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Abstract

We give weak conditions for a continuous time optimal control problem with one-dimensional
state space to have monotone optimal trajectories. These conditions include a concavity
condition on the Lagrange function. If that condition is changed to strict concavity, then all
optimal trajectories are monotone.

Time-autonomous infinite horizon optimal control problems with one-dimensional state spaces
have monotone optimal trajectories. As far as we know, there is only a single full paper discussing
this fundamental observation: Hartl (1987) proved it under the assumption that the problem has
a unique solution among trajectories tending to a limiting value. The proof is elementary, and
we give a paraphrase below, but the uniqueness requirement severely restricts its applicability:
general optimal control problems in one dimension may have ‘indifference’ or ‘Skiba’ states (Skiba,
1978), that are initial states to several optimal solutions.

Monotonicity of optimal trajectories is proved as an auxiliary result in a number of papers,
usually with methods that require differentiability assumptions or that are tailored to the specific
application. Ngo Van Long et al. (1997) and Askenazy and Cuong Le Van (1999) base their
arguments on the costate equation and the implied continuity of the choice variable. Wagener
(2003) also uses the costate equation, but rather relies on the Poincaré–Bendixson theorem.
Recently Akao et al. (2025), for a Ramsey growth model, gave a proof based on Jensen’s
inequality.

In our work on the structure of the set of all feedback Nash equilibria of differential games with
one-dimensional state spaces (Jaakkola & Wagener, 2024), our theoretical arguments require a
general version of this result without assumptions on uniqueness and limit behaviour, and under
weak regularity assumptions. The first theorem proved in this article provides such a result,
showing that under a natural concavity hypothesis, time-autonomous infinite horizon optimal
control problems have monotone trajectories. The second theorem shows that if concavity is
replaced by strict concavity, all optimal trajectories are monotone. Thus our results highlight
the difference between concavity and strict concavity, an aspect that is absent from the earlier
literature. The proof of the first theorem is elementary; for the second theorem, we need some
basic measure-theoretical notions.

The results are formulated in terms of assumptions on the set of trajectories over which the
objective is optimised, rather than on the restrictions which generate this set. We show how to
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verify the assumptions for a standard capital accumulation problem. Our results generalise all
previous results we have referenced above.

1 Context

We consider the problem to optimise an objective∫ ∞

0
L(x(t), ẋ(t)) exp(−rt) dt, (1)

where r > 0, over a set X of absolutely continuous functions x : [0,∞) → R, or trajectories.

Assumption 1. The set X of trajectories and the function L : R× R → R ∪ {−∞} satisfy the
following conditions.

(i) The trajectories are equi-Lipschitz: there is C > 0 such that |x(t1)− x(t2)| ≤ C|t1 − t2| for
all x ∈ X and all t1, t2 ≥ 0.

(ii) If a sequence {xk} of trajectories converges to a function y, uniformly on compact sets, then
y is also a trajectory.

(iii) For each trajectory x ∈ X, the function L(x(t), ẋ(t)) exp(−rt) is integrable on [0,∞).

(iv) The function L(x, v) is upper semi-continuous in (x, v) and concave in v for fixed x.

(v) If x is a trajectory such that x(t1) = x(t2) for some 0 ≤ t1 ≤ t2, then the functions

y(t) =

{
x(t) if 0 ≤ t < t1,

x(t+ t2 − t1) if t ≥ t1,

and

z(t) =

{
x(t) if 0 ≤ t < t2,

x(t− t2 + t1) if t ≥ t2,

are also trajectories.

The first four assumptions are standard for proving the existence of maximisers (Vinter, 2000).
As we take the existence of maximising trajectories for granted, in our situation the first
four assumptions imply that a bounded sequence of maximising trajectories has a convergent
subsequence whose limit is again a maximising trajectory.

The last assumption says that if a trajectory contains a cycle, then removing this cycle, or adding
it a second time, generates another trajectory. In the following, we use this property to construct
from a given maximising trajectory a sequence of maximising trajectories that converges to a
monotone trajectory.

In economic terms, the first assumption is significant: it rules out, for instance, capital models
where disinvestment can happen at an arbitrarily high rate. This is usually only a technical
convenience: in practice, setting C to a large value will have a similar effect.

The assumptions typically hold for time-autonomous optimal control problems with bounded
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action spaces. We give as example the classical capital accumulation problem, to maximise∫ ∞

0
u(c) exp(−rt) dt,

with r > 0 and u(c) continuous, increasing and concave, subject to

ẋ = f(x)− c− δx, x(0) = x0,

where f(x) ≥ 0 is output of production, 0 ≤ c ≤ f(x) the rate of consumption, δ > 0 the rate of
capital depreciation, and x0 the initial state. By performing the substitutions c = f(x)− δx− ẋ

and L(x, ẋ) = u(f(x)−δx−ẋ), the objective is brought into the form (1). The set X of trajectories
is given as

X = {x : x(0) = x0 and ẋ(t) ∈ [−δx(t), f(x(t))− δx(t)] a.e.} .

We assume that for x ≥ 0 the function f is continuous, bounded, and non-negative. This implies
that for all x ∈ X, the trajectories x(t) and the derivatives ẋ(t) are uniformly bounded, with the
bound depending on the initial state x0. The equi-Lipschitz property follows. The closedness
of the set of trajectories under uniform convergence on compact sets is a consequence of the
continuity of f (Filippov, 1988). As f is bounded, so is c and hence also L(x, ẋ) = u(c), implying
integrability of L(x(t), ẋ(t)) exp(−rt). Continuity of f and continuity and concavity of u take
care of the fourth assumption. The last assumption is a direct consequence of the fact that the
problem is time-autonomous.

Our main result is the following theorem, proved in Section 3.

Theorem 1. Let Assumption 1 hold. If a trajectory x maximises the objective (1), then there is
a monotone trajectory y that also maximises the objective.

The theorem implies Hartl’s result: if there is a unique maximiser, then the trajectories x and y
coincide, and x is monotone.

The conclusion of Theorem 1 is optimal in the sense that there are optimal control problems
satisfying the assumptions for which non-monotone optimal trajectories exist: take for instance
L(x, v) ≡ 0. The theorem can be strengthened if concavity is replaced by strict concavity.

Assumption 2. The function L(x, v) is strictly concave in v for fixed x.

Theorem 2. Let Assumptions 1 and 2 hold. If x is a trajectory that maximises the objective,
then it is monotone.

2 Hartl’s lemma

We first reformulate Hartl’s argument.

A section s of a trajectory x is the restriction of x to an interval [a, b] translated to [0, b− a]; that
is

s(t) = x(t− a).

We call a and b, respectively, the start time and the end time of the section. Their difference
θ = b− a is the duration of the section. The points s(0) = x(a) and s(θ) = x(b) are respectively
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the initial point and the terminal point of the section.

The value of a section s with duration θ is

J(s) =

∫ θ

0
L(s(t), ṡ(t)) exp(−rt) dt.

Two sections s1 and s2, with durations θ1 and θ2, can be concatenated if the duration θ1 of the
first section is finite and if the terminal point of the first section coincides with the initial point
of the second. The result is a new section s1 · s2 given as

(s1 · s2)(t) =

{
s1(t) 0 ≤ t < θ1,

s2(t− θ1) θ1 ≤ t.

A finite concatenation s1 · . . . · sn is a trajectory if sn is of infinite duration.

The value of a concatenation satisfies

J(s1 · s2) = J(s1) + exp(−rθ1)J(s2).

We have that

J(s0 · s1) < J(s0 · s2) if and only if J(s1) < J(s2).

A cycle is a section whose initial and terminal points coincide.

Lemma 1 (Hartl’s lemma). Let x be an optimal non-monotone trajectory. Then all trajectories
obtained by adding or removing cycles from x are also optimal.

Proof. As x is non-monotone, there are 0 ≤ a < b such that x(a) = x(b) and x restricted to [a, b]

is not constant. Hence x has a non-constant cycle c, and it can be written as

x = s1 · c · s2,

where s2 has infinite duration.

By Assumption 1(v), the section s1 ·s2, obtained from x by removing the cycle, is also a trajectory.
Assume this trajectory is not optimal. Then

J(s1 · s2) < J(s1 · c · s2)

and hence

J(s2) < J(c · s2). (2)

Consider now s1 · c · c · s2, with the cycle added to x: by Assumption 1(v) this is again a trajectory.
Equation (2) implies

J(c · s2) < J(c · c · s2)

and hence

J(x) = J(s1 · c · s2) < J(s1 · c · c · s2).
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But this contradicts the optimality of x. We conclude that s1 · s2 is optimal.

The proof for the addition of cycles is similar.

3 Concave optimisation problems have monotone maximisers

Proof of Theorem 1. We introduce the functions

x+(t) = max {x(s) : 0 ≤ s ≤ t} , x−(t) = min {x(s) : 0 ≤ s ≤ t} .

The function x+(t) is increasing, as it is a maximum taken over increasingly large sets; similarly
x−(t) is decreasing. If, for instance, x(t) is increasing, then x(t) = x+(t) for all t. We set

σ = sup
{
T ≥ 0 : x(t) = x−(t) for all 0 ≤ t ≤ T

}
,

τ = sup
{
T ≥ 0 : x(t) = x+(t) for all 0 ≤ t ≤ T

}
.

That is, [0, σ] is the largest interval containing 0 for which x is decreasing, and [0, τ ] is the largest
interval containing 0 for which x is increasing.

If either σ = ∞ or τ = ∞, the trajectory x is monotone, and there is nothing to prove. If both
are finite, assume that τ ≥ σ, the other case being similar.

Lemma 2. There is a sequence of intervals [ρk, τk] such that ρk < τk for all k, ρk, τk → τ as
k → ∞, and x restricted to each of these intervals is a cycle.

Proof. While x restricted to [0, τ ] is monotone, for every k > 0, the function x restricted to
[0, τ + 1/k] is not monotone. This implies that there are 0 ≤ t

(k)
1 < σk < t

(k)
2 ≤ τ + 1/k such that

either x(σk) < min{x(t(k)1 ), x(t
(k)
2 )} or x(σk) > max{x(t(k)1 ), x(t

(k)
2 )}.

Assume that we are in the first situation, the proof for the second situation being similar. By the
intermediate value theorem, there are numbers ρk, τk such that t(k)1 ≤ ρk < σk < τk ≤ t

(k)
2 and

x(σk) < x(ρk) = x(τk) = min{x(t(k)1 ), x(t
(k)
2 )}. Then x restricted to [ρk, τk] is a cycle. Note that,

because of non-monotonicity, we have τ < τk ≤ τ + 1/k.

If ρk → τ as k → ∞, the lemma is proved. If not, then a subsequence, which can be taken to the
sequence itself, converges to a limit ρ < τ , and x(ρk) = x(τk) → x(ρ) = x(τ). Hence x(t) = x(τ)

for all ρ ≤ t ≤ τ as x is monotone on this interval. We then redefine ρk = max{ρ, τ − 1/k} to
prove the lemma also in this situation.

As a consequence of the lemma we write

x = s
(k)
1 · ck · s

(k)
2 ,

with s
(k)
1 the restriction of x to [0, ρk] and s

(k)
2 its restriction to [τk,∞). We construct a new

trajectory by repeating the cycle ck infinitely often:

xk = s
(k)
1 · ck · ck · ck · . . .

By Assumption 1(ii), xk is a trajectory, being the limit of the sequence of trajectories x(1)k =

s
(k)
1 · ck · s

(k)
2 , x(2)k = s

(k)
1 · ck · ck · s

(k)
2 , . . . which converges uniformly on compact intervals.
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Hartl’s lemma implies that all x(j)k are optimal. Therefore all values J(x(j)k ) are the same. For
j → ∞, we have that

|J(x(j)k )− J(xk)| = exp(−r(ρk + jθk))|J(s
(k)
2 )− J(ck · ck · . . .)| = Ck exp(−jrθk) → 0,

where Ck is independent of j, and hence J(xk), as the limit of a constant sequence, equals J(x(j)k )

for all j. We conclude that xk is optimal.

We set ξ = x(τ). We moreover let ℓ be the infinite duration segment given as ℓ(t) = ξ for all
t ≥ 0, and we introduce s1 as the restriction of x to [0, τ ]. Using these sections, we construct

y = s1 · ℓ.

Lemma 3. The trajectories xk converge uniformly to the trajectory y as k → ∞.

Proof. Introduce ψk = min{ρk, τ}, and note that xk(t) = x(t) for all t ∈ [0, τk]. Hence xk(t) = y(t)

for 0 ≤ t ≤ ψk.

Take ε > 0. By continuity of x, there is δ > 0 such that |x(t)− ξ| < ε whenever |t− τ | < δ. As
ρk, τk → τ , there is K > 0 such that |ρk − τ | < δ and |τk − τ | < δ for k > K and consequently

|xk(t)− ξ| = |x(t)− ξ| < ε (3)

for all ψk ≤ t ≤ τk. In particular |ck(t) − ξ| < ε if 0 ≤ t < θk = τk − ρk. It follows that
|xk(t)− y(t)| < ε if t ≥ ψk.

We conclude that for every ε > 0 there is K > 0 such that if k > K, then |xk(t)− y(t)| < ε for
all t ≥ 0. This shows uniform convergence of xk to y. By Assumption 1(ii) it follows that y is
also a trajectory.

To show that the limit trajectory y is optimal, introduce the section x
(k)
1 = s

(k)
1 · ck defined

on [0, τk], and y
(k)
1 and ℓk as the restriction of y to, respectively, [0, τk] and [τk, τk + θk]. Then

y
(k)
1 (t) = x

(k)
1 (t) for 0 ≤ t ≤ ψk and

xk = x
(k)
1 · ck · ck · . . . and y = y

(k)
1 · ℓk · ℓk · . . . .

Setting αk = exp(−rτk) and βk = exp(−rθk), we have

J(y)− J(xk) = J(y
(k)
1 )− J(x

(k)
1 ) + αk

∞∑
n=0

βnk (J(ℓk)− J(ck)).

We estimate the two differences on the right hand side. First

J(y
(k)
1 )− J(x

(k)
1 ) =

∫ τk

ψk

(
L(y

(k)
1 (t), ẏ

(k)
1 (t))− L(x

(k)
1 (t), ẋ

(k)
1 (t))

)
exp(−rt) dt.

As the integrand is an integrable function and the length of the domain of integration tends to 0,
for given ε > 0 there is K1 > 0 such that for k > K1 we have that

|J(y(k)1 )− J(x
(k)
1 )| < ε/3.
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To estimate J(ℓk)− J(ck), we introduce the excess function

E(v) = L(ξ, 0) + pv − L(ξ, v),

where we choose p, using the concavity of L(ξ, v) in v, such that the graph of L(ξ, 0) + pv is a
support line of the hypograph of L(ξ, v), implying that E(v) ≥ 0 for all v.

Using the excess function, we obtain the equality

L(ξ, 0)− L(x(t), ẋ(t)) = E(ẋ(t))− pẋ(t) + L(ξ, ẋ(t))− L(x(t), ẋ(t)). (4)

Set M = |x(0)|+ Cτ1. The values of the trajectories xk as well as their limit y are all contained
in the compact set x([0, τ1]) ⊂ [−M,M ], and the values of the derivatives ẋk are bounded by
C. The function L is uniformly upper semicontinuous on the compact set [−M,M ]× [−C,C].
Lemma 3 and the upper semi-continuity of L then imply that for every ε > 0 there is K2 > 0

such that if k > K2, then

L(ξ, ẋk(t))− L(xk(t), ẋk(t)) ≥ −ε/3. (5)

We use the cycle condition ck(0) = ck(θk) as well as partial integration to calculate∫ θk

0
ċk(t) exp(−rt) dt = ck(t) exp(−rt)

∣∣∣θk
0

+r

∫ θk

0
ck(t) exp(−rt) dt

= ck(0) exp(−rt)
∣∣∣θk
0

+r

∫ θk

0
ck(t) exp(−rt) dt

= r

∫ θk

0
(ck(t)− ck(0)) exp(−rt) dt.

The Lipschitz condition for ck, which is the same as that for x, then implies∣∣∣∣∫ θk

0
ċk(t) exp(−rt) dt

∣∣∣∣ ≤ r

∫ θk

0
|ck(t)− ck(0)| dt ≤ Cr

∫ θk

0
t dt = Crθ2k. (6)

Using (4), (5), and (6), as well as the nonnegativity of E, we obtain for k > K2 that

J(ℓk)− J(ck) =

∫ θk

0
[L(ξ, 0)− L(ck(t), ċk(t))] exp(−rt) dt

≥ −|p|Crθ2k − (1− exp(−rθk))ε/3 ≥ −|p|Crθ2k − (1− βk)ε/3.

Using the inequality x/(1− exp(−x)) ≤ exp(x) with x = rθk, we obtain

∞∑
n=0

βnk (J(ℓk)− J(ck)) ≥ −|p|C exp(rθk)θk − ε/3.

Choose K3 > 0 such that for k > K3 the first term satisfies |p|C exp(rθk)θk < ε/3. Then we infer
for k ≥ maxiKi that

J(y)− J(xk) ≥ −αkε ≥ −ε.

Since all J(xk) are optimal, they have a common value Jmax. We have therefore found that
J(y) ≥ Jmax − ε for every ε > 0. As ε > 0 was arbitrary, we conclude that J(y) ≥ Jmax, and that
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y is optimal as well.

4 All maximisers of strictly concave optimisation problems are
monotone

Proof of Theorem 2. The idea of the proof is, assuming the existence of a non-monotone maximiser,
to construct a sequence xk with an infinitely often repeated cycle for which the excess function
E(ẋk) is bounded away from 0 on sets of sufficiently large measure. Here, as everywhere in the
following, measure is understood to mean Lebesgue measure.

Assume that x ∈ X is a non-monotone maximiser and let c be a cycle of x with start time τ and
duration θ. We write x = s0 · c · s∞.

Lemma 4. There are times t1, t2 ∈ [0, θ] and a constant µ > 0 such that c(t1) = c(t2) and
ċ(t1) > µ and ċ(t2) < −µ.

Proof. By the Weierstrass theorem, there are τ1, τ2 ∈ [0, θ] such that ξ1 = c(τ1) ≤ c(t) ≤ c(τ2) = ξ2
for all t ∈ [0, θ]. For µ > 0 introduce the sets S−, S+ ⊂ [0, θ] of times t such that c is moving
respectively slowly downward or upward, that is

S− : −µ ≤ ċ(t) ≤ 0, S+ : 0 ≤ ċ(t) ≤ µ.

Likewise, let F−, F+ ⊂ [0, θ] be the sets of times that c is respectively moving fast downward or
upward

F− : ċ(t) < −µ, F+ : µ < ċ(t).

Interpreting all integrals as Lebesgue integrals, and denoting by λ(S) the measure of a measurable
set S, we have for i ∈ {−,+} that

λ(c(Si)) =

∫
c(Si)

dx =

∫
Si

|ċ(t)| dt ≤ µλ(Si) ≤ µθ.

Choosing µ = 1
3θ (ξ2 − ξ1) we find that

λ(c(F i)) = λ([ξ1, ξ2]− c(Si)) ≥ 2
3(ξ2 − ξ1).

The sets c(F−) and c(F+) are both subsets of the interval [ξ1, ξ2] and the sum of their measures
is strictly larger than the measure of the interval: hence the sets have a nonempty intersection.
This shows the lemma.

We use the lemma to construct a sequence {xk} of optimal trajectories whose limit y has a strictly
higher value, thereby reaching a contradiction. We first give the construction of the sequence.

If A ⊂ R is a measurable set with positive measure, a point t0 ∈ A is a Lebesgue density point of
A if λ([t0 − h, t0 + k] ∩ A)/(k + h) → 1 as h, k → 0. Almost all points in a measurable set are
Lebesgue density points.

Let F̃ i denote the set of Lebesgue density points of F i: then Zi = F i − F̃ i is a measure zero
set. Moreover, as |ċ(t)| ≤ C, the map c : F → c(F ) maps measure zero sets to measure zero sets.
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Hence c(Zi) = 0, the sets c(F i) = c(F̃ i) ∪ c(Zi) and c(F̃ i) have the same measure, and we may
choose t1 and t2 such that they are Lebesgue density points of F+ and F− respectively.

Lemma 5. There are numbers h−k , h
+
k and a constant K > 0, such that for all k > K we have

(1/C)k−1 < h−k , h
+
k < (2/µ)k−1

and c(t1 + h+k ) = c(t2 − h−k ) = c(t1) + 1/k.

Proof. We introduce

η = (C + 1
2µ)/(C + µ),

with C the Lipschitz constant from Assumption 1(i), and we note that 0 < η < 1. We moreover
introduce the sets

F+
h = F+ ∩ [t1, t1 + h] and F−

h = F− ∩ [t2 − h, t2].

writing (F+
h )c and (F−

h )c for the complement of these sets in the intervals [t1, t1+h] and [t2−h, t2]
respectively.

As t1 is a Lebesgue density point of F+, we can find h0 > 0 such that

λ(F+
h )/h = λ([t1, t1 + h] ∩ F+)/h ≥ η

if 0 < h < h0. We have the inequality ċ(t) > µ, which holds if t ∈ F+, and ċ(t) ≥ −C, which
holds everywhere. They imply

c(t1 + h)− c(t1) =

∫ t1+h

t1

ċ(t) dt =

∫
F+
h

ċ(t) dt+

∫
(F+

h )c
ċ(t) dt

≥ µ

∫
F+
h

dt− C

∫
(F+

h )c
dt ≥ µηh− C(1− η)h =

µ

2
h.

Set K = 2/(µh0). Then c(t1 + h0) ≥ c(t1) + 1/K and for all k > K the equation

c(t1 + h+k ) = c(t1) + 1/k.

has a solution 1/(Ck) < h+k < 2/(µk). Similarly we find h−k such that 1/(Ck) < h−k < 2/(µk),
which solves the equation

c(t2 − h−k ) = c(t2) + 1/k = c(t1) + 1/k = c(t1 + h+k ). (7)

This shows the lemma.

Consider first the situation t1 < t2. If k is sufficiently large, then t1 + h+k < t2 − h−k . We write

c = s1 · s(k)2 · s(k)3 · s(k)4 · s5,

where s1 is the restriction of c to [0, t1], s
(k)
2 that to [t1, t1 + h+k ], s

(k)
3 to [t1 + h+k , t2 − h−k ], s

(k)
4 to

[t2 − h−k , t2], and s5 the restriction to [t2, θ]. Equation (7) shows that s(k)3 is a cycle. Removing it
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results in a new trajectory

s0 · s1 · s(k)2 · s(k)4 · s5 · s∞

which is optimal by the Hartl lemma. The concatenation ck = s
(k)
2 · s(k)4 is also a cycle, as

c(t1) = c(t2), of duration θk = h+k + h−k . We set

xk = s0 · s1 · ck · ck · ck · . . . ,

which is again optimal by the Hartl lemma.

The trajectories xk are equi-Lipschitz, as they are concatenations of segments of x. Let ℓ be the
constant segment ℓ(t) = ξ ≡ x(t1) = ck(0) of infinite duration, and set

y = s0 · s1 · ℓ.

For t ∈ [0, θk], we have

|ck(t)− ξ| = |ck(t)− ck(0)| ≤ Ct ≤ Cθk.

As θk → 0 as k → ∞, it follows that the trajectories xk converge uniformly to y.

We estimate the difference

J(y)− J(xk) = J(s0 · s1 · ℓ)− J(s0 · s1 · ck · ck · . . .) = β0
(
J(ℓ)− J(ck · ck · . . .)

)
= β0

∞∑
n=0

βnk (J(ℓk)− J(ck)), (8)

where β0 = exp(−r(τ + t1)), βk = exp(−rθk), and ℓk is the restriction of ℓ to the interval [0, θk].
Using equation (4), we obtain

J(ℓk)− J(ck) =

∫ θk

0
(L(ξ, 0)− L(ck(t), ċk(t))) exp(−rt) dt

=

∫ θk

0

(
E(ċk(t))− pċk(t) + L(ξ, ċk(t))− L(ck(t), ċk(t))

)
exp(−rt) dt

As L(x, v) is strictly concave, there is p ∈ R such that the excess function

E(v) = L(ξ, 0) + pv − L(ξ, v)

is positive definite as well as strictly concave: in particular, E(v) > 0 for all v ≠ 0 and E(v) is
decreasing for v < 0 and increasing for v > 0. Introducing the indicator function χA(t) of A, we
have for t ∈ [0, θk] that

E(ċk(t)) ≥ E(µ)χF+

h+
k

(t) + E(−µ)χF−
h−
k

(t).

Let m = min{E(µ), E(−µ)} > 0. By integrating over a cycle ck we obtain∫ θk

0
E(ċk(t)) exp(−rt) dt ≥ βk(E(µ)λ(F+

h+k
) + E(−µ)λ(F−

h−k
)) ≥ βkm(ηh+k + ηh−k ) = βkmηθk.
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We obtain that the excess function contribution to the difference (8) is bounded away from 0 by
estimating

β0

∞∑
n=0

βnk

∫ θk

0
E(ċk(t)) exp(−rt) dt ≥ β0mη/r.

As in the proof of Theorem 1, the other contributions to (8) can be bounded from below by −ε if
k is sufficiently large. On choosing ε > 0 sufficiently small and k sufficiently large, we therefore
obtain that J(y) > J(xk), contradicting the optimality of xk. We conclude that a non-monotone
maximiser cannot exist.

The proof for the situation that t2 < t1 is similar.
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