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Abstract

This paper examines the role of currency crash risk in explaining the persistent profitability

of carry trades. Focusing on the US Dollar–Turkish Lira market, we construct three forward-

looking measures of crash risk: risk reversals, crash probabilities from option-implied dis-

tributions, and jump risk from a jump-diffusion model. Using survey-based exchange rate

expectations, we separate ex ante carry premia from ex post surprises. Our results show

that higher crash risk significantly increases expected returns, indicating that investors de-

mand compensation for bearing such risk rather than arbitraging away mispricing. Shapley

decomposition attributes over 20% of the explained variance in expected carry returns to

crash risk, while balance sheet constraints and global risk aversion further reinforce premia.

A comparison of hedged and unhedged strategies reveals that 46–77% of carry returns reflect

compensation for crash exposure.

JEL codes: F13, G01, G10, G12, G15

Keywords:Exchange rates, currency crash risk, mispricing, dollar exchange rate, bank cur-

rency mismatches
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1 Introduction

Positive and persistent carry trade returns remain one of the puzzles in the macro-finance liter-

ature. A growing body of literature emphasizes the role of risk factors like currency crash risk

to explain returns to carry trade. However, there is still little empirical evidence to specifically

identify the contribution of currency crash risk to carry trade returns. In this paper we con-

struct a new currency crash risk measure based on asset pricing considerations to test to what

extent crash risk contributes to carry trade returns. We show in our analysis of the Turkish

Lira that crash risk of the investment currency is one of the main determinants of the carry

trade returns. The results are robust to the use of different currency crash risk measures. We

find empirical evidence that currency crash risk deters investors from taking sufficiently strong

foreign exchange (FX) positions to arbitrage away apparent mispricing, leading carry traders to

demand compensation for bearing currency risk in the presence of crash risk in the investment

currency.

Understanding the return dynamics of carry trade is important not only for investors en-

gaging in arbitrage but also for policy makers. Carry trade positions are highly volatile by their

nature since they are highly leveraged due to the nature of this investment strategy. Any type

of shock to the borrowing capacity of carry traders directly affects carry positions in investment

currencies. Moreover, carry trade positions are generally short term since investors try to obtain

positive returns by exploiting interest rate differentials while minimizing their exposure to crash

risk during investment periods. So there always is a risk that arbitrageurs unwind or hesitate

to roll over their short term positions just because of their currency crash risk expectations. As

a consequence carry trading leads to highly volatile capital flows and accordingly brings high

volatility to FX markets.

A substantial literature studies why the carry trade is a profitable investment strategy.

Some state that carry traders are compensated for disaster risk (Farhi and Gabaix, 2015) or

similarly, currency crash risk (Brunnermeier et al., 2008). Others claim that carry traders are

compensated for liquidity spirals arisen from funding constraints (Brunnermeier and Pedersen,

2008), illiquidity in currency markets (Mancini et al., 2013) or global imbalances (Gabaix and

Maggiori, 2015 and Corte et al., 2016). So while there are studies linking carry trade returns

to currency crash risk 1, empirical literature testing this hypothesis is limited. The studies that

do exist use skewness of observed exchange rate changes or risk reversals derived from currency

option prices as proxies of currency crash risk. However, measured skewness is a backward

looking indicator, it does not show investors’ perceived depreciation risk in the investment cur-

rency over their investment horizon going forward. And while risk reversals provide information

about perceived depreciation risk in the relevant currency, they are not sufficiently informative

to make an inference about the whole distribution of a currency’s perceived value. We aim to

fill this gap in the literature by using new measures of currency crash risk taken from the asset

pricing literature in our analysis of carry trade returns.

The empirical studies that do exist use realized carry returns to calculate deviations from

1We discuss in more detail in Section 2
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uncovered interest rate parity (UIP). However, ex post realized carry returns will generally not

have been equal to ex ante expected carry returns: obviously traders invest in this strategy

without knowing exact end-of-period exchange rates. We therefore use investors’ exchange

rate expectations so that we can isolate the carry return from any surprise in the exchange

rate and focus solely on the return investors demand to participate in carry trade strategies.

For comparison, we replicate our regressions using realized returns and report the results in

Appendix B.

Another common assumption in the literature is that covered interest parity (CIP) holds so

that researchers can derive interest rate differentials as the residual of the CIP condition using

forward and spot exchange rates. However, recent studies (e.g., Du et al. [2018]) show that the

CIP condition does not hold in many currency pairs. This means that the carry trade returns

using interest rate differentials derived from the CIP condition can be misleading. Therefore,

we use interbank cost of borrowing as benchmark interest rates in this study.

We focus on the US Dollar (US$)-Turkish Lira (TL) market, where the TL is the investment

currency and the US$ the funding currency. High interest rates in the TL compared to the US$
make the TL an attractive investment currency for carry trades. Moreover, high volatility in

the TL likely makes investors’ perceived crash risk an important factor in their investment

decision. And direct availability of currency option prices and exchange rate expectations in

the TL market enable us to conduct this analysis.

In the first part of our paper, we derive three new measures capturing currency crash risk

in the TL which make one-by-one increasing use of the information contained in FX derivative

prices. First we use skewness of implied volatilities i.e. risk reversals. A positive risk reversal

suggests that market participants expect the investment currency (the TL) to depreciate against

the funding currency. However, the risk reversals reflect only two specific points in volatility

smiles, which is not enough to derive the entire distribution of the underlying asset value since

an option’s price is not linear in the implied volatility of its underlying asset. Therefore, altough

we obtain significant and economically meaningful results using the risk reversals, we next derive

the entire empirical (risk neutral) probability distribution, again from option prices, following

Malz (2014). The risk neutral probability distributions of exchange rates are derived using the

pricing formulas of Black and Scholes (1973) as applied to FX option by Garman and Kohlhagen

(1983). Then, as a second measure, we calculate the exact perceived crash probabilities implied

by the currency option prices using those derived distribution functions. Finally, we derive the

third measure which is the jump risk in the TL derived from a double exponential jump-diffusion

option pricing model (Kou, 2002). The third measure provides an opportunity for us to capture

actual jump risk in the TL instead of perceived crash risk.

In the second part of the paper, we analyze determinants of the carry trade return and inves-

tigate whether the currency crash risk is embedded in the returns, using the above-mentioned

crash risk measures. We first analyze how crash risk affects the carry trade returns. The re-

sults suggest that higher crash risk in the TL discourages investors from arbitraging apparent

mispricing away; investors demand compensation for bearing higher crash risk. Secondly, we

capture balance sheet constraints of investors by controlling for strength of the US dollar using
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a broad dollar index. The idea behind using the broad dollar index is that the balance sheets

of domestic borrowers with dollar liabilities become weaker during the periods of broad dollar

appreciations2 due to currency mismatch in their positions. The estimations are consistent

with, although no direct proof of, the argument that investors can not take large enough po-

sitions in the TL due to binding budget constraints during broad dollar appreciation periods.

Also, they demand higher premia to invest in the carry strategy when they are constrained in

their borrowing capacity. We also investigate the association between global risk aversion and

carry trade returns. We show that the carry returns increase during periods of high global risk

aversion. Finally, we control for capital flows and liquidity conditions. But we could not find

supporting evidence that availability of funds to investors or liquidity conditions contribute to

explaining US$-TL carry trade returns.

In the last part of the paper, we derive unhedged and crash-hedged carry trade strategies

using daily data for three different maturities. Since the only difference between these two

strategies is that one of them is hedged against crash risk in the investment currency against

the funding currency and the other is not, the comparison of the returns to these two different

strategies indicates how much an investor demands for bearing currency crash risk. Currency

crash risk can explain 62 percent of carry returns on average.

The rest of the paper is organized as follows. First, Section 2 reviews the literature on

returns to carry trade. Then, in Section 3, we introduce and derive crash risk measures. Section

4 discusses the determinants of carry returns including currency crash risk. Then, we compare

the unhedged and the crash-hedged carry returns in Section 5. Finally, Section 6 concludes the

paper.

2 Related Literature

UIP implies that if the local currency interest rate in a country is higher than the other

country’s corresponding local currency rate, one should expect the high-interest currency to

depreciate against the low-interest currency. However, following the earlier studies of Tryon

[1979], Hansen and Hodrick [1980] and Fama [1984], many studies show that UIP fails to hold:

see Froot and Thaler [1990] for a survey. Part of the puzzle can be explained by another

anomaly: Eichenbaum and Evans [1995] and Scholl and Uhlig [2008] show empirically that

the instantaneous appreciation that should precede this period of gradual depreciation 3 only

occurs gradually over a significantly long period. In line with these findings in the literature, one

often observes negative rather than a positive correlation between exchange rates and interest

rate differentials. During that phase, carry traders not only enjoy high returns because of

high interest rates but also gain from any appreciation of currency in which they invest, or,

equivalently, from the depreciation of the currency in which they borrow.

In the literature, there are different explanations for this apparent arbitrage failure: appar-

ently there is insufficient arbitrage to enforce UIP. One of them is currency crash risk. In a

2Broad dollar appreciation refers to appreciation of the US dollar against a broad range of currencies.
3“Dornbusch overshooting”, cf Dornbusch [1976]
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very early study, Krasker [1980] introduces what has since become known as the peso problem

in the analysis of the Mark-Pound exchange rate during the German hyperinflation period. He

shows that the forward market participants perceive that profit would be unusually large in

the runup to a drastic event that only occurs with a small probability. He demonstrates that

the presence of currency crash risk invalidates the standard test statistics used to empirically

test the efficiency of forward markets. Incorporating the possibility of rare disasters, Farhi and

Gabaix [2015] propose a richer model for exchange rate determination than the original Dorn-

busch overshooting model in Dornbusch [1976]. They show that riskier countries have higher

interest rates so as to compensate for exchange rate depreciation risk, and offer that as an

explanation of the well known forward premium puzzle. They also show that the countries with

high interest rates also have high crash risk in their currencies since values of those currencies

are expected to drop much more during a possible global disaster. As a result, investment in

high interest rate currencies brings positive carry returns as long as the crash does not actually

occur, and for more than the expected depreciation once the crash takes place, to compensate

for bearing disaster risk. Brunnermeier et al. [2008] empirically support this prediction and

argue that crash risk discourages speculators from taking sufficiëntly large positions to enforce

UIP.

Another set of explanations of UIP failure depends not so much on a risk premium for crash

risk but on liquidity shortages in currency markets. Brunnermeier and Pedersen [2008] intro-

duced the concept of liquidity spirals to explain positive average return and negative skewness

of investments of speculators. Liquidity spirals erupt when speculators, after hitting a funding

constraint, close out their positions which then leads to a price drop which in turn further

triggers increasing funding constraints of speculators who then close out more positions and so

on. In a theoretical framework, Brunnermeier and Pedersen [2008] show that shocks tightening

liquidity conditions of speculators are amplified but positive shocks to funding constraints are

not. The positive average return on speculators’ investments then constitutes a liquidity risk

premium and negative skewness of returns is due to the asymmetry in shock amplification.

Brunnermeier et al. [2008] use global risk appetite as an indicator of tightness of global

liquidity constraints. They show that when carry traders’ risk appetite declines (as indicated

by higher levels of VIX4), they unwind their positions in high interest rate currencies with, as

a result, an increase in the price of insurance against crash risk and lower carry returns. They

find that lower risk appetite predicts higher returns for high interest rate currencies. After they

control for risk appetite, they obtain a less significant impact of interest rate differentials on

carry returns which explains the apparent failure of UIP. Mancini et al. [2013] provide additional

empirical support for liquidity spirals. They reveal that high interest rate currencies appreciate

in a high liquidity environment while low interest currencies tend to depreciate. They argue

that the different liquidity risk exposures of investment and funding currencies contribute to

deviations from UIP.

Gabaix and Maggiori [2015] introduce an exchange rate model with imperfect financial

4VIX is the implied volatility calculated using S&P500 index options. VIX is generally used as a market based
proxy for global risk appetite (Illing and Aaron [2005]).
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markets. Carry traders earn positive returns when there are negative shocks to the financial

system which lead to a decline in risk bearing capacity of financial intermediaries. In this way,

carry traders are exposed to financial conditions and therefore demand a currency risk premium

induced by their limited risk bearing capacity. Their model introduces global imbalances as a

separate risk factor in currency risk premia: net external debtor countries’ currencies have

positive carry trade return. Corte et al. [2016] also show that net debtor countries offer a

currency risk premium to compensate the loss of speculators since their currencies depreciate

during global risk aversion periods.

Caballero and Doyle [2012] document that exchange rate options provide a cheap form of

systemic insurance which leads to large returns on carry trade strategies with hedging. Although

we do not focus on deviations from CIP, the factors which hinder the arbitrage opportunities

from being exploited can also affect carry trade returns. Therefore, the literature on the role

of limits-to-arbitrage in explaining deviations from CIP is also relevant. A recent study by

Du et al. [2018] shows that deviations from CIP can be explained by constraints on financial

intermediaries and international imbalances in investment demand and funding supply across

currencies. Specifically, they analyze how capital requirements and other banking regulations

such as the restrictions on proprietary trading and the introduction of liquidity coverage ratios

affect excess returns compared to those implied by CIP. They also discuss limits to arbitrage

of hedge funds, money market funds and foreign currency reserve managers and corporate

issuers. Cenedese et al. [2019] particularly investigate the role of the maximum leverage ratio

introduced by the Basel Committee after the global financial crisis on currency mispricing. They

find a significant relation between the leverage ratio of dealer banks and recent violations of

CIP. Using contract-specific data, they show that dealers with tighter balance sheets (higher

leverage ratio’s) demand higher premia from their clients.

Another strand of the literature focuses on slow moving capital into assets whose prices are

below their fundamental values. The main argument is that price of an asset can sustainably

deviate from its fundamental value because of limited availability of investor capital. Mitchell

et al. [2007] discuss the role of slow moving capital in the convertible bond market in 2005 and

arbitrage through merger in the stock market crash of 1987 in the US. They show that when

external shocks reduce the capital of liquidity providers, turning them into liquidity demanders,

it takes more time to restore equilibrium in a dislocated market. In an asset pricing framework,

Duffie [2010] shows that asset prices can be distorted due to capital moving slowly to the

relevant markets. He shows that the extended period of search for appropriate counterparties

in the over-the-counter markets can be a source of delayed trades. Duffie [2010] also emphasizes

the role of limits on capital market intermediation due to depleted balance-sheet capacity of

the intermediaries: limited capacity of intermediaries leads to asset price distortions.

Finally, our paper relates to the literature on measuring currency crash risk. In the literature,

only mesasured skewness and risk reversals are used to capture currency crash risk. Although

skewness of realized exchange rate changes can be used to measure currency crash risk, it is

a backward looking indicator. There are other methods to measure perceived currency crash

risk and exact jump risk in currencies. For example, Olijslagers et al. [2019] use a variety of
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approaches to extract crash risk measures for the Euro from FX option prices to analyze the

impact of unconventional monetary policy measures of the European Central Bank (ECB)

on crash risk of the Euro. Specifically, they use three main measures: risk reversals, the

crash probability implied by the option-price-derived risk neutral probability distribution and a

measure derived from an explicit jump-diffusion option pricing model. Although risk reversals

are suggestive, they are sometimes hard to interpret because of the non-linearity of vega, the

sensitivity of option prices with respect to volatility. Therefore we use two alternative measures

to measure crash risk in the US$-TL market: a crash risk measure calculated as the integral

over the left tail of the risk neutral probability distribution derived from option prices at various

degrees of moneyness and a jump risk measure derived from an explicit mixed jump-diffusion

risk model.

3 Crash Risk Measures

In this section, we introduce the three different measures to capture currency crash risk: the

risk reversal, the crash probability derived from the entire risk neutral probability distribution

and the jump risk implied by an explicit jump risk model with exponentially distributed jump

sizes and Poisson arrival rates, like in (Kou [2002] and Olijslagers et al. [2019]).

3.1 Risk Reversal

The risk reversal is the difference between two implied volatilities derived respectively from

an out-of-the-money (OTM) call and from an OTM put option at the same delta (δ):

RRδ = σC
δ − σP

δ (1)

We use a standard foreign currency option pricing model (see Garman and Kohlhagen [1983])

to derive the implied volatilities from observed option prices. The technical details are in

Appendix A.1. The risk reversal measures the skewness of the implied distribution and can

therefore be seen as an indicator of currency crash risk. When the risk reversal is positive, the

implied volatility of an OTM call option is larger than for an OTM put option with the same δ

(Figure 1). If the underlying distribution of exchange rate movements is symmetric, the implied

volatilities are the same when evaluated for the same δ and the risk reversal then is zero. When

the underlying asset is a foreign currency, a positive risk reversal can be interpreted as more

market participants betting on appreciation of the foreign currency (equivalently, depreciation of

the domestic currency) than depreciation (equivalently, appreciation of the domestic currency).

Hence, the risk reversal can be used as an indicator for the crash risk of the domestic currency.

The data for risk reversals for the US$-TL options with different maturities are available in

Bloomberg for four different delta values (10, 15, 25 and 35). Figure 2 displays the 10-delta risk

reversal derived from 2-week US$-TL currency options between 2006 and 2019. The positive

risk reversal throughout this period shows that the market participants expect depreciation

more than appreciation in the TL against the US$. The rise in the risk reversal corresponds to
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Figure (1) Graphical Illustration of Risk Reversal and Butterfly

higher expected crash risk within two weeks for the TL against the US$.

Figure (2) Risk Reversal, 2-Week 10-Delta US$-TL currency options
Source: Bloomberg
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3.2 Currency Crash Risk derived from the Risk Neutral Probability Distri-

bution (RNPD)

The risk reversal represents two specific points in the volatility smile. We can get a sharper

focus on the currency crash risk by deriving the entire RNPD and using it to assess tail risk

specifically. Although the data for implied volatilities for FX options are available for a long

period of time, deriving RNPDs for underlying asset values using available data requires a

lot of processing and different steps specific to different types of options and data structures.

We explain how we derive RNPDs for the TL in Appendix A.2. After the derivation of daily

RNPDs, we use them to compute currency crash probabilities by integrating the RNPD over

the left tail.

We downloaded the daily US$-TL 1-month currency option data from Bloomberg for the

period 2006 January - 2019 August. Although there are data available for 2004 and 2005, the

quality and frequency of the data are not enough to include those years into the analysis. The

data includes implied volatility of the at-the-money (ATM) option (σATM ), the risk reversal

and the butterfly 5 at deltas 10, 15, 25 and 35 (RR10, RR15, RR25, RR35, BF10, BF15, BF25,

BF35). Also, we downloaded spot TL/US$ exchange rates and 1-month interbank interest rates

for Turkey and the US from FactSet.

Figure 3 shows the derived RNPDs for TL against US$ between 2006 and 2019 August

using 1-month US$-TL currency options as shown in Equation 38 in Appendix A.2. Using the

derived RNPDs, we can obtain the cumulative RNPDs (CRNPDs) as shown in Equation 39 in

Appendix A.2. The CRNPDs allow us to compute tail risk for different crash probabilities. We

define an x% crash probability in the TL at date t as the probability that the TL depreciates

x% or more against the US$ in the following month6 (Equation 3). Figures 4 to 6 shows the

calculated crash probabilities in the TL against US$ during the sample period.

CrashProbx%t = 1− CRNPDt

(
St

(
1 +

x

100

))
(3)

3.3 Currency Options Pricing Incorporating Jump Risk

For many FX return distributions some of the assumptions made sofar do not hold. First,

the Black-Scholes Model assumes that returns are normally distributed but empirically returns

often have an asymmetric leptokurtic distribution (Kou, 2002), i.e., i.e. the return distribution

is left-skewed with a higher peak and fatter tails than the normal distribution. Second, the

Black-Scholes Model assumes that the volatility is constant across strike prices; obviously non-

zero risk reversals are at variance with that assumption. In fact the option data show that

implied volatility is a convex function of strike prices.

5Butterfly:

BFδ =
σC
δ + σP

δ

2
− σATM (2)

6Since we use 1-month currency option prices, the implied probability by the RNPD shows the perceived
exchange rate change for the next month.
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Figure (3) Risk Neutral Probability Distribution for TL Against US$
Source: Bloomberg and Authors’ calculation

Figure (4) Crash Risk in the TL (2 and 5 percent)

Source: Bloomberg and Authors’ calculations

In order to address these problems, Kou [2002] proposes a double exponential jump-diffusion

model. The introduction of jump risk fits the presumption of a potential crash much better. And

the model allows for analytical expressions of the option prices. Moreover, the distributional

assumptions of the model fit the asymmetric leptokurtic features of empirical returns. Therefore
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Figure (5) Crash Risk in the TL (10 and 15 percent)

Source: Bloomberg and Authors’ calculations

Figure (6) Crash Risk in the TL (20 and 25 percent)
Source: Bloomberg and Authors’ calculations

we use the Kou Model to create our third currency crash risk measure to calculate daily the

exact jump risk in the currency.

Under the Kou Model, the asset price at time t has the dynamics given in Equation 4.

W(t) is a standard Brownian motion and N (t) is a Poisson process with arrival rate λ. {Vi}
is a sequence of independent identically distributed non-negative random variables such that

Y = log(V ) has an asymmetric double exponential distribution with the following density:
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dS(t)

S(t−)
= µdt+ σdW (t) + d

(N(t)∑
i=1

(Vi − 1)

)
(4)

fY (y) = pη1e
−η1y1y≥0 + qη2e

η2y1y<0 η1 > 1, η2 > 0 (5)

where p ≥ 0 represents the probability of an upward jump and q ≥ 0 represents the probability

of downward jump, while p+ q = 1. 1y≥0 is a zero-one index equal to one if y ≥ 0 (an upward

jump); similarly, 1y<0 equals 1 if y < 0 (a downward jump). η1 and η2 are parameters for

upward and downward jumps respectively. Since Y = log(V ), we can re-write the distribution

of Y as follows:

log(V ) = Y
d
=

ξ+, with probability p

ξ−, with probability q
(6)

where ξ+ and ξ− are exponential random variables with mean 1
η1

and 1
η2

respectively.

Solving the stochastic differential equation in 4 leads to the following asset price formula:

S(t) = S(0)exp

{
(µ− 1

2
σ2)t+ σW (t)

}N(t)∏
i=1

Vi (7)

We assume that N (t),W (t) and Y are independent, and that the drift µ and the volatility

σ are constant. In this set-up, (V − 1) is the percentage change of the asset price after a jump

and E(V ), the expected value of V , equals:

E(V ) = E(eY ) = q
η2

η2 + 1
+ p

η1
η1 − 1

, η1 > 1 and η2 > 0 (8)

To obtain the daily jump risk in domestic currency we need both the probability of a jump

and the expected jump size. We make some simplifying assumptions. First, we assume that

only one jump (n = 1) can take place during the duration of a currency option. Since we use 1-

month, 3-month and 6-month US$/TL currency option data, this assumption implies that only

one jump can occur within a given six-month period. Second, we assume that only an upward

jump can take place, i.e. by assumption the TL can only jump in a depreciation direction

against the US$. This implies that p = 1 and q = 0.

Under these assumptions the expected jump size (E(V − 1)) and the probability of having

no-jumps (n = 0 ) during the duration of an option (π0) are given in Equations 9 and 10,

respectively:

E(V − 1)|q=0,p=1 =
η1

η1 − 1
− 1 =

1

η1 − 1
(9)

π0 = P ∗(N(τ) = 0
)
= e−λτ (10)

Therefore, the probability of having one jump (n = 1 ) during the duration of an option

becomes:
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π1 = 1− π0 = 1− P ∗(N(τ) = 0
)
= 1− e−λτ (11)

We define JumpRiskt, the jump risk at time t in a currency, as the product of the probability

of a jump (π1) and the expected jump size (E(V − 1)) given that one occurs in equation 12

below:

JumpRiskt = Et(V − 1) · π1,t =
1

η1,t − 1

(
1− e−λtτ

)
(12)

Finally we need to estimate the parameters σ, λ and η1. Olijslagers et al. [2019] show that

distinguishing between diffusion risk and jump risk is difficult: several combinations of σ and

λ give a comparably good fit so we have an identification problem. Therefore we use historical

time series data of the pre-crisis period to fix the volatility of the diffusion process and find

σ equal to 0.141171; this is the average annualized volatility of the pre-crisis period between

2002 and 2007. In Appendix A.3, the call price equation adapted to currency options is derived

explicitly we we explain how λ and η1 are estimated. This leads to the series for JumpRiskt

shown below in Figure 7:

Figure (7) Jump Risk in the TL against the US$ Implied by the Kou Jump-Diffusion Option Pricing Model
Source: Bloomberg, FactSet and Authors’ calculations

3.4 Major Events and Crash Risk Measures

Figure 2 to 7 show that all three crash risk measures react to both global and local events

which might have an effect on the TL. We see peaks in the crash risk measures during the

global financial crisis from December 2007 until the end of US recession, June 2009. And

another crash risk jump in May 2010 after the approval of series of constitutional amendments

by the President of Turkey. Later on, we observe high levels of crash risk around September
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2011 due to diplomatic tensions between Turkey and Israel.

After the ECB’s then president Mario Draghi’s famous “whatever it takes” speech in June

2012, the crash risk measures decline and stay at very low levels, presumably because of the

easing of monetary policy in the Euro Area that followed. This low-crash-risk period lasts until

the speech of Federal Reserve Chairman Ben Bernanke in May 2013 in which he announced that

the Federal Reserve System (Fed) is likely to start slowing the monthly pace of bond purchases

later in 2013. We observe some jumps in the crash risk measures after the monetary policy

tightening signals in the US. In the remainder of that year, some increases in the crash risk

measures are observed in response to domestic political developments.

The rest of the period includes several elections and re-runs. It is clear that investors see the

elections as a risk for the TL: the crash risk increases during the period of political uncertainty.

In the summer of 2018, the crash risk measures reach their peak after the presidential elections

and the emergence of diplomatic tension between the US and Turkey. It is apparent that the

three crash risk measures respond in intuitive ways to both domestic and foreign events between

2006 and 2019 that are plausibly of relevance for crash risk in the TL. We conclude that they

apparently are good proxies for the currency crash risk in the TL.

4 Carry Trade Return and Crash Risk

4.1 Carry Trade Returns

A carry trade strategy involves borrowing in low interest currencies to fund investments

in high interest currencies. We look at the US$-TL strategy and analyze the role crash risks

play in such strategies. There are several attractive features of such a US$-TL carry trade

strategy. The first is the consistently positive interest differential: TL always offers higher

interest rates than US$ returns on comparable instruments (Figure 8). The persistently high

interest rate differential between the TL and the US$ makes the TL an attractive candidate

investment currency for a carry trade strategy. Second, Turkey follows a floating exchange rate

regime since the 2001 economic crisis in Turkey. Due to high volatility in the TL, carry traders’

perceived crash risk is likely to play an important role in their investment decision. If investors

actually require a currency crash risk premium, it will reveal itself in the US$-TL investment

strategy. Hence, measuring currency crash risk in the TL allows us to analyze the role of

crash risk in carry trade returns. Also, the availability of detailed and relatively high frequency

currency options data since 2006 allows us to derive all the different crash risk measures we have

discussed in the previous subsections. Finally, direct measures of investors’ expectations about

TL exchange rate developments exist which enables us to calculate expected carry returns.

Let rTL
t−1,t and rUS$

t−1,t denote the risk-free interest rate between t − 1 and t in the TL and

US$, respectively. The spot exchange rate St is expressed in units of TL per US$ at time t , so

an increase in St indicates a depreciation of the TL against the US$. Et−1(St) represents the

exchange rate expected at t − 1 to prevail at t . Equation 13 shows ECRt , the expected carry

trade return at time t , as deviation from the UIP condition.

An investor borrowing 1 US$ at time t − 1 ows (1+ rUS
t−1,t) US$ at time t . But the investor
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Figure (8) 1-Month Interbank Cost of Borrowing in the TL and the US$
Source: FactSet

can alternatively convert his/her 1 US$ into St−1 TL at timet − 1 , own
(
1 + rTL

t−1,t

)
St−1 TL at

time t and convert that amount back into dollars at the exchange rate at time t for an overall ex

post actual return
(
1+ rTL

t−1,t

)St−1

St
US$. But the investor at time t − 1 does not know the value

of the exchange rate at time t , so s/he has to take the investment decision based on the expected

value of the exchange rate at t − 1 , which gives the following expression for the expected carry

trade return:

ECRt =
(
1 + rTL

t−1,t

) St−1

Et−1(St)
− (1 + rUS$

t−1,t) (13)

The general approach in empirical carry trade return analysis is to assume that speculators

have rational expectations and substitute the actual exchange rate (St) instead of the usually

unobservable expected exchange rate (Et−1(St)) when calculating the carry returns used in

empirical analysis. Call the carry return using actual exchange rates RCR, for Realized Carry

Return:

RCRt =
(
1 + rTL

t−1,t

)St−1

St
− (1 + rUS$

t−1,t) (14)

Using actual rates to proxy for expected rates implies that the Realized Carry Return RCR

is used as a proxy for ECR. But since the actual exchange rate is not known at time t − 1 ,

this assumption introduces a measurement error in Equation 13.

However in this study, we do not need to rely on this simplifying assumption and so can avoid

this measurement error: we use the Central Bank of Turkey’s (CBT) Survey of Expectations

as a direct measure of investors’ exchange rate expectations. The CBT conducts the survey

monthly and monitors expectations of market participants and experts about financial markets
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and real sectors 7. In questionnaires, the participants are asked about their expectations of the

US$ rate at the end of the current month, at the end of the year and at the end of the next

12 months in the interbank foreign exchange market. Since carry trades are assumed to have a

short-term investment horizon, we use the measure of end-of-month exchange rate expectations,

assuming that the carry investment takes place at the survey day and is held until the end of

corresponding month (Figure 9). The average investment horizon between 2007 January and

2019 August is 15 days.

Figure (9) Investment Timeline: For each survey date, the expected carry return is calculated assuming that
carry investment takes place at the survey day and held until the end of corresponding month. In this strategy,
TL/US$ expectation of participants at the end of the month is taken into account. The survey dates are not
exactly at the 15th day of each of month but the investment horizon between 2007 January and 2019 August is
15 days on average.

Figure 10 shows the annualized expected carry return of this 15-day investment strategy

over the period from January 2007 until August 2019. The average expected carry return is

8.37 percent over that period and is statistically different from zero and positive8.

Figure 11 shows histogram and kernel density representations of both the expected and

realized carry returns over the sample, period. The histograms and Kernels show that both

the expected and realized carry trade return distributions have positive skew: the skewness of

the expected and realized carry trade return distributions are 3.1 and 1.05 respectively: the

expected carry return distribution has a higher skew. The only difference between the expected

and realized carry returns is the difference between exchange rate expectations and the actual

exchange rate realizations, we can interpret the higher positive skewness in the expected carry

return distribution to imply that carry trade investors are likely to demand risk premia for the

crash risk in the TL.

The expected carry return has higher skewness and a lower mean and median compared to

the realized carry return. This suggests that investors’ exchange rate expectations about the

TL are higher (less valuable TL) on average compared to the realized ex post exchange rate

over the sample period; so investors are pessimistic about the value of TL. The right skew is in

the same direction: apparently investors lean more towards higher than to lower than expected

depreciation in the TL − US rate. Therefore, carry trade investors are likely to demand risk

premia for the crash risk in the TL.

7The survey frequency before 2013 was twice monthly. Since 2013, the survey has been released once in a
month.

8The standard deviation is 0.519 for 224 observations so the t-value is 2.415.
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Figure (10) Expected Carry Return: This figure shows annualized expected carry return defined in Equation
13 using 1-month interbank offered cost of borrowing in the TL and the US$ for an 15-day investment strategy.
The carry return for each period is calculated assuming the investment occurs at the survey date and held until
the end of the corresponding month. The average investment horizon is 15 days. The returns are expressed as
fractions. Source: CBT, FactSet and Authors’ calculations

((a)) Histogram ((b)) Kernel Density Estimate

Figure (11) Histogram and Kernel Density Estimate of Realized and Expected Carry Returns: This figure
shows histogram and kernel density estimates of realized and expected carry returns of the US$-TL carry strategy.
Realized carry return is calculated as shown in Equation 14 using the realized exchange rate St instead of expected
exchange rate. Source: CBT, FactSet and Authors’ calculations

4.2 Expected Carry Returns and Currency Crash Risk

We next consider the relation between the expected carry return and the currency crash

risk measures using the time series data discussed in the earlier sections. We expect to see that

higher crash risk in the TL against the US$ is positively correlated with the expected carry

return since investors can be expected to demand compensation via a risk premium for the

currency crash risk they are exposed to.

We regress expected carry returns on changes in the three different crash risk measures one
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by one: the risk reversals (Section 3.1), the currency crash probability implied by the integral of

the left tail of the RNDP (Section 3.2) and the explicit jump risk measure derived from the Kou

Model (Section 3.3). The regression specification is given by Equation 15 below. ECRt shows

the expected carry return between time t-1 and t. The variable ∆CCRt indicates changes

in currency crash measures: change in 10-delta 2-week risk reversal in the US$-TL options

(∆RRt), the change in the risk of a TL crash of 20% or more (∆CP20
t ) and jump risk in the

TL (∆JumpRiskt).

ECRt =α1 + α2∆CCRt−1 + α3∆BDIt−1 + α4Debt&EquityF lowt−1

+ α5V IXt−1 +∆BidAskSpreadt−1 + ut
(15)

We also include potential drivers of the carry returns as control variables to avoid omitted

variable bias. Avdjiev et al. [2019] and Du et al. [2018] show that limits on bank leverage play

an important role in the failure of CIP. During binding balance sheet constraints, investors are

not able to borrow at the lower interest rate and lend out at the higher interest rate to exploit

any arbitrage opportunities. Although our focus is not on the violations of the no-arbitrage

conditions implied by violations of CIP, binding balance sheet constraints of banks are likely to

play a role for UIP violations too. Bruno and Shin [2015] show that after an appreciation of the

US dollar, domestic borrowers’ balance sheets become weaker because of currency mismatch.

This leads to an increase in the global bank’s perception of riskiness of domestic borrowers

and a decrease in domestic bank lending capacity. Therefore, the supply of available US dollar

credit to domestic borrowers declines after appreciation of dollar9. We expect to observe that

a stronger US dollar leads speculators to demand higher risk premia when investing in carry

strategies with higher carry trade returns as a consequence. In order to capture the strength

of dollar, we use a US trade weighted nominal effective exchange rate broad dollar index as a

proxy of limits on bank leverage due to exchange rate related debt overhang. The data are from

the Federal Reserve Board Statistics. ∆BDIt denotes changes in the broad dollar index (BDI):

an increase in the BDI indicates appreciation in the US$ against all trading partners’ currencies

in weighted-average terms.

Several authors have identified slow-moving capital as a cause of temporary mispricing in

financial markets (Fleckenstein et al. [2014], Brunnermeier and Pedersen [2008] and Duffie

[2010]). According to this hypothesis we expect to see that net larger inflows into Turkey before

the investment date have a negative impact on expected carry returns and vice versa. We

use weekly net debt and equity flows into Turkey provided by the Institute of International

Finance.10 We do not take capital flows in the same week as the investment but look at the

prior week’s net inflow, which should also avoid endogeneity bias problems. Debt&EquityF lowt

equals the net debt and equity inflows into Turkey in million US$ during one week prior to time

9For detailed discussion of the mechanism between strength of the dollar and CIP deviations see Avdjiev et al.
[2019] and Bruno and Shin [2015].

10The debt and equity flows to Turkey in daily frequency are not available. Therefore, we use the data in
weekly frequency.
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t.

Brunnermeier et al. [2008] and Brunnermeier and Pedersen [2008] also suggest a different

reason for the apparent persistence of unexploited investment opportunities. Since speculators

make investments on behalf of their clients, there might be a principal agent problem leading

to limited arbitrage. Speculators are more likely to unwind their carry positions during periods

with losses, higher margins, higher risk aversion and capital redemption. These funding con-

straints are likely to be more binding during periods of higher risk aversion or less risk appetite.

Thus we expect expected carry returns to be higher in periods of lower global risk appetite since

it then becomes harder to borrow in foreign markets (in the US$) to invest in domestic markets

(in the TL). In order to capture these risk appetite related funding constraints of investors on

the expected carry returns, we include the Chicago Board Options Exchange (CBOE) equity

volatility index V IXt which is the implied volatility calculated from S&P500 index options.

The VIX is widely believed to capture risk appetite as it consistently exceeds the actual implied

volatilities derived from the same basket (cf Bekaert and Hoerova [2014]). We obtain the data

using FactSet. Higher VIX values imply lower global risk appetite.

Finally any excess return in the US$-TL market can also be due to a liquidity premium.

Mancini et al. [2013] show that high interest currencies have a positive exposure to liquidity

risk and those currencies tend to appreciate during better liquidity periods. On the other hand,

low interest rate currencies offer insurance against liquidity risk so that those tend to depreciate

during higher liquidity periods. In order to control for the effect of liquidity conditions, we

include the bid-ask spread ratio (BidAskSpreadt) in the spot exchange rate (the difference

between ask and bid price in the spot exchange rate divided by the mid-exchange rate (Equation

16)).

BidAskSpreadt =
SAsk
t − SBid

t

SMid
t

(16)

Higher bid-ask spreads in the TL/US$ rate imply higher trading costs so higher illiquidity

in the market. We expect investors to be compensated by higher returns if there is higher

illiquidity.

Table (1) shows our first set of regression results, with the risk reversals as a measure of crash

risk (∆RRt−1). We regress the expected carry return (ECRt) on ∆RRt−1 and other control

variables. The coefficients of ∆RRt−1 are positive and significant across all specifications. The

estimated coefficient of ∆RRt−1 in column (1) suggests that a 1-unit increase in the change in

the risk reversals leads to a 13.1-percentage-point increase in the expected carry return. When

we include all other control variables in column (5), we find that a 1-unit increase in change in

the risk reversals is associated with a smaller but still sizable and significant 8.12-percentage-

point increase in the expected carry return. Also, the change in the broad dollar index has a

significant and positive coefficient. It suggests that increase in the strength of the US dollar leads

to higher expected carry returns, which is consistent with our prediction that an appreciating

US$ will trigger increased risk premia on carry trades. The debt and equity flows and the bid-

ask spread do not enter the regression significantly but the estimated coefficient for the VIX
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index is positive and significant. This suggests that an increase in V IX, which indicates lower

risk appetite globally, is associated with higher expected carry returns: apparently investors

demand a higher premium during periods of high risk aversion. Equivalently, it suggests that

lower global risk aversion makes it easier to borrow from foreign markets and invest in domestic

markets so it is associated with lower expected carry returns. But this regression does not

find evidence for the slow moving capital hypothesis and there is no significant impact of our

measure of liquidity: neither Debt&EquityF lowt nor BidAskSpreadt enter significantly .

Table (1) Regression of Expected Carry Returns on the Risk Reversal and Other Control Variables:

(1) (2) (3) (4) (5)

∆RRt−1 0.131∗∗∗ 0.0840∗∗∗ 0.0829∗∗∗ 0.0798∗∗∗ 0.0812∗∗∗

(3.70) (3.50) (3.54) (4.24) (4.39)

∆BDIt−1 0.132∗∗∗ 0.127∗∗∗ 0.106∗∗∗ 0.105∗∗∗

(4.34) (4.31) (4.58) (4.36)

Debt&EquityFlowt−1 -0.0000472 -0.0000321 -0.0000347
(-1.06) (-0.81) (-0.92)

VIXt−1 0.0172∗∗∗ 0.0174∗∗∗

(3.38) (3.49)

BidAskSpreadt−1 -27.71
(-0.62)

Constant 0.0842∗∗∗ 0.0731∗∗∗ 0.0765∗∗∗ -0.286∗∗∗ -0.267∗∗

(2.72) (2.64) (2.66) (-2.91) (-2.25)

N 223 223 223 223 223
adj. R2 0.213 0.325 0.325 0.446 0.446

This table reports summary statistics for the regression of the expected carry return (ECRt) on the change in
the risk reversal (∆RRt−1). ECRt shows the expected carry return defined in Equation 13. ∆RRt−1 denotes
change in the risk reversal for 2-Week, 10-delta US$-TL options. An increase in the risk reversal implies higher
hedging cost and larger crash risk in the TL. ∆BDIt−1 denotes changes in the US trade weighted nominal
effective exchange rate broad dollar index and an increase in the index shows appreciation in the US$ against all
trading partners’ currencies. Debt&EquityF lowt−1 shows the net debt and equity inflows to Turkey in million
US$ during one week prior to time t. V IXt−1 is the implied volatility calculated using S&P500 index options.
Higher VIX values imply lower global risk appetite. BidAskSpreadt−1 is defined as a ratio of bid-ask spread
in spot exchange rate divided by the mid-exchange rate (Equation 16). t-statistics are in parentheses and are
calculated using heteroscedasticity consistent standard errors. * (p < 0.10), ** (p < 0.05), *** (p < 0.01).

We repeat the same regression but now using the currency crash risk measure implied by

the integral of the left tail of the implied RNPDs (∆CR20
t−1). The regression results are given

in Table 2. The estimated coefficients for the change in the crash probability ∆CR20
t−1 are

again positive and significant across all specifications. The estimated coefficient of ∆CR20
t−1 in

column (1) indicates that a 1-percentage-point increase in the change in the crash probability

integral leads to 15.2-percentage-point increase in the expected carry return. Including the other

control variables reduces that coefficient to a still significant 11.9-percentage-point increase in

the expected carry return. Like in Table 1, both ∆BDIt−1 and V IXt−1 enter the regression

significantly but neither Debt&EquityF lowt nor BidAskSpreadt enter significantly.

Finally, Table 3 shows the results of the regression in which the change in the jump risk

implied by the Kou Model (∆JumpRiskt−1) is used as a currency crash risk measure. The esti-

mated coefficients for ∆JumpRiskt−1 are again positive and significant across all specifications.

The estimated coefficient of ∆JumpRiskt−1 in column (1) suggests that a 1 point increase in

the change in jump risk leads to a 19.68-percentage-point increase in the expected carry return.
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Table (2) Regression of the Expected Carry Return on Crash Probability and Other Controls

(1) (2) (3) (4) (5)

∆CP20
t−1 0.152∗∗ 0.109∗∗ 0.109∗∗ 0.115∗∗∗ 0.119∗∗∗

(2.45) (2.41) (2.44) (3.29) (3.42)

∆BDIt−1 0.157∗∗∗ 0.150∗∗∗ 0.126∗∗∗ 0.124∗∗∗

(4.94) (4.95) (5.37) (5.14)

Debt&EquityFlowt−1 -0.0000595 -0.0000431 -0.0000469
(-1.37) (-1.14) (-1.30)

VIXt−1 0.0180∗∗∗ 0.0183∗∗∗

(3.76) (3.86)

BidAskSpreadt−1 -37.76
(-0.97)

Constant 0.0839∗∗ 0.0708∗∗ 0.0751∗∗∗ -0.303∗∗∗ -0.279∗∗

(2.57) (2.54) (2.60) (-3.25) (-2.53)

N 223 223 223 223 223
adj. R2 0.127 0.317 0.319 0.452 0.453

This table reports summary statistics for the regression of the expected carry return (ECRt) on the change in the
crash probability (∆CP 20

t−1). ∆CP 20
t−1 is the change in currency crash probability implied by the RNPD defined in

Equation 3 in percentage terms. ∆BDIt−1 denotes changes in the US trade weighted nominal effective exchange
rate broad dollar index; an increase in the index shows appreciation in the US$ against all trading partners’
currencies. Debt&EquityF lowt−1 shows the net debt and equity inflows to Turkey in million US$ during one
week prior to time t. V IXt−1 is the implied volatility calculated using S&P500 index options. Higher VIX values
imply lower global risk appetite. BidAskSpreadt−1 is defined as the ratio of the bid-ask spread in spot exchange
rate divided by the mid-range exchange rate (cf Equation 16). t-statistics are in parentheses and are calculated
using heteroscedasticity consistent standard errors. * (p < 0.10), ** (p < 0.05), *** (p < 0.01).

When we include all other control variables in column (5), the impact is still significant but much

lower: 10.61- percentage-point increase in the expected carry return after a 1 point increase in

the change in jump risk. Similar to the previous two sets of regression results (Table 1 and 2),

the change in the broad dollar index has a positive and significant coefficient; the broad dollar

index -the proxy of limits on bank leverage- is apparently robustly and positively associated

with expected carry returns. Moreover, the significant coefficients estimated for V IXt−1 imply

that the positive relation between the VIX and the carry trade return is also robust to differ-

ent specifications. On the other hand, we again could not find evidence supporting a liquidity

premium effect nor support for the slow-moving capital argument.

In order to understand the importance of the crash risk measures in the explanation of

(changes in) the expected carry return, we complement the regression results by a Shapley

Decomposition Analysis (Huettner et al., 2012). This allows us to calculate the individual

contribution of each explanatory variable to the R2, the goodness of fit. This analysis shows

the relative importance of one explanatory variable compared to others in explaining Expected

Carry Returns. Table 4 shows the Shapley R2 values for each variable in the regressions that

include all control variables (i.e. corresponding to the column (5)’s in Table 1 to 3). According

to these Shapley R2 values, 28.78 percent, 21.27 percent and 21.59 percent of the explained

variance in the expected carry trade return can respectively be attributed to the risk reversals,

the crash risk probability or the jump risk (column (2), (4) and (6)). These results indicate

that currency crash risk is an important driver of the expected carry return. Furthermore the

broad dollar index’s contribution to goodness of fit is more than one-third in all specifications,
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Table (3) Regression of the Expected Carry Return on Jump Risk and Other Control Variables

(1) (2) (3) (4) (5)

∆JumpRiskt−1 19.68∗∗∗ 11.33∗∗∗ 11.06∗∗∗ 10.44∗∗∗ 10.61∗∗∗

(4.01) (3.26) (3.27) (3.25) (3.38)

∆BDIt−1 0.144∗∗∗ 0.139∗∗∗ 0.119∗∗∗ 0.118∗∗∗

(4.04) (4.07) (4.65) (4.43)

Debt&EquityFlowt−1 -0.0000452 -0.0000304 -0.0000325
(-1.00) (-0.76) (-0.84)

VIXt−1 0.0172∗∗∗ 0.0174∗∗∗

(3.20) (3.32)

BidAskSpreadt−1 -22.85
(-0.47)

Constant 0.0826∗∗ 0.0712∗∗ 0.0744∗∗ -0.288∗∗∗ -0.273∗∗

(2.60) (2.57) (2.58) (-2.77) (-2.15)

N 223 223 223 223 223
adj. R2 0.161 0.298 0.298 0.419 0.417

This table reports summary statistics for the regression of the expected carry return (ECRt) on change in the
jump risk (∆JumpRiskt−1). ECRt shows the expected carry return defined in Equation 13. ∆JumpRiskt−1

denotes change in the jump risk in Kou Model defined in Equation 12. ∆BDIt−1 denotes changes in the US trade
weighted nominal effective exchange rate broad dollar index and an increase in the index shows appreciation in
the US$ against all trading partners’ currencies. Debt&EquityF lowt−1 shows the net debt and equity inflows
to Turkey in million US$ during one week prior to time t. V IXt−1 is the implied volatility calculated using
S&P500 index options. Higher VIX values imply lower global risk appetite. BidAskSpreadt−1 is defined as a
ratio of bid-ask spread in spot exchange rate divided by the mid-exchange rate (Equation 16). t-statistics are
in parentheses and they are calculated using heteroscedasticity consistent standard errors. * (p < 0.10), **
(p < 0.05), *** (p < 0.01).

suggesting the importance of currency mismatch in Turkish bank balance sheets. The high

contribution of the broad dollar index is indicative of the high dependence of Turkey’s financial

system on cross border lending. Due to currency mismatch in the balance sheets of financial

intermediaries in Turkey, changes in the broad dollar index capture changes in leverage and

their ability to engage in arbitrage. For an in depth analysis of the impact of constraints on

financial intermediaries on carry trade returns in the US-$-TL market see Kütük [2024].

Taken together the regression results show that currency crash risk plays a significant role

in expected carry returns; we find robust evidence that investors ask for higher compensation

when currency crash risk is higher, irrespective of which one of our three crash Risk measures is

used. Moreover, the broad dollar index and the VIX are also robust accross all regression model

specifications and with signs in line with expectations: during stricter limits on balance sheets

of financial intermediaries and lower risk appetite in global markets, investors demand a higher

premium to invest carry trades: we observe higher expected carry returns when balance sheets

of financial intermediaries tighten and when global risk appetite goes down (and VIX goes up).

Of course our regression analysis does have its limitations. We use measures of the interbank

cost of borrowing in the calculation of mispricing since it represents the effective cost of funding

for speculators and arbitrageurs. However, the banks in those countries are not risk-free, most

probably they have time-varying bank risks while riskiness of the banks in the US and Turkey

obviously are not the same. Therefore, part of the carry trade return can possibly be attributed

to the differential riskiness of US and Turkish banks. Moreover, we use monthly data because

our measure of exchange rate expectations is only available at that frequency. Also, we do not
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Table (4) Shapley Decomposition Analysis

(1) (2) (3) (4) (5) (6)
ECRt Shapley ECRt Shapley ECRt Shapley

R2 (%) R2 (%) R2 (%)

∆RRt−1 0.0812∗∗∗ 28.78
(4.39)

∆CR20
t−1 0.119∗∗∗ 21.27

(3.42)

∆JumpRiskt−1 10.61∗∗∗ 21.59
(3.38)

∆BDIt−1 0.105∗∗∗ 33.47 0.124∗∗∗ 38.59 0.118∗∗∗ 38.13
(4.36) (5.14) (4.43)

Debt&EquityFlowt−1 -0.0000347 3.63 -0.0000469 4.21 -0.0000325 3.87
(-0.92) (-1.30) (-0.84)

VIXt−1 0.0174∗∗∗ 33.87 0.0183∗∗∗ 35.54 0.0174∗∗∗ 36.21
(3.49) (3.86) (3.32)

BidAskSpreadt−1 -27.71 0.24 -37.76 0.39 -22.85 0.20
(-0.62) (-0.97) (-0.47)

Constant -0.267∗∗ -0.279∗∗ -0.273∗∗

(-2.25) (-2.53) (-2.15)

N 223 223 223
adj. R2 0.446 0.453 0.417

Shapley R2 (%) values shows individual contribution of explanatory variables into the goodness of fit (R2). t-
statistics are in parentheses and calculated using heteroscedasticity consistent standard errors. * (p < 0.10), **
(p < 0.05), *** (p < 0.01).

have dealers’ data at transaction level similar to Cenedese et al. (2019). High frequency data

supported by detailed capital flow information and bank specific risk factors can enrich this

regression analysis.

5 Crash-Hedged Carry Returns

In the previous section, we analyzed the links between crash risk on expected carry returns

focusing on unhedged carry trade strategies. In this section, we calculate both crash-hedged and

unhedged carry returns on daily frequency for different investment horizons and then compare

these two return structures. The difference between these two carry strategies gives sharper

focused information about the additional risk premium investors demand for bearing currency

risk.

A currency call option provides an opportunity for carry traders to hedge themselves against

currency crash risk in an investment currency. A US$-TL call option gives the right to buy US$
at a strike price (K) in the TL. C shows the price of the call option, which is also denominated

in TL. This works as follows. At time t, a carry trader borrows 1 US$ and converts this into TL

using the current exchange rate St. If the carry trader with the St TL buys a call option which

gives the right to buy 1 US$ at Kt and pays a call price (Ct), then the carry trader is hedging

his investment position against any crash in the value of TL. He can invest his remaining funds

St − Ct in TL with return rTL
t,t+1.

23



At time t+1, the carry trade return realizes. If the exchange rate at time t+1 (St+1) is less

than Kt, the carry trader does not exercise the call option and the crash-hedged carry return

becomes:

CRCH
t = (1 + rTL

t,t+1)
St − Ct

St+1
− (1 + rUS$

t,t+1) if St+1 ≤ Kt (17)

On the other hand, if the exchange rate depreciates more, to the extent that St+1 > Kt, the

carry trader will exercise the call option and convert his TL investment back into US$ using

the more favorable rate represented by Kt. So then the return to the carry trader becomes:

CRCH
t = (1 + rTL

t,t+1)
St − Ct

Kt
− (1 + rUS$

t,t+1) if St+1 > Kt (18)

Taking the two cases together the over-all crash-hedged carry return CRCH
t equals:

CRCH
t = (1 + rTL

t,t+1)
St − Ct

min{St+1,Kt}
− (1 + rUS$

t,t+1) ∀St+1,Kt (19)

This compares to the unhedged carry return:

CRUH
t = (1 + rTL

t,t+1)
St

St+1
− (1 + rUS$

t,t+1) (20)

Next we calculate crash-hedged (CRCH
t ) and unhedged (CRUH

t ) carry returns in the US$-TL
investment strategy on a daily frequency between 2006 and 2019. We downloaded spot exchange

rates and and the 1-Month, 3-Month and 6-Month interbank costs of borrowing both for Turkey

and the US from the FactSet. We use daily US$-TL currency option data from Bloomberg and

obtain call prices and strike prices for the at-the-money call options. We assume that the carry

traders buy at-the-money currency call options to hedge themselves against the crash risk in the

TL. Table 5 and Figure 12 to 14 give the summary statistics and time series of unhedged and

crash-hedged annualized carry returns for 1-Month, 3-Month and 6-Month US$-TL investment

strategies.

1-Month 3-Month 6-Month
Unhedged Carry Crash Hedged Unhedged Carry Crash Hedged Unhedged Carry Crash Hedged

Return (%) Carry Return (%) Carry Return (%) Carry
Return (%) Return (%) Return (%)

Mean 1.78 0.67 1.68 0.91 1.51 0.34

Standard
Deviation 52.81 25.82 31.77 15.20 22.13 10.97

Minimum -320.52 -66.39 -134.07 -24.45 -84.52 -14.35

Maximum 197.36 154.10 140.30 97.42 91.54 52.86

Skewness -0.99 1.53 -0.39 1.70 -0.22 1.54

Table (5) Summary Statistics of Unhedged and Crash-Hedged Annualized Carry Return

Not surprizingly returns to the crash-hedged carry strategies are lower than the unhedged
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carry returns on average: insurance does not come for free. Investors demand higher returns

for their unhedged carry strategies in return for bearing the currency crash risk. Standard

deviations are higher for the unhedged carry returns since these strategies can experience both

unconstrained losses but also higher positive returns. In line with this observation we see that

the time series for unhedged returns shows both a higher maximum value and a lower minimum

value than the time series for hedged carry trade returns. Finally, the skewness measure shows

that we have left-skewed unhedged carry returns and right-skewed crash-hedged carry returns

which is what one should expect from the distribution of the S(t) and the limits on losses

implied by the option hedge. The difference between unhedged and crash-hedged carry returns

represents the premium investors demand for taking on crash risk. The numbers in Table 5

show that on average between 46 to 77 percent of total unhedged carry returns is compensation

for bearing the crash risk in this US$-TL carry trade strategy11. Of course these calculations

rely on the assumption that carry traders hedge using at-the-money currency call options but

the carry traders might follow other hedging strategies. Under different hedging schemes the

contribution of crash risk on carry return might be different. For instance, Jurek (2014) follows a

delta-hedging scheme and he finds that crash risk premia are at most one-third of total currency

carry trade returns among G10 currencies. Of course that difference may be due to different

hedging strategies or to the use of different currency pairs.

Figure (12) Unhedged and Crash-Hedged Annualized Carry Return of 1-Month Investment
Strategy

Source: Authors’ calculations

1162% for 1 month , 46% for 3 months and 77% for 6 months strategies respectively
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Figure (13) Unhedged and Crash-Hedged Annualized Carry Return of 3-Month Investment
Strategy

Source: Authors’ calculations

Figure (14) Unhedged and Crash-Hedged Annualized Carry Return of 6-Month Investment
Strategy

Source: Authors’ calculations

6 Conclusion

There is an extensive empirical literature on the impact of currency crash risk on carry trade

returns, but it does not use forward looking direct measures of crash risk. This study fills this

gap in the literature by introducing several different crash risk measures derived from currency
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option prices. Moreover, we incorporate direct measures of investors’ expected exchange rate

changes over the Carry Trade horizon collected by the Central Bank of Turkey. By not relying

on ex post exchange rates as a proxy for the expected rate at the end of the carry trade horizon

we can separate out ex ante carry trade returns from ex post expectational errors: through our

use of a direct measure of exchange rate expectations, this paper is the first study that focues

directly on carry trade returns unpolluted by ex post surprizes in the exchange rate. We can in

this way accurately measure the ex-ante currency risk premia demanded by investors’ for their

participation in carry trades.

We analyze US$-TL carry trade strategies because of the persistently high interest rate dif-

ferential between TL and US$, high volatility in the TL. Also the availability of direct measures

of exchange rate expectations allows us to measure ex ante carry trade returns directly, thereby

avoiding the pollution of ex ante measures of carry trade returns by ex post expectational errors.

We use three different crash risk measaures: risk reversals, crash probabilities derived from the

empirical probability distribution of future TL-rates derived from option prices, and an explicit

measure of jump risk derived from a mixed distribution asset pricing model including jump risk

explicitly. All these three crash risk measures are shown to be very sensitive to both global and

local relevant events in plausible ways.

Next we use these data in a direct analysis of the interest differential leading to US$-TL
carry trades. We show first of all that crash risk affects speculators’ premia demand significantly.

Higher crash risk in the investment currency of the carry trades discourages investors from taking

long positions so they need to be convinced by substantial compensation for bearing higher risk:

we show that the component of total carry trade returns purely to compensate for crash risk

is between 46% and 77%, depending on the maturity of the strategy followed. Furthermore we

show that during periods of a generally stronger US dollar, investors’ balance sheet constraints

are more binding and speculators demand higher premia to invest in carry trades. Also we find,

in line with the existing literature, that higher global risk aversion discourages carry trades.

Finally, by comparing hedged and unhedged carry strategies we show that currency crash risk

is substantial: as already said we find that pure currency crash risk accounts for between 46

and 77 percent of the total unhedged carry trade returns.
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APPENDIX

A Appendix-A

A.1 Risk Reversal

We use the standard foreign currency option pricing model of Garman and Kohlhagen (1983)

which relies on Black-Scholes’ (1973) option pricing model to derive the implied volatility sur-

face. The following notation is used:

S: spot exchange rate (domestic currency (TL) units per unit of foreign currency (US$))
K: Strike price of the option

τ : Time remaining until maturity of the option

rd: Domestic interest rate (TL)

rf : Foreign interest rate (US$)
µ: Drift of the exchange rate

σ: Volatility of the spot exchange rate

Φ(.): Standard normal cumulative probability distribution

CBS(.): The price of a European foreign exchange call option

PBS(.): The price of a European foreign exchange put option

In the Garman and Kohlhagen (1983) option pricing model, four assumptions are usually

and so do we: first, the currency spot price follows a geometric Brownianprocess.Second, op-

tion prices are a function of only one stochastic variable S. Third, markets are frictionless and

fourth, foreign and domestic interest rates are constant over th interval considered.

Equation (21) and (22) show the expressions for the price of European FX calls and puts

using the Garman and Kohlhagen model (1983) applying Black and Scholes (1973) to currency

options:

CBS(S, τ,K, rd, rf , σ
2) = e−rf τSΦ(d1)− e−rdτKΦ(d2)

d1 =
ln
(
S
K

)
+ (rd − rf + σ2

2 )τ

σ
√
τ

d2 = d1 − σ
√
τ

(21)

PBS(S, τ,K, rd, rf , σ
2) = e−rf τS

(
Φ(d1)− 1

)
− e−rdτK

(
Φ(d2)− 1

)
(22)

The delta, the sensitivity of the value of the option to the price of the underlying asset, of

a call (δC) and a put option (δP ) respectively equals:
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δC =
∂CBS(S, τ,K, rd, rf , σ

2)

∂S
= e−rf τΦ(d1) (23)

δP =
∂PBS(S, τ,K, rd, rf , σ

2)

∂S
= −e−rf τΦ(−d1) (24)

The strike price of an option (K) can be then written as a function of delta (δ) from the

call option using Equation (23) as follows:

K = S exp
(
(rd − rf +

σ2

2
)τ − σ

√
τΦ−1(erf τδ)

)
(25)

We need one adjustment: the standard option pricing formulas from (23) to (25) assume that

payment of the premium is in domestic currency. However, the premium of derivatives written in

emerging markets can be in terms of foreign currency. The data for US$-TL options provided by

Bloomberg is reported by taking premium payment in foreign currency into account12 (Korkmaz

et al., 2019). Therefore, we need to take the premium adjustment into account to obtain a more

precise derivation of the risk neutral probability distribution. The premium-adjusted spot delta

can be found using Equation (26):

δCPA =
∂CBS(S, τ,K, rd, rf , σ

2)

∂S
−

CBS(S, τ,K, rd, rf , σ
2)

S
(26)

= e−rf τΦ(d1)−
CBS(S, τ,K, rd, rf , σ

2)

S
= e−rdτ

K

S
Φ(d2)

We can calculate the premium-adjusted spot delta of a put option (Equation (28)) using the

put-call premium-adjusted spot delta parity (Equation (27)).

δCPA − δPPA =
K

S
e−rdτ (27)

δPPA = −e−rdτ
K

S
Φ(−d2) (28)

In order to find the strike price of an at-the-money (ATM) option, we use the ATM definition

that an option with strike such that a straddle13 has zero net delta in line with the data provided

by Bloomberg. Using δCPA = −δPPA for an ATM option, we drive d2 = 0 to get the corresponding

strike price as shown in Equation (29):

KATM = Sexp
(
(rd − rf −

σ2
ATM

2
)τ
)

(29)

The risk reversal is the difference between the out-of-the-money (OTM) call and OTM put

option implied volatility at the same delta (δ):

12See Reiswich and Wystup (2010) for the details related to the spot delta, forward delta, premium adjusted
spot delta and premium-adjusted forward delta.

13A straddle is a combination of a long call and a long put with the same strike and maturity.
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RRδ = σC
δ − σP

δ (30)

Furtheremore we use the so called butterfly statistic to describe the convexity of the volatility

smile. The butterfly (BFδ) is the average of the volatility of an OTM call option and put option

for a given delta minus the volatility of an ATM option (Equation (31)):

BFδ =
σC
δ + σP

δ

2
− σATM (31)

. We use the data for butterflies in our calculation of the implied volatility of call and put

options to derive the underlying risk neutral probability distributions.

A.2 Currency Crash Risk Implied by a Risk Neutral Probability Distribu-

tion (RNPD)

Calculating implied volatility for call and put options: Using the definitions of risk

reversal (Equation (30)) and butterfly (Equation (31)), we can calculate implied volatilities of

call σC
δ and put options σP

δ for four delta values. We repeat these calculation for each specific

date.

σC
δ = σATM +BFδ +

RRδ

2
(32)

σP
δ = σATM +BFδ −

RRδ

2
(33)

Calculating the delta of the ATM option: In order to have a complete volatility smile

in σ-δ space, we need to know the delta value of the ATM options. Assuming that ATM op-

tions have 50 delta can be misleading for premium-adjusted deltas14. Therefore, we calculate

the delta value for the ATM options as follows. First, the strike price (K) of the ATM option is

calculated using σATM values using Equation (29). Then, using the domestic interest rate (rd),

the foreign interest rate (rf ), time to maturity (τ), the calculated K, the spot exchange rate

(S) and σATM , we calculate the corresponding delta for the ATM option using Equation (26).

Transformation of out-of-money (OTM) put options to in-the-money (ITM) call

options: We have nine datapoints after completing the previous steps: the implied volatility

for OTM calls (σC
δ ) for 4 delta values, the implied volatility for OTM puts (σP

δ ) for 4 delta

values and the implied volatility for the ATM option for its own delta (σATM ). We need to

transform deltas of OTM put options to ITM call options to complete the volatility smile in σ−δ

space. Using the Put-Call premium-adjusted spot delta parity (Equation (27)), we can calculate

premium-adjusted spot deltas that correspond to the in-the-money call options. However, to

14As a robustness check, we did our whole analysis assuming that ATM options have 50 delta. We obtained
very similar result both in crash risk calculation and regression analyses throughout the paper
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use Equation (27) we need the strike price K to calculate corresponding deltas for ITM call

options, we first need strike prices for OTM put options. We can re-write Equation (28) as

follows:

δPPA = −e−rdτ
K

S
Φ(−d2) = −e−rdτ

K

S
Φ(−d1 + σ

√
τ) (34)

= −e−rdτ
K

S
Φ

(−ln
(
S
K

)
− (rd − rf + σ2

2 )τ

σ
√
τ

+ σ
√
τ

)
(35)

= −e−rdτ
K

S
Φ

(−ln
(
S
K

)
− (rd − rf − σ2

2 )τ

σ
√
τ

)
(36)

(37)

The strike price (K) appears both in the cumulative distribution function and as a coef-

ficient so we cannot solve for K aanalytically Therefore we use the Brent (2013) root search

methodology combined with the approach suggested by Reiswich and Wystup (2010) to obtain

strike prices K.

We use these strike prices (K) for each premium-adjusted delta value for the OTM put

option in (Equation (27)) to derive the corresponding delta values for the ITM call option. We

then have nine data points for the volatility smile in δ-σ space (see Figure (1).

Interpolation by the clamped cubic spline method: Once we obtain nine data points

in the volatility smile for each day in the observation period, we carry out the clamped cubic

spline interpolation in this space. This cubic spline methodology allows us to have continuous

first and second derivatives at all points through the volatility smile. In the interpolation with a

clamped cubic spline, the slope takes on specific values at the boundary knot points. Following

Malz (2014), we construct a clamped cubic spline with a slope of zero at the boundary knot

points. Specifically, the extrapolated spline values beyond those points are assumed equal to

the observed implied volatility for the highest and lowest delta values respectively.

Transformation of the Strike Price (K) into the Corresponding Delta (δK): To

calculate the underlying RNPD for the TL we need to transform the interpolated data into

strike-volatility space (K-σ space). Bliss and Panigirtzoglou (2004) show that it is not possible

to map directly between the option delta and the strike price due to the fact that the implied

volatility varies both with strike price and the delta. Instead, we take strike price intervals of

0.01 between 1 and 15. Then we transform all strike prices into a corresponding delta (δK) using

Equation (26) with the implied volatility of the ATM option (σATM ). Bu and Hadri (2007) ex-

plain why the ATM volatility should be used instead of implied volatility at the different strike

prices. Using the ATM volatility keeps the ordering of δK the same as that of K, so unintended

kinks in volatility smiles are prevented.
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Evaluation of the fitted implied volatility (σK): Using the estimated spline function,

we evaluate the fitted implied volatility (σK) at each delta corresponding to strike price (δK)

for the intervals (i, i + 1) in which theδK falls. In this way we get the fitted implied volatility

(σK) corresponding to strike prices (K) from 1 to 15.

Evaluation of call option price and taking the second derivative to obtain the

RNPD: Using strike price (K) and the corresponding implied volatility (σK), the call price

CBS(S, τ,K, rd, rf , σ
2) in Equation (21) is calculated. The second derivative of the call price

CBS(S, τ,K, rd, rf , σ
2) with respect to the strike price gives the Risk Neutral Probability Den-

sity (RNPD) function. We can calculate the RNPD(K) as shown in Equation (38) where

Ki ∈ [1, 15] and ∆Ki = 0.01 ∀i.

RNPDK(Ki) = erdτ
∂2CBS

∂K2
≈ erdτ

CBS(Ki +∆Ki)− 2CBS(Ki) + CBS(Ki −∆Ki)

(∆Ki)2
(38)

Using the RNPD(K), we can calculate the cumulative RNPD (CRNPD) for each specific

date using the expression below:

CRNPD(Ki) = P
(
K ≤ Ki

)
=

∑
K≤Ki

RNPDK(Ki) (39)

A.3 Currency Options Pricing Incorporating Jump Risk

Equation (40) gives the call price function for a European call option (Theorem 2. in Kou

(2002)).

CKou = S(0)Υ

(
r +

1

2
σ2 − λζ, σ, λ̃, p̃, η̃1, η̃2; log(K/S(0)), τ

)
−Ke−rτΥ

(
r − 1

2
σ2 − λζ, σ, λ, p, η1, η2; log(K/S(0)), τ

)
where

p̃ =
p

1 + ζ
· η1
η1 − 1

η̃1 = η1 − 1

η̃2 = η2 + 1

ζ̃ = p
η1

η1 − 1
+ q

η2
η2 + 1

− 1

(40)

We first need to adapt this option price to a currency option formula. To do that we derive

the following currency call price formula under the assumptions explained in section (3.3) using

Proposition B.1 in Appendix B.2 and Theorem B.1 in Appendix B3 in Kou [2002]:
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CKou = S(0)e−rf τa1π1σ
√
τη1I0(h; 1− η1,−

1

σ
√
τ
,−ση1

√
τ)

−Ke−rdτd1π1σ
√
τη1I0(h;−η1,−

1

σ
√
τ
,−ση1

√
τ)

+ π0

(
e−rf τS(0)e−λζτΦ(b+)−Ke−rdτΦ(b−)

)

where

b± =
log(S(0)K ) +

(
rd − rf ± σ2

2 − λζ
)
τ

σ
√
τ

ζ =
η1

η1 − 1
− 1;

a1 = e−(λζ+σ2

2
)τd1;

d1 =
e(ση1)

2τ/2

σ
√
2πτ

;

h = log

(
K

S(0)

)
+ λζτ −

(
rd − rf − σ2

2

)
τ ;

π0 = e−λτ ;

π1 = 1− e−λτ ;

If β < 0 and α < 0, then ∀n ≥ −1,

I0(c;α, β, σ) = −eαc

α
Hh0(βc− δ)− 1

α

√
2πe

αδ
β
+ α2

2β2 Φ
(
βc− δ − α

β

)
;

Hh0(x) =
√
2πΦ(−x).

(41)

In order to calibrate the λ and η1 parameters so we can calculate JumpRisk as time series,

we minimize the weighted square of the distance between the call price implied by Kou Model

and the calculated market call prices. We solve the minimization problem shown in (43) using

N days data, I different maturities and J different strike prices which corresponds to different

δ values. We set N = 2 so we use the current (time t) and previous day’s (time t − 1) data

to estimate λt, η1,t. We use 1-month, 3-month and 6-month US$/TL option pricing data so we

have three different maturities (I = 3). Finally, the US$/TL option prices include 9 different

deltas so we have 9 different strike prices (J = 9). Since more liquid option prices are more

reliable and indicative, we assign higher weights to more liquid options by introducing weights in

the minimization problem. We use weights ωn,i,j =
1

V egan,i,j
= 1

Snϕ(d1,n,i,j)
√
π
. After calculating

all weights in this way, we normalize them such that the sum of all weights equals to 1:

ωnormalized
n,i,j =

ωn,i,j∑N
n

∑I
i

∑J
j ωn,i,j

(42)

..
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We can now solve:

min
λt,η1,t

N∑
n

I∑
i

J∑
j

ωnormalized
n,i,j

(
CKou
n,i,j − Cmarket

n,i,j

)2
(43)

B Appendix-B

(1) (2) (3) (4) (5)

∆RRt−1 -0.0268 -0.0305 -0.0330 -0.0367 -0.0421
(-0.59) (-0.72) (-0.79) (-0.98) (-1.08)

∆BDIt−1 0.0104 -0.00102 -0.0261 -0.0206
(0.21) (-0.02) (-0.62) (-0.49)

Debt&EquityFlowt−1 -0.000106∗ -0.0000873 -0.0000772
(-1.71) (-1.42) (-1.27)

VIXt−1 0.0213∗∗ 0.0203∗∗

(2.22) (2.18)

BidAskSpreadt−1 109.5
(1.62)

Constant 0.132∗∗∗ 0.131∗∗∗ 0.138∗∗∗ -0.309∗ -0.381∗∗

(2.65) (2.68) (2.81) (-1.66) (-1.99)

N 223 223 223 223 223
adj. R2 -0.000 -0.004 0.000 0.089 0.100

Table (6) Results from Regression of the Realized Carry Return on the Risk Reversal and Other
Control Variables: This table reports summary statistics for the regression of realized carry return (RCRt) on
the change in the risk reversal (∆RRt−1). RCRt shows the realized carry return defined in Equation 14 between
time t-1 and t. ∆RRt−1 denotes change in the risk reversal for 2-Week, 10-delta US$-TL options. An increase in
the risk reversal implies higher hedging cost and larger crash risk in the TL. ∆BDIt−1 denotes changes in the US
trade weighted nominal effective exchange rate broad dollar index and an increase in the index shows appreciation
in the US$ against all trading partners’ currencies. Debt&EquityF lowt−1 shows the net debt and equity inflows
to Turkey in million US$ during one week prior to time t. V IXt−1 is the implied volatility calculated using
S&P500 index options. Higher VIX values imply lower global risk appetite. BidAskSpreadt−1 is defined as a
ratio of bid-ask spread in spot exchange rate divided by the mid-exchange rate (Equation 16). t-statistics are in
parentheses and they are calculated using heteroscedasticity consistent standard errors. * p < 0.10, ** p < 0.05,
*** p < 0.01.
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(1) (2) (3) (4) (5)

∆CP20
t−1 0.00633 0.00849 0.00839 0.0147 0.00416

(0.08) (0.11) (0.11) (0.20) (0.06)

∆BDIt−1 -0.00792 -0.0201 -0.0483 -0.0437
(-0.16) (-0.41) (-1.15) (-1.06)

Debt&EquityFlowt−1 -0.000101 -0.0000818 -0.0000718
(-1.60) (-1.32) (-1.18)

VIXt−1 0.0212∗∗ 0.0203∗∗

(2.26) (2.20)

BidAskSpreadt−1 100.4
(1.49)

Constant 0.132∗∗∗ 0.133∗∗∗ 0.140∗∗∗ -0.305∗ -0.370∗

(2.65) (2.73) (2.83) (-1.66) (-1.97)

N 223 223 223 223 223
adj. R2 -0.004 -0.009 -0.005 0.082 0.091

Table (7) Results from Regression of the Realized Carry Return on the Risk Reversal and Other
Control Variables: This table reports summary statistics for the regression of realized carry return (RCRt)
on the change in the crash probability (∆CP 20

t−1). RCRt shows the realized carry return defined in Equation 14
between time t-1 and t. ∆CP̂20t−1 denotes change in currency crash probability implied by the RNPD defined in
Equation 3 in percentage term. ∆BDIt−1 denotes changes in the US trade weighted nominal effective exchange
rate broad dollar index and an increase in the index shows appreciation in the US$ against all trading partners’
currencies. Debt&EquityF lowt−1 shows the net debt and equity inflows to Turkey in million US$ during one
week prior to time t. V IXt−1 is the implied volatility calculated using S&P500 index options. Higher VIX values
imply lower global risk appetite. BidAskSpreadt−1 is defined as a ratio of bid-ask spread in spot exchange rate
divided by the mid-exchange rate (Equation 16). t-statistics are in parentheses and they are calculated using
heteroscedasticity consistent standard errors. * p < 0.10, ** p < 0.05, *** p < 0.01.

(1) (2) (3) (4) (5)

∆JumpRiskt−1 -1.623 -1.522 -2.152 -2.912 -3.712
(-0.24) (-0.22) (-0.32) (-0.45) (-0.56)

∆BDIt−1 -0.00174 -0.0124 -0.0372 -0.0324
(-0.03) (-0.23) (-0.82) (-0.72)

Debt&EquityFlowt−1 -0.000104∗ -0.0000856 -0.0000762
(-1.67) (-1.39) (-1.25)

VIXt−1 0.0212∗∗ 0.0203∗∗

(2.25) (2.21)

BidAskSpreadt−1 105.1
(1.49)

Constant 0.132∗∗∗ 0.132∗∗∗ 0.140∗∗∗ -0.306∗ -0.376∗∗

(2.66) (2.73) (2.85) (-1.66) (-1.98)

N 223 223 223 223 223
adj. R2 -0.004 -0.009 -0.005 0.083 0.093

Table (8) Results from Regression of the Realized Carry Return on the Risk Reversal and Other
Control Variables: This table reports summary statistics for the regression of realized carry return (RCRt) on
change in the jump risk (∆JumpRiskt−1). RCRt shows the realized carry return defined in Equation 14 between
time t-1 and t. ∆JumpRiskt−1 denotes change in the jump risk in Kou Model defined in Equation 12. ∆BDIt−1

denotes changes in the US trade weighted nominal effective exchange rate broad dollar index and an increase in
the index shows appreciation in the US$ against all trading partners’ currencies. Debt&EquityF lowt−1 shows
the net debt and equity inflows to Turkey in million US$ during one week prior to time t. V IXt−1 is the
implied volatility calculated using S&P500 index options. Higher VIX values imply lower global risk appetite.
BidAskSpreadt−1 is defined as a ratio of bid-ask spread in spot exchange rate divided by the mid-exchange rate
(Equation 16). t-statistics are in parentheses and they are calculated using heteroscedasticity consistent standard
errors. * p < 0.10, ** p < 0.05, *** p < 0.01.
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