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Summary  We propose a nonparametric framework for estimating the extremal
index that captures the persistence of extreme observations. The framework provides
unified and simple procedures for verifying the well-known local dependence condition
D(d>(un), which characterizes the extremal index yet is often assessed through heuris-
tic checks, and for selecting d (a key parameter for estimation) when the condition
holds. Under a general ¢-mixing condition, we establish the asymptotic normality of
the proposed estimator and prove the consistency of both the tuning parameter selec-
tion and the verification procedure for the D (u,,) condition. Simulation studies show
improved performance relative to two commonly used methods in terms of empirical
mean squared errors. We analyze summer apparent temperature data for nine European
cities from 1940 to 2025. The results show strong evidence of persistence in extreme
temperatures for all cities, with such extremes typically lasting at least two days. The
probability of two-day extreme-temperature events is two to four times higher in the

most recent three decades relative to 1940-1974.

Keywords: FEztremal index, extremal serial dependence, nonparametric, heatwaves.

1. INTRODUCTION

Heatwaves can have severe impacts on human health, infrastructure, and economic ac-
tivity, making their modeling and prediction a matter of scientific and policy interest.

Definitions often combine local high-temperature thresholds with a minimum duration,

LAn earlier version of this paper, focusing primarily on the methodological aspects, was circulated

under the title “Statistical inference on D(%) (uy,,) condition and estimation of the extremal index.”
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typically two or more consecutive days.? From a statistical perspective, estimating heat-
wave occurrence probabilities is challenging due to scarce tail observations and the need
for a dependence notion suited to extremes.

We propose a nonparametric approach to estimate the probability of severe heatwaves,
using extreme value theory that accounts for persistence in extremes. Our framework cen-
ters around the so-called D% (u,,) condition (Chernick et al., 1991), a local dependence
condition which restricts the occurrence of multiple exceedances above a high threshold
(up) to lie within a time window (d) and thereby captures the dependence structure
of extreme events. In particular, we propose a procedure that unifies the validation of
the D(®(u,,) condition, the data-driven selection for the time-window parameter d when
the condition holds, and nonparametric estimation of the extremal index 6 (Leadbetter,
1983). We show empirical evidence that daily summer temperature extremes satisfy the
D(z)(un) condition, yielding a simple estimator of the heatwave probability.

Several key theoretical results are established. In particular, we show that under the
D@ (u,,) condition, the minimal value exists at which a distinct switching behavior arises
in the asymptotic order of the extremal index estimator: the order changes at this value
while remaining identical both below and above it. We exploit this dichotomous pattern,
reminiscent of the classical 1(0)/I(1) distinction in trend analysis (e.g., Canjels and Wat-
son, 1997; Harvey et al., 2007; Perron and Yabu, 2009), to jointly validate the D) (tn)
condition and select d, and we establish consistency of both procedures together with
asymptotic normality of the estimator under a flexible ¢-mixing condition for strictly
stationary time series. Simulation results support the theoretical findings.

We adopt the framework to investigate extreme summer apparent temperatures for
nine European cities. Comparing an early period (1940-1974) with a recent one (1991—
2025), we document that extreme temperatures have become substantially higher, which
is in line with the Intergovernmental Panel on Climate Change’s findings on global warm-
ing in Europe (IPCC, 2021). Furthermore, we find statistically significant evidence for
both periods that temperature extremes exhibit persistence, typically lasting at least

two days when they occur. On the other hand, we do not find evidence that the per-

2The World Health Organization, for instance, adopts a minimum duration of two days in its
Heat—Health Action Plan (Matthies, 2008). Definitions used by national meteorological institutes usually

range from three to six days, see European Centre for Medium-Range Weather Forecasts (2023).
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sistence levels differ across the two periods. Under the D(®(u,,) condition, which holds
for all periods and cities, we estimate heatwave severity as the probability that extreme
temperatures persist for at least two consecutive days. We find statistically significant
increases for all cities in 1991-2025 relative to 1940-1974, which are driven mainly by

changes in marginal exceedance probabilities.

Our work relates to two strands of literature. First, changes in heatwave occurrence
attributable to anthropogenic climate change have been widely studied in the extreme
event attribution literature in climate science, initiated by Stott et al. (2004). Most ex-
isting statistical approaches to heatwave attribution rely on univariate extreme value
models, applied either to daily temperatures or to temporally aggregated indices such
as block maxima or rolling multi-day averages (e.g., Naveau et al., 2020; Vautard et al.,
2020). Aggregation provides a pragmatic way to reflect duration, but it compresses the
temporal structure of extreme events into a single scalar quantity and does not explic-
itly model tail persistence. Although we do not make causal claims in this paper, our
heatwave severity estimator can be readily incorporated into attribution studies. More
closely related are the hierarchical model by Reich et al. (2014) and the Markov-switching
model for heatwaves by Shaby et al. (2016). While flexible, both of these Bayesian frame-
works are fully parametric and computationally intensive. In contrast, our framework is

nonparametric and straightforward to implement.

The second strand of literature we relate to is the statistical literature on dependence
in time series extremes. The D(? (u,) condition underpins a substantial body of work
(see, e.g., Ferreira and Ferreira, 2018; Holesovsky and Fusek, 2020), yet its verification
commonly relies only on diagnostic plots proposed by Siiveges (2007) and Ferreira and
Ferreira (2018) that lack theoretical justification. Regarding the estimation of the non-
parametric estimation of the extremal index 6, the work most closely related to ours
is Hsing (1993), where asymptotic results are obtained under the assumptions that the
window parameter d is known and that the data generating process is m-dependent. Both
requirements are more restrictive than those imposed in our framework. Similarly to the
verification of the D% (u,) condition, Holesovsky and Fusek (2025) propose graphical
diagnostics and several tests building on Siiveges and Davison (2010) for the censored
estimator of 6, which differs from our nonparametric formulation. A related strand of

literature studies extremal index estimation without imposing the D(% (u,,) condition.



4 J.-J. Cai et al.

Classical approaches include the blocks and runs estimators (Smith and Weissman, 1994;
Weissman and Novak, 1998). Their asymptotic approximation is developed under a de-
terministic threshold u,,, which implicitly assumes knowledge of the unknown stationary
distribution (Robert, 2009). In contrast, our thresholds are data-dependent and therefore
random, which renders the theoretical analysis considerably more involved, as uniform
convergence results are required to accommodate threshold randomness. Further ap-
proaches include the inter-exceedance times estimator of Ferro and Segers (2003), the
(pseudo) maximum likelihood estimators studied in Northrop (2015) and Berghaus and
Biicher (2018), and the recent moment estimators developed by Biicher and Jennessen
(2020). We find in our extensive simulations that our estimator, which explicitly ex-
ploits the D(d)(un) condition, outperforms the widely used inter-exceedance times and
maximum likelihood estimators in terms of empirical mean squared errors.

The rest of the paper is organized as follows. Section 2 introduces the proposed non-
parametric framework and its associated asymptotic theory. Simulation results are re-
ported in Section 3, and Section 4 examines the persistence of extreme summer temper-
atures across nine European cities. Section 5 concludes. The main proofs are collected
in the Appendix, while additional proofs and supplementary simulation and empirical
results are provided in Online Supplement. All code used for the simulation study and

empirical application is available at https://github.com/ohhwangch/persistence_ts.

2. THE NONPARAMETRIC FRAMEWORK

Let {Xy, t € Z} be a strictly stationary sequence of random variables with a continuous
marginal distribution function F'. Whenever no confusion arises, we write {X;} to denote
{X:,t € Z}. We observe a subset of this sequence with sample size n € ZT. In our
empirical application, the data {Xi,...,X,} correspond to daily maximum apparent
temperatures during summer seasons. Since the persistence level of extreme events can
have severe consequences, for instance in the climate system, it is important to assess
the strength of extremal serial dependence in {X;}, which is the aim of this paper.

To this end, we define Uy = F(X;), which maps the marginal distribution to the
standard uniform distribution on [0, 1]. This standardization isolates the extremal se-
rial dependence structure in the sequence, as the marginal distribution F itself carries

no information about extremal temporal dependence. That is, the two processes {X;}


https://github.com/ohhwangch/persistence_ts
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and {U;} share the same extremal serial dependence structure. We say that {X;} (or

equivalently {U;}) has an extremal index 6 € (0, 1], if

lim P ( max U; <1 - u) =e 0, u >0, (2.1)

n—oo \1<t<n n
see, for instance, Leadbetter (1983). Clearly, when there is no extremal serial dependence
in {X;}, the left-hand side of (2.1) reduces to limnﬁoo]P’(maxlgtSn U <1-— u/n) =
lim,, o0 (1 —u/n)" = e . Accordingly, § = 1 characterizes the case of no extremal
serial dependence, with smaller values of 6 reflecting stronger dependence.

However, the existence of the extremal index € is not immediate. To guarantee its
existence, the literature commonly imposes the following two “mixing” conditions on
the dependence structure of the sequence (see, e.g., Leadbetter et al., 1983; Smith and

Weissman, 1994). These conditions underpin our approach.

Condition D(u,)  Let {u,} be a sequence of constants. For any integers 1 < i; <
S <ig < g1 < -+ < Jg < nsuch that j; —i, > 1 > 1, the following condition is assumed
to hold:

IP’( max U;, < up, max Uj, < un)
1<t<gq 1<t<q’

—IF’( max U, < un) IP( max Uj;, < un> <ap;, (22)
q

1<t< 1<t<q’

where lim,,_, o @y, = 0 for some sequence I, = o(n) and I,, — oo.

Condition D(u,,) is reminiscent of the common a-mixing condition (see, e.g., Davidson,
1994, Chapter 14) and describes the long-range dependence of extremes. This condition is
mild and widely used, and it is implied by several other mixing assumptions, for instance
by the uniform mixing property introduced in Section 2.1 below. Next, we present the

second key condition, often referred to as the local dependence condition.

Condition DY (u,)  For a,,, specified in the D(u,) condition, there exists a
sequence of integers r, such that r, — oo, with nay,,, /r, — 0 and l,/r, — 0 as

n — 0o. Moreover, for a positive integer d > 1,

lim nIP’(Ul >y > URS, Umes un) —0, (2.3)
n—o00 ’ o
where Ui’,njaX = —oo for ¢ > j and U{”}a" = max;<i<; U for ¢ < j.

Intuitively, D(® (u,,) limits the local occurrence of multiple exceedances over a thresh-
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old, thereby constraining the dependence among extremes; the extremes separated by a
gap of d steps are approximately independent. We shall discuss a formal approach for ver-
ifying this local dependence condition in Section 2.3. The following lemma, adapted from
Chernick et al. (1991, Corollary 1.3), provides the necessary and sufficient conditions for

the existence of an extremal index 6 for {X;} under Conditions D(u,) and D® (u,,).

LEMMA 2.1. (EXISTENCE OF 0) Let {X;} be a strictly stationary sequence of random
variables such that for some d > 1 the conditions D(uy) and D®(u,) hold for u, =
un(u) =1 —u/n for allu > 0. Then the extremal index of {X:} exists and is equal to 6
if and only if

lim IP’(U;‘;X < u, ‘ U > un) =0, Yu > 0. (2.4)

n—oo

The condition (2.4) further illustrates the role of 6. For example, setting d = 2 and § = 1
in (2.4) implies that, conditional on U; exceeding a high threshold u,,, the probability
that the subsequent variable U, also exceeds the same threshold is approximately zero.
Hence, the extremal behavior can be regarded as independent.

It is important to note that the value of d satisfying both (2.3) and (2.4) is not unique.
First, observe that if the D(® (u,,) condition holds, then D(*)(u,,) also holds for any finite

s > d. Indeed, given (2.3), we have, as n — o0,
n]P’(Ul > Uy > Ugrf’sax, S‘T{frn > un) < nIP’(Ul > Uy > U;ljx, gffm > un) — 0.
Second, for d € Z*, if the limit of IP’(UQI?;}X < U, ’ U, > un) exists, we denote it by

A(d) == lim P(UPF* < up | Uy > uy). (2.5)

n—oo
Lemma 2.1 implies that A(s) = 6 for all s > d. Since the choice of d is not unique, we

assume for now that there exists a minimal value d;, such that
dp =min{d € Z* : A(d) =6}. (2.6)

Then any estimator of A(d) with d > dy, can be used as an estimator of §. We establish
the conditions that ensure the existence of dy, in Theorem 5.1 in Appendix A. Without
loss of generality, we assume throughout the paper that there also exists an upper bound
dy > dy, such that A(d) exists for all d < dy.

The remainder of this section proceeds as follows. First, under the D(®(u,,) condition

for some d (the D(u,) is imposed throughout), we propose a nonparametric estimator
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of A(d) and establish its asymptotic properties. Building upon these results, we show
that the first difference of the estimator of A(d) exhibits a change in asymptotic order at
d = d, under the D® (u,,) condition. By exploiting this property, we construct a selector
of dy,. If such a change in asymptotic order is not observed, then the D(%) (up,) condition

can be considered violated, which provides a way to validate Condition D(® (u,,).

2.1. Nonparametric estimation of A(d)

We first approximate A(d) in (2.5) by taking u, = u,(k) = 1 — k/n, where k = k(n)
is an intermediate sequence satisfying k — oo and n/k — oo as n — oco. Since P(U; >

un) = k/n, an approximation of A(d) can be obtained as follows:
n—d+1
n max k n 1 max k
A(d) = kP(Uz,s <l--< Ul) ~o > ]1{ Hlera S1- - < Ut}

1 n—d+1 k
=% ]1{ trﬂlral)ft+d—1§F1(1n) <Xt},
(2.7)

where X% = max;<;<; X, and 1{-} denotes an indicator function. The quantity on the
right-hand side above is not yet an estimator, as it depends on the unknown marginal
cumulative distribution function (CDF) F, which can be naturally estimated via the
empirical CDF. This leads to our estimator of A(d) given by

n—d+1
A 1 max
An(d) = E Z ]l{Xt—i-l,t-O-d—l § Xn—k,n < Xt}v (28)
t=1

where X1, < X5, < ... < X, , denote the order statistics of the sample. It is worth
highlighting a key distinction: (2.7) uses a deterministic threshold F~1(1 — k/n), while
(2.8) relies on the random threshold X,,_, ,, which introduces additional complications
in the proofs as discussed later.

In what follows, An(d) is used as an estimator of the persistence level § for extreme
observations. However, as previously discussed, any estimator of A(d) with d > dj, can be
used to estimate 6. Before developing a selector of dy, we first establish the asymptotic
properties of An(d). Our theory builds on a ¢-mixing condition that characterizes the

extremal dependence structure of the process {U.}, or equivalently {X,}. Let H; =
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O’(]l{Ut >1—k/n}l<t< s) and define the uniform mixing coefficient

on(l) = max sup |P(B | A) — P(B)|. (2.9)

521 AeH;,BEHT, P(A)>0

We now introduce the required assumptions.

ASSUMPTION 2.1. Let z,y € [1/2,3/2] be some constants.

A1 There exist positive sequences 1y, and l, such that r, — oo, r,/n — 0, I, /r, — 0,

and n¢n(lp)/rn — 0, as n — 0.

A2 For ry, satisfying Condition Al,

N max kx ky\
am S (o <12 <o - ) 2
t=d+1
A3 For ry, satisfying Condition Al,
f niPU>1 M 1M Ai(z,y) € [0,00)
m — _ AL . ~
n—oo k 1 n sy Y+l n 1(z,y , ,

t=1
S koo ax k
nh—>n'oloktZ;P<U1 >1— = UfiSa <1-— < Ut+1> =\ € [0,00).
A4 Forj=d and j=d—1, there exist constants £; > 0 and p > 0 such that ast — 0,

CIP(UEE > 1) — 4 = O(1). (2.10)

Note that Assumption Al implies Condition D(u,) and also ensures the absolute reg-
ularity of the sequence; see Bradley (2005). This assumption arises from the use of the
common Bernstein blocking technique in the time series literature to establish a central
limit theorem (see, e.g., Davidson, 1994, Chapter 24.5). Assumption A2 is a strengthened
version of D(®(u,,), with a similar assumption found in Chernick et al. (1991, Eq. (1.2)).
When d = 1, Assumption A2 reduces to the so-called D’(u,) condition in Leadbet-
ter et al. (1983, Chapter 3), which implies § = 1, and when d = 2, it coincides with
the D”(uy,) condition in Leadbetter and Nandagopalan (1989). Assumption A3 imposes
technical conditions on the tail dependence structure of (Xi,..., X, ) for deriving the
asymptotic long-run variance of A,, (d). In practice, both limiting quantities in A3 can be
estimated by substituting the probabilities with their empirical counterparts. Assump-
tion A4 ensures the existence of 6 (see (A.2) in Appendix A) and removes the asymptotic
bias of the estimator.

Theorem 2.1 below establishes the asymptotic normality of An(d) for any d € Z™T.
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THEOREM 2.1. Suppose that Y (1 —t/n) dn(t) = o(1), r, k/n = o(1), and that k =

o (n?0/P+1) | Under Assumption 2.1,
Vi (A (d) — 0) -5 N(0,02),  n— oo, (2.11)

for any d € ZF, where 0 = 0(1 — 2X\1) + 62(2A1(1,1) — 1).

Building on Theorem 2.1, we construct a consistent selector of d;, in the following sec-
tion, which subsequently leads to our final estimator of the extremal index 6; see (2.21)
below. It is worth highlighting that Hsing (1993) derives a related result under the more
restrictive assumption of m-dependence (and assuming dj, is known), whereas we work
under a general mixing condition. Weissman and Novak (1998) establish the asymptotic
normality of the runs and blocks estimators using a deterministic threshold, namely
F~Y(1—k/n), rather than the data-dependent threshold X, ,, considered here, as seen
by the contrast between (2.7) and (2.8). Employing F~1(1—k/n) substantially simplifies
the proofs, as it uses additional unknown information in F', whereas deriving asymptotic
results under a data-dependent threshold requires us to derive some uniform convergence

results; see Proposition 5.1-5.2 in Appendix A.

2.2. Determination of the lower bound dj,

Estimating A(d) for d > dj, necessitates selecting an appropriate value of d,. We exploit
the properties of A(:) to estimate the minimal value dj, such that A(d) = 6 for d €
[dr,dy], as defined in (2.6). By construction, the function d — A(d) is non-increasing.
Then it is immediate that A(d) > 6 for 1 < d < dr, and A(d) = 6 for d € [dr,dy]. This
dichotomy provides a straightforward approach to select dy,. Let d(+) := A(+) — A(++1)
be a difference operator. Then §(dr, —1) > 0 and §(d) = 0—0 = 0 for any d, < d < dy —1.

We can select dj, once 6(+) can be estimated. Following the plug-in principle, we define

Bu(+) = Ap(+) = An(-+1), (2.12)

where A, (+) is provided in (2.8). Next, we examine the asymptotic behavior of 4, (d)
for a given d > 1. To this end, we employ techniques similar to those used in the proof
of Theorem 2.1, and therefore require that the conditions of Theorem 2.1, or analogous

ones, hold for both d and d + 1.
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ASSUMPTION 2.2. For somed € Z™, the following conditions are assumed to hold jointly
for the pair (d,d +1).

B1 Assumption A4 holds for j = d, and for x,y € [1/2,3/2], there exist nonnegative

constants Aa(x,y), e, ;\1, and A3 such that the following limits exist:

nhHH;O % t;ﬂP(Ué’f;X <1- l%z: <Up, U4 a-1 <1-— k?‘z/ < Ut> = Ao(z,y), (2.13)
lim = i P(U;njx <1-Fou, U g < 1— LI Ut> = o, (2.14)
n—oo k Ml ' n ’ n
lim niP<U1>1—k max <1-k_y 1) — (2.15)
noyoo k o TL’ +2,t+d n + ’
lim — Z P(U;;X<1—k<U1,Ut>1—k> = A3 (2.16)
n—oo k ’ n n

t=d+1

B2 Assumption 2.1 also holds when d is replaced by d + 1.

For a given pair (d,d + 1) that satisfies Assumption 2.2, we immediately obtain that
the result of Theorem 2.1 holds with d replaced by d + 1, owing to Assumption B2.
Meanwhile, Assumption B1 ensures the existence of the asymptotic long-run variance for
this given d by constraining the probabilities of threshold exceedances, in the spirit of
Condition D(®) (un ), thereby yielding an asymptotic approximation. Taken together, these
two assumptions imply the following limiting distribution of 8, (d), which is subsequently

used to establish the consistency of our selection of dy,.
THEOREM 2.2. For some d € ZT, if Assumption 2.2 holds for the pair (d,d + 1), then
Vi (5,(d) = 8(d)) 5 N (0,£2(d)), 1 — oo,
where K2(d) = 62(d)[2A1(1,1) — 1] — 26(d) (A — M1 + A3 — 1/2) + 2A(1,1) — 2)s.
Building on Theorem 2.2, we immediately obtain that for any d > dj such that the
pair (d,d+ 1) satisfies Assumption 2.2, the limiting distribution in Theorem 2.2 becomes

degenerate. This observation underlies the construction of our selector for dy,, which will

be formalized later.

COROLLARY 2.1. Suppose Assumption 2.2 holds for the pair (d,d + 1) for some d >
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dp > 1, and Assumption A2 holds with d replaced by dy,. Then we have
Vk b, (d) = op(1). (2.17)

If d, > 2 and Assumption 2.2 holds for the pair (dr, — 1,dy,), then
1

bn(dy —1)=6(dp — 1) + op(ﬁ), (2.18)

where 6(dr, — 1) > 0.

The proof of Corollary 2.1 is straightforward. For d > dr, §(d) = 0 as noted earlier. If
Assumption A2 holds with d replaced by dy, then A3(1,1) = 0 and Ay = 0, implying
k2(d) = 0, hence (2.17). Eq. (2.18) follows directly from Theorem 2.2 and the definition
of dy, in (2.6).

In view of Corollary 2.1, Sn(d) exhibits a change in asymptotic order at d = d.
Specifically, we have 6, (d) = op(k~/2) for d > dy, and 6,(d) = Op(1) for d = d, — 1.
This is similar to the unit root literature, where the asymptotic orders of estimators,
such as trend coefficient estimators in regression models, differ depending on whether
the error process is I(0) or I(1) (see, e.g., Harvey et al., 2007; Perron and Yabu, 2009).
Exploiting this change in asymptotic orders, we propose the following selector for dj,

based on the intermediate sequence k:

. . 1
— mi + .
dL(k)—mm{dGZ .d;r;z%%Uén(s) < \/E}

If the assumptions in Corollary 2.1 hold, the consistency of dr, (k) follows.

(2.19)

PROPOSITION 2.1. Let dy > dr. Suppose the conditions of Corollary 2.1 hold, then

lim P(dy (k) =d) = 1. (2.20)

n— oo

where dp (k) is defined in (2.19).

Substituting d;, = dy, (k) into (2.8) gives our final estimator 6, = 6, (d.) of 6, where
TL*dAL+1

N (I A 7 1 max
0u(de) = An(de) = 7 ) n{ S Xk < Xt}. (2.21)
t=1

Given the consistency of d L, it follows that 0,, ((f 1) preserves the asymptotic normality
established in Theorem 2.1 with d = d..

A remark on practical implementation is in order. Two parameters, k& and dy, must
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be specified in advance when computing dy,(k) in (2.19). The parameter dy defines the
upper bound of the search range, and its specific choice is not sensitive to the procedure,
as dy, is typically small in empirical applications. Regarding the parameter k, different
values may be used for selecting d (k) and for estimating én, respectively. In practice, we
recommend first selecting d;, and then substituting its estimate into (2.21). The optimal
choice of k£ depends on the convergence rate of the underlying model; nevertheless, our
simulation study below shows that the proposed procedure performs robustly over a

broad range of k values.

2.3. The verification of Condition DD (u,,)

Corollary 2.1 also suggests a way to conduct inference for validating the D(®) (up) con-
dition. This condition is fundamental not only to our estimation of the persistence pa-
rameter 6, but also to several existing methods in the literature. For instance, Siiveges
(2007) studies a likelihood-based estimator of # under Condition D) (u,,). Ferreira and
Ferreira (2018) propose an estimator of § by linking a stationary sequence satisfying Con-
dition D(? (u,,) to a regenerative process satisfying Conditions D™ (u,,) or D@ (u,).
Finally, Holesovsky and Fusek (2020) consider an estimator of 6 based on censoring
inter-exceedance times under Condition D® (u,,). In view of (2.17), for any given inte-

ger do > 1, Condition D(do)(un) can easily be validated by checking whether

A 1
0n(d —. 2.22
doISndaSXdU ( ) < \/E ( )
This procedure is consistent in the following sense: if Condition D(%)(w,,) holds, then
(2.22) will hold with probability tending to one. If Condition D{@) (w,,) is violated, two
scenarios may arise. First, d exists but d;, > dp, in which case Condition D(dL)(un)

holds; then, by (2.18), we have
Vi max  6,(d) > VEd,(dp — 1) > 1, n — oo.

Thus, the procedure remains consistent under this scenario. In this case, one proceeds to
check dy + 1, and so on. The second scenario arises when Condition D(®) (uy,) fails for all
d € Z*. In this case, the assumptions required for Corollary 2.1 are no longer satisfied,

implying that all existing methods relying on Condition D% (up,) are not applicable.
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Table 1: Simulation DGPs and their corresponding theoretical properties

Model DGP Parameter 6 dr,

AR-N Xi=o0Xia+e, t>1, Xo~N(0,1/(1-0%), o <1 1 1
o K A0

Moving Maxima Xy = maxo<i<m €4i, t > 1, m>2 1/m 2

e KB, Fo(z) = P < 2) = exp (— 1/(ma))
Max AR Xy =max{oX; 1,6}, t>2, X1 =¢/(1—0), 0e[0,1) 1-0 2

ii.d.

e "5, Fu(a) = Ple < 7) = exp(~1/a)

AR-C Xt = 0X—1 + €, t > 1, Xg ~ Cauchy(0, 1), lo| <1 1—pifo>0 2ifp>0
€ g Cauchy (0,1 — |o|) 1-0%ifp<0 3ifp<0

ARCH X, = (2x 1075 +0.7x2 ) e, £ > 1, — 0.721 not exist
& "N (0,1)

We further examine the finite sample performance of the procedure above under both

scenarios in the simulation study.

3. SIMULATIONS

We first evaluate the finite sample performance of the procedure for verifying Condition
D@ (u,,) in Section 2.3, and then assess the performance of our estimator 6,,(dy) in (2.21)
using empirical mean squared errors (MSE). The data-generating processes (DGPs) and
their corresponding properties are summarized in Table 1. Derivations of these theoretical
properties are provided in Online Appendix S2.

Given the DGPs in Table 1, we further distinguish several cases based on the parame-
ter settings used in the simulations. Setting ¢ = 0 in the AR-N model yields the IID case.
For the AR-N and MAX-AR models, we set o = 0.5, and for the Moving Maxima model
we take m = 3. For the AR-C model, we use ¢ = —0.5. We note that the marginal distri-
butions of the DGPs do not affect the simulation results. Any continuous transformation
that alters the marginal distribution, and thereby changes the max-domain of attraction,
leaves the outcomes unchanged. Throughout, we fix the sample size at n = 5000 and
dy = 10, and all reported results are based on 1000 Monte Carlo repetitions.

Table 2 reports the empirical acceptance rates obtained by applying the verification
procedure in Section 2.3. Specifically, we sequentially verify whether D(40)(,,) holds for
do = 1,2,3. If (2.22) is satisfied for a given dy, we say that D(%)(u,) is accepted. For
the IID and AR-N models, D(do)(un) holds theoretically for all three values of dg, since
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Table 2: Empirical acceptance rate (in percent) for condition D(40) (u,).

k =50 k =100
Model dr, dy=1 dp=2 dp=3 dpo=1 do=2 dop=3
11D 1 100 100 100 100 100 100
AR-N 1 56 100 100 2.5 99.8 100
Moving Maxima 2 0 100 100 0 100 100
MAX-AR 2 0 100 100 0 100 100
AR-C 3 3.5 3.6 100 0 0 100
Transformed AR-C 3 4.5 4.9 100 0 0 100
ARCH not exist 16 99.1 100 0.4 91.6 100

the minimal theoretical value is d;, = 1. The procedure performs well for the IID case,
whereas for the AR-N model it often fails when dg = 1: the failure rates are 44% for
k = 50 and 97.5% for k = 100. However, for dg = 2 and 3, the failure rate is (nearly)
zero for both choices of k. For the Moving Maxima and MAX-AR models, the procedure
reaches optimal accuracy: it correctly fails to support dy = 1 and succeeds when dy > 2.
For the AR-C model, since the transformation keep the extremal dependence structure
unchanged, the procedure performs optimally for & = 100 for both versions, and the
failure rates remain below 5% for k¥ = 50. Finally, for the ARCH model, which does
not satisfy D(®(u,,) for any finite d (see Proposition S.2 in the supplement), and for
which all existing methods relying on D(¥ (u,,) therefore break down, we observe that
D® (u,) and D® (u,) are frequently accepted for both choices of k. This is mainly due
to the somewhat limited sample size. For example, when n = 50,000 and k/n = 0.1, the
acceptance rate is zero for dg = 1,...,9 in simulation results not reported here.

Next, we evaluate the performance of 9n(ci 1), using the same threshold k for construct-

int

ing dr,. For comparison, we include two benchmark estimators: ),

, the interval estimator
of Ferro and Segers (2003, p. 549), and éE’Sl, the sliding-block pseudo—maximum likeli-
hood estimator of Berghaus and Biicher (2018, p. 2314). The block length for 05 is set
to n/k. The results are displayed in Figure 1. The sharp increase in the empirical MSE
of our estimator 6, (dy) for the IID model occurs because dy (k) tends to overestimate
the true d;, when k is relatively large. This issue can be largely mitigated by a two-step

procedure: first estimate dj, using a smaller k, and then use this estimate as an input for

estimating 6 without relying on the same k in both steps. For the other four models that
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Figure 1: Empirical MSE of three estimators across six models, where ,(dy) is defined in (2.21),
éinnt denotes the interval estimator of Ferro and Segers (2003, p. 549) and éE’Sl is the pseudo maximum

likelihood estimators based on the sliding blocks proposed by Berghaus and Biicher (2018, p. 2314).

satisfy D(d)(un) condition, our estimator outperforms the two alternatives, as it has the
smallest MSE over a sufficiently wide range of k.

Even for the ARCH model, the minimum MSE of our estimator remains smaller than
that of the other two methods. For the ARCH model, we remark that 6 can be well
estimated by the runs estimator A, (r,,), where A, () is given in (2.8) and 7, denotes a
block length. Our procedure produces an estimator dy, such that the difference between
AH(JL) and An(dU) is very small. Therefore, in finite samples, dr can be used as a

data-driven method for selecting the block length r,.

4. EMPIRICAL STUDY

Our empirical analysis addresses two questions. First, we ask whether extreme summer
temperatures in Europe exhibit dependence consistent with the D(® (u,,) condition and,
if so, whether the strength of this persistence has changed over time. Second, we assess
whether the severity of heatwaves, measured as the probability of observing multi-day
exceedances of high thresholds, has increased in recent decades.

We analyze daily maximum apparent temperature (X;) during the summer months
(June, July, and August) for nine European cities (London, Paris, Munich, Budapest,

Milan, Barcelona, Rome, Valencia, and Athens), following D’Ippoliti et al. (2010). These
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Figure 2: Left panel: Map of the nine selected cities. Right panel: Time series of X during summer days
from 1940 to 2025 for three representative cities in the north, central, and southern regions of Europe:
London, Milan, and Athens. The two subsamples covering 1940-1974 and 1991-2025 are shown as solid
green lines, while observations in the intervening gap, denoted by X:(Gap), are plotted as a gray dotted
line. The red dashed lines labeled Tgs represent the 95th percentiles within each subsample, and the

purple dots mark observations exceeding these respective thresholds.

cities span a broad range of climatic environments across Europe, enabling meaningful
comparisons between northern, central, and Mediterranean conditions. A map is shown
in the left panel of Figure 2. Apparent temperature combines air temperature and dew-
point temperature and thus reflects both thermal intensity and humidity-induced heat
stress, which is the key determinant of adverse health impacts. Since our interest is the
persistence of hazardous heat exposure rather than dry-bulb temperature alone, apparent
temperature is more appropriate for defining extreme events (Steadman, 1979).

We obtain daily observations spanning 1940-2025 from the ERA5 reanalysis.® To sat-
isfy the stationarity requirement underlying the D(%) (up,) framework, we split the sample
into two locally stationary subsamples: an early period from 1940 to 1974 (Period 1) and
a recent period from 1991 to 2025 (Period 2), leaving 1975-1990 as a transition gap.

Each period comprises 35 summers, corresponding to n = 3220 daily observations per

3See the link https://cds.climate.copernicus.eu/datasets/reanalysis-erab-single-levels?tab=
overview. We use ERA5 hourly single-level data, including the 2m dewpoint temperature Tyewpy and
the 2m air temperature Ty, covering the period from 1940 to 2025 and accessed on November 25, 2025.

The apparent temperature X; is computed as Xy = —2.653 + 0.994 T,;, + 0.0153 szewpt'


https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
https://cds.climate.copernicus.eu/datasets/reanalysis-era5-single-levels?tab=overview
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city. Augmented Dickey-Fuller tests, both with and without a deterministic trend, reject
the null hypothesis of unit-root nonstationarity for all time series in both periods at the

1% significance level.

The right panel of Figure 2 displays the time series X; for three representative cities:
London from northern Europe, Milan from central-southern Europe, and Athens from
southern Europe. The green solid lines indicate the observations in the two subperiods,
while the gray dotted lines correspond to the temporal gap. The clustering of exceedances
above extreme percentiles in the two subperiods provides visual insight into the strength
of extremal serial dependence within each period. The red dashed lines mark the 95%
percentiles of X; computed separately for the two subperiods. Two observations emerge.
First, the 95% percentile in Period 2 is clearly higher than in Period 1, indicating an
overall increase in temperature levels. In other words, extreme temperatures have become
more extreme in recent decades. This pattern holds across all nine cities for extreme
thresholds, see also Table 3. Second, although the cities exhibit higher temperatures in
the later period, there is no visual evidence that the dependence structure of the most
extreme 5% of observations within each subperiod undergoes a marked change across the

two periods.

To analyze these observed patterns formally, we estimate 6 in each period using the
estimator én introduced in Section 2, which relies on a data-driven selection of dj,. For
each city and period, we determine d;, by applying the procedure in (2.22). Figure 3 plots
bn(s) for s =1,...,4, as defined in (2.12), over a range of k/n € [0.02,0.08] for the three
representative cities London, Milan, and Athens. The curve for s = 1 (green solid) stands
out clearly from those for s = 2,3, 4. According to our selection procedure in (2.19), and
by comparing the curves of d,(s) with 1/vk (dashed lines), we conclude that d = 2
for both periods, all three cities, and all considered values of k/n. Additional results for
all cities also support d;, = 2 in almost all cases, with the exceptions of Barcelona in
Period 1 and Valencia for k/n > 6% (see Figure S.3 in the Online Supplement). We
conclude that Condition D% (u,) holds with df, = 2.

We subsequently compute 6, using the top 3%, 5%, and 7% observations of X; within
each period as the threshold. Table 3 reports the resulting estimates of the extremal index
0 along with the corresponding temperature thresholds. As noted earlier, all cities exhibit

a pronounced rise in high temperatures: the top 3% threshold in Period 1 is approximately
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Figure 3: 4,(s) for s = 1,...,4, as defined in (2.12), over a range of k/n € [0.02,0.08] for the three
representative cities London, Milan, and Athens. The fact that b, (1) lies above 1/v/k while 8, (s) for
s =2,3,4 lie below 1/v/k indicates that dj, = 2 according to the selection procedure in (2.19).

Table 3: Estimates of 6 from Section 2 for k/n € {3%,5%, 7%}, together with corresponding thresholds
Xn—k,n- The cities are ordered from the northernmost to the southernmost latitude when read from top

to bottom and from left to right.

0 Xp—kn (in °C) 0 Xn—kn (in °C)
Period City City
3% 5% % 3% 5% % 3% 5% % 3% 5% ™%
1940-1974 0.54 045 039 2730 2594 25.04 052 0.44 042 3492 3432 3384
London Rome
1991-2025 0.60 0.53 0.45 29.34 28.04 27.12 043 0.36 0.35 38.14 37.49 37.06
1940-1974 0.55 0.48 0.45 31.52 30.15 29.01 0.60 0.46 040 31.38 30.86 30.56
Paris Barcelona
1991-2025 0.61 0.58 0.53 33.90 3229 31.36 0.51 0.48 040 3446 33.81 33.36
1940-1974 0.54 048 048 31.32 30.32 29.56 0.69 0.65 0.55 3427 33.64 33.25
Munich Valencia
1991-2025 0.62 0.56 0.51 32.88 31.81 31.17 0.69 0.57 047 37.14 36.51 36.07
1940-1974 0.58 0.52 0.50 33.44 3249 31.79 0.46 043 043 36.63 3586 35.37
Budapest Athens
1991-2025 0.54 048 044 3556 34.77 34.14 0.51 045 0.38 38.00 37.14 36.68
1940-1974 il 0.54 046 041 35.14 3446 33.89
villan
1991-2025 0.46 0.40 0.33 38.08 37.25 36.62

at the same level as, and for some cities even lower than, the top 7% threshold in Period 2.
We do not, however, observe substantial changes in 6 across periods in Table 3. The
variation that does appear is loosely related to latitude: for northwestern and central
European cities, from London to Munich, persistence levels decline slightly, whereas a
tendency toward higher persistence is evident for eastern cities (e.g., Budapest) and
southern cities (from Milan to Valencia), with Athens as an exception. These patterns

are not unexpected, given that the relevant percentiles in Period 2 are substantially
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Figure 4: Estimates and 90%-level bootstrap confidence intervals of § (top panel) and S(742) (bottom

panel). For both panels, k/n = 5% and confidence intervals are based on 999 bootstrap replications.

higher than in Period 1. At such extreme temperature levels in Period 2, large shifts in
persistence would be less likely to occur.

To further quantify the estimation uncertainty of 6, we adapt the block-type boot-
strap procedure of Ferro and Segers (2003). Note that this bootstrap scheme also allows
us to construct confidence intervals for the severity probability introduced later, within
the same unified framework. Specifically, for a given time period, blocks (or clusters) are
constructed using the estimated dependence parameter dr. The key idea of this bootstrap
scheme is to preserve extremal temporal dependence within each block, while generating
a sufficient number of approximately independent blocks to induce randomness. This
approach differs from the conventional block bootstrap, where blocks typically have (ap-
proximately) equal lengths. Instead, block construction in our resampling scheme depends
on the timing of exceedances, with exceedances assigned to the same extremal cluster
according to the estimate dr,. Full details of the resampling procedure and an accompa-
nying simulation study are provided in Online Supplement, where we find satisfactory
finite sample performance in terms of empirical coverage. Figure 4 presents the point
estimates 6 for k/n = 5% in both periods, together with the corresponding 90% boot-
strap confidence intervals. The intervals overlap across periods for all cities, indicating
no evidence of changes in extremal serial dependence.

We can further estimate the heatwave severity probability S(7), defined as the joint
exceedance probability at a high temperature threshold 7. Given dp, = 2, it is reasonable
to define, for a high threshold 7, S(T) :=P(X; > T, X2 > T) = P(X; > T)P(X, >
T | X1 > T), ie., the probability that two consecutive days exceed the threshold 7. The

second term is related to the tail copula of (X, Xs). However, classical estimators of
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tail copulas are developed under the assumption of i.i.d. observations and are therefore
not directly applicable to time series data. In the context of heatwave analysis, several
parametric approaches have been proposed to model and estimate this quantity. For
instance, Reich et al. (2014) employ a multivariate logistic copula, while Shaby et al.
(2016) introduce a Markov-switching model to capture the tail dependence of (X7, X3).
We take a fully nonparametric approach, linking this quantity to the extremal index.
Given that the D® (u,,) condition is supported by our data, we have limy_, .« P(X5 > T |
X1 >7T)=1-0, where z* denotes the right endpoint of the temperature distribution.
Let Pr = P(X; > T) denote the marginal exceedance probability, and let PT be its
estimator; see Online Supplement for details. A plug-in estimator of S(7T) is then given by
S(T) = Pr(1—0). Let 7;5 denote the p% percentile of the full sample from 1940 to 2025.
We take k/n = 5% and use Tgs as T for evaluating the probability of joint occurrence
above this extremal level. The bottom panel of Figure 4 displays the estimated values
of § (Tds) for the two periods, together with bootstrap 90%-level confidence intervals
constructed using the same resampling scheme as for 6. Across all cities, the probability
of a two-day exceedance above Tds increases significantly in recent decades. In several
cases, the point estimates for the later period are two to four times larger than those
in the earlier period. This indicates a substantial increase in the probability of short
heatwave spells in the last three decades compared with 1940-1974. Importantly, these
increases are primarily due to changes in the marginal exceedance probability, largely
through shifts in the location parameter of the marginal distributions; see Table S.1
in Online Supplement. Note also that the supplement provides a comparison with an
alternative estimator of S(7) based on the empirical distribution function. For a very

high 7, this estimator frequently yields zero, as the sample may contain no exceedances.

5. CONCLUSION

We proposed a unified nonparametric framework that enables validation of the core local
dependence condition D@ (up,) and provides procedures for tuning parameter selection
and extremal index estimation. We established the asymptotic normality of the proposed
extremal index estimator by deriving fundamental weak convergence results for empiri-
cal processes to accommodate random thresholds in our construction of the estimator.

We showed the consistency of the validation procedure for the D(d)(un) condition and,



Persistence of extremely high temperatures 21
conditional on this condition holding, proved the consistency of the tuning parameter
selection procedure for the parameter that determines the lower bound required for the
D@ (u,) condition to hold. An extensive simulation study supported our asymptotic re-
sults and showed that the proposed estimator substantially outperformed two commonly
used existing estimators in terms of empirical MSE. We studied summer apparent tem-
perature data for nine European cities over the period 1940-2025. The results reveal two
important takeaways. First, there is clear evidence of extremal serial dependence: the
D@ (u,,) condition holds with d > 2 for all countries in both subperiods (1940-1974 and
1991-2025). This implies that when an extreme temperature event occurs, it persists for
at least two days. Second, the heatwave severity probability increases substantially, with
two-day exceedance probabilities typically two to four times larger in the more recent
period compared with 1940-1974. These increases, however, are primarily due to shifts in
the marginal exceedance probability, meaning that extreme temperatures become more

extreme in the recent period rather than changes in the extremal index.
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APPENDIX A: MAIN PROOFS

We provide the proofs of Theorems 2.1 and 2.2. We first present several auxiliary results.

Theorem 5.1 establishes a useful identity and ensures the existence of a minimal value
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as defined in (2.6). The auxiliary results in Propositions 5.1 and 5.2 establish weak con-
vergence properties that allow our asymptotic approximations to accommodate random
thresholds X,,_j », in contrast to, for example, Weissman and Novak (1998). Detailed

proofs of these auxiliary results are provided in the supplement.

THEOREM 5.1. Suppose that for all 1 < s < dy, the limit of t_lP(Uﬁlj" >1-— t) exists
ast — 0, and define £g := lim;_¢ t‘lP(U{?SaX >1-— t). Let by := 0. Then
A(s) =Lls — by, 1<s<dy. (A1)
Moreover, if the D(u,) and D9 (u,) conditions hold for some d > 1, then there exists a
dr, < d such that
0= A(S) = fs — 85_1, dL S S S dU, (A2)

and A(s) > 0 for 1 < s <dy.
PROOF. The proof is provided in the online supplement. O
To proceed, define, for x € [1/2,3/2] =: 2,
A (z,d) = in—d+1ﬂ{Um’;+d_l <1- %x < Ut}. (A.3)

Note that A, () is a pseudo estimator because the U;’s are unobservable when F is
unknown. By the strict stationarity of the U;’s, one has

n—d+1
— P
k

by Assumption A4 and (A.1). By (2.8), we also have

E(A,(z,d) = (U;ljx <1- l%m < Ul) — z0,

—d+1
o 1" n

An(d) = k Z ]1{Utriafft+d—1 S Un—kn < Ut} = An<k (1 - Un—k,n) ad>'
t=1

Since (n/k) (1 — Up_p.n)—1 = 0p(1), we first derive the asymptotic properties of A,, (z, d)
for x € 2. Specifically, for d € Z*, we aim to establish the weak convergence of v, (z, d)

as a process indexed by x € 27, where
Vn(z,d) = VE(Ap(2,d) — Do n(2,d)), (A.4)

and Agp(x,d) = (n/k)P(UPS < 1 — ka/n < Uy). To this end, let = denote weak

convergence in the space of functions on the compact interval 2" having at most dis-
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continuities of the first kind and endowed with the Skorokhod J; topology (see Aldous,
1978, for details), denoted by D(Z").

PROPOSITION 5.1. Under the assumptions of Theorem 2.1, for d € Z*, we obtain the

weak convergence of v, (x,d) as a process indexed by x € 2 :

{un(m,d)}xG% = {Wd<m)}m€ﬂf’ n — oo, (A.5)

where Wy denotes a zero-mean continuous Gaussian process with covariance function
d—1
E(Wd(:c)Wd(y)) = lim

n
n—oo k

kx ) k
P<U;3;X<1_n < Uy, trflﬁz),(t+d<1—;y <Ut+1>,
t=

for x <y. In particular, E(W3(z)) = z6.

PrOOF. The proof is provided in Online Supplement. g

By a similar but simpler proof, we can obtain the weak convergence for the empirical

tail process: vy, (z,1) = Vk(k=1 Y1, 1{U; > 1 — kz/n} — ).

PROPOSITION 5.2. Under the conditions of Theorem 2.1, we have {vn(z,1)}rca =
{W(x) pea, as n — oo, where W is a zero-mean continuous Gaussian process with

covariance function E(W(m)W(y)) = min(z,y) + A1 (z,y) + A1 (y, x).

PRrROOF. The proof is similar to that of Proposition 5.1 and is therefore omitted. ([l

Note that this result is generally different from Proposition 5.1 with d = 1. The
difference lies in the covariance structure. The two coincide with each other only when
Condition A2 holds with d = 1, which implies D™ (u,) condition holds. Recall that
0, = An(en, d), where e, := (n/k) (1 — U,—g,n). We suppress the dependence of e,, on
k, as k itself depends on n. We now derive some asymptotic properties of e,. First, by
de Haan and Ferreira (2006, Theorem A.0.1 and Lemma A.0.2), Proposition 5.2 implies
that vk (e, — 1) N —W (1), as n — oo. In particular, one has e,, —1 = op(1). Note that
convergence in the Skorokhod topology implies uniform convergence when the limiting

process is continuous (see, e.g., Billingsley, 1999, Chapter 12). Using the continuity of W
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together with the triangle inequality, we obtain

Vn(en,1) — Wi(ey)

VE (en — 1) + (1, 1)‘ < ¥ lvn(1,1) - W(1)] n ’W(l) —W(en)

= op(1). (A.6)

PROOF. (Proof of Theorem 2.1) For clarity of presentation, all processes involved in
the proof are defined on a common probability space using the Skorohod representation
theorem (see, e.g., Pollard, 1984). We use the same notation for these versions, although
they are only equal in distribution to the original processes. We begin with the following
decomposition, which follows from the definitions of A,, and v, (x,d): Vk (An(d) —-0) =
VE(An(en d) = 0) = va(en, d) + Vi (Do (en, d) — 0). Let Ry := VE(Agn(en, d) —0). It
suffices to show: (a) |V (en,d) — vn(1,d)| == 0; (b) |Rn + 01, (1,1)] =25 0; (¢) v, (1,d) —
v, (1,1) 2 N'(0,02) , where o is defined in Theorem 2.1.

Proof of (a) By applying Proposition 5.1 and Billingsley (1999, Chapter 12), we have

v (ensd) = v (L d)] = | (valen, d) = Wa(ea) ) + (Wa(1) = va(1,d)) + (W (ea) = Wa(1))|

< 2 sup |1/n(x,d) — Wd(ac)‘ + |Wd(en) — Wd(l)’ 250,
e

by the continuous mapping theorem, the continuity of W, and the fact that e, 251,

Proof of (b) We first consider R,,. Define €4, (z) := (n/k)IF’(U{f‘jX > 1 — ka/n). Then
by Assumption A4 , we have lim, oo € n(z) = 2fg and also Ao’n(x,d) = Lgn(z) —
ly—1,n(z). Therefore, R,, = \/E(Ed)n(en) —Li—1n(en) — 9) =: R,1+ Ry 2, where R, 1 =
\/E[(éd,n(en) - enﬁd) — (éd_lm(en) - enéd_l)} and R, 2 = ﬂ[en(ﬁd —lg_q) — 9]. By
Assumption A4, k = o (n2p/(2p+1)), and e, — 1, we have R,1 = op(1). Moreover, by

(A.2) and (A.6), we obtain R, 2 = 0vVk (e, — 1) = —0v,,(1,1) + op(1).

Proof of (¢) We denote V;, = ]l{Ug_BffHd_l <1—k/n<U} —01{U, >1—k/n}, then
vp(1,d) = Ov, (1,1) = k= 1/2 ;:f“l (Vi —E(W)) + O]p(k;_l/Q). Analogous to the proof
of Proposition 5.1, we apply the main theorem of Utev (1991) to establish the CLT for

the partial sum Z?;{Hl (Vt — E(Vl)). We begin with the asymptotic variance:

n—d+1 n—d+1 9 n—d+1
Var ( Z (Vi — E(V1))> = TVar(‘/}) + T Z (n —t) Cov(Va, Vige)-
t=1

t=1
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Note that (n/k)E(V}) — 6 — 0 = 0. By the D(9)(u,,) condition, we have

n—d+1

3 Var(V;) =

(Umax <1-— k < U1> +021P<U1 > 1—k)
n n

- 291@((];‘;" <1- % < Ul) +o(1) = 0 — 62

Furthermore, under the mixing condition, it is clear that the tail sum (2/k) ?;f;ll (n—

t) Cov(V1, Vi4+) = o(1). Note that
2 Tk
% Z(n - t) COV(Vh ‘/1+t) = Q(Ql,n - QQ,n - Q?),n + Q4,n) + O(n) )
t=1

where Qi, = 6>(n/k)> ;" P(Uv > 1 — k/n, U1 > 1 — k/n), Qan
O(n/k)> 2 P(UL > 1 — k/n,URS s < 1 —k/n < Ugi), Qsn =
0 (n/k) S5y P(URS < 1—k/n < Uy, U1 > 1—k/n), Qun = (n/k) Som, P(UR < 1-

k/n < Uy, UNS, q < 1—k/n < Ui1). By Assumptions A2-A3, limy, 00 (2/k) 3212 (n—

t) Cov(Vi, Vige) = 2(62A1(1,1) — OX;). The Condition (2) in Utev (1991) follows from

the same argument as that for (S.4). This completes the proof of Part (c). O

PROOF. (Proof of Theorem 2.2) For some given d € Z", since Assumption 2.2 holds
for the pair (d,d+1), we have Assumption 2.1 holds for d+1, imply that A(d+1) = 6 and
the result in Proposition 5.1 holds for d+1. Note that for this specific pair (d,d+1), we do
not require Assumption 2.1 to hold for d. Nevertheless, we also need a similar weak con-
vergence result for vk (An(:v, d)— AO,n (z, d)) Clearly, the asymptotic variance is not nec-
essary in the same form because D(® (u,,) condition is no longer guaranteed. However, the
conditions in Theorem 2.2 ensure that the asymptotic variance exists and the tightness of
the process continues to hold for d specified above. Following the same line of argument as
in the proof of Proposition 5.1, we have {\/E(An(m, d)— Ao (z, d)) }16% = {G(@)}sea,

as n — 0o, where (G is a zero-mean continuous Gaussian process with covariance function:
d—1

kx k
E(G(x)G( < maX<1<U1,Ut+2t+d<17;y<Ut+1>

??‘\3

t=0

+ A2<xay) + A2(y7$)a

for x < y. If Assumption A2 also holds for d, then As(z,y) =0 and G 4 Wy, where Wy
is defined in Proposition 5.1. It is clear that E(G?(1)) = A(d)4+2A2(1,1). The remaining

steps are similar to those in Theorem 2.1. Full details are deferred to the supplement. [
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PROOF. (Proof of Proposition 2.1) By the definition of d(k), {JL(k) >dp+1} C
{ maxy, <s<dy bn(s) > 1/Vk}. Note that the latter event has a probability tending
to zero by Corollary 2.1. On the other hand, for any j < dr — 1, {dr(k) = j} C
{ max;<s<q, bn(s) < 1/Vk} C {&L(dL — 1) < 1/Vk}, which also has a probability
tending to zero. Therefore, P(dy (k) # dr) — 0. O
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Summary  Section S1 provides detailed proofs for the propositions and lemmas
used in the main results, as well as the full steps for Theorem 2.2. Section S2 then illus-
trates the computation of d for the simulation DGPs and presents additional results
showing that the D@ (u,) condition is not fulfilled for an ARCH model. Section S3
provides the detailed steps of the bootstrap algorithm used in our empirical analy-
sis. Section S4 reports the complete set of empirical results for the study of summer

apparent temperatures in Europe.

S1. ADDITIONAL PROOFS OF THE MAIN RESULTS

PROOF. (Proof of Theorem 5.1) Recall the definition of A(:) in (2.5). Then (A.1)

follows from that for any 7 > 0,

lim P(Ugnj"gl—T‘U1>1—T>: lim "P(U5H§X§1—T,U1>1—T>
) n n ’ n n

n—00 n—oo T

= lim 2 {P(U;{fx <1- T) —P(U{njx <1- T)}
n—oo T ? n ’ n

= lim = {P(U{ngx >1- T) _P<U5H:X >1- T)}
n—oo T ’ n ’ n

= by —Vls_1.

Thus, under the assumption that ¢, exists, A(s) is well defined for any s < dy. Since
s +— A(s) is non-increasing, we have, for any dy > d,

A(d) > A(dy) > lim P(U;lfx <1-2I ‘ Uy >1-— T).
o n n

n—oo
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On the other hand, D(%) (un,) condition is equivalent to the following equality:

A(d) = nlggo]}v@max <1-- ‘ Uy >1- n) (S.1)
Therefore, one has § = A(d) = A(d+ 1) = --- = A(dy). Thus, dj, exists and d, =
min {d € Z" : A(d) = 0} as given in (2.6). By the definition of dz, and the monotonicity
of A, we have for any 1 < s < dp, A(s) > 6. O

PRrROOF. (Proof of Proposition 5.1) When no ambiguity arises, we omit the subscript
d in the notation of Wy(-) and write v,(-,d) simply as v,(-), where d € ZT is fixed.
We establish the weak convergence in (A.5) by verifying the convergence of the finite-

dimensional distributions together with uniform tightness.

Finite-dimensional distributional convergence Let m € ZT. By the Cramér-Wold

device, it suffices to show that for any x; € 2" and a; e R, i =1,...,m,

m m
Zaiun(xi) LN ZaiW(Jci), n — 00. (S5.2)
i=1 i=1

We present the proof for the case m = 2. The argument for m > 2 is more in-

volved but proceeds analogously. Let 1/2 < z < y < 3/2, and for convenience,
I = UM g <1—ka/n<U} and Jp = W{URY, 4 <1—ky/n<U} for
t=1,...,n—d+ 1. By the definition in (A.4), we have

n—d+1

% Z (alft +azJy — E(arl; + GZJt)) * O(ﬁ)

nflgt ot o(f) (S.3)

where &, = (allt + asJy — E(a It + ath))/\f We apply the central limit theorem
(CLT) developed by Utev (1991) to prove that > ;| 1 Ein LN ayW(z) + a2 W (y). We

ar1vp(x) + asvy(y) =

begin by deriving the asymptotic variance. Note that

n—d+1 a n—d+1 n—d+1 Qa1 a n—d+1 n—d+1
( Z ft n> =21 Var ( Z It> +— Var ( Z Jt> ! 2 Cov ( Z It, Z Jt> .
t=1 t=1

t=1

Note that E(I;) = IED(U““aX < 1—ka/n < Up) = O(k/n), and Var(l;) = E(I;)(1 —
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O(k/n)). Hence, by the strict stationarity and Lemmas S.1(i) and S.2, we have

n—d+1
Var ( Z It) =(n—-d+1)Var(l;) + QZCOV(IZ‘,IJ*)

t=1 i<j

=(n—d+ 1)1E(11)(1 - o<fl>> + an_:d(n —d+1—1)Cov(I1, [114)

=(n—d+ 1)]]«:(11)(1 - O(i)) + o(k).

Therefore, (a?/k) Var (3, d“ I,) = a? (n/k) E(I1)+0(1). Similarly, one can also obtain
(a3/k) Var (37~ d+1 Jt) = a3 (n/k)E(J1)+o0(1). For the covariance term, we have, again

)
by the strict stationarity and by Lemmas S.1(i) and S.2,

n—d+1  n—d+1 n—d
COV< Z I, Z Jt> = Y (n—d+1—t])Cov (In, Ji4+)

d—1
1
=z (n—d+1—|t])Cov (I1, Ji4¢)
t=—(d—1)
=
= (n—d+1—t)E(I1Ji4¢) +o(1)
t=0
d—1
n
=7 E(I1J14+) + o(1),

~+

=0

where the second equality follows from Cov (I3, Ji4¢) = 0 for |¢t| > d. The third equal-
ity follows from k=1 Zt 1 '(n—d+1—t)Cov (Ii+1,J1) = o(1), using the facts that
E(L)E(J;) = O(k*/n?) and E(l;41J1) = 0 for 2 < y and ¢t = 1,...,d — 1. Putting

together, we obtain

I3

n—d+1 d—
Var( Z §t,n> = nh—>Holo< kE<Il) —|—a2 A (Jl + 2a1as A Z; 11J1+t )

t=1

TE(W?(2)) + a3 E(W?(y)) + 2a1a2 E(W ()W (1)).

Next, we verify Condition (2) in Utev (1991), which is essentially Lindeberg’s condition.
Let 02 = Var( o d+1 &t n) By choosing j; = 1 for all t € ZT in Utev (1991), we obtain,
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for any € > 0,

n—d+1

02 Y E(&. {6l = con}) < o7 n e Elgal)

t=1
=0,°n k_3/2e_1E<‘a1I1 +asJy —E(an ) + CLQJl)’?))
= a;‘?’n kfg/QeflE(}aJl + asJy — O(k:/n)|3>
=o0.°n k32710 (k> — 0. (S.4)
n

Thus, the central limit theorem in Utev (1991) applies to the partial sums of the sequence

{&n:t=1,...,n—d+ 1}, yielding (S.2).

Tightness in D(2") We prove that for any A > 0,

lim P sup [vn(z) —vn(y)| = A | =0, (S.5)
n— o0 |$7y|<5n
1/2<e<y<3/2

where ¢, is a deterministic sequence such that lim, ., d, = 0. Then by Theorem 1 in
Aldous (1978) and the explanation thereafter, v, (+) is tight in D(.2") and each weak limit
has a.s. continuous sample paths. To prove (S.5), we decompose v, into two parts. For any
x € 2, it holds a.s. that T{U*, 4, <1—kx/n <U} = 1{U"E, | >1—ka/n} -
H{URAS g1 > 1 — kx/n}. By (A.4), we obtain

Un(z) = 11 p(2) — von(z), (S.6)

where vy, (z) = k=12 S04 (]l{Ugj“ﬁ‘d_l >1—ka/n}-PUM,_, > l—kx/n)) and
V(@) = k2SI (1{UR 0oy > 1= ka/n} = P(UR 0oy > 1~ ka/n)). To
prove (S.5), it suffices to prove the tightness condition for v4 ,, () and vs ,, (x), respectively.

We provide the details for vy ,(z). Let t,, = [(n —d + 1)/(2r,)]. We split the sum
into 2t,, blocks of length r,, and a remaining block of length less than 2r,. To simplify

the notation, we denote M; = UpY; | below and decompose vin(x) into v, (x) =
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10 () + pon(x) + s n(z), where

1 et kx kx
() = = Z 2 <]1{M2irn+j >1- n} -P <M2irn+j >1- n) >’

1l kx kx
H2n(z) = (ﬂ{M(2i+1)m+j >1- n} -P (M(21+1)rn+j >1- n) )v
i 1

J
n—d+1
1
= 23 (o) e ()
\/E 1=2tpTn+1 n n

Since p1,,(z) and po ., (x) share similar constructions, we first derive a generic result
to establish their uniform tightness. Define fi, (z) = k~'/2 Zzirl" (]1{]\;[1 >1—kx/n} —
P(M; >1— kx/n)), where

{M('L—l)rn—‘rl?"'aMiTn} i {Mla”'yMrn}a i:17...,tn, (S?)

and {M(i,l)rnﬂ-,j =1,... ,Tn}Zil are t, independent blocks. Thus, for each n, the
sequence {Ml} constitutes a special r,-dependent array, which is not strictly stationary.
We first apply a fluctuation inequality for m-dependent arrays given by Theorem 4.1 in
Einmahl and Ruymgaart (2000) to prove the tightness of fi,,. Then, the tightness of y; ,
and pa ,, follows from the bounded variation distance between fi,, and 1, and between
fin, and pio p,, respectively.

For each n, let ¢ = r17¢, where € > 0 is some constant such that ¢/v/k, — 0. Define
I = [%Jr é,%Jr %] C & fori=0,...,q— 1. Choose 6, = 1/q. For any z,y € Z
and |z — y| < 4y, there exists an i € {0,...,¢ — 1} such that |z — § — ﬂ < ¢! and

‘y -3 é’ < ¢~ '. Thus, for any A > 0, we have

P sup i () = fin(y)| = A
|mfy‘<5n
1/2<a<y<3/2
e (-3 Dl ol ) -]
= max sup HUn T Hn|l 5 T = Hn — ) = Uy
0<i<q—1|5_1/2—i/q|<1/q 2 q 2
ly—1/2—i/al<1/q
- _/1 A - /1 41
< 3 — — — > —_ 3 . —
<2P <o<1?3§(1§£ fin () un<2 + q)’ > 2) +2P <O<ni135<1§1€1£ fin () un<2 +
g—1 . q—1 .
1 A 1 1
<2 P(sup ﬁn<x>—ﬂn(+’)] > ) o ]p(sup fin(e) — (5 + )‘ >
i—0 x€Z; 2 q 2 i—0 r€Z; 2 q
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q— g—1
Z (s lin(o) ()] = 3 ) —43 Q.

WEL;

Next, we apply Einmahl and Ruymgaart (2000, Eq. (4.4)) to bound Q;. As such, define

o tnrn _ i .
T, (2) = ;<11{M2>1 b PO > 1 )),

tprn

which plays the role of A,, in Einmahl and Ruymgaart (2000). Then, adopting the nota-
tion of that paper with e = 1/2 and m = r,,, by the distributional equivalence in (S.7),

we obtain
Q=P sup |fin(z) = fin(y)]| = A
F+i<e<y<g+ift
(5 () ()]
\/E %+§'§m<y§%+% n "
kA
=P sup ‘Fn(a) — Fn(b)‘ > \/>

%(%+i)§a<béﬁ(l+i+71) Tntn

Pt 22 T
oo (5 () o e (5]

4r,p; VTntnDi 47"727, tnpi TnlnDi

where C' > 0 is some constant, p; = P (1 - 5(5 + ”1) <USF<1- 7(5 + é)) and

is a continuous and decreasing function such that ¥(0) = 1. Observe that Assumption

o)
o),

If n is sufficiently large, we have qu < p < 2dk

=~ Tq’
¢4 € [1,d]. Then by the choice of ¢ and that n — r, < 2r,t, <n, we obtain

A4 implies that,

IE%% IE”(U{‘?X >1- ’%) —

Thus, we have

1
bi — 7€d
q

uniformly in 4, due to the fact that

k S k S m 1
=7
drit,p; — 2rpnp;  4dr, 4d "V

VE 3VEA 6)q B
(] <Tntnpi> > (n%q ) () <\/E> —¢(0)=1.

and
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Thus, as n — o0,

Pl swp 1@ — @) > A | < dgexp(—cort) = 4rL exp(—car$) = 0.
1 /'Z'Zyiji"s/z
So the tightness of fi,, follows from the tightness criterion by Aldous (1978, Theorem 1).
Moreover, let Q(X) denote the distribution of X. By Eberlein (1984, Lemma 2), we

have, for the total variation-type norm || - || defined in Eberlein (1984),

HQ({M(i—l)rn-ﬁ-lv o Mirn}fll) - Q({M(i—l)rn—&-la e Mirn}ﬁll) H
t'll

® Q<M(i—1)7'n+la ceey Mirn) - Q({M(i—l)rn—i-h cee 7Mir7,, fll) H < ¢n(rn)tn — 07

i=1

by the absolutely regular assumption on the sequence, and Assumption Al. Thus, we

obtain that for i =1, 2,

P sup i (2) — pin(y)] = A | = 0. (S.9)
|[z—y|<dn
1/2<z<y<3/2

It remains to show that sup,c 4 |30 (2)| —= 0. Note that by the definition of ¢, the

number of summands in 3, is bounded by 2r,.

1 & 3k 3k
(g b <2(J5 5 (fusa-giher (- 31)))

< dra 3k —0
. \/E m )
by the assumption that 7,vk/n — 0 as n — co. O

PRrOOF. (Proof of Theorem 2.2) For some given d € Z*, since Assumption 2.2 holds
for the pair (d,d + 1), we have Assumption 2.1 holds for d 4+ 1, imply that A(d+1) =6
and the result in Proposition 5.1 holds for d + 1.

Note that for this specific pair (d,d + 1), we do not require Assumption 2.1 to hold
for d. Nevertheless, we also need a similar weak convergence result for v& (An(x, d) —
Ao,n(m, d)) Clearly, the asymptotic variance is not necessary in the same form because
D@ (u,) condition is no longer guaranteed. However, the conditions in Theorem 2.2
ensure that the asymptotic variance exists and the tightness of the process continues

to hold for d specified above. Following the same line of argument as in the proof of
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Proposition 5.1, we have

[VE(An(e.d) — B (. d))}

e = {G(x)}zeﬁ,, n — 0o, (S.10)

where G is a zero-mean continuous Gaussian process with covariance function given by

sH

E(G()G(y) = lim +

+ AQ(xay) + A2(y7x)7

—1
kx k
P(U;‘;X <1-— F < Uy, Uﬁz)ft+d <1l-— % < Ut+1>

Il
=]

for z < y. Note that if Assumption A2 also holds for d, then As(z,y) =0 and G 4 Wa,

where Wy is defined in Proposition 5.1. It is clear that
E(G*(1)) = A(d) +2A5(1,1). (S.11)

The theorem can now be proved in the same manner as Theorem 2.1. Recall that
5(+) == A(+) = A(++1) and 6,(-) = A,(+) — Ap(+ +1). By the similar arguments for
Parts (a)—(b) in Proof of Theorem 2.1, we have

VE(8.(d) = 8(d)) = VE(An(en, d) — A (en,d +1) — 6(d))
= VE(An(en,d) — Ao n(en, d)) = VE(Ap(en,d+1) — Ag (en, d + 1))
+ VE(Aon(en,d) — Agn(en, d+ 1) — 5(d))

=v,(l,d) —v,(1,d+ 1) = §(d)vn(1,1) 4 op(1).
It suffices to show that
vn(1,d) — v (1,d + 1) = 6(d)vp(1,1) 5 N (0, 5%(d)). (S.12)

Define I, = 1{U,, 41 <1—k/n <Ui} and J, = 1{URY,, ; <1—k/n < U}, and
K, = ]l{Ut >1-— k/n} We shall show that

d
((It —J, = §(d)K)) —E(I, — J, — 6(d)Kt)) 5 N (0, 52(d)).
1

n

L
Vi
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Note that

Var (\}Enzd(ft — i 5(d)Kt)>

n—d
fVar (th> + }{Var (Z Jt> + —dV r (ZKt> — *COV <ZI“ZJ’5>
1 1
26(d
B Cov (Z It,ZKt> +7 (Z Jt,ZKt)
— n—d
= (A(d) +2A5(1,1)) + 0+ 6%(d) (1 + 2A4(1,1)) +o(1) — = cov (Z I, Z Jt>

n—d n—d
D Cov (Z It,ZKt> +25(d)(0 + A1) + o(1), (S.13)

where we use (S.11), Var(Wy,1(1)) = 6, and (2/k) Cov ( nd g, n—d Kt> =0+ +
o(1), from the proof for Theorem 2.1. Next, we compute the two remaining covariance
terms. By strict stationarity, Lemma S.2, and Assumption A2 (with d replaced by d+ 1),

we have

1 n—d n—d
E Cov <Z It, Z Jt>
t=1 t=1

k n k k
E (Uans,J)ﬁl<1_n<Ul> +E Z]P;([]max<1—n<U17 ;iaQ)fter+1<1_n<Ut+1>

t=1

3

n S max k max k
+ 7 ;P(med <l < Ui, USgy <1 < U1> +0(1)

=0+ X+ 0(1) +o(1). (S.14)

Similarly, we have
Lo nz_:dl nflK _plupr 1o T oy +E§:]P’ uprc1-F cu v s1-F
A v £ ts 2 =% 2,d n 1 L — 2,d n 1, Ut+1 n

k k
+— Zp( e rd < n<Ut+1,U1>1—n) +o(1)

= A(d) + A3+ AL+ o(1). (S.15)
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Combining (S.13)—(S.15) yields that

. 1 n—d )
lim Var <\/E ; (I — J, - 5(d)Kt)) = 6%(d)(2A1(1,1) — 1)

- 1
— 28(d) (Al — M\ + A — 2) +205(1,1) — 2,

which is nothing but #?(d). Finally, Condition (2) in Utev (1991) can be verified by the

same argument used for (S.4). Hence, (S.12) follows. O

We present two auxiliary lemmas used to derive the covariance structures of Wy in

Proposition 5.1, W in Proposition 5.2, and G in the proof of Theorem 2.2.

LEMMA S.1. Let z,y € 2. Define I(z) = ]l{Uﬁ_ai’ft+d_1 <1—kz/n<Uy} fori =
1,...,n—d+ 1. Assume that rk/n = o(1).

(a) If Assumption A2 holds, then

Tn Tn

Y (n—=1)Cov(Li(2), Liye(2)) = o(k), D (n—1t)Cov(li(x), Lr+:(y)) = olk).

t=1 t=d

(b) If Assumption A3 holds, then

nh_}n;@ % Z(n —t) Cov (]I{Ul >1—ka/n}, 1{U4 >1— kx/n}) = Ay (2, 2),

t=1

n—oo

lim 1zn:(n —t) Cov (]l{U1 >1—ka/n}, 1{U14 >1— ky/n}) = A (z,y).

(¢) If Eq. (2.13) holds, then

nh_}rrgc % Z(n —t) Cov(I1(z), [11+(2)) = Aa(z, ),

Jim > (=) Corlia(e): s ) = Al
PROOF. Observe that the results in Parts (a)—(b) are both special cases of Part (c). For
Part (a), Assumption A2 implies that (2.13) holds and that As(z,y) = 0 for z,y € 2.
Part (b) is a special case of Part (c) with d = 1. When d = 1, the function As in (2.13)
coincides with A; in Assumption A3. We now present the proof of Part (c). Note that
supye o E(L1(z)) <P(Uy > 1-3k/(2n)) = O(k/n). By construction, E(I; ()1 1(z)) =
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0 for 1 <t <d-1. Thus, by (2.13),

Tn

LS = 0)Cov (1@, D) = S 00— D [E( (@)114(2)) — (B(Ta(2)))°)
= % ] (n = E(2)[144(7)) — M - (n—1t)
t=d t=1
— A2 (LE, .Z‘)
The other term can be proved similarly. (]

LEMMA S.2. For di,dy € ZT, let A € cr(]l{Uj > lfk/n}, 1 <5< dl) and B; €
o(1{U; >1—k/n},i <j<i+ds) fori=12,...,n—do. If (n/k)P(A) = O(1) and
Yo, (L—=i/n)n(i) = o(1), then

U

n 2—1

% _ (n—14)Cov(A4, Bi11) = o(1). (S.16)

7

Tn

PROOF. By the definition of ¢, (-) in (2.9), we have that |Cov(A4, B;11)| = [P(ANB; 1) —
P(A)P(Bit1)| = P(A)|P(Bis1]A) — P(Bit1)| < P(A)¢y (i + 1 — dy). Thus,

’nfdgfl ’I’L*dg*l .
1 ) n i )
LS - ifcov(A Bl < B Y (1 - n)%(z F1—dy) = of1).
This completes the proof. O

S2. ADDITIONAL VALIDATION FOR THE SIMULATIONS

We show how to compute § and to validate D®(u,) using Theorem 5.1 in the main
manuscript for the example DGPs in Section 3, Table 1. We choose u,, such that nP(X >
up) = 1. The results for AR-C and ARCH model are provided in Propositions S.1 and S.2
below. For AR-N model, the asymptotic independence of multivariate normal random
variables indicates that £, = s, s > 1. Thus, § = A(s) = {5 —€s_1 =1 for any s > 1, and
dr, = 1. For Moving Maximum DGP, F(z) = exp(—1/x), and for s > 2,

ls = lim nP(max X; > u,)= lim n (1 PR (un)) =

n—00 1<t<s n—00

s+m-—1
- .
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We have A(s) = £5—£s_1 = 1/m, and thus D@ (u,,) is satisfied for any d > 2. We obtain
dr, = 2 and 6 = 1/m. Moreover, for the Max AR model, for s > 2,

fy = lim nIP’( max X; > un) = lim n <1 - P <€1 < (1 — 0)up, max e < un>>

n—00 1<t<s n—00 2<t<s
=S — 50+ p.

We have A(s) = {€; —€s_1 =1 — p, and therefore, d, =2 and § =1 — p.

PROPOSITION S.1. For the AR(1) model with Cauchy margin specified in Table 1,

(a) for 0 >0, s =s— (s—1)o, for s > 2;

(b) for 0 <0, lo =2 and by = s — (s — 1)|o|? for s > 3.

PRrOOF. This result is easily derived by using the independence of (X1, e€3,...,¢€;). Let

v, be such that lim, . nP(e; > v,) = 1. Then v, = (1 — |o|)uy,. For s > 2, we have
ly = lim n]P’(Xl > Uy or ... or X, >un)

n—oo

= lim n]P’(Xl > Uy OF ... OT Qs_le +QS_262 + -t es > un)

n—oo
X 1 X ; s
= lim n]P’<1>lor ... or 95_11+Q‘5_262+~-~+6>1>
n—00 Unp Un Un, Un
X X s
= lim n]P’(l >lor ... or g 2l 4 o 21— o) 2 4o+ (1= o)== > 1)
n—00 U n Un, Un,

=v{(t1,...,ts) :t1>1or ... or ° Mty 4+ 0° 21— |o)ta + -+ (1 —|o|)ts > 1},

where v denotes the exponent measure of (X1, €a, ..., €;); see de Haan and Ferreira (2006,
Section 6.1.3) for the definition of exponent measure. The last convergence follows from
Theorem 6.1.11 in de Haan and Ferreira (2006) and the fact that the distribution of
(X1,€9,...,€) belongs to the max domain of attraction. Due to the exact independence
between X and the ¢;’s, and hence their asymptotic independence, the exponent measure
v places mass only on the coordinate axes; that is, v{(t1,...,ts) : t; > a1 and t; > as} =
0, for any i # j and positive a1, as. Then, the result readily follows from the property
that v{(t1,...,ts) ;| t; |> a1} = 1/ay. O

PROPOSITION S.2. An ARCH model specified in Table 1 does not satisfy the D® (u,,)

condition for any finite d.

Proor. Let M; ; = —oo for ¢ > j and M, ; = max;<¢<; X; for ¢ < j. We apply Proposi-
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tion 6.2 of Ehlert et al. (2015) to show that for any finite d,

lim P(Mgvd < u, < Md—‘—l,rn | X > Un) > 0.

n—o0
In this proof, all the cited equations are referred to the formulas in Ehlert et al. (2015).
Note that ARCH(1,1)model is a special case of the model considered in that paper, which
corresponds to 61 = $; = 0 in the model given by relations (6.2) and (6.3) in that paper.
Therefore, ¢(z) = a}/2|$|, for the ¢ appeared in the limit of (6.14) in that paper. Let
W denote a random variable from Pareto distribution with parameter a and (Z;);>1 are

i.i.d. standard normal random variables. Then by Proposition 6.2 of Ehlert et al. (2015),

lim ]P(MQ,d <u, < Md+177‘n | X1 > un)

n—oo
> lim P(Mgvd < u, < Xd+1 | X1 > un)
n—oo
W i—1 w d
— 7. ) < _ )
P Jnax, \Z0|ZZ],1;[O¢(ZJ) <1< |ZO|Zd+1j1;[0¢(Za)

i—1 d
/2 d+1)/2
—P Wzrgzaécdal/ Z; ‘| |1 1Z| <1< Wal™ /27, ‘| |1 A
Jj= Jj=

>P (W > al_(d+1)/2,2rga<xd Zi < —1,Z441 > 1) = o D2 (p(—1)) > 0,

where a3 € (0,1) (which equals 0.7 in our simulation example), & > 0, and ® is a

standard normal distribution function. O

S3. DETAILS OF THE BOOTSTRAP PROCEDURE AND ITS PERFORMANCE

We describe the block-type bootstrap scheme, originally proposed by Ferro and Segers
(2003), which forms the building blocks of the bootstrap used in Section 4. It consists of

two main steps.

Step A1 Construct cluster sets {C;}/_, and gap sets {Gj}f;f, where J is the number

of clusters.

(i) Suppose that we observe k exceedance times S1 < ... < Si. Form clusters by assigning
two consecutive exceedances S; and S;y; to the same cluster whenever S;; 1 — 5; < r,
fori=1,...,k —1, where r > 0 is some threshold. If S;;1 — S; > r, then a new cluster

starts.

(ii) Suppose the jth cluster contains the exceedance times Sq;,Sa;11,---,Sh;, Where
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a; < b; are the first and last exceedance positions. The corresponding cluster and gap

are defined as

Cj={Xs,, X5, 11, Xs, }» Gy ={Xg, 11,0, Xs, 1}

Step A2 Resample cluster sets from {C; }37:1 and gap sets from {G; }3’;11 with replace-
ment. Arrange them consecutively until the length of the concatenated sequence reaches

the sample size n, and then truncate the sequence to length n.

Throughout, two tuning parameters are required: the number of excedeence k and the
length r that is used to define clusters. For bootstrapping the extremal index 6, Ferro and
Segers (2003) recommend using r = |1/0] while we propose using r = dy,, which can be
interpreted as the minimal block length to capture the extremal dependence. Our choice
is motivated by Conditions D(u,,) and D4 (u,). Condition D(u,) ensures that the two
blocks separated by at least r;,, observations are approximately independent. Meanwhile,

Condition D (u,) implies

P (X239 < F~Mun) | X1 > F~ N up)) =P (X822 < F~ ' (up) | X1 > F N un)) = 0,

2,rn

or equivalently,
P(So—S1>d| Xs, >F '(uy)) =P (S2— 81 >ry | Xg, > F Hun)) =0,

which means that, under Condition D% (un), a separation of d is asymptotically equiv-
alent to a separation of r,. Thus, using dj, i.e., the smallest d such that Condition
D@ (u,) holds, is justified.

We compare the two choices by examining the empirical coverage rate and the em-
pirical length of the resulting confidence intervals. For an AR~C model, as described in
Section 3, with § = 0.2 (d;, = 2), the results are shown in Figure S.1. Our choice per-
forms comparably in terms of both empirical coverage and interval length, while relying
on a smaller r. As the sample size n increases, the empirical coverage improves and the

interval length decreases, as one would expect.

S4. ADDITIONAL EMPIRICAL RESULTS

This section documents the following: additional descriptive figures; details on the data-

driven selection of the local-dependence window; the construction of the marginal ex-
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Figure S.1. Top panel: comparison of the two bootstrap parameter choices, r = JL and r = Ll/éj
Bottom Panel: comparison across sample sizes, using r = CZL in both cases. All results are based on 1000

Monte Carlo replications, each with 199 bootstrap samples.

ceedance probability together with additional comparative results for severity probabil-
ity; and a detailed resampling scheme for uncertainty quantification.

Figure S.2 displays the time series plots of X; (summer apparent temperatures) for
Paris, Budapest, Munich, Rome, Barcelona, and Valencia over 1940-2025. All six cities
exhibit a pronounced upward shift in the upper tail between periods, consistent with the
patterns documented in the paper.

To determine the parameter d and assess Condition D(d)(un), we apply the selection
rule in (2.19). Figure S.3 shows 6, (s), s = 1,...,4 over k/n € [0.02,0.08]. The common
pattern for Paris, Munich, Budapest, and Rome is clear: Sn(l) (solid green line) lies
above 1/vk (dashed black line), while &, (s) for s = 2,3,4 lie below 1/v/k, indicating
that dj, = 2. For Barcelona and Valencia, though we observe 4,,(2) slightly above 1/v/k
for large k/n, it is still well separated from 6, (1). One may still conclude that d = 2
for Barcelona and Valencia. Taken together, we conclude that D) (u,) holds for all

city—period pairs.
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Figure S.2. Time series X; during summer days from 1940 to 2025. The two subsamples covering 1940—
1974 and 1991-2025 are shown as solid green lines, while observations in the intervening gap, denoted
by X:(Gap), are plotted as a gray dotted line. The red dashed lines labeled Tgs represent the 95th
percentiles within each subperiod, and the purple dots mark observations exceeding these respective

thresholds.

Accordingly, we estimate the conditional probability in S(7°) by 1— 6. For the marginal
exceedance probability Py in Section 4, it follows the standard approach in extreme value

theory. Let @ = X,,_j n, and py = k/n:

'fL_l Z?:l ]].{Xt > T}, T S ﬁ,
Pr=o, T > &,

R A T—q —1/% N N

pu(1—|—7 &“) , u<T <",

where %, &, and * are obtained by maximum likelihood estimation under the generalized
Pareto fit. This yields a coherent Pr at high levels even when empirical exceedances are
sparse.

Table S.1 compares our S (T") with the empirical joint exceedance estimator S’emp (T) =
(n—1)"1 ?:_11 ]l{Xt >T, X1 > T}. Recall that 7;5 denotes the p% percentile of the
full sample from 1940 to 2025. We see that Sewp is zero for many cities for T¢S o, while
S(T) remains informative.

Finally, we now provide the details of the resampling procedure used in Section 4,
based on the bootstrap scheme described in Section S3. As discussed, we set r = dr.
Recall that the original sample from 1940 to 2025 is split into three subsamples: Period 1
(Xp1), a middle gap period (Xqap), and Period 2 (Xp2). The extremal indices épl, Opy are
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Figure S.3. §,(s) for s = 1,...,4, as defined in (2.12), over a range of k/n € [0.02,0.08] for Paris,

Munich, Budapest (Top two panels), and Rome, Barcelona, Valencia (Bottom two panels).

estimated from Xp; and Xpo, respectively. For estimating the heatwave severity proba-
bility S(7), the threshold T is taken as a quantile of the full sample (1940-2025). The
estimates Op1, Opa, as well as © = {¥p1,yp2, Uip1, Upa, Op1, 0pa} for the marginal proba-
bility ]57— will be used below in the bootstrap. For a given ratio k/n, in each bootstrap

iteration, we proceed as follows:

Step B1 Construct the bootstrap sample X%, from Xp; using the bootstrap scheme
(Steps A1-A2) described in Section S3. Similarly, obtain the bootstrap samples XGap

from Xg,, and X, from Xpg, yielding three resampled segments.

Step B2 Re-estimate 6 separately using Xj5; and X}, yielding bootstrap estimates 67,

and 0%, respectively.
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Table S.1. Estimates of the heatwave severity probability S(7) across two periods P; (1940-1974) and
P> (1991-2025) for T = 73? and ’7’9%‘9, where 7;& denotes the p% percentile of the full sample from 1940
to 2025. For display purposes, the S and S’emp are multiplied by 102. The “Parameters” columns reports
the estimated extremal index § and the parameters from the GPD fit obtained by maximum likelihood,

namely 4, @, and &, both using k/n = 5%.

Taz Toso Parameters
City TE  S(PLP) Semp(Pr.P2) THo  S(PLP)  Semp(Pr,P2) (PP A(PLP)  a(P,P) (P, P)
London 28.37 0.99, 2.04 0.81, 2.02 33.75 0.046, 0.111 0.031, 0 0.45,0.53  -0.15,-0.17  25.94, 28.02  2.58, 2.42
Paris 32.52  0.96, 1.93 0.68, 1.77 38.10 0.006, 0.105 0, 0.062 0.48, 0.58 -0.29,-0.38  30.10, 32.29 2.79, 3.27

Munich 31.93 1.10, 2.06 0.96, 2.05 36.14  0.068, 0.039 0.093, 0 0.48,0.56 -0.12,-0.34 30.31, 31.79  1.96, 1.98
Budapest  34.51  0.68, 2.95 0.34, 3.14 37.69 0.010, 0.111 0, 0.031 0.52, 0.48 -0.30,-0.28 32.49, 34.76  1.92, 1.41

Milan 36.84  0.39, 3.70 0.22, 4.13 40.43  0.002, 0.206 0, 0.062 0.46, 0.40 -0.17,-0.21 34.45, 37.25 1.46, 1.55
Rome 37.08 0.18, 4.37 0.09, 4.47 40.09  0.001, 0.178 0, 0.031 0.44, 0.36  -0.21,-0.23 34.32, 37.48 1.33, 1.23
Barcelona 33.49 0.08, 3.35 0, 3.82 36.81 0, 0.146 0, 0.155 0.46, 0.48 -0.26,-0.12 30.86, 33.81 1.13, 1.23
Valencia 36.27 0.17, 2.49 0.12, 2.45 39.563  0.002, 0.967 0,0 0.65, 0.57 -0.12,-0.06 33.63, 36.50 1.30, 1.07

Athens 37.32 0.96, 2.45 0.96, 2.36 41.39  0.020, 0.687 0.031, 0 0.43,0.45 -0.10,-0.19 35.85, 37.13 1.42, 1.61

Step B3 Re-estimate marginal tail parameters, obtaining 6*

Step B4 Compute the bootstrap counterpart 7* of the full-sample threshold 7 by
taking the corresponding percentile of the full bootstrap dataset {X5,, Xiap» X%, }. Using

51, 0ps, and ©* from the previous steps, obtain a bootstrap estimate S’*(T*)

For proper standardization, the confidence intervals for S(7) are constructed by boot-
strapping log S(7") and then transforming back to the original scale. We refer to Theorem
4.4.7 in de Haan and Ferreira (2006) for intuition. By repeating Steps B1-B4 B times,
we obtain confidence intervals for 6 for each city, as shown in Figure S.4, and confidence
intervals for S(T), as displayed in the bottom panel of Figure 4. For a wide range of
choices of k/n, the estimates 0 € (0.4, 0.8) support the presence of extremal serial depen-
dence. The confidence intervals overlap across periods for all cities, providing no clear
evidence of changes in extremal serial dependence. Note that the top panel of Figure 4

only displays the case of k/n = 0.05.

REFERENCES

Aldous, D. (1978). Stopping times and tightness. Annals of Probability 6(2), 335-340.

de Haan, L. and A. Ferreira (2006). Eztreme Value Theory: An Introduction. Springer
Verlag.



Persistence of extremely high temperatures: Online supplement S19

10 London 10 Milan 10 Athens
—— 19401974
08 — 1991-2025 08 08
©06 ”X 06 «©06
04 \_ 04 \ e
0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08
kin kin kin
10 Paris 10 Munich 10 Budapest
08 08 08
N we& Mek
0.4 0.4 0.4
0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08
kin kin kin
10 Rome 10 Barcelona 10 Valencia
0.8 0.8 0.8
©06 06 @ 0,6\
04& 0.4x\ o4
0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08 0.02 0.04 0.06 0.08
kin kin kin

Figure S.4. Estimates of 6 for k/n € [2%,8%)], together with 90%-level bootstrap confidence intervals
based on B = 999 bootstrap replicates.

Eberlein, E. (1984). Weak convergence of partial sums of absolutely regular sequences.
Statistics & probability letters 2(5), 291-293.

Ehlert, A., U.-R. Fiebig, A. Janfien, and Schlather (2015). Joint extremal behavior of hid-
den and observable time series with applications to GARCH processes. Extremes 18(1),
109-140.

Einmahl, J. and F. Ruymgaart (2000). Some results for empirical processes of locally
dependent arrays. Mathematical Methods of Statistics 9(4), 399-414.

Ferro, C. A. T. and J. Segers (2003). Inference for clusters of extreme values. Journal of
the Royal Statistical Society. Series B (Statistical Methodology) 65(2), 545-556.

Utev, S. (1991). On the central limit theorem for p-mixing arrays of random variables.

Theory of Probability € Its Applications 35(1), 131-139.



