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Abstract

This paper proposes a quasi-likelihood ratio (QLR) test for the null of constant parameters

against the alternative of score-driven parameter dynamics. Score-driven models have been

widely used in the literature to capture time variation in parameters across a diverse range

of both continuous and discrete, univariate and multivariate time series models, with or

without random regressors. A formal testing procedure, however, is lacking thus far. Our

QLR test addresses two key challenges: (i) parameters may lie on the boundary of the

parameter space, and (ii) nuisance parameters are not identified under the null. The test

statistic’s non-standard asymptotic distribution takes a simple form that only depends on

the specified parameter space and is invariant to the specific formulation of the score-driven

model and its degree of nonlinearity. Consequently, the asymptotic distribution applies

to a wide range of score-driven models and can easily be simulated to conduct inference.

We illustrate the new test using several models from the score-driven literature and show

that the limiting distribution provides an adequate approximation for inference in finite

samples.

Keywords: parameter constancy, score-driven models, quasi-likelihood ratio test, pa-

rameters on the boundary, nonidentification.
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1 Introduction

Observation-driven models are widely adopted for capturing time variation in time series data.

In these models, the dynamics are specified as functions of past observations. The time-varying

parameters are therefore pre-determined, though unconditionally stochastic. This feature of

observation-driven models allows for a standard application of maximum likelihood methods.

Among the class of observation-driven models, a prominent and extensively studied subclass is

the family of score-driven models, introduced independently by Creal, Koopman, and Lucas

(2013) and Harvey (2013).1 The theoretical underpinnings of score-driven models have recently

been examined in, among others, Blasques, Koopman, and Lucas. (2015, 2018), Blasques, van

Brummelen, Koopman, and Lucas (2022), and Gorgi, Lauria, and Luati (2024). A particularly

interesting result is that score-driven models are optimal within the class of observation-driven

models, in the sense that they achieve the minimum asymptotic variance, even when the

dynamics are not observation-driven (Beutner, Lin, and Lucas, 2023).

However, to the best of our knowledge, previous studies, whether theoretical or applied,

generally assume the presence of score-driven time variation in the parameters from the outset.

This assumption conveniently ensures unique parameter identification and enables standard

asymptotic approximations for M -type estimators. If the assumption is violated, however,

the corresponding asymptotic results typically fail, undermining the reliability of inference in

practice. Despite the widespread use of score-driven models, the literature is surprisingly thin on

formal testing procedures to detect time variation. Only Calvori, Creal, Koopman, and Lucas

(2017) develop an LM testing procedure for score-driven parameter dynamics, but without any

formal theory and relying on a rather restrictive solution to the nonidentification problem that

arises under the null, as discussed later. Instead, most papers rely on ad-hoc or intuitive visual

diagnostics like the size of the time variation in the filtered parameters. Such approaches are

statistically unreliable and can even be misleading. In particular, when time variation is absent,

naively applying score-driven models can produce strong, but spurious time-varying patterns.

For this reason, a formal test for constant parameters against the alternative of score-driven

dynamics is necessary, and this is the focus of the present paper.

We consider a flexible setup that accommodates different types of variables of interest,

including, for example, discrete or continuous variables as well as random exogenous variables.

We propose a quasi-likelihood ratio (QLR) test for the constancy of a scalar parameter against

score-driven dynamics, allowing for potential model mis-specification. Two main challenges

1Interested readers are referred to https://www.gasmodel.com/, which provides a collection of over 400
recent articles related to this line of research.
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arise, however, when deriving the limiting distribution of the QLR test under the null. First,

parameters may lie on the boundary of the parameter space under the null hypothesis, which

invalidates conventional asymptotic analysis that typically requires parameters to lie in the

interior of the parameter space (see, e.g., the pioneering works on (G)ARCH models Francq

and Zaköıan, 2009; Cavaliere, Nielsen, and Rahbek, 2017; Jiang, Li, and Zhu, 2020; Cavaliere,

Nielsen, Pedersen, and Rahbek, 2022; Cavaliere, Perera, and Rahbek, 2024). Second, the test

runs into the well-known Davies problem (Davies, 1977, 1987), whereby some parameters are

not identified under the null (see, e.g., Andrews, 1993; Andrews and Ploberger, 1994, 1996;

Hansen, 1996; Baek, Cho, and Phillips, 2015). The studies referred to above typically focus on

one of these two issues. By contrast, we address both challenges at the same time, building on

the seminal work of Andrews (2001) and deriving the limiting null distribution of the proposed

QLR test. We establish a set of easily verifiable conditions and illustrate their application to a

range of different popular score-driven models.

Our findings show that the limiting distribution generally depends on several nuisance

parameters. However, under mild conditions that are typically satisfied by score-driven models

from the literature, the QLR statistic converges, either directly or after rescaling, to a simple yet

non-standard limiting distribution that is free of nuisance parameters. This limiting distribution

does not follow the conventional χ2 law or a mixture thereof (see Kopylev and Sinha, 2011, and

references therein), but instead depends on the specification of the parameter space. The limiting

distribution can be readily simulated for practical implementation and inference. Interestingly,

the same limiting distribution as obtained in this paper has appeared in earlier Andrews and

Ploberger (1996) for tests of serial correlation in ARMA(1,1) models, and in Andrews (2001)

for tests of conditional heteroskedasticity. The current paper shows that it applies to a much

broader context of time-varying parameter models that are used in practice.

The remainder of the paper is organized as follows. Section 2 introduces the setup and

presents the QLR test. Section 3 derives the asymptotic null distribution and discusses the

conditions that allow for a nuisance parameter free limiting distribution. This section also

provides additional results offering sufficient conditions that can be used to verify some of the

main assumptions. Section 4 illustrates the theoretical results using different models. Section

5 presents simulation evidence to evaluate the performance of our asymptotic approximations

in finite samples. Section 6 presents a short empirical application of the time-varying spatial

regression model of Blasques, Koopman, Lucas, and Schaumburg (2016). Section 7 concludes.

The Online Appendix contains all the proofs, a comprehensive set of simulated critical values,

and further details on the examples in Section 4.
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2 Testing for score-driven parameter dynamics

2.1 Score-driven time-varying parameter models

For t ∈ Z+, let yt ∈ Y ⊂ Rn denote the vector of variables of interest, and xt ∈ X ⊂ Rk a

vector of exogenous variables, where n ≥ 1 and k ≥ 0, with k = 0 when no exogenous variables

are present. Define Ft := σ
(
(ys,xs), s ≤ t

)
, i.e., the σ-field generated by

{
(yt,xt), t ∈ Z

}
. We

consider the setting where the statistician assumes a conditional probability density function

(pdf) or probability mass function (pmf) p( · | xt, ft, ϕ) for yt given xt and Ft−1, where

ft ∈ F ⊂ R is a scalar time-varying parameter that is of primary interest, and ϕ ∈ Θϕ is

a vector of static parameters. The assumed conditional pdf/pmf p( · | xt, ft, ϕ) does not

necessarily represent the true, unknown conditional pdf/pmf. In other words, the model may be

mis-specified. In this setting, Creal et al. (2013) and Harvey (2013) propose the popular class of

score-driven parameter dynamics for ft as given by

ft+1 = ψt(ft,ϑ, β) = ω(1− β) + βft + α st(ft,ϕ), (2.1)

st(f,ϕ) := s(yt,xt, f,ϕ) = S(yt,xt, f,ϕ)
∂ log p(yt | xt, f, ϕ)

∂f
, (2.2)

where ϑ := (α, ω,ϕ⊤)⊤ ∈ Θ = Θα × Θω ×Θϕ ⊂ Rm+2, β ∈ B ⊂ R, and S(yt,xt, f,ϕ) ∈ R

is a user-specified scale. Note that we treat the parameter β and its parameter space B

differently from the remaining parameters. The reason for this becomes apparent in the next

subsection. Additional conditions on the parameter space Θ are provided in Section 3. For

convenience, we define the shorthand notation St(f,ϕ) := S(yt,xt, f,ϕ) and ∇f
t (f,ϕ) :=

∂ log p(yt | xt, f, ϕ)/∂f .

The score-driven time-varying parameter setup in (2.1)–(2.2) encompasses a wide range of

empirically relevant models, including, among others, volatility models (Creal, Koopman, and

Lucas., 2011; Harvey, 2013), dynamic copula and correlation models (Janus, Koopman, and

Lucas, 2014; Blasques, Lucas, and Silde, 2018; Opschoor, Janus, Lucas, and Van Dijk, 2018),

integer time series models (Fokianos, Rahbek, and Tjøstheim, 2009; Babii, Chen, and Ghysels,

2019; Gorgi, 2020), robust location models (Harvey and Luati, 2014), dynamic spatial Durbin

models (Blasques et al., 2016; D’Innocenzo, Lucas, Opschoor, and Zhang, 2024), time-varying tail

shape models (Massacci, 2017; D’Innocenzo, Lucas, Schwaab, and Zhang, 2024), matrix-valued

and tensor-valued time series (Armillotta, Gorgi, and Lucas, 2025; Lin, Lucas, and Ye, 2025),

and more.
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Even though the assumed pdf/pmf may be mis-specified, the score-driven parameter dynamics

in (2.1)–(2.2) result in expected local improvements of the Kullback-Leibler divergence (Blasques

et al., 2015, 2018; De Punder, Dimitriadis, and Lange, 2024; Gorgi et al., 2024). In addition,

Beutner et al. (2023) show that the score-driven filtered values ft provide consistent estimates

of the true, unobserved Kullback-Leibler optimal parameter dynamics under various forms of

severe mis-specification. Both results underline the theoretical underpinnings and flexibility of

the score-driven approach.

2.2 Quasi-likelihood ratio (QLR) tests for parameter constancy

Despite the widespread use of the score-driven modeling methodology, there is to the best of

our knowledge currently no formal test available for the presence of score-driven time-varying

parameters. This is precisely the main focus of the current paper. Given the general asymptotic

results in Beutner et al. (2023) on the Kullback-Leibler consistency of ft under general forms

of mis-specification, such a test may even be viewed as a general test of time variation in the

true data generating process (dgp), whether the assumed pdf/pmf p( · | xt, ft, ϕ) is correctly

specified or not.

Let {0} ⊂ Θα, then testing for time invariance reduces to testing the null hypothesis

H0 : α = 0 against the alternative H1 : α ̸= 0. Two remarks are in place. First, depending on

the model, α = 0 may lie on the boundary of Θα. For example, in several score-driven volatility

models α is assumed to be non-negative in order to ensure positive variances for all t. If α = 0

lies on the boundary of the parameter space, this requires a careful asymptotic treatment of the

testing procedure (Andrews, 1999, 2001). Second, if |β| < 1, which is a standard assumption

in the literature, the parameter β is absent under H0 and thus becomes unidentified, similar

to the situation considered in Andrews and Ploberger (1994, 1996). This invalidates standard

testing procedures that do not have such identification issues. The issue is also known as the

Davies problem, where a nuisance parameter is identifiable only under the alternative (Davies,

1977, 1987).

To define our test statistic, let ℓt
(
f,ϕ

)
:= ℓ

(
yt,xt, f,ϕ

)
= log p(yt | xt, f, ϕ) for p(yt |

xt, f, ϕ) > 0 and −∞ otherwise. Moreover, let f̂t(ϑ, β) := f̂t
(
ϑ, β; f̂1(ϑ, β)

)
be an initialized

filtering sequence. We define the empirical quasi-log likelihood L̂T and the unrestricted estimator

ϑ̂β,T as, ∀β ∈ B,

ϑ̂β,T = argmax
ϑ∈Θ

L̂T (ϑ, β) + oP(1), L̂T (ϑ, β) :=
T∑
t=1

ℓt
(
f̂t(ϑ, β), ϕ

)
, (2.3)
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where the oP(1) term is uniform in β ∈ B. The estimator ϑ̂β,T =
(
α̂β,T , ω̂β,T , ϕ̂

⊤
β,T

)⊤
thus denotes

the unrestricted extremum estimator for a given β ∈ B, allowing the supremum to be attained

approximately rather than exactly, with an approximation error of asymptotic order oP(1).

Similarly, the restricted estimator ϑ̂0β,T is defined by replacing the maximum over Θ with that

over Θ0 in Eq. (2.3), where Θ0 =
{
ϑ ∈ Θ : ϑ = (0, ω,ϕ⊤)⊤

}
is the restricted parameter space

under the null hypothesis. The QLR test statistic is then defined as

QLRT = −2

(
sup
β∈B

L̂T

(
ϑ̂0β,T , β

)
− sup

β∈B
L̂T

(
ϑ̂β,T , β

))
+ oP(1). (2.4)

Let ϑ0 = (α0, ω0,ϕ
⊤
0 )

⊤ denote the (pseudo-)true value of ϑ. Since our goal is to derive the

asymptotic distribution of QLRT under the null hypothesis, we assume that ϑ0 ∈ Θ0. Under

the assumptions outlined in the next section, ϑ0 represents the probability limit of both the

restricted and unrestricted estimators defined above. We initialize the filter at f̂1(ϑ, β) = ω ∈ Θω.

This is intuitive: only in this way f̂t(ϑ0, β) = ω0 for all t ∈ Z+ including t = 1, and thus the

time-varying parameter is truly constant under the null. It also renders the log-likelihood and

its derivatives with respect to (ω,ϕ) under the null independent from β for every sample size T ,

such that we can rewrite L̂T (ϑ0, β) as L̂0,T

(
ϑ̂0,T

)
= L̂T (ϑ̂0,T , β) for any β ∈ B, and

QLRT = −2

(
L̂0,T

(
ϑ̂0,T

)
− sup

β∈B
L̂T

(
ϑ̂β,T , β

))
+ oP(1). (2.5)

For more details on the initialization of the filter, see also Andrews (2001, Assumption 10 and

Section 5.2 (p. 711)). In the next section, we study the asymptotic behavior of QLRT for

T → ∞.

3 The asymptotic null distribution of the QLR test

As it is key for the formulation of the null hypothesis and the boundary problem as well as

for the nonidentification problem under the null hypothesis, we first focus on the structure

of the Cartesian product parameter space Θ = Θα × Θω ×Θϕ. With respect to the central

parameter of interest α, we assume that its parameter space Θα is given by Θα := [αL, αU ] for

some αU ∈ (0,∞). For αL, we consider two scenarios: a boundary scenario with αL = 0, such

that α0 = 0 lies on the boundary of Θα, and an interior point scenario with αL ∈ (−∞, 0),

where α0 = 0 becomes an interior point. For ω we assume Θω = [ωL, ωU ] ⊂ R for some

ωL < ωU and ω0 ∈ int(Θω), where int(·) denotes the set of interior points. This assumption

6



is standard in all of the score-driven time-series literature, and we adopt it throughout for

notational and technical simplicity when developing the asymptotics. Finally, for ϕ we assume

Θϕ =
{
ϕ ∈ Rm : ϕL ⪯ ϕ ⪯ ϕU

}
for some constant vectors ϕL ⪯ ϕU , where ⪯ denotes

element-wise inequality. We allow ϕ0 to lie on the boundary of Θϕ.

To further facilitate the discussion, we use the terminology of continuous left/right (l/r)

partial derivatives of order k for k ≥ 1 from Andrews (1999, Section 3.3). For this, we consider

the intersection of the parameter space above with ϵ-sized cubes, ΘC,ϵ
0 = Θ ∩ C(ϑ0, ϵ), where

C(ϑ0, ϵ) denotes an open cube centered at ϑ0 with edge length 2ϵ for any ϵ > 0. The projected

local neighborhood for ϕ0 is denoted by ΘC,ϵ
0,ϕ =

{
ϕ : (α, ω,ϕ⊤)⊤ ∈ ΘC,ϵ

0

}
. We also define Θϵ

0

as a compact subset of Θ ∩ S(ϑ0, ϵ), where S(ϑ0, ϵ) denotes an open sphere centered at ϑ0

with radius ϵ. Finally, we use the notation log+(x) = max{log(x), 0} for x > 0, and let the

p-norm of a vector a = (aj) ∈ RJ be denoted by ∥a∥p = (
∑J

j=1 |aj|p)1/p with induced matrix

norm ∥A∥p = supx̸=0 ∥Ax∥p/∥x∥p, where the subscript is omitted whenever p = 2. We can

now formulate the following assumptions.

Assumption 1 (Model specification). (i) Let Θ have the compact form as defined above, and

let B ⊂ (−1, 1) also be compact. Furthermore, let (F , | · |) be a complete, separable metric space

with Θω ⊆ F .

(ii) The set
{
(y,x, f,ϕ) ∈ Y ×X ×F ×Θϕ : p(y | x, f, ϕ) = 0

}
has measure zero with respect

to the appropriate dominating measure on Y ×X ×F ×Θϕ.

(iii) Both ℓ(·) and s(·) are jointly measurable as functions on Y×X ×F×Θϕ with respect to the

product Borel σ-algebra, where all spaces are endowed with their Borel σ-algebras. Also assume

that for every (y,x) ∈ Y ×X the functions (f,ϕ) 7→ ℓ(y,x, f,ϕ) and (f,ϕ) 7→ s(y,x, f,ϕ) are

continuous on F ×Θϕ and admit continuous l/r partial derivatives of order two with respect to

(f,ϕ) on F ×ΘC,ϵ
0,ϕ, where these partial derivatives are jointly measurable on Y ×X ×F ×ΘC,ϵ

0,ϕ

for some ϵ > 0.

Assumption 1 is mild in typical applications and serves as a foundational condition throughout

the analysis. The requirement that the set
{
(y,x, f,ϕ) ∈ Y×X ×F×Θϕ : p(y | x, f, ϕ) = 0

}
has measure zero simply ensures that the quasi-log-likelihood log p(y | x, f, ϕ) is a.s. well defined,

and in principle could be replaced by weaker conditions.

For k ≥ 1 and β ∈ B, define f (k)
t (ϑ, β) = vec

(
∂f

(k−1)
t (ϑ, β)

/
∂ϑ⊤), where the (i, j)th entry

of ∂f
(k−1)
t (ϑ, β)

/
∂ϑ⊤ corresponds to the l/r partial derivative of the ith element of f

(k−1)
t (ϑ, β)

with respect to the jth component of ϑ. We define f
(0)
t (ϑ, β) := ft(ϑ, β) and, analogously,

f̂
(0)
t (ϑ, β) := f̂t(ϑ, β).
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Assumption 2 (Filter invertibility). (i)
{
(yt,xt), t ∈ Z

}
is a strictly stationary and ergodic

(SE) sequence.

(ii) Let Dk = Θ × B for k = 0, and Dk = Θϵ
0 × B for k = 1, 2, where ϵ > 0 is specified in

Assumption 1. For k = 0, 1, 2, there exist unique SE sequences
{
f

(k)
t , t ∈ Z

}
and constants

ρk > 1, such that ρtk sup(ϑ,β)∈Dk

∥∥f̂ (k)
t (ϑ, β) − f (k)

t (ϑ, β)
∥∥ a.s.−→ 0, where f

(k)
t (ϑ, β) is Ft−1-

measurable for every t ∈ Z and (ϑ, β) ∈ Dk. Moreover, f̂
(k)
t (·) for t ∈ Z+ and f

(k)
t (·) for t ∈ Z

are uniformly continuous on Dk.

The assumption that the variables of interest and the regressors are jointly SE is standard in

the literature and may not be easily relaxed, as one typically requires the stochastic recurrence

equation (SRE) in (2.1) to be SE in order to apply the results of Bougerol (1993) and Straumann

and Mikosch (2006). Assumption 2(ii) requires the sequences {f̂ (k)
t (ϑ, β), t ∈ Z+} to converge

exponentially fast almost surely (e.a.s.) to a unique limiting sequence {ft(ϑ, β), t ∈ Z}. The

convergence has to be uniform overΘ×B for the filter itself (k = 0), and uniformly over the local

parameter space Θϵ
0 × B for the filter derivatives. It is also known as the uniform invertibility

condition (see, e.g., Blasques, Gorgi, Koopman, and Wintenberger, 2018). The current high-level

assumptions are typically satisfied for specific models from the existing score-driven time series

literature as they are required for consistency and asymptotic normality of the MLE, which is

typically proved in these papers. Some general results are, for instance, available in Blasques

et al. (2022). Later in this section, we provide several flexible sufficient conditions that ensure

Assumption 2(ii) is satisfied.

To formulate the final conditions for the asymptotic distribution of the QLR statistic, we

need some notation for the log-likelihood function and its derivatives. Let ∂
∂ϑ
ℓt
(
ft(ϑ, β), ϕ

)
and

∂2

∂ϑ∂ϑ⊤ ℓt
(
ft(ϑ, β), ϕ

)
denote the (m+ 2)-dimensional vector and (m+ 2)× (m+ 2) matrix of

l/r first and second order partial derivatives of ℓt
(
ft(ϑ, β), ϕ

)
with respect to ϑ, respectively.

As we want to refer to some of its sub-elements in the expression of the limiting distribution,

we also define ∇ϕ
t (f,ϕ) := ∂

∂ϕ
ℓt
(
f,ϕ

)
, ∇ff

t (f,ϕ) := ∂
∂f
∇f

t (f,ϕ), ∇
ϕf
t (f,ϕ) := ∂

∂ϕ
∇f

t (f,ϕ),

and ∇ϕϕ
t (f,ϕ) := ∂

∂ϕ

(
∇ϕ

t (f,ϕ)
⊤). We group these as ∇t(f,ϕ)

⊤ = (∇f
t (f,ϕ),∇

ϕ
t (f,ϕ)

⊤)

and define Σ =
(

Σff Σ⊤
ϕf

Σϕf Σϕϕ

)
= E[∇t(ω0,ϕ0)∇t(ω0,ϕ0)

⊤
∣∣Ft−1] and Ω =

(
Ωff Ω⊤

ϕf

Ωϕf Ωϕϕ

)
=

−E
[
∂∇t(ω0,ϕ0)/∂(f,ϕ

⊤)
∣∣Ft−1

]
. With this notation in place, we now formulate the following

assumption.

Assumption 3 (Asymptotic distribution ofQLRT ). Let dt(ϑ, β) := ℓt
(
f̂t(ϑ, β), ϕ

)
−ℓt
(
ft(ϑ, β), ϕ

)
for t ≥ 1 and (ϑ, β) ∈ Θ × B.

(i) sup(ϑ,β)∈Θ×B
∣∣dt(ϑ, β)∣∣ e.a.s.−→ 0 as t→ ∞ and E

[
sup(ϑ,β)∈Θ×B

∣∣ℓt(ft(ϑ, β), ϕ)∣∣] <∞.
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(ii) For any ϵ > 0 and β ∈ B, supϑ∈Θ\S(ϑ0,ϵ) E
[
ℓt
(
ft(ϑ, β), ϕ

)]
< E

[
ℓt
(
ft(ϑ0, β), ϕ0

)]
, where

Θ \ S(ϑ0, ϵ) consists of all ϑ ∈ Θ outside the open sphere S(ϑ0, ϵ).

(iii) For ϵ > 0 specified in Assumption 1, E
(
sup(ϑ,β)∈Θϵ

0×B

∥∥∥ ∂2

∂ϑ∂ϑ⊤ ℓt
(
ft(ϑ, β), ϕ

)∥∥∥) <∞.

(iv) It holds a.s. that E
[
∇t(ω0,ϕ0)

∣∣Ft−1

]
= 0, and the matrices Ω and Σ are nonrandom,

finite, and positive definite for Ω, and positive semi-definite for Σ, respectively. The lower-left

block Ωϕf = E
[

∂
∂ϕ

∇f
t (ω0,ϕ0)

∣∣Ft−1

]
of Ω equals zero, or E

(
h0,t(β)

)
= 0 for any β ∈ B, or both,

where h0,t(β) :=
∑∞

j=0 β
j s(yt−j,xt−j, ω0,ϕ0).

(v) E
[
s(yt,xt, ω0,ϕ0)

]2
<∞, and infβ∈B Var

(
h0,t(β)

)
> 0.

Assumptions 3(i)-(ii) imply that sup(ϑ,β)∈Θ×B
∣∣T−1L̂T (ϑ, β)− E

[
ℓt
(
ft(ϑ, β), ϕ

)]∣∣ a.s.−→ 0 and

that ϑ0 is uniquely identifiable for every value of β ∈ B. These assumptions are typically

met by the score-driven models in the literature. For instance, it is often not hard to verify

sup(ϑ,β)∈Θ×B
∣∣dt(ϑ, β)∣∣ e.a.s.−→ 0 in Assumption 3(i). Using a mean value theorem for scalar

functions, one obtains

sup
(ϑ,β)∈Θ×B

∣∣dt(ϑ, β)∣∣ ≤ sup
(f,ϑ)∈F×Θ

∣∣∇f
t (f,ϕ)

∣∣ sup
(ϑ,β)∈Θ×B

∣∣f̂t(ϑ, β)− ft(ϑ, β)
∣∣. (3.1)

For robust score-driven filters such as the Student’s t location model (Harvey and Luati, 2014),

sup(f,ϑ)∈F×Θ

∣∣∇f
t (f,ϕ)

∣∣ is bounded by construction. Then the result immediately follows from

the filter invertibility in Assumption 2(ii) for k = 0. More generally, when sup(f,ϑ)∈F×Θ

∣∣∇f
t (f,ϕ)

∣∣
is not bounded, but identically distributed and satisfies E

(
log+ sup(f,ϑ)∈F×Θ

∣∣∇f
t (f,ϕ)

∣∣) <∞,

one also has sup(ϑ,β)∈Θ×B
∣∣dt(ϑ, β)∣∣ e.a.s.−→ 0 by invoking Lemma 2.1 of Straumann and Mikosch

(2006) along with Assumption 2(ii) for k = 0.

Assumption 3(iii) requires identifiable uniqueness of the model under the null hypothesis. An

important special case is that of correct specification under the null of constant parameters. If

p(y | x, f, ϕ) = p(y | x, f̃ , ϕ̃) if and only if f = f̃ and ϕ = ϕ̃ for almost every (y,x) ∈ Y ×X

(with respect to an appropriate dominating measure on Y ×X ), then Assumption 3(ii) holds;

see Online Appendix A for a justification. In this case, we thus only require identification of the

dynamic parameter ft and the static parameter ϕ characterizing the pmf or pdf. This is easily

satisfied in many cases, such as for instance location and scale models (see Creal et al., 2013;

Harvey and Luati, 2014).

Assumption 3(iii) implies that, for some ϵ > 0,

sup
(ϑ,β)∈Θϵ

0×B

∥∥∥∥∥T−1 ∂2

∂ϑ∂ϑ⊤LT (ϑ, β)− E
(

∂2

∂ϑ∂ϑ⊤ ℓt
(
ft(ϑ, β), ϕ

))∥∥∥∥∥ a.s.−→ 0. (3.2)

9



Verifying this condition typically requires Assumption 2(ii) for k = 1, 2, i.e., the invertibility of

the (perturbed) SREs for the derivative processes of f̂t(ϑ, β) with respect to ϑ; see the results

in Proposition 1 below.

Finally, Assumptions 3(iv)–(v) impose moment conditions that are needed to derive a limiting

approximation of QLRT . Specifically, they require that (1)
{(

∇f
t (ω0,ϕ0),∇ϕ

t (ω0,ϕ0)
⊤)⊤, t ∈

Z
}
forms a martingale difference sequence (m.d.s.) with respect to {Ft, t ∈ Z}, such that we

can apply a central limit theorem for m.d.s.; (2) E
(

∂2

∂ϑ∂ϑ⊤ ℓt
(
ft(ϑ, β), ϕ

)∣∣∣
ϑ=ϑ0

)
has a block-

diagonal structure, ensuring that either (α̂β,T , ω̂β,T )
⊤ and ϕ̂β,T , or α̂β,T and (ω̂β,T , ϕ̂

⊤
β,T )

⊤, can

be separately approximated asymptotically; and (3) the asymptotic variance of QLRT exists

and is non-zero. Again, as we see later in several examples, these conditions are typically verified

in score-driven models available in the existing literature. The m.d.s. assumption in (1) above

is not as restrictive as it may appear at first sight. If the model is mis-specified, we have to

interpret ω0 and ϕ0 as the pseudo-true values under the null hypothesis, which ensures that the

m.d.s. property is satisfied by design even in these cases.

For some p ∈ Z+, let ⇒ denote weak convergence in the space of Rp-valued continuous

functions on B, equipped with the uniform metric, following Pollard (1990). We then have the

following main result.

Theorem 1 (Limiting null distribution of QLRT ). If Assumptions 1–3 hold, then

{
1√
T

∂

∂ϑ
LT (ϑ, β)

∣∣∣∣
ϑ=ϑ0

}
β∈B

⇒
{
G(β)

}
β∈B, T → ∞, (3.3)

where
{
G(β)

}
β∈B is a zero-mean Gaussian process with G(β) ∈ Rm+2 and covariance function

Cov
(
G(β1),G(β2)

)
=


ΣffE

[
h0,t(β2)h0,t(β1)

]
Σff h̄0(β1) Σ⊤

ϕf h̄0(β1)

Σff h̄0(β2) Σff Σ⊤
ϕf

Σϕf h̄0(β2) Σϕf Σϕϕ

 , (3.4)

where h̄0(β) = E[h0,t(β)] with h0,t(β) =
∑∞

j=0 β
j s(yt−j,xt−j, ω0,ϕ0) as defined in Assumption 3.

In addition,

QLRT
d→ sup

β∈B

{
Φ(β)−1

[
Z(β)

]2}
, T → ∞, (3.5)

where we distinguish the following cases for Φ(β) and Z(β):
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(i) if Ωϕf = 0 in Assumption 3(iv), then Φ(β) := e⊤1 J −1
(α,ω)(β) e1, where e1 = (1, 0)⊤, and

J (α,ω)(β) := Ωff

(
E
[
h20,t(β)

]
h̄0(β)

h̄0(β) 1

)
, (3.6)

while Z(β) := max
{
e⊤1 J −1

(α,ω)(β)G(α,ω)(β), 0
}
if αL = 0, and Z(β) := e⊤1 J −1

(α,ω)(β)G(α,ω)(β) if

αL < 0, with G(α,ω)(β) denoting the first two components of G(β).

(ii) if in Assumption 3(iv) Ωϕf is possibly nonzero, but h̄0(β) = 0, then Φ(β)−1 := Jα(β) =

ΩffE
(
h20,t(β)

)
, while Z(β) := max

{
J −1

α (β)Gα(β), 0
}
if αL = 0, and Z(β) := J −1

α (β)Gα(β) if

αL < 0, with Gα(β) denoting the first component of G(β).

The proof of Theorem 1 can, in principle, accommodate any objective function L̂T and

corresponding score st that satisfy Assumptions 1–3, and is therefore not limited to a likelihood-

based framework. As such, Theorem 1 may also extend to recent variants such as the quasi

score-driven models proposed by Blasques, Francq, and Laurent (2023). The limiting distribution

in (3.5) takes a non-standard form and has a different distribution whether we only have

the nonidentification problem under H0 (case αL < 0) or also the boundary problem (case

αL = 0). Note that in cases where the parameter ϕ does not enter the conditional pdf/pmf,

i.e., p( · | xt, ft, ϕ) = p( · | xt, ft), all assumptions involving ϕ in Assumptions 1–3 can be

skipped and the result simplifies further. An example of this is the well-known class of Poisson

autoregressive models (i.e., integer GARCH) of Fokianos et al. (2009); see Section 4.3. Also in

these cases, however, the asymptotic distribution of the QLRT , remains non-standard.

Theorem 1 distinguishes two cases. Case (i) with Ωϕf = 0 is also found in Andrews (2001).

This condition, however, is not always easily satisfied for score-driven models. For instance,

in a setting with a time-varying scale for a Student’s t distribution, the degrees of freedom

parameter is typically correlated with the scale parameter. Therefore, Case (ii) in Theorem 1

generalizes the result to the setting with nonzero Ωϕf .

The limiting distribution in (3.5) generally depends on nuisance parameters and may therefore

be difficult to operationalize in practice. We discuss two corollaries highlighting special cases

where the asymptotic distribution is free of such nuisance parameters and that may be better

suited for inference. We first formulate the following assumption.

Assumption 4. (i)
{
s(yt,xt, ω0,ϕ0), t ∈ Z

}
forms a m.d.s. with respect to the filtration{

Ft, t ∈ Z
}
. (ii) There exists an estimator κ̂G,T such that κ̂G,T = Ω−1

ff Σff + oP(1), where oP(1)

is uniform in β ∈ B.
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An important case where Assumption 4(i) is satisfied is when S(yt,xt, ω0,ϕ0) is Ft−1-

measurable. This is true for virtually all score-driven models in the literature, where the

scaling matrix is typically taken as a power of the inverse conditional Fisher information matrix

following the suggestions in Creal et al. (2013). In this case, under the null-hypothesis of static

parameters, the score has expectation zero as the (pseudo)true parameters ω0 and ϕ0 satisfy

the first-order condition for the limit log-likelihood objective function, minimizing the Kullback–

Leibler divergence between the possibly mis-specified conditional pdf/pmf p( · | xt, ft, ϕ) and

the unobserved true model. We have the following result.

Corollary 1. If Assumptions 1–4 hold, the scaled QLR test statistic Q̃LRT := κ̂−1
G,T QLRT

converges in distribution to a limit that is free of nuisance parameters:

Q̃LRT
d→

supβ∈B

(
max

{
(1− β2)1/2

∑∞
j=0 β

jXj, 0
})2

, αL = 0,

supβ∈B

(
(1− β2)1/2

∑∞
j=0 β

jXj

)2
, αL < 0,

(3.7)

where {Xj, j ≥ 0} is a sequence of i.i.d. standard normal random variables and κ̂G,T is defined

in Assumption 4(ii).

The limiting distribution in (3.7) can be simulated in a straightforward way to obtain critical

values and conduct inference. Table B.3 in Online Appendix B provides a comprehensive

set of values. It is worth mentioning that the process
{
(1 − β2)1/2

∑∞
j=0 β

jXj

}
β∈B is well

documented in the literature, having been found, for instance, by Andrews (2001, Section

5.2) for tests of conditional heteroskedasticity and by Andrews and Ploberger (1996, Theorem

1) for tests of serial correlation in ARMA(1,1) models. To operationalize the scaled Q̃LRT

statistic, we can take κ̂G,T =
(
− T−1

∑T
t=1∇

ff
t

(
ω̂0,T , ϕ̂0,T

))−1(
T−1

∑T
t=1

[
∇f

t

(
ω̂0,T , ϕ̂0,T

)]2)
,

which, under specific conditions, satisfies Assumption 4(ii) under the null hypothesis. However,

since ft(ϑ, β) no longer reduces to its unconditional mean under H1, such an estimator κ̂G,T

may perform badly under the alternative, which may have a negative impact on the power

of Q̃LRT . We can therefore also consider the alternatively scaled test statistic Q̃LR
†
T :=

−2

(
supβ∈B

(
L̂0,T

(
ϑ̂0,T

)/
κ̂G,T (β)

)
− supβ∈B

(
L̂T

(
ϑ̂β,T , β

)/
κ̂G,T (β)

))
+ oP(1), with κ̂G,T (β) =(

− T−1
∑T

t=1∇
ff
t

(
f̂t
(
ϑ̂β,T , β

)
, ϕ̂β,T

))−1(
T−1

∑T
t=1

[
∇f

t

(
f̂t
(
ϑ̂β,T , β

)
, ϕ̂β,T

)]2)
.

Finally, the following special case is of particular interest.

Corollary 2. If Assumptions 1–3 and Assumption 4(i) hold, and if Σff = Ωff , then QLRT

shares the same limiting distribution as Q̃LRT as given in Eq. (3.7).
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Note that the additional condition in Corollary 2 holds, for instance, if one is willing to assume

that the static version of the model is correctly specified. In that case, the information matrix

equality will automatically hold for the parameter f in the pdf/pmf expression p( · | xt, ft, ϕ).

As already mentioned, for many score-driven models sufficient conditions for uniform filter

invertibility over the entire parameter space Θ × B have been established, thus ensuring the

conditions in Assumption 2. These sufficient conditions typically build on Bougerol (1993)

and Straumann and Mikosch (2006); see for instance Blasques et al. (2022). For completeness,

sufficient conditions for the case k = 0 are presented in Lemma A.1 in the appendix. To conclude

this section, we provide some new conditions for the invertibility and the existence of moments

of the derivative processes of the filter with respect to the static parameters. The existence

of such moments is (implicitly) assumed by the moment conditions for the derivatives of the

log-likelihood contributions in, for example, Assumption 3(iii). The key novelty in the next set

of conditions is to exploit the fact that moments conditions only need to hold in a small ball

around the null parameter space, which we indicated by Θϵ
0 × B. This can substantially relax

earlier sufficient conditions formulated over the entire parameter space and may therefore prove

useful in practical settings for specific models.

We rewrite partial derivatives using subscripts, e.g., sϕ
(
yt,xt, f,ϕ

)
= ∂s(yt,xt, f,ϕ)

/
∂ϕ,

sff
(
yt,xt, f,ϕ

)
= ∂2s(yt,xt, f,ϕ)

/
∂f 2, s(f,ϕ)(f,ϕ)(yt,xt, f,ϕ) = ∂s(yt,xt, f,ϕ)

/
∂
(

f
ϕ

)
∂(f,ϕ⊤).

We also define the shorthand notation s̄ϵt = sup(ϑ,β)∈Θϵ
0×B

∣∣s(yt,xt, ft(ϑ, β),ϕ
) ∣∣, and similar no-

tation for l/r derivatives, e.g., s̄ϵϕ,t = sup(ϑ,β)∈Θϵ
0×B

∥∥sϕ(yt,xt, f,ϕ
)∣∣

f=ft(ϑ,β)

∥∥ and s̄ϵ(f,ϕ)(f,ϕ),t =

supϑ∈Θϵ
0

∥∥s(f,ϕ)(f,ϕ)(yt,xt, f,ϕ)
∣∣
f=ft(ϑ,β)

∥∥ , where we make explicit that the supremum is only

taken over an ϵ-ball of ϑ0. We also define the double supremum ¯̄sϵf,t = supϑ∈Θϵ
0
supf∈F

∣∣β +

α sf (yt,xt, f,ϕ)
∣∣. We can now formulate the following assumption.

Assumption 5 (Invertibility of derivative processes). Let η, κ ∈ [1,∞] satisfy η−1 + κ−1 ≤ 1,

and let ϵ > 0 be the constant specified in Assumption 1.

(i) If for all t ∈ Z there is an M <∞ such that s̄ϵt + s̄ϵϕ,t ≤M almost surely, then set η = ∞.

Otherwise, for η <∞, it holds that E
[
(s̄ϵt)

η + (s̄ϵϕ,t)
η
]
<∞. Moreover, E

[
log ¯̄sϵf,t

]
< 0.

(ii) If sf,t(ϑ, β) is nonrandom, set κ = ∞ and require

∞∑
j=1

sup
(ϑ,β)∈Θϵ

0×B

∣∣∣∣∣
j∏

ℓ=1

(
β + α

∂s(yt−ℓ,xt−ℓ, ft−ℓ(ϑ, β),ϕ)

∂f

)∣∣∣∣∣ <∞.

Otherwise, for κ <∞ and for every j ∈ Z+, there exists a positive real sequence
{
ϱj(ϑ0, ϵ, κ), j ≥
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1
}
with

∑∞
j=1 ϱj(ϑ0, ϵ, κ)

1/κ <∞ and

E

[
sup

(ϑ,β)∈Θϵ
0×B

∣∣∣∣∣
j∏

ℓ=1

(
β + α

∂s
(
yt−ℓ,xt−ℓ, ft−ℓ(ϑ, β),ϕ

)
∂f

)∣∣∣∣∣
κ ]

≤ ϱj(ϑ0, ϵ, κ), ∀t ∈ Z.

(iii) For all t ∈ Z and f, f † ∈ F , the following Lipschitz conditions hold:

sup
ϑ∈Θϵ

0

∣∣s(yt,xt, f,ϕ)− s(yt,xt, f
†,ϕ)

∣∣ ≤ Ct(ϑ0, ϵ) |f − f †|ζ , (3.8)

sup
ϑ∈Θϵ

0

∥∥s(f,ϕ)(yt,xt, f,ϕ)− s(f,ϕ)(yt,xt, f
†,ϕ)

∥∥ ≤ Ct(ϑ0, ϵ) |f − f †|ζ , (3.9)

sup
ϑ∈Θϵ

0

∥∥s(f,ϕ)(f,ϕ)(yt,xt, f,ϕ)− s(f,ϕ)(f,ϕ)(yt,xt, f
†,ϕ)

∥∥ ≤ Ct(ϑ0, ϵ) |f − f †|ζ , (3.10)

for some constant ζ ∈ (0, 1] and a strictly stationary scalar sequence
{
Ct(ϑ0, ϵ), t ∈ Z

}
with

E
[
log+Ct(ϑ0, ϵ)

]
<∞.

(iv) If s̄ϵ(f,ϕ),t ≤ M and s̄ϵ(f,ϕ)(f,ϕ),t ≤ M for all t ∈ Z and some M < ∞, i.e., if the relevant

partial derivatives of the score are almost surely uniformly bounded, then 2η−1+3κ−1 ≤ 1. If this

uniform boundedness condition does not hold and either η <∞ or κ <∞ (or both), then there

exists a λ ≥ 2 satisfying 2λ−1 + κ−1 ≤ 1 and λ−1 ≥ 2(η−1 + κ−1), such that E
[ ∣∣s̄ϵf,t∣∣λ] < ∞,

E
[ ∥∥s̄ϵff,t∥∥λ] < ∞, E

[ ∥∥s̄ϵfϕ,t

∥∥λ] < ∞, and E
[ ∥∥s̄ϵϕϕ,t

∥∥λ/2] < ∞. If both η = κ = ∞, these last

four moment conditions also hold, but for some arbitrary λ ≥ 2.

Assumption 5(i) implies the existence of the first-order moment of the score process and its

first-order derivative. Although we do not explicitly require the derivative processes to have

at least a first-order moment, such a moment typically arises when verifying Assumption 3(i).

This moment condition is also standard in the literature when establishing the asymptotic

normality of static parameter estimators. For robust filters, such as the Student’s t location

model of Harvey and Luati (2014), Assumption 5(i) generally holds with η = ∞. The contraction

condition E
[
log ¯̄sϵf,t

]
< 0 in Assumption 5(i) implies the local invertibility of the filter and builds

on standard conditions of Bougerol (1993). It is typically satisfied for score-driven models,

which often require uniform invertibility of the filter for consistency of parameter estimates. The

contraction condition can be further relaxed by considering multiple iterations of the stochastic

recurrence equation (SRE); see Lemma A.1 in Online Appendix A. Assumption 5(ii) is similar

to, but weaker than, Assumption AN3 in Lin and Lucas (2025). It is needed to ensure the

existence of appropriate moments for the partial derivative processes of the filter with respect

to ϑ. This condition is relatively straightforward to verify, particularly when st(f,ϕ) is linear
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in f . For instance, in the Gaussian location model, where ∂st−ℓ(f,ϕ)
/
∂f = −1, choosing

ϱj(ϑ0, ϵ, κ) = sup(ϑ,β)∈Θϵ
0×B |β−α|jκ reduces the condition to requiring sup(ϑ,β)∈Θϵ

0×B |β−α| < 1.

Assumption 5(iii) imposes local Lipschitz continuity conditions around ϑ0 on the forcing

variable st(·) and its partial derivatives up to second order. Similarly, Assumption 5(iv), like

Assumption 5(i), implies that also the second-order derivative process has at least a first moment,

which is useful for verifying Assumption 3(iii). We summarize this in the following result.

Proposition 1 (Invertibility of derivative processes). Let ϵ > 0 denote the constant specified

in Assumption 1. Let Assumption 2(ii) hold for k = 0, and let Assumption 5 also hold,

then Assumption 2(ii) also holds for k = 1, 2, where E
(
sup(ϑ,β)∈Θϵ

0×B ∥f
(1)
t (ϑ, β)∥δ1

)
< ∞

for δ1 = (η−1 + κ−1)−1 if η < ∞ or κ < ∞, and for any δ1 ≥ 1 if η = κ = ∞. Moreover,

E
(
sup(ϑ,β)∈Θϵ

0×B ∥f
(2)
t (ϑ, β)∥δ2

)
<∞ for δ2 = (2δ−1

1 + κ−1)−1 if a uniform bound M applies in

Assumption 5(iv), and for δ2 = (2λ−1 + κ−1)−1 otherwise.

4 Examples

To illustrate the theory developed thus far and show how the conditions formulated in Assump-

tions 1–5 can be applied, we study four different models. Sections 4.1 and 4.2 consider a correctly

specified Gaussian location and Student’s t volatility model, respectively. Section 4.3 analyzes

a Poisson autoregressive model for discrete time series, allowing for possible mis-specification.

As all three models are univariate and exclude exogenous variables, Section 4.4 investigates a

multivariate spatial model with random regressors. We outline only the key steps in the main

text; full details are provided in Online Appendix C.

4.1 Gaussian location model

For t = 1, . . . , T , consider the model yt = ft + ut, where ut = σuϵt and ϵt are i.i.d. standard

normal random variables. Assume that the sequence {yt, t ∈ Z} is generated under the null

hypothesis, i.e., yt
i.i.d.∼ N (ω0, σ

2
u,0). Under this assumption, the model is correctly specified.

Note that ∇f
t (f,ϕ) = (yt − f)

/
σ2
u, where ϕ = σu > 0. Take St(f,ϕ) = σ2

u, also known

as inverse information matrix scaling (see Creal et al., 2013), then st(f,ϕ) = yt − f and

ft+1 = ω(1 − β) + βft + α (yt − ft). We define B = [0, βU ] with βU < 1, and Θ =
{
ϑ =

(α, ω,ϕ)⊤ ∈ R3 : 0 ≤ α ≤ αU < 1, ωL ≤ ω ≤ ωU , 0 < σL ≤ ϕ ≤ σU
}
. Let F = R, so that

Assumption 1 trivially holds for any ϵ > 0.

Assumption 2(i) and Assumption 2(ii) for k = 0 follow directly by standard arguments
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from Bougerol (1993) using E log+ |yt| < ∞, ωU < ∞, and supϑ∈Θ |β − α| = αU ∨ βU < 1. To

verify Assumption 2(ii) for k = 1, 2, we apply Proposition 1, which in turn requires checking

Assumption 5. Assumption 5(i) holds for arbitrary η ≥ 1, such as η = 4. Assumption 5(ii)

is fulfilled with κ = ∞, because
∑∞

j=1 sup(ϑ,β)∈Θϵ
0×B

∣∣∣∏j
ℓ=1(β − α)

∣∣∣ ≤ ∑∞
j=1(αU ∨ βU)

j < ∞.

Assumption 5(iii) holds with Ct(ϑ0, ϵ) = 1. Assumption 5(iv) holds given all the relevant suprema

are either 1 or 0. Assumption 2(ii) for k = 1, 2 then follows immediately from Proposition 1.

For Assumption 3(i), note that

sup
(ϑ,β)∈Θ×B

∣∣dt(ϑ, β)∣∣ ≤ 1

2
σ−2
L

(
sup

(ϑ,β)∈Θ×B

∣∣f̂t(ϑ, β)− ft(ϑ, β)
∣∣)2

+ σ−2
L sup

(ϑ,β)∈Θ×B

∣∣yt − ft(ϑ, β)
∣∣ sup
(ϑ,β)∈Θ×B

∣∣f̂t(ϑ, β)− ft(ϑ, β)
∣∣.

By Assumption 2 and Lemma 2.1 of Straumann and Mikosch (2006), sup(ϑ,β)∈Θ×B|dt(ϑ, β)|
e.a.s.−→ 0

provided that E
[
log+ sup(ϑ,β)∈Θ×B|yt − ft(ϑ, β)|

]
< ∞, which follows immediately from

E
[
sup(ϑ,β)∈Θ×B

∣∣yt−ft(ϑ, β)∣∣4] <∞, which also ensures that E
[
sup(ϑ,β)∈Θ×B|ℓt(ft(ϑ, β),ϕ)|

]
<

∞. Assumption 3(iii) can be obtained using the Cauchy–Schwarz inequality, together with

E
(
sup(ϑ,β)∈Θϵ

0×B
∥∥f (1)

t (ϑ, β)
∥∥4) < ∞ and E

(
sup(ϑ,β)∈Θϵ

0×B
∥∥f (2)

t (ϑ, β)
∥∥2) < ∞. Assump-

tion 3(iv) holds immediately with Σ = Ω = diag
(
σ−2
u,0, 2σ

−2
u,0

)
. Since the st(ω0,ϕ0) = ut

are independent, the result QLRT
d→ supβ∈B

(
max

{
(1−β2)1/2

∑∞
j=0 β

jXj, 0
})2

follows directly

by applying Corollary 2.

4.2 t-GAS volatility

In our second example, we consider the time-varying scale model of Creal et al. (2013), also

examined in Harvey (2013) and Blasques et al. (2022), to illustrate how the theory can be

applied to non-linear filters. The model is given by yt = f
1/2
t ut, where ut are i.i.d. tν random

variables with ν > 0 degrees of freedom. Here we can also illustrate how Proposition 1 results in

weaker assumptions than those found in the literature. Let ϕ = ν and define the score-induced

observation weight wt(f,ϕ) = (1+ν−1)/(1+ν−1y2t /f). Then∇f
t (f,ϕ) = 2−1f−2

(
wt(f,ϕ)·y2t−f

)
.

Taking St(f,ϕ) = 2f 2 as in Creal et al. (2013), we obtain st(f,ϕ) = wt(f,ϕ) · y2t − f . Let

F = R+ and define B = [βL, βU ] ⊂ (0, 1). Consider Θ =
{
ϑ = (α, ω,ϕ)⊤ ∈ R3 : 0 ≤ α ≤

βL, 0 < ωL ≤ ω ≤ ωU , 0 < νL ≤ ϕ ≤ νU
}
. This specification guarantees the positivity of the

filter. Furthermore, the filter is bounded from below, as ft ≥ ωL(1−βU )
1−βU+βL

∀t ∈ Z.

Assumption 1 holds for any ϵ > 0. Note that {yt, t ∈ Z} is an SE sequence and that

Assumption 2(ii) for k = 0 holds following the arguments in, for instance, Blasques et al. (2022).
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To verify Assumption 2(ii) for k = 1, 2, we again check the conditions in Proposition 1. Note

that sup(ϑ,β)∈Θϵ
0×B

∣∣st(ft(ϑ, β),ϕ)∣∣ ≤ C sup(ϑ,β)∈Θϵ
0×B

∣∣ft(ϑ, β)∣∣, where sup(ϑ,β)∈Θϵ
0×B

∣∣ft(ϑ, β)∣∣
is bounded because

ft+1(ϑ, β) = ω(1− β) + (β − α)ft(ϑ, β) + α
1 + ν−1

1 + ν−1y2t /ft(ϑ, β)
y2t

≤ ω(1− β) + (β + αν)ft(ϑ, β) ≤ ωU(1− βL) + (βU + ϵ νU)ft(ϑ, β).

Assumption 1 allows us to pick a sufficiently small ϵ > 0 with βU + ϵ νU < 1, ensuring

that sup(ϑ,β)∈Θϵ
0×B

∣∣ft(ϑ, β)∣∣ is bounded. Compared to the condition supϑ∈Θ(β + να) < 1 as

imposed by Blasques et al. (2022, p. 331), we do not require such a strong restriction on the

parameter space as Assumption 5 only considers a local neighborhood Θϵ
0 of ϑ0. Similarly,

it is straightforward to show that s̄ϵϕ,t is bounded. Hence, Assumption 5(i) holds for η = ∞.

Assumption 5(ii) holds for any κ ≥ 1 and some sufficiently small ϵ > 0 if we set ϱj(ϑ0, ϵ, κ) =

(βU + ϵ νU)
jκ with βU + ϵ νU < 1. Note that if we first compute the l/r partial derivatives

of the mapping (f,ϕ) 7→ st(f,ϕ) and then substitute f = ft(ϑ, β), the resulting derivatives

are bounded (locally) up to at least third order for all (ϑ, β) ∈ Θϵ
0 × B. Using a mean value

theorem (e.g., Rudin, 1976, Theorem 9.19), Assumption 5(iii) is then satisfied using ζ = 1 and

Ct(ϑ0, ϵ) = C for some C > 0 for all t ∈ Z. Moreover, the second derivatives of the score can be

shown to be uniformly bounded, such that Assumption 5(iv) holds. Then Proposition 1 holds,

where δ1 and δ2 are allowed to take arbitrarily large values.

For Assumption 3(i), we have sup(ϑ,β)∈Θ×B
∣∣dt(ϑ, β)∣∣ e.a.s.−→ 0 by applying the invertibility

results from Blasques et al. (2022). Moreover, E
[
sup(ϑ,β)∈Θ×B|ℓt(ft(ϑ, β),ϕ)|

]
< ∞ follows

directly from the boundedness of ft(ϑ, β) and the existence of a logarithmic moment for yt.

Assumption 3(iii) holds by applying Proposition 1, using the form of the log-likelihood for the

Student’s t distribution. By somewhat tedious linear algebra, together with the distributional

assumption on yt and the results in Lin and Lucas (2025, Eq. (E.6)) and Harvey (2013,

Proposition 39, p. 211), we obtain Σff = Ωff = ν0
/
[2ω2

0(ν0 + 3)] and Ωϕf =
[
ω0(ν0 + 3)(ν0 +

1)
]−1

> 0, i.e., the scale and the degrees of freedom estimators are correlated in general. However,

since E
(
st(ω0,ϕ0)

∣∣Ft−1

)
= 0, it follows that E

(
h0,t(β)

)
= 0 for any β ∈ B. All remaining

conditions in Assumptions 3(iv)–(v) and Corollary 2 are checked easily. Therefore, QLRT

converges to the limiting distribution given in (3.7).
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4.3 Poisson autoregression

Our third example illustrates how the theory works out for integer data and for the case of

mis-specified models. For this, we take the example of a Poisson time series model yt | Ft−1 ∼

Poisson(ft), where ft > 0 for every t ∈ Z. In this case, there is no static parameter ϕ, so all

conditions involving ϕ and the corresponding components in Theorem 1 can be disregarded,

as noted below Theorem 1. Moreover, in this example we allow for model mis-specification.

That is, the statistician observes the count data {yt, t = 1, . . . , T}, which need not follow a

Poisson distribution in the dgp. We nevertheless require that {yt, t ∈ Z} is an SE sequence with

E|yt|4 <∞, E(yt | Ft−1) = ω0, and E
(
(yt−ω0)

2 | Ft−1

)
= Var(yt). Since ∇f

t (f,ϕ) = (yt−f)
/
f ,

we obtain ft+1 = ω(1− β) + βft +α(yt − ft) by setting St(f,ϕ) = f . This yields the well-known

integer GARCH model of Fokianos et al. (2009). In what follows, we verify the conditions for

Theorem 1. As the verification closely parallels the Gaussian location example in Section 4.1,

we focus only on the key differences.

Let F = R+ and define B = [βL, βU ] ⊂ (0, 1). Set Θ =
{
ϑ = (α, ω)⊤ ∈ R2 : 0 ≤ α ≤

βL, 0 < ωL ≤ ω ≤ ωU

}
. The specifications of Θ and B ensure the positivity of ft. Thus,

Assumption 1 holds. Furthermore, Assumption 2 holds since the filter is invertible (see Fokianos

et al., 2009) and Proposition 1 applies with δ1 = 4 and δ2 = 2. Assumption 3(i) is then also

directly satisfied. To verify Assumption 3(ii), we apply Jensen’s inequality to the function

f 7→ ω0 log(f)− f for f > 0 and ω0 > 0, and obtain

E
(
ℓt
(
ft(ϑ, β), ϕ

))
= E

(
ω0 log

(
ft(ϑ, β)

)
− ft(ϑ, β)

)
− E

(
log(yt!)

)
≤
(
ω0 log

(
E
(
ft(ϑ, β)

))
− E

(
ft(ϑ, β)

))
− E

(
log(yt!)

)
,

where equality holds if and only if ft(ϑ, β) = E(ft(ϑ, β)) > 0 a.s., that is, ft(ϑ, β) is a.s. constant.

Since st(f,ϕ) = yt−ft is random, one must have α = 0 = α0, which implies ft(ϑ, β) = ω for any

β ∈ B a.s. As E
(
ℓt(ft(ϑ, β),ϕ)

)
≤ ω0 log(ω)− ω − E

(
log(yt!)

)
≤ ω0 log(ω0)− ω0 − E

(
log(yt!)

)
,

with equality if and only if ω = ω0, we thus verified Assumption 3(ii). Similarly, Assumption 3(iii)–

(iv) hold with Σff = Var(yt)/ω2
0 <∞ and Ωff = −E

(
∇ff

t (ω0,ϕ0)
)
= ω−1

0 ∈ (0,∞). Finally, we

have infβ∈B Var
(∑∞

j=0 β
j st(ω0,ϕ0)

)
= (1− β2

L)
−1 Var(yt) > 0. Therefore, Assumption 3(v) is

fulfilled. By Corollary 1, (3.7) holds for Q̃LRT provided that κ̂G,n = Var(yt)
/
ω0 + oP(1). If, in

addition, Var(yt) = ω0, then QLRT converges to the same limiting distribution as Q̃LRT by

Corollary 2.
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4.4 Spatial dynamic spillovers

Our final example illustrates the theory for multivariate, non-linear models with additional

exogenous variables. We consider the spatial regression model of Blasques et al. (2016):

yt = ρ̃(ft)Wyt + xtγ + et, where W is an n × n matrix of exogenous, nonrandom spatial

weights and spectral radius smaller than 1, xt is (with a slight abuse of notation) a n × k

matrix of regressors, γ is an k × 1 vector of static parameters, and et is an n× 1 disturbance

vector. Here, both n and k are finite. The link function is specified as ρ̃(·) := ρ tanh(·), where

ρ ∈ (0, 1) is a user-specified parameter. Note that ρ̃(f) ∈ (−ρ, ρ) for all f ∈ F , and that its

derivatives of every order are bounded. Suppose the statistician specifies that et ∼ N (0,V )

are i.i.d., where V = diag(σ2
1, . . . , σ

2
n) is positive definite. Let ϕ = (γ⊤, σ1, . . . , σn)

⊤. We

have ℓt(f, ϕ) = −2−1n log(2π) + log det
(
In − ρ̃(f)W

)
− 2−1 log det(V )− 2−1

(
yt − ρ̃(f)Wyt −

xtγ
)⊤
V −1

(
yt − ρ̃(f)Wyt − xtγ

)
. As in Blasques et al. (2016), we set St(f,ϕ) = 1. Then the

forcing variable st(f,ϕ) in (2.1) is given by st(f,ϕ) = ∇f
t (f,ϕ) =

(
y⊤
t W

⊤V −1
[
yt− ρ̃(f)Wyt−

xtγ
]
− tr

(
Z(f)W

))
˙̃ρ(f), where Z(f) :=

(
In − ρ̃(f)W

)−1
and ˙̃ρ(f) = ρ · (1− tanh2(f)).

To study the null distribution of QLRT under misspecification, we assume that yt is

generated as yt = ρ̃(ω0)Wyt + xtγ0 + εt, where the error term εt := (ε1,t, . . . , εn,t)
⊤ has

zero mean, and E
[
εtε

⊤
t

∣∣xt, Ft−1

]
= V0, with V0 = diag(σ2

0,1, . . . , σ
2
0,n) diagonal and positive

definite. However, we do not require εt to follow the same distribution as et. We require

that
{
(yt,xt), t ∈ Z

}
is SE with E

[
∥εt∥4 + ∥xt∥4

]
< ∞, E[x⊤

t xt] is positive definite, and

E
[
y⊤
t W

⊤V −1
0 εt − tr

(
Z(ω0)W

)]2
> 0. Moreover, E(εt | xt,Ft−1) = 0 a.s., and E

[
ε⊤t ⊗

(εtε
⊤
t )
∣∣xt, Ft−1

]
, E
[
(εtε

⊤
t ) ⊗ (εtε

⊤
t )
∣∣xt,Ft−1

]
, E[xt | Ft−1], and E

[
x⊤
t ⊗ xt

∣∣Ft−1

]
are all

nonrandom and bounded a.s., where ⊗ denotes the Kronecker product. We impose a technical

assumption that there exist 1 ≤ k < i ≤ n such that σ2
0,i[WZ(ω0)]ki + σ2

0,k[WZ(ω0)]ik ̸= 0,

where [WZ(ω0)]ki denotes the (k, i)th element of WZ(ω0).

To verify the different assumptions formulated in Section 3, we set F = R, B = [βL, βU ] ⊂

(−1, 1), and Θ =
{
ϑ = (α, ω,γ⊤, σ1, . . . , σn)

⊤ ∈ Rk+n+2 : αL ≤ α ≤ αU , ωL ≤ ω ≤

ωU , γL ⪯ γ ⪯ γU , 0 < σL ≤ σi ≤ σU , i = 1, . . . , n
}
, where αL < 0. Verifying As-

sumption 2(ii) requires tedious linear algebra. For details, we refer interested readers to

Blasques et al. (2016). Here, for brevity, we simply assume these conditions are satisfied, with

E
(
sup(ϑ,β)∈Θϵ

0×B
∥∥f (1)

t (ϑ, β)
∥∥4) <∞ and E

(
sup(ϑ,β)∈Θϵ

0×B
∥∥f (2)

t (ϑ, β)
∥∥2) <∞ for some ϵ > 0

and that identification condition Assumption 3(ii) holds. The detailed steps in Online Appendix

C.4 then show that all remaining conditions in Assumptions 1–3 are satisfied. For instance, since

E
(
∥εt∥4 + ∥xt∥4

)
< ∞, it follows that E(∥yt∥4) ≤ 8∥Z(ω0)∥4E

(
∥xt∥4∥γ0∥4 + ∥εt∥4

)
< ∞,
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and E
(
sup(ϑ,β)∈Θϵ

0×B ∥et(ft(ϑ, β),γ)∥4
)
< ∞ for some ϵ > 0. By repeatedly applying

the Cauchy-Schwarz inequality, together with the above moment conditions and the quan-

tities computed below, we can then establish Assumption 3(iii). Similarly, as we have

E
[
∇f

t (ω0,ϕ0)
∣∣xt,Ft−1

]
=
[
tr
(
Z(ω0)

⊤W⊤V −1
0 Et−1

(
εtε

⊤
t

))
− tr

(
Z(ω0)W

)]
ḣ(ω0) = 0, we

immediately obtain E
(
h0,t(β)

)
= 0 for any β ∈ B, thus verifying part of Assumption 3(iv).

Detailed checks of all remaining assumptions can be found in Online Appendix C.4 and illustrate

that the theory also readily applies to these more complex models.

Since Assumption 4(i) holds, then if Ω−1
ff Σff can be estimated consistently using a plug-in

estimator Ω̂−1
ff Σ̂ff , Corollary 1 yields Q̃LRT

d→ supβ∈B

(
(1− β2)1/2

∑∞
j=0 β

jXj

)2
. If the model

is correctly specified, Ω−1
ff Σff = 1 and Corollary 2 then shows also QLRT converges to this

limiting distribution.

5 Simulations

We examine the empirical size and power of our QLR test across the four different models of

Section 4. We consider correctly specified models with the following parameter settings. First,

for the Gaussian location model in Section 4.1, we set (ω0, σu0) = (1, 1), βU = αU = 0.95. Since

αL = βL = 0, according to Table B.3 in the Online Appendix B, this yields critical values of 2.989,

4.308, and 7.277 for nominal levels of 10%, 5%, and 1%, respectively. Second, for the t-GAS

volatility model in Section 4.2, we set (ω0, ν0) = (2, 4) such that we have fat, non-Gaussian tails,

and (βL, βU ) = (0.3, 0.95), which give critical values of 2.816, 4.104, and 7.055 for αL = 0. Third,

for the Poisson autoregressive model in Section 4.3, we set ω0 = 10 and (βL, βU) = (0.3, 0.95),

with critical values identical to those of the t-GAS model. Finally, for the spatial model in

Section 4.4, we take (ω0, ρ, n) = (1, 0.9, 3) and let et
i.i.d.∼ N (0n, σ

2
e,0In) with σe,0 = 0.5. To

reduce computational cost, we restrict the model to have a scalar covariance matrix Σ = σ2
eIn

with a common variance parameter σ2
e . We include a single regressor xt

i.i.d.∼ N (µ, In), where

µ = (1, 1, . . . , 1)⊤, with slope coefficient γ0 = 0.2. The spatial weight matrix W is randomly

generated, with its diagonal elements set to zero and rows subsequently normalized, yielding

W =
(

0 0.53 0.47
0.63 0 0.37
0.61 0.39 0

)
in our simulations. We set (βL, βU) = (0, 0.95) and (αL, αU) = (−0.3, 0.3),

leading to critical values of 4.247, 5.587, and 8.731 at the 10%, 5%, and 1% nominal levels,

respectively. For convenience, the critical values used in this section is summarized in Table 1.

We consider sample sizes T ∈ {1000, 3000}, with all results based on 20, 000 Monte Carlo

replications. To evaluate the empirical size and power of the proposed QLR test, we vary

α0 ∈ {0, 0.02, 0.04, 0.06}, where α0 = 0 corresponds to empirical size and α0 > 0 to empirical
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Table 1: Subset of simulated critical values for the limiting distribution in Eq. (3.7) used in Section 5,
with Θα = [αL, αU ] for αU > 0 and B = [βL, βU ].

αL = 0 αL < 0

βL βU 10% 5% 1% 10% 5% 1%

0 0.950 2.989 4.308 7.277 4.247 5.587 8.731
0.3 0.950 2.816 4.104 7.055 — — —

Table 2: Empirical null rejection rates of QLRT : α0 = 0 corresponds to the empirical size, and α0 > 0
to the empirical power. Values are expressed in percentages.

T = 1000 T = 3000 T = 1000 T = 3000

α0 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%

Gaussian location Poisson autoregression

0 7.85 3.72 0.76 8.88 4.16 0.79 7.48 3.76 0.67 8.13 3.95 0.84

0.02 41.60 29.43 12.81 78.70 68.00 45.39 43.26 30.74 13.74 79.32 68.82 46.30
0.04 83.15 74.43 54.40 99.64 99.26 97.23 84.80 76.04 56.35 99.78 99.47 97.72
0.06 97.69 95.58 88.08 100 100 99.99 97.98 96.01 89.22 100 100 100

t-GAS volatility spatial spillovers

0 7.61 3.66 0.70 8.18 3.96 0.77 11.78 6.2 1.51 10.61 5.56 1.22

0.02 24.03 14.46 4.59 45.40 32.23 13.93 99.14 98.61 96.49 100 100 100
0.04 49.11 36.33 17.56 86.44 77.89 57.55 99.99 99.99 99.99 100 100 100
0.06 73.14 61.92 40.10 98.48 96.83 90.55 100 100 100 100 100 100

power. In all four cases, when evaluating empirical power, we set β = 0.9.

The results are reported in Table 2. We see that the limiting distribution in (3.7) provides

a good approximation across all four models for a relatively small sample size of T = 1000.

In general, the QLR test tends to be slightly conservative, with the exception of the spatial

model. When T increases to 3000, the empirical size approaches the corresponding nominal

levels further. We also see that the empirical power rises with both larger values of α0 and larger

sample sizes. The sharp increase in empirical power observed in the spatial model compared to

the other examples can be attributed to the multivariate nature of yt in the spatial example,

compared to the univariate nature of yt in the other models.

6 Empirical application

As an illustration, we consider a simplified version of the dynamic spatial regression model

studied in Blasques et al. (2016) and D’Innocenzo et al. (2024); see also the example in Section 4.4.

We consider dynamic spatial credit risk spillovers between n = 7 European sovereigns (Germany,

France, Ireland, Italy, the Netherlands, Portugal, and Spain) using weekly changes in 5-year CDS

spreads over the ten-year period January 4, 2013, to December 16, 2022 such that T = 520. As
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in D’Innocenzo et al. (2024), the regressors include an intercept, changes in short-term (Eonia)

interest rates and in option-implied stock market volatility (VSTOXX), and country-specific

stock index returns and changes in the long (10Y) – short (1Y) government yield spreads. The

spatial weights are taken from the BIS website and relate domestic banks’ cross-border exposures

and row-normalized; see D’Innocenzo et al. (2024).

Given the high persistence in the spatial spillover patterns, we set the parameter bounds to

(βL, βU) = (0, 0.995) and (αL, αU) = (−0.3, 0.3), yielding a corresponding critical value of 9.127

at the 1% significance level according to Table B.3.

We estimate a static Gaussian version of the model (under H0) and a corresponding model

with a dynamic spatial spillover parameter ρt as in Section 4.4. The parameter estimates and

log-likelihood values for both models are presented in Appendix D. The estimation results shows

that the unrestricted estimate of α is very close to zero with |α| < 0.001. Still, the resulting QLR

test statistic is QLRT ≈ 41.0, which under standard asymptotics would be suggestive of strong

statistical significance. The scaled Q̃LRT test statistic, however, is much smaller at Q̃LRT ≈ 9.8,

where we computed κ̂G,T as
(
− T−1

∑T
t=1∇

ff
t

(
ω̂0,T , ϕ̂0,T

))−1(
T−1

∑T
t=1

[
∇f

t

(
ω̂0,T , ϕ̂0,T

)]2)
.

This scaled Q̃LRT statistic is about a factor 4 smaller than the original QLRT statistic and

only marginally significant at the 1% level. For the case of a Student’s t assumption for the

error term, the differences are considerably smaller, with QLRT ≈ 14.720 and Q̃LRT ≈ 16.683,

both being statistically significant against the non-standard critical value. This illustrates that

directly comparing likelihoods and using standard asymptotic theory to conduct inference on the

relevance of score-driven time-varying parameters can be tricky in empirically relevant situations,

and that the corrections derived in Section 3 can lead to material differences in such settings.

7 Conclusion

In this paper, we proposed a quasi-likelihood ratio (QLR) test for parameter constancy against

the alternative of scalar score-driven dynamics. The flexible set-up accommodated different types

of variables of interest (discrete and continuous, univariate and multivariate) and time-varying

parameters. In developing the asymptotic null distribution of the QLR test, we faced two

main challenges. First, parameters could lie on the boundary of the parameter space. Second,

some parameters could not be identified under the null hypothesis. As a result, conventional

asymptotic analyses could not be applied. We found that the limiting distribution generally

depended on multiple nuisance parameters. However, under mild conditions satisfied by virtually

all score-driven models, a simple but non-standard distribution could be derived. The limiting

22



distribution is free of nuisance parameters, enabling critical values to be easily simulated. We

also provided a set of easily verifiable conditions and illustrated their application in different

examples involving univariate and multivariate data, correct and incorrect specification, and

different types of time-varying parameters (location, scale, spatial correlation). Simulation

results showed a satisfactory finite sample performance of the proposed test. To further improve

finite sample accuracy, future work can explore bootstrap-based approximations next to the

current asymptotic approximation. Moreover, it would be interesting to extend the methodology

to test for parameter constancy in settings with more time-varying parameters and multivariate

score-driven dynamics.
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A Proof of Theorem 1

To prove the theorem, we apply Theorem 4 of Andrews (2001). Under the maintained assumption

that ϑ0 ∈ Θ0 and by applying Theorem 3 of Andrews (2001), the relevant sufficient conditions

to verify are Assumptions 1∗, 22
∗
, 3∗, 5∗, and 7–10 of Andrews (2001). Note that the weak

convergence (3.3) arises as a byproduct in the verification of Assumption 3∗.

Verification of Assumption 1∗. Under Assumption 3(ii), it remains to be proven that: (a)

sup(ϑ,β)∈Θ×B
∣∣T−1L̂T (ϑ, β)− L(ϑ, β)

∣∣ p→ 0, where L(ϑ, β) = E
[
ℓt
(
ft(ϑ, β), ϕ

)]
is nonrandom;

(b) L(ϑ0, β) is independent of β ∈ B. For Part (a), let LT (ϑ, β) =
∑T

t=1 ℓt
(
ft(ϑ, β), ϕ

)
. Then,

sup
(ϑ,β)∈Θ×B

∣∣T−1L̂T (ϑ, β)− L(ϑ, β)
∣∣

≤ sup
(ϑ,β)∈Θ×B

T−1
∣∣L̂T (ϑ, β)− LT (ϑ, β)

∣∣+ sup
(ϑ,β)∈Θ×B

∣∣T−1LT (ϑ, β)− L(ϑ, β)
∣∣. (A.1)

By Assumption 3(i), we note that there exists some ρ > 1 such that

sup(ϑ,β)∈Θ×B
∣∣ℓt(f̂t(ϑ, β), ϕ)− ℓt

(
ft(ϑ, β), ϕ

)∣∣ ≤ Cρ−t a.s. for all t ∈ Z+. Therefore, it holds

a.s. that the first term sup(ϑ,β)∈Θ×B T
−1
∣∣L̂T (ϑ, β)− LT (ϑ, β)

∣∣ ≤ C T−1
∑T

t=1 ρ
−t ≤ C T−1 → 0

as T → ∞. For the second term on the right-hand side of (A.1), ∀(ϑ, β) ∈ Θ × B, we note

that ℓt
(
ft(ϑ, β), ϕ

)
is a measurable function of (yt,xt, ft(ϑ, β),ϕ) under Assumption 1(iii). By

Assumption 2(ii), ft(ϑ, β) is Ft−1-measurable, which implies that
{
(yt,xt, ft(ϑ, β),ϕ), t ∈ Z

}
is jointly SE under Assumption 2(i). It then follows from White (2001, Theorem 3.35) that the

sequence
{
ℓt
(
ft(ϑ, β), ϕ

)
, t ∈ Z

}
is also SE. Since ℓt

(
ft(ϑ, β), ϕ

)
is a.s. continuous on Θ × B

under Assumption 1(iii) and Assumption 2(ii), and given the compactness of Θ × B (Assump-

tion 1), and the moment condition in Assumption 3(i), the uniform law of large numbers (ULLN)

in White (1996, Theorem A.2.2) implies that sup(ϑ,β)∈Θ×B
∣∣T−1LT (ϑ, β) − L(ϑ, β)

∣∣ a.s.−→ 0,

where L(ϑ, β) is continuous in (ϑ, β) ∈ Θ×B. Part (b) follows immediately from the fact that,

∀β ∈ B, we have ft(ϑ0, β) = ω0 if α0 = 0, and hence L(ϑ0, β) =: L⋆(ϑ0) does not depend on β.
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Verification of Assumption 22∗. Let Θ+ in Andrews (2001, Assumption 22
∗
) be specified

as ΘC,ϵ̃
0 for some small ϵ̃ > 0. Then, there exists an ϵ > 0 such that Θ ∩ S(ϑ0, ϵ) ⊂ ΘC,ϵ̃

0 .

Assumption 22
∗
(a) trivially holds (regardless of whether α0 = 0 lies on the boundary or not).

Assumption 22
∗
(b) holds under Assumption 1 and Assumption 2(ii).

We now proceed to verify Assumption 22
∗
(c). Recall that Θϵ

0 is a compact subset of

Θ ∩ S(ϑ0, ϵ). We first check the condition stated in Eq. (9.1) of Andrews (2001), which in our

context amounts to showing that

sup
ϑ∈Θ: ∥ϑ−ϑ0∥≤γT , β∈B

∣∣∣(L̂T (ϑ, β)− L̂T (ϑ0, β)
)
−
(
LT (ϑ, β)− LT (ϑ0, β)

)∣∣∣ = oP(1), (A.2)

for all γT → 0. Note that the left-hand side of (A.2) is bounded by

2
T∑
t=1

sup
ϑ∈Θ: ∥ϑ−ϑ0∥≤γT , β∈B

∣∣dt(ϑ, β)∣∣. (A.3)

By Assumption 3(i), the argument below (A.1) shows that
∑T

t=1 sup(ϑ,β)∈Θ×B
∣∣dt(ϑ, β)∣∣ < ∞.

Note that the function (ϑ, β) 7→ dt(ϑ, β) is uniformly continuous on (ϑ, β) ∈ Θ × B. This

follows from three imposed conditions: first, the uniform continuity of f̂t(·) and ft(·) on Θ × B

by Assumption 2(ii); second, the continuity of the function (f,ϕ) 7→ ℓ(y,x, f,ϕ) for every

(y,x) ∈ Y × X (Assumption 1(iii)); and third, the compactness of Θ × B. It then follows

that dt(ϑ, β) is continuous in ϑ uniformly over β ∈ B. Using (A.3) and the same reasoning in

Eq. (9.26) of Andrews (2001), one immediately obtains (A.2). As discussed in Andrews (2001,

Appendix A), to verify Assumption 22
∗
in this case, it then suffices to replace L̂T (ϑ, β) with its

approximation LT (ϑ, β) in Assumption 22
∗
. Note that

sup
(ϑ,β)∈Θϵ

0×B

∥∥∥∥T−1 ∂2

∂ϑ∂ϑ⊤LT (ϑ, β)− T−1 ∂2

∂ϑ∂ϑ⊤LT (ϑ0, β)

∥∥∥∥
≤ 2 sup

(ϑ,β)∈Θϵ
0×B

∥∥∥∥( − T−1 ∂2

∂ϑ∂ϑ⊤LT (ϑ, β)

)
− J (ϑ, β)

∥∥∥∥, (A.4)

where J (ϑ, β) = −E
(

∂2

∂ϑ∂ϑ⊤ ℓt
(
ft(ϑ, β), ϕ

))
. Therefore, to verify Assumption 22

∗
(c), it suffices

to show that, for some ϵ > 0,

sup
(ϑ,β)∈Θϵ

0×B

∥∥∥∥(− T−1 ∂2

∂ϑ∂ϑ⊤LT (ϑ, β)

)
−J (ϑ, β)

∥∥∥∥ = oa.s.(1). (A.5)

For (ϑ, β) ∈ Θϵ
0 × B, ∂2

∂ϑ∂ϑ⊤ ℓt
(
ft(ϑ, β), ϕ

)
is a measurable function of
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(
yt,xt, ft(ϑ, β),

∂
∂ϑ
ft(ϑ, β),

∂2

∂ϑ∂ϑ⊤ft(ϑ, β)
)

and is also continuous in (ϑ, β) under As-

sumption 1 and Assumption 2(ii). Then, (A.5) follows directly from Assumption 3(iii),

together with the ULLN in White (1996, Theorem A.2.2), applied to the SE process{
∂2

∂ϑ∂ϑ⊤ ℓt
(
ft(ϑ, β), ϕ

)
, t ∈ Z

}
whose SE property is ensured by Assumption 2(ii).

Verification of Assumption 3∗. Since ft(ϑ0, β) = f̂t(ϑ0, β) = ω0 for all t ≥ 1 and β ∈ B,

and E
(
log+

∣∣∇f
t (ω0,ϕ0)

∣∣) < ∞, it follows from Straumann and Mikosch (2006, Lemma 2.1)

and Assumption 2(ii) that T−1/2 ∂L̂T (ϑ, β)
/
∂ϑ
∣∣
ϑ=ϑ0

= T−1/2 ∂LT (ϑ, β)
/
∂ϑ
∣∣
ϑ=ϑ0

+ oa.s.(1).

We therefore establish the weak convergence of T−1/2 ∂LT (ϑ, · )
/
∂ϑ
∣∣
ϑ=ϑ0

as a process in-

dexed by β ∈ B. Recall from Theorem 1 h0,t(β) =
∑∞

j=0 β
jst−j(f,ϕ)

∣∣
(f,ϕ)=(ω0,ϕ0)

and

note that ∂ft(ϑ, β)
/
∂ϑ
∣∣
ϑ=ϑ0

=
(
h0,t−1(β), 1,0

⊤)⊤. Let ∇f
0,t := ∇f

t (f,ϕ)
∣∣
(f,ϕ)=(ω0,ϕ0)

and

∇ϕ
0,t := ∇ϕ

t (f,ϕ)
∣∣
(f,ϕ)=(ω0,ϕ0)

, we can write

1√
T

∂

∂ϑ
LT (ϑ, β)

∣∣∣∣
ϑ=ϑ0

=
1√
T

T∑
t=1

(
∇f

t (f,ϕ)
∣∣∣
(f,ϕ)=(ω0,ϕ0)

∂ft(ϑ, β)

∂ϑ

∣∣∣∣
ϑ=ϑ0

+
∂ log p(yt | xt, f, ϕ)

∂ϑ

∣∣∣∣
(f,ϕ)=(ω0,ϕ0)

)

=
1√
T

T∑
t=1


∇f

0,t h0,t−1(β)

∇f
0,t

∇ϕ
0,t

 =:
1√
T

T∑
t=1

g0,t(β). (A.6)

We employ Theorem 10.2 of Pollard (1990) to derive the weak convergence of T−1/2
∑T

t=1 gt(·).

This requires verifying three conditions: (a) B is totally bounded; (b) the finite dimensional

distributions of T−1/2
∑T

t=1 gt(·) converge to a limiting distribution; (c)
{
T−1/2

∑T
t=1 gt(·), T ≥

1
}
is stochastically equicontinuous.

Condition (a) holds because B ⊂ (−1, 1). Now we prove Condition (b). Under Assump-

tion 3(iv), we see that
∑T

t=1 g0,t(β) is a partial sum of SE martingale difference (m.d.) random

variables. We can apply the Cramér-Wold device together with a central limit theorem (CLT) for

SE m.d. sequences, such as Theorem 24.3 of Davidson (1994) (see also Theorems 13.12 and 23.16,

and the discussion in Chapter 24.3, p. 385 of the same book), or Theorem 18.3 of Billingsley

(1999), provided that E
(
supβ∈B

∥∥g0,t(β)∥∥2) <∞. Since g0,t(β) has fixed dimension, it suffices

to consider its components individually. Let β̄ be a number strictly between sup{|β|, β ∈ B} and
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1. For the first component of g0,t(β), by Assumption 3(iv) and the Cauchy-Schwarz inequality,

E
([

∇f
0,t

]2
sup
β∈B

[
h0,t−1(β)

]2)
= Σff E

(
sup
β∈B

( ∞∑
j=0

βj

β̄j
β̄jst−1−j(ω0,ϕ0)

)2
)

≤ Σff

(
sup
β∈B

∞∑
j=0

(
β

β̄

)2j
)

∞∑
j=0

β̄2j E
(
s2t−1−j(ω0,ϕ0)

)
<∞,

(A.7)

by the strict stationarity of {st(ω0,ϕ0), t ∈ Z}. For the remaining components of g0,t(β) that do

not depend on β, the existence of second-order moments follows directly from Assumption 3(iv).

Applying a CLT for SE m.d. sequences as described above, we obtain that each of the finite-

dimensional distributions of T−1/2
∑T

t=1 g0,t(·) converges in distribution to a multivariate normal

distribution with covariance determined by the covariance function in (3.4). Consider Condition

(c) where we need to establish the stochastic equicontinuity of
{
T−1/2

∑T
t=1 gt(·), T ≥ 1

}
. As

above, applying the Cauchy-Schwarz inequality, we note that for any δ > 0,

E

{
sup

|β1−β2|<δ

(
1√
T

T∑
t=1

∇f
0,t h0,t−1(β1)−

1√
T

T∑
t=1

∇f
0,t h0,t−1(β2)

)2}

= E

{
sup

|β1−β2|<δ

(
1√
T

T∑
t=1

∇f
0,t

(
∞∑
j=0

(
βj
1 − βj

2

)
st−1−j(ω0,ϕ0)

))2}

= E

{
sup

|β1−β2|<δ

(
∞∑
j=0

βj
1 − βj

2

β̄j
β̄j 1√

T

T∑
t=1

∇f
0,tst−1−j(ω0,ϕ0)

)2}

≤

(
sup

|β1−β2|<δ

∞∑
j=0

(βj
1 − βj

2)
2

β̄2j

){
∞∑
j=0

β̄2j E

(
1√
T

T∑
t=1

∇f
0,tst−1−j(ω0,ϕ0)

)2}

=
ΣffE

(
s1(ω0,ϕ0)

)2
β2
U

sup
|β1−β2|<δ

∞∑
j=0

(βj
1 − βj

2)
2

β̄2j
,

where the final step follows from

E

(
1√
T

T∑
t=1

∇f
0,tst−1−j(ω0,ϕ0)

)2

=
1

T

T∑
t=1

E
[(
∇f

0,t

)2]E[(s2t−1−j(ω0,ϕ0)
]
= Σff E

[
s21(ω0,ϕ0)

]
.

The stochastic equicontinuity of
{
T−1/2

∑T
t=1 gt(·), T ≥ 1

}
can then be established using the

same steps as in Andrews and Ploberger (1996, p. 1340, below (A.14)). Combining these three

conditions yields (3.3) immediately.

Moreover, note that J (ϑ0, β) = −E
(

∂2

∂ϑ∂ϑ⊤ ℓt
(
ft(ϑ0, β), ϕ0

))
is symmetric and nonrandom.
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It remains to be shown that

0 < inf
β∈B

λmin

(
J (ϑ0, β)

)
≤ sup

β∈B
λmax

(
J (ϑ0, β)

)
<∞, (A.8)

where λmin(·) and λmax(·) denote the smallest and largest eigenvalues, respectively. Note that

∂2

∂ϑ∂ϑ⊤ ℓt
(
ft(ϑ, β), ϕ

)
=
∑3

k=1Lk,t(ϑ, β), where

L1,t(ϑ, β) =
∂∇f

t (f,ϕ)

∂f

∣∣∣∣
f=ft(ϑ,β)

∂ft(ϑ, β)

∂ϑ

∂ft(ϑ, β)

∂ϑ⊤ +
∂2ℓt(f,ϕ)

∂ϑ∂ϑ⊤

∣∣∣∣
f=ft(ϑ,β)

,

L2,t(ϑ, β) =
∂∇f

t (f,ϕ)

∂ϑ

∣∣∣∣
f=ft(ϑ,β)

∂ft(ϑ, β)

∂ϑ⊤ +

(
∂∇f

t (f,ϕ)

∂ϑ

∣∣∣∣
f=ft(ϑ,β)

∂ft(ϑ, β)

∂ϑ⊤

)⊤

,

L3,t(ϑ, β) = ∇f
t (f,ϕ)

∣∣∣
f=ft(ϑ,β)

∂2ft(ϑ, β)

∂ϑ∂ϑ⊤ .

For brevity, let ∇ff
0,t :=

∂∇f
t (f,ϕ)

∂f

∣∣∣
(f,ϕ)=(ω0,ϕ0)

, ∇ϕϕ
0,t := ∂

∂ϕ
∇ϕ

t (f,ϕ)
⊤
∣∣∣
(f,ϕ)=(ω0,ϕ0)

, and ∇ϕf
0,t =

∇ϕf
t (ω0,ϕ0). We then obtain

L1,t(ϑ0, β) +L2,t(ϑ0, β) =


∇ff

0,t h
2
0,t−1(β) ∇ff

0,t h0,t−1(β) ∇ϕf⊤
0,t h0,t−1(β)

∇ff
0,t h0,t−1(β) ∇ff

0,t ∇ϕf⊤
0,t

∇ϕf⊤
0,t h0,t−1(β) ∇ϕf

0,t ∇ϕϕ
0,t

 ,

and L3,t(ϑ0, β) = ∇f
t (ω0,ϕ0)

∂2ft(ϑ,β)
∂ϑ∂ϑ⊤

∣∣∣
ϑ=ϑ0

. Note that ∂2ft(ϑ,β)
∂ϑ ∂ϑ⊤

∣∣∣
ϑ=ϑ0

is Ft−1-measurable (As-

sumption 2(ii)). Hence, E
(
L3,t(ϑ0, β)

)
= O for all β ∈ B by Assumption 3(iv). If the condition

E
(
∇ϕf

0,t

∣∣Ft−1

)
= Ωϕf = 0 in Assumption 3(iv) holds, then

E
(
L1,t(ϑ0, β) +L2,t(ϑ0, β)

)
=


E
(
∇ff

0,t

)
E
(
h20,t−1(β)

)
E
(
∇ff

0,t

)
E
(
h0,t−1(β)

)
0⊤

E
(
∇ff

0,t

)
E
(
h0,t−1(β)

)
E
(
∇ff

0,t

)
0⊤

0 0 E
(
∇ϕϕ

0,t

)
 ,

and thus J (ϑ0, β) = diag
(
J (α,ω)(β),J ϕϕ

)
, where J (α,ω)(β) is defined in Eq. (3.6) and

J ϕϕ := −E
(
∇ϕϕ

0,t

)
. Note that supβ∈B E

([
h0,t−1(β)

]2)
<∞ as seen in (A.7). It then follows from

Assumption 3(v) that (A.8) holds. Alternatively, if Ωϕf is possibly nonzero but the condition

E
(
h0,t(β)

)
= 0 in Assumption 3(iv) holds, then one can write J (ϑ0, β) = diag

(
Jα(β),J (ω,ϕ)

)
,

where Jα(β) = −E
(
∇ff

0,t

)
E
(
h20,t−1(β)

)
is the (1, 1)-entry of J (α,ω)(β) (also defined in the

theorem), and J (ω,ϕ) := −E
(

∇ff
0,t ∇ϕf⊤

0,t

∇ϕf
0,t ∇ϕϕ

0,t

)
. Since J (ω,ϕ) is positive definite by Assumption 3(v),

thereby completing the verification of Assumption 3∗.
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Verification of Assumptions 5∗ and 7–10. Consider Assumption 5∗. We focus on the

case ϕ0 ∈ int(Θϕ). Let Λ := Λα × Λω × Λϕ, where Λω = R and Λϕ = Rm. Recall that

Θα = [αL, αU ] ⊂ R for some αU > 0. We set Λα = R+ if αL = 0, and Λα = R if αL < 0. With

this choice of Λ, Assumption 5∗(a) is satisfied. Assumption 5∗(b) is immediate. Note that if

some or all elements of ϕ0 lie on the boundary of Θϕ, the above arguments can be adapted by

restricting the cone Λϕ to the corresponding positive or negative half-space for those elements.

To verify Assumption 7(a), we partition the parameter vector ϑ = (α, ω,ϕ⊤)⊤ depending on

whether Ωϕf = 0 or not. If Ωϕf = 0, we take θ∗ = (α, ω)⊤ and ψ = ϑ in the notation of

Andrews (2001). If Ωϕf is possibly nonzero, but E
(
h0,t(β)

)
= 0 holds, we instead set θ∗ = α and

ψ = (ω,ϕ⊤)⊤. In either case, Assumption 7(a) is satisfied due to the block-diagonal structure of

J (ϑ0, β) established above. Furthermore, Assumption 7(b) holds because Λ is a product set by

construction. Assumption 8 also holds by the construction of Λϕ. Assumption 9(a) holds by our

definition of Θ0, and 9(b)–(d) are straightforward. Assumption 10(a) holds because the initial

condition is set as f̂1(ϑ0, β) = ω0; it would not hold otherwise. Assumption 10(b) is satisfied

since only the first component in (A.6) and Jα(β) depend on β, while J (ω,ϕ) and J ϕϕ defined

above are independent of β.

Eq. (3.5) follows from Theorem 4(b)-(c) of Andrews (2001), in combination with Theorem

2(a) of Andrews (2001) and Theorem 5 of Andrews (1999). Note that for Θα = [0, αU ], one can

also refer to Eq. (3.10) of Andrews (2001).
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A Additional proofs and results

Proof of Corollary 1. Note that E
(
h0,t−1(β)

)
= 0 for all β ∈ B. Thus, the results in Part

(ii) of Theorem 1 apply directly. It follows that for every β ∈ B, Zα(β) := J −1
α (β)Gα(β) ∼

N
(
0, κZ(1−β2)

)
, where κZ := κ−1

J κG, κJ := Ωff E
(
s2(yt,xt, ω0,ϕ0)

)
, and κG := Ω−1

ff Σff . The

process Zα is therefore a Gaussian process with the covariance function given by

Cov
(
Zα(β1), Zα(β2)

)
= κZ

(1− β2
1)(1− β2

2)

1− β1β2
. (A.1)

One can verify that κ
1/2
Z (1−β2)

∑∞
j=0 β

jXj defines a Gaussian process whose covariance function

coincides with that of Zα in (A.1). Hence, Zα(β)
d
= κ

1/2
Z (1− β2)

∑∞
j=0 β

jXj, where
d
= denotes

equality in distribution. Note that Jα(β) = κJ (1− β2)−1. By Theorem 1, we obtain

QLRT
d→

κG supβ∈B

(
max

{
(1− β2)1/2

∑∞
j=0 β

jXj, 0
})2

, αL = 0,

κG supβ∈B

(
(1− β2)1/2

∑∞
j=0 β

jXj

)2
, αL < 0.

(A.2)

Then (3.7) immediately follows from (ii).

Proof of Corollary 2. This directly follows from (A.2), noting that κG = 1.

The following proofs mainly draw on the results of Bougerol (1993) and Straumann and

Mikosch (2006). Consider a complete separable metric space (E, dE), in line with Bougerol (1993,

Section 3), and define the Lipschitz coefficient ρ associated with a random map φ : E → E as:

ρ(φ) = sup
x,y∈E, x ̸=y

{
dE
(
φ(x), φ(y)

)
dE(x, y)

}
. (A.3)

Let C0(Θ × B,F) denote the space of continuous F -valued functions on Θ × B, equipped with

the supremum norm ∥ · ∥Θ×B, defined by ∥f∥Θ×B = sup(ϑ,β)∈Θ×B |f(ϑ, β)| for f ∈ C0(Θ×B,F).

Then,
(
C0(Θ × B,F), ∥ · ∥Θ×B

)
is a complete and separable (and thus Polish) space. Moreover,

in the proofs below, we repeatedly use the following inequalities without further mention (see,

e.g., Lin and Lucas, 2025, (B.3)–(B.4)): for any matrices Xt, t = 1, . . . , K, where K ∈ Z+, with
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compatible dimensions, we have

log+

∥∥∥∥∥
K∏
t=1

Xt

∥∥∥∥∥ ≤ log+

(
K∏
t=1

∥Xt∥

)
≤

K∑
t=1

log+ ∥Xt∥, (A.4)

log+

∥∥∥∥∥
K∑
t=1

Xt

∥∥∥∥∥ ≤ log+

(
K∑
t=1

∥Xt∥

)
≤ log(K) +

K∑
t=1

log+ ∥Xt∥. (A.5)

We use C to denote a generic positive constant that may vary from line to line.

Proof of Proposition 1. We shall employ Theorem 2.10 of Straumann and Mikosch (2006)

for perturbed, nonstationary SREs. Before proceeding, recall that f
(0)
t (ϑ, β) = ft(ϑ, β) and

f̂
(0)
t (ϑ, β) := f̂t(ϑ, β). Note that for k ≥ 1, one can generally write (provided the partial

derivatives with respect to ϑ are well-defined) f̂
(k)
t+1 = φ̂(k),t

(
f̂

(k)
t

)
, where φ̂(k),t is given by

[
φ̂(k),t

(
f (k)

)]
(ϑ, β)

:= ψ̂(k),t

(
f (k)(ϑ, β),ϑ, β

)
:= Qt

(
f̂

(0)
t (ϑ, β),ϑ, β

)
f (k)(ϑ, β) + q(k),t

(
f̂

(k−1)
t (ϑ, β), . . . , f̂

(0)
t (ϑ, β),ϑ, β

)
, (A.6)

where Qt is a scalar function that depends on the initialized filter f̂t(ϑ, β), and q(k),t for

k ≥ 1 is a vector-valued function that depends only on its derivatives up to order k − 1.

The (perturbed) derivative process
{
f̂

(k)
t (·), t ∈ Z+

}
depends on the initialized sequence{

f̂
(0)
t (·), f̂ (1)

t (·), . . . , f̂ (k−1)
t (·), t ∈ Z+

}
and is therefore nonstationary. To employ Theorem 2.10

of Straumann and Mikosch (2006), define for k ≥ 1 an intermediate unperturbed sequence{
d̂
(k)
t (·), t ∈ Z+

}
, initialized at some initial function f̂

(k)
1 (·) and depending solely on the limit

sequence
{
f

(0)
t (·),f (1)

t (·), . . . ,f (k−1)
t (·), t ∈ Z

}
, which is associated with the random maps φ(k),t

defined by

[
φ(k),t

(
d(k)

)]
(ϑ, β)

:= ψ(k),t

(
d(k)(ϑ, β),ϑ, β

)
:= Qt

(
f

(0)
t (ϑ, β),ϑ, β

)
d(k)(ϑ, β) + q(k),t

(
f

(k−1)
t (ϑ, β), . . . ,f

(0)
t (ϑ, β),ϑ, β

)
. (A.7)

For the specific cases of k = 1, 2 here, it follows by mathematical induction and Assump-

tion 1(iii) that, for all t ∈ Z+ and (ϑ, β) ∈ Θϵ
0 × B, the initialized sequence f̂t(ϑ, β), starting

from the initial value f̂1(ϑ, β) = ω, admits continuous l/r partial derivatives of order two with

respect to ϑ, and these partial derivatives are continuous in (ϑ, β) ∈ Θϵ
0 × B. The specific
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construction in (A.6) reduces to

f̂
(1)
t+1(ϑ, β) = Qt(f̂t(ϑ, β),ϑ, β) f̂

(1)
t (ϑ, β) + q(1),t

(
f̂t(ϑ, β),ϑ, β

)
, (A.8)

f̂
(2)
t+1(ϑ, β) = Qt(f̂t(ϑ, β),ϑ, β) f̂

(2)
t (ϑ, β) + q(2),t

(
f̂

(1)
t (ϑ, β), f̂t(ϑ, β),ϑ, β

)
, (A.9)

where Qt(f,ϑ, β) = β + α ∂st(f,ϕ)
∂f

, q(1),t(f,ϑ, β) =
(
st(f,ϕ), 1− β, α ∂st(f,ϕ)

∂ϕ⊤

)⊤
, and

q(2),t(f
(1), f,ϑ, β) = vec

(
f (1) ∂α

∂ϑ⊤
∂st(f,ϕ)

∂f
+ αf (1)∂

2st(f,ϕ)

∂ϑ⊤∂f
+ α

∂2st(f,ϕ)

∂f 2
f (1)f (1)⊤

+
∂st(f,ϕ)

∂f

∂α

∂ϑ
f (1)⊤ + α

∂2st(f,ϕ)

∂f∂ϑ
f (1)⊤ +

∂2st(f,ϕ)

∂ϑ⊤∂ϑ

+
∂α

∂ϑ

∂st(f,ϕ)

∂ϑ⊤ +
∂st(f,ϕ)

∂ϑ

∂α

∂ϑ⊤

)
.

For the unperturbed counterparts (see (A.7)), the expressions for k = 1, 2 are identical, except

for plugging in f
(1)
t (ϑ, β) and ft(ϑ, β) instead of f̂

(1)
t (ϑ, β) and f̂t(ϑ, β), respectively, in Qt

and q(k),t above. Note that the random maps φ̂(k),t and φ(k),t for k ≥ 1 are defined on

the complete and separable metric space
(
C0
(
Θϵ

0 × B,R(m+2)k
)
, ∥ · ∥Θϵ

0×B
)
, where ∥f∥Θϵ

0×B =

sup(ϑ,β)∈Θϵ
0×B ∥f(ϑ, β)∥. Similar to Blasques et al. (2022, Proposition 3.4) and Lin and Lucas

(2025, Proposition 4), the following high-level conditions (abbreviated as ĤL) are sufficient for

applying Straumann and Mikosch (2006, Theorem 2.10): For k ∈ Z+, the sequence
{
φ(k),t, t ∈

Z
}
is SE. Moreover,

ĤL1 E
(
log+

∥∥φ(k),1

(
f̂

(k)
1

)∥∥
Θϵ

0×B

)
< ∞, where f̂

(1)
1 (ϑ, β) = (0, 1, 0, . . . , 0)⊤ ∈ Rm+2, and

f̂
(k)
1 (ϑ, β) = 0 for k ≥ 2;

ĤL2 E
(
log+ ρ(φ(k),1)

)
<∞;

ĤL3 E
(
log ρ

(
φ

(r)
(k),t

))
< 0 for some integer r ≥ 1, where φ

(r)
(k),t = φ(k),t ◦φ(k),t−1 ◦ . . .◦φ(k),t−r+1

is the r-fold backward iterates of φ(k),t;

ĤL4 E
(
log+

∥∥d(k)
0

∥∥
Θϵ

0×B

)
< ∞, where

{
d
(k)
t (·), t ∈ Z

}
is the unique SE solution of the

unperturbed system (with the existence guaranteed by Conditions ĤL1–ĤL3);

ĤL5
∥∥φ̂(k),t

(
f̂

(k)
1

)
−φ(k),t

(
f̂

(k)
1

)∥∥
Θϵ

0×B
e.a.s.−→ 0 and ρ

(
φ̂(k),t −φ(k),t

) e.a.s.−→ 0 as t→ ∞.

Case k = 1: Under the condition that Assumption 2(ii) for k = 0 holds, the sequence{
(yt,xt, ft), t ∈ Z

}
is SE. Consequently, the sequence

{
φ(1),t, t ∈ Z

}
is SE as well. Condition

ĤL1 follows directly from Assumption 5(i). Note that d(1) 7→ φ(1),t(d
(1)) is differentiable
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everywhere on Rm+2. Condition ĤL3 follows directly from the local contraction condition in

Assumption 5(i) for r = 1, by applying a mean value theorem (see, e.g., Rudin, 1976, Theorem

9.19). This, in turn, immediately implies Condition ĤL2.

Together, these three conditions ensure that the SE solution
{
d
(1)
t , t ∈ Z

}
to the unperturbed

system admits an almost sure representation (Straumann and Mikosch, 2006, Eq. (2.5)):

d
(1)
t (ϑ, β) =

∞∑
j=0

( j∏
ℓ=1

Qt−ℓ

(
ft−ℓ(ϑ, β),ϑ, β

))
q(1),t−j−1

(
ft−j−1(ϑ, β),ϑ, β

)
, (A.10)

with
∏0

ℓ=1 · ≡ 1.

To establish Condition ĤL4, it suffices to show that
[
E
(∥∥d(1)

t

∥∥δ
Θϵ

0×B

)]1/δ
< ∞ for some

δ > 0. Before proceeding, note that for a random sequence of possibly matrix-valued, dimension-

compatible quantities Aj and Bj, j ≥ 0, an application of Minkowski’s inequality followed by

Hölder’s inequality yields, for 1 ≤ ρ1 < ρ2,

(
E

∥∥∥∥∥
∞∑
j=0

AjBj

∥∥∥∥∥
ρ1)1/ρ1

≤
∞∑
j=0

(
E∥AjBj∥ρ1

)1/ρ1
≤

∞∑
j=0

(
E∥Aj∥(ρ

−1
1 −ρ−1

2 )−1
)ρ−1

1 −ρ−1
2
(
E∥Bj∥ρ2

)ρ−1
2

≤ C
∞∑
j=0

(
E∥Aj∥(ρ

−1
1 −ρ−1

2 )−1
)ρ−1

1 −ρ−1
2

, (A.11)

whenever supj≥0 E∥Bj∥ρ2 < ∞. Note that since
{
q(1),t

(
ft(ϑ, β),ϑ, β

)
, t ∈ Z

}
is strictly sta-

tionary, it follows that for all t ∈ Z, E
(
sup(ϑ,β)∈Θϵ

0×B
∥∥q(1),t(ft(ϑ, β),ϑ, β)∥∥η) ≤ C by As-

sumption 5(i). Recall the constants η and κ from Assumption 5. If at least one is finite, set

δ = (η−1 + κ−1)−1; if both are ∞, δ is arbitrary subject to δ ≥ 1. We present the proofs for

the case η, κ < ∞; if one is ∞, only the first inequality in (A.11) is needed, after which the

steps proceed straightforwardly. When η, κ <∞, Assumption 5 ensures that δ ∈ [1, κ ∧ η). Set

ρ1 = δ and ρ2 = η in (A.11) above and note that 1 ≤ ρ1 < ρ2. Condition ĤL4 then follows from
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(A.11) and Assumption 5(ii). Specifically, for ϵ > 0, by (A.10) and (A.11), we have

[
E
(∥∥d(1)

t

∥∥δ
Θϵ

0×B

)]1/δ
=

{
E

(
sup

(ϑ,β)∈Θϵ
0×B

∥∥∥∥∥
∞∑
j=0

( j∏
ℓ=1

Qt−ℓ

(
ft−ℓ(ϑ, β),ϑ, β

))
q(1),t−j−1

(
ft−j−1(ϑ, β),ϑ, β

)∥∥∥∥∥
)δ}1/δ

≤ C

∞∑
j=0

{
E

(
sup

(ϑ,β)∈Θϵ
0×B

∣∣∣∣∣
j∏

ℓ=1

(
β + α

∂st−ℓ(f,ϕ)

∂f

∣∣∣∣
f=ft−ℓ(ϑ,β)

)∣∣∣∣∣
κ)}1/κ

≤ C
∞∑
j=1

[
ϱj(ϑ0, ϵ, κ)

]1/κ
<∞.

It remains to consider Condition ĤL5. Note that
∥∥φ̂(1),t

(
f̂

(1)
1

)
−φ(1),t

(
f̂

(1)
1

)∥∥
Θϵ

0×B ≤ C(R1,t+

R2,t +R3,t), where

R1,t := sup
(ϑ,β)∈Θϵ

0×B

∣∣∣st(f̂t(ϑ, β),ϕ)− st
(
ft(ϑ, β),ϕ

)∣∣∣, (A.12)

R2,t := sup
(ϑ,β)∈Θϵ

0×B

∥∥∥∥∂st(f,ϕ)∂ϕ

∣∣∣∣
f=f̂t(ϑ,β)

− ∂st(f,ϕ)

∂ϕ

∣∣∣∣
f=ft(ϑ,β)

∥∥∥∥, (A.13)

R3,t := sup
(ϑ,β)∈Θϵ

0×B

∣∣∣∣∂st(f,ϕ)∂f

∣∣∣∣
f=f̂t(ϑ,β)

− ∂st(f,ϕ)

∂f

∣∣∣∣
f=ft(ϑ,β)

∣∣∣∣. (A.14)

By (3.8) in Assumption 5(iii), we have R1,t ≤ Ct(ϑ0, ϵ)
∥∥f̂t(ϑ, β) − ft(ϑ, β)

∥∥ζ
Θϵ

0×B for some

ζ ∈ (0, 1], where Ct(ϑ0, ϵ) is strictly stationary with E
[
log+Ct(ϑ0, ϵ)

]
<∞. By Assumption 2(ii)

for k = 0 and Lemma 2.1 of Straumann and Mikosch (2006), it follows that R1,t
e.a.s.−→ 0

as t → ∞. Similarly, one can show that R2,t
e.a.s.−→ 0 and R3,t

e.a.s.−→ 0 as t → ∞ as well.

Finally, by applying (3.10) in Assumption 5(iii), we obtain ρ
(
φ̂(1),t − φ(1),t

)
≤ CR3,t

e.a.s.−→ 0.

Given Conditions ĤL1–ĤL5, Theorem 2.10 of Straumann and Mikosch (2006) implies that∥∥f̂ (1)
t − d(1)

t

∥∥
Θϵ

0×B
e.a.s.−→ 0 as t → ∞. Moreover, d

(1)
t is Ft−1-measurable and has the almost

sure representation d
(1)
t = limr→∞φ

(r)
(1),t(f̂

(1)
1 ) for all t ∈ Z, where the limit is independent of f̂1

and convergence is in the norm ∥ · ∥Θϵ
0×B. Note that for each r ≥ 1, φ

(r)
(1),t(f̂

(1)
1 ) is continuous

on Θϵ
0 × B by mathematical induction. Since Θϵ

0 × B is compact, by the classical result that

uniform limits of continuous functions are continuous Rudin (1976, Theorem 7.12), it follows

that the limit function d
(1)
t (·) is uniformly continuous on Θϵ

0 × B. Following the argument in

Part (3) on p. 2483 of Straumann and Mikosch (2006), one can conclude that f
(1)
t ≡ d(1)

t for

t ∈ Z. By the discussion on verifying Condition ĤL4, we observe that E
(
∥f (1)

t ∥δ1Θϵ
0×B
)
< ∞

for δ1 = (η−1 + κ−1)−1 when η < ∞ or κ < ∞, and arbitrary δ1 ≥ 1 when η = κ = ∞. This

completes the proof for the case of k = 1.
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Case k = 2: Since the proof is similar to the case of k = 1, we outline only the key differences

below. Note that
{
φ(2),t, t ∈ Z

}
is SE by the joint SE property of

{
(yt,xt, ft,f

(1)
t ), t ∈ Z

}
, which

follows from Assumption 2(ii) for k = 0, 1. By the construction of q(2),t below the SRE (A.9), the

verification of Condition ĤL1 requires: For t ∈ Z, (iii.1) E
(
log+ sup(ϑ,β)∈Θϵ

0×B
∥∥f (1)

t (ϑ, β)
∥∥) <

∞; (iii.2) E
(
log+ sup(ϑ,β)∈Θϵ

0×B

∣∣∣∂jst(f,ϕ)
∂fj

∣∣∣
f=ft(ϑ,β)

∣∣∣) <∞ with j = 1, 2;

(iii.3) E

(
log+ sup

(ϑ,β)∈Θϵ
0×B

∥∥∥∥∥∂st(f,ϕ)∂ϑ

∣∣∣∣
f=ft(ϑ,β)

∥∥∥∥∥
)
<∞;

(iii.4) E

(
log+ sup

(ϑ,β)∈Θϵ
0×B

∥∥∥∥∥∂2st(f,ϕ)∂ϑ∂ϑ⊤

∣∣∣∣
f=ft(ϑ,β)

∥∥∥∥∥
)
<∞;

(iii.5) E

(
log+ sup

(ϑ,β)∈Θϵ
0×B

∥∥∥∥∥∂2st(f,ϕ)∂f∂ϑ

∣∣∣∣
f=ft(ϑ,β)

∥∥∥∥∥
)
<∞.

Note that (iii.1) holds because E
(
∥f (1)

t ∥δ1Θϵ
0×B
)
< ∞ as established for the case of k = 1.

Condition (iii.3) follows from Assumption 5(i), and the remaining conditions are ensured by

Assumption 5(iv). This verifies Condition ĤL1. The verification of Conditions ĤL2–ĤL3

proceeds as in the case of k = 1.

We now consider Condition ĤL4. Under Conditions ĤL1–ĤL3, and analogously to (A.10), one

has d
(2)
t (ϑ, β) =

∑∞
j=0

(∏j
ℓ=1Qt−ℓ

(
ft−ℓ(ϑ, β),ϑ, β

))
q(2),t−j−1

(
f

(1)
t−j−1(ϑ, β), ft−j−1(ϑ, β),ϑ, β

)
.

Consider the first case, where all first- and second-order l/r partial derivatives of (f,ϕ) 7→

st(f,ϕ), evaluated at f = ft(ϑ, β), are uniformly bounded over (ϑ, β) ∈ Θϵ
0 × B (i.e., the first

part in Assumption 5(iv) holds). By the definition of q(2),t below (A.9), it is not hard to see

E
(
sup(ϑ,β)∈Θϵ

0×B
∥∥q(2),t(f (1)

t (ϑ, β), ft(ϑ, β),ϑ, β
)∥∥δ1/2) <∞. Let δ̃ = (2δ−1

1 +κ−1)−1. Note that

if η <∞ or κ <∞, then δ̃ = (2δ−1
1 + 3κ−1)−1 ≥ 1 by Assumption 5(iv), and if η = κ = ∞, we

have δ̃ = δ1/2 ≥ 1 by choosing any δ1 ≥ 2 (noting that in this case, δ1 can be any value greater

than or equal to 1). By setting ρ1 = δ̃ and ρ2 = δ1/2 in (A.11), we obtain E
(
∥d(2)

t ∥δ̃Θϵ
0×B
)
<∞.

Consider the second case, where these partial derivatives are not necessarily bounded. For

the moment, let λ < δ1 and note that ∥ vec(·)∥ ≤
√
rank(·) ∥ · ∥. By employing the cr-inequality

and Hölder’s inequality, we obtain E
(
sup(ϑ,β)∈Θϵ

0×B
∥∥q(2),t(f (1)

t (ϑ, β), ft(ϑ, β),ϑ, β
)∥∥λ/2) <

∞ provided that E
(
∥f (1)

t ∥δ1Θϵ
0×B
)

< ∞, E
(
sup(ϑ,β)∈Θϵ

0×B

∣∣∣ ∂st(f,ϕ)
∂f

∣∣∣
f=ft(ϑ,β)

∣∣∣λ) < ∞,

E
(
sup(ϑ,β)∈Θϵ

0×B

∥∥∥∂2st(f,ϕ)
∂ϑ ∂ϑ⊤

∣∣∣
f=ft(ϑ,β)

∥∥∥λ/2) < ∞, E
(
sup(ϑ,β)∈Θϵ

0×B

∥∥∥∂2st(f,ϕ)
∂f ∂ϑ

∣∣∣
f=ft(ϑ,β)

∥∥∥λ) < ∞,
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and

E

(
sup

(ϑ,β)∈Θϵ
0×B

∥∥∥∥∥∂st(f,ϕ)∂ϑ

∣∣∣∣
f=ft(ϑ,β)

∥∥∥∥∥
λ/2)

<∞, (A.15)

E

(
sup

(ϑ,β)∈Θϵ
0×B

∣∣∣∣∣∂2st(f,ϕ)∂f 2

∣∣∣∣
f=ft(ϑ,β)

∣∣∣∣∣
λ/2(1−λ/δ1)−1)

<∞. (A.16)

Since λ/2 < δ1/2 < η (given λ < δ1 as previously assumed), the moment condition (A.15) is

guaranteed by Assumption 5(i). If at least one of κ or η is finite, choose λ ∈ (0, δ1/2] ⊂ (0,∞);

in this case, (A.16) is satisfied if

E

(
sup

(ϑ,β)∈Θϵ
0×B

∣∣∣∣∣∂2st(f,ϕ)∂f 2

∣∣∣∣
f=ft(ϑ,β)

∣∣∣∣∣
λ)

<∞. (A.17)

If δ̃ = (2λ−1 + κ−1)−1 ≥ 1, we then obtain E
(
∥d(2)

t ∥δ̃Θϵ
0×B
)
< ∞ using (A.11) with ρ1 = δ̃ and

ρ2 = λ/2, together with the moment conditions in Assumption 5(iv). If η = κ = ∞, then δ1 can

be any value greater than or equal to 1, and we can thus take δ1 = 2λ. In this case, (A.16) is

equivalent to (A.17), and we again obtain E
(
∥d(2)

t ∥δ̃Θϵ
0×B
)
<∞ with Assumption 5(iv).

Finally, we address Condition ĤL5. Recall that f̂
(2)
1 (ϑ, β) = 0 for all (ϑ, β) ∈ Θ × B, and

thus we obtain

∥∥φ̂(2),t

(
f̂

(2)
1

)
−φ(2),t

(
f̂

(2)
1

)∥∥∥
Θϵ

0×B

= sup
(ϑ,β)∈Θϵ

0×B

∥∥∥q(2),t(f̂ (1)
t (ϑ, β), f̂t(ϑ, β),ϑ, β

)
− q(2),t

(
f

(1)
t (ϑ, β), ft(ϑ, β),ϑ, β

)∥∥∥.
By employing the inequality ∥C1D1 −C2D2∥ ≤ ∥C1 −C2∥ ∥D2∥+ ∥D1 −D2∥ ∥C2∥+ ∥C1 −

C2∥ ∥D1 −D2∥ repeatedly, it follows that
∥∥φ̂(2),t

(
f̂

(2)
1

)
− φ(2),t

(
f̂

(2)
1

)∥∥
Θϵ

0×B
e.a.s.−→ 0 which is a

consequence of the local Lipschitz properties in Assumption 5(iii), combined with the moment

conditions in Assumption 5(iv) and Lemma 2.1 of Straumann and Mikosch (2006). Finally,

ρ
(
φ̂(2),t − φ(2),t

) e.a.s.−→ 0 follows directly from the same reasoning as in the case of k = 1.

Similarly, d
(2)
t (·) is uniformly continuous on Θϵ

0 × B, and following the argument in Part (3)

on p. 2483 of Straumann and Mikosch (2006), we conclude that f
(2)
t ≡ d

(2)
t for t ∈ Z. Based

on the discussion for verifying Condition ĤL4, we further conclude that E
(
∥f (2)

t ∥δ2Θϵ
0×B
)
<∞,

where δ2 = (2δ−1
1 + κ−1)−1 the uniform boundedness conditions in Assumption 5(iv) hold, and

δ2 = (2λ−1 + κ−1)−1 otherwise. This completes the proof for the case k = 2.
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Lemma A.1. Suppose Assumptions 1 and 2(i) hold, and the following conditions are satisfied:

IV1 E
(
log+ sup(ϑ,β)∈Θ×B

∣∣s(yt,xt, f̂1(ϑ, β),ϕ)
∣∣) <∞ for f̂1(ϑ, β) = ω ∈ Θω.

IV2 E
(
log+ sup(ϑ,β)∈Θ×B supf∈F

∣∣∣β + α ∂
∂f
s(yt,xt, f,ϕ)

∣∣∣) <∞.

IV3 E
(
log sup(ϑ,β)∈Θ×B supf∈F

∣∣∣ ∂
∂f
ψ

(r)
t (f,ϑ, β)

∣∣∣) < 0 for some r ∈ Z+, where ψ
(r)
t (·,ϑ, β) :=

ψt(·,ϑ, β) ◦ ψt−1(·,ϑ, β) ◦ . . . ◦ ψt−r+1(·,ϑ, β) is the r-fold backward iterates of ψt(·,ϑ, β).

Then Assumption 2(ii) holds for k = 0.

Proof of Lemma A.1. Note that for all t ∈ Z, st(f,ϕ) is continuous in (f,ϕ) ∈ F×Θϕ under

Assumption 1(iii). By mathematical induction, it follows that for t ∈ Z+, the initialized sequence

f̂t(ϑ, β), with the initial value f̂1(ϑ, β) = ω, is continuous in (ϑ, β) ∈ Θ × B. Since Θ × B is

compact, f̂t(·) is also uniformly continuous. We can treat the sequence
{
f̂t(·), t ∈ Z+

}
as a

sequence of random elements in the space
(
C0(Θ×B,F), ∥ · ∥Θ×B

)
. One can write f̂t+1 = φt(f̂t),

where the random maps φt :
(
C0(Θ ×B,F), ∥ · ∥Θ×B

)
→
(
C0(Θ ×B,F), ∥ · ∥Θ×B

)
are given by[

φt(f)
]
(ϑ, β) = ψt(f(ϑ, β),ϑ, β) with ψt( · ,ϑ, β) provided in (2.1). Note that {φt, t ∈ Z} is

SE under Assumption 2(i).

The following high-level conditions suffice to apply Theorem 3.1 of Bougerol (1993) and

Theorem 2.8 of Straumann and Mikosch (2006): (i.1) E
(
log+ ∥φ1(f̂1)− f̂1∥Θ×B

)
<∞, where

f̂1(ϑ, β) = ω for (ϑ, β) ∈ Θ × B; (i.2) E
(
log+ ρ(φ1)

)
< ∞; (i.3) E

(
log ρ

(
φ
(r)
t

))
< 0 for some

integer r ≥ 1, where φ
(r)
t = φt ◦φt−1 ◦ · · · ◦φt−r+1 is the r-fold convolution (backward iterates) of

φt. These three high-level conditions can be readily verified using Conditions IV1–IV3, following

standard arguments; see, e.g., Blasques et al. (2022, Proposition 3.2) or Lin and Lucas (2025,

Proposition 3). Applying Straumann and Mikosch (2006, Theorem 2.8), we conclude that

the stochastic recurrence equation (SRE) ht+1 = φt(ht), t ∈ Z, admits a unique SE solution

{ft, t ∈ Z} such that ∥f̂t − ft∥Θ×B = sup(ϑ,β)∈Θ×B |f̂t(ϑ, β) − ft(ϑ, β)|
e.a.s.−→ 0 as t → ∞. As

Θ × B is compact, applying the same argument as for the case of k = 1 in Proposition 1, the

uniform continuity of ft(·) immediately follows. This establishes Lemma A.1.

Lemma A.2 (Identifiable uniqueness). Suppose Assumptions 1, 2, and 3(i) are satisfied. Under

correct model specification, if p(y | x, f, ϕ) = p(y | x, f̃ , ϕ̃) for almost every (y,x) ∈ Y ×X

(with respect to an appropriate dominating measure on Y ×X ) if and only if f = f̃ and ϕ = ϕ̃,

then Assumption 3(ii) holds.
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Proof of Lemma A.2. As noted below (A.1) in the proof of Theorem 1, three important

implications follow: first, the sequence {ℓt(ft(ϑ, β),ϕ), t ∈ Z} is SE; second, defining L(ϑ, β) :=

E[ℓt(ft(ϑ, β),ϕ)], it is established there that L is continuous on the compact set Θ × B; and

third, L⋆(ϑ0) := L(ϑ0, β) is independent of β ∈ B. Given that B is compact and L is continuous,

it suffices to show that L(ϑ, β) is uniquely maximized over Θ at ϑ0 for each β ∈ B. By Gibbs’

inequality for the Kullback-Leibler divergence (White, 1996, Theorem 2.3), it follows that for

continuous random variables yt:

L⋆(ϑ0)−L(ϑ, β) = E

∫ p
(
yt | xt, ft(ϑ0, β), ϕ0

)
log

p
(
yt | xt, ft(ϑ0, β), ϕ0

)
p
(
yt | xt, ft(ϑ, β), ϕ

) dyt

 ≥ 0,

with strict inequality unless p
(
yt | xt, ft(ϑ0, β), ϕ0

)
= p
(
yt | xt, ft(ϑ, β), ϕ

)
. That is, under

the condition above, L⋆(ϑ0) = L(ϑ, β) implies that ft(ϑ, β) = ft(ϑ0, β) a.s. for all t ∈ Z and

ϕ = ϕ0. We arrive at 0 = (ω−ω0)(1−β)+α st
(
ft(ϑ, β),ϕ

)
a.s. Since st

(
ft(ϑ, β),ϕ

)
is random,

one must have α = 0 = α0, which further leads to ω = ω0. That is, L⋆(ϑ0) = L(ϑ, β) if and

only if ϑ = ϑ0. If yt are discrete, the discrete version of Gibbs’ inequality applies instead.
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B Simulated critical values

We present the simulated critical values for the limiting distribution in (3.7), with results reported

in Table B.3. To obtain these values, we approximate the infinite sum (1− β2)1/2
∑∞

j=0 β
jXj

by X(β) := (1− β2)1/2
∑Jmax

j=0 βjXj for some Jmax ∈ Z+. We then maximize over β ∈ [βL, βU ]

the quantity
(
max{X(β), 0}

)2
for αL = 0 and [X(β)]2 for αL < 0, respectively. The results are

based on 105 simulations with Jmax = 3 · 104.

Table B.3: Simulated critical values for the limiting distribution in (3.7), with Θα = [αL, αU ] for
αU > 0 and B = [βL, βU ].

αL = 0 αL < 0 αL = 0 αL < 0

βL βU 10% 5% 1% 10% 5% 1% βL βU 10% 5% 1% 10% 5% 1%

0 0.995 3.365 4.719 7.855 4.437 5.850 9.127 -0.995 0.995 3.913 5.362 8.714 5.014 6.507 9.909

0 0.990 3.266 4.613 7.696 4.416 5.816 9.048 -0.990 0.990 3.842 5.278 8.629 4.996 6.481 9.886

0 0.980 3.166 4.502 7.540 4.371 5.753 8.962 -0.980 0.980 3.760 5.191 8.506 4.964 6.442 9.814

0 0.970 3.092 4.417 7.425 4.322 5.691 8.854 -0.970 0.970 3.703 5.128 8.423 4.936 6.405 9.746

0 0.960 3.037 4.355 7.363 4.278 5.638 8.794 -0.960 0.960 3.657 5.076 8.343 4.905 6.376 9.706

0 0.950 2.989 4.308 7.277 4.247 5.587 8.731 -0.950 0.950 3.614 5.021 8.298 4.873 6.336 9.673

0 0.900 2.810 4.106 7.080 4.084 5.403 8.502 -0.900 0.900 3.456 4.840 8.116 4.748 6.155 9.470

0 0.850 2.675 3.949 6.930 3.958 5.236 8.300 -0.850 0.850 3.319 4.688 7.909 4.626 6.000 9.267

0 0.800 2.568 3.831 6.813 3.840 5.114 8.169 -0.800 0.800 3.197 4.545 7.699 4.499 5.857 9.100

0 0.750 2.490 3.732 6.720 3.737 5.007 8.043 -0.750 0.750 3.087 4.411 7.546 4.382 5.728 8.919

0 0.700 2.417 3.644 6.619 3.651 4.908 7.955 -0.700 0.700 2.981 4.300 7.378 4.271 5.614 8.767

0 0.650 2.341 3.567 6.530 3.568 4.805 7.862 -0.650 0.650 2.880 4.183 7.265 4.165 5.483 8.598

0 0.600 2.272 3.488 6.451 3.489 4.734 7.730 -0.600 0.600 2.778 4.058 7.133 4.052 5.367 8.427

0 0.550 2.218 3.413 6.385 3.411 4.656 7.640 -0.550 0.550 2.689 3.944 6.981 3.954 5.226 8.296

0 0.500 2.158 3.339 6.296 3.342 4.579 7.529 -0.500 0.500 2.592 3.829 6.853 3.841 5.109 8.145

0 0.450 2.099 3.264 6.204 3.273 4.499 7.425 -0.450 0.450 2.499 3.731 6.722 3.736 4.987 8.009

0 0.400 2.042 3.207 6.102 3.210 4.419 7.335 -0.400 0.400 2.402 3.631 6.632 3.632 4.872 7.887

0 0.350 1.988 3.153 6.028 3.146 4.359 7.245 -0.350 0.350 2.307 3.524 6.529 3.522 4.763 7.745

0 0.300 1.932 3.094 5.978 3.090 4.275 7.166 -0.300 0.300 2.214 3.410 6.349 3.407 4.645 7.585

0 0.250 1.884 3.025 5.898 3.024 4.205 7.095 -0.250 0.250 2.120 3.297 6.232 3.301 4.521 7.432

0 0.200 1.835 2.969 5.811 2.968 4.135 6.999 -0.200 0.200 2.026 3.188 6.090 3.189 4.400 7.295

0.1 0.995 3.334 4.679 7.784 4.421 5.821 9.086 -0.1 0.995 3.403 4.757 7.896 4.463 5.868 9.185

0.1 0.990 3.226 4.572 7.619 4.395 5.788 8.997 -0.1 0.990 3.308 4.655 7.751 4.443 5.845 9.100

0.1 0.980 3.122 4.452 7.457 4.338 5.710 8.893 -0.1 0.980 3.206 4.537 7.609 4.404 5.792 8.997

continued on next page
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αL = 0 αL < 0 αL = 0 αL < 0

βL βU 10% 5% 1% 10% 5% 1% βL βU 10% 5% 1% 10% 5% 1%

0.1 0.970 3.044 4.367 7.377 4.288 5.652 8.789 -0.1 0.970 3.133 4.467 7.507 4.363 5.735 8.914

0.1 0.960 2.983 4.304 7.290 4.243 5.598 8.740 -0.1 0.960 3.086 4.413 7.429 4.331 5.687 8.844

0.1 0.950 2.937 4.245 7.222 4.204 5.541 8.670 -0.1 0.950 3.037 4.366 7.380 4.300 5.644 8.799

0.1 0.900 2.749 4.041 6.983 4.030 5.329 8.423 -0.1 0.900 2.867 4.173 7.176 4.146 5.469 8.604

0.1 0.850 2.614 3.877 6.842 3.887 5.154 8.230 -0.1 0.850 2.743 4.032 7.045 4.029 5.316 8.424

0.1 0.800 2.504 3.757 6.707 3.759 5.025 8.063 -0.1 0.800 2.643 3.913 6.900 3.920 5.193 8.287

0.3 0.995 3.265 4.594 7.702 4.370 5.770 8.944 -0.3 0.995 3.475 4.840 8.018 4.528 5.945 9.264

0.3 0.990 3.156 4.483 7.510 4.333 5.713 8.861 -0.3 0.990 3.389 4.754 7.855 4.513 5.926 9.231

0.3 0.980 3.034 4.348 7.331 4.264 5.619 8.746 -0.3 0.980 3.300 4.642 7.734 4.483 5.881 9.165

0.3 0.970 2.939 4.252 7.236 4.199 5.547 8.664 -0.3 0.970 3.230 4.569 7.649 4.449 5.831 9.072

0.3 0.960 2.878 4.173 7.154 4.143 5.479 8.569 -0.3 0.960 3.186 4.513 7.569 4.418 5.793 8.996

0.3 0.950 2.816 4.104 7.055 4.090 5.416 8.486 -0.3 0.950 3.144 4.477 7.508 4.387 5.760 8.944

0.3 0.900 2.615 3.876 6.798 3.883 5.149 8.230 -0.3 0.900 2.994 4.311 7.335 4.266 5.606 8.763

0.3 0.850 2.468 3.708 6.644 3.711 4.969 8.022 -0.3 0.850 2.885 4.181 7.215 4.163 5.482 8.616

0.3 0.800 2.351 3.582 6.491 3.581 4.820 7.843 -0.3 0.800 2.792 4.064 7.101 4.057 5.376 8.500

0.5 0.995 3.177 4.507 7.586 4.324 5.683 8.872 -0.5 0.995 3.564 4.918 8.140 4.602 6.016 9.352

0.5 0.990 3.056 4.385 7.389 4.261 5.604 8.744 -0.5 0.990 3.486 4.844 8.024 4.591 6.003 9.318

0.5 0.980 2.916 4.218 7.183 4.170 5.485 8.608 -0.5 0.980 3.403 4.748 7.892 4.565 5.965 9.273

0.5 0.970 2.817 4.100 7.057 4.084 5.390 8.463 -0.5 0.970 3.342 4.684 7.804 4.539 5.929 9.236

0.5 0.960 2.742 4.013 6.962 4.013 5.312 8.346 -0.5 0.960 3.298 4.641 7.746 4.516 5.893 9.190

0.5 0.950 2.677 3.942 6.869 3.946 5.227 8.261 -0.5 0.950 3.253 4.602 7.695 4.493 5.865 9.139

0.5 0.900 2.445 3.674 6.559 3.686 4.933 8.012 -0.5 0.900 3.120 4.444 7.519 4.392 5.737 8.947

0.5 0.850 2.276 3.484 6.343 3.494 4.729 7.735 -0.5 0.850 3.017 4.335 7.390 4.304 5.631 8.804

0.5 0.800 2.155 3.333 6.169 3.340 4.553 7.533 -0.5 0.800 2.932 4.242 7.266 4.212 5.541 8.679

0.7 0.995 3.056 4.377 7.431 4.245 5.618 8.798 -0.7 0.995 3.671 5.052 8.279 4.721 6.137 9.495

0.7 0.990 2.909 4.212 7.235 4.151 5.496 8.645 -0.7 0.990 3.603 4.968 8.182 4.710 6.128 9.467

0.7 0.980 2.742 4.015 6.971 4.015 5.319 8.398 -0.7 0.980 3.522 4.878 8.082 4.689 6.102 9.429

0.7 0.970 2.632 3.885 6.799 3.899 5.176 8.259 -0.7 0.970 3.467 4.827 8.012 4.666 6.068 9.383

0.7 0.960 2.534 3.773 6.689 3.791 5.057 8.131 -0.7 0.960 3.424 4.792 7.946 4.646 6.039 9.360

0.7 0.950 2.452 3.677 6.589 3.701 4.956 8.011 -0.7 0.950 3.388 4.755 7.878 4.630 6.020 9.334

0.7 0.900 2.191 3.375 6.205 3.381 4.595 7.637 -0.7 0.900 3.268 4.621 7.732 4.543 5.905 9.196

0.7 0.850 2.005 3.150 5.937 3.156 4.355 7.284 -0.7 0.850 3.176 4.506 7.614 4.465 5.819 9.044

0.7 0.800 1.855 2.962 5.708 2.975 4.155 7.036 -0.7 0.800 3.102 4.429 7.519 4.391 5.743 8.939
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C Additional details on the four examples

We provide further details on the examples in Section 4.

C.1 Gaussian location model

For t = 1, . . . , T , consider the model yt = ft + ut, where ut = σuϵt and ϵt are i.i.d. standard

normal random variables. Assume that the sequence {yt, t ∈ Z} is generated under the null

hypothesis, i.e., yt
i.i.d.∼ N (ω0, σ

2
u0). Under this assumption, the model is correctly specified. Note

that ∇f
t (f,ϕ) = (yt − f)

/
σ2
u, where ϕ = σu > 0. Take St(f,ϕ) = σ2

u, then st(f,ϕ) = yt − f

and ft+1 = ω(1 − β) + βft + α (yt − ft). We define B = [0, βU ] with βU < 1, and Θ =
{
ϑ =

(α, ω,ϕ)⊤ ∈ R3 : 0 ≤ α ≤ αU < 1, ωL ≤ ω ≤ ωU , 0 < σL ≤ ϕ ≤ σU
}
.

Let F = R, so that Assumption 1 trivially holds for any ϵ > 0. For Assumption 2,

Assumption 2(i) holds by assumption. We now verify the sufficient conditions in Lemma A.1 to

establish Assumption 2(ii) for k = 0. Condition IV1 holds because E log+ |yt| <∞ and ωU <∞.

Note that supϑ∈Θ |β − α| = αU ∨ βU < 1. We see that Condition IV3 holds with r = 1, which

implies that Condition IV2 also holds. To verify Assumption 2(ii) for k = 1, 2, we first consider

the sufficient conditions in Assumption 5 and then apply Proposition 1. We set η = 4 and

κ = ∞. For Assumption 5(i), it is sufficient to show that

E
(

sup
(ϑ,β)∈Θ×B

∣∣yt − ft(ϑ, β)
∣∣)4

<∞. (C.1)

We have E
(
sup(ϑ,β)∈Θ×B

∣∣yt − ft(ϑ, β)
∣∣)4 ≤ 8E

(
y4t
)
+ 8E

(
sup(ϑ,β)∈Θ×B

∣∣ft(ϑ, β)∣∣)4 by the

cr-inequality. Since ft(ϑ, β) admits an a.s. representation ft(ϑ, β) =
∑∞

j=0(β − α)j
[
ω(1− β) +

αyt−1−j

]
, t ∈ Z, we have sup(ϑ,β)∈Θ×B

∣∣ft(ϑ, β)∣∣ ≤ ∑∞
j=0(αU ∨ βU)j

(
|ωL| ∨ |ωU | + αU |yt−1−j|

)
.

By applying Minkowski’s inequality, we arrive at

(
E
(

sup
(ϑ,β)∈Θ×B

∣∣ft(ϑ, β)∣∣)4
)1/4

≤
∞∑
j=0

{
E
[
(αU ∨ βU)j

(
|ωL| ∨ |ωU |+ αU |yt−1−j|

)]4}1/4

=
(
E
(
|ωL| ∨ |ωU |+ αU |y1|

)4)1/4(
1− αU ∨ βU

)−1
<∞.

Then E
(
sup(ϑ,β)∈Θ×B|yt − ft(ϑ, β)|

)4
<∞ follows from E

(
sup(ϑ,β)∈Θ×B|ft(ϑ, β)|

)4
<∞ and
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E(y4t ) <∞, thereby establishing Assumption 5(i). Assumption 5(ii) holds because

∞∑
j=1

sup
(ϑ,β)∈Θϵ

0×B

∣∣∣∣ j∏
ℓ=1

(β − α)

∣∣∣∣ ≤ ∞∑
j=1

(αU ∨ βU)j <∞. (C.2)

Assumption 5(iii) holds by setting the sequence Ct(ϑ0, ϵ) = 1 for all ℓ = 0, 1, . . . , 5 and t ∈ Z.

Moreover, Assumption 5(iv) holds since the uniform boundedness condition applies, and thus

Proposition 1 follows.

We now proceed to verify the conditions in Assumption 3. Note that

sup
(ϑ,β)∈Θ×B

∣∣dt(ϑ, β)∣∣ ≤ 1

2
σ−2
L

(
sup

(ϑ,β)∈Θ×B

∣∣f̂t(ϑ, β)− ft(ϑ, β)
∣∣)2

+ σ−2
L sup

(ϑ,β)∈Θ×B

∣∣yt − ft(ϑ, β)
∣∣ sup
(ϑ,β)∈Θ×B

∣∣f̂t(ϑ, β)− ft(ϑ, β)
∣∣.

By Lemma A.1 and Lemma 2.1 of Straumann and Mikosch (2006), sup(ϑ,β)∈Θ×B|dt(ϑ, β)|
e.a.s.−→ 0

provided that E
(
log+ sup(ϑ,β)∈Θ×B|yt − ft(ϑ, β)|

)
<∞. This moment condition is satisfied by

(C.1). Moreover, (C.1) also ensures that E
(
sup(ϑ,β)∈Θ×B|ℓt(ft(ϑ, β),ϕ)|

)
<∞. Assumption 3(i)

is obtained. Assumption 3(ii) follows directly from Lemma A.2 under correct model specification.

Next, consider Assumption 3(iii). By simple linear algebra, we have

∥∥∥∥ ∂2

∂ϑ∂ϑ⊤ ℓt
(
ft(ϑ, β), ϕ

)∥∥∥∥ ≤ σ−2
u

∥∥f (1)
t (ϑ, β)

∥∥2 + ∣∣∣σ−2
u − 3σ−4

u

(
yt − ft(ϑ, β)

)∣∣∣
+ 4σ−3

u

∣∣yt − ft(ϑ, β)
∣∣ ∥∥f (1)

t (ϑ, β)
∥∥ + σ−2

u

∣∣yt − ft(ϑ, β)
∣∣ ∥∥∥∥∂2ft(ϑ, β)∂ϑ∂ϑ⊤

∥∥∥∥.
Since the uniform boundedness condition in Assumption 5(iv) holds, by Proposition 1, we

have E
(
sup(ϑ,β)∈Θϵ

0×B
∥∥f (1)

t (ϑ, β)
∥∥4) < ∞ and E

(
sup(ϑ,β)∈Θϵ

0×B
∥∥f (2)

t (ϑ, β)
∥∥2) < ∞. Com-

bining these results with (C.1) and applying the Cauchy–Schwarz inequality, it follows that

E
(
sup(ϑ,β)∈Θϵ

0×B
∥∥ ∂2

∂ϑ∂ϑ⊤ ℓt(ft(ϑ, β),ϕ)
∥∥) <∞, and therefore Assumption 3(iii) holds. For As-

sumption 3(iv), we have ∇ϕ
t (f,ϕ) = −σ−1

u +σ−3
u (yt−f)2, which gives ∇ϕ

t (ω0,ϕ0) = σ−1
u0 (ϵ

2
t −1).

Therefore, E
(
∇ϕ

t (ω0,ϕ0)
∣∣Ft−1

)
= 0 and E

[(
∇ϕ

t (ω0,ϕ0)
)2]

= 2. Moreover, we have

E
(
s2t (ω0,ϕ0)

)
= σ2

u0, E
(
∇f

t (ω0,ϕ0)
∣∣Ft−1

)
= σ−1

u0 E(ϵt) = 0, Σff = E
(
[∇f

t (ω0,ϕ0)]
2
∣∣Ft−1

)
=

σ−2
u0 , Ωff = −E

(
∇ff

t (ω0,ϕ0)
∣∣Ft−1

)
= σ−2

u0 = Σff , E
(
∇ϕ

t (ω0,ϕ0)∇f
t (ω0,ϕ0)

∣∣Ft−1

)
=

σ−2
u0 E(ϵ3t − ϵt) = 0. Since ∇ϕf

t (f,ϕ) = −2σ−3
u (yt − f), one has Ωϕf = E

(
∇ϕf

t (ω0,ϕ0)
∣∣Ft−1

)
=

0. All the conditions in Assumption 3(iv) are therefore satisfied. For Assumption 3(v),

Var
(∑∞

j=0 β
j st−j(ω0,ϕ0)

)
= Var

(
σu0
∑∞

j=0 β
j ϵt−j

)
= σ2

u0(1 − β2)−1 ≥ σ2
u0 > 0. Note

that ∇ϕϕ
t (f,ϕ) = σ−2

u − 3σ−4
u (yt − f)2, so that −E[∇ϕϕ

t (ω0,ϕ0)] = 2σ−2
u0 ∈ (0,∞). Fur-
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thermore, Ωff − Ω⊤
ϕf

(
− E[∇ϕϕ

t (ω0,ϕ0)]
)−1
Ωϕf = Ωff > 0. Therefore, Assumption 3(v) is

satisfied. Since st(ω0,ϕ0) = ut are independent, by Corollary 2, (3.7) holds for QLRT , namely

QLRT
d→ supβ∈B

(
max

{
(1− β2)1/2

∑∞
j=0 β

jXj, 0
})2

.

C.2 t-GAS volatility

Consider the time-varying scale model of Creal et al. (2013), also examined in Blasques et al.

(2022), yt = f
1/2
t ut, where ut are i.i.d. tν random variables with ν > 0 degrees of freedom. Set

ϕ = ν. Then, ∇f
t (f,ϕ) = 2−1f−2

(
1 + ν−1

1 + ν−1y2t /f
y2t − f

)
. Taking St(f,ϕ) = 2f 2, we obtain

st(f,ϕ) =
1 + ν−1

1 + ν−1y2t /f
y2t − f . Let F = R+ and define B = [βL, βU ] ⊂ (0, 1). Consider

Θ =
{
ϑ = (α, ω,ϕ)⊤ ∈ R3 : 0 ≤ α ≤ βL, 0 < ωL ≤ ω ≤ ωU , 0 < νL ≤ ϕ ≤ νU

}
. This

specification guarantees the positivity of the filter. Furthermore, the filter is bounded below,

with ft ≥ ωL(1−βU )
1−βU+βL

, ∀t ∈ Z. We see that Assumption 1 holds for any ϵ > 0.

For Assumption 2(i), it suffices that {yt, t ∈ Z} is an SE sequence. We then verify

Assumption 2(ii) by checking the conditions in Lemma A.1 and Proposition 1. Since (1+x)−2 ≤

(1 + 2x)−1 for any x ≥ 0, ∀(ϑ, β) ∈ Θ × B, we obtain∣∣∣∣β + α
∂

∂f
st(f,ϕ)

∣∣∣∣ ≤ β + α ν
y2t

y2t + 2νf
≤ βU + βL νU

y2t
y2t + c0

, (C.3)

where c0 = 2νLωL(1− βU )(1− βU + βL)
−1 > 0. By (C.3) and applying Jensen’s inequality twice,

E

(
log sup

(ϑ,β)∈Θ×B
sup
f∈F

∣∣∣∣β + α
∂

∂f
st(f,ϕ)

∣∣∣∣
)

≤ log

(
βU + βL νU E

(
y2t

y2t + c0

))
≤ log

(
βU + βL νU

E(y2t )
E(y2t ) + c0

)
< 0, (C.4)

provided that the following condition holds:

E(y2t ) <
2νLωL(1− βU)

2

(1− βU + βL)[βLνU − (1− βU)]
, βLνU − (1− βU) > 0. (C.5)

Then Condition IV3 holds with r = 1, which in turn ensures that Condition IV2 also holds.

Condition IV1 is straightforward to verify and is therefore omitted. It follows that Lemma A.1

holds. Note that Condition (C.5) is generally easy to verify. For practical implementation, the

data may be scaled to ensure filter invertibility, after which the estimated filter can be rescaled

to recover the original values. We now verify Assumption 5 to establish Proposition 1. Note
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that sup(ϑ,β)∈Θϵ
0×B

∣∣st(ft(ϑ, β),ϕ)∣∣ ≤ C sup(ϑ,β)∈Θϵ
0×B

∣∣ft(ϑ, β)∣∣. For (ϑ, β) ∈ Θϵ
0 × B, we have

ft+1(ϑ, β) = ω(1− β) + (β − α)ft(ϑ, β) + α
1 + ν−1

1 + ν−1y2t /ft(ϑ, β)
y2t

≤ ω(1− β) + (β + αν)ft(ϑ, β) ≤ ωU(1− βL) + (βU + ϵ νU)ft(ϑ, β).

Since Assumption 1 imposes no restriction on ϵ > 0, we can choose any ϵ ∈
(
0, ν−1

U (1− βU)
)

so that βU + ϵ νU < 1, ensuring that sup(ϑ,β)∈Θϵ
0×B

∣∣ft(ϑ, β)∣∣ is bounded. Compared to the

condition supϑ∈Θ(β + να) < 1 imposed by Blasques et al. (2022, p. 331), we do not require such

a strong restriction, as Assumption 5 applies only to a local neighborhood Θϵ
0 of ϑ0. Similarly,

it is straightforward to show that sup(ϑ,β)∈Θϵ
0×B

∣∣∣∂st(f,ϕ)/∂ϕ∣∣f=ft(ϑ,β)

∣∣∣ is also bounded. Hence,

Assumption 5(i) holds for η = ∞. Using (C.3), we can set ϱj(ϑ0, ϵ, κ) = (βU + ϵ νU)
jκ in

Assumption 5(ii). Thus, Assumption 5(ii) holds for any κ ≥ 1 and some ϵ ∈
(
0, ν−1

U (1− βU)
)
.

Note that if we first compute the l/r partial derivatives of the mapping (f,ϕ) 7→ st(f,ϕ) and

then substitute f = ft(ϑ, β), the resulting derivatives are bounded (locally) up to at least third

order for all (ϑ, β) ∈ Θϵ
0 ×B. By employing a mean value theorem (e.g., Rudin, 1976, Theorem

9.19), Assumption 5(iii) is satisfied by setting ζℓ = 1 and Ct(ϑ0, ϵ) = C‡ for some C‡ > 0 for all

ℓ = 0, 1, . . . , 5 and t ∈ Z. Moreover, the uniform boundedness condition in Assumption 5(iv)

holds. Then, Proposition 1 holds, with δ1 and δ2 able to take arbitrarily large values.

For Assumption 3, and in particular Assumptions 3(iv)–(v), stronger conditions are re-

quired on the process {yt, t ∈ Z}. For simplicity, we next assume correct model specifi-

cation under the null hypothesis and suppose that yt =
√
ω0 ut, where ut ∼ tν0 are i.i.d.

For Assumption 3(i), we have sup(ϑ,β)∈Θ×B
∣∣dt(ϑ, β)∣∣ e.a.s.−→ 0 by applying Lemma A.1 and

Straumann and Mikosch (2006, Lemma 2.1), together with a mean-value theorem. Moreover,

E
(
sup(ϑ,β)∈Θ×B|ℓt(ft(ϑ, β),ϕ)|

)
<∞ holds if E(y2t ) <∞ (which is implied by (C.5)) and if there

exists some η > 0 such that E
(
sup(ϑ,β)∈Θ×B|ft(ϑ, β)|η

)
<∞. Take η = 1. For (ϑ, β) ∈ Θ × B,

note that |ft+1(ϑ, β)| ≤ |ψt(ω,ϑ, β)|+ |ψt(ft(ϑ, β),ϑ, β)−ψt(ω,ϑ, β)| ≤ At(ϑ, β)+Bt |ft(ϑ, β)|,

where ψt(f,ϑ, β) = ω(1 − β) + βf + α
(

1+ν−1

1+ν−1y2t /f
y2t − f

)
, At(ϑ, β) = |ψt(ω,ϑ, β)| +

supf∈F
∣∣∂ψt(f,ϑ, β)

/
∂f
∣∣ |ω|, and Bt = βU + βL νU y

2
t

/
(y2t + c0) using (C.3). Since yt is indepen-

dent of Ft−1 and ft(ϑ, β) is Ft−1-measurable (Lemma A.1), Bt and ft(ϑ, β) are independent,

implying E
(
Bt sup(ϑ,β)∈Θ×B|ft(ϑ, β)|

)
= E(Bt)E

(
sup(ϑ,β)∈Θ×B|ft(ϑ, β)|

)
. Under (C.5), we ob-

tain E
(
sup(ϑ,β)∈Θ×B At(ϑ, β)

)
<∞ and E(Bt) < 1. Hence, E

(
sup(ϑ,β)∈Θ×B|ft(ϑ, β)|

)
<∞, and

Assumption 3(i) follows. Assumption 3(ii) follows from Lemma A.2. Assumption 3(iii) holds by

applying Proposition 1. By tedious linear algebra, together with the distributional assumption on

Appendix p. 16



yt and the results in Lin and Lucas (2025, Eq. (E.6)) and Harvey (2013, Proposition 39, p. 211),

we obtain Ωff = Σff = ν0
/
[2ω2

0(ν0 + 3)] and Ωϕf =
[
ω0(ν0 + 3)(ν0 + 1)

]−1
> 0. Moreover,

since E
(
st(ω0,ϕ0)

∣∣Ft−1

)
= 0, it follows that E(st(ω0,ϕ0)) = 0, and hence E

(
h0,t(β)

)
= 0 for

any β ∈ B. All remaining conditions in Assumptions 3(iv)–(v) and Corollary 2 are satisfied.

Therefore, QLRT converges to the limiting distribution given in (3.7).

C.3 Poisson autoregression

Consider the Poisson time series model yt | Ft−1 ∼ Poisson(ft), where ft > 0 for every t ∈ Z.

In this case, there is no static parameter ϕ, so all conditions involving ϕ and the corresponding

components in Theorem 1 can be disregarded, as noted below Theorem 1. Moreover, in

this example we allow for model mis-specification. That is, the statistician observes the

count data {yt, t = 1, . . . , T}, which need not follow a Poisson distribution in the dgp. We

nevertheless require that {yt, t ∈ Z} is an SE sequence with E|yt|4 < ∞, E(yt | Ft−1) = ω0,

and E
(
(yt − ω0)

2 | Ft−1

)
= Var(yt). We obtain ft+1 = ω(1 − β) + βft + α(yt − ft) since

∇f
t (f,ϕ) = (yt − f)

/
f and by setting St(f,ϕ) = f . This yields the well-known integer GARCH

model of Fokianos et al. (2009). In what follows, we verify the conditions for Theorem 1. As

the verification closely parallels the Gaussian location example in Section C.1, we focus only on

the key differences.

Let F = R+ and define B = [βL, βU ] ⊂ (0, 1). Set Θ =
{
ϑ = (α, ω)⊤ ∈ R2 : 0 ≤

α ≤ βL, 0 < ωL ≤ ω ≤ ωU

}
. The specifications of Θ and B ensure the positivity of ft.

Thus, Assumption 1 holds. Furthermore, Assumption 2 holds since Lemma A.1 applies and

Proposition 1 holds with δ1 = 4 and δ2 = 2. It remains to verify Assumption 3. Note

that sup(ϑ,β)∈Θ×B
∣∣dt(ϑ, β)∣∣ ≤ D1,t +D2,t, where D1,t := sup(ϑ,β)∈Θ×B

∣∣f̂t(ϑ, β)− ft(ϑ, β)
∣∣ and

D2,t := |yt| sup(ϑ,β)∈Θ×B
∣∣ log (f̂t(ϑ, β))− log

(
ft(ϑ, β)

)∣∣. Since f̂t(ϑ, β) and ft(ϑ, β) are both

bounded below by ωL(1−βU ) for any (ϑ, β) ∈ Θ×B, and using the inequality | log(x)−log(y)| ≤

|x− y|/(x ∧ y) for x, y > 0, we obtain D2,t ≤ [ωL(1 − βU)]
−1 |yt|D1,t. By Lemma A.1 (which

implies D1,t
e.a.s.−→ 0) and since E(log+ |yt|) < ∞, it follows from Straumann and Mikosch

(2006, Lemma 2.1) that D2,t
e.a.s.−→ 0, and hence sup(ϑ,β)∈Θ×B|dt(ϑ, β)|

e.a.s.−→ 0. Moreover, since

log(y!) ≤ y log(y) for all y ∈ Z+, we have

E
(

sup
(ϑ,β)∈Θ×B

∣∣ℓt(ft(ϑ, β), ϕ)∣∣) ≤ E
(
|yt| sup

(ϑ,β)∈Θ×B

∣∣ log (ft(ϑ, β))∣∣)
+ E

(
sup

(ϑ,β)∈Θ×B

∣∣ft(ϑ, β)∣∣)+ E
(
yt log(yt)

)
.
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We obtain E
(
sup(ϑ,β)∈Θ×B|ft(ϑ, β)|

)4
< ∞ following the same steps as above (C.2). By the

Cauchy–Schwarz inequality, it follows that E
(
sup(ϑ,β)∈Θ×B|ℓt(ft(ϑ, β),ϕ)|

)
< ∞, and thus

Assumption 3(i) holds. Consider Assumption 3(ii) next. By applying Jensen’s inequality to the

function f 7→ ω0 log(f)− f for f > 0 and ω0 > 0, we obtain

E
(
ℓt
(
ft(ϑ, β), ϕ

))
= E

(
ω0 log

(
ft(ϑ, β)

)
− ft(ϑ, β)

)
− E

(
log(yt!)

)
≤
(
ω0 log

(
E
(
ft(ϑ, β)

))
− E

(
ft(ϑ, β)

))
− E

(
log(yt!)

)
,

where equality holds if and only if ft(ϑ, β) = E(ft(ϑ, β)) > 0 a.s., that is, ft(ϑ, β) is a.s. constant.

Since st(f,ϕ) = yt − ft is random, one must have α = 0 = α0, which implies ft(ϑ, β) = ω

for any β ∈ B a.s. Hence, E
(
ℓt(ft(ϑ, β),ϕ)

)
≤ ω0 log(ω) − ω − E

(
log(yt!)

)
≤ ω0 log(ω0) −

ω0 − E
(
log(yt!)

)
, with equality if and only if ω = ω0. Assumption 3(ii) is thereby verified.

Similarly, Assumption 3(iii) is satisfied, and Assumption 3(iv) holds with Σff = Var(yt)/ω2
0 <∞,

Ωff = −E
(
∇ff

t (ω0,ϕ0)
)
= ω−1

0 ∈ (0,∞). Finally, we have infβ∈B Var
(∑∞

j=0 β
j st(ω0,ϕ0)

)
=

(1 − β2
L)

−1 Var(yt) > 0. Therefore, Assumption 3(v) is fulfilled. By Corollary 1, (3.7) holds

for Q̃LRT provided that κ̂G,n = Var(yt)
/
ω0 + oP(1). If, in addition, Var(yt) = ω0, then QLRT

converges to the same limiting distribution as Q̃LRT by Corollary 2.

C.4 Spatial dynamic spillovers

Consider the model of Blasques et al. (2016): yt = ρ̃(ft)Wyt + xtγ + et, where W is an n× n

matrix of exogenous, nonrandom spatial weights, xt is a n × k matrix of regressors, γ is an

k × 1 vector of static parameters, and et is an n× 1 disturbance vector. Here, both n and k

are finite. The link function is specified as ρ̃(·) := ρ tanh(·), where ρ ∈ (0, 1) is a user-specified

parameter. Note that ρ̃(f) ∈ (−ρ, ρ) for all f ∈ F , and that its derivatives of every order

are bounded. Furthermore, to ensure the invertibility of In − ρ̃(f)W , we require the spectral

radius of W to be strictly smaller than 1. Suppose the statistician specifies that et ∼ N (0,V )

are i.i.d., where V = diag(σ2
1, . . . , σ

2
n) is positive definite. Let ϕ = (γ⊤, σ1, . . . , σn)

⊤. We

have ℓt(f, ϕ) = −2−1n log(2π) + log det
(
In − ρ̃(f)W

)
− 2−1 log det(V )− 2−1

(
yt − ρ̃(f)Wyt −

xtγ
)⊤
V −1

(
yt − ρ̃(f)Wyt − xtγ

)
. Take St(f,ϕ) = 1. Then the forcing variable st(f,ϕ) in

(2.1) is given by st(f,ϕ) = ∇f
t (f,ϕ) =

(
y⊤
t W

⊤V −1
[
yt− ρ̃(f)Wyt−xtγ

]
− tr

(
Z(f)W

))
˙̃ρ(f),

where Z(f) :=
(
In − ρ̃(f)W

)−1
and ˙̃ρ(f) = ρ(1− tanh2(f)).

To study the null distribution of QLRT , we assume that yt is generated as yt = ρ̃(ω0)Wyt +

xtγ0+εt, where the error term εt := (ε1,t, . . . , εn,t)
⊤ has zero mean, and E

(
εtε

⊤
t

∣∣xt, Ft−1

)
= V0,
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with V0 = diag(σ2
0,1, . . . , σ

2
0,n) diagonal and positive definite. However, we do not require

εt to follow the same distribution as et. We require that
{
(yt,xt), t ∈ Z

}
is SE with

E
(
∥εt∥4+ ∥xt∥4

)
<∞, E(x⊤

t xt) is positive definite, and E
[
y⊤
t W

⊤V −1
0 εt− tr

(
Z(ω0)W

)]2
> 0.

Moreover, E(εt | xt,Ft−1) = 0 a.s., and E
(
ε⊤t ⊗(εtε

⊤
t )
∣∣xt, Ft−1

)
, E
(
(εtε

⊤
t )⊗(εtε

⊤
t )
∣∣xt,Ft−1

)
,

E(xt | Ft−1), and E
(
x⊤
t ⊗ xt

∣∣Ft−1

)
are all nonrandom and bounded a.s., where ⊗ denotes

the Kronecker product. We impose a technical assumption that there exist 1 ≤ k < i ≤ n

such that σ2
0,i[WZ(ω0)]ki + σ2

0,k[WZ(ω0)]ik ̸= 0, where [WZ(ω0)]ki denotes the (k, i)th ele-

ment of WZ(ω0), and similarly for [WZ(ω0)]ik. Set F = R, B = [βL, βU ] ⊂ (−1, 1), and

Θ =
{
ϑ = (α, ω,γ⊤, σ1, . . . , σn)

⊤ ∈ Rk+n+2 : αL ≤ α ≤ αU , ωL ≤ ω ≤ ωU , γL ⪯ γ ⪯

γU , 0 < σL ≤ σi ≤ σU , i = 1, . . . , n
}
, where αL < 0. Verifying Assumption 2(ii) requires

tedious linear algebra. For illustration, we simply assume these conditions are satisfied, with

E
(
sup(ϑ,β)∈Θϵ

0×B
∥∥f (1)

t (ϑ, β)
∥∥4) <∞ and E

(
sup(ϑ,β)∈Θϵ

0×B
∥∥f (2)

t (ϑ, β)
∥∥2) <∞ for some ϵ > 0,

and refer interested readers to Blasques et al. (2016) for a more detailed theoretical analysis.

We also require that the identification condition in Assumption 3(ii) holds.

It follows immediately that Assumption 1 holds for any ϵ > 0. Assumption 2(i) holds

by assumption. We now verify Assumption 3. Given the moment conditions above and the

fact that n, k < ∞, it is straightforward to show that E
(
log+ sup(f,ϑ)∈F×Θ

∣∣∇f
t (f,ϕ)

∣∣) < ∞.

Consequently, sup(ϑ,β)∈Θ×B
∣∣dt(ϑ, β)∣∣ e.a.s.−→ 0 follows from Assumption 2(ii) and Straumann and

Mikosch (2006, Lemma 2.1). Moreover, since n <∞ and the spectral radius of the nonrandom

matrixW is strictly smaller than ρ−1, we have E
(
sup(ϑ,β)∈Θ×B

∣∣ log det (In−h(ft(ϑ, β))W )∣∣) <
∞. Using E∥yt∥2 + E∥xt∥2 < ∞, it follows that E

(
sup(ϑ,β)∈Θ×B

∣∣ℓt(ft(ϑ, β), ϕ)∣∣) < ∞. We

obtain Assumption 3(i). To proceed, let et(f,γ) =
(
e1,t(f,γ), . . . , en,t(f,γ)

)⊤
= yt−ρ̃(f)Wyt−

xtγ. Since E
(
∥εt∥4+∥xt∥4

)
<∞, it follows that E(∥yt∥4) ≤ 8∥Z(ω0)∥4E

(
∥xt∥4∥γ0∥4+∥εt∥4

)
<

∞, and E
(
sup(ϑ,β)∈Θϵ

0×B ∥et(ft(ϑ, β),γ)∥4
)
<∞ for some ϵ > 0. By repeatedly applying the

Cauchy-Schwarz inequality, together with the above moment conditions and the quantities

computed below, one can establish Assumption 3(iii).

Now we turn to Assumptions 3(iv)–(v). The straightforward steps are omitted. Let Et−1(·) =

E( · | xt,Ft−1). Observe that Et−1

(
∇f

t (ω0,ϕ0)
)

=
[
tr
(
Z(ω0)

⊤W⊤V −1
0 Et−1

(
εtε

⊤
t

))
−

tr
(
Z(ω0)W

)]
˙̃ρ(ω0) = 0. This immediately implies that E

(
h0,t(β)

)
= 0 for any β ∈ B. More-

over, since ∇ff
t (f,ϕ) = −

[
y⊤
t W

⊤V −1Wyt+tr
((
Z(f)W

)2)]( ˙̃ρ(f))2+[y⊤
t W

⊤V −1et(f,γ)−

tr
(
Z(f)W

)]
¨̃ρ(f), we have Ωff =

[
Et−1

(
y⊤
t W

⊤V −1
0 Wyt

)
+ tr

((
Z(ω0)W

)2)]( ˙̃ρ(ω0)
)2 ∈

(0,∞) which is nonrandom by assumption. One also has Σff = Et−1

(
[∇f

t (ω0,ϕ0)]
2
)
∈ (0,∞) is

nonrandom. Since ∂ℓt(f, ϕ)
/
∂γ = x⊤

t V
−1et(f,γ) and ∂ℓt(f, ϕ)

/
∂σi = σ−1

i

[
σ−2
i e2i,t(f,γ)− 1

]
,

where i = 1, . . . , n, we have Et−1

(
∇ϕ

t (ω0,ϕ0)
)
= 0, and Σϕf = Et−1

(
∇ϕ

t (ω0,ϕ0)∇f
t (ω0,ϕ0)

)
Appendix p. 19



is nonrandom. Note that ∂∇f
t (f,ϕ)

/
∂γ = −x⊤

t V
−1Wyt ˙̃ρ(f) = −x⊤

t V
−1WZ(ω0)εt ˙̃ρ(f) −

x⊤
t V

−1WZ(ω0)xtγ0 ˙̃ρ(f), ∂∇f
t (f,ϕ)

/
∂σi = −2et(f,γ)

⊤V −1P (i)
n V

−1WZ(ω0)xtγ0 σi ˙̃ρ(f) −

2et(f,γ)
⊤V −1P (i)

n V
−1WZ(ω0)εt σi ˙̃ρ(f) for i = 1, . . . , n. Here, P (j)

K ∈ RK×K denotes a matrix

with zeros everywhere except for a single 1 at the jth diagonal position for j = 1, . . . , K, so

that P (j)
K A acts as a row selector, zeroing out all but the jth row of a K ×K matrix A. Then,

Ωϕf = Et−1

(
∇ϕf

t (ω0,ϕ0)
)
= − ˙̃ρ(ω0)


Et−1

(
x⊤
t V

−1
0 WZ(ω0)xt

)
γ0

2 tr
(
P (1)

n WZ(ω0)
)
σ−1
0,1

...

2 tr
(
P (n)

n WZ(ω0)
)
σ−1
0,n

 ,

which is nonrandom. Thus, Assumption 3(iv) holds. Note that infβ∈B Var
(
h0,t(β)

)
≥ Σff > 0,

and −E
(
∇ϕϕ

t (ω0,ϕ0)
)
= diag

(
E
(
x⊤
t V

−1
0 xt

)
, 2V −1

0

)
. Then, 0 < λmin

(
− E[∇ϕϕ

t (ω0,ϕ0)]
)
≤

λmax

(
− E[∇ϕϕ

t (ω0,ϕ0)]
)
< ∞ because E(x⊤

t xt) is positive definite and E∥xt∥2 < ∞. We

further have Ωff −Ω⊤
ϕf

(
− E[∇ϕϕ

t (ω0,ϕ0)]
)−1
Ωϕf =

(
γ⊤
0 R1γ0 +R2

)(
˙̃ρ(ω0)

)2
, where

R1 := Et−1

(
x⊤
t Z(ω0)

⊤W⊤V −1
0 WZ(ω0)xt

)
− Et−1

(
x⊤
t Z(ω0)

⊤W⊤V −1
0 xt

)[
E
(
x⊤
t V

−1
0 xt

)]−1

Et−1

(
x⊤
t V

−1
0 WZ(ω0)xt

)
,

R2 := tr
(
Z(ω0)

⊤W⊤V −1
0 WZ(ω0)V0

)
+ tr

((
Z(ω0)W

)2)− 2
n∑

i=1

[
tr
(
P (i)

n WZ(ω0)
)]2

.

It remains to show that Ωff−Ω⊤
ϕf

(
−E[∇ϕϕ

t (ω0,ϕ0)]
)−1
Ωϕf > 0. Let Ut := V

−1/2
0 xt andXt :=

V
−1/2
0 WZ(ω0)xt. Then R1 = Et−1

(
X⊤

t Xt

)
− Et−1

(
X⊤

t Ut

)[
E
(
U⊤

t Ut

)]−1Et−1

(
U⊤

t Xt

)
, which

is positive semidefinite because
(

E(U⊤
t Ut) Et−1(U⊤

t Xt)

Et−1(X⊤
t Ut) Et−1(X⊤

t Xt)

)
=a.s. Et−1

(
U⊤

t Ut U⊤
t Xt

X⊤
t Ut X⊤

t Xt

)
is positive

semidefinite; see Abadir and Magnus (2005, Exercise 12.33, p. 341). For R2, let Q :=

WZ(ω0) =
(
qij, 1 ≤ i, j ≤ n

)
. Since tr

(
Z(ω0)WZ(ω0)W

)
= tr

(
WZ(ω0)WZ(ω0)

)
, we have

R2 = tr
(
Q⊤V −1

0 QV0

)
+ tr

(
Q2
)
− 2

n∑
i=1

[
tr
(
P (i)

n Q
)]2

=
∑

1≤k ̸=i≤n

[(
σ0,i
σ0,k

qki

)2

+ qkiqik

]

=
∑

1≤k<i≤n

(
σ2
0,i

σ2
0,k

q2ki + 2qkiqik +
σ2
0,k

σ2
0,i

q2ik

)
=

∑
1≤k<i≤n

(
σ0,i
σ0,k

qki +
σ0,k
σ0,i

qik

)2

≥ 0.

If there exist 1 ≤ k < i ≤ n such that σ2
0,iqki + σ2

0,kqik ̸= 0, then R2 > 0, and consequently

Ωff −Ω⊤
ϕf

(
− E[∇ϕϕ

t (ω0,ϕ0)]
)−1
Ωϕf > 0. This completes the verification of Assumption 3(v).
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Since Condition (i) holds as established above, if Condition (ii) is also satisfied, then Corollary 1

yields Q̃LRT
d→ supβ∈B

(
(1−β2)1/2

∑∞
j=0 β

jXj

)2
. Under correct model specification, Corollary 2

further shows that QLRT converges to the same limiting distribution.
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D Parameter estimates for the empirical example

Table D.4: Parameter estimates obtained by joint optimization of (ϑ, β) under the assumption of
Gaussian errors for the empirical example in Section 6, with the rows labeled “restricted” representing
the estimates under the condition α = 0.

α β ω intercept ∆VSTOXX ∆Eonia 3M stock index yield spread
returns changes index spread

restricted 0 0.5254 0.1821 −0.0065 −0.5153 3.1231 −6.8573 −0.0184
unrestricted −6.8555 · 10−4 0.9949 0.1374 −0.0073 −0.4197 3.1761 −6.7676 −0.0404

σ

Germany France Ireland Italy Netherlands Portugal Spain

restricted 0.9009 1.5150 2.3082 8.3304 0.8797 12.0016 5.3201
unrestricted 0.8663 1.4646 2.3039 8.3245 0.8669 11.9934 5.3404

Table D.5: Parameter estimates obtained by joint optimization of (ϑ, β) under the assumption of
Student’s t errors for the empirical example in Section 6, with the rows labeled “restricted” representing
the estimates under the condition α = 0.

α β ω ν intercept ∆VSTOXX ∆Eonia 3M stock yield
returns changes index spread

restricted 0 0.5028 0.1475 1.1701 -0.0124 0.1123 1.1637 -1.5749 -0.2239
unrestricted 0.0075 0.6294 0.1579 1.1768 -0.0120 0.0868 1.3502 -1.4848 -0.2351

σ

Germany France Ireland Italy Netherlands Portugal Spain

restricted 0.3590 3.2060 0.5203 0.7315 3.2474 0.2927 1.7827
unrestricted 0.3628 3.2130 0.5186 0.7310 3.2815 0.2903 1.7825
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