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Abstract

This paper proposes a quasi-likelihood ratio (QLR) test for the null of constant parameters
against the alternative of score-driven parameter dynamics. Score-driven models have been
widely used in the literature to capture time variation in parameters across a diverse range
of both continuous and discrete, univariate and multivariate time series models, with or
without random regressors. A formal testing procedure, however, is lacking thus far. Our
QLR test addresses two key challenges: (i) parameters may lie on the boundary of the
parameter space, and (ii) nuisance parameters are not identified under the null. The test
statistic’s non-standard asymptotic distribution takes a simple form that only depends on
the specified parameter space and is invariant to the specific formulation of the score-driven
model and its degree of nonlinearity. Consequently, the asymptotic distribution applies
to a wide range of score-driven models and can easily be simulated to conduct inference.
We illustrate the new test using several models from the score-driven literature and show
that the limiting distribution provides an adequate approximation for inference in finite

samples.
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1 Introduction

Observation-driven models are widely adopted for capturing time variation in time series data.
In these models, the dynamics are specified as functions of past observations. The time-varying
parameters are therefore pre-determined, though unconditionally stochastic. This feature of
observation-driven models allows for a standard application of maximum likelihood methods.
Among the class of observation-driven models, a prominent and extensively studied subclass is
the family of score-driven models, introduced independently by Creal, Koopman, and Lucas
(2013) and Harvey (2013)." The theoretical underpinnings of score-driven models have recently
been examined in, among others, Blasques, Koopman, and Lucas. (2015, 2018), Blasques, van
Brummelen, Koopman, and Lucas (2022), and Gorgi, Lauria, and Luati (2024). A particularly
interesting result is that score-driven models are optimal within the class of observation-driven
models, in the sense that they achieve the minimum asymptotic variance, even when the
dynamics are not observation-driven (Beutner, Lin, and Lucas, 2023).

However, to the best of our knowledge, previous studies, whether theoretical or applied,
generally assume the presence of score-driven time variation in the parameters from the outset.
This assumption conveniently ensures unique parameter identification and enables standard
asymptotic approximations for M-type estimators. If the assumption is violated, however,
the corresponding asymptotic results typically fail, undermining the reliability of inference in
practice. Despite the widespread use of score-driven models, the literature is surprisingly thin on
formal testing procedures to detect time variation. Only Calvori, Creal, Koopman, and Lucas
(2017) develop an LM testing procedure for score-driven parameter dynamics, but without any
formal theory and relying on a rather restrictive solution to the nonidentification problem that
arises under the null, as discussed later. Instead, most papers rely on ad-hoc or intuitive visual
diagnostics like the size of the time variation in the filtered parameters. Such approaches are
statistically unreliable and can even be misleading. In particular, when time variation is absent,
naively applying score-driven models can produce strong, but spurious time-varying patterns.
For this reason, a formal test for constant parameters against the alternative of score-driven
dynamics is necessary, and this is the focus of the present paper.

We consider a flexible setup that accommodates different types of variables of interest,
including, for example, discrete or continuous variables as well as random exogenous variables.
We propose a quasi-likelihood ratio (QLR) test for the constancy of a scalar parameter against

score-driven dynamics, allowing for potential model mis-specification. Two main challenges
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arise, however, when deriving the limiting distribution of the QLR test under the null. First,
parameters may lie on the boundary of the parameter space under the null hypothesis, which
invalidates conventional asymptotic analysis that typically requires parameters to lie in the
interior of the parameter space (see, e.g., the pioneering works on (G)ARCH models Francq
and Zakoian, 2009; Cavaliere, Nielsen, and Rahbek, 2017; Jiang, Li, and Zhu, 2020; Cavaliere,
Nielsen, Pedersen, and Rahbek, 2022; Cavaliere, Perera, and Rahbek, 2024). Second, the test
runs into the well-known Davies problem (Davies, 1977, 1987), whereby some parameters are
not identified under the null (see, e.g., Andrews, 1993; Andrews and Ploberger, 1994, 1996;
Hansen, 1996; Baek, Cho, and Phillips, 2015). The studies referred to above typically focus on
one of these two issues. By contrast, we address both challenges at the same time, building on
the seminal work of Andrews (2001) and deriving the limiting null distribution of the proposed
QLR test. We establish a set of easily verifiable conditions and illustrate their application to a
range of different popular score-driven models.

Our findings show that the limiting distribution generally depends on several nuisance
parameters. However, under mild conditions that are typically satisfied by score-driven models
from the literature, the QLR statistic converges, either directly or after rescaling, to a simple yet
non-standard limiting distribution that is free of nuisance parameters. This limiting distribution
does not follow the conventional x* law or a mixture thereof (see Kopylev and Sinha, 2011, and
references therein), but instead depends on the specification of the parameter space. The limiting
distribution can be readily simulated for practical implementation and inference. Interestingly,
the same limiting distribution as obtained in this paper has appeared in earlier Andrews and
Ploberger (1996) for tests of serial correlation in ARMA(1,1) models, and in Andrews (2001)
for tests of conditional heteroskedasticity. The current paper shows that it applies to a much
broader context of time-varying parameter models that are used in practice.

The remainder of the paper is organized as follows. Section 2 introduces the setup and
presents the QLR test. Section 3 derives the asymptotic null distribution and discusses the
conditions that allow for a nuisance parameter free limiting distribution. This section also
provides additional results offering sufficient conditions that can be used to verify some of the
main assumptions. Section 4 illustrates the theoretical results using different models. Section
5 presents simulation evidence to evaluate the performance of our asymptotic approximations
in finite samples. Section 6 presents a short empirical application of the time-varying spatial
regression model of Blasques, Koopman, Lucas, and Schaumburg (2016). Section 7 concludes.
The Online Appendix contains all the proofs, a comprehensive set of simulated critical values,

and further details on the examples in Section 4.



2 Testing for score-driven parameter dynamics

2.1 Score-driven time-varying parameter models

For t € Z*, let y, € Y C R™ denote the vector of variables of interest, and &, € X C R* a
vector of exogenous variables, where n > 1 and k£ > 0, with £ = 0 when no exogenous variables
are present. Define %, := a((ys, Ts), s < t), i.e., the o-field generated by {(yt, x,), t € Z}. We
consider the setting where the statistician assumes a conditional probability density function
(pdf) or probability mass function (pmf) p(- | @y, fi, @) for y; given x;, and .%;_;, where
fi € F C R is a scalar time-varying parameter that is of primary interest, and ¢ € @, is
a vector of static parameters. The assumed conditional pdf/pmf p(- | x;, f;, ¢) does not
necessarily represent the true, unknown conditional pdf/pmf. In other words, the model may be
mis-specified. In this setting, Creal et al. (2013) and Harvey (2013) propose the popular class of

score-driven parameter dynamics for f; as given by

frrr =Uu(fe,9,8) =w(l = B) + Bfi + asi(fi, @), (2.1)

si(f, @) = s(ye, i, f, d) = Sy, @1, f, D) 8logp(yta|fmt7 . )

7 (2.2)

where ¥ == (q,w, ") € @ =0, x 0O, x Oy CR™2 3 BCR, and S(y;,x:, f, ) € R
is a user-specified scale. Note that we treat the parameter § and its parameter space B
differently from the remaining parameters. The reason for this becomes apparent in the next

subsection. Additional conditions on the parameter space @ are provided in Section 3. For
convenience, we define the shorthand notation Sy(f, @) := S(y;, xi, f,¢) and VI (f,¢) =
Ologp(y: | =, f, ¢)/0f.

The score-driven time-varying parameter setup in (2.1)—(2.2) encompasses a wide range of
empirically relevant models, including, among others, volatility models (Creal, Koopman, and
Lucas., 2011; Harvey, 2013), dynamic copula and correlation models (Janus, Koopman, and
Lucas, 2014; Blasques, Lucas, and Silde, 2018; Opschoor, Janus, Lucas, and Van Dijk, 2018),
integer time series models (Fokianos, Rahbek, and Tjgstheim, 2009; Babii, Chen, and Ghysels,
2019; Gorgi, 2020), robust location models (Harvey and Luati, 2014), dynamic spatial Durbin
models (Blasques et al., 2016; D'Innocenzo, Lucas, Opschoor, and Zhang, 2024), time-varying tail
shape models (Massacci, 2017; D’Innocenzo, Lucas, Schwaab, and Zhang, 2024), matrix-valued
and tensor-valued time series (Armillotta, Gorgi, and Lucas, 2025; Lin, Lucas, and Ye, 2025),

and more.



Even though the assumed pdf/pmf may be mis-specified, the score-driven parameter dynamics
in (2.1)—(2.2) result in expected local improvements of the Kullback-Leibler divergence (Blasques
et al., 2015, 2018; De Punder, Dimitriadis, and Lange, 2024; Gorgi et al., 2024). In addition,
Beutner et al. (2023) show that the score-driven filtered values f; provide consistent estimates
of the true, unobserved Kullback-Leibler optimal parameter dynamics under various forms of
severe mis-specification. Both results underline the theoretical underpinnings and flexibility of

the score-driven approach.

2.2 Quasi-likelihood ratio (QLR) tests for parameter constancy

Despite the widespread use of the score-driven modeling methodology, there is to the best of
our knowledge currently no formal test available for the presence of score-driven time-varying
parameters. This is precisely the main focus of the current paper. Given the general asymptotic
results in Beutner et al. (2023) on the Kullback-Leibler consistency of f; under general forms
of mis-specification, such a test may even be viewed as a general test of time variation in the
true data generating process (dgp), whether the assumed pdf/pmf p(- | @y, f;, @) is correctly
specified or not.

Let {0} C ©,, then testing for time invariance reduces to testing the null hypothesis
Hy : a =0 against the alternative H; : « # 0. Two remarks are in place. First, depending on
the model, & = 0 may lie on the boundary of ©,. For example, in several score-driven volatility
models « is assumed to be non-negative in order to ensure positive variances for all t. If o =0
lies on the boundary of the parameter space, this requires a careful asymptotic treatment of the
testing procedure (Andrews, 1999, 2001). Second, if || < 1, which is a standard assumption
in the literature, the parameter [ is absent under H, and thus becomes unidentified, similar
to the situation considered in Andrews and Ploberger (1994, 1996). This invalidates standard
testing procedures that do not have such identification issues. The issue is also known as the
Davies problem, where a nuisance parameter is identifiable only under the alternative (Davies,
1977, 1987).

To define our test statistic, let Et(f, ¢) = é(yt,:z:t, f, ¢) = logp(y: | =, f, @) for p(y; |
@, f, ¢) > 0 and —oo otherwise. Moreover, let ft('t‘},ﬁ) = f, (19,5; fl(ﬁ,ﬁ)) be an initialized
filtering sequence. We define the empirical quasi-log likelihood ET and the unrestricted estimator

’3/33“ as, V@3 € B,

Va7 = argmax Lp(9, 8) + op(1),  Lp(9, ) := > 4(fi(9.8), b), (2.3)

9O p—



where the op(1) term is uniform in 8 € B. The estimator i%;p = (Ggr, W1, q’A)g,T)T thus denotes
the unrestricted extremum estimator for a given § € B, allowing the supremum to be attained
approximately rather than exactly, with an approximation error of asymptotic order op(1).
Similarly, the restricted estimator 50571“ is defined by replacing the maximum over & with that
over @ in Eq. (2.3), where @ = {19 €0: 9= (0,w, gz’)T)T} is the restricted parameter space
under the null hypothesis. The QLR test statistic is then defined as

QLR, = —2(sup ET({9\05,T, B) — sup ET<’{9\5,T, 6)) + op(1). (2.4)
BeB BeB

Let 99 = (ag,wo, ¢ )" denote the (pseudo-)true value of Y. Since our goal is to derive the
asymptotic distribution of ()L, under the null hypothesis, we assume that 9y € &y. Under
the assumptions outlined in the next section, 19y represents the probability limit of both the
restricted and unrestricted estimators defined above. We initialize the filter at f; (9,5) =w € 6,
This is intuitive: only in this way f,(d9, 3) = wo for all ¢ € Z* including ¢ = 1, and thus the
time-varying parameter is truly constant under the null. It also renders the log-likelihood and
its derivatives with respect to (w, ¢) under the null independent from § for every sample size T,

such that we can rewrite ZT(’190, p) as EO,T (30,T> = ET(’I?’\(],T, B) for any g € B, and
QLRT = —2 <ZO,T('§O,T) - %ulé ZT(I%,T, 5)) + OP(l)- (2-5)
(S

For more details on the initialization of the filter, see also Andrews (2001, Assumption 10 and
Section 5.2 (p. 711)). In the next section, we study the asymptotic behavior of QLR for

T — o0.

3 The asymptotic null distribution of the QLR test

As it is key for the formulation of the null hypothesis and the boundary problem as well as
for the nonidentification problem under the null hypothesis, we first focus on the structure
of the Cartesian product parameter space @ = 0, x 6, x @,. With respect to the central
parameter of interest «, we assume that its parameter space 0, is given by O, := [ar, ay] for
some ay € (0,00). For oy, we consider two scenarios: a boundary scenario with o, = 0, such
that oy = 0 lies on the boundary of ©,, and an interior point scenario with ay € (—o00,0),
where ag = 0 becomes an interior point. For w we assume O, = [wy,wy| C R for some

wr < wy and wy € int(O,), where int(-) denotes the set of interior points. This assumption



is standard in all of the score-driven time-series literature, and we adopt it throughout for
notational and technical simplicity when developing the asymptotics. Finally, for ¢p we assume
e, = {¢ eER”: ¢ 2 ¢ = ¢U} for some constant vectors ¢; =< ¢y, where < denotes
element-wise inequality. We allow ¢ to lie on the boundary of .

To further facilitate the discussion, we use the terminology of continuous left/right ({/r)
partial derivatives of order k for & > 1 from Andrews (1999, Section 3.3). For this, we consider
the intersection of the parameter space above with e-sized cubes, @g,e = O NC(Yy,€), where
C(1y, €) denotes an open cube centered at ¥, with edge length 2¢ for any e > 0. The projected
local neighborhood for ¢, is denoted by @g”; ={¢: (q,w,¢")" € @g’f}. We also define ©§
as a compact subset of @ N S(Yy, €), where S(Jo, €) denotes an open sphere centered at
with radius e. Finally, we use the notation log™ (z) = max{log(z),0} for z > 0, and let the
p-norm of a vector a = (a;) € R’ be denoted by |al, = (Z;}:l |la;[P)1/P with induced matrix
norm ||All, = sup, ||Az||,/|lx||,, where the subscript is omitted whenever p = 2. We can

now formulate the following assumptions.

Assumption 1 (Model specification). (i) Let @ have the compact form as defined above, and
let B C (—1,1) also be compact. Furthermore, let (F,|-|) be a complete, separable metric space
with O, C F.

(ii) The set {(y, @, f, ) EY X XX F x Oy : p(y | @, f, ¢) =0} has measure zero with respect
to the appropriate dominating measure on Y X X X F x Gy.

(111) Both ((-) and s(-) are jointly measurable as functions on Y x X x F x O, with respect to the
product Borel o-algebra, where all spaces are endowed with their Borel o-algebras. Also assume
that for every (y,x) € Y X X the functions (f, ) — l(y,x, f,¢) and (f, ) — s(y, x, f, @) are
continuous on F X Oy and admit continuous l/r partial derivatives of order two with respect to
(f,®) on F x @g”;, where these partial derivatives are jointly measurable on' Y x X X F X @g”;

for some € > 0.

Assumption 1 is mild in typical applications and serves as a foundational condition throughout
the analysis. The requirement that the set {(y, @, f,¢) € Y x X xF x O, : p(y |z, f, ) =0}
has measure zero simply ensures that the quasi-log-likelihood log p(y | @, f, ¢) is a.s. well defined,
and in principle could be replaced by weaker conditions.

For k > 1 and 8 € B, define ft(k) (9, B) = vec (8ft(k71)(19,ﬁ)/819T), where the (7, j)th entry
of 9 ft(k_l)(ﬂ, B) / 09" corresponds to the [/r partial derivative of the ith element of ft(k_l)(’z?, B)
with respect to the jth component of ¥. We define ft(o)(ﬁ,ﬂ) = f;(9, 5) and, analogously,

At(0)<1976) = ft(ﬂaﬁ)



Assumption 2 (Filter invertibility). (i) { Y, ), L € Z} 18 a strictly stationary and ergodic
(SE) sequence.

(ii)) Let Dy = @ x B for k =0, and Dy = Of x B for k = 1,2, where € > 0 is specified in
Assumption 1. For k = 0,1,2, there exist unique SE sequences {ft ), t e Z} and constants
pr > 1, such that pj, sup gep, Hft(k)(ﬁ,ﬁ ftk) H 2250, where ft(k)(ﬁ,ﬂ) is Fiq-
measurable for every t € Z and (9, 5) € Dy. Moreover, ft () fort € Z* and ft(k)(') forteZ

are uniformly continuous on Dy.

The assumption that the variables of interest and the regressors are jointly SE is standard in
the literature and may not be easily relaxed, as one typically requires the stochastic recurrence
equation (SRE) in (2.1) to be SE in order to apply the results of Bougerol (1993) and Straumann
and Mikosch (2006). Assumption 2(ii) requires the sequences { ft(k)(ﬁ, B), t € Z*} to converge
exponentially fast almost surely (e.a.s.) to a unique limiting sequence {f;(9,3), t € Z}. The
convergence has to be uniform over @ x B for the filter itself (k = 0), and uniformly over the local
parameter space @ x B for the filter derivatives. It is also known as the uniform invertibility
condition (see, e.g., Blasques, Gorgi, Koopman, and Wintenberger, 2018). The current high-level
assumptions are typically satisfied for specific models from the existing score-driven time series
literature as they are required for consistency and asymptotic normality of the MLE, which is
typically proved in these papers. Some general results are, for instance, available in Blasques
et al. (2022). Later in this section, we provide several flexible sufficient conditions that ensure
Assumption 2(ii) is satisfied.

To formulate the final conditions for the asymptotic distribution of the QLR statistic, we
need some notation for the log-likelihood function and its derivatives. Let ét( fi(9,8), ¢) and
8198197 0:(f:(9,B), ¢) denote the (m + 2)-dimensional vector and (m + 2) x (m -+ 2) matrix of
[/r first and second order partial derivatives of Et( fi(9,8), ¢) with respect to 1, respectively.
As we want to refer to some of its sub-elements in the expression of the limiting distribution,
we also define VP(f,¢) == Z(f, ), VI (f.¢) = &ZVI(f.¢), VI (f,6) = GV}, $),
and VP (f,¢) == Z(VE(f,8)7). We group these as V,(f,¢)T = (VI(f.6), VI(f,®)T)
and define ¥ = (;;ff ig) — E[V,(wo, o) Vi(wo, b0)" | Fi 1] and 2 = (g{;f; 34)3;) _
~E[0V (w0, ¢0)/0(f, ") | Fi—1]. With this notation in place, we now formulate the following

assumption.

Assumption 3 (Asymptotic distribution of QLR;). Let dy(9, ) := ¢, (ft(ﬂ, B), q{)) —l; (ft(ﬂ, B), q_’))
fort>1 and (9,5) € © x B.

(i) Supw gcoxs ’dt(ﬁ,ﬁ)‘ 220 ast — oo and E[sup(ﬂ 5)c@OxB |€t(ft(19,ﬁ), (ﬁ) H < 0.



(ZZ) For any € > 0 and ﬁ € B; Supﬂe@\S(ﬂo,e)E[€t<ft(1975)7 ¢>} < EVt(ft(ﬂO?B)v ¢0)}7 where
O\ S(Yo, €) consists of all ¥ € O outside the open sphere S(Vy, €).

(ii1) For e > 0 specified in Assumption 1, E(SUP(ﬂﬁ)e@ng H&,%%Et(ft(ﬂ, B), @) H) < 00.

(iv) It holds a.s. that E[V(wo, ¢o) | Fi-1] =0, and the matrices 2 and X are nonrandom,
finite, and positive definite for §2, and positive semi-definite for X, respectively. The lower-left
block 24 = E[%V{(wo, bo) | 3@,1] of §2 equals zero, or E(h07t(5)) =0 for any B € B, or both,
where ho,t(ﬁ) = Z?io B S(yt—ja Lt—j,Wo, ®o).

(v) E[s(yt,a:t,wo, qﬁo)}z < 00, and infgep Var (hoyt(ﬂ)) > 0.

Assumptions 3(i)-(ii) imply that sup(y s)coxs |T*12T(19, B) —E[6(f:(9,8), ¢)]| = 0 and
that 9 is uniquely identifiable for every value of 3 € B. These assumptions are typically
met, by the score-driven models in the literature. For instance, it is often not hard to verify

SUD(9,5)cOxB ‘dt('ﬁ,ﬁ)} — 0 in Assumption 3(i). Using a mean value theorem for scalar

functions, one obtains

sup  |di(9,8)] < sup V(@) sup  |fi(9,8) — fi(9,8)]. (3.1)
(9,8)cOxB (f,9)EFxO (9,8)cOxB

For robust score-driven filters such as the Student’s ¢ location model (Harvey and Luati, 2014),
SUP(f,9)cFxO ‘V{ (f, ¢)| is bounded by construction. Then the result immediately follows from
the filter invertibility in Assumption 2(ii) for £ = 0. More generally, when sup; g\c rxo ‘V{ (f, qb)‘
is not bounded, but identically distributed and satisfies E( log™ SUD(f.9)cFx© ’V{ (f, ¢)|) < 00,
one also has sup gcoxs |di (9, 8)| =3 0 by invoking Lemma 2.1 of Straumann and Mikosch
(2006) along with Assumption 2(ii) for k& = 0.

Assumption 3(iii) requires identifiable uniqueness of the model under the null hypothesis. An
important special case is that of correct specification under the null of constant parameters. If
ply |z, f,¢)=py | f, @) ifand only if f = f and ¢ = ¢ for almost every (y,z) € Y x X
(with respect to an appropriate dominating measure on Y x X'), then Assumption 3(ii) holds;
see Online Appendix A for a justification. In this case, we thus only require identification of the
dynamic parameter f; and the static parameter ¢ characterizing the pmf or pdf. This is easily
satisfied in many cases, such as for instance location and scale models (see Creal et al., 2013;
Harvey and Luati, 2014).

Assumption 3(iii) implies that, for some € > 0,

0? 0?
aﬁaﬁTﬁT('ﬁvﬁ) - E<W£t<ft(’l97ﬁ)a ¢))

a.s.

T! =25 0. (3.2)

sup
(9,8)€@5xB




Verifying this condition typically requires Assumption 2(ii) for £ = 1,2, i.e., the invertibility of
the (perturbed) SREs for the derivative processes of ft(ﬂ, B) with respect to ¥; see the results
in Proposition 1 below.

Finally, Assumptions 3(iv)—(v) impose moment conditions that are needed to derive a limiting
approximation of QLR . Specifically, they require that (1) {(Vf(wo, o), Vf’(wo, qbo)T)T, te
Z} forms a martingale difference sequence (m.d.s.) with respect to {.%;, t € Z}, such that we
can apply a central limit theorem for m.d.s.; (2) E(&,%%Et(ft(ﬁ,ﬁ), qb) ’19190> has a block-
diagonal structure, ensuring that either (4.7, @s7)" and ¢zr, or g and (s, QSE’T)T, can
be separately approximated asymptotically; and (3) the asymptotic variance of QLR exists
and is non-zero. Again, as we see later in several examples, these conditions are typically verified
in score-driven models available in the existing literature. The m.d.s. assumption in (1) above
is not as restrictive as it may appear at first sight. If the model is mis-specified, we have to
interpret wy and ¢@q as the pseudo-true values under the null hypothesis, which ensures that the
m.d.s. property is satisfied by design even in these cases.

For some p € Z*, let = denote weak convergence in the space of RP-valued continuous
functions on B, equipped with the uniform metric, following Pollard (1990). We then have the

following main result.

Theorem 1 (Limiting null distribution of QLR;). If Assumptions 1-3 hold, then

1 0
[raere ), > 0 7o "

where {G(ﬁ)}ﬂeB is a zero-mean Gaussian process with G(8) € R™2 and covariance function

BB hot(B2)hos(B1)] Typrho(B1)  Zgsho(Br)
Cov (G(61),G(B2)) = | Xssho(B2) Y =), : (3.4)
g5 ho(Ba) Yo Yoo

where ho(B) = Elho(8)] with ho() = Z;io B s(yi—j, Ti—j, wo, Po) as defined in Assumption 3.

In addition,

QLEr % sup {@(ﬁ)* [Z(8)] } T - oo, (3.5)

where we distinguish the following cases for ®(f) and Z(p):

10



(2) if 24 = 0 in Assumption 3(iv), then ®(f) := efj@{w)(ﬁ) e1, where e; = (1,0)", and

E[h2,(5)] Bow)) (3.6)

jocw = —
(aw) (B) = Qs ( o) )
while Z(f) := max {elTJ(_Oiw)(ﬁ) Glaw)(B), 0} if ap =0, and Z(B) = efj(a{w)(ﬂ) Gaw)(B) if
ar <0, with G, (B) denoting the first two components of G(3).

(ii) if in Assumption 3(iv) §24; is possibly nonzero, but ho(3) = 0, then ®(8)~1 == J.(8) =

foIE(hat(ﬁ)), while Z(B) := max {jojl(ﬁ) Ga(B), O} if ap, =0, and Z(B) :== T, (B) Ga(B) of
ar, <0, with G(B) denoting the first component of G(/3).

The proof of Theorem 1 can, in principle, accommodate any objective function ET and
corresponding score s; that satisfy Assumptions 1-3, and is therefore not limited to a likelihood-
based framework. As such, Theorem 1 may also extend to recent variants such as the quasi
score-driven models proposed by Blasques, Francq, and Laurent (2023). The limiting distribution
in (3.5) takes a non-standard form and has a different distribution whether we only have
the nonidentification problem under Hy (case o, < 0) or also the boundary problem (case
ar, = 0). Note that in cases where the parameter ¢ does not enter the conditional pdf/pmf,
ie., p(- | m, fi, ®) = p(- | @, fi), all assumptions involving ¢ in Assumptions 1-3 can be
skipped and the result simplifies further. An example of this is the well-known class of Poisson
autoregressive models (i.e., integer GARCH) of Fokianos et al. (2009); see Section 4.3. Also in
these cases, however, the asymptotic distribution of the ()L R, remains non-standard.

Theorem 1 distinguishes two cases. Case (i) with £2,; = 0 is also found in Andrews (2001).
This condition, however, is not always easily satisfied for score-driven models. For instance,
in a setting with a time-varying scale for a Student’s ¢ distribution, the degrees of freedom
parameter is typically correlated with the scale parameter. Therefore, Case (ii) in Theorem 1
generalizes the result to the setting with nonzero 2.

The limiting distribution in (3.5) generally depends on nuisance parameters and may therefore
be difficult to operationalize in practice. We discuss two corollaries highlighting special cases
where the asymptotic distribution is free of such nuisance parameters and that may be better

suited for inference. We first formulate the following assumption.

Assumption 4. (i) {s(yt,wt,wg,¢0), t e Z} forms a m.d.s. with respect to the filtration
{F, t € Z}. (ii) There exists an estimator igr such that kg r = Q;} Yp+op(1), where op(1)

is uniform in g € B.
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An important case where Assumption 4(i) is satisfied is when S(y;, ;, wo, o) is F_1-
measurable. This is true for virtually all score-driven models in the literature, where the
scaling matrix is typically taken as a power of the inverse conditional Fisher information matrix
following the suggestions in Creal et al. (2013). In this case, under the null-hypothesis of static
parameters, the score has expectation zero as the (pseudo)true parameters wy and ¢, satisfy
the first-order condition for the limit log-likelihood objective function, minimizing the Kullback—
Leibler divergence between the possibly mis-specified conditional pdf/pmf p(- | ;, fi, ¢) and

the unobserved true model. We have the following result.

Corollary 1. If Assumptions 1—4 hold, the scaled QLR test statistic QE%T = R&}T QLR

converges in distribution to a limit that is free of nuisance parameters:

2
) ar = 07

SUDgen (max {(1 - BV X, 0}>

QLR % ,
supges (1 )12 52 #1X;)

(3.7)
ap <0,

where {X;,j > 0} is a sequence of i.i.d. standard normal random variables and kg is defined

in Assumption 4 (ii).

The limiting distribution in (3.7) can be simulated in a straightforward way to obtain critical
values and conduct inference. Table B.3 in Online Appendix B provides a comprehensive
set of values. It is worth mentioning that the process {(1 — 5%)"/23°% ﬁij}ﬁeg is well
documented in the literature, having been found, for instance, by Andrews (2001, Section
5.2) for tests of conditional heteroskedasticity and by Andrews and Ploberger (1996, Theorem
1) for tests of serial correlation in ARMA(1,1) models. To operationalize the scaled éﬁ%T
statistic, we can take kg = ( — TS VI (@orr, ¢;07T)>_1 <T‘1 S [V (o éO,T)]2>7
which, under specific conditions, satisfies Assumption 4(ii) under the null hypothesis. However,
since f;(19¥, B) no longer reduces to its unconditional mean under Hy, such an estimator g r
may perform badly under the alternative, which may have a negative impact on the power

—_ . . . . /'\_/'l‘
of QLR;. We can therefore also consider the alternatively scaled test statistic QLR :=

—Q(Supges <EO,T (50,T)//%G,T(B)) — SUDgep <2T (5,8,T76)//%G,T(6)>) + op(1), with Aqr(B) =
AN oI (R 2 Y T [l (i (A . 2
(=7 S VI (FBsr.8).b52) ) (TS [V (2(Bs. 8). dor)] )

Finally, the following special case is of particular interest.

Corollary 2. If Assumptions 1-3 and Assumption 4(i) hold, and if X¢p = Qyy, then QLR

shares the same limiting distribution as QE%T as given in FEq. (3.7).
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Note that the additional condition in Corollary 2 holds, for instance, if one is willing to assume
that the static version of the model is correctly specified. In that case, the information matrix
equality will automatically hold for the parameter f in the pdf/pmf expression p(- | z, fi, @).

As already mentioned, for many score-driven models sufficient conditions for uniform filter
invertibility over the entire parameter space @ x B have been established, thus ensuring the
conditions in Assumption 2. These sufficient conditions typically build on Bougerol (1993)
and Straumann and Mikosch (2006); see for instance Blasques et al. (2022). For completeness,
sufficient conditions for the case k = 0 are presented in Lemma A.1 in the appendix. To conclude
this section, we provide some new conditions for the invertibility and the existence of moments
of the derivative processes of the filter with respect to the static parameters. The existence
of such moments is (implicitly) assumed by the moment conditions for the derivatives of the
log-likelihood contributions in, for example, Assumption 3(iii). The key novelty in the next set
of conditions is to exploit the fact that moments conditions only need to hold in a small ball
around the null parameter space, which we indicated by &g x B. This can substantially relax
earlier sufficient conditions formulated over the entire parameter space and may therefore prove
useful in practical settings for specific models.

We rewrite partial derivatives using subscripts, e.g., s¢ (yt, xy, f, (,b) = 0s(yy, x4, f, d))/@q’),

Sff (yta Ty, f’ ¢) = a2s(yt7 Ty, f7 ¢)/8f27 S(f,q.'))(f,qb)(yta Ty, f’ d)) = 83(%7 Ty, f7 ¢)/a (3;) 8(f’ d)T)
We also define the shorthand notation §j = sup g g)cox <5 ‘s(yt, xy, [i(9, 5), ¢)

, and similar no-

tation for [/r derivatives, e.g., 8% = SUD(9,6)cOs xB H5¢ (yt, xy, f, (j)) |f:ft(z9,ﬁ)|| and §ff7¢)(f7¢)7t =

, where we make explicit that the supremum is only

SUPyeos ||5(f,90)(f.¢) (e, @, f, D) ‘f:ft(ﬁ,ﬁ)

taken over an e-ball of 9¥5. We also define the double supremum §;7t = SUPyce SUDfcF | 8+

asy(ys, x, f, ¢)} We can now formulate the following assumption.

Assumption 5 (Invertibility of derivative processes). Let 1, x € [1, 00| satisfy 7' + k= <1,
and let € > 0 be the constant specified in Assumption 1.

(i) If for allt € Z there is an M < oo such that 3; + 53, < M almost surely, then set n = cc.
Otherwise, for 1 < oo, it holds that E[(5;)" + (5%,)"] < 0o. Moreover, E|log55,] < 0.

(it) If spe(9,B) is nonrandom, set k = oo and require

J aS(yt_g,wt—Zaft—Z(/ﬂaﬁ)?qb)
E (B +« af >

o

Z sup

o1 (9.9)€0;xB

< Q.

Otherwise, for k < oo and for every j € 7T, there exists a positive real sequence {Qj (Fo,6,K), j >
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1} with Y322, 0;(90, €, )" < 00 and

K

E sup

(9,8)€@5xB

J 0s (’!/tfb Ty, fr—e(V, ), ¢)
(ﬁ +a of )

] < 0;(90,€,k), Vtel.

(=1

(iii) For allt € Z and f, fT € F, the following Lipschitz conditions hold:

su@l;) ‘S<yt7 Ly, fa ¢) - S(yt7 L, ny ¢)‘ < Ct<’l907 E) |f - fT|C7 (38>

€05

Sup [[sir(y @ £, @) = sir (@ 10| < Q0 O 1F = £ (3.9)
€05

sup |s¢r.0)(r.0) Wt T, £, D) — S(1.0)(7.0) (U, e, [T, 0)|| < Ce(o,€) | f — fTI°, (3.10)

for some constant ¢ € (0,1] and a strictly stationary scalar sequence {Cy(0,€), t € Z} with
E[log* Cy(¥,€)] < co.

(iv) If Strpye <M and < M for allt € Z and some M < oo, i.e., if the relevant

@) (f,0).t
partial derivatives of the score are almost surely uniformly bounded, then 2n='+ 3k~ < 1. If this
uniform boundedness condition does not hold and either n < oo or k < oo (or both), then there

exists a X > 2 satisfying 2A1 + k71 <1 and A1 > 2(nt + k1), such that E| /\] < 00,

554
E[ Hgff,tH/\] < 00, E[ HE;WH/\] < 00, and E[ HE;NMHA/Q] < 0. If both n = k = o0, these last

four moment conditions also hold, but for some arbitrary A > 2.

Assumption 5(i) implies the existence of the first-order moment of the score process and its
first-order derivative. Although we do not explicitly require the derivative processes to have
at least a first-order moment, such a moment typically arises when verifying Assumption 3(i).
This moment condition is also standard in the literature when establishing the asymptotic
normality of static parameter estimators. For robust filters, such as the Student’s ¢ location
model of Harvey and Luati (2014), Assumption 5(i) generally holds with 7 = co. The contraction
condition E [ log §§?t} < 0 in Assumption 5(i) implies the local invertibility of the filter and builds
on standard conditions of Bougerol (1993). It is typically satisfied for score-driven models,
which often require uniform invertibility of the filter for consistency of parameter estimates. The
contraction condition can be further relaxed by considering multiple iterations of the stochastic
recurrence equation (SRE); see Lemma A.1 in Online Appendix A. Assumption 5(ii) is similar
to, but weaker than, Assumption AN3 in Lin and Lucas (2025). It is needed to ensure the
existence of appropriate moments for the partial derivative processes of the filter with respect

to . This condition is relatively straightforward to verify, particularly when s,(f, ¢) is linear
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in f. For instance, in the Gaussian location model, where Js; (f, qb)/@f = —1, choosing
0j(Fo, €, k) = supy g)cosxi |3 — a)’* reduces the condition to requiring SUP(g g)cosxs |3 —al < 1.
Assumption 5(iii) imposes local Lipschitz continuity conditions around ¥, on the forcing
variable s;(-) and its partial derivatives up to second order. Similarly, Assumption 5(iv), like
Assumption 5(i), implies that also the second-order derivative process has at least a first moment,

which is useful for verifying Assumption 3(iii). We summarize this in the following result.

Proposition 1 (Invertibility of derivative processes). Let € > 0 denote the constant specified

in Assumption 1. Let Assumption 2(ii) hold for k = 0, and let Assumption 5 also hold,
‘ y 1

then Assumption 2(ii) also holds for k = 1,2, where E(‘SUP(ﬂﬁ)e@ng ||ft( )(19,5)”51) < 00

for 61 = (' + k7 ifn < 00 or k < 00, and for any 6, > 1 if n = kK = co. Moreover,

E(supwﬁ)eesw Hft@)(ﬁ, ﬁ)H‘h) < 00 for 6 = (267" + k1)L if a uniform bound M applies in

Assumption 5(w), and for 6o = (2A71 + k™)1 otherwise.

4 Examples

To illustrate the theory developed thus far and show how the conditions formulated in Assump-
tions 1-5 can be applied, we study four different models. Sections 4.1 and 4.2 consider a correctly
specified Gaussian location and Student’s ¢ volatility model, respectively. Section 4.3 analyzes
a Poisson autoregressive model for discrete time series, allowing for possible mis-specification.
As all three models are univariate and exclude exogenous variables, Section 4.4 investigates a
multivariate spatial model with random regressors. We outline only the key steps in the main

text; full details are provided in Online Appendix C.

4.1 Gaussian location model

For t = 1,...,T, consider the model y, = f; + u;, where u; = o,¢; and ¢; are i.i.d. standard
normal random variables. Assume that the sequence {y;, t € Z} is generated under the null
hypothesis, i.e., y; N (wo, 0370). Under this assumption, the model is correctly specified.
Note that VI (f, ¢) = (y — f)/o2, where ¢ = o, > 0. Take S,(f,¢) = o2, also known
as inverse information matrix scaling (see Creal et al., 2013), then s;(f,¢) = y; — f and
fi1 = w(l = B) + Bfy + a(y: — fr). We define B = [0,8y] with By < 1, and @ = {9 =
(,w, )T eR3: 0<a<ay <1, w, <w<wy, 0<0L§¢§0U}. Let F = R, so that
Assumption 1 trivially holds for any € > 0.

Assumption 2(i) and Assumption 2(ii) for £ = 0 follow directly by standard arguments
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from Bougerol (1993) using Elog™ |y;| < oo, wy < 00, and supyeg |8 — | = ay V By < 1. To
verify Assumption 2(ii) for k = 1,2, we apply Proposition 1, which in turn requires checking
Assumption 5. Assumption 5(i) holds for arbitrary n > 1, such as n = 4. Assumption 5(ii)
is fulfilled with x = oo, because Y 77, sup (g g)co:xs [T_,(8—a)| < > osi(ay V By)! < oo.
Assumption 5(iii) holds with C}(, €) = 1. Assumption 5(iv) holds given all the relevant suprema
are either 1 or 0. Assumption 2(ii) for £ = 1,2 then follows immediately from Proposition 1.

For Assumption 3(i), note that

1
sup |dt<1976)‘ < 5
(9,8)e@xB

2
O'L2<( sup ‘ft(ﬁ,ﬁ)—ft(ﬂvﬁ)o

9,8)€OXB

~

ft(/ﬂ?ﬁ) - ft(/ﬂvﬂn

+o07?  sup |yt—ft(19,6)‘ sup
(9,8)e@xB (9,8)e@xB

€.a.s. O

By Assumption 2 and Lemma 2.1 of Straumann and Mikosch (2006), sup y g coxsld:(9, 8)|
provided that E[log® sup.y scoxslye — f(9,5)|]] < oo, which follows immediately from
E[sup s gycoxs |yt — fi(9, B)|"] < oo, which also ensures that E[supg geoxslli(fi(9, B), d)|] <
oo. Assumption 3(iii) can be obtained using the Cauchy—Schwarz inequality, together with
E<Sup(19,ﬁ)e@§><8 Hft(l)(1975)||4> < oo and E<Sup(ﬂ,ﬂ)e@5x6 Hft(Z)(ﬂ7ﬁ>H2) < oo.  Assump-
tion 3(iv) holds immediately with ¥ = £ = diag (0,3, 20,5). Since the sy(wo, o) = u
are independent, the result QLR N SUDgep (max {(1 — 32)1/2 Z;io B X, 0}) i follows directly

by applying Corollary 2.

4.2 t-GAS volatility

In our second example, we consider the time-varying scale model of Creal et al. (2013), also
examined in Harvey (2013) and Blasques et al. (2022), to illustrate how the theory can be
applied to non-linear filters. The model is given by y, = ftl/ 2ut, where u; are i.i.d. t, random
variables with v > 0 degrees of freedom. Here we can also illustrate how Proposition 1 results in
weaker assumptions than those found in the literature. Let ¢» = v and define the score-induced
observation weight w(f, ¢) = (14+v1)/(1+v 92/ f). Then V! (f,¢) =271 f2 (wi(f, @)-yi—f).
Taking S;(f,®) = 2f? as in Creal et al. (2013), we obtain s;(f, @) = wi(f, @) - y? — f. Let
F = R* and define B = [8, By] C (0,1). Consider © = {9 = (q,w,9)" € R®: 0 < o <
Br,0 <wp, <w<wy, <y, <¢p< I/U}. This specification guarantees the positivity of the
filter. Furthermore, the filter is bounded from below, as f; > % vVt € Z.

Assumption 1 holds for any € > 0. Note that {y, t € Z} is an SE sequence and that
Assumption 2(ii) for £ = 0 holds following the arguments in, for instance, Blasques et al. (2022).
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To verify Assumption 2(ii) for £ = 1,2, we again check the conditions in Proposition 1. Note

that supg gcogxs |St(fi(D, 8), ®)| < C supy scoxss | i(9, B)|, where supy g copxs | fi(9, 5)]

is bounded because

1+v! 9
(0%
1+ v 192/ f,(0,5) "

Sw(l =)+ (B+av)fi(d,B8) Lwy(l = B) + (Bu + evy) fi (9, B).

frr1(9,8) = w(l = B) + (B — ) fi(9, 8) +

Assumption 1 allows us to pick a sufficiently small ¢ > 0 with By + evy < 1, ensuring
that sup(y g cosxs | f:(9, B)| is bounded. Compared to the condition supyeg(f + va) < 1 as
imposed by Blasques et al. (2022, p. 331), we do not require such a strong restriction on the
parameter space as Assumption 5 only considers a local neighborhood @ of ¥,. Similarly,
it is straightforward to show that sg, is bounded. Hence, Assumption 5(i) holds for n = cc.
Assumption 5(ii) holds for any x > 1 and some sufficiently small € > 0 if we set p;(Vo, €, k) =
(Bu + evy)’® with By + evy < 1. Note that if we first compute the [/r partial derivatives
of the mapping (f, @) — s:(f, ¢) and then substitute f = f;(4, ), the resulting derivatives
are bounded (locally) up to at least third order for all (¢, 5) € @F x B. Using a mean value
theorem (e.g., Rudin, 1976, Theorem 9.19), Assumption 5(iii) is then satisfied using ( = 1 and
Ci(90, €) = C for some C' > 0 for all ¢ € Z. Moreover, the second derivatives of the score can be
shown to be uniformly bounded, such that Assumption 5(iv) holds. Then Proposition 1 holds,
where 0, and d, are allowed to take arbitrarily large values.

For Assumption 3(i), we have sup g s coxs }dt(ﬂ, B)} <% 0 by applying the invertibility
results from Blasques et al. (2022). Moreover, E[sup scoxsll(fi(9, ), #)|] < oo follows
directly from the boundedness of f;(19, ) and the existence of a logarithmic moment for y;.
Assumption 3(iii) holds by applying Proposition 1, using the form of the log-likelihood for the
Student’s ¢ distribution. By somewhat tedious linear algebra, together with the distributional
assumption on y; and the results in Lin and Lucas (2025, Eq. (E.6)) and Harvey (2013,
Proposition 39, p. 211), we obtain Xy = Qp = vy /[2wg (0 + 3)] and 247 = [wo(vo + 3)(v0 +
1)} s 0, i.e., the scale and the degrees of freedom estimators are correlated in general. However,
since E(st(wo, bo) } L%_l) = 0, it follows that E(hg,t(ﬁ)) = 0 for any 8 € B. All remaining
conditions in Assumptions 3(iv)—(v) and Corollary 2 are checked easily. Therefore, QLR

converges to the limiting distribution given in (3.7).
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4.3 Poisson autoregression

Our third example illustrates how the theory works out for integer data and for the case of
mis-specified models. For this, we take the example of a Poisson time series model y; | #_1 ~
Poisson(f;), where f; > 0 for every t € Z. In this case, there is no static parameter ¢, so all
conditions involving ¢ and the corresponding components in Theorem 1 can be disregarded,
as noted below Theorem 1. Moreover, in this example we allow for model mis-specification.
That is, the statistician observes the count data {y;, t = 1,...,T}, which need not follow a
Poisson distribution in the dgp. We nevertheless require that {y;, ¢t € Z} is an SE sequence with
Ely:|* < 00, E(y | Fi-1) = wo, and E((ys —wo)? | Fi-1) = Var(y,). Since V{(f,#) = (yi—f)/f,
we obtain fi11 = w(l —B)+ Bf; + a(y, — fi) by setting Si(f, ¢) = f. This yields the well-known
integer GARCH model of Fokianos et al. (2009). In what follows, we verify the conditions for
Theorem 1. As the verification closely parallels the Gaussian location example in Section 4.1,
we focus only on the key differences.

Let 7 = R* and define B = [8;,8y] C (0,1). Set @ = {9 = (q,w)T € R?: 0 < a <
Br, 0 <wp <w < wU}. The specifications of @ and B ensure the positivity of f;. Thus,
Assumption 1 holds. Furthermore, Assumption 2 holds since the filter is invertible (see Fokianos
et al., 2009) and Proposition 1 applies with 6; = 4 and J, = 2. Assumption 3(i) is then also
directly satisfied. To verify Assumption 3(ii), we apply Jensen’s inequality to the function

f = wolog(f) — f for f >0 and wy > 0, and obtain

E(4(£i(0.8), @) = E(ws log (£(9. 8)) — fi(8. 8)) — E(log(u!))
< (wolog (E(fi(9. 8)) ) — E(fi(9. 5)) ) — E(log(w))).

where equality holds if and only if f,(9, 8) = E(f,(9, 8)) > 0 a.s., that is, f;(1, ) is a.s. constant.
Since s;(f, ¢) = y; — f; is random, one must have o« = 0 = ap, which implies f;(19, 5) = w for any
B e Bas. As E(ﬁt(ft(ﬁ, B), (]5)) < wp log(w) —w — E(log(yt!)) < wp log(wy) — wy — E(log(yt!)),
with equality if and only if w = wy, we thus verified Assumption 3(ii). Similarly, Assumption 3(iii)—
(iv) hold with 3¢, = Var(y,)/w? < oo and Qs = —E(V{ (wo, ¢p0)) = wy ' € (0,00). Finally, we
have infgep Var (Z;io (7 s¢(wo, ¢)o)> = (1 —B%)7! Var(y;) > 0. Therefore, Assumption 3(v) is
fulfilled. By Corollary 1, (3.7) holds for Cjzl/%T provided that &g, = Var(y,) /wo + op(1). If, in
addition, Var(y;) = wg, then QLR converges to the same limiting distribution as C/ﬁj%T by

Corollary 2.
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4.4 Spatial dynamic spillovers

Our final example illustrates the theory for multivariate, non-linear models with additional
exogenous variables. We consider the spatial regression model of Blasques et al. (2016):
yr = p(fi) Wy + &y + €4, where W is an n X n matrix of exogenous, nonrandom spatial
weights and spectral radius smaller than 1, x; is (with a slight abuse of notation) a n x k
matrix of regressors, 7 is an k x 1 vector of static parameters, and e; is an n x 1 disturbance
vector. Here, both n and k are finite. The link function is specified as g(-) := ptanh(-), where
p € (0,1) is a user-specified parameter. Note that p(f) € (—p, p) for all f € F, and that its
derivatives of every order are bounded. Suppose the statistician specifies that e, ~ N (0, V)
are i.i.d., where V = diag(o?,...,02) is positive definite. Let ¢ = (y7,01,...,0,) 7. We
have 4,(f, ¢) = —27'nlog(27) + logdet (I, — p(f/)W) — 2" log det(V') — 27 (y: — p(f) Wy, —
a:t'y)TV_l (y: — p(f) Wy, — @y). As in Blasques et al. (2016), we set S;(f, @) = 1. Then the
forcing variable s,(f, ¢) in (2.1) is given by s,(f, ¢) = VI (f, ) = (ytTVVTV_1 lye—p(f) Wy, —
2] — tr (Z())W) ) 3()), where Z(f) == (L = 5(/)W) ™" and j(f) = p- (1 tank?()).

To study the null distribution of (LR, under misspecification, we assume that y; is
generated as y; = p(wo)Wy; + Yo + &, where the error term &; := (g14,...,6,,) has
zero mean, and E[stsj } Ty, ﬁt_l} = Vp, with V = diag(ag’l, o ,O'g,n) diagonal and positive
definite. However, we do not require &; to follow the same distribution as e;. We require
that {(y;, @), t € Z} is SE with E[|le[|* + [J&||*] < oo, E[®/@,] is positive definite, and
Ely/ WV, e, — tr (Z(u)())Wﬂ2 > 0. Moreover, E(e; | @, %_1) = 0 as., and Ele] ®
(ee)) | @i, Fioa], El(eie]) ® (e]) | @i, F1o1], Elxey | Fi-1], and Bl @ @,

ﬁt_l} are all
nonrandom and bounded a.s., where ® denotes the Kronecker product. We impose a technical
assumption that there exist 1 < k < < n such that of ,[W Z(wo)|r: + 0§ 1 [W Z(wo)]r # 0,
where [W Z(wy)]x; denotes the (k,7)th element of W Z(wy).

To verify the different assumptions formulated in Section 3, we set F =R, B = [fr, Sy C
(-1,1), and @ = {¥ = (,w,v",01,...,0,)" € RF"2 : o) < a < ap,w, < w <
wo, Yo XY 2,0 < op <0 < opy,to = 1,... ,n}, where a7 < 0. Verifying As-
sumption 2(ii) requires tedious linear algebra. For details, we refer interested readers to
Blasques et al. (2016). Here, for brevity, we simply assume these conditions are satisfied, with
E(supwﬁ)e@gw Hft(l)(ﬂ, 6)H4> < 00 and ]E(sup(ﬁﬂ)eegxg Hft(2)(19,ﬁ)||2) < oo for some € > 0
and that identification condition Assumption 3(ii) holds. The detailed steps in Online Appendix
C.4 then show that all remaining conditions in Assumptions 1-3 are satisfied. For instance, since

E(lled* + [lzell*) < oo, it follows that E(|lyl|*) < 8[1Z (wo) ["E([la:[[*llvoll* + [lecll*) < oo,
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and E(supwﬂ)eegxg|]et(ft(19,ﬁ),7)||4) < oo for some € > 0. By repeatedly applying
the Cauchy-Schwarz inequality, together with the above moment conditions and the quan-
tities computed below, we can then establish Assumption 3(iii). Similarly, as we have
E[V{(wo,(ﬁo) | @y, 1] = [tr (Z(wO)TWTVb’l]Et,l (f—:taf)) — tr (Z(wO)W)}h(wo) =0, we
immediately obtain E(h07t(ﬁ)) = 0 for any 8 € B, thus verifying part of Assumption 3(iv).
Detailed checks of all remaining assumptions can be found in Online Appendix C.4 and illustrate
that the theory also readily applies to these more complex models.

Since Assumption 4(i) holds, then if Q]?} ¥ ¢ can be estimated consistently using a plug-in
estimator Q;} i]ff, Corollary 1 yields mT A SUDges ((1 — B2)1/2 > e 5ij>2. If the model
is correctly specified, Q}TJ} ¥;; = 1 and Corollary 2 then shows also QLR converges to this

limiting distribution.

5 Simulations

We examine the empirical size and power of our QLR test across the four different models of
Section 4. We consider correctly specified models with the following parameter settings. First,
for the Gaussian location model in Section 4.1, we set (wo, 0u0) = (1,1), By = ay = 0.95. Since
ar = B = 0, according to Table B.3 in the Online Appendix B, this yields critical values of 2.989,
4.308, and 7.277 for nominal levels of 10%, 5%, and 1%, respectively. Second, for the t-GAS
volatility model in Section 4.2, we set (wg, ) = (2,4) such that we have fat, non-Gaussian tails,
and (8, By) = (0.3,0.95), which give critical values of 2.816, 4.104, and 7.055 for a;, = 0. Third,
for the Poisson autoregressive model in Section 4.3, we set wy = 10 and (8, fv) = (0.3,0.95),
with critical values identical to those of the t-GAS model. Finally, for the spatial model in
Section 4.4, we take (wo,p,n) = (1,0.9,3) and let e, "~ N(0,,02,I,) with 0.y = 0.5. To
reduce computational cost, we restrict the model to have a scalar covariance matrix X' = 021,
with a common variance parameter o2. We include a single regressor x; BN (m, I,), where
pw=(1,1,..., l)T, with slope coefficient vy = 0.2. The spatial weight matrix W is randomly
generated, with its diagonal elements set to zero and rows subsequently normalized, yielding
W = (8:%? 2:(?22 81§;> in our simulations. We set (8., Bv) = (0,0.95) and (ar, ay) = (—0.3,0.3),
leading to critical values of 4.247, 5.587, and 8.731 at the 10%, 5%, and 1% nominal levels,
respectively. For convenience, the critical values used in this section is summarized in Table 1.

We consider sample sizes T € {1000, 3000}, with all results based on 20,000 Monte Carlo

replications. To evaluate the empirical size and power of the proposed QLR test, we vary

ap € {0,0.02,0.04,0.06}, where ag = 0 corresponds to empirical size and «g > 0 to empirical
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Table 1: Subset of simulated critical values for the limiting distribution in Eq. (3.7) used in Section 5,
with O, = [ar, ay] for ay > 0 and B = [Br, fu].

arp =0 ar <0
Br Buv 10% 5% 1% 10% 5% 1%

0 0.950 2.989 4.308 7.277 4.247 5.587 8.731
0.3 0.950 2.816 4.104 7.055 — —  —

Table 2: Empirical null rejection rates of QLRy: ap = 0 corresponds to the empirical size, and ag > 0
to the empirical power. Values are expressed in percentages.

T = 1000 T = 3000 T = 1000 T = 3000
ap 10% 5% 1% 10% 5% 1% 10% 5% 1% 10% 5% 1%
Gaussian location Poisson autoregression

0 7.8 372 07 883 416 079 748 3.76 0.67 813 3.95 0.84

0.02 41.60 29.43 12.81 78.70 68.00 45.39 43.26 30.74 13.74 79.32 68.82 46.30
0.04 83.15 74.43 54.40 99.64 99.26 97.23 84.80 76.04 56.35 99.78 99.47 97.72
0.06 97.69 95.58 88.08 100 100 99.99 97.98 96.01 89.22 100 100 100

t-GAS volatility spatial spillovers

0 761 366 070 818 396 0.77 11.78 6.2 1.51 10.61 5.56 1.22

0.02 24.03 14.46 4.59 45.40 32.23 13.93 99.14 98.61 96.49 100 100 100
0.04 49.11 36.33 17.56 86.44 77.89 57.55 99.99 99.99 99.99 100 100 100
0.06 73.14 61.92 40.10 98.48 96.83 90.55 100 100 100 100 100 100

power. In all four cases, when evaluating empirical power, we set § = 0.9.

The results are reported in Table 2. We see that the limiting distribution in (3.7) provides
a good approximation across all four models for a relatively small sample size of T" = 1000.
In general, the QLR test tends to be slightly conservative, with the exception of the spatial
model. When T increases to 3000, the empirical size approaches the corresponding nominal
levels further. We also see that the empirical power rises with both larger values of oy and larger
sample sizes. The sharp increase in empirical power observed in the spatial model compared to
the other examples can be attributed to the multivariate nature of y; in the spatial example,

compared to the univariate nature of y; in the other models.

6 Empirical application

As an illustration, we consider a simplified version of the dynamic spatial regression model
studied in Blasques et al. (2016) and D’Innocenzo et al. (2024); see also the example in Section 4.4.
We consider dynamic spatial credit risk spillovers between n = 7 European sovereigns (Germany,
France, Ireland, Italy, the Netherlands, Portugal, and Spain) using weekly changes in 5-year CDS
spreads over the ten-year period January 4, 2013, to December 16, 2022 such that T = 520. As
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in D’Innocenzo et al. (2024), the regressors include an intercept, changes in short-term (Eonia)
interest rates and in option-implied stock market volatility (VSTOXX), and country-specific
stock index returns and changes in the long (10Y) — short (1Y) government yield spreads. The
spatial weights are taken from the BIS website and relate domestic banks’ cross-border exposures
and row-normalized; see D’Innocenzo et al. (2024).

Given the high persistence in the spatial spillover patterns, we set the parameter bounds to
(Br, Bu) = (0,0.995) and (ap,ay) = (—0.3,0.3), yielding a corresponding critical value of 9.127
at the 1% significance level according to Table B.3.

We estimate a static Gaussian version of the model (under Hy) and a corresponding model
with a dynamic spatial spillover parameter p; as in Section 4.4. The parameter estimates and
log-likelihood values for both models are presented in Appendix D. The estimation results shows
that the unrestricted estimate of « is very close to zero with |a| < 0.001. Still, the resulting QLR
test statistic is QLR ~ 41.0, which under standard asymptotics would be suggestive of strong
statistical significance. The scaled QE%T test statistic, however, is much smaller at @%T ~ 9.8,
where we computed ig7 as ( — 71! ZtT:1 v/ (@o,r, qAbg,T)>1 <T’1 Zthl [V{ (@1, qBO,T)]2>.
This scaled @EI/?T statistic is about a factor 4 smaller than the original QLR statistic and
only marginally significant at the 1% level. For the case of a Student’s ¢ assumption for the
error term, the differences are considerably smaller, with QLR ~ 14.720 and QE%T ~ 16.683,
both being statistically significant against the non-standard critical value. This illustrates that
directly comparing likelihoods and using standard asymptotic theory to conduct inference on the
relevance of score-driven time-varying parameters can be tricky in empirically relevant situations,

and that the corrections derived in Section 3 can lead to material differences in such settings.

7 Conclusion

In this paper, we proposed a quasi-likelihood ratio (QLR) test for parameter constancy against
the alternative of scalar score-driven dynamics. The flexible set-up accommodated different types
of variables of interest (discrete and continuous, univariate and multivariate) and time-varying
parameters. In developing the asymptotic null distribution of the QLR test, we faced two
main challenges. First, parameters could lie on the boundary of the parameter space. Second,
some parameters could not be identified under the null hypothesis. As a result, conventional
asymptotic analyses could not be applied. We found that the limiting distribution generally
depended on multiple nuisance parameters. However, under mild conditions satisfied by virtually

all score-driven models, a simple but non-standard distribution could be derived. The limiting
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distribution is free of nuisance parameters, enabling critical values to be easily simulated. We
also provided a set of easily verifiable conditions and illustrated their application in different
examples involving univariate and multivariate data, correct and incorrect specification, and
different types of time-varying parameters (location, scale, spatial correlation). Simulation
results showed a satisfactory finite sample performance of the proposed test. To further improve
finite sample accuracy, future work can explore bootstrap-based approximations next to the
current asymptotic approximation. Moreover, it would be interesting to extend the methodology
to test for parameter constancy in settings with more time-varying parameters and multivariate

score-driven dynamics.
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A  Proof of Theorem 1

To prove the theorem, we apply Theorem 4 of Andrews (2001). Under the maintained assumption
that ¥y € ©y and by applying Theorem 3 of Andrews (2001), the relevant sufficient conditions
to verify are Assumptions 1%, 22", 3*, 5%, and 7-10 of Andrews (2001). Note that the weak

convergence (3.3) arises as a byproduct in the verification of Assumption 3*.

Verification of Assumption 1*. Under Assumption 3(ii), it remains to be proven that: (a)
SUD(9,5)cOxB ‘T”EAT('&, B) — 5(19,6)| N 0, where L(, ) = E[ét(ft(ﬂ, B), qb)] is nonrandom;
(b) L(Yy, B) is independent of g € B. For Part (a), let Lr(9,5) = Zthl ft(ft(ﬁ, B), ¢). Then,

sup | T Lr(9, 8) — L(9, )]
(9,8)€@xB

< (0755)22XBT1‘2T(1975> — L (9, )| + 0o T Lr(9,8) = L(9,B)]. (A1)
By Assumption 3(i), we note that there exists some p > 1 such that
SUD(9.5)cOxB ‘ﬁt(ft(ﬁ,ﬂ), ¢) — Et(ft(ﬁ,ﬁ), ¢)‘ < Cp~ta.s. forall t € Z™. Therefore, it holds
a.s. that the first term sup g 5)coxs T‘1|£AT(’¢9,B) —Lr(W,B)|<CT 'S pt<CT =0
as T — oo. For the second term on the right-hand side of (A.1), V(9, ) € @ x B, we note
that Kt(ft(ﬁ, B), qb) is a measurable function of (y;, xs, fi(9, B), ¢) under Assumption 1(iii). By
Assumption 2(ii), f;(¥9, B) is #_j-measurable, which implies that {(yt, xy, f1(9,0),9),t € Z}
is jointly SE under Assumption 2(i). It then follows from White (2001, Theorem 3.35) that the
sequence {Et(ft(ﬂ,ﬁ), ¢)), te Z} is also SE. Since Et(ft(ﬂ,ﬁ), ¢)) is a.s. continuous on @ x B
under Assumption 1(iii) and Assumption 2(ii), and given the compactness of @ x B (Assump-
tion 1), and the moment condition in Assumption 3(i), the uniform law of large numbers (ULLN)
in White (1996, Theorem A.2.2) implies that sup(s s coxs ‘T”ET('ﬁ,B) — L(9,8)] = 0,
where £(19, 8) is continuous in (¥, f) € © x B. Part (b) follows immediately from the fact that,
VB € B, we have fi(90, 5) = wp if ap = 0, and hence L(y, 5) =: L*(Fy) does not depend on f3.
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Verification of Assumption 22". Let @* in Andrews (2001, Assumption 2%°) be specified
as O5F for some small ¢ > 0. Then, there exists an ¢ > 0 such that @ N S(¥y,e) C OFF.
Assumption 2% (a) trivially holds (regardless of whether ag = 0 lies on the boundary or not).
Assumption 2% (b) holds under Assumption 1 and Assumption 2(ii).

We now proceed to verify Assumption 22°(c). Recall that @] is a compact subset of
O N S(VYy, €). We first check the condition stated in Eq. (9.1) of Andrews (2001), which in our

context amounts to showing that

@ﬂaﬁyi}wmm)—@ﬂﬁm—cﬂ%ﬂﬁknmw, (A.2)

sup
V€O: [|9—Yo||<yr, BEB

for all v — 0. Note that the left-hand side of (A.2) is bounded by

T
2> sup |d,(9. B)]|. (A.3)
t—1 VEB: [[9—bo||<yr, BEB
By Assumption 3(i), the argument below (A.1) shows that 3, SUD(9.5)cOxB |dy (9, 8)| < oo.
Note that the function (9, 3) — d;(¢, ) is uniformly continuous on (9, 3) € @ x B. This
follows from three imposed conditions: first, the uniform continuity of f,(-) and f,(-) on @ x B
by Assumption 2(ii); second, the continuity of the function (f,¢) — ((y,x, f, @) for every
(y,z) € Y x X (Assumption 1(iii)); and third, the compactness of @ x B. It then follows
that d;(¥, B) is continuous in ¥ uniformly over § € B. Using (A.3) and the same reasoning in
Eq. (9.26) of Andrews (2001), one immediately obtains (A.2). As discussed in Andrews (2001,
Appendix A), to verify Assumption 2% in this case, it then suffices to replace EAT(19, f) with its
approximation Lr(19, 8) in Assumption 22°. Note that
0? 0?

sogaTCT 00 T GgggT o

sup T

(9,8)€OxB

)|

<2 sup
(9,8)€@sxB

(-7 e ta@.8)) - 70,5 (a0

where J (9, 8) = —E(%Et(ﬁ(& B), ¢)> Therefore, to verify Assumption 22" (c), it suffices

to show that, for some € > 0,

sup

(9,8)€@5x B 09097

2
(77 5= @.5)) = T@.5)| = o0 (1) (A5)
For (¢,8) € 6§ x B, %ét(ﬁ(ﬁ,ﬁ), ¢) is a measurable function of
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<yt,azt,ft(19,ﬁ),%ft(19,ﬁ),aﬂamft( 5)) and is also continuous in (¢,5) under As-
sumption 1 and Assumption 2(ii). Then, (A.5) follows directly from Assumption 3(iii),

together with the ULLN in White (1996, Theorem A.2.2), applied to the SE process
{aﬁam G(f(9,8), @), t € Z} whose SE property is ensured by Assumption 2(ii).

Verification of Assumption 3*. Since fi(, ) = ft(ﬁo,ﬁ) =wg forallt >1and 8 € B,
and E(log" |Vf (wo, ¢0)‘) < 00, it follows from Straumann and Mikosch (2006, Lemma 2.1)
and Assumption 2(ii) that 7-1/2 9Lp(9 /819‘19 0 = I~ V20Lr (9 /579‘19 9o T Oas.(1).
We therefore establish the weak convergence of T~Y29Lp (49, - / 819‘ 9—p, BS & DProcess in-
dexed by B € B. Recall from Theorem 1 ho.(8) = > 7 06 si—;(f, ¢)| ooy A0
note that 9f,(9,5)/09],_, = (hoi-1(8),1,07)". Let V{, == VI(f, ¢

)‘(f,qb):(wO,m) and

V& = Vf’(f, ¢)|(f,¢>)=(wo,¢>o)’ we can write

1 8
—_—— )

T 8’19 ( 6) 90,

T
1 af: (9, B) dlog p(y; | x, f, ¢)'
- — v/t T
\/T ; ' (f ¢)‘(f’¢')=(wo,¢'o) 09 9=19¢ 0 (f,#)=(wo,¢0)

A Vg,t hot—1(8) LT
_ ! _.
/T Z vU,t : \/T ;:1 gO,t(ﬁ)- (A.G)

=1 @
Vi

~+

We employ Theorem 10.2 of Pollard (1990) to derive the weak convergence of T-/2 37 g,(-).
This requires verifying three conditions: (a) B is totally bounded; (b) the finite dimensional
distributions of 7-/23"  g,(-) converge to a limiting distribution; (c) {T-1/2 S g, T >
1} is stochastically equicontinuous.

Condition (a) holds because B C (—1,1). Now we prove Condition (b). Under Assump-
tion 3(iv), we see that 3°,_, go+(3) is a partial sum of SE martingale difference (m.d.) random
variables. We can apply the Cramér-Wold device together with a central limit theorem (CLT) for
SE m.d. sequences, such as Theorem 24.3 of Davidson (1994) (see also Theorems 13.12 and 23.16,
and the discussion in Chapter 24.3, p. 385 of the same book), or Theorem 18.3 of Billingsley
(1999), provided that E( supseg HgOJ(B)HQ) < 00. Since go () has fixed dimension, it suffices

to consider its components individually. Let 3 be a number strictly between sup{|3|, 3 € B} and
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1. For the first component of go.(/), by Assumption 3(iv) and the Cauchy-Schwarz inequality,

E([ngt]Q sy ) ) foIE<sup (Z - B8y g(wo,¢o))2>

peB
< (g3 ()" SR ) <
(A7)

by the strict stationarity of {s:(wo, ¢o), t € Z}. For the remaining components of go.(5) that do
not depend on [, the existence of second-order moments follows directly from Assumption 3(iv).
Applying a CLT for SE m.d. sequences as described above, we obtain that each of the finite-
dimensional distributions of 7-'/2 37 go,(-) converges in distribution to a multivariate normal
distribution with covariance determined by the covariance function in (3.4). Consider Condition
(c) where we need to establish the stochastic equicontinuity of {T —1/2 Zthl g:(+), T > 1}. As

above, applying the Cauchy-Schwarz inequality, we note that for any ¢ > 0,

|B1—P2| <

E{ sup (%ng ho—1(B1) — ZvOt 0,t— 1ﬁ2> }

o0

2
1 5= oyt
B {lﬁls%12)|<5 (_T;V“(; Bl — B3) se-1-5( 07¢0)>> }
Sl ’ 2
{ sup (Z 3 ﬁzvgytst_l_j(wmgbo)) }

|B1—B2]<d

su ( 2% 45t w 2
{8t

Jj=

2

Z E(s1(wo, >
ff ( 1( 0 ¢0 sup Z
BU |B1—P2|<8 5

where the final step follows from

T

E(% ; Vg,tSt—1—j(W07 d)o)) = %ZE[(V&t)Q]E[(Sflj(WO, Q-"o)] = EffE[S%(W(J? d’o)]'

t=1

The stochastic equicontinuity of {T7/2 S a(), T > 1} can then be established using the
same steps as in Andrews and Ploberger (1996, p. 1340, below (A.14)). Combining these three
conditions yields (3.3) immediately.

Moreover, note that J (o, 5) = E(aﬂam A (ft('ﬂo, B), qbo)) is symmetric and nonrandom.
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It remains to be shown that

0 < inf )\min(J(ﬁg,ﬁ)) < SUp Amax (J(ﬁo, 5)) < 00, (A.8)
BeEB peB

where Apin(+) and Apax(+) denote the smallest and largest eigenvalues, respectively. Note that

aﬁamgt(ft( B), ) Zk 1 Ly (9, ), where

Lo(o.5) = ViU @) ‘ 0f:(9,8) 0£(9,8) | O*l(f, @) ‘
’ of  lyepws 99 09! 909" |;_p, 0
.
Lo, 5) = VU ¢>‘ 069,58 | (av{ (/: ¢>‘ aftw,ﬂ))
’ 09 i_pws 097 09 |ipws 097
P f:(9, B)
=v/ gIiav, )
L3,t<075)_vt (f7¢)‘f=ft(’l9,ﬁ) 09097 .
f
For brevity, let VOt = 8vta(f’¢) 6o b0’ Vf’i‘f = %V?(f, ¢)T’(f¢)(wo b0’ and ng{ =
V,?bf(wo, ¢0). We then obtain
Ve hgea(B)  Vihhoe1(B) V8 hoii(B)
L1,t(19075)+L2,t(19075) - v()t 0,t— 1(6) vé,{ V(?{T ’

Vol hoa(B)  VEL Vol

f D2 f(9,8) 9% f+(9,8)

and L3 (9o, ) = Vi (wo, ®0) 55557 ooy’ Note that —5557 .

sumption 2(ii)). Hence, E(L37t(190, 5)) = O for all 8 € B by Assumption 3(iv). If the condition
]E(Vgﬁ{ | #1-1) = 247 = 0 in Assumption 3(iv) holds, then

is .#;_1-measurable (As-

E(VIDE(BE, 1 (8) E(VEE) E(hg,1(8) 0T
E(Lyi(00.6) + Laa(00.0)) = | E(VE) E(hg,n()  E(VE) or |,
0 0 E(V?)

and thus J (9o, 8) = diag (T (aw)(B), Teg), where T (a.)(3) is defined in Eq. (3.6) and
T o = —E(Vﬁf). Note that supgep E ( [ho-1(B)] 2) < oo asseen in (A.7). It then follows from
Assumption 3(v) that (A.8) holds. Alternatively, if £24; is possibly nonzero but the condition
E(h07t(6)) = 0 in Assumption 3(iv) holds, then one can write J (9o, 5) = diag (ja(ﬁ), J(w@)),
where J,(5) = —E(ng;) E(h3,_1(8)) is the (1,1)-entry of J(aw)(8) (also defined in the

!
Vit vl

theorem), and J (,,¢) := —E (V%{ Vogf? ) Since J () is positive definite by Assumption 3(v),

thereby completing the verification of Assumption 3*.
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Verification of Assumptions 5* and 7-10. Consider Assumption 5*. We focus on the
case ¢y € int(@y). Let A := A, x A, x Ay, where A, = R and A, = R™. Recall that
O, = |ar,ay| C R for some ay > 0. We set A, =R* if af, =0, and A, =R if o, < 0. With
this choice of A, Assumption 5*(a) is satisfied. Assumption 5*(b) is immediate. Note that if
some or all elements of ¢y lie on the boundary of @,, the above arguments can be adapted by
restricting the cone Ay to the corresponding positive or negative half-space for those elements.
To verify Assumption 7(a), we partition the parameter vector ¥ = (a,w, ¢ ')’ depending on
whether £25; = 0 or not. If £2,; = 0, we take 6, = (o,w)" and ¢ = 9 in the notation of
Andrews (2001). If §£24 is possibly nonzero, but E(h07t(ﬂ)) = 0 holds, we instead set 6, = o and
Y = (w,@")". In either case, Assumption 7(a) is satisfied due to the block-diagonal structure of
J (99, B) established above. Furthermore, Assumption 7(b) holds because A is a product set by
construction. Assumption 8 also holds by the construction of A,. Assumption 9(a) holds by our
definition of @y, and 9(b)—(d) are straightforward. Assumption 10(a) holds because the initial
condition is set as fi(9, 8) = wo; it would not hold otherwise. Assumption 10(b) is satisfied
since only the first component in (A.6) and J,(3) depend on 3, while J (,,¢) and J ¢ defined

above are independent of [.

Eq. (3.5) follows from Theorem 4(b)-(c) of Andrews (2001), in combination with Theorem
2(a) of Andrews (2001) and Theorem 5 of Andrews (1999). Note that for ©, = [0, ay], one can
also refer to Eq. (3.10) of Andrews (2001). O
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A Additional proofs and results

Proof of Corollary 1. Note that E(ho,t_l(ﬁ)) = 0 for all 8 € B. Thus, the results in Part
(ii) of Theorem 1 apply directly. It follows that for every 8 € B, Z,(8) := J,; ' (8) Gu(B) ~
N(0,kz(1—= %), where kz = k' kg, k7 = Qs B(s*(ys, T4, wo, Po)), and kg = QJIJ} ¥, The

process Z, is therefore a Gaussian process with the covariance function given by

1 — 2 1 — 2
Cov (Za(B), Za(B2)) = I<LZ< chlt 52). (A.1)
L= B2
One can verify that KJIZ/ ‘1-p%) > e (7 X; defines a Gaussian process whose covariance function

coincides with that of Z, in (A.1). Hence, Z,(5) < f@lz/z(l — %) 22720 B X, where < Jenotes

equality in distribution. Note that J,(8) = x7(1 — 3%)~!. By Theorem 1, we obtain

A 2
K¢ sup (max{(l—BQ)l/QZi ﬁU(-,O}) , ap =0,
QLR % peB =07 (A.2)
K SUDgep ((1 — g2)2 Z?io Bij> , ar, < 0.
Then (3.7) immediately follows from (ii). O
Proof of Corollary 2. This directly follows from (A.2), noting that kg = 1. H

The following proofs mainly draw on the results of Bougerol (1993) and Straumann and
Mikosch (2006). Consider a complete separable metric space (F, dg), in line with Bougerol (1993,

Section 3), and define the Lipschitz coefficient p associated with a random map ¢ : E' — E as:

)= s {dE(SO(I)ﬂO(y))}. (A.3)

z,yEE, x#y dE<x> y)

Let C°(@ x B, F) denote the space of continuous F-valued functions on @ x B, equipped with
the supremum norm || - [|@xs, defined by || fllexs = supy gcaxs |f (9, B)| for f € C°(@ x B, F).
Then, (C°(@ x B, F), || - |loxs) is a complete and separable (and thus Polish) space. Moreover,
in the proofs below, we repeatedly use the following inequalities without further mention (see,

e.g., Lin and Lucas, 2025, (B.3)—(B.4)): for any matrices X;, t = 1,..., K, where K € Z*, with
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compatible dimensions, we have

K K K

log™ || ] X < log™ (HHMI) <Y logh X, (A4)
t=1 t=1 t=1
K K K

log" || Y Xu|| <log* (Z!\Xtu) < log(K)+ > log" [ X, (A.5)
t=1 t=1 t=1

We use C' to denote a generic positive constant that may vary from line to line.

Proof of Proposition 1. We shall employ Theorem 2.10 of Straumann and Mikosch (2006)
for perturbed, nonstationary SREs. Before proceeding, recall that ft(o)(ﬂ, B) = fi(9,5) and
At(o) (9,8) := fi(9,5). Note that for k > 1, one can generally write (provided the partial

derivatives with respect to 1 are well-defined) ft(i)l = cﬁ(k),t( ft(k)), where @1 is given by

[Gw.(F™)] (9. 5)
= ¢(k),t(f(k (9, 6),9, B)
= Quf"©.5).9.5)F9@.5) + qua(F@.5)... £0@..9.8), (A9

where @); is a scalar function that depends on the initialized filter ft(ﬂ, f), and qu; for
k > 1 is a vector-valued function that depends only on its derivatives up to order k — 1.
The (perturbed) derivative process { ft ,t € Z*} depends on the initialized sequence
{ (O) (1) Yyoens ft(k 1)(-), te Z*} and is therefore nonstationary. To employ Theorem 2.10
of Straumann and Mikosch (2006), define for £ > 1 an intermediate unperturbed sequence
{ d ,t € ZT}, initialized at some initial function f1 () and depending solely on the limit
sequence {ft ), ft (), e ft(k 1)(-), t € Z}, which is associated with the random maps @)

defined by

[ (dM)] (9, )
= ¢(k),t (d(k)(197 5)7 9, 6)
= Qu(f09,8),9,8)d™ (9, 8) + qu. (FE0,8),..., 129, 8),9,8). (A7)

For the specific cases of k = 1,2 here, it follows by mathematical induction and Assump-
tion 1(iii) that, for all ¢ € Z* and (9, 8) € ©f x B, the initialized sequence ft(t‘}, B), starting
from the initial value f; (¥, B) = w, admits continuous [/r partial derivatives of order two with

respect to 9, and these partial derivatives are continuous in (4, 5) € @§ x B. The specific
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construction in (A.6) reduces to

£, 8) = Qufu(9.8),9,8) £V (9, 8) + ay . (f:(9,8),9, 8), (A8)
(9, 8) = Qu(fu(9,8),9, 8) £2(9, 8) + ay. (F(9, 8), [(9,8),9, 8), (A.9)

where Q(f.9.5) = 5+ a9 quy (7.9, 0) = (si(F.¢).1— 5.0 2449) " and

)8_0688t(f7 ¢)

%s(f, *s(f,
q(2),t(.f(1)7 f7 197 ﬁ) = vec (f(l 8,'9T af + a-f(l) ai;('l'fal]?> + Q Sa<ffg d)) f(l).f(l)T
aSt(f ¢) da Ty 2L P) Psi(f, @) f(1 aZSt(fa ®)
T of 09 9f00 99709
a_aast(f7 ¢) + ast(fa ¢> )
09 097 09 09T )’

For the unperturbed counterparts (see (A.7)), the expressions for k = 1,2 are identical, except
for plugging in ft(l)(fﬁ,ﬁ) and f;(9, B) instead of ft(l)(ﬁ,ﬁ) and ft(ﬂ,ﬁ), respectively, in Q;
and q); above. Note that the random maps cﬁ(k)i and @) for & > 1 are defined on
the complete and separable metric space (C°(Of x B, R(m”)k), ||

96><B)7 where || f| e xB =
SUP(g, gycos < || f (Y, B)||. Similar to Blasques et al. (2022, Proposition 3.4) and Lin and Lucas
(2025, Proposition 4), the following high-level conditions (abbreviated as ﬁi) are sufficient for
applying Straumann and Mikosch (2006, Theorem 2.10): For k € Z™, the sequence {go(k),t, te

Z} is SE. Moreover,

HL1 E(log+||go (f1 H@ng) < 00, where £(9,8) = (0,1,0,...,0)T € R™2, and
FR) (9, 8) = 0 for k > 2;

i B o o)) <o

HL3 E(log p(gog;;)) )) < 0 for some integer r > 1, where ‘PEQ),t = P(k),t O Pk)t—10 - - - O P(ke) t—r+1
is the r-fold backward iterates of ¢ (1),

L4 E(log™ [ldf”)|

6§><B> < 00, where {d ,t € Z} is the unique SE solution of the

unperturbed system (with the existence guaranteed by Conditions HLl—HL3);

AL5 ||90(k (k)) - So(k),t(fl(k)ﬂ

O x5 =50 and P(@(k),t - So(k),t) “¥0ast — oo.

Case k = 1: Under the condition that Assumption 2(ii) for & = 0 holds, the sequence
{(yt, Ty, fi), t € Z} is SE. Consequently, the sequence {90(1”, te Z} is SE as well. Condition
HL1 follows directly from Assumption 5(i). Note that d® s e)+(dY) is differentiable

Appendix p. 4



everywhere on R™2, Condition HL3 follows directly from the local contraction condition in
Assumption 5(i) for » = 1, by applying a mean value theorem (see, e.g., Rudin, 1976, Theorem
9.19). This, in turn, immediately implies Condition AL.2.

Together, these three conditions ensure that the SE solution {dil), te Z} to the unperturbed

system admits an almost sure representation (Straumann and Mikosch, 2006, Eq. (2.5)):

dgl)( Z (HQt 1 ft (9, 8), 19,5))91 t—j— 1<ft —j— 1(9,8),0 B) (A.10)
with J[,_, - = 1.

_— 1/6
To establish Condition HL4, it suffices to show that [ (Hd ’ eéxBﬂ < oo for some

0 > 0. Before proceeding, note that for a random sequence of possibly matrix-valued, dimension-
compatible quantities A; and B;, j > 0, an application of Minkowski’s inequality followed by
Holder’s inequality yields, for 1 < p; < po,

p1y\ 1/p1

Mg

> (Ell4, BJH’”)
> (a0 (BB

< CZ (E||Aj||<p;1—p;1>—l)”11“’21, (A.11)
j=0

> A;B,
=0

0

<.
Il

1

Mg

<.
Il
=)

whenever sup;>, E||B;||”> < co. Note that since {qq)(fi(3,5),9,8),t € Z} is strictly sta-
tionary, it follows that for all ¢ € Z, E(supw 8)cO8xB Hq ft( ),19,5)””) < C by As-
sumption 5(i). Recall the constants n and x from Assumption 5. If at least one is finite, set
§ = (n' + k171 if both are oo, ¢ is arbitrary subject to 6 > 1. We present the proofs for
the case 1, k < oo; if one is 0o, only the first inequality in (A.11) is needed, after which the
steps proceed straightforwardly. When 7, k < oo, Assumption 5 ensures that § € [1, kK A 7). Set
p1 =0 and py = n in (A.11) above and note that 1 < p; < py. Condition HL4 then follows from
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(A.11) and Assumption 5(ii). Specifically, for e > 0, by (A.10) and (A.11), we have

1/6
BT[]

Y 5N 1/6
= {E( sup Z ( Qt—é(ft—é('ﬁa6)7075))q(1),tj1(ft—j—1(1976)’79’ﬁ)'> }

(@.6)e@5x8 || ‘=g \ 17
- j K 1/k
ast—f(fa ¢) '

<C E o
o ]ZO { <(ﬂ,ﬁ?lel£5x6 H <6 ) of f=fte(19,5)> > }

Tt remains to consider Condition HL5. Note that Hgﬁ(l)’t(fl(l)) — c,o(lm( Al(l)) }

eyxB < OB+

Ray + Rsy), where

Ryy = sup St<ft<1976)7¢) - 5t(ft<1976>7¢) ) (A.12)
(9.8)€@5xB

R27t — Sup 83téfa ¢) ‘ . 8Stéfa ¢) ‘ ’ (A13>
(9,8)c0FxB ¢ =i A A

R37t — sup ast(fa ¢> ‘ . ast(fa ¢> ‘ ‘ (A14)
wpeogxs|  Of  li_fwp o l=pwp

By (3.8) in Assumption 5(iii), we have R;; < C’t(ﬂo,e)”ft(ﬂ,ﬁ) — fi(9,B)]
¢ € (0, 1], where Cy(9o, €) is strictly stationary with E [log® Cy(8, €)] < co. By Assumption 2(ii)

¢
o5 x5 for some

€.a.s.

for £ = 0 and Lemma 2.1 of Straumann and Mikosch (2006), it follows that R;; — 0

as t — oo. Similarly, one can show that Ra, 2% 0 and Rs, ¥ 0ast — oo as well.

€.a.8.

Finally, by applying (3.10) in Assumption 5(iii), we obtain p(g?(l),t — 50(1)7,5) < CRsy — 0.
Given Conditions HL1-HL5, Theorem 2.10 of Straumann and Mikosch (2006) implies that
iV =

O x5 LR 0ast — 0. Moreover, dgl) is .#,_;-measurable and has the almost
0

sure representation dgl) = lim, o0 cpgg o fl(l)) for all ¢ € Z, where the limit is independent of f;

and convergence is in the norm || - [[g¢xs. Note that for each r > 1, ‘ng,t(ﬂl)) is continuous
on @ x B by mathematical induction. Since ®§ x B is compact, by the classical result that
uniform limits of continuous functions are continuous Rudin (1976, Theorem 7.12), it follows
that the limit function dﬁ”(-) is uniformly continuous on @f x B. Following the argument in

Part (3) on p. 2483 of Straumann and Mikosch (2006), one can conclude that ft(l) = d,gl) for

%BXB) < 00

for 61 = (™' + k1)~ when n < oo or k < oo, and arbitrary d; > 1 when n = k = co. This

t € Z. By the discussion on verifying Condition HL4, we observe that E(]] ft(1)|

completes the proof for the case of k = 1.
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Case k = 2: Since the proof is similar to the case of kK = 1, we outline only the key differences
below. Note that {¢(2)+, ¢t € Z} is SE by the joint SE property of { (y:, @, fi, ft(l)), t € Z}, which
follows from Assumption 2(ii) for & = 0, 1. By the construction of q(2), below the SRE (A.9), the
verification of Condition HL1 requires: For ¢ € Z, (iii.1) E(log* SUP (9, 3)c@s x B ||ft(1)(19, )|

) <

(i ]E(l + o | sil].) D < ith j =1,2;
oo; (iii.2) 0g" SUD(9 g)c@E x5 | afi 1(8.5) oo with j
0
(iii.3) E[ log™  sup M‘ < 09
(9,8)€@5xB 99 I=f:(9,8)
82
(iii.4) E[ log"  sup M‘ < 095
@8)e@gxs || 009 | 4 5

(iii.5) E| logt  sup M

< 0.
(9,8)€@5xB afo9 ‘f—ft(ﬁ,ﬁ) )

01

Note that (iii.1) holds because E(|| ft(1)| @ng) < o0 as established for the case of k = 1.

Condition (iii.3) follows from Assumption 5(i), and the remaining conditions are ensured by
Assumption 5(iv). This verifies Condition HL1. The verification of Conditions HL2-HL3
proceeds as in the case of k = 1.

We now consider Condition HL4. Under Conditions HL1-HL3, and analogously to (A.10), one
has di”(9, 8) = 232 (T Qu-e(fie(9,8),9,8) ) a1 (S0, 8), fis 1 (8. 8), 9. 8).
Consider the first case, where all first- and second-order [/r partial derivatives of (f, ¢) —
si(f, ), evaluated at f = f,(9, 8), are uniformly bounded over (¢, 3) € @F x B (i.e., the first
part in Assumption 5(iv) holds). By the definition of q(2); below (A.9), it is not hard to see
E(sup(ﬂ’ﬁ)eegxg Hq(2)7t(ft(1)(19, B), fi(9,B),9, 5) ||61/2) < o0o. Let § = (26; ' +K~H L. Note that
if 7 < 00 or k < 00, then § = (207 4 3x~1)~! > 1 by Assumption 5(iv), and if n = k = oo, we
have 0 = d1/2 > 1 by choosing any ¢; > 2 (noting that in this case, §; can be any value greater
than or equal to 1). By setting p; = 6 and p, = 8;/2 in (A.11), we obtain E(||d§2)||‘§@6xlg) < 0.

Consider the second case, where these partial derivatives are not necessarily bounded. For
the moment, let A < &; and note that || vec(-)|| < y/rank(:)|| - ||. By employing the c,-inequality
and Holder’s inequality, we obtain E(Sup(ﬂﬁ)eeng ||q(2)7t( t(l)(’l?,ﬁ),ft(ﬁ,ﬁ),ﬁ,ﬁ)H)\ﬂ) <

A
. 1 Os¢(f,
oo provided that E(Hft( )’ggxs) < 00, ]E<Sup(19,6)685><6‘ tgc@ o (195)’ ) 0,
92s,(f,0) %si(f,9)

A2 A
E(suppeopes|| 25552 ") < o B(supioseons] |) < e
(®.9)€05%5 || 30097 | ,_ . 5 5) (B.B)€OGXB || 70599 | ¢y, (9, )
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and

A/2
E sup M‘ < 00, (A.15)
@eosxs| 09w
A/2(1=M/61)7 1
2
E sup Mf?’d))‘ < 0. (A.16)
@peopxs|  Of*li_p,)

Since \/2 < 01/2 < n (given A\ < 07 as previously assumed), the moment condition (A.15) is
guaranteed by Assumption 5(i). If at least one of k or 7 is finite, choose A\ € (0,4;/2] C (0, c0);
in this case, (A.16) is satisfied if

823t(f7 ¢)

A
FIE ) < 0. (A.17)

E sup ‘
(9,8)€@5xB f=fe(9.8)

If 6 = 2\ + x~1)~! > 1, we then obtain E(]|d§2)| 3

@ng) < oo using (A.11) with p; = 6 and

p2 = A/2, together with the moment conditions in Assumption 5(iv). If n = k = oo, then §; can

be any value greater than or equal to 1, and we can thus take d; = 2\. In this case, (A.16) is

equivalent to (A.17), and we again obtain E(\|d£2)] ‘E_)SX ) < oo with Assumption 5(iv).
Finally, we address Condition HL5. Recall that fl(Q) (9, ) =0 for all (9,5) € @ x B, and

thus we obtain

|8 () = eea(£7)] -

= sSup Hq(Q),t(ft(l)(Q97ﬁ)aft(ﬁaﬁ)aﬁaﬁ) _q(2),t(ft(1)(’l97B)?ft(lﬁaﬁ)ﬂ?aﬂ)H'

(9,8)€@5x B

By employing the inequality ||C1D; — CoDs|| < ||Cy — Csl| || Ds|| + || D1 — Ds|| ||Cs|| + ||C1 —

Cs| || Dy — Ds|| repeatedly, it follows that H@(Q),t(fl@)) — e A(Q))| 2% 0 which is a

O§xB

consequence of the local Lipschitz properties in Assumption 5(iii), combined with the moment
conditions in Assumption 5(iv) and Lemma 2.1 of Straumann and Mikosch (2006). Finally,
p((ﬁ(g),t - 50(2),15) %% 0 follows directly from the same reasoning as in the case of k = 1.
Similarly, d\*(-) is uniformly continuous on @ x B, and following the argument in Part (3)
on p. 2483 of Straumann and Mikosch (2006), we conclude that @ =d? for t € Z. Based

2)| d2

egxs) < 00,

where 8 = (267" + £~ 7! the uniform boundedness conditions in Assumption 5(iv) hold, and

on the discussion for verifying Condition I-/ITA, we further conclude that E(H ft(

0y = (2271 + k717! otherwise. This completes the proof for the case k = 2. O
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Lemma A.1. Suppose Assumptions 1 and 2(i) hold, and the following conditions are satisfied:

IV1 E(log" sup g g coxs |5y T, [0, 8), $)|) < oo for fi(9,8) =w € O,
vz E(l +SUP ﬂﬁ)e@xBSUPfef‘ﬁJrOé s(yu, x, f, ¢)D

IV3 E( logsupy gycoxp SUPrer ‘8)” Q/Jt (fa’gaﬁ)‘) < 0 for some r € Z*, where w§r)(-,19,6) =
Ui(+, 9, 8) oy 1(+,9,8) 0...0h_i1(-, 8, B) is the r-fold backward iterates of Py (-, 9, 3).

Then Assumption 2(ii) holds for k = 0.

Proof of Lemma A.1. Note that for allt € Z, s;(f, ¢) is continuous in (f, ¢) € F x @4 under
Assumption 1(iii). By mathematical induction, it follows that for ¢ € Z*, the initialized sequence
ft('ﬂ,ﬁ), with the initial value fl('l?,ﬁ) = w, is continuous in (¥, ) € O x B. Since O x B is
compact, ft() is also uniformly continuous. We can treat the sequence { ft(-), t e Z+} as a
sequence of random elements in the space (C°(@ x B, F), | - [|exs). One can write fier = o fo),
where the random maps ¢; : (C%(© x B, F), | - [lexs) — (C%(O x B, F),| - |lexs) are given by
[o:(N)] (9, 8) = u(f(D, 8),9, B) with ¢y(-,9, ) provided in (2.1). Note that {¢;, t € Z} is
SE under Assumption 2(i).

The following high-level conditions suffice to apply Theorem 3.1 of Bougerol (1993) and
Theorem 2.8 of Straumann and Mikosch (2006): (i.1) E(log* o1 (f1) — f1||@X3) < 00, where

fl(ﬁ,ﬁ) = w for (J,5) € © x B; (i.2) IEl(logJr p(gpl)) < o0; (i.3) E(logp(gpgr))) < 0 for some
integer r > 1, where gpﬁr) = o100 11 is the r-fold convolution (backward iterates) of
¢¢. These three high-level conditions can be readily verified using Conditions [V1-1V3, following
standard arguments; see, e.g., Blasques et al. (2022, Proposition 3.2) or Lin and Lucas (2025,
Proposition 3). Applying Straumann and Mikosch (2006, Theorem 2.8), we conclude that
the stochastic recurrence equation (SRE) hyiy = ¢i(he), t € Z, admits a unique SE solution
{fi, t € Z} such that ||f; — fillexs = SUD(9, 5)c@x B 1£:(9,8) — f,(9,8)] 23 0 as t — co. As

® x B is compact, applying the same argument as for the case of Kk = 1 in Proposition 1, the

uniform continuity of f;(-) immediately follows. This establishes Lemma A.1. O

Lemma A.2 (Identifiable uniqueness). Suppose Assumptions 1, 2, and 3(i) are satisfied. Under
correct model specification, if p(y | x, f, ®) = p(y | =, f, @) for almost every (y,x) € Y x X
(with respect to an appropriate dominating measure on Y x X ) if and only if f = fand ¢ = o,
then Assumption 3(ii) holds.
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Proof of Lemma A.2. As noted below (A.1) in the proof of Theorem 1, three important
implications follow: first, the sequence {{;(f;(9, 3), @), t € Z} is SE; second, defining L(, ) :=
E[4:(f:(9, B), ¢)], it is established there that L is continuous on the compact set @ x B; and
third, £*(¥y) := L(y, B) is independent of 8 € B. Given that B is compact and L is continuous,
it suffices to show that £(1, ) is uniquely maximized over @ at ¥, for each 5 € B. By Gibbs’
inequality for the Kullback-Leibler divergence (White, 1996, Theorem 2.3), it follows that for

continuous random variables y;:

)

p(yt | L, ft(/ﬁOJB)? [0 dy,| >0
¢ t - Y

*(9) — L(09 = t ¢, fi(Po, B),
L5(0) — L(Y9,5) =F /p(y\a: fi(¥0,8), o) log p(ye | i, fi(9, B),

0
with strict inequality unless p(yt | @y, fi(Do, B), qbo) = p(yt | @, fi(9,0), d)) That is, under
the condition above, £L*(¥y) = L(, B) implies that f;(4J, ) = fi(o, 5) a.s. for all t € Z and
¢ = ¢po. We arrive at 0 = (w—wp)(1— )+« st(ft(ﬂ, B), ¢) a.s. Since st(ft(ﬂ, B), ¢) is random,
one must have & = 0 = ap, which further leads to w = wy. That is, L*(¥y) = L(V, p) if and

only if 9 = 9. If y; are discrete, the discrete version of Gibbs’ inequality applies instead. [J
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B Simulated critical values

We present the simulated critical values for the limiting distribution in (3.7), with results reported

in Table B.3. To obtain these values, we approximate the infinite sum (1 — 52)/2 Yoo X
by X(3) := (1 — p*)1/2 Z}IZS" [P X; for some Jpa € ZT. We then maximize over 3 € [By, O]
the quantity (max{X(8), O})2 for ar, = 0 and [X(B)]? for o, < 0, respectively. The results are

based on 10° simulations with Jy.e = 3 - 10%.

Table B.3: Simulated critical values for the limiting distribution in (3.7), with ©, = [ar, ay] for
ay > 0and B = [,BL,,BU}.

BL  Bu

o =0

ar <0

10%

5%

1%

10%

5%

1%

AL

ar <0

1% 10% 5%

1%

0.995
0.990
0.980

0.970
0.960
0.950

0.900
0.850
0.800

0.750
0.700
0.650

0 0.600
0.550
0.500

0.450
0.400
0.350

0.300
0.250
0.200

0.1 0.995
0.1 0.990
0.1 0.980

3.365
3.266
3.166

3.092
3.037
2.989

2.810
2.675
2.568

2.490
2.417
2.341

2.272
2.218
2.158

2.099
2.042
1.988

1.932
1.884
1.835

3.334
3.226
3.122

4.719
4.613
4.502

4.417
4.355
4.308

4.106
3.949
3.831

3.732
3.644
3.567

3.488
3.413
3.339

3.264
3.207
3.153

3.094
3.025
2.969

4.679
4.572
4.452

7.855
7.696
7.540

7.425
7.363
7.277

7.080
6.930
6.813

6.720
6.619
6.530

6.451
6.385
6.296

6.204
6.102
6.028

5.978
5.898
5.811

7.784
7.619
7.457

4.437
4.416
4.371

4.322
4.278
4.247

4.084
3.958
3.840

3.737
3.651
3.568

3.489
3.411
3.342

3.273
3.210
3.146

3.090
3.024
2.968

4.421
4.395
4.338

5.850
5.816
5.753

5.691
5.638
5.587

5.403
5.236
5.114

5.007
4.908
4.805

4.734
4.656
4.579

4.499
4.419
4.359

4.275
4.205
4.135

5.821
5.788
5.710

9.127
9.048
8.962

8.854
8.794
8.731

8.502
8.300
8.169

8.043
7.955
7.862

7.730
7.640
7.529

7.425
7.335
7.245

7.166
7.095
6.999

9.086
8.997
8.893

-0.995
-0.990
-0.980

-0.970
-0.960
-0.950

-0.900
-0.850
-0.800

-0.750
-0.700
-0.650

-0.600
-0.550
-0.500

-0.450
-0.400
-0.350

-0.300
-0.250
-0.200

-0.1
-0.1
-0.1

0.995
0.990
0.980

0.970
0.960
0.950

0.900
0.850
0.800

0.750
0.700
0.650

0.600
0.550
0.500

0.450
0.400
0.350

0.300
0.250
0.200

0.995
0.990
0.980

5.362
5.278
5.191

5.128
5.076
5.021

4.840
4.688
4.545

4.411
4.300
4.183

4.058
3.944
3.829

3.731
3.631
3.524

3.410
3.297
3.188

4.757
4.655
4.537

8.714 5.014 6.507
8.629 4.996 6.481
8.506 4.964 6.442

8.423 4.936 6.405
8.343 4.905 6.376
8.298 4.873 6.336

8.116 4.748 6.155
7.909 4.626 6.000
7.699 4.499 5.857

7.546 4.382 5.728
7.378 4.271 5.614
7.265 4.165 5.483

7.133 4.052 5.367
6.981 3.954 5.226
6.853 3.841 5.109

6.722 3.736 4.987
6.632 3.632 4.872
6.529 3.522 4.763

6.349 3.407 4.645
6.232 3.301 4.521
6.090 3.189 4.400

7.896 4.463 5.868
7.751 4.443 5.845
7.609 4.404 5.792

9.909
9.886
9.814

9.746
9.706
9.673

9.470
9.267
9.100

8.919
8.767
8.598

8.427
8.296
8.145

8.009
7.887
7.745

7.585
7.432
7.295

9.185
9.100
8.997

continued on next page
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arp =0 ar <0 ar, =0 ar <0
B PBu 10% 5% 1% 10% 5% 1% 1533 Bu 10% 5% 1% 10% 5% 1%
0.1 0.970 3.044 4.367 7.377 4.288 5.652 8.789 -0.1 0.970 3.133 4.467 7.507 4.363 5.735 8.914
0.1 0.960 2.983 4.304 7.290 4.243 5.598 8.740 -0.1 0.960 3.086 4.413 7.429 4.331 5.687 8.844
0.1 0.950 2.937 4.245 7.222 4.204 5.541 8.670 -0.1 0.950 3.037 4.366 7.380 4.300 5.644 8.799
0.1 0.900 2.749 4.041 6.983 4.030 5.329 8.423 -0.1 0.900 2.867 4.173 7.176 4.146 5.469 8.604
0.1 0.850 2.614 3.877 6.842 3.887 5.154 8.230 -0.1 0.850 2.743 4.032 7.045 4.029 5.316 8.424
0.1 0.800 2.504 3.757 6.707 3.759 5.025 8.063 -0.1 0.800 2.643 3.913 6.900 3.920 5.193 8.287
0.3 0.995 3.265 4.594 7.702 4.370 5.770 8.944 -0.3 0.995 3.475 4.840 8.018 4.528 5.945 9.264
0.3 0.990 3.156 4.483 7.510 4.333 5.713 8.861 -0.3 0.990 3.389 4.754 7.855 4.513 5.926 9.231
0.3 0.980 3.034 4.348 7.331 4.264 5.619 8.746 -0.3 0.980 3.300 4.642 7.734 4.483 5.881 9.165
0.3 0.970 2.939 4.252 7.236 4.199 5.547 8.664 -0.3 0.970 3.230 4.569 7.649 4.449 5.831 9.072
0.3 0.960 2.878 4.173 7.154 4.143 5.479 8.569 -0.3 0.960 3.186 4.513 7.569 4.418 5.793 8.996
0.3 0.950 2.816 4.104 7.055 4.090 5.416 8.486 -0.3 0.950 3.144 4.477 7.508 4.387 5.760 8.944
0.3 0.900 2.615 3.876 6.798 3.883 5.149 8.230 -0.3 0.900 2.994 4.311 7.335 4.266 5.606 8.763
0.3 0.850 2.468 3.708 6.644 3.711 4.969 8.022 -0.3 0.850 2.885 4.181 7.215 4.163 5.482 8.616
0.3 0.800 2.351 3.582 6.491 3.581 4.820 7.843 -0.3 0.800 2.792 4.064 7.101 4.057 5.376 8.500
0.5 0.995 3.177 4.507 7.586 4.324 5.683 8.872 -0.5 0.995 3.564 4.918 8.140 4.602 6.016 9.352
0.5 0.990 3.056 4.385 7.389 4.261 5.604 8.744 -0.5 0.990 3.486 4.844 8.024 4.591 6.003 9.318
0.5 0.980 2.916 4.218 7.183 4.170 5.485 8.608 -0.5 0.980 3.403 4.748 7.892 4.565 5.965 9.273
0.5 0.970 2.817 4.100 7.057 4.084 5.390 8.463 -0.5 0.970 3.342 4.684 7.804 4.539 5.929 9.236
0.5 0.960 2.742 4.013 6.962 4.013 5.312 8.346 -0.5 0.960 3.298 4.641 7.746 4.516 5.893 9.190
0.5 0.950 2.677 3.942 6.869 3.946 5.227 8.261 -0.5 0.950 3.253 4.602 7.695 4.493 5.865 9.139
0.5 0.900 2.445 3.674 6.559 3.686 4.933 8.012 -0.5 0.900 3.120 4.444 7.519 4.392 5.737 8.947
0.5 0.850 2.276 3.484 6.343 3.494 4.729 7.735 -0.5 0.850 3.017 4.335 7.390 4.304 5.631 8.804
0.5 0.800 2.155 3.333 6.169 3.340 4.553 7.533 -0.5 0.800 2.932 4.242 7.266 4.212 5.541 8.679
0.7 0.995 3.056 4.377 7.431 4.245 5.618 8.798 -0.7 0.995 3.671 5.052 8.279 4.721 6.137 9.495
0.7 0.990 2.909 4.212 7.235 4.151 5.496 8.645 -0.7 0.990 3.603 4.968 8.182 4.710 6.128 9.467
0.7 0.980 2.742 4.015 6.971 4.015 5.319 8.398 -0.7 0.980 3.522 4.878 8.082 4.689 6.102 9.429
0.7 0.970 2.632 3.885 6.799 3.899 5.176 8.259 -0.7 0.970 3.467 4.827 8.012 4.666 6.068 9.383
0.7 0.960 2.534 3.773 6.689 3.791 5.057 8.131 -0.7 0.960 3.424 4.792 7.946 4.646 6.039 9.360
0.7 0.950 2.452 3.677 6.589 3.701 4.956 8.011 -0.7 0.950 3.388 4.755 7.878 4.630 6.020 9.334
0.7 0.900 2.191 3.375 6.205 3.381 4.595 7.637 -0.7 0.900 3.268 4.621 7.732 4.543 5.905 9.196
0.7 0.850 2.005 3.150 5.937 3.156 4.355 7.284 -0.7 0.850 3.176 4.506 7.614 4.465 5.819 9.044
0.7 0.800 1.855 2.962 5.708 2.975 4.155 7.036 -0.7 0.800 3.102 4.429 7.519 4.391 5.743 8.939
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C Additional details on the four examples

We provide further details on the examples in Section 4.

C.1 Gaussian location model

Fort =1,...,T, consider the model y; = f; + u;, where u; = o,¢; and ¢; are i.i.d. standard
normal random variables. Assume that the sequence {y;, t € Z} is generated under the null
hypothesis, i.e., y; N (wo, 02,). Under this assumption, the model is correctly specified. Note
that V7 (f, ) = (y, — f)/o2, where ¢ = o, > 0. Take Si(f, p) = o2, then s,(f, ) =y — f
and fi1 = w(l = B) + Bfi + a(y: — f;). We define B = [0, By] with Sy < 1, and @ = {9 =
(a,w, )" eR*: 0<a<ay <1, w, <w<wy, O<0L§¢§0U}.

Let F = R, so that Assumption 1 trivially holds for any ¢ > 0. For Assumption 2,
Assumption 2(i) holds by assumption. We now verify the sufficient conditions in Lemma A.1 to
establish Assumption 2(ii) for k = 0. Condition IV1 holds because Elog™ |y;| < oo and wyy < oo.
Note that supyeg |8 — @] = ay V Sy < 1. We see that Condition IV3 holds with » = 1, which
implies that Condition IV2 also holds. To verify Assumption 2(ii) for k = 1,2, we first consider
the sufficient conditions in Assumption 5 and then apply Proposition 1. We set n = 4 and

Kk = 0o. For Assumption 5(i), it is sufficient to show that

E(( sup !yt—ft(t97ﬁ)}>4<00- (C.1)

3,8)€EOXB

4 4
We have E<supw)e@w e — ft(ﬂ,ﬁ)D < SE(y) + 8]E<sup(,lw)eexg |ft(q9,5)\) by the
¢,-inequality. Since f;(9, 3) admits an a.s. representation f;(9, 8) = > 2 (8 — a)’ [w(l—8) +
ay;-1-5], t € Z, we have sup(y scoxs |fi(9,8)] < > molar Vv Bu) (lwe| V lwu| + av [yr-1-51).

By applying Minkowski’s inequality, we arrive at

(E(( sup }ft(ﬁ,ﬁ)})Ll) Y e {E[(QU v 5U)j<|wL| v wy| + oy |yt_1_j|)]4}1/4

9,8)€@xB =0

IN

0\ 14 -1
E(|wL|\/|wU|—|—aU |y1|) > (1—O{U\/6U) < Q.

4 4
Then E(Sup(ﬂ,ﬁ)e@wat — ft(’ﬂ,ﬁ)|> < oo follows from E(sup(ﬂﬁ)e@w]ft(ﬂ,ﬁ)o < oo and
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E(y}) < oo, thereby establishing Assumption 5(i). Assumption 5(ii) holds because

[e.9]

Z sup

i1 (9.8)€05xB

[e.o]

<D (o V) < . (C.2)

j=1

[[6-«

Assumption 5(iii) holds by setting the sequence Cy(¥g,€) =1 for all  =0,1,...,5 and t € Z.
Moreover, Assumption 5(iv) holds since the uniform boundedness condition applies, and thus
Proposition 1 follows.

We now proceed to verify the conditions in Assumption 3. Note that

2
o [00.0)| < 3o (s 17009~ (0.5

(9,8)e@xB 9,8)cOxB
+op? sup |y — fi(0.8)] swp [f(®.5) ~ £i(9.5)].
(9,8)e©xB (9,8)€@xB
By Lemma A.1 and Lemma 2.1 of Straumann and Mikosch (2006), sup g g coxsld:(9, 8)] “%0
provided that E(log+ SUD(9 g)coxslYt — fi(1, ﬁ)|) < 00. This moment condition is satisfied by
(C.1). Moreover, (C.1) also ensures that E(Supw”@)eexﬂft(ft(ﬁ, B), ®)|) < co. Assumption 3(i)
is obtained. Assumption 3(ii) follows directly from Lemma A.2 under correct model specification.

Next, consider Assumption 3(iii). By simple linear algebra, we have

oo

55l (9. 8), ¢>H <ol £V, 8)|° +

0.2 =30,y — 1i(9,9))]

0*f(9, B)

+ 40,2y — 1,0, B)| | £7.8)|| + 022w — fu(9.B)] ’ 9900

'.

Since the uniform boundedness condition in Assumption 5(iv) holds, by Proposition 1, we
have E(supwﬂ)egsw Hft(l)(ﬁ,ﬁ)W) < oo and E(Supwﬁ)eeéxg Hft(z)(ﬁ,ﬁ)HQ) < o0. Com-
bining these results with (C.1) and applying the Cauchy—Schwarz inequality, it follows that
E<Sup(19,,8)€66><8 H%ﬁt(ﬁ(ﬁ, B), ¢)H> < 00, and therefore Assumption 3(iii) holds. For As-
sumption 3(iv), we have VE(f, ¢) = —o 4+ 0.3y, — f)2, which gives V& (wo, ¢) = o (€2 —1).
Therefore, E(Vf(wg,q’)o) | #i.1) = 0 and E[(Vf’(wo, ¢0))2} = 2. Moreover, we have
E(s7(wo, d0)) = 02, B(V{ (w0, ¢0) | Fi1) = 009 Eler) = 0, g5 = B([V{ (w0, p0)* | F11) =
01:027 fo = —E(V{f(wo,¢o) } L%—l) = 0502 = Xy, E(V?(W0>¢0)V{(WO>¢O) ‘ L%—l) =
o E(ed — ) = 0. Since VI (f,§) = —207 (3 — ), one has 2g5 = E(V (wo, d) | Fi1) =
0. All the conditions in Assumption 3(iv) are therefore satisfied. For Assumption 3(v),
Var (Z;’;O 37 st_j(wg,qbo)) = Var <0u0 oo et_j> = 02,(1 — *)~' > o%, > 0. Note
that V?(f,¢) = 0,2 — 30,4y, — f)% so that —E[V?®(wp, ¢o)] = 20,2 € (0,00). Fur-
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thermore, Qs — Q;f( — E[Vf¢(w0,¢o)])_1ﬂ¢f = Qgp > 0. Therefore, Assumption 3(v) is
satisfied. Since s;(wo, ¢o) = u; are independent, by Corollary 2, (3.7) holds for QL R, namely
QLR % supses (max {(1 - #2)V2 32, B, })

C.2 t-GAS volatility

Consider the time-varying scale model of Creal et al. (2013), also examined in Blasques et al.

(2022), y; = ftl/ 2ut, where u,; are i.i.d. ¢, random variables with v > 0 degrees of freedom. Set

¢ = v. Then, VI(f,¢) = 271f2 (% y? — f). Taking S;(f, @) = 2f?, we obtain
si(f, @) = ﬁ — f. Let F = R* and define B = [3.,5y] C (0,1). Consider

O={9=(weo) eR:0<a<p,0<w, <w<wy,0<v, <¢ <y} This
specification guarantees the positivity of the filter. Furthermore, the filter is bounded below,
with f; > %—fg, Vt € Z. We see that Assumption 1 holds for any € > 0.

For Assumption 2(i), it suffices that {y;, t € Z} is an SE sequence. We then verify
Assumption 2(ii) by checking the conditions in Lemma A.1 and Proposition 1. Since (1+z)72 <
(1+2x)~! for any = > 0, V(9, 8) € © x B, we obtain

2

0 y7 Yi
9 < It < It .
‘ﬁ—i—ozafst(f,(ﬁ)’_ﬁ—l—ayyt? 2Vf_BU+BLVUyt2 e’ (C.3)

where ¢y = 2vpwr (1 — By)(1 — By + )"t > 0. By (C.3) and applying Jensen’s inequality twice,

E{ log sup sup
( ( 8f Y; + ¢

9,8)€E@xB fEF

B vi
B4 a— s f, ¢)D < log <5U+/8LVUE( 5 ))

< log <5U + By ;)y 2 ) <0,  (C4)

E(

provided that the following condition holds:

2urwr (1 — Bu)?
(1—Bu + B)Brve — (1 — Bu)l’

E(y?) < Brvy — (1 — By) > 0. (C.5)

Then Condition IV3 holds with » = 1, which in turn ensures that Condition IV2 also holds.
Condition IV1 is straightforward to verify and is therefore omitted. It follows that Lemma A.1
holds. Note that Condition (C.5) is generally easy to verify. For practical implementation, the
data may be scaled to ensure filter invertibility, after which the estimated filter can be rescaled

to recover the original values. We now verify Assumption 5 to establish Proposition 1. Note
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that sup g g)cos <5 |5:(fe(9,8),9)| < C'sup(y g)cosxs | (9, 8)|. For (9, 8) € ©f x B, we have

N 1+v! 9
T+ v 12/ fi(0,8)

<w(l=p8)+ B+ av)fi(¥,8) Swy(l—Br) + (Bu +evy) fi(D, B).

ft+1(1976) = w(l - 6) + (ﬁ - &)ft(1976> +

Since Assumption 1 imposes no restriction on € > 0, we can choose any € € (0, Vl;l(l - BU))

ft(ﬂ,ﬁ)‘ is bounded. Compared to the

so that Sy + evy < 1, ensuring that SUD/(9, 3)c@¢ x B
condition supyee (5 + ra) < 1 imposed by Blasques et al. (2022, p. 331), we do not require such
a strong restriction, as Assumption 5 applies only to a local neighborhood @§ of ¥,. Similarly,

it is straightforward to show that sup(y gcoc s ‘&st( fid) / 8q§| =, is also bounded. Hence,

9
o)
Assumption 5(i) holds for n = oo. Using (C.3), we can set Qjéﬁiie, k) = (Bu + evy)’* in
Assumption 5(ii). Thus, Assumption 5(ii) holds for any £ > 1 and some € € (0,15 (1 — Bv)).
Note that if we first compute the [/r partial derivatives of the mapping (f, @) — s:(f, @) and
then substitute f = f;(19, 3), the resulting derivatives are bounded (locally) up to at least third
order for all (9, 8) € ©f x B. By employing a mean value theorem (e.g., Rudin, 1976, Theorem
9.19), Assumption 5(iii) is satisfied by setting ¢, = 1 and Cy(dy, €) = C* for some C* > 0 for all
¢=0,1,...,5 and t € Z. Moreover, the uniform boundedness condition in Assumption 5(iv)
holds. Then, Proposition 1 holds, with §; and d5 able to take arbitrarily large values.

For Assumption 3, and in particular Assumptions 3(iv)—(v), stronger conditions are re-
quired on the process {y;, t € Z}. For simplicity, we next assume correct model specifi-
cation under the null hypothesis and suppose that y, = /wou;, where u; ~ %, are ii.d.
For Assumption 3(i), we have supy s coxs |, (9, 8)| =3 0 by applying Lemma A.1 and
Straumann and Mikosch (2006, Lemma 2.1), together with a mean-value theorem. Moreover,
E(sup g geaxslle(f:(9,5), d)]) < oo holds if E(y7) < oo (which is implied by (C.5)) and if there
exists some 7 > 0 such that E(sup gcoxs/fi(9,8)|") < oo. Take n = 1. For (9,3) € © x B,
note that | fis1(89, B)] < [1(w, 9, B)|+ e (9, B), 9, B) — tulw, 8, B)| < A9, B)+ By | (9, 3)],
where ¢(f,9,8) = w(l = 8) + Bf + o 2o 9f — [), A9,8) = [, 9,8)] +
sup e r |00 (f,9, 8) /0 f| |w|, and B, = By + Brvu v /(yf + co) using (C.3). Since y; is indepen-
dent of #,_; and f,(¥, ) is F#;_j-measurable (Lemma A.1), B; and f;(4, ) are independent,
implying E(Bt SUp(g gyc@xslft(0, 6)|> = E(By)E(supy sycoxsl fi (9, 8)]). Under (C.5), we ob-
tain E(supwﬁ)e@w Ay(89,8)) < oo and E(B;) < 1. Hence, E(supw’ﬁ)eexﬂft(ﬁ,ﬁﬂ) < 00, and
Assumption 3(i) follows. Assumption 3(ii) follows from Lemma A.2. Assumption 3(iii) holds by

applying Proposition 1. By tedious linear algebra, together with the distributional assumption on
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y; and the results in Lin and Lucas (2025, Eq. (E.6)) and Harvey (2013, Proposition 39, p. 211),
we obtain Qpp = Xy = vo/[2w¢(vo + 3)] and 24y = [wo(vo + 3) (0 + 1)}_1 > 0. Moreover,
since E(s¢(wo, @o) | Fi—1) = 0, it follows that E(s;(wo, ¢o)) = 0, and hence E(ho,(8)) = 0 for
any € B. All remaining conditions in Assumptions 3(iv)—(v) and Corollary 2 are satisfied.

Therefore, QLR converges to the limiting distribution given in (3.7).

C.3 Poisson autoregression

Consider the Poisson time series model y; | %#;_1 ~ Poisson(f;), where f; > 0 for every ¢ € Z.
In this case, there is no static parameter ¢, so all conditions involving ¢ and the corresponding
components in Theorem 1 can be disregarded, as noted below Theorem 1. Moreover, in
this example we allow for model mis-specification. That is, the statistician observes the
count data {y;, t = 1,...,T}, which need not follow a Poisson distribution in the dgp. We
nevertheless require that {y;, ¢ € Z} is an SE sequence with E|y|* < oo, E(y; | Fi_1) = wo,
and ]E((yt —wp)? | ﬁt_l) = Var(y;). We obtain fi,1 = w(l — 5) + Bf: + a(y: — fi) since
VIt @) = (y — f)/f and by setting Sy(f, ¢) = f. This yields the well-known integer GARCH
model of Fokianos et al. (2009). In what follows, we verify the conditions for Theorem 1. As
the verification closely parallels the Gaussian location example in Section C.1, we focus only on
the key differences.

Let 7 = R and define B = [8,,8y] C (0,1). Set ©® = {# = (a,w)" € R* : 0 <
a < 0,0 <wp, <w < wU}. The specifications of & and B ensure the positivity of f;.
Thus, Assumption 1 holds. Furthermore, Assumption 2 holds since Lemma A.1 applies and
Proposition 1 holds with ; = 4 and d, = 2. It remains to verify Assumption 3. Note
that sup(y gcoxs |d(9, B)| < Dis + Day, where Dy := supig geoxs | /(9. 8) — f:(9, 8)| and
Dy := |yi] sup(s sycoxss | 108 (fo(9,8)) —log (fi(9, )| Since fi(9, ) and f,(9, 8) are both
bounded below by wy (1 —fy) for any (9, f) € © x B, and using the inequality |log(z) —log(y)| <
|z —y|/(x Ay) for z,y > 0, we obtain Dy; < [wr(1 — By)] ™" || D1y By Lemma A.1 (which
implies D;; =5 0) and since E(log" |y:|) < oo, it follows from Straumann and Mikosch
(2006, Lemma 2.1) that Dy; ““% 0, and hence SUp(9, g)coxsldt (9, B)| %% 0. Moreover, since

log(y!) < ylog(y) for all y € Z*, we have

E(( sup |6 (f(9, 8), ¢)|>SE(!%| sup B\log(ft(ﬂﬁ))\)

9,8)€O@xB (9,8)e®@x

—HE(( sup ‘ft(ﬂ,ﬁ)O—l-E(ytlog(yt)).

9,8)€@xB
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We obtain E(supwﬁ)e@X3|ft(19, 6)|> < oo following the same steps as above (C.2). By the
Cauchy—Schwarz inequality, it follows that E(supwﬁ)e(.)x sl (fi (9, 5),q§)|> < o0, and thus
Assumption 3(i) holds. Consider Assumption 3(ii) next. By applying Jensen’s inequality to the

function f — wylog(f) — f for f > 0 and wy > 0, we obtain

E(6(fi(0.8), @) = E(wo log (£(9. 8) — fi(9. 8)) — E(log(u!))
< (wolog (E(fi(9.8)) ) — E(i9. 5)) ) — E(log(w))),

where equality holds if and only if f;(9, 5) = E(fi(9, 8)) > 0 a.s., that is, fi(9, 8) is a.s. constant.
Since s;(f, ®) = y: — fi is random, one must have a = 0 = «y, which implies f;(9,8) = w
for any 8 € B a.s. Hence, E(4(f (3, 8),¢)) < wolog(w) — w — E(log(y!)) < wolog(wo) —
wo — E(log(y!)), with equality if and only if w = wp. Assumption 3(ii) is thereby verified.
Similarly, Assumption 3(iii) is satisfied, and Assumption 3(iv) holds with Xy = Var(y;) /wi < oo,
Qs = —E(V,{f(wo, $0)) = w; ' € (0,00). Finally, we have infgep Var <Z;’°:0 £ s¢(wo, ¢0)) =
(1 —B2)~! Var(y,) > 0. Therefore, Assumption 3(v) is fulfilled. By Corollary 1, (3.7) holds
for mT provided that &q, = Var(y;) /wo + op(1). If, in addition, Var(y;) = wo, then QLR

converges to the same limiting distribution as Cj[\/]/%T by Corollary 2.

C.4 Spatial dynamic spillovers

Consider the model of Blasques et al. (2016): y: = p(f:) Wy: + @y + e, where W is an n x n
matrix of exogenous, nonrandom spatial weights, x; is a n X k matrix of regressors, ~ is an
k x 1 vector of static parameters, and e; is an n x 1 disturbance vector. Here, both n and &
are finite. The link function is specified as p(-) := ptanh(-), where p € (0, 1) is a user-specified
parameter. Note that p(f) € (—p,p) for all f € F, and that its derivatives of every order
are bounded. Furthermore, to ensure the invertibility of I,, — 5(f)W, we require the spectral
radius of W to be strictly smaller than 1. Suppose the statistician specifies that e, ~ N(0, V)
are i.i.d., where V' = diag(o?,...,02) is positive definite. Let ¢ = (y',01,...,0,)". We
have (;(f, ¢) = =27 nlog(2m) +logdet (I, — p(f)W) — 27 log det(V') — 27! (y, — p(f) Wy, —
a:t'y)TV*I (yt —p(fYy Wy, — :vt'y). Take Si(f,¢) = 1. Then the forcing variable s,(f, ¢) in
(2.1) is given by s,(f,#) = V{(f,$) = (ytTWTV‘l [y —p([)Wy, — iy —tr (Z(f)W))ﬁ(f),
where Z(f) := (I, — (/)W) ™" and j(f) = p(1 — tanh?(f)).

To study the null distribution of QL R, we assume that y, is generated as y; = p(wo) Wy, +

x40+ €, where the error term €, := (£14,...,&,,)' has zero mean, and E(stEtT | T, L%_l) =V,
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with Vy = diag(aal, e ,a&n) diagonal and positive definite. However, we do not require
g; to follow the same distribution as e;. We require that {(yt,zct),t € Z} is SE with
E(|le]|* + [|z:||*) < oo, E(/ ;) is positive definite, and E [y W TV, e, — tr (Z(cuo)Wﬂ2 > 0.
Moreover, E(e; | @, Z;—1) = 0 as., and E(e] @ (e1e)) | @i, F1o1), E((e1e]) @ (e16]) | e, Fia),
E(x, | #i-1), and E(z; ® ;| .#,_,) are all nonrandom and bounded a.s., where ® denotes
the Kronecker product. We impose a technical assumption that there exist 1 < k < i < n
such that of ;,[W Z(wo)lri + 05 ,[W Z(wo)|ix # 0, where [W Z(wp)]r; denotes the (k,i)th ele-
ment of W Z(wp), and similarly for (W Z(wp)|i. Set F = R, B = [51,8v] C (—1,1), and
O ={9=(w~y",o1,....00)" €eRF"2: o) <a<apw, <w <wy,y XY=
Y,0 <o, <o, <oy,t=1,... ,n}, where oy < 0. Verifying Assumption 2(ii) requires
tedious linear algebra. For illustration, we simply assume these conditions are satisfied, with
E(sup(ﬁﬂ)e@f)xg Hft(l)(ﬁ,ﬁ)H4> < oo and E(sup(ﬂﬂ)eegxg ||ft(2) (ﬁ,ﬁ)‘f) < oo for some € > 0,
and refer interested readers to Blasques et al. (2016) for a more detailed theoretical analysis.
We also require that the identification condition in Assumption 3(ii) holds.

It follows immediately that Assumption 1 holds for any ¢ > 0. Assumption 2(i) holds
by assumption. We now verify Assumption 3. Given the moment conditions above and the
fact that n, k < oo, it is straightforward to show that E(log+ SUP(f,9)cFxO ‘V{(f, ¢)|) < oo0.
Consequently, supy s coxs |di (9, B)| =% 0 follows from Assumption 2(ii) and Straumann and
Mikosch (2006, Lemma 2.1). Moreover, since n < oo and the spectral radius of the nonrandom
matrix W is strictly smaller than p~*, we have E(sup(ﬁﬁ)eexg | log det (I,,—h(fi(9, B))W) ‘) <
co. Using Elly||> + El|a;||* < oo, it follows that E(sup scoxs 16 (f:(9,B), @)|) < o0. We
obtain Assumption 3(i). To proceed, let e;(f,v) = (e14(f,¥), -, €ns(/f, 'y))T =y—p(f) Wy,—
.. Since E(|ler[|*+]|z]|!) < oo, it follows that E(||y.]|") < 8[1Z (wo) ['E(llz: ][0l *+ecl*) <
0o, and E(sup(ﬁﬁ)eegxg lle:(fe(9, B), 'y)||4) < oo for some € > 0. By repeatedly applying the
Cauchy-Schwarz inequality, together with the above moment conditions and the quantities
computed below, one can establish Assumption 3(iii).

Now we turn to Assumptions 3(iv)—(v). The straightforward steps are omitted. Let E, ;(:) =
E(- | @« %#-1). Observe that E, ; (V{(wo, ®0)) = [tr (Z(wO)TWT%_lEt_I(ststT)> -
tr (Z(wO)W)]ﬁ(wo) = 0. This immediately implies that E(ho(3)) = 0 for any 8 € B. More-
over, since VI (f,0) = = |y/ WV Wy, +tr ((Z(HW)") | (50)"+ |/ WV Ter(f7) -
tr (Z(f)W)]ﬁ(f), we have Q;; = [Et_1<ytTWTVO‘1Wyt> totr ((Z(wO)W)Q)} (5(w0))” €
(0, 00) which is nonrandom by assumption. One also has Xy = Et_l([Vf(wg, $0)]?) € (0,00) is
nonrandom. Since 04,(f, ¢)/0v = [V e,(f,~) and 94,(f, ¢)/00; = 0; o, 22, (f,7) — 1],
where i = 1,...,n, we have Et,l(Vf(wo, ¢0)) =0, and Xy, = E, (V?(WO,Q{)Q)V{(W(],QZ’)O))
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is nonrandom. Note that 8Vf (f, d) /6’7 = x|V "Wy, p(f) = —x] VW Z(wy)ep(f) —
x] VW Z(wo)zvop(f), OVI(f,¢)/00i = —2e(f,7)TVIPOVIW Z(wo)zeyo oi p(f) —
2e.(f,7) VIPOVIW Z(wy)e, o p(f) for i = 1,...,n. Here, P%) € REXK denotes a matrix
with zeros everywhere except for a single 1 at the jth diagonal position for j = 1,..., K, so

that ’P ) A acts as a row selector, zeroing out all but the jth row of a K x K matrix A. Then,

Ee 1 (2] Vo'W Z (wo)x:)¥o

: 2tr (PYW Z(wo)) ot
Q5 =B 1 (V! (wo, o)) = —p(wo) ( . (w0)) %

2tr ('Pﬁl")WZ(wo)) Tom
which is nonrandom. Thus, Assumption 3(iv) holds. Note that infgep Var (hot(3)) > X5y > 0,
and —E(V{?(wo, ¢y)) = diag (E(a:tT v;;lwt),zv(;l). Then, 0 < Apin( — E[VE?(wo, ¢0)]) <

Amax ( — ]E[Vf¢(wo,¢0)]) < oo because E(z/ x;) is positive definite and E||z;|> < co. We
further have Qg — £24,( - E[V??(wp, ¢0)])_1Q¢f = (g Rivo + R2) (ﬁ(wo))2, where

R =FE. . (mj Z(wO)TWT%—lva(wo)mt)
_]Etfl(wjz(wo)TWTV}flwt) [E(ijla;t)] E,_ 1(a:tV "W Z (wo)z )

o= tr () WV W ZEVi) +1r (Zow)’) — 23 [ (PEW ()]

i=1
It remains to show that Q;— .Q;f<—IE[V?¢(w0, qﬁo)])*lﬂd,f > 0. Let U; := ‘/E)_l/th and X; :=
Véil/QWZ(wo)a:t. Then Ry = Et—l(XtTXt) - ]Etfl(XtTUt) [E(UtTUtﬂ_lEtfl(UtTXt)a which

. .. . . E(UU) E1(U X))\ U'u. U'x,\ . "
is positive semidefinite because (Et—l(XtTUt) B (X7 X)) ) Tas E, ; XU, XTx, ) 18 positive

semidefinite; see Abadir and Magnus (2005, Exercise 12.33, p. 341). For Ry, let Q :=
W Z(wo) = (qij, 1 < i,j <n). Since tr (Z(wo)W Z(wo)W) = tr (W Z(wo)W Z(wy)), we have

By =tr (QTVy'QVy) +1r (@) — 2 | wr (7»59@)]2

00,i 2
= E — ki | T Qi
1<kpi<n | \OOK
‘73 2 00, 00,k i
= E - G + 2aqriGin + 2 qlk = E Qri + ' > 0.
00,k 00,i 00,i

g,
1<k<i<n \ OF

If there exist 1 < k < 7 < n such that agyiqki + Ugvqu‘k # 0, then Ry, > 0, and consequently

Qpp — 02),(— E[V??(wp, ¢0)])_1Q¢f > 0. This completes the verification of Assumption 3(v).
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Since Condition (i) holds as established above, if Condition (ii) is also satisfied, then Corollary 1
N N2
vields QLR % SUPgep ((1 )Y X j) . Under correct model specification, Corollary 2

further shows that QLR converges to the same limiting distribution.
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D Parameter estimates for the empirical example

Table D.4: Parameter estimates obtained by joint optimization of (1, 3) under the assumption of
Gaussian errors for the empirical example in Section 6, with the rows labeled “restricted” representing
the estimates under the condition o = 0.

« I6] w  intercept AVSTOXX AEonia 3M stock index yield spread
returns changes index spread
restricted 0 0.5254 0.1821 —-0.0065 —0.5153 3.1231 —6.8573 —0.0184
unrestricted —6.8555- 1074 0.9949 0.1374 —0.0073  —0.4197 3.1761 —6.7676 —0.0404
o
Germany  France Ireland Italy Netherlands Portugal Spain

restricted 0.9009 1.5150 2.3082 8.3304 0.8797 12.0016 5.3201
unrestricted 0.8663 1.4646 2.3039 8.3245 0.8669 11.9934 5.3404

Table D.5: Parameter estimates obtained by joint optimization of (¢, ) under the assumption of
Student’s t errors for the empirical example in Section 6, with the rows labeled “restricted” representing
the estimates under the condition o = 0.

« 15} w v intercept  AVSTOXX AEonia 3M stock  yield

returns changes  index spread

restricted 0 0.5028 0.1475 1.1701  -0.0124 0.1123 1.1637  -1.5749 -0.2239

unrestricted  0.0075 0.6294 0.1579 1.1768  -0.0120 0.0868 1.3502  -1.4848 -0.2351
o

Germany France Ireland Italy Netherlands Portugal Spain

restricted 0.3590 3.2060 0.5203 0.7315 3.2474 0.2927 1.7827
unrestricted 0.3628 3.2130 0.5186 0.7310 3.2815 0.2903 1.7825
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