= ς
↓3
n nk

↓3/2
φ
↓1E

(∣∣a1I1 + a2J1 ↑ E(a1I1 + a2J1)
∣∣3
)

= ς
↓3
n nk

↓3/2
φ
↓1E

(∣∣a1I1 + a2J1 ↑O(k/n)
∣∣3
)

= ς
↓3
n nk

↓3/2
φ
↓1

O

(
k

n

)
↔ 0. (S.4)

Thus, the central limit theorem in Utev (1991) applies to the partial sums of the sequence

{ϱt,n : t = 1, . . . , n↑ d+ 1}, yielding (S.2).

Tightness in D(X ) We prove that for any ↼ > 0,

lim
n→↑

P



 sup
|x↓y|<ωn

1/2↔x<y↔3/2

∣∣ϖn(x)↑ ϖn(y)
∣∣ ↗ ↼



 = 0, (S.5)

where ↽n is a deterministic sequence such that limn→↑ ↽n = 0. Then by Theorem 1 in

Aldous (1978) and the explanation thereafter, ϖn(·) is tight in D(X ) and each weak limit

has a.s. continuous sample paths. To prove (S.5), we decompose ϖn into two parts. For any

x ↘ X , it holds a.s. that 1
{
U

max
t+1,t+d↓1 < 1↑ kx/n < Ut

}
= 1

{
U

max
t,t+d↓1 > 1↑ kx/n

}
↑

1
{
U

max
t+1,t+d↓1 > 1↑ kx/n

}
. By (A.4), we obtain

ϖn(x) = ϖ1,n(x)↑ ϖ2,n(x), (S.6)

where ϖ1,n(x) = k
↓1/2

∑n↓d+1
t=1

(
1
{
U

max
t,t+d↓1 > 1↑ kx/n

}
↑P

(
U

max
t,t+d↓1 > 1↑kx/n

))
and

ϖ2,n(x) = k
↓1/2

∑n↓d+1
t=1

(
1
{
U

max
t+1,t+d↓1 > 1↑ kx/n

}
↑ P

(
U

max
t+1,t+d↓1 > 1 ↑ kx/n

))
. To

prove (S.5), it su”ces to prove the tightness condition for ϖ1,n(x) and ϖ2,n(x), respectively.

We provide the details for ϖ1,n(x). Let tn = ⇒(n ↑ d + 1)/(2rn)⇑. We split the sum

into 2 tn blocks of length rn and a remaining block of length less than 2rn. To simplify

the notation, we denote Mt = U
max
t,t+d↓1 below and decompose ϖ1,n(x) into ϖ1,n(x) =
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µ1,n(x) + µ2,n(x) + µ3,n(x), where

µ1,n(x) =
1⇐
k

tn↓1∑

i=0

rn∑

j=1

(
1


M2irn+j > 1↑ kx

n


↑ P

(
M2irn+j > 1↑ kx

n

))
,

µ2,n(x) =
1⇐
k

tn↓1∑

i=0

rn∑

j=1

(
1


M(2i+1)rn+j > 1↑ kx

n


↑ P

(
M(2i+1)rn+j > 1↑ kx

n

))
,

µ3,n(x) =
1⇐
k

n↓d+1∑

i=2tnrn+1

(
1


Mi > 1↑ kx

n


↑ P

(
Mi > 1↑ kx

n

))
.

Since µ1,n(x) and µ2,n(x) share similar constructions, we first derive a generic result

to establish their uniform tightness. Define µ̃n(x) = k
↓1/2

∑tnrn
i=1

(
1
{
M̃i > 1↑ kx/n

}
↑

P(M̃i > 1↑ kx/n)
)
, where

{
M̃(i↓1)rn+1, . . . , M̃irn

} d
=

{
M1, . . . ,Mrn

}
, i = 1, . . . , tn, (S.7)

and
{
M̃(i↓1)rn+j , j = 1, . . . , rn

}tn
i=1

are tn independent blocks. Thus, for each n, the

sequence {M̃i} constitutes a special rn-dependent array, which is not strictly stationary.

We first apply a fluctuation inequality for m-dependent arrays given by Theorem 4.1 in

Einmahl and Ruymgaart (2000) to prove the tightness of µ̃n. Then, the tightness of µ1,n

and µ2,n follows from the bounded variation distance between µ̃n and µ1,n and between

µ̃n and µ2,n, respectively.

For each n, let q = r
1+ε
n , where φ > 0 is some constant such that q/

⇐
kn ↔ 0. Define

Ii =

1
2 + i

q ,
1
2 + i+1

q


⇓ X for i = 0, . . . , q ↑ 1. Choose ↽n = 1/q. For any x, y ↘ X

and |x ↑ y| < ↽n, there exists an i ↘ {0, . . . , q ↑ 1} such that
∣∣x ↑ 1

2 ↑ i
q

∣∣ < q
↓1 and

∣∣y ↑ 1
2 ↑ i

q

∣∣ < q
↓1. Thus, for any ↼ > 0, we have

P



 sup
|x↓y|<ωn

1/2↔x<y↔3/2

|µ̃n(x)↑ µ̃n(y)| ↗ ↼





→ P



 max
0↔i↔q↓1

sup
|x↓1/2↓i/q|<1/q
|y↓1/2↓i/q|<1/q

(∣∣∣µ̃n(x)↑ µ̃n

(1
2
+

i

q

)∣∣∣+
∣∣∣µ̃n

(1
2
+

i

q

)
↑ µ̃n(y)

∣∣∣
)

↗ ↼





→ 2P
(

max
0↔i↔q↓1

sup
x↗Ii

∣∣∣∣µ̃n(x)↑ µ̃n

(1
2
+

i

q

)∣∣∣∣ ↗
↼

2

)
+ 2P

(
max

0↔i↔q↓1
sup
x↗Ii

∣∣∣∣µ̃n(x)↑ µ̃n

(1
2
+

i+ 1

q

)∣∣∣∣ ↗
↼

2

)

→ 2
q↓1∑

i=0

P
(
sup
x↗Ii

∣∣∣∣µ̃n(x)↑ µ̃n

(1
2
+

i

q

)∣∣∣∣ ↗
↼

2

)
+ 2

q↓1∑

i=0

P
(
sup
x↗Ii

∣∣∣∣µ̃n(x)↑ µ̃n

(1
2
+

i+ 1

q

)∣∣∣∣ ↗
↼

2

)
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→ 4
q↓1∑

i=0

P
(

sup
x,y↗Ii

|µ̃n(x)↑ µ̃n(y)| ↗
↼

2

)
=: 4

q↓1∑

i=0

Qi.

Next, we apply Einmahl and Ruymgaart (2000, Eq. (4.4)) to bound Qi. As such, define

#n(x) =
1

tnrn

tnrn∑

i=1

(
1

M̃i > 1↑ x


↑ P

(
M̃i > 1↑ x

))
,

which plays the role of !n in Einmahl and Ruymgaart (2000). Then, adopting the nota-

tion of that paper with φ = 1/2 and m = rn, by the distributional equivalence in (S.7),

we obtain

Qi = P



 sup
1
2+

i
q↔x<y↔ 1

2+
i+1
q

|µ̃n(x)↑ µ̃n(y)| ↗ ↼





= P



rntn⇐
k

sup
1
2+

i
q↔x<y↔ 1

2+
i+1
q

∣∣∣∣#n

(
kx

n

)
↑ #n

(
ky

n

) ∣∣∣∣ ↗ ↼





= P



 sup
k
n ( 1

2+
i
q )↔a<b↔ k

n ( 1
2+

i+1
q )

∣∣#n(a)↑ #n(b)
∣∣ ↗

⇐
k↼

rntn





→ C exp




↑rntn

kϑ2

r2nt
2
n

4rnpi
⇀

(⇐
rntn

↘
kϑ

rntn⇐
rntnpi

)

 = C exp

(
↑ k↼

2

4r2ntnpi
⇀

( ⇐
k↼

rntnpi

))
,

where C > 0 is some constant, pi = P
(
1↑ k

n (
1
2 + i+1

q ) < U
max
1,d → 1↑ k

n (
1
2 + i

q )
)
and ⇀

is a continuous and decreasing function such that ⇀(0) = 1. Observe that Assumption

A4 implies that,

sup
x↗X

n

k

∣∣∣∣P
(
U

max
1,j > 1↑ kx

n

)
↑ xεj

∣∣∣∣ = O

((
k

n

)ϖ)
. (S.8)

Thus, we have

sup
0↔i↔q↓1

∣∣∣∣
n

k
pi ↑

1

q
εd

∣∣∣∣ = O

((
k

n

)ϖ)
.

If n is su”ciently large, we have k
2nq → pi → 2dk

nq , uniformly in i, due to the fact that

εd ↘ [1, d]. Then by the choice of q and that n↑ rn → 2rntn → n, we obtain

k

4r2ntnpi
↗ k

2rnnpi
↗ m

4drn
=

1

4d
r
ε
n,

and

⇀

( ⇐
k↼

rntnpi

)
↗ ⇀

(
3
⇐
k↼

n
k

2nq

)
= ⇀

(
6↼q⇐
k

)
↔ ⇀(0) = 1.
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Thus, as n ↔ ≃,

P



 sup
|x↓y|<ωn

1/2↔x<y↔3/2

|µ̃n(x)↑ µ̃n(y)| ↗ ↼



 → 4q exp(↑c2r
ε
n) = 4r1+ε

n exp(↑c2r
ε
n) ↔ 0.

So the tightness of µ̃n follows from the tightness criterion by Aldous (1978, Theorem 1).

Moreover, let $(X) denote the distribution of X. By Eberlein (1984, Lemma 2), we

have, for the total variation-type norm ⇔ · ⇔ defined in Eberlein (1984),

$
(
{M̃(i↓1)rn+1, . . . , M̃irn}

tn
i=1

)
↑ $

(
{M(i↓1)rn+1, . . . ,Mirn}

tn
i=1

)

=


tn

i=1

$
(
M(i↓1)rn+1, . . . ,Mirn

)
↑ $

(
{M(i↓1)rn+1, . . . ,Mirn}

tn
i=1

) → ⇁n(rn)tn ↔ 0,

by the absolutely regular assumption on the sequence, and Assumption A1. Thus, we

obtain that for i = 1, 2,

P



 sup
|x↓y|<ωn

1/2↔x<y↔3/2

∣∣µi,n(x)↑ µi,n(y)
∣∣ ↗ ↼



 ↔ 0. (S.9)

It remains to show that supx↗X |µ3,n(x)|
p↑↔ 0. Note that by the definition of tn, the

number of summands in µ3,n is bounded by 2rn.

E
(
sup
x↗X

∣∣µ3,n(x)
∣∣
)

→ E
(

1⇐
k

n↓d+1∑

i=2tnrn+1

(
1


Mi > 1↑ 3k

2n


+ P

(
Mi > 1↑ 3k

2n

)))

→ 4rn⇐
k
· 3k
2n

↔ 0,

by the assumption that rn
⇐
k/n ↔ 0 as n ↔ ≃. ↭

Proof. (Proof of Theorem 2.2) For some given d ↘ Z+, since Assumption 2.2 holds

for the pair (d, d+ 1), we have Assumption 2.1 holds for d+ 1, imply that !(d+ 1) = ϑ

and the result in Proposition 5.1 holds for d+ 1.

Note that for this specific pair (d, d + 1), we do not require Assumption 2.1 to hold

for d. Nevertheless, we also need a similar weak convergence result for
⇐
k
(
!̃n(x, d) ↑

!̃0,n(x, d)
)
. Clearly, the asymptotic variance is not necessary in the same form because

D
(d)(un) condition is no longer guaranteed. However, the conditions in Theorem 2.2

ensure that the asymptotic variance exists and the tightness of the process continues

to hold for d specified above. Following the same line of argument as in the proof of
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Proposition 5.1, we have

⇐
k
(
!̃n(x, d)↑ !̃0,n(x, d)

)

x↗X
↖

{
G(x)

}
x↗X

, n ↔ ≃, (S.10)

where G is a zero-mean continuous Gaussian process with covariance function given by

E
(
G(x)G(y)

)
= lim

n→↑

n

k

d↓1∑

t=0

P
(
U

max
2,d < 1↑ kx

n
< U1, U

max
t+2,t+d < 1↑ ky

n
< Ut+1

)

+ %2(x, y) + %2(y, x),

for x → y. Note that if Assumption A2 also holds for d, then %2(x, y) = 0 and G
d
= Wd,

where Wd is defined in Proposition 5.1. It is clear that

E
(
G

2(1)
)
= !(d) + 2%2(1, 1). (S.11)

The theorem can now be proved in the same manner as Theorem 2.1. Recall that

↽(•) := !(•) ↑ !( • + 1) and ↽̂n(•) = !̂n(•) ↑ !̂n( • + 1). By the similar arguments for

Parts (a)–(b) in Proof of Theorem 2.1, we have

⇐
k
(
↽̂n(d)↑ ↽(d)

)
=

⇐
k
(
!̃n(en, d)↑ !̃n(en, d+ 1)↑ ↽(d)

)

=
⇐
k
(
!̃n(en, d)↑ !̃0,n(en, d)

)
↑
⇐
k
(
!̃n(en, d+ 1)↑ !̃0,n(en, d+ 1)

)

+
⇐
k
(
!̃0,n(en, d)↑ !̃0,n(en, d+ 1)↑ ↽(d)

)

= ϖn(1, d)↑ ϖn(1, d+ 1)↑ ↽(d)ϖn(1, 1) + oP(1).

It su”ces to show that

ϖn(1, d)↑ ϖn(1, d+ 1)↑ ↽(d)ϖn(1, 1)
d↑↔ N

(
0,κ2(d)

)
. (S.12)

Define It = 1
{
U

max
t+1,t+d↓1 < 1↑ k/n < Ut

}
and Jt = 1

{
U

max
t+1,t+d < 1↑ k/n < Ut

}
, and

Kt = 1
{
Ut > 1↑ k/n

}
. We shall show that

1⇐
k

n↓d∑

i=1

((
It ↑ Jt ↑ ↽(d)Kt

)
↑ E

(
It ↑ Jt ↑ ↽(d)Kt

)) d↑↔ N
(
0,κ2(d)

)
.
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Note that

Var
(

1⇐
k

n↓d∑

t=1

(
It ↑ Jt ↑ ↽(d)Kt

))

=
1

k
Var

(
n↓d∑

t=1

It

)
+

1

k
Var

(
n↓d∑

t=1

Jt

)
+

↽
2(d)

k
Var

(
n↓d∑

t=1

Kt

)
↑ 2

k
Cov

(
n↓d∑

t=1

It,

n↓d∑

t=1

Jt

)

↑ 2↽(d)

k
Cov

(
n↓d∑

t=1

It,

n↓d∑

t=1

Kt

)
+

2↽(d)

k
Cov

(
n↓d∑

t=1

Jt,

n↓d∑

t=1

Kt

)

=
(
!(d) + 2%2(1, 1)

)
+ ϑ + ↽

2(d)
(
1 + 2%1(1, 1)

)
+ o(1)↑ 2

k
Cov

(
n↓d∑

t=1

It,

n↓d∑

t=1

Jt

)

↑ 2↽(d)

k
Cov

(
n↓d∑

t=1

It,

n↓d∑

t=1

Kt

)
+ 2↽(d)(ϑ + ↼1) + o(1), (S.13)

where we use (S.11), Var(Wd+1(1)) = ϑ, and (2/k) Cov
(∑n↓d

t=1 Jt,
∑n↓d

t=1 Kt

)
= ϑ+ ↼1 +

o(1), from the proof for Theorem 2.1. Next, we compute the two remaining covariance

terms. By strict stationarity, Lemma S.2, and Assumption A2 (with d replaced by d+1),

we have

1

k
Cov

(
n↓d∑

t=1

It,

n↓d∑

t=1

Jt

)

=
n

k
P
(
U

max
2,d+1 < 1↑ k

n
< U1

)
+

n

k

rn∑

t=1

P
(
U

max
2,d < 1↑ k

n
< U1, U

max
t+2,t+d+1 < 1↑ k

n
< Ut+1

)

+
n

k

rn∑

t=1

P
(
U

max
t+2,t+d < 1↑ k

n
< Ut+1, U

max
2,d+1 < 1↑ k

n
< U1

)
+ o(1)

= ϑ + ↼2 + o(1) + o(1). (S.14)

Similarly, we have

1

k
Cov

(
n↓d∑

t=1

It,

n↓d∑

t=1

Kt

)
=

n

k
P
(
U

max
2,d < 1↑ k

n
< U1

)
+

n

k

rn∑

t=1

P
(
U

max
2,d < 1↑ k

n
< U1, Ut+1 > 1↑ k

n

)

+
n

k

rn∑

t=1

P
(
U

max
t+2,t+d < 1↑ k

n
< Ut+1, U1 > 1↑ k

n

)
+ o(1)

= !(d) + ↼3 + ↼̃1 + o(1). (S.15)
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Combining (S.13)–(S.15) yields that

lim
n→↑

Var
(

1⇐
k

n↓d∑

t=1

(
It ↑ Jt ↑ ↽(d)Kt

))
= ↽

2(d)
(
2%1(1, 1)↑ 1

)

↑ 2↽(d)

(
↼̃1 ↑ ↼1 + ↼3 ↑

1

2

)
+ 2%2(1, 1)↑ 2↼2,

which is nothing but κ2(d). Finally, Condition (2) in Utev (1991) can be verified by the

same argument used for (S.4). Hence, (S.12) follows. ↭

We present two auxiliary lemmas used to derive the covariance structures of Wd in

Proposition 5.1, W̃ in Proposition 5.2, and G in the proof of Theorem 2.2.

Lemma S.1. Let x, y ↘ X . Define It(x) := 1
{
U

max
t+1,t+d↓1 < 1↑ kx/n < Ut

}
for i =

1, . . . , n↑ d+ 1. Assume that rnk/n = o(1).

(a) If Assumption A2 holds, then

rn∑

t=1

(n↑ t) Cov(I1(x), I1+t(x)) = o(k),
rn∑

t=d

(n↑ t) Cov(I1(x), I1+t(y)) = o(k).

(b) If Assumption A3 holds, then

lim
n→↑

1

k

rn∑

t=1

(n↑ t) Cov
(
1
{
U1 > 1↑ kx/n

}
,1

{
U1+t > 1↑ kx/n

})
= %1(x, x),

lim
n→↑

1

k

rn∑

t=1

(n↑ t) Cov
(
1
{
U1 > 1↑ kx/n

}
,1

{
U1+t > 1↑ ky/n

})
= %1(x, y).

(c) If Eq. (2.13) holds, then

lim
n→↑

1

k

rn∑

t=1

(n↑ t) Cov(I1(x), I1+t(x)) = %2(x, x),

lim
n→↑

1

k

rn∑

t=d

(n↑ t) Cov(I1(x), I1+t(y)) = %2(x, y).

Proof. Observe that the results in Parts (a)–(b) are both special cases of Part (c). For

Part (a), Assumption A2 implies that (2.13) holds and that %2(x, y) = 0 for x, y ↘ X .

Part (b) is a special case of Part (c) with d = 1. When d = 1, the function %2 in (2.13)

coincides with %1 in Assumption A3. We now present the proof of Part (c). Note that

supx↗X E
(
I1(x)

)
→ P

(
U1 > 1↑3k/(2n)

)
= O(k/n). By construction, E

(
I1(x)I1+t(x)

)
=
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0 for 1 → t → d↑ 1. Thus, by (2.13),

1

k

rn∑

t=1

(n↑ t) Cov
(
I1(x), I1+t(x)

)
=

1

k

rn∑

t=1

(n↑ t)

E(I1(x)I1+t(x))↑

(
E(I1(x))

)2

=
1

k

rn∑

t=d

(n↑ t)E(I1(x)I1+t(x))↑
(E(I1(x)))2

k

rn∑

t=1

(n↑ t)

↔ %2(x, x).

The other term can be proved similarly. ↭

Lemma S.2. For d1, d2 ↘ Z+
, let A ↘ ς

(
1
{
Uj > 1↑ k/n

}
, 1 → j → d1

)
and Bi ↘

ς
(
1
{
Uj > 1↑ k/n

}
, i → j → i + d2

)
for i = 1, 2, . . . , n ↑ d2. If (n/k)P(A) = O(1) and

∑n
i=rn

(
1↑ i/n

)
⇁n(i) = o(1), then

1

k

n↓d2↓1∑

i=rn

(n↑ i) Cov(A,Bi+1) = o(1). (S.16)

Proof. By the definition of ⇁n(·) in (2.9), we have that |Cov(A,Bi+1)| = |P(A↙Bi+1)↑

P(A)P(Bi+1)| = P(A)|P(Bi+1|A)↑ P(Bi+1)| → P(A)⇁n(i+ 1↑ d1). Thus,

1

k

n↓d2↓1∑

i=rn

(n↑ i)|Cov(A,Bi+1)| →
n

k
P(A)

n↓d2↓1∑

i=rn

(
1↑ i

n

)
⇁n(i+ 1↑ d1) = o(1).

This completes the proof. ↭

S2. ADDITIONAL VALIDATION FOR THE SIMULATIONS

We show how to compute ϑ and to validate D
(d)(un) using Theorem 5.1 in the main

manuscript for the example DGPs in Section 3, Table 1. We choose un such that nP(X >

un) = 1. The results for AR-C and ARCH model are provided in Propositions S.1 and S.2

below. For AR-N model, the asymptotic independence of multivariate normal random

variables indicates that εs = s, s ↗ 1. Thus, ϑ = !(s) = εs ↑ εs↓1 = 1 for any s ↗ 1, and

dL = 1. For Moving Maximum DGP, F (x) = exp(↑1/x), and for s ↗ 2,

εs = lim
n→↑

nP( max
1↔t↔s

Xt > un) = lim
n→↑

n

(
1↑ F

s+m→1
m (un)

)
=

s+m↑ 1

m
.



S12 J.-J. Cai et al.

We have !(s) = εs↑εs↓1 = 1/m, and thus D(d)(un) is satisfied for any d ↗ 2. We obtain

dL = 2 and ϑ = 1/m. Moreover, for the Max AR model, for s ↗ 2,

εs = lim
n→↑

nP
(
max
1↔t↔s

Xt > un

)
= lim

n→↑
n

(
1↑ P

(
φ1 → (1↑ -)un, max

2↔t↔s
φt → un

))

= s↑ s-+ -.

We have !(s) = εs ↑ εs↓1 = 1↑ -, and therefore, dL = 2 and ϑ = 1↑ -.

Proposition S.1. For the AR(1) model with Cauchy margin specified in Table 1,

(a) for - ↗ 0, εs = s↑ (s↑ 1)-, for s ↗ 2;

(b) for - < 0, ε2 = 2 and εs = s↑ (s↑ 1)|-|2 for s ↗ 3.

Proof. This result is easily derived by using the independence of (X1, φ2, . . . , φs). Let

vn be such that limn→↑ nP(φt > vn) = 1. Then vn = (1↑ |-|)un. For s ↗ 2, we have

εs = lim
n→↑

n P
(
X1 > un or . . . or Xs > un

)

= lim
n→↑

nP
(
X1 > un or . . . or -s↓1

X1 + -
s↓2

φ2 + · · ·+ φs > un

)

= lim
n→↑

nP
(
X1

un
> 1 or . . . or -s↓1X1

un
+ -

s↓2 φ2

un
+ · · ·+ φs

un
> 1

)

= lim
n→↑

nP
(
X1

un
> 1 or . . . or -s↓1X1

un
+ -

s↓2(1↑ |-|) φ2
vn

+ · · ·+ (1↑ |-|) φs
vn

> 1

)

= ϖ
{
(t1, . . . , ts) : t1 > 1 or . . . or -s↓1

t1 + -
s↓2(1↑ |-|)t2 + · · ·+ (1↑ |-|)ts > 1

}
,

where ϖ denotes the exponent measure of (X1, φ2, . . . , φs); see de Haan and Ferreira (2006,

Section 6.1.3) for the definition of exponent measure. The last convergence follows from

Theorem 6.1.11 in de Haan and Ferreira (2006) and the fact that the distribution of

(X1, φ2, . . . , φs) belongs to the max domain of attraction. Due to the exact independence

betweenX1 and the φt’s, and hence their asymptotic independence, the exponent measure

ϖ places mass only on the coordinate axes; that is, ϖ{(t1, . . . , ts) : ti > a1 and tj > a2} =

0, for any i ∝= j and positive a1, a2. Then, the result readily follows from the property

that ϖ{(t1, . . . , ts) :| ti |> a1} = 1/a1. ↭

Proposition S.2. An ARCH model specified in Table 1 does not satisfy the D
(d)(un)

condition for any finite d.

Proof. Let Mi,j = ↑≃ for i > j and Mi,j = maxi↔t↔j Xt for i → j. We apply Proposi-
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tion 6.2 of Ehlert et al. (2015) to show that for any finite d,

lim
n→↑

P(M2,d → un < Md+1,rn | X1 > un) > 0.

In this proof, all the cited equations are referred to the formulas in Ehlert et al. (2015).

Note that ARCH(1,1)model is a special case of the model considered in that paper, which

corresponds to ↽1 = ▷1 = 0 in the model given by relations (6.2) and (6.3) in that paper.

Therefore, ⇁(x) = ◁
1/2
1 |x|, for the ⇁ appeared in the limit of (6.14) in that paper. Let

W denote a random variable from Pareto distribution with parameter ◁ and (Zi)i≃1 are

i.i.d. standard normal random variables. Then by Proposition 6.2 of Ehlert et al. (2015),

lim
n→↑

P(M2,d → un < Md+1,rn | X1 > un)

↗ lim
n→↑

P(M2,d → un < Xd+1 | X1 > un)

= P



max
2↔i↔d

W

|Z0|
Zi

i↓1

j=0

⇁(Zj) → 1 <
W

|Z0|
Zd+1

d

j=0

⇁(Zj)





= P



W max
2↔i↔d

◁
i/2
1 Zi

i↓1

j=1

|Zj | → 1 < W◁
(d+1)/2
1 Zd+1

d

j=1

|Zj |





↗ P
(
W > ◁

↓(d+1)/2
1 , max

2↔i↔d
Zi → ↑1, Zd+1 > 1

)
= ◁

ϱ(d+1)/2
1 (&(↑1))d > 0,

where ◁1 ↘ (0, 1) (which equals 0.7 in our simulation example), ◁ > 0, and & is a

standard normal distribution function. ↭

S3. DETAILS OF THE BOOTSTRAP PROCEDURE AND ITS PERFORMANCE

We describe the block-type bootstrap scheme, originally proposed by Ferro and Segers

(2003), which forms the building blocks of the bootstrap used in Section 4. It consists of

two main steps.

Step A1 Construct cluster sets {Cj}Jj=1 and gap sets {Gj}J↓1
j=1 , where J is the number

of clusters.

(i) Suppose that we observe k exceedance times S1 < . . . < Sk. Form clusters by assigning

two consecutive exceedances Si and Si+1 to the same cluster whenever Si+1 ↑ Si < r,

for i = 1, . . . , k ↑ 1, where r > 0 is some threshold. If Si+1 ↑ Si ↗ r, then a new cluster

starts.

(ii) Suppose the jth cluster contains the exceedance times Saj , Saj+1, . . . , Sbj , where
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aj < bj are the first and last exceedance positions. The corresponding cluster and gap

are defined as

Cj =
{
XSaj

, XSaj+1, . . . , XSbj

}
, Gj =

{
XSbj

+1, . . . , XSaj+1↓1

}
.

Step A2 Resample cluster sets from {Cj}Jj=1 and gap sets from {Gj}J↓1
j=1 with replace-

ment. Arrange them consecutively until the length of the concatenated sequence reaches

the sample size n, and then truncate the sequence to length n.

Throughout, two tuning parameters are required: the number of excedeence k and the

length r that is used to define clusters. For bootstrapping the extremal index ϑ, Ferro and

Segers (2003) recommend using r = ⇒1/ϑ̂⇑ while we propose using r = d̂L, which can be

interpreted as the minimal block length to capture the extremal dependence. Our choice

is motivated by Conditions D(un) and D
(d)(un). Condition D(un) ensures that the two

blocks separated by at least rn observations are approximately independent. Meanwhile,

Condition D
(d)(un) implies

P
(
X

max
2,d → F

↓1(un) | X1 > F
↓1(un)

)
↑ P

(
X

max
2,rn → F

↓1(un) | X1 > F
↓1(un)

)
↔ 0,

or equivalently,

P
(
S2 ↑ S1 ↗ d | XS1 > F

↓1(un)
)
↑ P

(
S2 ↑ S1 ↗ rn | XS1 > F

↓1(un)
)
↔ 0,

which means that, under Condition D
(d)(un), a separation of d is asymptotically equiv-

alent to a separation of rn. Thus, using dL, i.e., the smallest d such that Condition

D
(d)(un) holds, is justified.

We compare the two choices by examining the empirical coverage rate and the em-

pirical length of the resulting confidence intervals. For an AR–C model, as described in

Section 3, with ϑ = 0.2 (dL = 2), the results are shown in Figure S.1. Our choice per-

forms comparably in terms of both empirical coverage and interval length, while relying

on a smaller r. As the sample size n increases, the empirical coverage improves and the

interval length decreases, as one would expect.

S4. ADDITIONAL EMPIRICAL RESULTS

This section documents the following: additional descriptive figures; details on the data-

driven selection of the local-dependence window; the construction of the marginal ex-
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Figure S.1. Top panel: comparison of the two bootstrap parameter choices, r = d̂L and r = →1/ω̂↑.
Bottom Panel: comparison across sample sizes, using r = d̂L in both cases. All results are based on 1000

Monte Carlo replications, each with 199 bootstrap samples.

ceedance probability together with additional comparative results for severity probabil-

ity; and a detailed resampling scheme for uncertainty quantification.

Figure S.2 displays the time series plots of Xt (summer apparent temperatures) for

Paris, Budapest, Munich, Rome, Barcelona, and Valencia over 1940–2025. All six cities

exhibit a pronounced upward shift in the upper tail between periods, consistent with the

patterns documented in the paper.

To determine the parameter d and assess Condition D
(d)(un), we apply the selection

rule in (2.19). Figure S.3 shows ↽̂n(s), s = 1, . . . , 4 over k/n ↘ [0.02, 0.08]. The common

pattern for Paris, Munich, Budapest, and Rome is clear: ↽̂n(1) (solid green line) lies

above 1/
⇐
k (dashed black line), while ↽̂n(s) for s = 2, 3, 4 lie below 1/

⇐
k, indicating

that d̂L = 2. For Barcelona and Valencia, though we observe ↽̂n(2) slightly above 1/
⇐
k

for large k/n, it is still well separated from ↽̂n(1). One may still conclude that d̂L = 2

for Barcelona and Valencia. Taken together, we conclude that D
(2)(un) holds for all

city–period pairs.
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Figure S.2. Time series Xt during summer days from 1940 to 2025. The two subsamples covering 1940–

1974 and 1991–2025 are shown as solid green lines, while observations in the intervening gap, denoted

by Xt(Gap), are plotted as a gray dotted line. The red dashed lines labeled T95 represent the 95th

percentiles within each subperiod, and the purple dots mark observations exceeding these respective

thresholds.

Accordingly, we estimate the conditional probability in S(T ) by 1↑ ϑ̂. For the marginal

exceedance probability PT in Section 4, it follows the standard approach in extreme value

theory. Let û = Xn↓k,n, and p̂û = k/n:

P̂T =






n
↓1

∑n
t=1 1{Xt > T }, T → û,

0, T ↗ x̂
⇐
,

p̂u

(
1 + 0̂

T ↓û
ς̂

)↓1/φ̂
, û < T < x̂

⇐
,

where 0̂, ς̂, and x̂
⇐ are obtained by maximum likelihood estimation under the generalized

Pareto fit. This yields a coherent P̂T at high levels even when empirical exceedances are

sparse.

Table S.1 compares our Ŝ(T ) with the empirical joint exceedance estimator Ŝemp(T ) =

(n↑ 1)↓1
∑n↓1

t=1 1
{
Xt > T , Xt+1 > T

}
. Recall that T fs

p denotes the p% percentile of the

full sample from 1940 to 2025. We see that Ŝemp is zero for many cities for T fs
99.9, while

Ŝ(T ) remains informative.

Finally, we now provide the details of the resampling procedure used in Section 4,

based on the bootstrap scheme described in Section S3. As discussed, we set r = d̂L.

Recall that the original sample from 1940 to 2025 is split into three subsamples: Period 1

(XP1), a middle gap period (Xgap), and Period 2 (XP2). The extremal indices ϑ̂P1, ϑ̂P2 are
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Figure S.3. ε̂n(s) for s = 1, . . . , 4, as defined in (2.12), over a range of k/n ↓ [0.02, 0.08] for Paris,

Munich, Budapest (Top two panels), and Rome, Barcelona, Valencia (Bottom two panels).

estimated from XP1 and XP2, respectively. For estimating the heatwave severity proba-

bility S(T ), the threshold T is taken as a quantile of the full sample (1940–2025). The

estimates ϑ̂P1, ϑ̂P2, as well as ’̂ := {0̂P1, 0̂P2, ûP1, ûP2, ς̂P1, ς̂P2} for the marginal proba-

bility P̂T will be used below in the bootstrap. For a given ratio k/n, in each bootstrap

iteration, we proceed as follows:

Step B1 Construct the bootstrap sample X⇐
P1 from XP1 using the bootstrap scheme

(Steps A1–A2) described in Section S3. Similarly, obtain the bootstrap samples X⇐
gap

from Xgap and X⇐
P2 from XP2, yielding three resampled segments.

Step B2 Re-estimate ϑ separately using X⇐
P1 and X⇐

P2, yielding bootstrap estimates ϑ⇐P1

and ϑ
⇐
P2, respectively.
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Table S.1. Estimates of the heatwave severity probability S(T ) across two periods P1 (1940–1974) and

P2 (1991–2025) for T = T fs
97 and T fs

99.9, where T fs
p denotes the p% percentile of the full sample from 1940

to 2025. For display purposes, the Ŝ and Ŝemp are multiplied by 102. The “Parameters” columns reports

the estimated extremal index ω̂ and the parameters from the GPD fit obtained by maximum likelihood,

namely ϑ̂, û, and ϖ̂, both using k/n = 5%.

T fs
97 T fs

99.9 Parameters

City T fs
97 Ŝ(P1, P2) Ŝemp(P1, P2) T fs

99.9 Ŝ(P1, P2) Ŝemp(P1, P2) ϑ̂(P1, P2) 0̂(P1, P2) û(P1, P2) ς̂(P1, P2)

London 28.37 0.99, 2.04 0.81, 2.02 33.75 0.046, 0.111 0.031, 0 0.45, 0.53 -0.15, -0.17 25.94, 28.02 2.58, 2.42

Paris 32.52 0.96, 1.93 0.68, 1.77 38.10 0.006, 0.105 0, 0.062 0.48, 0.58 -0.29, -0.38 30.10, 32.29 2.79, 3.27

Munich 31.93 1.10, 2.06 0.96, 2.05 36.14 0.068, 0.039 0.093, 0 0.48, 0.56 -0.12, -0.34 30.31, 31.79 1.96, 1.98

Budapest 34.51 0.68, 2.95 0.34, 3.14 37.69 0.010, 0.111 0, 0.031 0.52, 0.48 -0.30, -0.28 32.49, 34.76 1.92, 1.41

Milan 36.84 0.39, 3.70 0.22, 4.13 40.43 0.002, 0.206 0, 0.062 0.46, 0.40 -0.17, -0.21 34.45, 37.25 1.46, 1.55

Rome 37.08 0.18, 4.37 0.09, 4.47 40.09 0.001, 0.178 0, 0.031 0.44, 0.36 -0.21, -0.23 34.32, 37.48 1.33, 1.23

Barcelona 33.49 0.08, 3.35 0, 3.82 36.81 0, 0.146 0, 0.155 0.46, 0.48 -0.26, -0.12 30.86, 33.81 1.13, 1.23

Valencia 36.27 0.17, 2.49 0.12, 2.45 39.53 0.002, 0.967 0, 0 0.65, 0.57 -0.12, -0.06 33.63, 36.50 1.30, 1.07

Athens 37.32 0.96, 2.45 0.96, 2.36 41.39 0.020, 0.687 0.031, 0 0.43, 0.45 -0.10, -0.19 35.85, 37.13 1.42, 1.61

Step B3 Re-estimate marginal tail parameters, obtaining ’̂⇐

Step B4 Compute the bootstrap counterpart T ⇐ of the full-sample threshold T by

taking the corresponding percentile of the full bootstrap dataset {X⇐
P1,X⇐

gap,X⇐
P2}. Using

ϑ
⇐
P1, ϑ

⇐
P2, and ’̂⇐ from the previous steps, obtain a bootstrap estimate Ŝ

⇐(T ⇐).

For proper standardization, the confidence intervals for S(T ) are constructed by boot-

strapping logS(T ) and then transforming back to the original scale. We refer to Theorem

4.4.7 in de Haan and Ferreira (2006) for intuition. By repeating Steps B1–B4 B times,

we obtain confidence intervals for ϑ for each city, as shown in Figure S.4, and confidence

intervals for S(T ), as displayed in the bottom panel of Figure 4. For a wide range of

choices of k/n, the estimates ϑ̂ ↘ (0.4, 0.8) support the presence of extremal serial depen-

dence. The confidence intervals overlap across periods for all cities, providing no clear

evidence of changes in extremal serial dependence. Note that the top panel of Figure 4

only displays the case of k/n = 0.05.
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