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Abstract

We investigate the impact of mergers on R&D incentives within a framework of R&D
competition where effort can influence both the probability of innovation and the payoff
conditional on success. Our framework nests the results of two classes of existing models
and reveals assumptions that are restrictive. In models where R&D effort increases the
probability of innovation but does not directly affect the payoff upon success, we show that
the assumption of zero payoff upon innovation failure is restrictive. In models where R&D
effort influences the payoff conditional on success, but not the probability of success itself,
the assumption of deterministic innovation success (i.e., a success probability of one) is
similarly restrictive. Across both modeling approaches, we offer a novel insight: the shape
of investment costs, and by implication the pre-merger level of innovation, can be pivotal in
determining whether a merger strengthens or weakens firms’ incentives to invest in R&D.
In an extensions section, we further examine the role of R&D input and output synergies,
firm asymmetries, as well as the implications for consumer surplus.
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†Vrije Universiteit Amsterdam and Télécom Paris. E-mail: j.l.moragagonzalez@vu.nl. Moraga is also affil-
iated with the Tinbergen Institute, the CEPR, and the Public-Private Sector Research Center (IESE, Barcelona).

‡Vrije Universiteit Amsterdam. E-mail: e.i.motchenkova@vu.nl. Motchenkova is also affiliated with the
Tinbergen Institute and the Tilburg Law and Economics Center (TILEC).



1 Introduction

The impact of mergers on innovation has been an important concern for antitrust authorities for

at least two decades. For example, before the acquisition of Sun Microsystems by Oracle was

cleared in the US and the EU in 2010, the European Commission investigated innovation concerns

in areas such as cloud computing, database management, and open-source software development.

Another example is the acquisition of Monsanto by Bayer in 2018, which underwent extensive

antitrust investigation due to concerns about its potential impact on research and development of

genetically modified seeds, agricultural chemicals, and digital farming technologies. A third case

in point is the acquisition of Celgene Corporation by Bristol-Myers Squibb. Before the merger

was approved in 2019, the Federal Trade Commission and the European Commission conducted

thorough investigations to assess the risk of innovation loss resulting from discontinuation, delay,

or redirection of overlapping drug development pipelines.

This paper studies the implications of mergers for R&D within a general two-stage model of

R&D and product-market competition, in which firms first invest in R&D and then compete in

the marketplace. A higher R&D effort may either increase a firm’s innovation success probability,

a firm’s payoff conditional on innovation success, or both. Conceptually, our reduced-form

approach is flexible enough to accommodate a variety of product-market environments, including

different competitive regimes and the possibility that firms offer multiple products. In the bulk

of our analysis, however, we focus on standard single-product models to illustrate our main

results on when mergers increase or decrease R&D investment.

Our framework nests two broad classes of existing models. The first class assumes a stochastic

R&D process where effort raises the probability of innovation success, while the size of the

innovation (a cost reduction, a quality improvement, or a new product) is independent of effort.

Most contributions in this class (Federico, Langus and Valletti, 2017, 2018; Denicolò and Polo,

2018; Jullien and Lefouili, 2020) study R&D for entry, where firms earn positive payoffs only

if the project succeeds, with the exception of Federico et al. (2018), who allow for some profits

upon failure. The second class assumes a deterministic R&D process where any effort level leads

to innovation success with probability one, and R&D only affects the magnitude of the cost

reduction or quality improvement (Motta and Tarantino, 2021, Section 3.1; Bourreau, Jullien

and Lefouili, 2025, online Appendix).1 For a recent comprehensive survey of this literature, see

Lefouili and Madio (2025).

The main contribution of our paper is a more general characterization of the conditions

under which a merger increases or decreases R&D investment. In doing so, we show that the

existing literature offers only a partial view of the problem, largely because it relies on two

1The main models in Motta and Tarantino (2021) and Bourreau et al. (2025) are one-stage games where
firms choose prices (or quantities) and R&D efforts simultaneously. Our two-stage game approach is different
and captures, arguably, more realistic scenarios where R&D is a long-run variable and prices (or quantities) are
short-run.
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restrictive modelling assumptions and on a narrow set of market structures, functional forms, or

numerical simulations. Moreover, we demonstrate that our framework can be readily extended

to incorporate both R&D input and output synergies, allow for firm asymmetries, as well as to

assess the effects of mergers on consumer surplus.

Specifically, we first show that, in models of stochastic R&D where investment effort increases

a firm’s probability of innovation but does not directly affect its payoff conditional on success,

the assumption that firms earn positive profits only upon successful innovation plays a crucial

role (cf. Federico et al., 2017; Denicolò and Polo, 2018; Jullien and Lefouili, 2020). If firms

can earn positive profits even in the event of innovation failure by entering or remaining in the

market with the status quo cost or quality (like in Federico et al., 2018; see also Mukherjee,

2022), then the pre-merger level of innovation (and thus the shape of the success probability and

R&D cost functions) may become a key determinant of whether a merger increases or decreases

R&D.

Secondly, we show that, in models where R&D effort influences firms’ payoffs conditional on

innovation success, e.g. because the degree to which a firm lowers its marginal cost or improves

its product quality depends on that effort, the common assumption that innovation success

occurs with probability one is restrictive (cf. Motta and Tarantino, 2021, Section 3.1; Bourreau

et al., 2025, online Appendix). When success is uncertain, the pre-merger level of innovation

(and thus the shape of the R&D cost function) may again play a pivotal role in determining

whether a merger enhances or dampens R&D incentives.

Finally, our broader framework highlights the difficulty of simultaneously modelling the im-

pact of R&D effort on both the probability of innovation and the payoff conditional on success.

We derive a general condition that characterizes whether a merger raises or lowers R&D in-

vestment. The complexity of this condition may help explain why the existing literature has

typically focused on only one of these two margins at a time.

Whether a merged entity has stronger or weaker incentives to invest than a stand-alone firm

hinges on comparing the pre-merger Arrow replacement effect with its post-merger counterpart,

adjusted for the externality on the partner firm.2 We identify three key channels through which

a merger modifies the incentives for R&D investment relative to a stand-alone firm: (i) the an-

ticipation of post-merger price coordination; (ii) the internalization of an innovation externality

arising from the increased probability of innovation success; and (iii) the internalization of an

innovation externality stemming from the introduction of superior products or the production of

goods at lower marginal costs. The key to our new results lies in recognizing that, when innova-

tion outcomes are stochastic, the magnitude of these replacement effects generally differs across

2In Arrow’s (1962) original paper, the innovator obtains a patent and becomes a monopolist, so the replacement
effect refers to the disincentive to innovate arising from the existence of pre-innovation profits. In our setting, we
informally use the term replacement effect to refer to the difference between post- and pre-innovation profits for
both the duopoly firm and the post-merger entity.
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two distinct states of the world: conditional on the partner firm’s innovation effort succeeding

and conditional on it failing. As a consequence, innovation incentives aggregate the effects across

these two states, with weights that depend on the steepness of the R&D cost function. In many

relevant cases, the underlying forces are positive in one state and negative in the other, so that

the relative weights attached to success and failure are critical in determining the overall effect

of a merger on R&D. Neglecting this two-state structure overlooks a central source of forces that

drive our findings.

We now describe in more detail the results we obtain for the different classes of models

outlined above. The first class of models refers to models where R&D effort only impacts

the likelihood of innovation success, while keeping the payoff conditional on innovation success

independent of R&D effort. In this class of models, we identify four possible outcomes. In

the first outcome, the replacement effect post-merger net of the externality on the partner

firm is smaller than pre-merger, both conditional on partner success and failure. In such a

case, the incentives to innovate are stronger post-merger than pre-merger and, hence, a merger

definitely spurs innovation. We observe this outcome in a logit model of price competition

with differentiated products and quality-enhancing innovation, provided that demand is not

very price sensitive. This outcome also arises in a Hotelling model with quality-enhancing

innovation and price competition (see e.g. Gilbert and Katz, 2022). This result that a merger

may unambiguously lead to more innovation generalizes that in Jullien and Lefouili (2020), where

it is assumed that failure to innovate results in zero profits.

The second outcome arises when the opposite configuration holds: the post-merger replace-

ment effect net of the externality on the partner firm is larger than its pre-merger counterpart,

both conditional on partner success and on partner failure. In such a case, a merging firm has

weaker incentives to invest than an individual firm pre-merger, so the merger unambiguously

reduces the partner firms’ incentives to invest in innovation. This outcome occurs, for instance,

in the logit model with quality-enhancing innovation when demand is sufficiently price sensitive,

as well as in the standard logit model when innovation is meant to reduce marginal costs. The

same result arises in a market for horizontally differentiated products with the Singh and Vives

(1984) system of demands and cost-reducing innovation, regardless of whether firms compete

in prices or in quantities. We also obtain this outcome in a market for vertically differentiated

products with the quality-augmented demand system of Sutton (1997, 2001), quality-enhancing

innovation and Cournot competition, provided that the quality difference between the low and

high variants is sufficiently large. Finally, we show that it also arises in a horizontally differenti-

ated market with Singh and Vives (1984) demands, demand-enhancing innovation and Cournot

competition. This result—that a merger may lead to lower R&D investment—generalizes the

findings of Federico et al. (2017) and Denicolò and Polo (2018), although, again, in their models

a failure to innovate results in zero profits.
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The third type of outcome arises when the merged entity invests more than a stand-alone

firm in the pre-merger market if and only if the pre-merger level of innovation is sufficiently low,

or, equivalently, the marginal cost of R&D effort is high enough. This occurs when the merged

entity’s incentive to innovate is too weak relative to that of the individual firm conditional on

partner success, but too strong conditional on partner failure. In such a case, the “failure” effect

dominates when the marginal cost of effort is high, because the pre-merger level of innovation

is then low and partner failure is relatively likely. This outcome arises in the standard logit

framework when innovation increases quality, and also when it reduces marginal costs, provided

that demand is sufficiently price sensitive. We also observe it in Sutton’s model of Cournot

competition with quality-differentiated products mentioned above, provided that the quality

gap between the low- and high-quality variants is small enough.

The last type of outcome is the mirror image of the one just described: the merged entity

invests more than a stand-alone firm in the pre-merger market if and only if the pre-merger

level of innovation is sufficiently high, or, equivalently, the marginal cost of effort is low enough.

As before, this outcome arises from conflicting incentives, depending on whether the partner’s

R&D effort is successful or not. We show that this case arises naturally in the Mussa and

Rosen (1978) model of vertical product differentiation with quality-enhancing innovation and

price competition (see also Motta, 1993).

The second class of models considers settings in which R&D effort affects the payoff condi-

tional on innovation success, typically because the degree to which firms reduce marginal costs

or improve product quality is proportional to effort, while the probability of innovation success

remains independent of effort. In the literature, these models assume a fully deterministic R&D

process, in which any investment results in guaranteed innovation (cf. Motta and Tarantino,

2021; Bourreau et al., 2025). We relax this assumption by allowing the R&D process to have a

non-zero probability of failure. This leads to a new class of models which, fundamentally, yields

results similar to those discussed for the previous class. The underlying reason is that the ex-

pected payoff expression retains the same structure: it remains a weighted average of the payoffs

conditional on the partner’s success and failure, net of investment costs. Accordingly, as dis-

cussed above, the merged entity’s incentive to invest depends on how the marginal replacement

effect net of the post-merger externality on the partner compares to the corresponding marginal

replacement effect in the pre-merger setting under the two scenarios: conditional on partner

failure and conditional on partner success. Crucially, whether this marginal effect is smaller or

larger may differ between these two scenarios: it may be smaller in one case (e.g., conditional on

partner failure), leading to stronger incentives, but larger (leading to weaker incentives) in the

other (conditional on partner success). We show that, in the standard model of price competi-

tion with the Singh and Vives (1984) demand system and cost-reducing innovation, these two

incentives may either align or diverge. In contrast to Motta and Tarantino (2021, Section 3.1),
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we demonstrate that the magnitude of the probability of innovation success is crucial. When

this probability is sufficiently high (as in Motta and Tarantino, where it is set equal to one),

the merged entity’s incentives to invest, both conditional on either partner’s success or failure,

are strictly lower than those of an individual firm before the merger. Consequently, the merger

leads to a reduction in innovation. However, when the probability of success is low, the merged

entity’s incentives to invest conditional on partner failure can exceed those of a stand-alone firm.

In such cases, this effect dominates provided that investment costs are sufficiently low, leading

to an increase in innovation following the merger.

In an extensions section, we analyze the impact of R&D synergies, firm asymmetries, and

the consumer surplus effects of mergers. We first look at the role of R&D output synergies in

shaping innovation incentives. Inspired by Farrell and Shapiro (1990), we assume that innova-

tions developed by one division of the merged entity can be leveraged across the other division

to drive broader organizational benefits for the merged entity. We show that these synergies do

sometimes enhance the incentives to increase R&D of the post-merger entity, but not always,

in particular when partner success is highly likely. The reason why R&D output synergies may

disincentivize the merged entity to invest in R&D is that they create free-riding incentives be-

tween the divisions of the merged entity. We then examine the role of R&D input synergies.

Inspired by the Research Joint Ventures (RJV) literature (e.g. d’Aspremont and Jacquemin,

1988; Kamien, Muller and Zhang, 1992; Suzumura, 1992), we model R&D input synergies as

R&D spillover effects across the divisions of the merged entity. We show that these synergies

increase the likelihood that mergers result in higher R&D in all circumstances.

Our framework extends naturally to mergers between asymmetric firms. In this case, we

study the sign of the merged entity’s R&D gradient evaluated at the pre-merger asymmetric

equilibrium, which determines the direction of change in each division’s investment. This analysis

uncovers a rich set of possibilities: depending on parameters, a merger may increase or decrease

the R&D effort of each division, and total R&D can rise even if one division cuts its effort (a

“partial killer acquisition”), or fall even if one division invests more. This further underscores

how crucial the pre-merger innovation profile may be for assessing the impact of mergers on

R&D when firms are asymmetric.

Finally, we explore the impact of merger activity on consumer surplus. A merger induces a

shift in the distribution of consumer surplus, driven not only by changes in consumer-surplus

levels (through the price effects of the merger) but also by changes in the probabilities with

which different innovation outcomes occur. When a merger results in a reduction of R&D,

consumer surplus unambiguously falls. By contrast, when a merger increases R&D, the net

effect on consumer surplus depends on the balance between the innovation and price effects of

the merger. In single-product settings without synergies, the micro-founded examples provide

little support for a positive effect of mergers on consumer surplus, even when consolidation raises
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R&D investment. The intuition is that, in these environments, the price effects of the merger

are typically strong enough to offset the gains from higher innovation effort. With R&D output

synergies, consumer surplus can increase because successful innovations by one unit benefit the

other unit of the merged entity. This outcome is, for example, observed in the Singh and Vives

quantity-competition models. With R&D input synergies, it is more likely that mergers result in

substantially higher R&D by effectively lowering the marginal cost of effort. This strengthens the

innovation effect and, in turn, increases the scope for consumer-surplus gains. Finally, we show

that consumer surplus may increase in multi-product environments where the overlap between

the merging firms’ products is limited, as illustrated by a logit example with additional non-rival

products. In such cases, the adverse price effects of the merger are confined to the overlapping

product segment, whereas the innovation effects apply more broadly across the firms’ product

portfolios.

2 Related literature

Our work is related to the growing theoretical literature on the impact of mergers on innovation.

As mentioned above, this literature can be divided into two broad classes. The first comprises

models in which the R&D process is uncertain: firms succeed in R&D with a probability that

depends on their R&D effort, while the magnitude of the innovation (cost reduction, quality

improvement, or new product) is independent of effort. Federico et al. (2017), Denicolò and

Polo (2018), and Jullien and Lefouili (2020) fall into this class and study how horizontal mergers

affect the incentives to develop a new product. Federico et al. (2017) and Denicolò and Polo

(2018) assume homogeneous products and show that a merger between symmetric duopolists

reduces R&D effort; by contrast, Jullien and Lefouili (2020) identify conditions under which a

merger can spur innovation in a Hotelling model with horizontal product differentiation.3

These papers assume that a firm that fails to develop the new product receives a zero payoff.

We relax this assumption and formulate a more general model that nests their results. More

importantly, we show that a richer set of outcomes may arise: depending on the shape of the

success probability and the investment cost functions, a merger may either increase or decrease

R&D effort. Mukherjee (2022) and Federico et al. (2018) also relax the zero-payoff assumption.

Mukherjee (2022) shows that, in a quantity-competition model with the Singh and Vives (1984)

demand system and cost-reducing innovation, a merger may enhance innovation incentives, but

this result is driven by cost synergies; later in the paper, we show that, in the absence of such

synergies, this outcome cannot occur in that model. Federico et al. (2018) develop a more

3Denicolò and Polo (2018) further show that a merger can lead to more innovation when the returns to R&D
decrease moderately (or when the probability of failure is log-concave in R&D investment). In that case, the
merged entity optimally concentrates R&D in a single lab, internalising the cost of innovation duplication that
arises under competition.
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general two-stage oligopoly framework for the analysis of stochastic innovation and, due to

analytical intractability, rely on numerical simulations based on price competition with Sutton-

type, nested-logit, and CES demand systems with quality-enhancing innovation, finding that

mergers always reduce innovation incentives. Relative to these contributions, we provide an

analytical characterization of the possible merger outcomes in Proposition 2, show that the

range of outcomes is broader, and offer micro-founded examples for each case. In this sense, our

paper delivers a more complete view of the impact of mergers on R&D incentives.

The second broad class of models considers settings where R&D effort affects the payoff

conditional on innovation, while the probability of innovation success is independent of effort.

Following the seminal contribution of d’Aspremont and Jacquemin (1988), further developed

by Suzumura (1992) and Kamien, Muller and Zhang (1992), these models typically describe

settings in which firms invest in R&D to lower marginal costs and compete in the product

market. Motta and Tarantino (2021) analyze the impact of mergers on process innovation in this

framework. Starting from a simultaneous-moves model where prices and investments are chosen

together, they show that, in the absence of efficiency gains, mergers reduce cost-reducing R&D,

while increases in R&D are possible with quality-enhancing investments for certain demand

specifications. In their Section 3.1, they extend the analysis to a two-stage setup and, for two

specific demand structures (based on Shubik-Levitan and Salop), report simulation evidence that

investment post-merger is lower than pre-merger. Also relevant is Bourreau et al. (2025), who

provide a detailed characterization of the effects of mergers on R&D in a model of deterministic

innovation and highlight the roles of the demand-expansion and innovation-diversion effects. As

in Motta and Tarantino (2021), they first study a simultaneous choice of prices and R&D and

show that mergers can increase R&D with demand-enhancing innovation but not with cost-

reducing innovation. In an extension, they consider a sequential setup in which firms invest in

demand-enhancing R&D before competing in prices, and argue that the incentives to raise R&D

after a merger can be stronger than in the simultaneous-move case. A common assumption

in this line of work is that the R&D process is deterministic in the sense that effort leads to

innovation success with probability one. We relax this assumption and show in Proposition 3

that the likelihood of success may be crucial for the nature of the results; fixing this probability

to one, therefore, yields an incomplete view of the impact of mergers on innovation.

Finally, our work is related to the literature on the relationship between competition intensity

and innovation. This literature shows that the Arrow replacement effect for a monopolist need

not be larger than for a firm facing competition, and our main results build on this insight. For

instance, Chen and Schwartz (2013) study incentives to introduce new products and show that

the gain from such an innovation can be larger for a monopolist than for a firm facing competition

from sellers of the old product.4 Greenstein and Ramey (1998) analyze process innovation

4Their framework differs from ours in that there is only one product on which innovation can take place: a
successful innovation brings a new product to the market and does not affect the quality of the initial product.
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when new products are vertically differentiated from older ones and show that, under certain

conditions, competition and monopoly in the old product market can yield identical returns

from innovation, while a monopolist threatened by entry may have strictly stronger incentives to

innovate. Relatedly, Aghion et al. (2005) document an inverted-U relationship between product-

market competition and innovation, arising from the contrast between an “escape-competition”

effect (competition raising the incremental profit from innovation for leaders) and a “catching-

up” effect (competition weakening the incentives of laggard firms). Our framework provides a

unifying perspective on these forces by explicitly distinguishing two states of the world: when

rival innovation succeeds, firms have incentives to catch up, whereas when rival innovation fails,

they have incentives to escape ahead. By tracing how mergers reshape innovation incentives

in each of these two states, and how these state-contingent effects are weighted in equilibrium,

our analysis helps rationalise why different empirical studies (Aghion et al., 2005; Hashmi,

2013; Correa and Ornaghi, 2014; Beneito et al., 2017) find decreasing, increasing, or inverted-U

patterns in the relationship between competition and innovation.

The remainder of the paper is structured as follows. Section 3 presents the general model,

identifies the key externalities, and compares the optimal investment in the merger scenario

with that in the non-cooperative equilibrium. Section 4.1 zooms in on the conditions under

which mergers spur or discourage innovation when the probability of success is endogenous but

innovation outcomes are fixed, while Section 4.2 provides analogous analysis for models in which

innovation outcomes are endogenous but the success probability is fixed. Section 5 analyses

synergies, asymmetries, and the effects of mergers on consumer surplus. Section 6 concludes.

Proofs and detailed examples illustrating our results are collected in the Appendix.

3 The model and preliminary intuition

3.1 Model description and assumptions

We consider a duopoly market with symmetric firms, which we index by i and j.5 Firms interact

in the market during two stages. In the first stage, firms invest in R&D. Let xi and xj the

amounts firms i and j put in R&D. In the second stage, upon observing the outcomes of their

R&D investments, firms compete in the market.

In the innovation stage, we assume that if a firm, say i, invests in R&D an amount xi > 0,

then it costs the firm C(xi), with C ′ > 0 and C ′′ > 0. Investment need not result in innovation

success and we denote by β(xi) ∈ (0, 1] the probability of successful innovation, with β′ > 0 and

β′′ < 0.6 In the competition stage, firms compete in the market to sell their products. To keep

the model as general as possible, we remain agnostic about the exact nature of competition in the

5We examine the impact of firms’ asymmetries in Section 5.2.
6Further, we assume that β(0) = 0 and limx→∞ β(x) = 1.
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second stage and formulate reduced-form payoffs corresponding to the possible subgames that

ensue after the innovation stage is over.7 The following table describes the possible subgames

and the notation we use to denote the corresponding firms’ payoffs:

Firm j
Success(s) Failure(f)

Firm i Success(s) πss
i (xi;xj), π

ss
j (xj;xi) πsf

i (xi), π
fs
j (xi)

Failure(f) πfs
i (xj), π

sf
j (xj) πff

i , πff
j

Table 1: Firms’ conditional payoffs under product competition

Note that the super-indices that describe a given subgame are ordered by player. For example,

in the subgame where firm i’s innovation is successful while firm j’s is not, we index the payoff

corresponding to firm i by “sf” to indicate that this is the payoff of a successful innovator

competing with a failing one, and, likewise, the payoff corresponding to firm j is indexed by

“fs”. Hence, the first entry of the super-index refers to the innovation outcome of the player in

question and the second entry to the innovation outcome of the rival player.

An important aspect of this formulation is that, provided the firms’ R&D projects are suc-

cessful, it allows for the conditional payoffs to depend on firms’ investment levels. This is often

the case in models of cost-reducing and product innovations. To ensure firms have incentives to

invest in R&D and that their problem is strictly concave, we next make some natural assumptions

on these conditional payoffs.8

Assumption 1. Firms’ conditional payoffs.

i. Conditional payoffs of a firm i rank as follows: πss
i (xi, xj) ≥ πfs

i (xj) and/or πsf
i (xi) ≥

πff
i (xj), with one of them being a strict inequality.

ii. Firm i’s conditional payoffs πss
i (·) and πsf

i (·) are continuous in xi and slope as follows:
∂πss

i (·)
∂xi

≥ 0 and/or
∂πsf

i (·)
∂xi

≥ 0, with one of them being a strict inequality.

iii. β(x) is sufficiently concave, and C(x) sufficiently convex.

Assumptions 1(i) and (ii) are relatively weak, only requiring that innovations increase some

of the conditional payoffs of the firms. They hold in all the examples we use to illustrate our

results (see Appendix B). Assumption 1(iii) ensures the strict concavity of a firm’s payoff, which

guarantees the existence of a Nash equilibrium in pure strategies.

7Later in the paper, to illustrate our main Propositions, we use various examples based on single-product firms
engaging in quantity- or price-setting games. However, an advantage of the reduced-form approach is that our
model can capture under-researched situations where, for example, firms sell multiple products (see, in particular,
Section 5.3).

8As an example, suppose single-product firms and price competition in the second-stage. Then, antic-
ipating the second-stage Nash equilibrium of firms whose R&D investments are successful, i.e. p(x) =
(pi(xi;xj), pj(xi;xj)), the first-stage payoff is πss

i (xi;p(x)), which we write more shortly as πss
i (xi;xj).
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3.2 Pre-merger market equilibrium

The innovation stage payoff of a firm i investing xi in R&D is given by:

Eπi(xi;xj) = βi(xi)
[
βj(xj)π

ss
i (xi, xj) + (1− βj(xj))π

sf
i (xi)

]
+(1− βi(xi))

[
βj(xj)π

fs
i (xj) + (1− βj(xj))π

ff
i

]
− C(xi),

The bracket in the first line of this expression is firm i’s payoff conditional on its innovation

project being successful; this payoff depends on the rival’s innovation outcome. The bracket in

the second line gives firm i’s payoff conditional on failing to innovate.

Assuming the equilibrium is interior, it is given by the solution to the system of first-order

conditions (FOCs) for profits-maximization:

∂βi(·)
∂xi

[
βj(·)

[
πss
i (xi, xj)− πfs

i (xj)
]
+(1− βj(·))

[
πsf
i (xi)− πff

i

]]
︸ ︷︷ ︸

marginal gains from increasing success probability

(1)

+ βi(·)

[
βj(·)

∂πss
i (xi, xj)

∂xi

+ (1− βj(·))
∂πsf

i (xi)

∂xi

]
︸ ︷︷ ︸

marginal gains from increasing conditional payoffs

−C ′(xi) = 0, and similarly for firm j.

This FOC says that a firm should continue to increase its R&D investment till the marginal

revenue equals the marginal cost of investment. An increase in xi has two effects on the expected

payoff of a firm. On the one hand, it increases the probability of innovation. The first line of this

FOC describes this effect, keeping constant conditional payoffs. On the other hand, it increases

a firm’s payoff conditional on innovation. The second line of this FOC describes this second

effect, keeping constant the probability of innovation. For later use, let x∗ denote the pre-merger

symmetric equilibrium R&D effort.

To the best of our knowledge, the literature has not presented models in which these two

effects of increasing innovation effort are in place together. There is a group of papers, namely,

Federico et al. (2017, 2018), Denicolò and Polo (2018), Jullien and Lefouili (2020) and Mukher-

jee (2022), focusing on stochastic R&D in which the first effect is examined but, owing to their

assumptions on the constancy of the conditional payoffs, the second effect is shut down. Like-

wise, there is a second group of papers of deterministic R&D, namely Motta and Tarantino

(2021), Bourreau and Jullien (2018), and Bourreau et al. (2025), where success probabilities are

exogenously set to 1 and hence the first effect is shut down by construction.

3.3 Mergers

We now examine the impact of mergers on R&D investment. Consider now that firms i and

j merge and assume it is optimal for the merged entity to maintain the two research units of

the constituent firms. A merger has two important implications. On the one hand, a merger

11



results in the monopolisation of the product market, thereby, as it is by now well known, creating

upward pressure on prices. On the other hand, a merger results in the monopolisation of the

innovation market. These two effects are related to one another and a complete understanding

of the impact of mergers on innovation ought to take both of them into account.

We capture the price effects of mergers by specifying reduced-form conditional payoffs that

are higher than pre-merger and to avoid notation confusion we label the monopoly payoffs with

the “hat” symbol. Specifically, the conditional payoffs of the divisions within the merged entity

are given in the following table:

Division j
Success(s) Failure(f)

Division i Success(s) π̂ss
i (xi;xj), π̂

ss
j (xj;xi) π̂sf

i (xi), π̂
fs
j (xi)

Failure(f) π̂fs
i (xj), π̂

sf
j (xj) π̂ff

i , π̂ff
j

Table 2: Conditional payoffs for the divisions within the merged entity

In describing the payoffs in Table 2, we assume that the conditional payoffs depend on

the divisions’ investment levels only in the event of successful innovation. The fact that the

merged entity coordinates prices in the product market implies that π̂ss
i (xi, xj) ≥ πss

i (xi, xj),

π̂sf
i (xi) ≥ πsf

i (xi), π̂
fs
i (xj) ≥ πfs

i (xj), π̂
ff
i ≥ πff

i for firm i and/or j. Further, in addition to

assuming also here that β(x) is sufficiently concave, and C(x) sufficiently convex, for similar

reasons as in the pre-merger market, we make the following assumptions:

Assumption 2. Monopoly conditional payoffs.

i. Conditional payoffs of a division i of the merged entity satisfy: π̂ss
i (xi, xj) ≥ π̂fs

i (xj) and/or

π̂sf
i (xi) ≥ π̂ff

i , with one of them being strict inequality.

ii. Division i’s conditional payoffs π̂ss
i (·) and π̂sf

i (·) are continuous and slope as follows:
∂π̂ss

i (·)
∂xi

≥ 0 and/or
∂π̂sf

i (·)
∂xi

≥ 0, with one of them being strict inequality.

Because the merged entity keeps running the two research labs of the constituent firms, its

investment problem consists of choosing investments xi and xj to maximize the (joint) payoff:

Eπm(xi, xj) = βi(xi)
[
βj(xj)π̂

ss
i (xi, xj) + (1− βj(xj))π̂

sf
i (xi)

]
+(1− βi(xi))

[
βj(xj)π̂

fs
i (xj) + (1− βj(xj))π̂

ff
i

]
− C(xi)

+βj(xj)
[
βi(xi)π̂

ss
j (xi, xj) + (1− βi(xi))π̂

sf
j (xj)

]
+(1− βj(xj))

[
βi(xi)π̂

fs
j (xi) + (1− βi(xi))π̂

ff
j

]
− C(xj)

12



This payoff is constructed as the sum of the payoffs of the merging parties. Our assumptions

imply that the Hessian matrix is negative definite. Hence, assuming that an interior maximum

exists, it is given by the solution of the system of FOCs. The FOC for the maximization of the

profits of the merged entity with respect to xi is given by:

FOCm
i (xi, xj) ≡

∂βi(·)
∂xi

[
βj(·)

[
π̂ss
i (xi, xj)−π̂fs

i (xj)
]
+(1− βj(·))

[
π̂sf
i (xi)− π̂ff

i

]]
︸ ︷︷ ︸

marginal gains from increasing success probability

(2)

+
∂βi(·)
∂xi

[
βj(·)

[
π̂ss
j (xi, xj)− π̂sf

j (xj)
]
+ (1− βj(·))

[
π̂fs
j (xi)− π̂ff

j

]]
︸ ︷︷ ︸

innovation externality via success probability

+ βi(·)

[
βj(·)

∂π̂ss
i (xi, xj)

∂xi

+(1− βj(·))
∂π̂sf

i (xi)

∂xi

]
︸ ︷︷ ︸

marginal gains from increasing conditional payoffs

+ βi(·)

[
βj(·)

∂π̂ss
j (xi, xj)

∂xi

+ (1− βj(·))
∂π̂fs

j (xi)

∂xi

]
︸ ︷︷ ︸

innovation externality via second-stage payoffs

−C ′(xi) = 0, and similarly for xj.

A comparison between the FOCs pre-merger and post-merger is central to the understanding of

the complexity of the impact of mergers on R&D investment. Moreover, it is key to understand

why the different assumptions in the literature have led to distinct results. Comparing the post-

merger FOC (2) to the pre-merger one in equation (1) leads to three important observations.

• First, because the divisions of the merged entity coordinate their prices in the market

stage, the post-merger FOC involves monopoly rather than duopoly payoffs. This means

that when a division of the merged entity chooses its R&D effort, it does so factoring in

higher conditional payoffs than pre-merger. This is reflected in the fact that the marginal

gains from investing, in lines 1 and 3 of the FOC (2), are analogous to those in the FOC (1)

but with competitive payoffs replaced by monopoly payoffs.9

• Second, the post-merger FOC reflects the internalization of two innovation externalities

that typically act in a negative direction on the incentives to invest.

– The first is an externality arising because when division i of the merged-entity in-

creases its R&D effort xi, it increases its success probability, which reduces the returns

from investment of its partner j (this is the second line of the FOC (2)).

9Higher conditional payoffs are the result of charging higher prices, or equivalently supplying lower quantities,
in the second stage. When innovation takes the form of a quality improvement that shifts demand outward, a
division of the merged entity evaluates this shift at monopoly prices and quantities rather than at competitive
ones. As emphasized by Spence (1975) (see also Gaudin, 2025), the profitability of a given upward shift in
demand depends on the output level and the price–cost margin at which the firm operates, so a merger can raise
or lower investment incentives depending on whether the demand shift is stronger at low or at high quantities, a
point we return to in Section 4.
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– The second externality arises because an increase in division i’s R&D effort, xi, re-

duces the partner division j’s second-stage conditional payoffs (see the last line of the

FOC (2)).

The standard approach to address the question whether a merger leads to more or less

investment compared to the pre-merger equilibrium consists of studying the sign of the FOC (2)

evaluated at the pre-merger symmetric equilibrium x∗. This gives:

FOCm
i (x∗) =

∂βi(x
∗)

∂xi

[
βj(x

∗)
[
π̂ss
i (x∗, x∗)−π̂fs

i (x∗)
]
+(1− βj(x

∗))
[
π̂sf
i (x∗)− π̂ff

i

]]
(3)

+
∂βi(x

∗)

∂xi

[
βj(x

∗)
[
π̂ss
j (x∗, x∗)− π̂sf

j (x∗)
]
+ (1− βj(x

∗))
[
π̂fs
j (x∗)− π̂ff

j

]]
+ βi(x

∗)

[
βj(x

∗)
∂π̂ss

i (x∗, x∗)

∂xi

+(1− βj(x
∗))

∂π̂sf
i (x∗)

∂xi

]

+ βi(x
∗)

[
βj(x

∗)
∂π̂ss

j (x∗, x∗)

∂xi

+ (1− βj(x
∗))

∂π̂fs
j (x∗)

∂xi

]
− C ′(x∗).

Since the FOC (1) holds (with equality) at the pre-merger market symmetric equilibrium x∗,

equation (3) can be simplified to:

FOCm
i (x∗) =

∂βi(x
∗)

∂xi

[
βj(x

∗)
[
∆ss

i (x
∗, x∗)−∆fs

i (x∗)
]
+(1− βj(x

∗))
[
∆sf

i (x∗)−∆ff
]]

(4)

+
∂βi(x

∗)

∂xi

[
βj(x

∗)
[
π̂ss
j (x∗, x∗)− π̂sf

j (x∗)
]
+ (1− βj(x

∗))
[
π̂fs
j (x∗)− π̂ff

j

]]
+ βi(x

∗)

[
βj(x

∗)
∂∆ss

i (x
∗, x∗)

∂xi

+(1− βj(x
∗))

∂∆sf
i (x∗)

∂xi

]

+ βi(x
∗)

[
βj(x

∗)
∂π̂ss

j (x∗, x∗)

∂xi

+ (1− βj(x
∗))

∂π̂fs
j (x∗)

∂xi

]
.

In this expression, to shorten its length, we write ∆ss
i (·) ≡ π̂ss

i (·)−πss
i (·) for the additional profits

accruing to division i in the subgame where both research labs succeed, arising solely from price

coordination. Define ∆sf
i (·), ∆fs

i (·) and ∆ff
i (·) analogously.

4 Results

Evaluating the sign of the FOC in (4) is, in principle, difficult because there are many terms, some

of which have opposite signs. However, the following definitions, which have a straightforward

interpretation, allow us to establish our first general result. Let:

K1 ≡ π̂ss
i − π̂fs

i −
(
π̂sf
j − π̂ss

j

)
−
(
πss
i − πfs

i

)
,
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K2 ≡ π̂sf
i − π̂ff

i −
(
π̂ff
j − π̂fs

j

)
−
(
πsf
i − πff

i

)
,

K3(x
∗) ≡ ∂π̂ss

i (x∗, x∗)

∂xi

+
∂π̂ss

j (x∗, x∗)

∂xi

− ∂πss
i (x∗, x∗)

∂xi

,

K4(x
∗) ≡ ∂π̂sf

i (x∗, x∗)

∂xi

+
∂π̂fs

j (x∗, x∗)

∂xi

− ∂πsf
i (x∗, x∗)

∂xi

.

Proposition 1. A merger results in an increase in R&D if and only if:

∂βi(x
∗)

∂xi

[βjK1 + (1− βj)K2] + βi [βjK3(x
∗) + (1− βj)K4(x

∗)] > 0. (5)

Proposition 1 reveals that the incentives of the merged entity to increase or decrease R&D

investment are related to the signs of the expressions K1, K2, K3(x
∗) and K4(x

∗). These expres-

sions all have a similar interpretation. Specifically, the term K1 represents the difference between

division i’s gains from innovation (π̂ss
i − π̂fs

i ) net of the externality on the division j (π̂sf
j − π̂ss

j ),

and firm i’s gains from innovation in the pre-merger market (πss
i −πfs

i ), all conditional on partner

success. As indicated above, we refer to the gains post- and pre-merger as replacement effects.

Hence, K1 can be interpreted as the difference between division i’s post-merger replacement

effect net of the externality on division j, and firm i’s pre-merger replacement effect, conditional

on partner success. Similarly, the term K2 represents the analogous difference, but conditional

on partner failure. The terms K3(x
∗) and K4(x

∗) also have a similar interpretation; however,

because they involve marginal changes in the conditional payoffs, we refer to them as marginal

replacement effects.10

A straightforward implication of Proposition 1 is the following. Consider a merger in which

there are no price effects, for example because prices are regulated, as is the case for some

pharmaceutical products. Alternatively, it could be that, while the R&D departments manage

to coordinate investments after the merger, the sales departments do not. In such a case,

π̂ss
i (·) = πss

i (·), π̂sf
i (·) = πsf

i (·), π̂fs
i (·) = πfs

i (·) and π̂ff
i (·) = πff

i (·), and hence K1, K2, K3(x
∗)

and K4(x
∗) are all negative. As a result, (5) is strictly negative. Hence, in the absence of gains

from price (or quantity) coordination in the market stage, the merged firm would simply adjust

its investment in order to internalize the innovation externalities (which are negative), thereby

reducing its R&D effort.

More generally, when price effects are present, the sign of (5) is ambiguous and quite difficult

to analyse because there are four terms that need to be evaluated and may potentially have

10A similar interpretation of K1 and K2 appears in Federico et al. (2018). Another way to interpret K1

and K2 is in terms of coordination and diversion effects, as in Chen and Schwartz (2013): the difference in
replacement effects is analogous to their coordination effect, and the externality on the other division is analogous
to their diversion effect. Similarly, K3(x

∗) and K4(x
∗) can be related to a combination of the market-power,

demand-expansion, and innovation-diversion effects highlighted in Bourreau et al. (2025). However, because our
framework is a two-stage game in which firms first choose R&D effort and then compete, there is an additional
strategic effect of firms’ investments on profits (details on this later).
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different signs. To do this in a didactic way, we now proceed to discuss the two classes of models

that have received attention in the literature. The first class of models, which is studied in

Section 4.1, refers to models where R&D effort impacts the success probabilities, while keeping

the innovation outcomes independent of R&D investment. The second class of models, which

is studied in Section 4.2, refers to models where R&D effort impacts the innovation outcomes,

while keeping the success probabilities independent of R&D effort. For both classes of models,

we show the conditions under which mergers may spur innovation or discourage it.

4.1 Endogenous probability of success

In this section we focus on a class of models in which firms choose their R&D effort to influence

the success probability of their projects, while the payoffs conditional on success do not depend

on R&D effort. Examples of existing models with these features include Federico et al. (2017,

2018), Denicolò and Polo (2018), Jullien and Lefouili (2020) and Mukherjee (2022). With the

exception of Federico et al. (2018) and Mukherjee (2022), these models can be regarded as

models of R&D for entry because firms obtain positive payoffs only upon project success. Our

next result shows that this restriction is important: allowing firms to earn positive profits even

when their R&D projects fail, for instance by entering (or remaining in) the market with the

status quo technology, leads to a much richer set of predictions for the impact of mergers on

R&D. Federico et al. (2018) allow for entry upon project failure, but their focus on oligopoly

markets impedes a general analytical characterization. In their numerical examples, mergers only

reduce R&D, whereas our next result provides a full analytical characterization of all possible

outcomes.11

Proposition 2. In markets where R&D effort increases the probability of project success but

does not affect the innovation outcome conditional on success:

(i) If K1 ≥ 0 and K2 ≥ 0, then xm ≥ x∗ (with equality if K1 = K2 = 0).

(ii) If K1 ≤ 0 and K2 ≤ 0, then xm ≤ x∗ (with equality if K1 = K2 = 0).

(iii) If K1 < 0 and K2 > 0, then xm > x∗ if and only if x∗ < β−1
(

K2

K2−K1

)
.

(iv) If K1 > 0 and K2 < 0, then xm > x∗ if and only if x∗ > β−1
(

K2

K2−K1

)
.

This proposition makes two relevant points. First, a merger may increase or decrease R&D

investment. Second, whether a merger spurs innovation may depend on the pre-merger level of

R&D effort. We now elaborate on these two observations.

11Mukherjee (2022) also allows firms to earn profits upon project failure, but his study differs from ours
because he incorporates synergies in his model, while the focus in this section is on the effects of price and R&D
decision-making coordination. We postpone the analysis of synergies to Section 5.
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Part (i) of Proposition 2 describes a situation in which, regardless of whether the rival’s

project succeeds or fails, the pre-merger replacement effect is larger than the corresponding

post-merger effect net of the externality on the partner. In such situations, a merger leads to

an increase in R&D. Part (ii) refers to the opposite case. More interestingly, parts (iii) and

(iv) describe environments where the pre-merger level of innovation, and thus the shapes of the

success probability and the R&D cost functions, plays a crucial role. Specifically, in part (iii),

conditional on the rival’s project succeeding, the pre-merger replacement effect is smaller than

the post-merger effect net of the externality on the partner, whereas, conditional on the rival’s

project failing, the opposite holds. In such a case, there are two effects with opposite signs: the

first pushes the merged entity to undertake less R&D, the second pushes it to invest more. A

merger spurs innovation whenever the second effect dominates. This naturally occurs when the

pre-merger level of R&D effort is sufficiently low, because then the probability that the rival’s

project succeeds is low. Part (iv) refers to the reverse situation where, conditional on the success

of the rival’s project, the pre-merger replacement effect is larger than the post-merger one net

of the external effect on the partner, while, conditional on the failure of the rival’s project, the

opposite holds. In that case, for a merger to spur innovation, the pre-merger level of R&D effort

must be sufficiently high; otherwise, the probability that the rival’s project succeeds is too low

and the latter effect dominates.

Proposition 2 advances the literature by pointing to a broader set of conditions under which

mergers may discourage or spur innovation. Before turning to examples that illustrate the various

results in Proposition 2, it is useful to clarify what drives the different possible signs of K1 and

K2 across settings. The key is to decompose these terms into their underlying components. For

intuition, we hold fixed the type of product-market interaction in the second stage (e.g. Bertrand

or Cournot) and distinguish between two broad classes of innovations: demand- or quality-

enhancing innovations, on the one hand, and cost-reducing innovations, on the other. This

allows us to isolate how market power, Spence (1975)-type quantity effects, strategic responses,

and cannibalisation interact in each class of models to determine the signs of K1 and K2.

Quality-enhancing innovations. Consider first the case of a quality-enhancing innovation.

To fix ideas, assume that firms sell horizontally differentiated products and compete in prices.12

In addition, each firm can invest to increase the quality of its product. Let the quality in case

of project failure be sf and the quality in case of success be ss, with ∆s = ss − sf > 0. For any

pair of qualities (si, sj), let (p
∗
i (si, sj), p

∗
j(si, sj)) denote the (pre-merger) price equilibrium in the

second stage. Anticipating these equilibrium prices, the reduced-form profits of a stand-alone

firm i in the first stage are

πi(si; sj) =
(
p∗i (si, sj)− c

)
qi
(
si, sj, p

∗
i (si, sj), p

∗
j(si, sj)

)
.

12Price competition is just one possible mode of second-stage interaction covered by Proposition 2. If firms
competed in quantities instead, similar intuitive arguments could be formulated.
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A small increase in the quality of firm i’s product then affects its profit through three channels:

(i) a direct, positive effect on its own demand; (ii) an indirect effect via its own equilibrium price,

which can be ignored by virtue of the envelope theorem; and (iii) an indirect, strategic effect via

the rival’s equilibrium price, which is negative because a higher si induces firm j to cut its price

to protect its sales (see also Bourreau et al., 2025). Accordingly, firm i’s gain from innovation in

the pre-merger market, given by πss
i − πfs

i when the partner’s project succeeds and by πsf
i − πff

i

when it fails, can be approximated as:

πs−
i − πf−

i ≃ ∆si

(
(p∗i − c)

∆qi
∆si︸ ︷︷ ︸

direct effect > 0

+ (p∗i − c)
∆qi
∆p∗j︸︷︷︸
>0

∆p∗j
∆si︸︷︷︸
<0︸ ︷︷ ︸

strategic effect < 0

)
, (6)

where the superscripts “s−” and “f−” indicate that this approximation holds both when the

partner’s innovation effort succeeds (states ss or fs) and when it fails (states sf or ff).

After the merger, the integrated firm chooses prices to maximise the sum of division i’s

and division j’s profits. Anticipating the optimal post-merger prices (p̂i(si, sj), p̂j(si, sj)), the

reduced-form profits of the merged entity in the first stage are:

Π(si; sj) =
(
p̂i(si, sj)−c

)
qi
(
si, sj, p̂i(si, sj), p̂j(si, sj)

)
+
(
p̂j(si, sj)−c

)
qj
(
si, sj, p̂i(si, sj), p̂j(si, sj)

)
.

By the envelope theorem, a small increase in division i’s quality affects the merged entity’s profit

only through the induced changes in quantities, so that its gain from innovation satisfies:

π̂s− − π̂f− ≃ ∆si

(
(p̂i − c)

∆qi
∆si︸ ︷︷ ︸

direct effect > 0

+ (p̂j − c)
∆qj
∆si︸ ︷︷ ︸

cannibalisation < 0

)
. (7)

The first term is the direct effect for division i, now evaluated at the post-merger price p̂i; the

second term captures the externality on division j, which is typically negative because the quality

improvement by i diverts demand away from j.

In both decompositions (6) and (7), the first term is a first-order (direct) effect of the quality

improvement, while the remaining terms are second-order (indirect) effects operating through

induced changes in prices and the rival’s quantity. On the direct side, there are two components.

First, there is a market-power effect: because the merged entity typically sets a higher price

(p̂i > p∗i ) and therefore has a higher price-cost margin, a given outward shift in demand tends to

be more profitable for the merged entity than for a stand-alone firm. Second, there is a Spence

(1975)-type quantity effect: the profitability of a given quality-induced shift in demand depends

on the output level at which it is evaluated. If the quality improvement shifts demand relatively

more at low than at high quantities, then the merged entity, which operates at lower output

and higher margin, enjoys a larger direct gain from innovation than a stand-alone firm; if, by
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contrast, demand shifts relatively more at high quantities, the opposite may occur in which case

the direct effect can work against the merger.

On the indirect side, the strategic and cannibalisation effects differ across market structures

and states. Pre-merger, a stand-alone firm is subject to a strategic effect: by improving its

product, it induces the rival to cut its price, which reduces the profitability of innovation (the

second term in (6)). Post-merger, this strategic effect is internalised, but a cannibalisation effect

appears: division i’s quality improvement diverts business away from division j (the second term

in (7)). The balance between these forces depends on whether innovation amounts to catching

up or escaping.

Evaluating the sign of K1 (the catch-up case), which subtracts the pre-merger gains from

innovation conditional on partner success (πss
i − πfs

i ) from the post-merger ones (π̂ss − π̂fs),

boils down to comparing (6) and (7).13 In this catch-up case, division i’s innovation mainly

steals business from the leading partner inside the merged entity, so the cannibalisation effect

is relatively strong, while the strategic effect for a stand-alone firm is relatively weak. In this

situation, the indirect effects tend to make K1 negative. Hence, conditional on partner success,

if the first-order effects are of similar magnitude, the merged entity is more likely to have weaker

incentives to invest than a stand-alone firm.

Evaluating the sign of K2 (the escape case), which deduces the pre-merger gains from inno-

vation conditional on partner failure (πsf
i −πff

i ) from the post-merger ones (π̂sf − π̂ff ), amounts

to comparing (6) and (7) conditional on partner failure. In this escape configuration, firm i’s

innovation allows it to move ahead of a low-quality rival, which induces a strong strategic re-

sponse. The laggard rival reacts by cutting its price aggressively, sharply reducing the gain

from investing. Within the merged entity, however, the cannibalisation effect is comparatively

weak, because a large fraction of the additional sales generated by the escaping division comes

at the expense of the outside option, rather than the partner division. As a result, the indirect

effects tend to make K2 positive. Hence, conditional on partner failure, if the first-order direct

effects are similar, the merged entity is more likely to have stronger incentives to invest than a

stand-alone firm.

Cost-reducing innovations. Consider now the case of cost-reducing innovations. As before,

assume that firms compete in prices. Initially, firms operate at marginal costs equal to ci = cf ,

i = 1, 2. An individual firm can invest to decrease its marginal cost from cf to cs, with cf >

cs ≥ 0. For any pair of marginal costs (ci, cj), let (p
∗
i (ci, cj), p

∗
j(ci, cj)) denote the (pre-merger)

price equilibrium in the second stage. Anticipating these equilibrium prices, the reduced-form

profits of a stand-alone firm i in the first stage are:

πi(ci; cj) = p∗i (ci, cj) qi
(
p∗i (ci, cj), p

∗
j(ci, cj)

)
− C

(
ci, qi

(
p∗i (ci, cj), p

∗
j(ci, cj)

))
.

13Here we use shorter notation for the total profit of the merged entity in the various innovation states as
follows: π̂ss ≡ π̂ss

i + π̂ss
j , π̂fs ≡ π̂fs

i + π̂sf
j , π̂sf ≡ π̂sf

i + π̂fs
j , π̂ff ≡ π̂ff

i + π̂ff
j .
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A small decrease in firm i’s marginal cost affects its profit through three channels: (i) a

direct, positive cost-saving effect; (ii) an indirect effect via its own equilibrium price, which can

be ignored by virtue of the envelope theorem; and (iii) an indirect, strategic effect via the rival’s

equilibrium price, which is negative because a lower marginal cost ci induces firm j to cut its

price to protect its sales (see also Motta and Tarantino, 2021). Accordingly, firm i’s gain from

innovation in the pre-merger market can be approximated as:

πs−
i − πf−

i ≃ ∆ci

(
−∆C(·)

∆ci︸ ︷︷ ︸
direct effect > 0

+

(
p∗i −

∆C(·)
∆qi

)
∆qi
∆p∗j︸︷︷︸
>0

∆p∗j
∆ci︸︷︷︸
<0︸ ︷︷ ︸

strategic effect < 0

)
, (8)

where the superscripts “s−” and “f−” have the same meaning as above, i.e. the expression

applies both when the partner’s project succeeds and when it fails.

After the merger, the integrated firm chooses prices to maximise the sum of division i’s

and division j’s profits. Anticipating the optimal post-merger prices (p̂i(ci, cj), p̂j(ci, cj)), the

reduced-form profit of the merged entity in the first stage is:

Π(ci; cj) = p̂i(ci, cj) qi
(
p̂i(ci, cj), p̂j(ci, cj)

)
+ p̂j(ci, cj) qj

(
p̂i(ci, cj), p̂j(ci, cj)

)
− C

(
ci, qi

(
p∗i (ci, cj), p

∗
j(ci, cj)

))
− C

(
cj, qj

(
p∗i (ci, cj), p

∗
j(ci, cj)

))
.

By the envelope theorem, a small increase in xi affects the merged entity’s profit only through

the induced change in its cost, so that:

π̂s− − π̂f− ≃ ∆ci

(
−∆C(·)

∆ci︸ ︷︷ ︸
direct effect > 0

)
. (9)

In both decompositions, the first term is a first-order (direct) effect of the cost reduction,

while the remaining term in (8) is a second-order (indirect) strategic effect operating through

induced changes in the rival’s price.

On the direct side, there is no analogue of the Spence (1975) quantity effect driven by

demand shifts. The direct gain from a marginal increase in xi comes from cost savings and is

proportional to the quantity sold. Since a stand-alone firm typically produces a larger quantity

than a division of the merged entity in a given state, the direct effect, −∆C(·)/∆ci, is always

larger for the stand-alone firm than for the merged entity. Taken in isolation, this pushes the

post-merger gain from cost reduction below the pre-merger one and works against the merger.

On the indirect side, only the pre-merger firm is exposed to a strategic effect: by becoming

more efficient, the stand-alone firm induces the rival to cut its price, which reduces the prof-

itability of its cost-reducing effort (the second term in (8)). Post-merger, this strategic effect is

internalised and disappears from (9); the merged entity faces only the direct cost-saving effect.
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The strength of the strategic effect, however, depends on whether innovation amounts to catch-

ing up or escaping: in the catch-up configuration (partner success), the innovation mainly serves

to match the rival’s marginal cost, so the induced change in the rival’s price is limited; in the

escape configuration (partner failure), the innovation creates a substantial cost advantage, and

the laggard rival has a strong incentive to cut its price aggressively to protect its sales.

Evaluating the sign of K1 (the catch-up case, i.e. conditional on partner success) amounts to

comparing (8) and (9) conditional on partner success: π̂ss − π̂fs − (πss
i − πfs

i ). In this catch-up

configuration, the strategic effect for the stand-alone firm is relatively weak, while the direct cost-

saving effect is stronger for the stand-alone firm than for the merged entity because it produces

more. As a result, the direct-effect disadvantage of the merged entity dominates, so that K1 is

expected to be negative: conditional on partner success, the merged entity typically has weaker

incentives to invest in cost-reducing R&D than a stand-alone firm.

Signing K2 (the escape case, i.e. conditional on partner failure) implies comparing (8) and

(9) conditional on partner failure, i.e. π̂sf − π̂ff − (πsf
i − πff

i ). In the escape configuration, firm

i’s innovation allows it to produce more than a high-cost rival, which induces a strong strategic

response: the rival reacts by cutting its price aggressively, sharply reducing the stand-alone

firm’s gain from investing in cost reduction. After the merger, this strategic loss is internalised

and no longer appears in (9), while the direct cost-saving effect remains. Hence, even though

the stand-alone firm has a stronger direct effect because it produces more, the removal of the

large negative strategic term can tilt the balance in favour of the merged entity. As a result,

K2 can turn positive: conditional on partner failure, the internalisation of the strategic effect

may dominate the direct-effect disadvantage of the merged entity, so that the merged firm has

stronger incentives to invest in cost-reducing innovation than a stand-alone firm.

We now list a series of examples illustrating the different parts of Proposition 2. The complete

derivations are provided in Appendix B.

• Merger leads to higher R&D effort. Consider a market where firms sell horizontally

differentiated products, compete in prices, and undertake quality-enhancing innovations,

with demand given by a logit system and price-sensitivity parameter κ = 1/2 (see Ap-

pendix B for details). Initially, firms sell low-quality products and can invest in R&D to

increase the probability of offering high quality. We show that there exist parameter values

for which both K1 and K2 are strictly positive in this setting, so that mergers spur inno-

vation, thereby illustrating Proposition 2(i). A similar result arises in a Hotelling model

with price competition and quality-enhancing innovations á la Gilbert and Katz (2021).

Finally, in this Hotelling model the same conclusion holds when R&D effort is directed at

reducing marginal costs rather than improving quality.

• Merger leads to lower R&D effort. When, in the logit model with quality-enhancing

21



innovations described above, the price-sensitivity parameter is increased to κ = 2, both

K1 and K2 become strictly negative, so mergers discourage innovation, thereby illustrating

Proposition 2(ii). The same outcome arises in an analogous logit model with cost-reducing

innovations with κ = 1. It also obtains in a market for horizontally differentiated products

with the Singh and Vives (1984) demand system and cost-reducing innovation, whether

firms compete in prices or quantities. Finally, we find the same pattern in a Cournot model

with Sutton’s (2001) demand system and quality-enhancing innovations for a sufficiently

large gap between low and high quality.

• Merger leads to higher R&D effort if the marginal cost of effort is high, and

to lower R&D effort otherwise. When, in the logit model with quality-enhancing

innovations described above, price sensitivity is set to the standard value κ = 1, K1

becomes strictly negative while K2 is strictly positive. In this case, if R&D costs are

sufficiently steep, the pre-merger level of innovation is low enough that a merger spurs

innovation; otherwise, a merger discourages it. This illustrates Proposition 2(iii). The

same pattern arises in the logit setting with cost-reducing innovations and κ = 2. We

also obtain an instance of Proposition 2(iii) in the Cournot model with Sutton’s (2001)

demand system and quality-enhancing innovation when the quality gap between the low-

and high-quality products is sufficiently small.

• Merger leads to higher R&D effort if the marginal cost of effort is low, and to

lower R&D effort otherwise. Consider a duopoly with price competition and demands

derived from Mussa and Rosen’s (1978) model. Initially, firms sell low-quality products

and can invest to increase the likelihood of offering high quality. In this model, K1 is

strictly positive while K2 is strictly negative. In such a case, if R&D costs are small, the

pre-merger level of innovation is high and a merger spurs innovation; otherwise, a merger

discourages it. This illustrates Proposition 2(iv).

Compared to the existing literature, Proposition 2 (and the examples just provided) identify

a broader range of environments where mergers can discourage or spur innovation. To the best

of our knowledge, there are no existing results where the pre-merger level of innovation is critical

to the assessment of the impact of mergers on R&D.

Proposition 2 captures as particular cases two well-known theoretical results in the literature,

namely, the negative effect of mergers on R&D in Federico et al. (2017)14 and the positive effect

of mergers on R&D identified in Jullien and Lefouili (2020). In these papers, the pre-merger

level of innovation is irrelevant because of the restrictive assumption that firms cannot enter the

market upon project failure.

14Also observed in Denicolò and Polo’s (2018) interior equilibrium.
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Corollary (to Proposition 1). Assume that firms can only operate in the market upon a

successful innovation; otherwise, they exit. Then, we have K1 = π̂ss
i + π̂ss

j − π̂sf
j − πss

i and

K2 = 0. As a result:

• If K1 > 0, then xm > x∗. (For an example, see Jullien and Lefouili, 2020)

• If K1 < 0, then xm < x∗. (For an example, see Federico et al. 2017; and Denicolò and

Polo, 2020).

Corollary to Proposition 1 captures the class of models where R&D is intended for entry, and

entry only occurs upon project success. In that case, the conditional payoffs in case of innovation

failure are all equal to zero: π̂fs
i (·) = πfs

i (·) = 0, and π̂ff
i (·) = πff

i (·) = 0, and similarly for firm

j. Moreover, π̂sf
i (·) = πsf

i (·) because a firm’s freedom to set price/quantity is not constrained

by a rival that fails to innovate. Because of this, K2 = 0 and only the value of K1 has a bearing

on R&D incentives. In the setting of Jullien and Lefouili (2020) with horizontally differentiated

products, K1 can be positive, in which case a merger increases R&D. In Federico et al. (2017)

and Denicolò and Polo (2018), K1 is surely less than zero and a merger decreases R&D.

Proposition 2 also helps rationalise why the empirical literature on competition and inno-

vation has obtained mixed results. As discussed above, K1 is the difference between the net

incentives to catch up of the merged entity and those of a stand-alone firm, whereas K2 cap-

tures the corresponding difference in the incentives to escape competition. The various cases in

Proposition 2 show that these incentives can both be higher for the merged entity, both lower,

or move in opposite directions (stronger to catch-up while weaker to escape, or vice versa). This

richness is helpful to explain why the empirical literature on competition and innovation, pio-

neered by Aghion et al. (2005), finds different patterns depending on the sample of firms and

industries considered. For example, Aghion et al. (2005) document an inverted-U relationship,

which is consistent with environments akin to Proposition 2(iv), whereas Hashmi (2013) finds a

decreasing relationship, in line with settings where Proposition 2(i) predominates. By contrast,

Carrera and Ornaghi (2014) and Beneito et al. (2017) find an increasing relationship between

competition and innovation, corresponding to Proposition 2(ii).

4.2 Endogenous innovation outcomes

In this subsection, we focus on the second class of models in which success probabilities are

exogenous while innovation outcomes depend on R&D effort. Examples include Motta and

Tarantino (2021) and Bourreau et al. (2025). These contributions, however, assume that R&D

projects succeed with probability one and therefore rule out innovation failure. Moreover, except

for Section 3.1 of Motta and Tarantino (2021), most of their analysis is conducted in one-stage

models where firms choose prices and R&D simultaneously. The following proposition shows
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that relaxing the deterministic-success assumption in a two-stage framework yields a richer set

of possible merger effects on R&D.

Proposition 3. In markets where innovation outcomes are endogenous while R&D success prob-

abilities are exogenous but not necessarily equal to 1 (β(x) = µ ∈ (0, 1] for all x):

(i) If K3(x
∗) > 0 and K4(x

∗) > 0, then xm > x∗.

(ii) If K3(x
∗) < 0 and K4(x

∗) < 0, then xm < x∗.

(iii) Let Φ(x) ≡ K4(x)
K4(x)−K3(x)

. If Φ(x) is decreasing in x, then:

(a) If K3(x
∗) < 0 and K4(x

∗) > 0 and µ = Φ(x) has a solution, denoted x̃ , then xm > x∗

if and only if x∗ < x̃. If µ = Φ(x) does not have a solution, then xm > x∗.

(b) If K3(x
∗) > 0 and K4(x

∗) < 0, then xm > x∗ if and only if x∗ > x̃. If µ = Φ(x) does

not have a solution, then xm < x∗.

(iv) If Φ(x) is increasing in x, then:

(a) If K3(x
∗) < 0 and K4(x

∗) > 0, and µ = Φ(x) has a solution, then xm > x∗ if and

only if x∗ > x̃. If µ = Φ(x) does not have a solution, then xm < x∗.

(b) If K3(x
∗) > 0 and K4(x

∗) < 0, and µ = Φ(x) has a solution in x, then xm > x∗ if

and only if x∗ < x̃. If µ = Φ(x) does not have a solution, then xm > x∗.

This proposition shows that also in models where the extent of cost-reduction or quality

improvement is endogenous, while the success probability is exogenous, a merger can lead to an

increase or decrease in R&D effort. Moreover, it again highlights the pre-merger level of R&D

investment and the difficulty of project success as key determinants of this outcome.

We now provide some additional details on Proposition 3. Part (i) covers situations in which,

regardless of whether the rival’s project succeeds or fails, the pre-merger marginal replacement

effect is stronger than the corresponding post-merger effect net of the external marginal effect on

the partner. In such cases, a merger unambiguously increases R&D. Part (ii) describes the oppo-

site situation, where the post-merger marginal replacement effects net of the externality on the

partner dominate their pre-merger counterparts, so that a merger unambiguously reduces R&D.

Parts (iii) and (iv) describe environments in which the magnitude of the success probability and

the pre-merger level of innovation matter for the outcome. When the net post-merger marginal

replacement effect is stronger than the pre-merger effect conditional on the rival’s project success,

but weaker conditional on the rival’s project failure (or vice versa), two forces work in opposite

directions and the impact of a merger on R&D is a priori ambiguous. Parts (iii)(a) and (iv)(a)

cover cases in which the merged entity increases R&D effort when the failure state (i.e. condi-

tional on partner’s failure) receives enough weight in expected profits. Conversely, parts (iii)(b)
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and (iv)(b) describe parameter regions where the merged entity increases R&D effort when the

success state (i.e. conditional on partner’s success) dominates in expected terms.

Similarly to Proposition 2, Proposition 3 enlarges the set of possible merger effects on R&D,

here in models with exogenous success probabilities and endogenous innovation outcomes. In

particular, once innovation failure is allowed for, mergers may either spur or discourage R&D,

depending on the pre-merger investment level, the success probability, and the relative strength

of the pre- and post-merger marginal replacement effects. The following example with single-

product firms illustrates parts (ii) and (iv) of Proposition 3; detailed derivations are provided

in Appendix C.

• Consider a duopoly with price competition and the Singh and Vives (1984) demand system.

Initially, firms produce at marginal cost c. Firms can invest in R&D to reduce this cost: an

investment C(x) lowers marginal cost by x if the project is successful, while failure leaves

marginal cost at c. The probability of success is µ ∈ (0, 1]. In this model, K3(x
∗) is strictly

negative, K4(x
∗) is negative when x∗ is sufficiently small and positive otherwise, and Φ(x)

is increasing in x. Hence, when R&D costs are sufficiently steep, the pre-merger level of

innovation x∗ is small and a merger unambiguously discourages innovation, illustrating

Proposition 3(ii). By contrast, when R&D costs are flat enough, a merger spurs innova-

tion if the success probability µ is low enough and discourages it otherwise, illustrating

Proposition 3(iv).

We now note that some existing results in the literature are special cases of Proposition 3.

Corollary (to Proposition 3). [Deterministic R&D] Assume that innovation outcomes are

endogenous and that R&D projects are surely successful (i.e. µ = 1). Then (1 − µ)K4(x
∗) = 0

and hence only K3(x
∗) matters. We then have:

• If K3(x
∗) > 0, then xm > x∗.

• If K3(x
∗) < 0, then xm < x∗. (For an example, see Motta and Tarantino, 2021; section

3.1).

This corollary captures the class of two-stage models in which the R&D process is determin-

istic. The two-stage formulations in Motta and Tarantino (2021, Section 3.1) and in the online

appendix of Bourreau et al. (2025) fall into this class. Our corollary to Proposition 3 shows

that even in this deterministic setting the effect of a merger on R&D is, in general, ambiguous.

However, Bourreau et al. (2025) do not provide explicit examples, while the examples exam-

ined by Motta and Tarantino (2021), based on Shubik-Levitan and Salop demand systems and

cost-reducing innovations, yield the conclusion that mergers reduce R&D.
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Our example described above is based on the Singh-Vives demand system, which is close in

spirit to Shubik-Levitan, and nevertheless delivers cases in which R&D increases after a merger.

The key difference is that we allow for stochastic innovation outcomes. As discussed in Sec-

tion 4.1, with cost-reducing innovations the strategic effect is much stronger in the escape state

(a low-cost innovator facing a high-cost rival) than in the catch-up state (a low-cost innovator

facing a similar rival). In our framework with uncertain innovation, this strong strategic effect

in the escape state can make the net marginal replacement effect of the merged entity larger

than that for the stand-alone firm, i.e. K4(x
∗) can become positive. When the success proba-

bility µ is sufficiently low, this state receives enough weight in expected profits for the merger

to raise R&D. By contrast, in the deterministic model of Motta and Tarantino (2021), success

occurs with probability one, so only the success state matters in expectations and the escape

configuration never plays a role. In that case, the positive escape effect that can overturn the

standard result in our setting is effectively shut down, and mergers can only reduce cost-reducing

R&D, as in their examples. Indeed, if we were to impose deterministic success (set µ = 1) in our

Singh-Vives example, we would obtain the same qualitative result (for details see Appendix C).

5 Extensions

5.1 Synergies

Our analysis has shown that mergers can either increase or reduce investment incentives. While

performing the analysis, we restricted ourselves to settings in which there are no synergies. In

this section, we relax this assumption. We consider two settings. In the first setting, inspired by

Farrell and Shapiro (1990), we allow innovations developed by one division of the merged entity to

be leveraged across the other division to drive broader organizational benefits. We refer to these

synergies as R&D output synergies. In the second setting, inspired by the RJV literature (e.g

d’Aspremont and Jacquemin, 1988; Kamien et al., 1992; Suzumura, 1992), we allow investment

effort in one division to spill over into the other division. We call these synergies R&D input

synergies.

5.1.1 R&D output synergies

Following Farrell and Shapiro (1990), assume that innovations from one division of the merged

entity can be applied to the other division, thereby creating broader organizational benefits.

Moreover, assume that the success probability of a firm’s R&D project is endogenous, while

innovation outcomes conditional on success do not depend on R&D efforts.

The existence of R&D output synergies means that Table 2 gets replaced by the following

table of payoffs:
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Division j
Success(s) Failure(f)

Division i Success(s) π̂ss
i , π̂ss

j π̂ss
i , π̂ss

j

Failure(f) π̂ss
i , π̂ss

j π̂ff
i , π̂ff

j

Table 3: Conditional payoffs of the divisions within the merged entity with synergies

As it is clear from the table, the crucial difference is that only two joint payoffs realizations

become relevant now, namely, π̂ss
i + π̂ss

j and π̂ff
i + π̂ff

j . The reason is that a discovery by one

division of the merged entity is passed through to the other division.

With synergies, the relevant FOC for the maximization of the merged entity’s profits evalu-

ated at the pre-merger equilibrium becomes:

FOCm
i (x∗) =

∂βi(x
∗)

∂xi

[βjD1 + (1− βj)D2] > 0,

where

D1 ≡ −
(
πss
i − πfs

i

)
D2 ≡ π̂ss

i − π̂ff
i −

(
π̂ff
j − π̂ss

j

)
−
(
πsf
i − πff

i

)
= 2

(
π̂ss
i − π̂ff

i

)
−
(
πsf
i − πff

i

)
,

where we have used symmetry. Because D1 < 0, with R&D output synergies, Proposition 1 is

modified as follows:

Proposition 4 (R&D output synergies). Consider markets where R&D effort increases the

probability of project success but does not affect the innovation outcomes.

If a successful innovation can be leveraged across the various divisions of the merged entity,

a merger results in an increase in R&D if and only if:

FOCm
i (x∗) =

∂βi(x
∗)

∂xi

[βjD1 + (1− βj)D2] > 0.

Hence:

(i) If D2 ≤ 0, then xm < x∗

(ii) If D2 > 0, then xm > x∗ if and only if x∗ < β−1
(

D2

D2−D1

)
.

Surprisingly, because D1 < 0, R&D output synergies need not enhance the incentives to

increase R&D of the post-merger entity, in particular when partner success is highly likely.

In Appendix B, we show that Proposition 4(i) holds in the Singh and Vives (1984) model

with cost-reducing innovation and Cournot competition provided that the initial marginal cost

is sufficiently low. Proposition 4(ii) holds in the Hotelling model with vertically differentiated

products, and in the Singh and Vives (1984) model with cost-reducing innovation and Cournot

competition when the initial marginal cost is sufficiently large.15

15Proposition 4(i) also holds in the Singh and Vives (1984) model with demand-enhancing innovation and
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5.1.2 R&D input synergies

Inspired by the RJV literature (e.g. d’Aspremont and Jacquemin (1988), Kamien et al. (1992)),

suppose that after merger the “effective” R&D effort of a division i is

xi = xi + λxj

where λ ∈ (0, 1) is a “spillover” effect across the divisions of the merged entity.

The new FOC at the pre-merger market symmetric equilibrium x∗ is:

FOCm
i (x∗) =

∂βi(x
∗)

∂xi

[βjK1 + (1− βj)K2] +
∂βj(x

∗)

∂xi

[βiS1 + (1− βi)S2]

=
∂βi(x

∗)

∂xi

[βj(K1 + λS1) + (1− βj)(K2 + λS2)]

where

K1 ≡ π̂ss
i − π̂fs

i −
(
π̂sf
j − π̂ss

j

)
−
(
πss
i − πfs

i

)
K2 ≡ π̂sf

i − π̂ff
i −

(
π̂ff
j − π̂fs

j

)
−
(
πsf
i − πff

i

)
S1 ≡ π̂ss

j − π̂fs
j −

(
π̂sf
i − π̂ss

i

)
S2 ≡ π̂sf

j − π̂ff
j −

(
π̂ff
i − π̂fs

i

)
Proposition 5 (R&D input synergies). In markets where R&D effort increases the probability

of project success but does not affect the innovation outcomes, with R&D input synergies of size

λ, Proposition 1 holds exactly the same but with K̃1 ≡ K1 + λS1 and K̃2 ≡ K2 + λS2 replacing

K1 and K2.

Hence, because

S1 = π̂ss
i + π̂ss

j − (π̂fs
j + π̂sf

i ) > 0

S2 = π̂fs
i + π̂sf

j − (π̂ff
j + π̂ff

i ) > 0,

and contrary to the case of R&D output synergies, we can state that R&D input synergies

increase the likelihood that mergers result in higher R&D in all circumstances.

5.2 Asymmetric firms

The above propositions have focused on situations in which the firms are symmetric. The purpose

of this subsection is to extend our results to the case of asymmetric firms. Again, we focus on the

Cournot competition provided that the marginal cost is sufficiently large. Moreover, Proposition 4(ii) also holds
in the Singh and Vives (1984) model with cost-reducing innovation and Bertrand competition. Details can be
obtained form the authors upon request.
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setting where the success probabilities of a firm’s R&D project are endogenous, while innovation

outcomes conditional on success do not depend on R&D efforts.

With asymmetric players, the system of the FOCs of the merged entity is given by:

FOCm
i (xi, xj) ≡

∂βi(xi)

∂xi

[
βj(xj)

[
π̂ss
i −π̂fs

i

]
+(1− βj(xj))

[
π̂sf
i − π̂ff

i

]]
(10)

+
∂βi(xi)

∂xi

[
βj(xj)

[
π̂ss
j − π̂sf

j

]
+ (1− βj(xj))

[
π̂fs
j − π̂ff

j

]]
− C ′(xi) = 0, and similarly for xj.

These two equations implicitly define the loci xm
i (xj) and xm

j (xi) in the (xi, xj)−space. The

intersection of these two loci gives the post-merger asymmetric investment levels (xm
i , x

m
j ).

The slope of the functions xm
i (xj) and xm

j (xi) implicitly defined by (10) can be obtained by

implicit differentiation. For the function xm
i (xj) we have:

∂xm
j

∂xi

= −
β′′
i (xi)

[
βj(xj)

(
π̂ss
i −π̂fs

i + π̂ss
j − π̂sf

j

)
+(1− βj(xj))

(
π̂sf
i − π̂ff

i + π̂fs
j − π̂ff

j

)]
− C ′′(xi)

β′
i(xi)β′

j(xj)
[
π̂ss
i −π̂fs

i −
(
π̂sf
i − π̂ff

i

)
+ π̂ss

j − π̂sf
j −

(
π̂fs
j − π̂ff

j

)] ,

(11)

and similarly for xm
j (xi). The numerator of this expression is negative because β′′

i (xi) < 0 and

C ′′(xj) > 0. Hence, because β′
i(xi) > 0 and β′

j(xj) > 0, the sign of the derivative in (11) depends

on the sign of the expression in the denominator:

Ω ≡ π̂ss
i −π̂fs

i −(π̂sf
i − π̂ff

i ) + π̂ss
j − π̂sf

j − (π̂fs
j − π̂ff

j ) = π̂ss − π̂fs − (π̂sf − π̂ff )

The same applies to the sign of ∂xm
i /∂xj.

Therefore, xm
i (xj) and xm

j (xi) are upward sloping when Ω > 0 and downward sloping when

Ω < 0. In other words, when the incremental gain that the merged entity derives from the

success of one division’s R&D effort conditional on the other division’s success is larger than the

corresponding gain conditional on the other division’s failure, the loci xm
i (xj) and xm

j (xi) are

increasing, indicating that the two divisions’ investment decisions are complements. Conversely,

when the gain from a division’s R&D success is higher conditional on the other division’s failure

than on its success, the loci xm
i (xj) and xm

j (xi) are decreasing, implying that investment decisions

are substitutes.16 A similar condition but for the case of competing firms is presented in Aoki and

Spiegel (2009), who employ a related model of stochastic innovation to analyze firms’ incentives

to innovate and apply for a patent.17

In order to address the question whether a merger leads to more or less investment compared

to the pre-merger equilibrium we analyze the sign of the gradient vector of the merged entity

16Note that in the micro-founded examples presented above we have π̂ss − π̂fs − (π̂sf − π̂ff ) < 0 so that
investment efforts of the two divisions are substitutes.

17Federico et al. (2018) also mention this condition in the appendix.
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evaluated at the pre-merger asymmetric equilibrium, which we denote as (x∗
i , x

∗
j). This gradient

vector is given by:

FOCm
i (x∗

i , x
∗
j) =

∂βi(x
∗
i )

∂xi

[
βj(x

∗
j)K

1
i + (1− βj(x

∗
j))K

2
i

]
, (12)

FOCm
j (x∗

i , x
∗
j) =

∂βj(x
∗
j)

∂xj

[
βi(x

∗
i )K

1
j + (1− βi(x

∗
i ))K

2
j

]
.

where K1
i and K2

i are defined as before: K1
i = π̂ss

i − π̂fs
i −

(
π̂sf
j − π̂ss

j

)
−
(
πss
i − πfs

i

)
and

K2
i = π̂sf

i − π̂ff
i −

(
π̂ff
j − π̂fs

j

)
−
(
πsf
i − πff

i

)
, and K1

j and K2
j have similar expressions but

exchanging the subindex i for j.

Suppose, to start with, that Ω > 0 so that the R&D investments of the merged entity’s

divisions are complements. We represent this case in the graphs of Figure 1, where we plot in the

(xi, xj)-space the isoprofit curves of the merged entity, the FOCs given in (10), and the merged

entity’s optimal choice of investment efforts (xm
i , x

m
j ). The decreasing dashed line represents

the loci of (xi, xj) combinations satisfying that total investment equals total investment of the

merged entity, i.e., xi + xj = xm
i + xm

j . In this case where R&D investments of the merged

entity’s divisions are complements, Proposition 2 is modified as follows.

There are 16 possible alternative sign combinations the profits differences K1
i , K

2
i , K

1
j and

K2
j may take. Except for two of them, for any of these sign combinations, it is possible that a

merger results in an increase in R&D or a decrease in R&D.

(i) If K1
i , K

2
i , K

1
j , K

2
j ≥ 0, then each of the divisions of the merged entity will do more R&D

than the corresponding stand-alone firms, i.e. xm
i ≥ x∗

i and xm
j ≥ x∗

j . This situation is

represented in Figure 1a. All the K’s being positive imply that the two components of the

merged entity’s gradient vector evaluated at the pre-merger equilibrium are positive. As

a result, the pre-merger equilibrium pair of R&D investments must lie in the area marked

by the label “RI”.18

(ii) If K1
i , K

2
i , K

1
j , K

2
j ≤ 0, then each of the divisions of the merged entity will do less R&D

than the corresponding stand-alone firms, i.e. xm
i ≤ x∗

i and xm
j ≤ x∗

j . This situation is

the opposite to that in (i) because with all the K’s being negative the two components of

the merged entity’s gradient vector evaluated at the pre-merger equilibrium are negative.

Hence, the pre-merger equilibrium pair of R&D investments must lie in the area marked

by the label “RIII”. This case is represented in Figure 1b.19

18The first component of the merged entity’s gradient vector evaluated at the pre-merger equilibrium is also

positive in the following cases: (a) K1
i ≥ 0 and K2

i ≤ 0 but x∗
i > x̂i, where x̂i = β−1

i

(
K2

j

K2
j−K1

j

)
. (b) K1

i ≤ 0 and

K2
i ≥ 0 but x∗

i < x̂i. Likewise, the second component of the merged entity’s gradient vector evaluated at the

pre-merger equilibrium is also positive when: (a) K1
j ≥ 0 and K2

j ≤ 0 but x∗
j > x̂j , where x̂j = β−1

j

(
K2

i

K2
i −K1

i

)
.

(b) K1
j ≤ 0 and K2

j ≥ 0 but x∗
j < x̂j . This means that there are even more cases in which a merger may result

in an increase in R&D.
19Similarly to case (i) above, there are more cases in which a merger may result in an decrease in R&D.
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(b) Both divisions reduce R&D
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(c) Division i reduces and j increases
R&D, total increases
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(d) Division i reduces and j increases
R&D, total decreases

Figure 1: Mergers of asymmetric firms

The cases (i) and (ii) refer to situations in which signs of the REs-differences K1
i , K

2
i , K

1
j

and K2
j combine in such a way that the two components of the merged entity’s gradient vector

evaluated at the pre-merger equilibrium have the same sign. However, there are plenty of other

situations for which the components of the merged entity’s gradient vector evaluated at the

pre-merger equilibrium may have different sign. We now discuss one such situation and show

what outcomes are possible.

(iii) Suppose K1
i , K

2
i ≥ 0 while K1

j , K
2
j ≤ 0. In such a case, the first component of the merged

entity’s gradient vector evaluated at the pre-merger equilibrium is positive, while the second

component is negative. As a result, the pre-merger equilibrium pair of R&D investments

must lie in region “RII” of the graphs in Figure 1. This implies that either both divisions of

the merged entity increase R&D, both decrease it, or one increase it and the other reduce

it. In the latter case, it is ambiguous what happens to total investment, it may increase
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or decrease. In Figure 1c we show a case in which total investment decreases, while Figure

1d depicts a situation where total investment increases.20

The above discussion pertains to the case in which the R&D investments of the merged

entity’s divisions are complements. However, it may be the case that Ω < 0 and so the R&D

investments of the divisions of the merged entity are substitutes. In such situation, a similar

analysis can be performed. We omit it to save space.

This discussion shows that the result articulated in Proposition 2, which stresses that the pre-

merger level of R&D effort may be crucial for evaluating the effects of a merger on R&D becomes

even more relevant when firms are asymmetric. Furthermore, even “partial killer acquisitions”

in the sense that one of the divisions’ effort is reduced can result in an increase in total R&D

effort (Figure 1d).

5.3 Consumer Surplus

Our analysis has shown that mergers may either enhance or diminish investment incentives, and

that an increase in R&D does not require the presence of synergies. Because a merger also entails

adverse price effects, it is immediate that, when a merger reduces R&D, consumer surplus must

fall. By contrast, when a merger raises R&D, consumer surplus may increase if the resulting

shift toward better innovation outcomes is strong enough to dominate the negative price effects.

In what follows, we provide a high-level analysis of the impact of mergers on consumer surplus.

Consider the pre-merger symmetric market equilibrium and denote the levels of consumer

surplus attained in the equilibria corresponding to the four possible subgames described above

by CSss, CSsf , CSfs and CSff :

Firm j
Success(s) Failure(f)

Firm i Success(s) CSss CSsf

Failure(f) CSfs CSff

Table 4: Pre-merger consumer surplus outcomes

That is, When both firms’ R&D projects are successful (unsuccessful), product-market competi-

tion generates consumer surplus CSss (CSff ). Similarly, when one firm’s R&D project succeeds

and the other fails, consumer surplus equals CSsf or CSfs, depending on which firm is successful.

With symmetric firms, it is natural to assume that CSss ≥ CSsf = CSfs ≥ CSff where the

equality CSsf = CSfs. Then, the expected pre-merger level of consumer surplus is:

ECS(x∗) = [β(x∗)]2CSss + 2β(x∗) [1− β(x∗)]CSsf + [1− β(x∗)]2CSff . (13)

20As above, there are 8 additional cases in which the first component of the merged entity’s gradient vector
evaluated at the pre-merger equilibrium is positive and the second is negative.
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Consider now the level of consumer surplus after a merger. A merger induces a shift in the

distribution of consumer surplus. This shift reflects not only changes in the consumer-surplus

levels themselves, driven by the price effects of the merger, but also changes in the probabilities

with which the different innovation outcomes occur. Denoting post-merger consumer surplus in

each state by ĈS
ss
, ĈS

sf
, ĈS

fs
and ĈS

ff
, the expected post-merger level of consumer surplus

is:

ECSm(xm) = [β(xm)]2 ĈS
ss
+ 2β(xm) [1− β(xm)] ĈS

sf
+ [1− β(xm)]2 ĈS

ff
, (14)

where, again due to symmetry, we have assumed ĈS
sf

= ĈS
fs
.

A direct comparison between (13) and (14) is not straightforward, because both the proba-

bilities and the consumer-surplus levels change after the merger. In particular, we cannot rely

on first-order stochastic dominance (FOSD), since the cumulative distribution functions (CDFs)

of pre- and post-merger consumer surplus typically cross. However, the notion of second-order

stochastic dominance (SOSD) can be used to derive a condition under which consumer surplus

decreases after a merger:

Proposition 6. (i) If β((xm)) < β(x∗), consumer surplus decreases after a merger.

(ii) Even if β(xm) > β(x∗), consumer surplus decreases after a merger if the consumer surplus

CDF pre-merger dominates in the sense of the SOSD criterion that of the consumer surplus

CDF post-merger, that is,

(1− β(xm))2(CSff − ĈS
ff
) + [1− β(xm)2 − (1− β(x∗))2](CSsf − ĈS

sf
)

+ β(x∗)2(CSss − ĈS
ss
) > (ĈS

sf
− CSff )[(1− β(x∗)2 − (1− β(xm))2]

+ (ĈS
ss
− CSsf )[β(xm)2 − β(x∗)2],

where we assume ĈS
ff

< CSff < ĈS
sf

< CSsf < ĈS
ss
< CSss.

Proposition 6(ii) is illustrated in Figure 2. In this figure, we plot the CDF of consumer

surplus pre-merger in red, and the CDF of consumer surplus post-merger in blue, assuming that

R&D investment increases after the merger. The graph illustrates a situation where the negative

price effects dominate the positive innovation effects.
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Figure 2: CS CDF pre-merger SOSD CS CDF post-merger

Unfortunately, the notion of SOSD cannot be used to derive conditions under which consumer

surplus increases after a merger, because the lower bound of the support of the post-merger CDF

of consumer surplus is lower than its pre-merger counterpart, i.e. ĈS
ff

< CSff . To make further

progress, we use the well-known identity that for a random variable Z with distribution F (z)

and support on the interval [ℓ, u] it holds that:

E[Z] =

∫ u

ℓ

z dF (z) = u−
∫ u

ℓ

F (z) dz,

whose proof follows immediately from integration by parts. We then obtain:

Proposition 7. Assume that β(xm) > β(x∗), in which case consumer surplus may either in-

crease or decrease after a merger. Then consumer surplus post-merger is higher than pre-merger

if and only if

(1− β(xm))2
(
CSff − ĈS

ff)
+
[
1− β(xm)2 − (1− β(x∗))2

](
CSsf − ĈS

sf)
+
(
CSss − ĈS

ss)
<
[
1− β(x∗)2 − (1− β(xm))2

](
ĈS

sf
− CSff

)
+
[
β(xm)2 − β(x∗)2

](
ĈS

ss
− CSsf

)
,

where we assume that ĈS
ff

< CSff < ĈS
sf

< CSsf < ĈS
ss
< CSss.

This proposition is illustrated in Figure 3. The left panel depicts a case in which the pre-

and post-merger CDFs cannot be ranked by SOSD, yet expected consumer surplus is higher

before the merger. In this configuration, the adverse price effects of the merger dominate the

innovation gains. By contrast, the right panel shows a situation where the innovation effect is

strong enough to outweigh the price effect, so that expected consumer surplus increases after

the merger.
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(a) Merger reduces consumer surplus
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(b) Merger increases consumer surplus

Figure 3: Consumer surplus effects of mergers

We have shown above that R&D output synergies need not increase post-merger incentives

to invest. However, when they do, an increase in consumer surplus becomes more likely. To

illustrate, consider first the setting in Figure 2, where the pre-merger CDF of consumer surplus

second-order stochastically dominates the post-merger CDF, so expected consumer surplus is

lower after the merger. Introducing output synergies alters both the distribution of outcomes

and their probabilities: the SOSD ranking breaks down and the expected level of consumer

surplus becomes higher post-merger. This reversal is illustrated in Figure 4.

CSff CSsf CSss

1

(1-β*)2

1-β*2

Pre-merger CS cdf

CS ff CS ss

1

(1-βm)2

1-βm2

Post-merger CS cdf

CS levels

CS cdf

Figure 4: Setting in Figure 1 with R&D output synergies

In the remainder of this section, we return to the examples used to illustrate Proposition 3

and discuss the consumer-surplus effects of mergers in those settings. To assess the impact

of a merger on consumer surplus, we must substitute the optimal investment levels into the

consumer surplus expressions derived above. This requires solving for the optimal investment

choices, which in turn calls for specific functional-form assumptions on the success probability

function and the R&D cost function. Except for very simple specifications, these investment

levels are not available in closed form, so we compute them numerically and then compare pre-
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and post-merger consumer surplus. Further details are provided in Appendix B.

Logit with quality-enhancing and cost-reducing innovations In all the logit examples

with single-product firms, mergers do not benefit consumers even when they raise R&D. This

occurs because the adverse price-coordination effect dominates the innovation effect. By contrast,

when we extend the model so that each firm also supplies an additional, non-overlapping product

in a separate market with constant-elasticity demand, the same merger can increase consumer

surplus. In that case, higher post-merger R&D improves the quality (or reduces the cost) of

both the overlapping and non-overlapping products, while the negative price effect is confined

to the overlapping segment, so the innovation gains dominate. This multi-product logit example

illustrates one of the advantages of our reduced-form two-stage framework: it can be extended

in a tractable way to richer product portfolios.

Hotelling with vertically differentiated products In the Hotelling model, we have seen

that, in the absence of synergies, R&D investment increases after a merger. Depending on the

parameters and the shape of the success probability and R&D cost functions, consumer surplus

may increase or decrease. Specifically, for a linear success probability function and a standard

quadratic R&D cost function, consumer surplus decreases despite the increase in R&D. However,

if the marginal cost of R&D is very steep, consumer surplus can increase.

Sutton’s (2001) model of horizontally and vertically differentiated products and

quantity competition As shown above, when the quality difference is large, a merger leads to

a reduction in R&D; hence, consumer surplus falls. However, when the quality difference is small,

a merger results in higher R&D effort provided the marginal cost of R&D is sufficiently large.

Despite this increase in R&D, assuming a linear success probability function and a quadratic

cost function, consumer surplus decreases.

Singh and Vives (1984) model of horizontally differentiated products, cost-reducing

innovation and Cournot Competition We have seen above that, in the absence of syn-

ergies, investment decreases after a merger and so does consumer surplus. However, when

synergies are present and the marginal cost of R&D is sufficiently large, post-merger R&D effort

is higher than pre-merger. In that case, assuming a linear success probability function, and a

quadratic R&D cost function, we observe that consumer surplus post-merger can be higher than

pre-merger. (A similar remark is made by Mukherjee (2022).)

Mussa and Rosen (1978) model of vertical product differentiation with price com-

petition. As mentioned before, a merger results in higher R&D effort provided the marginal
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cost of R&D is sufficiently low. With a linear success probability function and a quadratic R&D

cost function, this is not possible though, so consumer surplus decreases.

In conclusion, our micro-founded examples with single-product firms provide very little sup-

port for a positive effect of mergers on consumer surplus, even when consolidation raises R&D

effort. In the presence of R&D output synergies, we do observe consumer-surplus gains in the

Singh and Vives (1984) quantity-competition models, but not in other single-product settings.

By contrast, R&D input synergies make it more likely that mergers lead to substantially higher

R&D (cf. Proposition 5), and therefore increase the scope for consumer-surplus improvements.

Finally, our multi-product logit example with partially overlapping portfolios shows that con-

sumer surplus may also rise when the price effects of the merger are confined to the overlapping

segment, while the innovation effects extend to a broader set of non-overlapping products.

6 Concluding remarks

We have studied the implications of mergers for R&D within a broader model of R&D com-

petition. Firms first invest in R&D to reduce costs, improve quality, or enhance demand, and

then compete in the product market. In the most general version of our framework, R&D effort

affects both the probability of innovation success and the payoff conditional on success, rather

than just one of these margins. As a result, our model nests a large class of existing theories of

mergers and long-run R&D, including stochastic models (Federico et al., 2017, 2018; Denicolò

and Polo, 2018; Jullien and Lefouili, 2020) and deterministic models (Motta and Tarantino,

2021, Section 3.1; Bourreau et al., 2025, online appendix).

A merger modifies the incentives to invest in R&D through three channels: anticipation of

post-merger price coordination, internalisation of a success-probability externality, and internali-

sation of a payoff externality arising from business-stealing in the product market. In the absence

of price coordination, for instance because of regulation or a failure to coordinate prices across

units, only the latter two forces remain and mergers unambiguously reduce R&D. In general,

however, the sign of the merger effect on R&D depends on a large number of payoff levels and

derivatives (cf. Proposition 1), so whether a merger ultimately spurs or discourages innovation

is inherently model-specific. This complexity motivates our focus on two benchmark classes in

which the condition simplifies and the underlying forces can be understood more transparently.

The first class comprises models of stochastic R&D in which investment effort affects the

probability of success but does not directly change payoffs conditional on success. In this class,

only price coordination and the success-probability externality operate, and Proposition 2 pro-

vides a clean characterisation of when mergers raise or lower R&D. We show that the standard

assumption that firms earn zero profits when they fail to innovate is restrictive: once firms can

obtain positive payoffs even when innovation fails, the pre-merger level of R&D –and thus the
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shape of the success probability and cost functions– becomes central in determining the effect of

a merger on investment. The various cases discussed in Proposition 2 both nest existing results

(Federico et al., 2017, 2018; Denicolò and Polo, 2018; Jullien and Lefouili, 2020) and reveal

additional configurations in which mergers can unambiguously spur innovation, unambiguously

reduce it, or have effects that depend on the initial R&D level.

The second class consists of models in which R&D affects the payoff conditional on success,

while the probability of success is exogenous. Here, the relevant forces operate through price

coordination and business-stealing, and Proposition 3 characterises the conditions under which

a merger results in higher or lower R&D. We show that the usual assumption of deterministic

R&D –R&D succeeds with probability one, as in Motta and Tarantino (2021) and Bourreau et

al. (2025)– is again restrictive. Once success occurs with probability strictly less than one, both

the pre-merger level of R&D and the difficulty of achieving success become crucial for the sign of

the merger effect. In this sense, Proposition 2 is informative in environments where conditional

payoffs are nearly insensitive to effort, whereas Proposition 3 is the natural benchmark when

success probabilities are relatively inelastic. Together, they offer tractable approximations to

the general condition in Proposition 1.

We also extend the framework to incorporate R&D synergies, asymmetries, and consumer-

surplus effects. On the synergy side, we distinguish between R&D output synergies, whereby

a successful innovation by one division can be leveraged across the other division (in the spirit

of Farrell and Shapiro, 1990), and R&D input synergies, modelled as intra-firm spillovers in

the RJV tradition (d’Aspremont and Jacquemin, 1988; Kamien et al., 1992; Suzumura, 1992).

Output synergies can strengthen or weaken post-merger investment incentives: sharing innova-

tion benefits raises the private return from success but also creates scope for free-riding within

the merged entity. Input synergies, by effectively reducing the marginal cost of effort, make

post-merger increases in R&D more likely in the environments we consider.

On the welfare side, we observe that higher post-merger R&D does not automatically trans-

late into consumer gains. In standard single-product settings without synergies, our micro-

founded examples indicate that even when mergers raise R&D effort, innovation effects are often

outweighed by adverse price-coordination effects, so expected consumer surplus typically falls.

Consumer surplus can increase in some models with R&D output synergies (for instance, in

the Singh and Vives (1984) quantity-competition model), and R&D input synergies enlarge the

scope for such gains by making R&D increase more likely. Finally, by exploiting the flexibility

of our reduced-form approach, we show in a simple multi-product extension of the logit model

that consumer surplus may strictly increase when portfolios overlap only partially and innova-

tion applies to the broader product line. In that case, the negative price effects of the merger

are confined to the overlapping segment, whereas the benefits of stronger R&D spill over to

non-overlapping products, so the innovation effect can dominate despite stronger market power.
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A Proofs

Proof of Proposition 2: When the probability of success depends on R&D effort, while the

conditional payoffs are independent of it, expression in (5) becomes:

FOCm
i (x∗) =

∂βi(x
∗)

∂xi

[βj(x
∗)K1 + (1− βj(x

∗))K2] .

Because β′(x) > 0, the sign of this expression is equal to the sign of the expression in the

squared bracket. Suppose K1 > 0 and K2 > 0. Then, the FOCm
i (x∗) is clearly positive. The

same conclusion holds for K1 = 0, K2 > 0 and K1 > 0 and K2 = 0. This proves the result in

(i). Suppose K1 < 0 and K2 < 0, then FOCm
i (x∗) is negative. The same conclusion holds for

K1 = 0, K2 < 0 and K1 < 0 and K2 = 0. This proves the result in (ii). Finally, we note that

xm = x∗ can only hold when K1 = 0 and K2 = 0 or when x∗ = x̂. This completes the proof of

parts (i) and (ii).

In situations in which K1 and K2 have different signs, the FOCm
i (x∗) may be positive or

negative. Define x̂ as the solution to β(x)(K1 −K2) +K2 = 0, i.e.,

x̂ = β−1

(
K2

K2 −K1

)
.

Suppose K1 < 0 and K2 > 0, then FOCm
i (x∗) is positive for all x∗ < x̂ and negative otherwise.

This proves result in (iii). Suppose K1 > 0 and K2 < 0, then FOCm
i (x∗) is positive for all

x∗ > x̂. This proves result in (iv). ■

Proof of Proposition 3: In this setting, where the conditional payoffs are endogenous and

depend on R&D effort while the probability of success is exogenous and is given by µ ∈ (0, 1],

expression in (5) becomes:

FOCm
i (x∗) = µ [µK3(x

∗) + (1− µ)K4(x
∗)] .

Then it is straightforward to see that

(i) If K3(x
∗) > 0 and K4(x

∗) > 0, then FOCm
i (.) evaluated at x∗ is positive, in which case a

merger results in an increase in R&D. This proves the result in (i).

(ii) Similarly, if K3(x
∗) < 0 and K4(x

∗) < 0, then FOCm
i (.) evaluated at x∗ is negative. In

that case, a merger results in a decrease in R&D. This proves the result in (ii).

(iii) Above we have defined the function Φ(x). Suppose Φ(x) is decreasing. If K3(x
∗) < 0

and K4(x
∗) > 0, then the FOCm

i (x∗) is positive if µ < K4(x∗)
K4(x)−K3(x∗)

. Then, it is easy to

see that if the equation µ − Φ(x) = 0 does not have a solution, because Φ(x) is positive

and decreasing, then µ < K4(x
K4(x)−K3(x)

for all x and so a merger results in an increase in

R&D. However, if it has a solution, denoted x̃, the fact that Φ(x) is decreasing implies that

µ < K4(x)
K4(x)−K3(x)

for all x < x̃ and µ > K4(x)
K4(x)−K3(x)

for all x > x̃. As a result, we conclude

that a merger results in an increase in R&D if x∗ < x̃; otherwise, x∗ > x̃, a merger reduces

R&D.
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If we have the opposite situation in which K3(x
∗) > 0 and K4(x

∗) < 0, then the FOCm
i (x∗)

is positive if µ > K4(x∗)
K4(x)−K3(x∗)

. When µ−Φ(x) = 0 does not have a solution, because Φ(x) is

positive and decreasing, this condition is never satisfied and so a merger always decreases

R&D. When µ−Φ(x) = 0 has a solution, denoted x̃, we have µ > K4(x)
K4(x)−K3(x)

for all x > x̃.

Hence, a merger results in higher R&D, xm > x∗, if and only if x∗ > x̃; otherwise, when

x∗ < x̃, a merger reduces R&D.

(iv) The results when Φ(x) is increasing are proven analogously. To save on space, we omit the

details. ■

B Micro-founded examples

In this appendix, we present a series of micro-founded examples that illustrate Propositions 2

and 4. Each example is developed with enough detail to be read in isolation. This self-contained

presentation entails a certain amount of unavoidable repetition across examples.

B.1 Logit model, horizontally differentiated products, quality-improving

innovation and Bertrand Competition

This example illustrates the results in Proposition 1(i)-(iii). To characterize the profits in the

second stage, we use a logit system of demands and assume Bertrand competition. Firms invest

to increase the quality of their products, which we denote si, i = 1, 2. Initially, firms offer a basic

product, whose quality is sf > 0. Upon successful innovation, quality rises to ss, with ss > sf .

If the innovation effort fails, firms continue to offer the basic quality.

Consumers derive utility

vi = si − pκi + ϵi,

from the inside goods, with κ > 0 and ϵi TIEV distributed. The utility from the outside option,

denoted 0, is normalized to v0 = ϵ0.

The market shares of the inside goods are then:

q1(p1, p2) =
es1−pκ1

1 + es1−pκ1 + es2−pκ2
, q2(p1, p2) =

es2−pκ2

1 + es1−pκ1 + es2−pκ2
.

The market share of the outside good is q0 = 1− q1− q2. The parameter κ governs the disutility

from price and has a bearing on the elasticity of demand, which is given by ϵ = κpκi (1−si). κ = 1

is the standard multinomial logit; values of κ lower than 1 correspond to less elastic demands,

while values of κ greater than 1 to more elastic demands.

In the second stage, firms compete in prices. Given a pair of innovation outcomes (si, sj),

and the price of the rival firm, an indididual firm i picks its price to maximize its payoff:

πi(pi; pj) = (pi − c)qi(pi, pj), i, j = 1, 2; i ̸= j.
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The price equilibrium follows from solving the system of FOCs:

1− (pi − c)(1− qi(pi, pj))κp
κ−1
i = 0, i, j = 1, 2; i ̸= j.

These FOCs define the equilibrium prices for any vector of qualities: (p∗i (si, sj), p
∗
j(si, sj)). Un-

fortunately, they cannot be solved in closed-form so we will solve them numerically to obtain

the equilibrium prices corresponding to every innovation subgame. For a given pair of qualities

(si, sj), the corresponding second-stage profits are then obtained by plugging the equilibrium

prices into the payoff above. As in the main body of the paper, we label the payoffs correspond-

ing to the various innovation subgames as follows:

πss
i ≡ πi(ss; ss), πsf

i ≡ πi(ss; sf ), πfs
i ≡ πi(sf ; ss), πff

i ≡ πi(sf ; sf ),

Post-merger, the merged entity chooses prices (p1, p2) to maximize the joint profit:

Πm(p1, p2) = (p1 − c)q1(p1, p2) + (p2 − c)q2(p1, p2).

For each pair (si, sj), the merged entity’s optimal prices, denoted (p̂i(si, sj), p̂j(si, sj)), solve the

FOCs:

1− (pi − c)(1− qi(pi, pj))κp
κ−1
i + (pj − c)qj(pi, pj)κp

κ−1
i = 0, i, j = 1, 2; i ̸= j.

The profits corresponding to each of the divisions of the merged entity are obtained by

plugging the optimal prices corresponding to the various innovation outcomes into the joint

payoff:

π̂ff
i ≡ π̂i(sf , sf ), π̂ss

i ≡ π̂i(ss, ss), π̂fs
i ≡ π̂i(sf , ss), π̂sf

i ≡ π̂i(ss, sf ).

Merger increases R&D

We now present examples of parameters for which the results described in Proposition 2(i)-(iii)

arise. Assume that sf = 5 and ss = 6. Moreover, assume c = 1. When κ = 1
2
, we get the result

in Proposition 2(ii). The profits levels corresponding to these parameters are:

Pre-merger payoffs:

Firm 2

s f

Firm 1 s 7.055, 7.055 9.022, 4.654

f 4.654, 9.022 5.841, 5.841

Table B.1: Firms’ payoffs (κ = 1/2)

Post-merger payoffs:

Division 2

s f

Division 1 s 11.668, 11.668 14.936, 5.495

f 5.495, 14.936 8.089, 8.089

Table B.2: Merged entity’s payoffs

(κ = 1/2)

As per Proposition 2, we compute the difference between the incentives of the merged entity

to invest in R&D in order to catch up with the other division, and those of a stand-alone firm
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to catch up with the competitor:

K1 = π̂ss
i −π̂fs

i −
(
π̂sf
j −π̂ss

j

)
−(πss

i −πfs
i ) ≈ 11.668−5.495−(14.936−11.668)−(7.055−4.654) ≈ 0.506.

We also compute the corresponding difference in incentives when the merged entity seeks to

escape its partner division and the stand-alone firm seeks to escape its competitor:

K2 = π̂sf
i −π̂ff

i −
(
π̂ff
j −π̂fs

j

)
−(πsf

i −πff
i ) ≈ 14.936−8.089−(8.089−5.495)−(9.022−5.841) ≈ 1.073.

Because the signs of K1 and K2 are positive, a merger increases R&D incentives.

We illustrate these differences in incentives for the catch-up and escape situations in Figures 5

and 6. As explained in the main text with reference to Spence (1975), a key reason why a merger

has stronger incentives to invest in R&D than a stand-alone firm is that an increase in quality

shifts demand more at lower than at higher quantities. Because the merged entity operates at

lower quantities, its incentives to raise demand are larger. In addition to this first-order effect,

the stand-alone firm is subject to a strategic effect, whereas a division of the merged entity

internalizes a cannibalization effect.

Catch-up-case. In the catch-up case we take firm j as already successful (sj = ss), and

consider firm i improving its quality from sf to ss.

In Figure 5a we plot the stand-alone gain for firm i when it catches up by increasing its quality

from sf to ss. The black solid, downward-sloping curve is firm i’s pre-innovation demand; the red

dashed curve is its post-innovation demand. The left (blue) point marks the pre-innovation price-

quantity for firm i, and the dark-blue rectangle is its pre-innovation profit. The right (blue) point

is the post-innovation price-quantity, with the light-blue rectangle its post-innovation profit. The

stand-alone incentive to catch up is therefore the difference between the two blue rectangles, i.e.

πss
i − πfs

i .
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Duopoly: Firm i's profit increase (si = 5 → 6)

(a) Stand-alone firm
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Merger: Division i's profit increase and externality (si = 5 → 6)

(b) Division of merged entity and externality

Figure 5: Catching-up (κ = 1/2)

In Figure 5b we depict the same experiment for a merged entity with two divisions, i and

j. The left (green) point marks division i’s pre-innovation price-quantity under (sf , ss), with

the dark-green rectangle its profit share. The right (green) point is the common post-innovation
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price-quantity under (ss, ss), with the light-green area the contribution of division i after inno-

vation (it includes the grey rectangle).

The (negative) externality on division j from i’s catch-up is the change in j’s profit when the

state moves from (sf , ss) to (ss, ss), i.e. −(π̂sf
j − π̂ss

j ). Graphically, the red rectangle captures the

loss in quantity at division j due to cannibalization (as products become more similar), while

the grey rectangle captures the offsetting gain in price-cost margin. Their net gives π̂ss
j − π̂sf

j .

Hence the merged-entity incentive to invest in division i’s catch-up equals the sum of the

own gain of i plus the (internalized) externality on j, i.e. π̂ss
i − π̂fs

i − (π̂sf
j − π̂ss

j ). In the graph,

this is equal to the difference between the two green rectangles (own gain for i) minus the net

red-minus-grey effect on j.

Escape case. Figure 6 mirrors the above construction for an escape move. Here we take firm

j as unsuccessful (sj = sf ), and consider firm i improving its quality from sf to ss. The colors and

geometric elements have the same meaning as above. Now firm i’s innovation increases vertical

differentiation and typically has a strong strategic effect, that is why we do not appreciate a large

profits increase of a stand-alone firm; by contrast, vertical differentiation weakens cannibalization

so that the externality on the partner firm is smaller.
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Duopoly: Firm i's profit increase (si = 5 → 6)
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Merger: Division i's profit increase and externality (si = 5 → 6)

(b) Division of merged entity and externality

Figure 6: Escaping (κ = 1/2)

Consumer surplus. In this single-product logit example with horizontally differentiated prod-

ucts and price competition, mergers do not benefit consumers even when they raise R&D: for κ =

1/2 the merger increases equilibrium investment, but expected consumer surplus falls because the

adverse price-coordination effect dominates the innovation effect. For example, assuming a linear

success probability β(xi) = xi on [0, 1] and a quadratic cost function C(xi) = 5x2
i , the pre-merger

symmetric equilibrium effort is the solution to the x∗[πss
i − πfs

i ] + (1−x∗)[πsf
i − πff

i ]− 10x∗ = 0

(see FOC (1)), which gives x∗ ≈ 0.295. Likewise, the post-merger optimal equilibrium effort,

which solves the FOC (2), is given by xm ≈ 0.375. However, expected consumer surplus falls

from approximately ECS(x∗) ≈ 2.23 to ECSm(xm) ≈ 0.99. Thus, in this case with single-

product firms, higher R&D after a merger does not translate into higher consumer surplus (as

per Proposition 6).

We now illustrate how the flexibility of our reduced-form framework can be used to generate
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new insights in multi-product environments. To this end, we extend the previous logit specifi-

cation by adding a second, independent market for each firm.21 Each firm k ∈ {i, j} continues

to sell the differentiated good in the market with logit demand, as specified above, and, in ad-

dition, supplies an independent product in a separate market with constant-elasticity demand.

We denote the demand for firm k’s independent product by q0k(p
0
k), k = {i, j}, and assume

q0k(p
0
k) = Azk (p

0
k)

−ε, ε > 1,

where zk ∈ {f, s} indexes the outcome of firm k’s R&D project, and Af and As are the cor-

responding demand levels upon project failure and success, with Af < As. Marginal cost in

the independent market is c0. The R&D game is the same as in the single-product benchmark,

except that innovation success now upgrades the entire product line: if firm k’s project succeeds,

the quality parameter of its logit product switches from sf to ss and, simultaneously, the demand

shifter for its independent product increases from Af to As; if the project fails, both remain at

the basic leves sf and Af ). For a given innovation state, prices in the logit and independent mar-

kets are chosen separately, so logit prices and quantities are determined as in the single-product

model, while profits and consumer surplus in each state now include an additional contribution

from the constant-elasticity markets.

Keeping the logit market specified exactly as above, and assuming that As = 2, Af = 1

ε = 1.1 and c0 = 0.01, Tables B.3 and B.4 report the pre- and post-merger equilibrium payoffs

by innovation state when firms operate both in the logit market and in the independent constant-

elasticity markets.

Pre-merger payoffs (multi-product case):

Firm 2

s f

Firm 1 s 12.723, 12.723 14.690, 5.788

f 5.788, 14.690 6.974, 6.974

Table B.3: Pre-merger profits (logit +

additional markets, κ = 1/2).

Post-merger payoffs (multi-product case):

Division 2

S F

Division 1 S 17.337, 17.337 20.604, 6.628

F 6.628, 20.604 9.222, 9.222

Table B.4: Post-merger profits (logit +

additional markets, κ = 1/2).

Because the additional markets are unaffected by changes in ownership, their profit contri-

butions are identical before and after the merger in every innovation state. They therefore drop

out of the replacement expressions and the terms K1 and K2 remain exactly identical to those

above: K1 ≈ 0.506 and K2 ≈ 1.073. This means that the merged entity’s incentive to invest in

R&D continue to be higher than those of a stand-alone firm.

With the linear success probability function and the quadratic R&D cost function the merger

increases equilibrium R&D effort from x∗ ≈ 0.716 to xm ≈ 0.774. Using these equilibrium

investment levels, Table B.5 reports the associated consumer-surplus levels by innovation state:

21For a similar market structure with overlapping and independent products, but in the context of start-up
acquisitions, see Dijk, Moraga-González and Motchenkova (2024, 2025). In those papers, however, the focus is
on the “direction of innovation.”
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CSff CSsf = CSfs CSss E[CS]

Pre-merger 26.973 77.171 127.448 98.865

Post-merger 25.871 75.842 125.775 103.248

Table B.5: Consumer surplus by innovation state: logit with additional independent products

In the multi-product extension, as expected, consumer surplus is lower under the merger

than under competition in each innovation state. However, the increase in R&D raises the

probability of high-quality outcomes for both the overlapping and non-overlapping products,

while the merger-induced price increase is confined to the overlapping logit segment. As shown

in Table B.5, the innovation gains in the additional markets are sufficiently strong to dominate

the adverse price effect in the main market, so that expected consumer surplus increases from

approximately 98.9 to 103.2 after the merger.22

Merger decreases R&D

Keeping all the parameters fixed as above, let us suppose now that κ = 2. In this case, we get

the result in Proposition 2(ii). The profits levels corresponding to these parameters are:

Pre-merger payoffs:

Firm 2

s f

Firm 1 s 0.300, 0.300 0.417, 0.205

f 0.205, 0.417 0.287, 0.287

Table B.6: Firms’ payoffs (κ = 2)

Post-merger payoffs:

Division 2

s f

Division 1 s 0.523, 0.523 0.714, 0.263

f 0.263, 0.714 0.431, 0.431

Table B.7: Merged entity’s payoffs (κ = 2)

Again, as per Proposition 2, we compute the differences

K1 = π̂ss
i −π̂fs

i −
(
π̂sf
j −π̂ss

j

)
−(πss

i −πfs
i ) ≈ 0.523−0.263−(0.714−0.523)−(0.300−0.205) ≈ −0.0262.

K2 = π̂sf
i −π̂ff

i −
(
π̂ff
j −π̂fs

j

)
−(πsf

i −πff
i ) ≈ 0.714−0.431−(0.431−0.263)−(0.417−0.287) ≈ −0.0145.

Because both the signs of K1 and K2 are negative, a merger decreases R&D incentives.

We illustrate these differences in incentives for the catch-up and escape situations in Figures 7

and 8. The key difference compared with the previous illustration is that an increase in quality

now shifts demand more at higher than at lower quantities. By the same logic as in Spence

(1975), the incentives to raise demand are now weaker for the merged entity than for a stand-

alone firm.

22In this example, we take the case of a single but relatively large independent market. Similar results obtain
if each firm sells many products in smaller independent markets.
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Figure 7: Catching-up (κ = 2)
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Figure 8: Escaping-up (κ = 2)

Merger increases R&D if marginal cost is high, decreases otherwise.

To illustrate the result in Proposition 2(iii), assume now the standard setting with κ = 1 and

keep the remaining parameters as above. With κ = 1, a quality improvement shifts demand

by the same amount at all quantities. As a result, the Spence (1975) quantity effect is muted:

the gain from a marginal upward shift in demand is roughly independent of whether the firm

operates at a high or a low quantity. The difference in R&D incentives between the merged

entity and the stand-alone firms is therefore mainly driven by the market power effect, and the

strategic and cannibalisation effects. In catch-up situations, the strategic and cannibalisation

effects work against the merger, so that the merged entity has weaker incentives to invest than

stand-alone firms, whereas in escape situations they work so that the merged entity may have

stronger incentives to invest than stand-alone firms.

The profits levels corresponding to these parameters are:
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Pre-merger payoffs:

Firm 2

s f

Firm 1 s 0.955, 0.955 1.302, 0.657

f 0.657, 1.302 0.892, 0.892

Table B.8: Firms’ payoffs (κ = 1)

Post-merger payoffs:

Division 2

s f

Division 1 s 1.727, 1.727 2.312, 0.850

f 0.850, 2.312 1.350, 1.350

Table B.9: Merged entity’s payoffs (κ = 1)

Again, as per Proposition 2, we compute the differences:

K1 = π̂ss
i −π̂fs

i −
(
π̂sf
j −π̂ss

j

)
−(πss

i −πfs
i ) ≈ 1.727−0.850−(2.312−1.727)−(0.955−0.657) ≈ −0.00613.

K2 = π̂sf
i −π̂ff

i −
(
π̂ff
j −π̂fs

j

)
−(πsf

i −πff
i ) ≈ 2.312−1.350−(1.350−0.850)−(1.302−0.892) ≈ 0.05227.

The sign of K1 is negative while the sign of K2 is positive. In catch-up situations, the strategic

effect is weaker than the cannibalisation effect, so the merged entity has weaker incentives

to invest than stand-alone firms (corresponding to K1 < 0), whereas in escape situations the

opposite holds and the merged entity has stronger incentives to invest (corresponding toK2 > 0).

When a laggard firm or division catches up, the strategic effect is relatively weak, because

closing the quality gap only modestly fosters price competition with the rival. By contrast,

the cannibalisation effect within the merged entity is strong: much of the additional demand

attracted by the improving division comes at the expense of the leading partner, so the gain in

joint profit is limited. When a firm escapes, the ranking reverses. The strategic effect becomes

very strong: by moving further ahead in quality, the leading firm induces the rival to cut its

price substantially in order to protect sales of its lower-quality product. At the same time, the

cannibalisation effect within the merged entity is relatively weak, because a large part of the

additional sales generated by the escaping division comes at the expense of the outside alternative

rather than from the partner division.

Because the sign of K1 is negative while the sign of K2 is positive, a merger increases R&D

incentives when the pre-merger level of investment is sufficiently low, and decreases them oth-

erwise. For example, assuming a linear probability of success function β(x) = x and a cost

function C(x) = 1
4
x2, we obtain x∗ > xm, while for C(x) = 1

2
x2 we get x∗ < xm. ■

B.2 Logit model, horizontally differentiated products, cost-reducing

innovation and Bertrand competition

This example illustrates how Proposition 2(iii) can arise in a logit model with cost-reducing

innovation and Bertrand competition. Firms invest to decrease the marginal of production,

which we denote ci, i = 1, 2. Initially, firms produce at a cost equal to cf > 0. Upon successful

innovation, marginal cost goes down to cs, with cf > cs. If the innovation effort fails, firms

continue to produce at cost cf . In state ss both firms have low cost; in state sf only firm i has

low cost; in fs only firm j has low cost; and in ff both have high cost.

Consumers derive utility

vi = s− pκi + ϵi,
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from the inside goods, with κ > 0 and ϵi TIEV distributed. The utility from the outside option,

denoted 0, is normalized to v0 = ϵ0. The corresponding logit market shares are

q1(p1, p2) =
es1−pκ1

1 + es1−pκ1 + es2−pκ2
, q2(p1, p2) =

es2−pκ2

1 + es1−pκ1 + es2−pκ2
.

The market share of the outside good is q0 = 1− q1− q2. The parameter κ governs the disutility

from price and has a bearing on the elasticity of demand, which is given by ϵ = κpκi (1−si). κ = 1

is the standard multinomial logit; values of κ lower than 1 correspond to less elastic demands,

while values of κ greater than 1 to more elastic demands.

In the second stage, firms compete in prices. Given an innovation outcome (ci, cj), and the

price of the rival firm, an individual firm i picks its price to maximize its payoff:

πi(pi, pj) = (pi − ci) qi(pi, pj), i, j = 1, 2, i ̸= j.

The FOC for firm i is:

1− κpκ−1
i (pi − ci)

(
1− qi(pi, pj)

)
= 0, i, j = 1, 2, i ̸= j.

For each cost state (ci, cj), the unique pre-merger Bertrand equilibrium (p∗i , p
∗
j) is obtained by

solving this system of equations. As mentioned before, these FOCs cannot be solved in closed-

form so we will solve them numerically to obtain the equilibrium prices for every innovation

subgame: (p∗i (ci, cj), p
∗
j(ci, cj)). The corresponding second-stage profits are then obtained by

plugging the equilibrium prices into the payoff above. As in the main body of the paper, we

label the payoffs corresponding to the various innovation subgames as follows:

πss
i ≡ πi(cs; cs), πsf

i ≡ πi(cs; cf ), πfs
i ≡ πi(cf ; cs), πff

i ≡ πi(cf ; cf ),

After the merger, a single owner controls both products and chooses (pi, pj) to maximize the

joint profit:

Πm(pi, pj; ci, cj) = πi(pi, pj; ci) + πj(pi, pj; cj).

The FOCs for the merged entity are:

1− κpκ−1
i (pi − ci)(1− qi(pi, pj)) + κpκ−1

j (pj − cj)qj(pi, pj) = 0, i, j = 1, 2, i ̸= j.

For each cost state (ci, cj), we solve these two equations numerically to obtain post-merger

equilibrium prices (p̂i(ci, cj), p̂j(ci, cj)). The profits corresponding to each of the divisions of

the merged entity are obtained by plugging the optimal prices corresponding to the various

innovation outcomes:

π̂ff
i ≡ π̂i(cf , cf ), π̂ss

i ≡ π̂i(cs, cs), π̂fs
i ≡ π̂i(cf , cs), π̂sf

i ≡ π̂i(cs, cf ).
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Merger increases investment if marginal cost of R&D is high, decreases otherwise.

To illustrate the result in Proposition 2(iii), assume that κ = 2. Moreover, let s = 2 and the

cost reduction from cf = 1 to cs = 0. The pre- and post-merger profits levels corresponding to

these parameters are:

Pre-merger payoffs:

Firm 2
s f

Firm 1 s 0.403, 0.403 0.588, 0.094
f 0.094, 0.588 0.151, 0.151

Table B.10: Firms’ payoffs (logit,
cost-reducing, κ = 2)

Post-merger payoffs:

Division 2
s f

Division 1 s 0.476, 0.476 0.731, 0.044
f 0.044, 0.731 0.160, 0.160

Table B.11: Merged entity’s payoffs (logit,
cost-reducing, κ = 2)

Using the definitions in Proposition 2, the relevant replacement terms are:

K1 = π̂ss
i −π̂fs

i −
(
π̂sf
j −π̂ss

j

)
−
(
πss
i −πfs

i

)
≈ 0.4761−0.0436−(0.7313−0.4761)−(0.4028−0.0944) ≈ −0.131 < 0,

K2 = π̂sf
i −π̂ff

i −
(
π̂ff
j −π̂fs

j

)
−
(
πsf
i −πff

i

)
≈ 0.7313−0.1604−(0.1604−0.0436)−(0.5884−0.1505) ≈ 0.016 > 0,

where K1 measures the change in the net replacement effect conditional on partner success (catch-up)

and K2 conditional on partner failure (escape).

The signs K1 < 0 and K2 > 0 match the qualitative discussion in the main text. In catch-up

situations (partner success), a cost-reducing innovation by firm i mainly serves to match the rival’s

marginal cost. The stand-alone firm produces a larger quantity at a given cost, so the direct cost-

saving effect is stronger pre-merger than for a division of the merged entity, while the strategic effect

(the rival’s price response) is relatively weak. As a consequence, the net gain from cost reduction is

smaller post-merger, which is reflected in K1 < 0.

In escape situations (partner failure), a successful innovation pushes firm i far ahead of a high-cost

rival. The stand-alone firm then faces a strong strategic effect: the laggard rival reacts by cutting

its price aggressively to defend its sales, sharply reducing the stand-alone firm’s gain from becoming

low cost. Within the merged entity, this large negative strategic effect is internalised, while the direct

cost-saving effect remains. This is why K2 is positive: conditional on partner failure, the merged entity

has stronger incentives to reduce costs than a stand-alone firm, even though each division sells less

output.

To close the example, suppose that the probability of project success is given by β(x) = x on [0, 1]

and that R&D costs are C(x) = 5x2. In the pre-merger duopoly, the symmetric equilibrium R&D effort

is x∗ ≈ 0.043, while after the merger it becomes xm ≈ 0.044.

Merger decreases investment.

The result in Proposition 2(ii) also arises in this model if we instead assume κ = 1 and keep the rest of

the parameters as above. The pre- and post-merger profits levels corresponding to κ = 1 are:
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Pre-merger payoffs:

Firm 2

s f

Firm 1 s 0.599, 0.599 0.746 , 0.317

f 0.317, 0.746 0.401, 0.401

Table B.12: Firms’ payoffs (logit,

cost-reducing, κ = 1)

Post-merger payoffs:

Division 2

s f

Division 1 s 0.687, 0.687 0.850, 0.313

f 0.313, 0.850 0.426, 0.426

Table B.13: Merged entity’s payoffs (logit,

cost-reducing, κ = 1)

The relevant differences in replacement effects are:

K1 = π̂ss
i −π̂fs

i −
(
π̂sf
j −π̂ss

j

)
−
(
πss
i −πfs

i

)
≈ 0.687−0.313−(0.850−0.687)−(0.599−0.317) ≈ −0.069 < 0

K2π̂
sf
i −π̂ff

i −
(
π̂ff
j −π̂fs

j

)
−
(
πsf
i −πff

i

)
≈ 0.850−0.426−(0.426−0.313)−(0.746−0.401) ≈ −0.035 < 0.

Because both K1 and K2 are negative, a merger reduces investment.

B.3 Hotelling with vertically differentiated products

This example illustrates the result in Proposition 2(i). To characterize the profits in the second stage

we use a Hotelling model similar to that in Gilbert and Katz (2022) and Houba, Motchenkova and

Wang (2023). Two firms locate at the two ends of a linear city that extends over the unit interval. If

a firm successfully innovates, it provides a high-quality product, denoted ss; otherwise, it provides a

low-quality product, sf , and stays in the market. Consumers are distributed uniformly along the linear

city. The utility of a consumer located at x ∈ [0, 1] is ui(x) = si − tx − pi when buying from i, and

uj(x) = sj − t(1− x)− pj when buying from j. We assume that ss − sf < t, which ensures that both

firms have positive market shares.23 Demands are given by

Di =
si − sj − (pi − pj)

2t
+

1

2
and Dj =

1

2
− si − sj − (pi − pj)

2t

We normalize the marginal cost of production to zero.24 Under these assumptions, the profit levels

corresponding to the different subgames in Table 1 are given by:25

πss
i =

t

2
, πsf

i =
(3t+ (ss − sf ))

2

18t
, πfs

i =
(3t− (ss − sf ))

2

18t
, πff

i =
t

2
(15)

We now derive the payoffs post-merger that appear in Table 2. When the two divisions of the

merged entity sell the same quality each division serves half of the market, since we assume the market

is covered. Consequently, the furthest away consumer each division serves incurs a transportation cost

equal to
t

2
. Hence, if, say, the two divisions sell high quality, the merged entity’s optimal prices are:

pi = pj = ss − t
2 . As a result, the profits of the two divisions are π̂ss

i = π̂ss
j =

ss
2

− t

4
. The merged

entity’s total profits are then π̂ss = ss −
t

2
. Similarly, if the two divisions sell low quality, the prices

23Condition ss − sf < t ensures that quality differences are not too large so that, both pre- and post-merger,
consumers buy from both firms. Further, we assume that ss + sf > 3t, which ensures that the duopolists and
the merged firm will cover the market. Also it is assumed that min{ss, sf} > 3t/2.

24This is without loss of generality, since cost and quality advantages are isomorphic in the Hotelling model.
25The derivations of pre-merger profits are straightforward and can be found in Table 1 of Houba et al. (2023).
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are pi = pj = sf − t
2 and each division earns π̂ff

i = π̂ff
j =

sf
2

− t

4
, with the merged entity earning

π̂ff = sf − t

2
.

When, instead, one of the divisions sells high quality and the other low quality, as in Gilbert and

Katz (2021), we need to derive the optimal split of the consumers across the two divisions of the merged

entity. Let y be the merged entity’s profits maximizing location of the consumer indifferent between

the offerings of the two divisions (to be found). Pricing optimality implies that such a consumer must

obtain zero utility; otherwise, the monopolist could raise the prices of both divisions without losing any

sales. This implies that ps = ss − ty and pf = sf − (1− y)t. As a result, the merged entity’s profit is

given by π̂sf = yps + (1 − y)pf . Optimization with respect to y gives
∂π̂sf

∂y
= ss − sf − 4ty + 2t = 0.

Solving for y, we obtain

y∗ =
1

2
+

ss − sf
4t

.

As a result, the prices at which the merged entity sells high- and low-quality products are:

ps =
3ss + sf − 2t

4
and pf =

ss + 3sf − 2t

4
,

with corresponding profits:

π̂sf
i =

(3ss + sf − 2t)(ss − sf + 2t)

16t
, π̂fs

j =
(3sf + ss − 2t)(sf − ss + 2t)

16t
, and

π̂sf =
ss + sf

2
−

4t2 − (ss − sf )
2

8t
.

Summarizing, the merged entity’s payoffs corresponding to the different innovation outcomes are:

π̂ss = ss −
t

2
, π̂sf = π̂fs =

ss + sf
2

−
4t2 − (ss − sf )

2

8t
, π̂ff = sf − t

2
. (16)

Using the profits expressions in (15) and (16), we can compute the expressions for K1 and K2 in

Proposition 1:

K1 = π̂ss
i − π̂fs

i −
(
π̂sf
j − π̂ss

j

)
−
(
πss
i − πfs

i

)
=

(ss − sf )(12t− 5(ss − sf ))

72t

K2 = π̂sf
i − π̂ff

i −
(
π̂ff
j − π̂fs

j

)
−
(
πsf
i − πff

i

)
=

(ss − sf )(12t+ 5(ss − sf ))

72t
.

It is straightforward to see that K1 > 0 because 0 < ss − sf < t, and K2 > 0 because ss > sf . As a

result, in this model a merger will always result in an increase in R&D.

To evaluate how a merger impacts consumer surplus, it is inevitable to compute the equilibrium

investment levels. This means that we have to make assumptions about the success probability function

and R&D cost function. Assume the success probability function is linear, i.e. β(xi) = xi; moreover,

assume quadratic investment costs C(xi) =
γx2

i
2 , where γ is a parameter reflecting the steepness of the

cost function. For these functional forms, we can compute the pre- and post-merger investment levels
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explicitly:

x∗ =

(
πsf
i − πff

i

)
γ +

(
πsf
i − πff

i

)
−
(
πss
i − πfs

i

) =
6t(ss − sf ) + (ss − sf )

2

18tγ + 2(ss − sf )2

xm =

(
π̂sf − π̂ff

)
γ + (π̂sf − π̂ff )− (π̂ss − π̂fs)

=
4t(ss − sf ) + (ss − sf )

2

8tγ + 2(ss − sf )2

It is straightforward to show that xm > x∗, which confirms the result mentioned above.

R&D output synergies We now assume that innovation developed by one division of the merged

entity can be leveraged across the other division (cf. Proposition 3). While the pre-merger profits

continue to be the same as before, based on the arguments mentioned above, it is straightforward to

see that the post-merger profits change to:

π̂ss = π̂sf = π̂fs = ss −
t

2
, π̂ff = sf − t

2
.

We are now ready to compute the expressions for D1 and D2 in Proposition 3:

D1 = −
(
πss
i − πfs

i

)
=

(ss − sf ) (ss − sf − 6t)

18t
< 0,

where the sign follows from ss − sf < t.

D2 = π̂ss
i − π̂ff

i −
(
π̂ff
j − π̂ss

j

)
−
(
πsf
i − πff

i

)
=

(ss − sf ) (12t− (ss − sf ))

18t
> 0,

where, again, the sign follows from ss − sf < t.

Because D1 < 0 and D2 > 0, whether the merger with R&D output synergies increases or decreases

investment depends on the magnitude of x∗ (which, in turn, depends on the shape of the investment

cost function). This illustrates Proposition 4(ii). When x∗ < x̂, we get xm > x∗, where x̂ is the solution

to

β(x) =
K2

K2 −K1
=

12t+ sf − ss
2(9t+ sf − ss)

;

otherwise, the merger leads to less investment.

To derive the consumer surplus effects of mergers, we need explicit values for the pre- and post-

merger optimal investments. Suppose, again, the success probability function is linear and the invest-

ment costs are quadratic. Then, the pre- and post-merger investment levels are equal to:

x∗ =

(
πsf
i − πff

i

)
γ +

(
πsf
i − πff

i

)
−
(
πss
i − πfs

i

) =
6t(ss − sf ) + (ss − sf )

2

18tγ + 2(ss − sf )2
,

xmsyn =

(
π̂ss − π̂ff

)
γ + (π̂ss − π̂ff )

=
ss − sf

γ + ss − sf

Comparing these two investment levels gives a lower bound on the cost parameter γ for which a merger
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can result in higher R&D investments:

γ =
6t(ss − sf )− (ss − sf )

2

12t+ sf − ss
.

Hence, compared to the pre-merger market equilibrium, a merger will result in an increase in R&D for

all γ > γ; otherwise, R&D investments will decrease. As mentioned above, this illustrates the scenario

described in Proposition 3(ii).

Further, we note that, relative to the situation without R&D output synergies –where we obtained

an unambiguous increase in R&D post-merger– synergies paradoxically restrict the set of parameters

under which mergers can spur R&D. However, the level of innovation post-merger in the presence of

output synergies need not be lower than in the model without synergies. In fact, in the case of a

quadratic investment cost function and a linear success probability, we find that x∗ < xm < xmsyn.

Consumer surplus The consumer surplus levels corresponding to the different subgames in are

given by (see e.g. Gilbert and Katz (2022)):

CSss = ss −
5t

4
, CSsf =

2sf − t

2
+

(ss − sf )
2 + 18t (ss − sf )− 27t2

36t
, CSff = sf − 5t

4
.

As a result, the expected consumer surplus in the pre-merger market is

ECS(x∗) = (β∗)2
(
ss −

5t

4

)
+ 2β∗ (1− β∗)

(
2sf − t

2
+

(ss − sf )
2 + 18t (ss − sf )− 27t2

36t

)

+ (1− β∗)2
(
sf − 5t

4

)
,

where, to shorten the expression, we have written β∗ to refer to β(x∗).

After merger, the levels attained under the different innovation outcomes are:

ĈS
ss

=
t

4
, ĈS

sf
= ĈS

fs
=

t

4
+

(ss − sf )
2

16t
, ĈS

ff
=

t

4
.

The corresponding expected consumer surplus is then:

ECSm(xm) = (βm)2
t

4
+ 2βm (1− βm)

(
t

4
+

(ss − sf )
2

16t

)
+ (1− βm)2

t

4
,

where, similarly, we have written βm instead of β(xm).

As mentioned above, it is quite difficult to compare the consumer surplus levels pre- and post-merger

because their distributions cannot be ranked according to the FOSD criterion. Inevitably, we have to

factor the optimal investment levels and proceed numerically. This means that this comparison depends

on the choice of functional forms. For the case of linear success probability and quadratic investment

cost, we can plug the investment levels derived above and compare numerically the consumer surplus

levels. Our numerical results show that consumer surplus decreases. However, if we use a much steeper

marginal cost function, specifically, C ′(x) = 0.7x1/9, consumer surplus may increase (depending on the

other parameters).26

26If we set ss = 2.5, sf = 1.5 and t = 1, consumer surplus increases after a merger by more than 5%.
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With R&D output synergies, the expression for the expected consumer surplus is given by

ECSm
syn(β(x

m
syn)) =

t

4
,

which is independent of the assumed success probability and investment cost functions.

We now show that with R&D output synergies, consumer surplus always goes down after a merger.

For this we compute the difference:

ECS(x∗)−ECSm
syn(β

∗(xmsyn)) =
9t(2sf − 3t) + β∗(ss − sf )(ss − sf + 18t)− (β∗)2(ss − sf )

2

18t
. (17)

The derivative of this difference with respect to β∗ is

(ss − sf )((2β
∗ − 1)sf − 2β∗ss + ss + 18t)

18t

This expression is decreasing in β∗, which means that (17) is a strictly concave function of β∗. Setting

β∗ = 0 in (17) and simplifying gives sf−3 t
2 > 0. Setting β∗ = 1 in (17) and simplifying gives ss−3 t

2 > 0.

As a result, (17) is always positive; hence, a merger always reduces consumer surplus in the presence

of R&D output synergies.

B.4 Singh and Vives (1984) model of horizontally differentiated prod-

ucts, cost-reducing innovation and Cournot Competition27

This example illustrates the result in Proposition 2(ii). At the same time, this example shows that

the possibility Mukherjee (2022) mentions in his paper that R&D may increase after a merger in this

model is not possible in the absence of synergies, irrespective of the success probability and R&D cost

functions (see also Valletti (2025)). Notice that our approach allows us to show this for any formulation

of the success probability and R&D cost functions.

To characterize the profits in the second stage, we use Singh and Vives’ (1984) system of demands

and assume Cournot competition. The demand functions are given by:

p1(q1, q2) = a− bq1 − dq2, p2(q1, q2) = a− bq2 − dq1,

and the Cournot equilibrium in the second-stage of the pre-merger market for arbitrary marginal costs

c1 and c2 is:

q1 =
2b(a− c1)− d(a− c2)

4b2 − d2
, q2 =

2b(a− c2)− d(a− c1)

4b2 − d2
,

The corresponding expressions for the reduced-form profits are:

π1(c1; c2) =
b(2b(a− c1)− d(a− c2))

2

(4b2 − d2)2
, π2(c2; c1) =

b(2b(a− c2)− d(a− c1))
2

(4b2 − d2)2

In the first stage, firms invest to lower their marginal costs of production. Initially, firms marginal

costs are equal to c. Upon innovation failure, they stay equal to c, so cf = c. Upon successful innovation,

27We have also analysed the cases of cost-reducing innovations under Bertrand competition, and demand-
enhancing innovations under Cournot competition. We obtain similar results. The detailed derivations are
omitted to save on space, but can be obtained from the authors upon request.
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firms lower their marginal costs by ∆ > 0, i.e. cs = c−∆. Like in Mukherjee (2022), we normalize the

cost-reduction so that cs = 0 to shorten the expressions.

The conditional reduced-form profits corresponding to the various innovation subgames are:

πss
i =

a2b

(2b+ d)2
, πsf

i =
b(a(2b− d) + cd)2

(d2 − 4b2)2
, πfs

i =
b(a(2b− d)− 2bc)2

(d2 − 4b2)2
, πff

i =
b(a− c)2

(2b+ d)2

and symmetrically for firm j.

Post-merger, the merged entity chooses quantities to maximize the joint profit:

πm = q1(p1(q1, q2)− c1) + q2(p2(q1, q2)− c2)

The merged entity’s profit-maximizing quantities are:

qm1 =
a(b− d)− bc1 + c2d

2b2 − 2d2
, qm2 =

a(b− d)− bc2 + c1d

2b2 − 2d2

Observe that for these quantities to be strictly positive, it must be the case that a(b − d) > bc. We

maintain this assumption in what follows.

The profits corresponding to each division of the merged entity are:

π̂1(c1, c2) =
(a− c1)(a(b− d)− bc1 + c2d)

4 (b2 − d2)
, π̂2(c1, c2) =

(a− c2)(a(b− d)− bc2 + c1d)

4 (b2 − d2)

Using the expressions above, and setting cs = 0 and cf = c as appropriate, we obtain the condi-

tional reduced-form profits for division i of the merged entity corresponding to the various innovation

outcomes:

π̂ss
i =

a2

4(b+ d)
, π̂sf

i =
a(a(b− d) + cd)

4 (b2 − d2)
, π̂fs

i =
(a− c)(a(b− d)− bc)

4 (b2 − d2)
, π̂ff

i =
(a− c)2

4(b+ d)
,

and symmetrically for division j.

We are now ready to compute the expressions for K1 and K2 in Proposition 1. For K1, we have:

K1 = π̂ss
i − π̂fs

i −
(
π̂sf
j − π̂ss

j

)
−
(
πss
i − πfs

i

)
= −

cd
[
2a(8b3 − d3)(b− d) + cdb(8b2 + d2)

]
4(b− d)(b+ d) (4b2 − d2)2

< 0,

where the sign follows from c > 0 and b > d.

After simplifying, we can write K2 as follows:

K2 = π̂sf
i − π̂ff

i −
(
π̂ff
j − π̂fs

j

)
−
(
πsf
i − πff

i

)
=

cd
[
(2a− c)(8b3d+ bd3)− (a− c)(16b4 + 2d4)

]
4(b− d)(b+ d) (4b2 − d2)2

.

We now show that K2 is also negative for all possible parameters. First, notice that the sign of K2 is

equal to the sign of the expression

(2a− c)(8b3d+ bd3)− (a− c)(16b4 + 2d4) (18)

This expression is decreasing in a because its derivative with respect to a is:

−16b4 − 2d4 + 2(8b3d+ bd3) = −16b4 − 2d4 + 16b3d+ 2bd3 = −(16b3 − 2d3)(b− d) < 0,
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where the last sign follows from b > d. Hence, if (18) is negative for the lowest admissible a, it is always

negative.

As mentioned above, it must be the case that a(b−d) > bc, or a > bc
b−d . Hence, the lowest admissible

a is bc
b−d . Plugging this lowest possible value of a in the expression (18) gives:

(2
bc

b− d
− c)(8b3d+ bd3)− (

bc

b− d
− c)(16b4 + 2d4)

=
c(b+ d)

b− d
(8b3d+ bd3)− cd

b− d
(16b4 + 2d4)

=
1

b− d

[
cd
(
b(b+ d)

(
8b2 + d2

)
− 2

(
8b4 + d4

))]
= cd

(
−8b3 + bd2 + 2d3

)
< 0,

where, again, the last sign follows from b > d.

Because both K1 and K2 are negative, we conclude that in this model a merger always results in

a decrease in R&D effort. As a result, consumer surplus decreases after a merger. This is in contrast

to Mukherjee (2022). The reason is that he allows for synergies: if one division of the merged entity

succeeds in lowering marginal costs, the other division also benefits and produces at the same lower

marginal cost. We now explore the role of synergies in this model.

R&D output synergies Assume now that innovations developed by one division of the merged

entity are leveraged across the other division (cf. Proposition 3). In such a case, the pre-merger profits

continue to be the same as above but the post-merger profits change to:

π̂ss = π̂sf = π̂fs =
a2

2(b+ d)
, π̂ff =

(a− c)2

2(b+ d)
.

We are now ready to compute the expressions for D1 and D2 in Proposition 3:

D1 = −
(
πss
i − πfs

i

)
= −4b2c(a(2b− d)− bc)

(d2 − 4b2)2
< 0.

(The negative sign is as expected.) For D2, we have:

D2 = π̂ss
i − π̂ff

i −
(
π̂ff
j − π̂ss

j

)
−
(
πsf
i − πff

i

)
= −

c
(
8ab2d(b+ d)− (2a− c)(8b4 + d4)

)
2(b+ d) (4b2 − d2)2

.

The sign of D2 depends of the sign of the numerator. It is easy to veryfy that D2 > 0 if and only

if a > c(8b4+d4)
2(8b4−4b3d−4b2d2+d4)

. In that case, because D1 < 0 and D2 > 0 and, as per Proposition 3(ii),

if investment cost is sufficiently large, the merger leads to more investment. Otherwise, there is less

investment after merger. This shows that the result in Mukherjee (2022) is due to R&D output synergies.

To derive the consumer surplus effects of mergers, we will need explicit values for the pre- and

post-merger optimal investments. Assuming that the success probability function is linear and the

investment costs quadratic, the pre- and post-merger investment levels are equal to:

x∗ =

(
πsf
i − πff

i

)
γ +

(
πsf
i − πff

i

)
−
(
πss
i − πfs

i

) =
4b2c(a(2b− d)− c(b− d))

4b2c2d+ γ (4b2 − d2)2
,

56



xmsyn =

(
π̂ss − π̂ff

)
γ + (π̂ss − π̂ff )

=
c(2a− c)

c(2a− c) + 2γ(b+ d)

Comparing these two investment levels gives a lower bound on the cost parameter γ for which a merger

can result in higher R&D investments:

γ =
4b2c(2a− c)(a(2b− d)− bc)

2a (8b4 − 4b3d− 4b2d2 + d4)− c (8b4 + d4)
.

Hence, compared to the pre-merger market equilibrium, a merger will result in an increase in R&D for

all γ > γ; otherwise, R&D investments will decrease. This illustrates the result in Proposition 3(ii).

Consumer surplus As mentioned above, in the absence of R&D output synergies, investment goes

down after a merger so consumer surplus cannot increase. Hence, in what follows, we focus on the case

in which R&D output synergies are present.

The consumer surplus levels corresponding to the different subgames are given by (detailed deriva-

tions are omitted to save on space):

CSss =
a2 (b+ d)

(2b+ d)2
, CSsf = CSfs =

2a (a− c) d3 +
(
4b2 − 3d2

) (
(a− c) 2ab+ bc2

)
2(2b− d)2(2b+ d)2

, CSff =
(a− c)2 (b+ d)

(2b+ d)2
.

As a result, the expected consumer surplus in the pre-merger market is

ECS(x∗) = (β∗)2
a2 (b+ d)

(2b+ d)2
+ 2β∗ (1− β∗)

(
2a (a− c) d3 +

(
4b2 − 3d2

) (
(a− c) 2ab+ bc2

)
2(2b− d)2(2b+ d)2

)

+ (1− β∗)2
(
(a− c)2 (b+ d)

(2b+ d)2

)
,

where, to shorten the expression, we have written β∗ to refer to β(x∗).

With R&D output synergies, after merger, the levels attained under the different innovation out-

comes are:

ĈS
ss

= ĈS
sf

= ĈS
fs

=
a2

4(b+ d)
, ĈS

ff
=

(a− c)2

4(b+ d)
.

The corresponding expected consumer surplus is then:

ECSm(xm) =
[
(βm)2 + 2βm (1− βm)

] a2

4(b+ d)
+ (1− βm)2

(a− c)2

4(b+ d)
,

where, similarly, we have written βm instead of β(xm).

To compare the consumer surplus levels pre- and post-merger we have to factor the optimal in-

vestment levels. This signifies that such a comparison depends on the choice of functional forms. For

the case of linear success probability and quadratic investment cost, we can plug the investment levels

derived above and compare numerically the consumer surplus levels. Our numerical results show that,

depending on parameters, consumer surplus can increase or decrease.28

28For example, fix the parameters to a = 10, b = 1, d = 0.1 and c = 2. Then, for γ = 10, investment decreases
after merger and hence consumer surplus too. However, for γ = 20, both investment and consumer surplus
increase.
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B.5 Sutton’s (2001) model of horizontally and vertically differenti-

ated products and quantity competition

This example illustrates the results in Proposition 2(ii) and (iii). To characterize the profits in the

second stage, we use Sutton’s (2001) system of demands for horizontally and vertically differentiated

products and Cournot competition. For the sake of exposition, we assume away horizontal product

differentiation by setting σ = 2 and set marginal cost of production to zero. These normalizations are

not crucial (see footnote 31). Initially, firms sell a basic product of low quality, denoted sf > 0. If a

firm’s investment turns out successful, we assume that the firm offers a product of higher quality ss,

with sf < ss < 2sf .
29 Otherwise, the firm continues offering the low-quality product. Under these

assumptions, utility maximization yields the following system of demands for the (possibly) vertically

differentiated products of the two players i and j:30

pi(qi, qj) = α− 2β2qi
s2i

− 2β2

si

∑
i ̸=j

qj
sj
, pj(qi, qj) = α− 2β2qj

s2j
− 2β2

sj

∑
j ̸=i

qi
si
.

For the Cournot equilibrium in the different innovation subgames, we refer to Dijk et al. (2024). The

equilibrium profits corresponding to the subgames are:

πss
i =

α2s2s
18β2

, πsf
i =

α2(2ss − sf )
2

18β2
, πfs

i =
α2(2sf − ss)

2

18β2
, πff

i =
α2s2f
18β2

(19)

Post-merger, the merged entity chooses quantities to maximize the joint profit:

πm = q1(p1(q1, q2)) + q2(p2(q1, q2))

The optimal quantities can be found in Dijk et al. (2024) and the expressions for the profits corre-

sponding to the different innovation outcomes are:

π̂ss = π̂sf = π̂fs =
α2s2s
8β2

, π̂ff =
α2s2f
8β2

.

We are now ready to compute the expressions for K1 and K2 in Proposition 1. For K1, we have:

K1 = π̂ss − π̂fs − (πss
i − πfs

i ) = 0−
(
α2s2s
18β2

−
α2(2sf − ss)

2

18β2

)
< 0.

Note now that

K2 =
α2s2s
8β2

−
α2s2f
8β2

−

(
α2(2ss − sf )

2

18β2
−
α2s2f
18β2

)
,

which is negative for 9
7 < ss

sf
< 2, and positive for the rest of parameters, 1 < ss

sf
< 9

7 . Hence, in the first

scenario we always have xm < x∗, while in the second scenario the outcome depends on the magnitude

of x∗ (which in turn depends on the shape of the investment cost function). Specifically, we obtain

xm > x∗ for x∗ < x̂, where x̂ is the solution to β(x) = K2
K2−K1

.

29The restriction ss < 2sf rules out drastic innovations.

30The utility function underlying this system of demands is: U =
2∑

i=1

[
αqi −

(
βqi
si

)2]
−σ

2∑
i=1

∑
i<j

βqi
si

βqj
sj

−
2∑

i=1

piqi

(see Sutton, 1997; 2001).
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Further, if we use a linear specification for the probability of success, β(x) = x, we can compute x̂

explicitly:

x̂ =
7ss − 9sf
7ss − 25sf

,

which is strictly positive for the parameter range corresponding to the second scenario 1 < ss
sf

< 9
7 .

These two scenarios illustrate the results in Proposition 1(ii) and Proposition 1(iii).

If we further assume investment costs are quadratic, c(xi) =
γx2

i
2 , where γ is a parameter reflecting

the steepness of the cost function, we can compute closed-form solutions for both the pre- and post-

merger investment levels. They are given by:

x∗ =

(
πsf
i − πff

i

)
γ +

(
πsf
i − πff

i

)
−
(
πss
i − πfs

i

) =
2α2ss (ss − sf )

9γβ2 + 2α2 (ss − sf )
2

xm =

(
π̂sf − π̂ff

)
γ + (π̂sf − π̂ff )− (π̂ss − π̂fs)

=
α2(s2s − s2f )

8γβ2 + α2
(
s2s − s2f

)
Comparing these two expressions gives a lower bound on the parameter γ, for which a merger can result

in higher R&D investments:

γ =

(
π̂sf − π̂ff

) (
πss
i − πfs

i

)
−
(
π̂ss − π̂fs

) (
πsf
i − πff

i

)
(π̂sf − π̂ff )−

(
πsf
i − πff

i

) =
2α2sf (s

2
f − s2s)

β2(7ss − 9sf )
.

Hence, for 1 < ss
sf

< 9
7 and γ > γ, a merger will result in an increase in R&D investment compared to

pre-merger equilibrium.

This example illustrates parts (ii) and (iii) of Proposition 1. The result in part (ii) also arises in

the numerical simulations reported in Federico et al. (2018), who model Bertrand competition instead.

To the best of our knowledge, the result in part (iii) showing the importance of the shape of the R&D

cost function has not been identified in the literature so far.31

R&D output synergies A key aspect of this model (with the Sutton’s (2001) system of demands

and vertically differentiated products) is that in the post-merger market, once one of the divisions’

R&D projects succeeds, the merged entity chooses to offer only the high-quality product. This product

repositioning implies that mergers involving R&D output synergies result in outcomes identical to those

described above.

31In a more general setting with both vertical and horizontal product differentiation, we get more complicated
expressions for the profits corresponding to the different innovation outcomes:

πss
i =

2α2s2s
(4 + σ)2β2

, πsf
i =

2α2(4ss − σsf )
2

(16− σ2)2β2
, πfs

i =
2α2(4sf − σss)

2

(16− σ2)2β2
, πff

i =
2α2s2f

(4 + σ)2β2
(20)

π̂ss =
α2s2s

2(2 + σ)β2
, π̂sf = π̂fs =

α2(s2s + s2f − σsssf )

2(4− σ2)β2
, π̂ff =

α2s2f
2(2 + σ)β2

.

However, this does not affect the main insights presented in this example.
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Consumer surplus For this model, the consumer surplus levels corresponding to the different

subgames are given by (see e.g. Dijk et al. (2024)):

CSss =
α2s2s
9β2

, CSsf = CSfs =
α2 (ss + sf )

2

36β2
, CSff =

α2s2f
9β2

.

Hence, the expected consumer surplus in the pre-merger market is:

ECS(x∗) = (β∗)2
α2s2s
9β2

+ 2β∗ (1− β∗)
α2 (ss + sf )

2

36β2
+ (1− β∗)2

α2s2f
9β2

,

where we have written β∗ to refer to β(x∗).

After merger, irrespective whether there are R&D synergies or not, the levels attained under the

different innovation outcomes are:

ĈS
ss

= ĈS
sf

= ĈS
fs

=
α2s2s
16β2

, ĈS
ff

=
α2s2f
16β2

.

The corresponding expected consumer surplus is then:

ECSm(xm) =
[
(βm)2 + 2βm (1− βm)

] α2s2s
16β2

+ (1− βm)2
α2s2f
16β2

,

where, similarly, we have written βm instead of β(xm).

To compare the consumer surplus levels pre- and post-merger we have to factor the optimal in-

vestment levels, which have been derived above for the case of linear success probability and quadratic

investment cost. After plugging them, numerical calculations reveal that consumer welfare decreases

after the merger, despite of the possible increase in R&D effort observed for some parameter ranges.

B.6 Mussa and Rosen (1978) model of vertical product differentia-

tion with price competition.

This example illustrates the results in Proposition 2(iv). To characterize the profits in the second

stage we adopt the Mussa and Rosen’s (1978) model of vertical product differentiation, further studied

by Motta (1993). Two firms offer vertically differentiated products. Initially, they sell low-quality

products, denoted sf . If a firm successfully innovates, it sells high-quality products, denoted ss, with

ss > sf . Consumers’ utility is given by ui = θsi − pi. θ is the quality taste, which follows the uniform

distribution on [0, 1]. The market is always uncovered. We assume zero marginal cost.32 Under these

assumptions, the system of demands for high- and low-quality products is given by

qs(ps, pf ) = 1−
ps − pf
ss − sf

, qf (ps, pf ) =
ps − pf
ss − sf

−
pf
sf

The profits corresponding to the different innovation subgames are given by (see Motta (1993)):33

πss
i = 0, πsf

i =
4s2s(ss − sf )

(4ss − sf )2
, πfs

i =
sssf (ss − sf )

(4ss − sf )2
, πff

i = 0 (21)

32With positive marginal cost, results are qualitatively similar.
33Because firms compete in prices, they each earn zero profit in case both have the same quality level. Hence,

πss
i = πss

j = πff
i = πff

j = 0. Asymmetric pre-merger profits, πsf
i and πfs

i , are derived following Motta (1993).
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Post-merger, the merged entity chooses quantities to maximize the joint profit. The merged entity’s

profits corresponding to the different innovation outcomes are:34

π̂ss = π̂sf = π̂fs =
ss
4
, π̂ff =

sf
4
.

Using these payoffs, we can now compute the expressions for K1 and K2 in Proposition 1:

K1 = π̂ss − π̂fs − (πss
i − πfs

i ) =
sssf (ss − sf )

(4ss − sf )2
> 0,

and

K2 = π̂sf − π̂ff − (πsf
i − πff

i ) =
sf (ss − sf )(sf − 8ss)

4(4ss − sf )2
< 0,

for all ss−sf > 0. As a result, this example illustrates the scenario identified in part (iv) of Proposition

1.

To the best of our knowledge, this case has not been identified in the previous literature on the

effects of mergers. In this scenario, the impact of a merger depends on the level of investment pre-

merger, x∗, which in turn depends on the shape of the investment cost function. When x∗ > x̂, where

x̂ is the solution to β(x) = K2
K2−K1

, we obtain xm > x∗.

If we assume a linear success probability function, we can compute x̂ explicitly:

x̂ =
8ss − sf
12ss − sf

.

Further, if we assume investment costs are quadratic, c(xi) =
γx2

i
2 , we can compute closed form solutions

for both pre-merger and post-merger investment levels. They are given by

x∗ =

(
πsf
i − πff

i

)
γ +

(
πsf
i − πff

i

)
−
(
πss
i − πfs

i

) =
4s2s (ss − sf )

γ(4ss − sf )2 + ss(4s2s − 3sssf − s2f )

xm =

(
π̂sf − π̂ff

)
γ + (π̂sf − π̂ff )− (π̂ss − π̂fs)

=
ss − sf

4γ + ss − sf

Comparing these two expressions gives an upper bound on parameter γ, for which a merger results

in higher R&D investments:

γ =

(
π̂ss − π̂fs

) (
πsf
i − πff

i

)
−
(
π̂sf − π̂ff

) (
πss
i − πfs

i

)
(
πsf
i − πff

i

)
− (π̂sf − π̂ff )

=

(
s2s − sfss

)
8ss − sf

Otherwise, for γ > γ, a merger results in a reduction in R&D investment compared to pre-merger

equilibrium. Because the case γ < γ fails to satisfy the SOCs (see Appendix C), we conclude that, for

quadratic R&D costs and linear success probabilities, in this model a merger can only result in lower

34When the two divisions of the merged entity sell the same quality, the monopolist’s profits are given by

π̂ss =
ss
4

(π̂ss
i = π̂ss

j =
ss
8
) and π̂ff =

sf
4

(π̂ff
i = π̂ff

j =
sf
8
). When the R&D project of one of the divisions

is successful and the other not, the monopolist only sells the high-quality product. Hence, π̂sf = π̂fs =
ss
4
,

(π̂sf
i =

ss
4

and π̂fs
j = 0).
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R&D and, hence, lower consumer surplus.

R&D output synergies This model also has the feature that in the post-merger market, once the

R&D project of one of the divisions succeeds, the merged entity chooses to offer only the high-quality

product. This product repositioning implies that mergers involving R&D output synergies result in

outcomes identical to those described above.

C Micro-founded example illustrating Proposition 3

In this appendix, we provide a micro-founded example to illustrate the results in Proposition 3.

Singh and Vives’s (1984) model of price competition, horizontally dif-

ferentiated products and cost-reducing innovation

We consider the Sighn and Vives’s (1984) system of demands, investments that decrease the marginal

cost of the products and price competition.

The demands are given by

q1(p1, p2) = a− bp1 + dp2, q2(p1, p2) = a− bp2 + dp1,

where, as usual, b > d.

In the pre-merger market, the second-stage equilibrium is:

p1 =
2b(a+ bc1) + d(a+ bc2)

4b2 − d2
, p2 =

d(a+ bc1) + 2b(a+ bc2)

4b2 − d2
.

The reduced-form profits of firms 1 and 2 are:

π1 =
b
(
2b(a− bc1) + d(a+ bc2) + c1d

2
)2

(4b2 − d2)2
, π2 =

b
(
2b(a− bc2) + d(a+ bc1) + c2d

2
)2

(4b2 − d2)2
.

We use these expressions to build our payoffs for stage 1, in which the firms decide on R&D efforts

to reduce their marginal costs of production. We assume that initially firms have a marginal cost equal

to c, with a > (b − d)c. If a firm invests an amount C(xi) = γ
x2
i
2 , then it gets a cost decrease of xi.

Hence, the payoffs of firm i corresponding to the different innovation subgames are:

πss
i =

b
(
2b(a− b(c− xi)) + d(a+ b(c− xj)) + (c− xi)d

2
)2

(4b2 − d2)2
, πff

i =
b
(
2b(a− bc) + d(a+ bc) + (cd2

)2
(4b2 − d2)2

,

πsf
i =

b
(
2b(a− b(c− xi)) + d(a+ bc) + (c− xi)d

2
)2

(4b2 − d2)2
, πfs

i =
b
(
2b(a− bc) + d(a+ b(c− xj)) + (cd2

)2
(4b2 − d2)2

,

and symmetrically for firm j.

In the pre-merger market, the problem of a firm i is to maximize:

Eπi = (1− µ)2πff
i + (1− µ)µπfs

i + µ(1− µ)πsf
i + µ2πss

i − γ
x2i
2
. (22)

Taking the FOC with respect to xi and applying symmetry we get the equilibrium investment in the
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pre-merger market:

x∗ =
2bµ(2b+ d)

(
2b2 − d2

)
(a− (b− d)c)

γ (4b2 − d2)2 − 2bµ (2b2 − d2) (2b2 − d2 − bdµ)
. (23)

x∗ is positive when γ is not too low, which is ensured by the SOC (see Appendix D).

In the second stage of the post-merger market, the merged entity chooses prices to maximize the

joint profit:

πm(p1, p2) = q1(p1, p2)(p1 − c1) + q2(p1, p2)(p2 − c2).

The merged entity’s second-stage optimal prices are:

p1 =
1

2

(
a

b− d
+ c1

)
, p2 =

1

2

(
a

b− d
+ c2

)
Given these prices, the reduced-form profits of the two division of the merged entity are:

πm
1 =

(a+ c1(d− b))(a− bc1 + c2d)

4(b− d)
, πm

2 =
(a+ c2(d− b))(a− bc2 + c1d)

4(b− d)
.

Hence, the conditional reduced-form profits for division i of the merged entity corresponding to the

various innovation outcomes are:

π̂ss
i =

(a+ (c− xi)(d− b))(a− b(c− xi) + (c− xj)d)

4(b− d)
, π̂sf

i =
(a+ (c− xi)(d− b))(a− b(c− xi) + cd)

4(b− d)
,

π̂fs
i =

(a+ c(d− b))(a− bc+ (c− xj)d)

4(b− d)
, π̂ff

i =
(a+ c(d− b))(a− bc+ cd)

4(b− d)
,

and symmetrically for division j.

We are now ready to compute the relevant expressions K3(x
∗) and K4(x

∗) in Proposition 3. For

K3(x
∗) we get:

K3(x
∗) = −1

4

(
a

(
b

d− b
− 1

)
+ 2b(c− x∗)− (c− x∗)d

)
− d(a+ (c− x∗)(d− b))

4(b− d)
+

2b
(
d2 − 2b2

) (
2b(a− b(c− x∗)) + d(a+ b(c− x∗)) + (c− x∗)d2

)
(d2 − 4b2)2

=
d
(
−4b2 + 2bd+ d2

)
(a− (b− d)(c− x∗))

2(2b− d)2(2b+ d)
< 0, because b > d and a− (b− d)(c− x∗) > 0.

So K3(x
∗) is always negative. This demonstrates the result in Motta and Tarantino (2021, section 3.1)

that, if innovation is surely successful (deterministic innovation), a merger always reduces investment

in this model.

For K4(x
∗), we obtain:

K4(x
∗) = −1

4

(
a

(
b

d− b
− 1

)
+ 2b(c− x∗)− cd

)
− d(a+ c(d− b))

4(b− d)

+
2b
(
d2 − 2b2

) (
d(a+ bc) + 2b(a− b(c− x∗)) + d2(c− x∗)

)
(4b2 − d2)2
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=
d
[
bdx∗

(
8b2 − 3d2

)
−
(
8b3 − 4bd2 − d3

)
(a− c(b− d))

]
2 (4b2 − d2)2

,

whose sign is in principle ambiguous. Note, however, that if investment costs are very steep and

correspondingly the pre-merger equilibrium investment level is very low (x∗ → 0), the sign of K4(x
∗)

is negative. In that case, because K3(x
∗) is also negative, investment post-merger is definitely lower

than pre-merger. However, if investment costs are not that large, K4(x
∗) may be positive. So, we

conclude that there are two relevant cases here: K3(x
∗) < 0 and K4(x

∗) < 0, and K3(x
∗) < 0 and

K4(x
∗) > 0. The first case illustrates part (ii) of Proposition 3 and implies an unambiguous reduction

in R&D post-merger. The second case illustrates part (iv)(a) of Proposition 3, in which case the impact

of a merger on R&D depends on the magnitude of the success probability and the shape of the R&D

cost function. We now examine further details on this second case.

Note that K3(x) is decreasing in x, while K4(x) is increasing in x. Further, it is easy to see that

Φ(x) is increasing in x, where, recall, Φ(x) = K4(x)
K4(x)−K3(x)

. Solving the equation µ−Φ(x) = 0 in x gives:

x̃ =
(a− (b− d)c)(2b+ d)

(
4b2 − 2bd− d2

)
d(8b3 − 3bd2)− µ (8b4 + d4 − 4b2d2)

.

Inspection of this expression reveals that x̃ is strictly positive for any µ < µ̂ ≡ d(8b3−3bd2)
8b4+d4−4b2d2

< 1. We

then conclude that for µ < µ̂, the post-merger investment level is higher than pre-merger, i.e. xm > x∗,

if and only if x∗ > x̃; this requires the marginal cost of R&D not to be too steep. Otherwise, if x∗ < x̃,

we get a decrease in investment after a merger, i.e., xm < x∗.

To identify a condition on the steepness of the R&D cost function that results in lower R&D after

a merger, we compare expressions for pre-merger and post-merger investment levels. The equilibrium

investment in the pre-merger market is given above in equation (23). To obtain the merged entity’s

optimal investment, we maximize the joint profits:

Eπm = (1−µ)2(π̂ff
i +π̂ff

j )+(1−µ)µ(π̂fs
i +π̂sf

j )+µ(1−µ)(π̂sf
i +π̂fs

f )+µ2(π̂ss
i +π̂ss

j )−γ
x2i
2
−γ

x2j
2
. (24)

Taking the FOC with respect to xi, applying symmetry, and solving for the optimal investment post-

merger gives:

xm =
µ(a− c(b− d))

2γ − µ(b− dµ)
.

Comparing x∗ and xm gives an upper bound on the parameter γ, denoted γ, for which a merger

can result in a higher level of R&D investment:

γ =
µ(1− µ)

(
4b4 − 2bd3 + 4b3d− 2b2d2

)
8b3 − 4bd2 − d3

,

which is strictly positive for all µ < 1. Hence, we conclude that with µ < µ̂ and γ < γ, and provided that

the second-order conditions hold which require µ to be small relative to γ (in particular γ > 1
4µ(b+dµ),

see Appendix D), a merger will result in an increase in R&D compared to pre-merger. Otherwise, for

γ > γ (and fixing the other parameters), R&D will decrease after a merger.35

35For example, if the parameters are a = 3, b = 1.7, d = 0.7, c = 2.3 and µ = 0.19 then this threshold is
approximately γ = 0.1865. So for 0.0871 < γ < 0.1865 (low investment costs for which the SOC in Appendix D
holds) post-merger investment is greater than pre-merger. However, when γ > 0.1865 (high investment costs) we
get the opposite.
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D Concavity and Sufficient Conditions for a Maximum

In the main Propositions of our paper we have assume the strict concavity of the payoffs. However, in

the examples we have used to illustrate them (see Appendix B), we have employed specific functional

forms for the success probability function and the cost of R&D function. In this appendix, we verify

that the second-order conditions (SOCs) are satisfied for the examples we have presented, or imposed

conditions on the magnitude of the marginal cost of R&D to ensure our analysis pertains to a true

maximum.

Concavity in the examples illustrating Proposition 2

Recall that the pre- and post-merger expected profits in Proposition 2 are, respectively, given by:

Eπi(xi;xj) = βi(xi)
[
βj(xj)π

ss
i + (1− βj(xj))π

sf
i

]
+(1− βi(xi))

[
βj(xj)π

fs
i + (1− βj(xj))π

ff
i

]
− C(xi),

and

Eπm(xi, xj) = βi(xi)
[
βj(xj)π̂

ss
i + (1− βj(xj))π̂

sf
i

]
+(1− βi(xi))

[
βj(xj)π̂

fs
i + (1− βj(xj))π̂

ff
i

]
− C(xi)

+βj(xj)
[
βi(xi)π̂

ss
j + (1− βi(xi))π̂

sf
j

]
+(1− βj(xj))

[
βi(xi)π̂

fs
j + (1− βi(xi))π̂

ff
j

]
− C(xj).

To ensure strict concavity of these payoffs, we evaluate the principal leading minors of the Hessian

matrix for the functional forms we have used in the examples in Appendix B, i.e. linear success

probabilities, βi(xi) = xi, and quadratic cost functions, C(xi) = γx2i /2.

The Hessian matrix pre-merger is given by:

H =

[
−γ πss

i − πfs
i − (πsf

i − πff
i )

πss
i − πfs

i − (πsf
i − πff

i ) −γ

]
.

The conditions on the leading principal minors for the strict concavity of the pre-merger payoff are:

L1 = −γ < 0 (25)

L2 = γ2 −
(
πss
i − πfs

i − (πsf
i − πff

i )
)2

> 0.

It is clear that these inequalities hold for sufficiently large γ.

Similarly, the Hessian matrix post-merger is given by:

Hm =

[
−γ π̂ss − π̂fs − (π̂sf − π̂ff )

π̂ss − π̂fs − (π̂sf − π̂ff ) −γ

]
,

and the conditions on the leading principal minors ensuring the strict concavity of the payoff are:

Lm
1 = −γ < 0 (26)
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Lm
2 = γ2 −

(
π̂ss − π̂fs − (π̂sf − π̂ff )

)2
> 0.

Again, it is clear that the post-merger SOCs are satisfied for sufficiently large γ.

Note that, for the micro-founded examples based on the Hotelling model and the Singh and Vives

(1984) model (under both price and quantity competition) where the results regarding the positive

or negative impact on R&D hold across all parameter values, both conditions (25) and (26) can be

satisfied, as the choice of the parameter γ is unrestricted (γ large suffices). Regarding the example

based on the Sutton’s (2001) system of demands, we have seen that R&D will increase after a merger

if γ is large enough and the quality difference sufficiently small. Then, because γ large suffices for (25)

and (26), the SOCs hold. Finally, we observe that for the example based on the Mussa and Rosen’s

(1978) demand model, the range of parameters leading to an increase in R&D post-merger identified in

the example based on Mussa and Rosen (1978) does not satisfy the SOCs. This implies that, despite

K1 > 0 and K2 < 0 in this model, we always get xm < x∗.36

Concavity in the example illustrating Proposition 3

Here we consider the Sighn and Vives’s (1984) system of demands, investments that decrease the

marginal cost of the products and price competition.

In the pre-merger market the problem of a firm i is to maximize (23):

Eπ1 = (1− µ)2
b
(
2b(a− bc) + d(a+ bc) + cd2

)2
(4b2 − d2)2

+ (1− µ)µ
b
(
2b(a− bc) + d(a+ b(c− x2)) + cd2

)2
(4b2 − d2)2

+µ(1− µ)
b
(
2b(a− b(c− x1)) + d(a+ bc) + (c− x1)d

2
)2

(4b2 − d2)2

+µ2 b
(
2b(a− b(c− x1)) + d(a+ b(c− x2)) + (c− x1)d

2
)2

(4b2 − d2)2
− γ

x21
2
.

To ensure the strict concavity of this payoff, we analyze the Hessian matrix, which in this example

has the following form:

H =

 2bµ
(2b2−d2)

2

(4b2−d2)2
− γ −2b2dµ2 2b2−d2

(4b2−d2)2

−2b2dµ2 2b2−d2

(4b2−d2)2
2bµ

(2b2−d2)
2

(4b2−d2)2
− γ


As before, for strict concavity, the leading principal minors of the Hessian matrix have to satisfy L1 < 0,

L2 > 0 where

L1 = 2bµ

(
2b2 − d2

)2
(4b2 − d2)2

− γ,

36Indeed, substituting the upper bound on the parameter γ derived in Appendix B, γ =
s2s−sfss
8ss−sf

, into the

expressions in (25) and (26), we obtain:

L2 =

(
s2s − sfss
8ss − sf

)2

−

(
ss(4s

2
s − s2f − 3sfss)

(4ss − sf )2

)2

= − 8s3s(sf − ss)
2

(sf − 4ss)
4
(sf − 8ss)

2

(
s3f − 18s2fss + 64sfs

2
s + 96s3s

)
< 0.

Similarly, post-merger Lm
2 =

(
s2s−sfss
8ss−sf

)2
−
(ss
4

− sf
4

)2
= − 1

16
(sf−ss)

2

(sf−8ss)
2

(
s2f − 16sfss + 48s2s

)
< 0.
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L2 =

(
2bµ

(
2b2 − d2

)2
(4b2 − d2)2

− γ

)2

−
(
−2b2dµ2 2b2 − d2

(4b2 − d2)2

)2

.

Note that L2 is strictly convex in γ. This implies that the SOC is satisfied for all

γ > 2bµ

(
2b2 − d2

)2
(4b2 − d2)2

+ 2b2dµ2 2b2 − d2

(4b2 − d2)2
=

2bµ(2b2 − d2)

(4b2 − d2)2
(2b2 − d2 + bdµ).

In the post-merger market the joint entity maximizes the joint profits in (24):

Eπm = (1− µ)2
(
(a+ c(d− b))(a− bc+ cd)

4(b− d)
+

(a+ c(d− b))(a− bc+ cd)

4(b− d)

)
+(1− µ)µ

(
(a+ c(d− b))(a− bc+ (c− x2)d)

4(b− d)
+

(a+ (c− x2)(d− b))(a− b(c− x2) + cd)

4(b− d)

)
+µ(1− µ)

(
(a+ (c− x1)(d− b))(a− b(c− x1) + cd)

4(b− d)
+

(a+ c(d− b))(a− bc+ (c− x1)d)

4(b− d)

)
+µ2

(
(a+ (c− x1)(d− b))(a− b(c− x1) + (c− x2)d)

4(b− d)
+

(a+ (c− x2)(d− b))(a− b(c− x2) + (c− x1)d)

4(b− d)

)
−γ

x2
1

2
− γ

x2
2

2
.

The Hessian matrix corresponding to this payoff is:

Hm =

[
1
2bµ− 2γ −1

2dµ
2

−1
2dµ

2 1
2bµ− 2γ

]
.

The conditions for the strict concavity of the payoff are Lm
1 < 0, Lm

2 > 0, where

Lm
1 =

1

2
bµ− 2γ

Lm
2 =

(
1

2
bµ− 2γ

)2

−
(
−1

2
dµ2

)2

.

The SOC is satisfied for all γ > 1
4bµ+ 1

4dµ
2 = µ

4 (b+ dµ).
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