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Abstract

This paper exploits molecular genetic data to quantify genetic confounding in parent-child educational out-

comes. We develop a model of the intergenerational transmission of education based on insights from the

literature on social science genetics. The model distinguishes between two types of genetic confounding.

First, narrow genetic confounding reflects the direct transmission of genetic predisposition towards educa-

tion. Second, broad genetic confounding captures direct genetic transmission as well as genetic nurture,

i.e., an influence of parental genes on children’s outcome through the family environment. Next, we use

the Avon Longitudinal Study of Parents and Children (ALSPAC) data to decompose the association between

parental years of education and their offspring’s grades on Key Stage 4 national exams. To proxy genetic

endowments, we construct Educational Attainment Polygenic Indices (EA PGIs) for parents and children.

To correct for measurement error, we use Obviously-Related Instrumental Variables (ORIV) based on two

independent PGIs. The results suggest that ‘broad genetic confounding’ explains 30-45% of the parent-child

educational association, and ‘narrow genetic confounding’ 18-33%. We find no meaningful differences be-

tween mothers and fathers. Using our model, we compare our estimates to twin and adoptee designs, and

show how molecular genetic approaches can recover both broad and narrow genetic confounding under plau-

sibly weaker assumptions and with arguably greater external validity.
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1 Introduction

Educational attainment improves your life chances: it leads to higher wages (e.g., Card, 1999), and it is linked to

better health and other non-monetary benefits (e.g., Oreopoulos and Salvanes, 2011; Galama et al., 2018). One

of its most important predictors is parental educational attainment (e.g., Haveman and Wolfe, 1995; Van der

Weide et al., 2021; OECD, 2018). Ideally, one’s life chances should not depend on parental outcomes since

a strong intergenerational association may reflect a lack of educational opportunities for children from less

advantaged backgrounds. As such, the intergenerational association in educational attainment is an important

barometer for the equity and efficiency of a society (e.g., Corak, 2013; Mogstad and Torsvik, 2022).

Parents transmit both genes as well as environmental influences onto their offspring, and therefore in-

tergenerational associations reflect a mixed bag of genetic (‘nature’) and environmental effects (‘nurture’).

Distinguishing between environmental and genetic transmission is important from a moral, philosophical, as

well as policy perspective (e.g., Black and Devereux, 2011). If the intergenerational association mainly reflects

a causal effect of parental education or other environmental advantages, then this represents a widely shared

violation of equality of opportunity. If, on the other hand, the intergenerational association mostly derives from

inherited abilities, people have wildly different moral intuitions (see e.g., Pereira, 2021). Some may say this

also constitutes an infringement of equality of opportunity (i.e., one’s genes constitute circumstances beyond

one’s control, and therefore provide an unfair source of advantage), while others interpret it as a sign of meri-

tocracy (i.e., one’s genes reflect abilities and merit, and a strong intergenerational persistence is consistent with

equality of opportunity). To engage in a meaningful moral discussion, it is essential to quantify the role of

genetic transmission in the intergenerational association in educational outcomes.

From a policy perspective, if most of the intergenerational association stems from a causal effect of parental

education on offspring educational outcomes, this provides a clear policy lever to reduce intergenerational per-

sistence of advantage and enhance child development (Björklund and Salvanes, 2011). Moreover, when making

educational policies, policymakers should consider externalities onto the next generation (e.g., Björklund and

Salvanes, 2011; Holmlund et al., 2011). Alternatively, a strong role for genetic transmission in driving inter-

generational persistence would not leave policymakers empty-handed (e.g., Goldberger, 1979), but it would

change the type of response. Genetic effects on education are not an immutable biological laws, as they arise

within a certain societal context (e.g., Harden, 2021). Hence, when genetic transmission is important then e.g.,

changes in the school environment or the labor market may be the more appropriate response if policymakers

aim to enhance upward mobility (Sacerdote, 2011).

In this paper, we develop a two-generation model, building upon the frameworks of Becker and Tomes

(1979) and Solon (1999), while incorporating recent insights from the social-science genetics literature (e.g.,

Kong et al., 2018; Okbay et al., 2022). Based on this model, we distinguish two types of genetic confounding
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in the intergenerational association between parents’ and children’s education. Narrow genetic confounding

covers the genetic transmission from parents to children and the direct causal effect of the transmitted genes

on the child’s educational attainment. Broad genetic confounding additionally includes the effects of parental

genes that operate through the rearing environment parents provide (sometimes referred to as genetic nur-

ture).1 We use this framework to clarify which types of genetic confounding are captured by different em-

pirical approaches commonly used in the literature, such as children-of-twins designs, adoption studies, and

donor-conception studies.

Empirically, we use data from the Avon Longitudinal Study of Parents and their Children (ALSPAC),

a British cohort born in the Avon region between 1991 and 1993. The original sample size contains over

10,000 mother-child pairs, while genetic data was available for about 1,500 fathers. We extend our sample

size by imputing the genome of fathers based on the mother and offspring genome following the method

proposed by Young et al. (2022). This leads to a final sample size of 4,032 parent-offspring trios. We exploit

the existence of molecular genetic data to decompose the intergenerational association into narrow and broad

genetic components.

We observe a relatively strong association between parental education and their offspring’s test scores.

Specifically, each additional year of schooling completed by the mother (father) is associated with an increase

of approximately 14 (12) points in the child’s Key Stage 4 test score, relative to a mean of 437 — roughly

a 3 percent increase. In turn, we augment the basic intergenerational regression model by incorporating the

parental educational attainment polygenic indices (EA PGI). In theory, if measured without error, the parental

EA PGIs account for both direct genetic transmission and genetic nurture (‘broad genetic confounding’) such

that the remaining association between parental education and the child’s test score would reflect environmental

influences.2 However, given that existing PGIs are subject to measurement error, we employ Obviously-Related

Instrumental Variables (ORIV; Gillen et al., 2019; van Kippersluis et al., 2023) using two PGIs trained on two

independent training samples.

Our findings suggest that broad genetic confounding explains 32-45% of the mother-child association,

and 29-41% of the father-child association. The results further show that narrow genetic confounding explains

between 18% and 33% of the parent-child education association, or about 56-73% of total genetic confounding.

Hence, between one-third to one-half of the intergenerational association in educational outcomes stems from

broad genetic confounding, with both direct genetic inheritance as well as genetic nurture each playing a role.

Still, both maternal and paternal education remain important after correcting for genetic confounding, and

there are no meaningful differences between mothers and fathers. This remaining association between parental

1We focus on intergenerational transmission of education. See Solon (1999) and Eshaghnia et al. (2022) for an overview of the literature
on intergenerational mobility in income and other socioeconomic indicators. See Björklund and Salvanes (2011) and Heckman and Mosso
(2014) for reviews of the role of families on child development.

2Even if the EA PGI were measured without error, it only captures additive and common genetic variation, excluding gene-gene
interactions and rare genetic variants. There is however strong evidence for additive (i.e., non-dominant) effects of single SNPs (Okbay
et al., 2022), and the variance explained by rare coding variants is much smaller than that explained by PGIs (Chen et al., 2023).

3



education and offspring educational outcomes does not necessarily represent a causal effect, as it also contains

other environmental correlates of parental education. Whereas the limited sample size does not enable us to

provide conclusive evidence, auxiliary analyses using the British Raising of School-Leaving Age (RoSLA)

reform following Dickson et al. (2016) suggest that at least part of the remaining environmental association

derives from a causal effect of parental education on offspring test scores.

Studies over the past decades have used innovative designs to decompose intergenerational associations

into nature and nurture (see e.g., Holmlund et al., 2011; Björklund and Jäntti, 2020; Mogstad and Torsvik,

2022, for recent reviews). In Children of Twin (CoT) designs, one explores the degree to which offspring

from monozygotic twin parents have reached different levels of education (e.g., Björklund and Salvanes, 2011;

Baier et al., 2022). As we will show below, this approach controls for broad genetic confounding. Second,

adoption designs with random assignment of the adoptee, or info on both adoption and biological parents, are

popular to separate environmental from genetic influences of parents on children (see e.g., Björklund et al.,

2006; Sacerdote, 2007; Black et al., 2020; Fagereng et al., 2021). In the same spirit, donor-conceived children

were used to separate environmental from genetic effects (Rasmussen et al., 2024). By comparing parent-child

associations among adopted (or donor-conceived) children versus biological children, these studies can isolate

narrow genetic confounding (direct genetic transmission).3

Compared to these traditional methods, our approach relies on arguably weaker assumptions and, provided

that appropriate genetic data are available, enables the estimation of both forms of genetic confounding within

a single sample. Using molecular genetic data also avoids the reliance on rare cases and small samples, such

as adoptees, donor-conceived individuals, or children of twins. Overall, we argue that combining molecular

genetic data offers a structured way to disentangle genetic and environmental contributions to intergenerational

transmission, as well as enabling the estimation of the relative roles of narrow and broad genetic confounding.

The most closely related papers are Isungset et al. (2022), Rustichini et al. (2024), Fletcher et al. (2023),

and van Alten et al. (2025).4 Isungset et al. (2022) adopt a somewhat similar approach using the Norwegian

MoBa data and estimate that 15-18% of the parent-child association is due to genetic transmission with no

meaningful differences between mothers and fathers. There are two differences to our approach. First, Isungset

et al. (2022) control for the child’s PGI instead of the parental PGIs to account for genetic transmission.5 As we

argue below, controlling for the child’s PGI only captures a limited amount of genetic transmission, and delivers

3A third strand of literature employs instrumental variable (IV) strategies to isolate variation in parental education that is independent
of genetic endowments (see Holmlund et al., 2011; Björklund and Jäntti, 2012; Mogstad and Torsvik, 2022, for overviews). While these
studies effectively identify the causal effect of parental education on offspring educational outcomes, the estimated treatment effects
are local and typically account for only a small share of the intergenerational association (e.g., Black et al., 2005; Holmlund et al., 2011;
Mogstad and Torsvik, 2022). Moreover, their objective differs: IV studies do not disentangle genetic transmission from other environmental
influences. Consequently, if the causal effect of parental education is small, it remains unclear whether the residual intergenerational
association primarily reflects genetic factors or environmental correlates of parental education.

4See Conley et al. (2015); Liu (2018); Lin (2020); McGue et al. (2020); Verweij and Keizer (2022) for related papers in psychology
and sociology. None of these papers account for measurement error in the PGIs.

5Isungset et al. (2022) do present results from a specification that includes parental education and parental PGIs as independent vari-
ables, but the purpose of this analysis is to investigate whether genetic nurture (i.e., the effect of parental PGIs on offspring outcomes) is
mediated through parental education.
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a parameter that is hard to interpret. Second, they do not control for measurement error in the PGI. This is not

innocuous. In our estimates without corrections for measurement error, we find an attenuation of 22-26%.

When using ORIV to account for measurement error, the attenuation is as large as 41-45%, suggesting that

correcting for measurement error is quantitatively meaningful. Fletcher et al. (2023) adopt a similar approach

as ours, also accounting for measurement error in the PGIs, but focuses on sibling correlations rather than

intergenerational associations in education. Rustichini et al. (2024) estimate empirical equations that bear some

similarity with ours, yet their core focus is how cognitive and non-cognitive skills mediate the influence of the

PGI on educational attainment, and they do not account for measurement error in the PGI. Finally, van Alten

et al. (2025) estimate the causal effect of parental PGIs on children’s outcomes, and how much of this effect

can be explained by direct genetic transmission, using the Dutch Lifelines Biobank. Whilst complementary,

their starting point is the effect of the parental PGI, not the intergenerational association as in our paper.

This paper is organized as follows. Section 2 introduces our theoretical framework, Section 3 describes the

Data and Variables, Section 4 reviews the Methods, Section 5 presents the Results and Section 6 discusses and

concludes.

2 Theoretical Framework

2.1 Conceptual framework

Our framework is a variation on the theoretical model of intergenerational mobility developed by Becker and

Tomes (1979) and Solon (1999), and discussed in Holmlund et al. (2011). Our framework represents a two-

generation model where offspring educational attainment Yc depends on the child’s genetic endowments Gc,

parental educational attainments, Ym and Yf , environmental characteristics determined by parents, Em and E f
6,

and child specific characteristics, ec, which are orthogonal to the other regressors.

Yc = α +ρGc +βmYm +β fYf +ωmEm +ω f E f + ec (1)

The standardized genetic endowments of the child Gc are determined by the standardized genetic endow-

ments of the parents, Gm and G f , as well as by random de novo mutations, captured by εc.

Gc = κmGm +κ f G f + εc (2)

The theoretical expectation for κm and κ f is 0.5 as parents each transmit half of their genetic material to

their children.

Parental educational attainment Yp depends on parental genetic endowments Gp, parental circumstances

6For notational simplicity, we assume that E and C below are variables but in practice they could be vectors of circumstances.
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Cp, and on parent specific characteristics ep that are orthogonal to the other regressors. Similarly, environ-

ments shaped by parents Ep depend on parental genetic endowments Gp, on parental circumstances Cp, and on

parental specific characteristics ηp, which are orthogonal to the other regressors.7

Yp = αyp +ρypGp +λypCp + ep with p = m, f (3)

Ep = αep +ρepGp +λepCp +ηp with p = m, f (4)

Figure 1 depicts the relationships graphically. The double arrowed dotted line represents assortative mat-

ing at the Educational Attainment (EA) level. As a byproduct of assortative mating at the level of parental

education, there is an induced correlation across parents at the genotype level and in their (unobserved) cir-

cumstances.

Figure 1 Directed Acyclic Graph (DAG) representing the causal paths between our interest variables.

7In practice, parental education may also influence the child’s outcome through the childhood environment, but this is captured in the
coefficient βp, p = m, f .
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In our baseline model, we adopt two assumptions:

A1. Two-generation model

Cov(Gp,Cp) = 0, p = m, f

A2. Assortative mating is only at educational attainment level

Cov(E f ,Ym|Yf ) = 0;

Cov(G f ,Ym|Yf ) = 0 and vice-versa

Assumption A1 implies that circumstances Cp are purely environmental. Environmental circumstances Cp

can include variables such as income or education of grandparents, schools that parents attended, or neighbor-

hoods where parents lived.

Assumption A2 states that assortative mating only exists at the educational attainment level. This implies

that father’s environmental circumstances E f and genotype G f are not correlated to the educational attainment

of the mother, conditional on father’s educational attainment, and vice versa.

We make use of these assumptions to render the derivations more transparent and to highlight the intuition

of where differences between approaches arise. In practice, we expect grandparental genetic endowments to

affect parent’s genetic endowments and parental circumstances. Likewise, parents may sort on characteristics

beyond educational attainment. Appendix F relaxes both assumptions, and the associated results are discussed

in Section 5.3.

2.2 Broad and narrow genetic confounding

Consider the data generating process in equations (1) to (4). This section derives two types of genetic con-

founding: broad and narrow. As a baseline, consider a simple intergenerational association model in which

only the maternal and paternal education are included

Yc = α +βmYm +β fYf + εc (5)

The resulting Ordinary Least Squares (OLS) estimator for the coefficient of maternal educational attainment

in this model follows from standard OLS logic (see Appendix A for the derivation):

β̂m = βm + ρκm
Cov(Gm,Ỹm)

V (Ỹm)︸ ︷︷ ︸
Direct genetic transmission

+ωmρem
Cov(Gm,Ỹm)

V (Ỹm)︸ ︷︷ ︸
Genetic nurture︸ ︷︷ ︸

Broad genetic confounding

+ ωmλem
Cov(Cm,Ỹm)

V (Ỹm)︸ ︷︷ ︸
Environmental confounding

(6)

with Ỹm representing the residual of maternal education after conditioning on paternal education.
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Hence, a naive intergenerational association between maternal and offspring educational outcome – condi-

tional on paternal education – reflects the causal effect of maternal education βm, but is confounded by direct

genetic transmission (second term on the RHS), genetic nurture (third term on the RHS), and environmental

confounding (fourth term on the RHS).

Our definition of narrow genetic confounding is equal to the term ‘direct genetic transmission’. Direct

genetic transmission is the bias caused by the transmission of parental genes to their offspring. Broad genetic

confounding is defined as the sum of direct genetic transmission and genetic nurture. Given that we are con-

sidering a two-generation model, genetic nurture only represents the influence of parental genes on the rearing

environment of their offspring (e.g., Kong et al., 2018, see Section F.2 of Appendix F for an extension).

2.3 Estimand recovered from molecular genetic data

In our empirical analysis, we are interested in using molecular genetic data to quantify what share of the

intergenerational association from equation (6) is due to genetic confounding. The three coefficients of narrow

genetic confounding ρκm
Cov(Gm,Ỹm)

V (Ỹm)
can be directly estimated from the data under our Assumptions 1 and 2.

To estimate broad genetic confounding, we add parental genetic endowments as control variables to the

baseline regression (5).

Yc = α
′+β

′
mYm +β

′
fYf +φmGm +φ f G f + εc (7)

The inclusion of parental genetic endowments will strip the original association from familial genetic con-

founding that acts through two channels: the effect of parental genes on the genes of the child (genetic trans-

mission), and the effect of parental genes on the environment (genetic nurture):

β̂
′
m =

Cov(Yc,Ỹ
gc
m )

V (Ỹ gc
m )

=
Cov(ρGc +βmYm +β fYf +ωmEm +ω f E f ,Ỹ

gc
m )

V (Ỹ gc
m )

= βm + ρ
Cov(Gc,Ỹ

gc
m )

V (Ỹ gc
m )︸ ︷︷ ︸

=0 (due to Mendel’s Law)

+ β f
Cov(Yf ,Ỹ

gc
m )

V (Ỹ gc
m )︸ ︷︷ ︸

=0 (due to conditioning)

+ωm
Cov(Em,Ỹ

gc
m )

V (Ỹ gc
m )

+ω f
Cov(E f ,Ỹ

gc
m )

V (Ỹ gc
m )︸ ︷︷ ︸

=0 (due to A2)

= βm +ωmλem
Cov(Cm,Ỹ

gc
m )

V (Ỹ gc
m )

(8)

where Ỹ gc
m represents the residual of Ym conditional on Yf , Gm and G f .

As can be seen from equation (8), the coefficient estimate β̂ ′
m from equation (7) is not confounded by ge-

netic transmission nor genetic nurture. It does not provide an unbiased estimate of the causal effect of maternal

education on the child’s education βm either, because the estimator is confounded by maternal environmental

circumstances Cm. Still, controlling for parental genotypes strips the association from broad genetic confound-
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ing. As a result, comparing (8) with (6) shows that an estimate for broad genetic confounding is given by

β̂m − β̂ ′
m (see equation (14) in Appendix A).8

2.4 Comparison to other approaches

In this section we describe how our approach compares to existing approaches in the literature: controlling for

children’s genetic endowments, adoption studies, egg or sperm donor studies, and children-of-twins studies. A

full derivation including graphical explanations is provided in Appendix B.

Controlling for the child’s genetic endowments, as implemented in Isungset et al. (2022), aims to estimate

narrow genetic confounding. However, since children’s genes correlate approximately 50% with their parents’

genes (see Appendix B.1), the method additionally includes a share, but not all, of genetic nurture. Conse-

quently, estimates derived from this approach are hard to interpret, as they lie in between narrow and broad

genetic confounding.

Adoption studies (e.g., Sacerdote, 2011; Holmlund et al., 2011, see Appendix B.2) compare the intergen-

erational association of adopted with non-adopted children. They aim to estimate narrow genetic confounding,

by breaking the direct genetic transmission channel. Similar to our baseline method, they rely on Assumption 2

and a variation of Assumption 1 – that adoptees are randomly assigned to families. This ensures no correlation

between the genetic endowments of adoptive parents and children, and between characteristics of biological

and adoptive parents. However, since biological parents provide their genes and influence in-utero and early

childhood environments, adoption studies capture a combination of narrow genetic confounding as well as

early-life environmental differences.

Studies using donor-conceived children (Rasmussen et al., 2024, see Appendix B.3) are conceptually sim-

ilar to adoption studies, as they break the genetic transmission link. Narrow genetic confounding is estimated

by comparing coefficients between donor-conceived and biological children. This approach has the advantage

that donors are not expected to influence in-utero or early childhood environments. A limitation is that donor

designs usually only break the genetic transmission link for one parent, such that their estimates capture a

share of the partner’s genetic and non-genetic characteristics through assortative mating. Further, and similar

to adoption designs, parents who resort to IVF might be different that those who do not, potentially conflating

the comparison between donor-conceived and biological children (see Equation 20).

Children-of-twins studies compare offspring of identical twins relying on the notion that identical twins

8Whereas β̂m − β̂ ′
m does not include genetic confounding, there is a modest bias in the estimation of broad genetic confounding arising

from estimating the influence of environmental characteristics conditional on parental genotypes in (8):

ωmλem

[
Cov(Cm,Ỹm)

V (Ỹm)
− Cov(Cm,Ỹ

gc
m )

V (Ỹ gc
m )

]
(9)

The term within brackets is equal to the difference between the regression coefficient of Ym on environmental circumstances Cm in two
separate regressions. In the first regression, Ym has been residualized with respect to Yf , Gm and G f . In the second regression, Ym has
been residualized with respect to Yf alone. In Table F3 in Appendix F.3 we show for a list of environmental variables that the term within
brackets is very small, and therefore can be seen as a rounding error in the estimation of broad genetic confounding.
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share 100% of their genetic endowments (see Appendix B.4). By holding constant one of the parents genetic

endowments, they aim to estimate broad genetic confounding. Theoretically speaking, this method is identical

to our estimate of broad genetic confounding, with two exceptions. First, it typically breaks the link for only

one parent, since it is very rare that both parents of a child come from a monozygotic twin pair. Second, twin

samples might not be comparable to non-twin samples. In particular, given the likelihood of geographical and

social proximity among twins, it is possible that aunts and uncles maintain closer relationships—and thus exert

stronger genetic nurture effects—on their nieces and nephews.

The theoretical framework clarifies which type of confounders are being captured by each methodology. In

particular, it shows how adoption and children-of-twins designs capture different sources of genetic confound-

ing, and therefore cannot be compared directly. It further sheds light on key assumptions and limitations of each

method. Under Assumptions 1 and 2 (or variations), using molecular genetic data has a few key advantages. It

can account for genetic influences from both parents, and, unlike the adoptee or donor-conception designs, do

not rely on comparisons between potentially different samples. A second advantage is that, with appropriate

data, using molecular genetic data enables the estimation of both narrow and broad genetic confounding within

the same sample. A third and final advantage is the arguably improved external validity of results derived from

this method.

3 Data

This section introduces our dataset, defines our main variables and introduces summary statistics. The Avon

Longitudinal Study of Parents and Children (ALSPAC) is a prospective and longitudinal study of children and

parents (Boyd et al., 2013; Fraser et al., 2013). The data collection aimed to track children from fetal life,

through infancy into adolescence and young adulthood. 20,248 Pregnant women resident in Avon, United

Kingdom, with an expected delivery date between April 1, 1991, and December 31, 1992, were identified as

being eligible and invited to take part in ALSPAC. 14,541 eligible pregnant women were enrolled at baseline.

From these pregnancies, 13,988 children were alive at one year of age.9 More details about this study can be

found in Fraser et al. (2013).10

Most children and mothers were genotyped, and a subsection of 1,283 trios – mothers, fathers and chil-

9When the oldest children were approximately 7 years of age, an attempt was made to bolster the initial sample with eligible cases who
had failed to join the study originally. As a result, when considering variables collected from the age of seven onward (and potentially
abstracted from obstetric notes) there are data available for more than the 14,541 pregnancies mentioned above: The number of new
pregnancies not in the initial sample (known as Phase I enrolment) that are currently represented in the released data and reflecting
enrollment status at the age of 24 is 906, resulting in an additional 913 children being enrolled (456, 262 and 195 recruited during Phases
II, III and IV respectively). The phases of enrollment are described in more detail in Fraser et al. (2013); Northstone et al. (2019). The
total sample size for analyses using any data collected after the age of seven is therefore 15,447 pregnancies, resulting in 15,658 foetuses.
Of these 14,901 children were alive at 1 year of age.

10ALSPAC’s study website contains details of all the available data through a fully searchable data dictionary and variable search tool,
see http://www.bristol.ac.uk/alspac/researchers/our-data/.
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dren11– were genotyped. We exploit the existence of mother-child duo’s to impute the paternal genomes of

an additional 4,230 fathers based on the method proposed by Young et al. (2022, details in Appendix D). By

using this method, our sample of trios is expanded to 5,513 trios. Our final baseline sample consists of 4,032

mother-child-father trios with information about the outcome (Key Stage 4) and main explanatory variables

(maternal and paternal years of education, and educational attainment polygenic indices, or PGIs).

3.1 Variables

Outcome variable

Offspring Key Stage 4: The Key Stage 4 refers to the total point score the students obtained in the General

Certificate of Secondary Education (GCSE) (or equivalent) examinations, taken at age 16. The total point score

aggregates the scores of eight GCSEs exams including English, mathematics, sciences (physics, chemistry,

biology, computer science), history, geography, and an ancient or modern foreign language. The Key Stage 4

examination is the last occasion in the educational system where pupils are assessed along with all their peers,

as it falls within the compulsory schooling for ALSPAC pupils. This means that while earlier Key Stages exist,

the Key Stage 4 is the highest stakes examination that is mandatory for all pupils, and therefore it comprises our

main outcome of interest.12 This variable is retrieved from administrative records (National Pupil Database), a

census of all pupils in England within the state school system, which is matched to ALSPAC.13 The final score

ranges from 0 to 1171, with a mean of 437 and standard deviation 134 (see Table 1).

Explanatory variables

Mother and father years of education: Maternal and partner’s highest educational attainment was self-reported

by the mother at 32 weeks of gestation. The father’s education level was included only if the mother identified

her current partner as the unborn child’s father at 8 weeks of pregnancy. Maternal highest educational attain-

ment ranges from having no education (0.02%), having a CSE (certificate of secondary education, 10.12%),

vocational education (9.05%), O-levels (38.62%), A-levels (27.03%), to having a degree (15.15%). The fa-

ther’s highest education qualification varies from having a CSE (certificate of secondary education, 16.25%),

vocational education (9.00%), O-levels (24.83%), A-levels (30.23%) to having a degree (19.69%). The con-

version into years of education is based on van den Berg et al. (2022) and assigns 0 years of education for no

11Of the original 14,541 initial pregnancies, 338 were from a woman who had already enrolled with a previous pregnancy, meaning
14,203 unique mothers were initially enrolled in the study. As a result of the additional phases of recruitment, a further 630 women who
did not enrol originally have provided data since their child was 7 years of age. This provides a total of 14,833 unique women (G0 mothers)
enrolled in ALSPAC as of September 2021.G0 partners were invited to complete questionnaires by the mothers at the start of the study
and they were not formally enrolled at that time. 12,113 G0 partners have been in contact with the study by providing data and/or formally
enrolling when this started in 2010. 3,807 G0 partners are currently enrolled.

12Another obvious outcome to study intergenerational persistence of educational outcomes is completed education. In our data, we only
have self-reported educational attainment for 241 children at the age 23+, such that large attrition makes this a difficult outcome to study.

13At age 18, study children were sent ‘fair processing’ materials describing ALSPAC’s intended use of their administrative records and
were given clear means to consent or object via a written form. Data were not extracted for participants who objected, or who were not
sent fair processing materials.
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education qualification, 11 years of education to CSE or O-level education, 12 years to vocational education,

13 years to A-levels and 16 years to a college or university degree.

Mean S.D. Min. Max. N
Key stage 4 436.91 133.59 0 1171 4,032
Mother years of education 12.39 1.75 0 16 4,032
Father years of education 12.68 1.84 11 16 4,032
EA PGI child (23andMe) 0.00 1.00 -4 3 4,032
EA PGI child (UKB) 0.00 1.00 -3 3 4,032
EA PGI mother (23andMe) 0.00 1.00 -4 4 4,032
EA PGI mother (UKB) 0.00 1.00 -3 4 4,032
EA PGI father (23andMe) 0.00 1.00 -3 4 4,032
EA PGI father (UKB) 0.00 1.00 -2 4 4,032

Table 1 Summary statistics of the baseline sample (ALSPAC). S.D.=Standard deviation; Min.=Minimum;
Max.=Maximum; PGI=Polygenic index

Control variables

We control for genetic confounding with the parental Polygenic Indices (PGIs) (see section 3.2 below). Since

parental education is measured during pregnancy, virtually all other control variables are potentially endoge-

nous (“bad”) control variables. Our baseline estimates therefore do not include any control variables and we

start with the raw association between parental and child’s educational outcomes. In robustness checks, we

include gender and the first 20 principal components of the genetic relatedness matrix of the mother and child,

and the results are virtually identical (see Appendix G.2).

3.2 The Educational Attainment Polygenic Index (EA PGI)

Construction and predictive power of the EA PGI Humans share more than 99 percent of their DNA,

yet there are variations at specific loci within the genome. The most common type of genetic variation across

humans are so-called single nucleotide polymorphisms (SNPs). At each SNP location there can be two different

variants (or alleles). It is common to measure SNPs by counting the number of minor alleles (the variant that

occurs least frequently in the population). Since a child inherits two copies of each genetic variant, one from

each parent, a SNP can take the values 0, 1 or 2. A PGI is constructed by adding up individual SNPs, where each

SNP is weighted by the strength of the association between the SNP and the outcome variables as estimated in

a Genome-Wide Association Study (GWAS) (Dudbridge, 2013). A PGI therefore exploits the joint predictive

power of multiple SNPs for a particular outcome.

The predictive power of PGIs increases with the sample size of the underlying GWAS (Dudbridge, 2013).

To avoid overfitting in PGI analyses, the discovery sample – the sample used to obtain the SNP weights –

should be independent from the baseline sample. In our study, we used the summary statistics based on the UK

Biobank and the 23andMe data set, constructed by Muslimova et al. (2025), such that we could construct two
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independent PGIs for each individual. The weights were corrected for linkage disequilibrium (LD; structural

correlation across SNPs in the genome) using the software LDpred (Vilhjálmsson et al., 2015). The resulting

PGIs were standardized such that the mean is zero and the standard deviation is 1 for our baseline sample.

Figure 2 graphically shows the predictive power of the child’s EA PGIs on the outcome, KS4, reaching an

R-squared of roughly 7-8%. Appendix C offers a more comprehensive primer on genetics, heritability and

predictive power of PGIs. Details about the genotyping procedure, construction of the PGI, and imputation of

paternal genotypes can be found in Appendix D.

Figure 2 Scatterplot of Key Stage 4 and the EA PGI of the child with a locally weighted regression line. On the left,
the PGI based on the summary statistics from the 23andMe data set and on the right, based on the summary statistics
from the UKBiobank.

Interpretation of the EA PGI: The EA PGI aggregates several genetic variants that predict years of educa-

tion (Rietveld et al., 2013; Okbay et al., 2016; Lee et al., 2018; Okbay et al., 2022). In doing so, the EA PGI

reflects the best linear genetic predictor of education (Mills et al., 2020). Besides predicting general cognitive

ability, it also predicts personality traits (Openness, Conscientiousness, Agreeableness) (Smith-Woolley et al.,

2019).

While the EA PGI is a promising proxy for genetic-based advantage in Western educational systems, its

interpretation calls for a few words of caution. In particular, the predictive power of the EA PGI is dependent

on societal structures. Indeed, we observe different associations between a PGI and a certain trait depending

on birth year (Papageorge and Thom, 2020; Lin, 2020; Herd et al., 2019), socio-economic status, age, or sex

(Mostafavi et al., 2020). This means that the links between genetic variants and traits are likely mediated by the

environment, such that the same genetic variants might have a different effect on a given trait depending on the

environmental context (e.g., Visscher et al., 2017). For the remainder of this paper, the EA PGI is interpreted

as having a genetic based advantage to succeed in Western schooling system – but this genetic advantage is not

a biological, immutable law, but rather environmentally and contextually dependent.

Indirect effects, confounding, and measurement error Since a PGI is typically constructed based on a

GWAS that did not control for parental SNPs, a PGI reflects both direct and indirect genetic effects (Biroli

et al., 2025). Direct effects refer to the causal impact of an individual’s own genes on their outcome. Indirect
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effects arise from two sources: genetic nurture and population stratification. Genetic nurture refers to the in-

fluence of relatives’ genes on an individual’s outcome. In our definition, genetic nurture is included in broad

genetic confounding. Population stratification arises from differences in genetic structure and allele frequencies

across subgroups or ethnicities, and can induce spurious associations if these subgroups additionally vary in the

outcome because of non-genetic reasons (Young et al., 2019). Population stratification is not part of broad ge-

netic confounding. In our baseline model we restrict to two generations, and therefore only distinguish between

direct genetic effects and genetic nurture, assuming no population stratification. We relax this assumption in

section 5.3. In practice, since the ALSPAC sample is highly homogeneous from a small geographical area

(Ruisch et al., 2019), population stratification is minimal.14

Current PGIs likely underestimate the true magnitude of genetic effects (e.g., Wray et al., 2019). One

explanation is the fact that PGIs are context dependent such that the weights vary across samples and contexts

(de Vlaming et al., 2017). We try to tackle this issue by analyzing different PGIs from different discovery

samples, one of which is from the same context as our analysis sample (UK). Another proposed explanation

is that PGIs only use common SNPs, such that rare variants are excluded (Young, 2019). A final source of

measurement error is that the PGIs aggregate coefficients estimated on a finite discovery sample, leading to

classical measurement error (van Kippersluis et al., 2023). Here we tackle the issue of measurement error by

using two PGIs constructed based on independent GWAS samples (DiPrete et al., 2018; van Kippersluis et al.,

2023, see section 4 for details).

4 Methods

Our goal is to quantify how much of the association between parental educational attainment (EA) and the

child’s KS4 outcome is biased by genetic confounding. We start by estimating the partial correlation between

the Key Stage 4 outcome and parental educational attainment measured in years, for both mothers (EAm) and

fathers (EA f ). This is depicted in Equation (10).

KS4 = α
0 +β

0
mEAm +β

0
f EA f + ε

0 (10)

To account for assortative mating, we include the educational attainment of both parents simultaneously in

our model, allowing us to estimate the effect of each parent’s education net of the other’s influence (Holmlund

et al., 2011). We also study mother’s and father’s educational attainment separately (see Appendix G.8).

Next, we control for the parents’ EA PGI – PGIm and PGI f – in Equation (11).15 Under the model assump-

14The standard approach to adjust for population stratification is to include principal components from the genetic relatedness matrix.
Controlling for principal components does not affect our results (see Appendix G.2), yet we cannot fully rule out the presence of more
subtle forms of population stratification (see Appendix F).

15Adding the child’s PGI as control should not further alter the estimates of β 1
m and β 1

f as conditional on parental PGI’s, the child PGI
is random and therefore should be uncorrelated with any predetermined parental characteristics, including parental education. Appendix
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tions from Section 2 and if the parental PGIs are accurate measures of G f and Gm, controlling for parental PGIs

clears β 1
m and β 1

f of genetic confounding by direct genetic transmission as well as genetic nurture.

KS4 = α
1 +β

1
mEAm +β

1
f EA f +δ

1
mPGIm +δ

1
f PGI f + ε

1 (11)

To overcome measurement error of the PGIs, we construct two independent PGIs for the same trait and

perform a Two-Stage Least Squares (2SLS) regression, with one PGI instrumenting for the other (DiPrete

et al., 2018). We implement this using Obviously Related Instrumental Variables (ORIV, Gillen et al., 2019;

van Kippersluis et al., 2023), which makes the most efficient use of the information in the two independent

PGIs and avoids having to arbitrarily select one PGI as IV for the other.16 The coefficients β 1
m and β 1

f are

compared with the coefficients β 0
m and β 0

f to calculate the fraction of intergenerational transmission explained

by broad genetic confounding.

To estimate narrow genetic confounding (see Section 2), we compute ρκm
Cov(Gm,Ỹm)

V (Ỹm)
for the mother, and

vice versa for the father. We estimate ρ̂ as the coefficient of the child’s EA PGI in a regression with the child’s

KS4 score as dependent variable and the parental EA PGIs as controls. We set κm = 0.5 as children inherit 50%

of each their genetic variants from each parent. Finally, we estimate Cov(Gm,Ỹm)
V (Ỹm)

as the regression coefficient of

Ym on Gm, where Ym has been residualized with respect to Yf . In all regressions, we account for measurement

error and standardization of the PGIs (see Appendix E for detail).

5 Results

5.1 Intergenerational association and genetic confounding

Column 1 of Table 2 shows the results of Equation (10), the simple intergenerational association between

offspring test scores and parental years of education. The coefficients β 0
m and β 0

f are 14.2 and 12.3, respectively.

Thus, an additional year of maternal and paternal education is associated with scoring 14.2 and 12.3 points

higher on the Key Stage 4 test (or roughly 3% relative to a mean of 436.91), respectively. Column 2 shows that

every standard deviation increase in the maternal EA PGI is associated with a 25.1 points higher KS4 test score

(or roughly 5.7%), and that every standard deviation increase in the paternal EA PGI is associated with a 25.6

points higher KS4 test score (or roughly 5.9%).

Column 3 shows the results of Equation (11), i.e., the intergenerational association with controls for the

parents’ EA PGIs. The coefficients β 1
m and β 1

f decrease to 10.5 and 9.6, showing that controlling for the

G.10 empirically verifies this conditional independence.
16Using ORIV, we are able to boost the implied variance explained of the child EA PGI from 8.1% to 27.8% (see Table G23). This shows

that the correction for measurement error is consequential. The estimates are in the same ballpark as SNP-based heritability estimates for
the individual GCSE items of 15-22% reported in Rimfeld et al. (2015) and 31% reported in Krapohl and Plomin (2016), suggesting that
we are successful in correcting for classical measurement error.
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parental EA PGIs strips the original association of some of the genetic confounding effect. The reduction is

approximately 26% and 22% for the mother’s and father’s years of education, respectively.

Column 4 regresses the KS4 results on parental and child’s EA PGI to obtain the causal effect of the child’s

EA PGI on their test scores - ρ . The results show that an additional standard deviation of the EA PGI of the

child increases test scores by 21.3 points (roughly 4.9%).

Columns 5, 6, and 7 replicate columns 2, 3, and 4, but using ORIV, where each PGI is instrumented with

the other independent PGI for educational attainment to correct for measurement error.17 Using this method,

the coefficient of the parental EA PGIs increases, from 25.1 and 25.6 in column 2, to 30.2 (7.0% relative to a

mean of 436.91) and 32.7 (7.5%) in column 5. The coefficient of the child’s EA PGI also increases, from 21.3

in column 4 to 39.8 (9.1%) in column 7. This implies that measurement error in the EA PGI is non-negligible.

Finally, applying ORIV to parental PGIs further reduces the coefficients β 1
m and β 1

f estimated in column 3,

from 10.5 and 9.6 to 7.8 and 7.2 in column 6, respectively.

OLS ORIV

(1) (2) (3) (4) (5) (6) (7)
Mother years of education 14.214∗∗∗ 10.460∗∗∗ 7.797∗∗∗

(1.305) (1.354) (1.072)
Father years of education 12.334∗∗∗ 9.568∗∗∗ 7.224∗∗∗

(1.246) (1.249) (0.949)
EA PGI mother 25.094∗∗∗ 14.543∗∗∗ 14.737∗∗∗ 30.166∗∗∗ 20.678∗∗∗ 10.678∗∗∗

(1.978) (2.074) (2.861) (2.039) (2.284) (3.182)
EA PGI father 25.585∗∗∗ 18.765∗∗∗ 10.988∗∗ 32.687∗∗∗ 26.397∗∗∗ 5.516

(1.980) (2.006) (3.516) (2.104) (2.176) (4.067)
EA PGI child 21.316∗∗∗ 39.771∗∗∗

(4.241) (5.049)
Broad genetic conf. mother 3.754 6.417
(in %) (26.4%) (45.1%)

Broad genetic conf. father 2.765 5.109
(in %) (22.4%) (41.4%)

Narrow genetic conf. mother 1.896 4.881
(in %) (13.3%) (34.3%)

Narrow genetic conf. father 1.103 2.929
(in %) (8.9%) (23.7%)
R-squared 0.097 0.082 0.127 0.087 - - -
N 4,032 4,032 4,032 4,032 4,032 4,032 4,032
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 2 Results of the OLS and ORIV regressions explaining the offspring Key Stage 4 grade. Robust standard errors
in parentheses.

Using OLS based on a single PGI (column 3) suggests that broad genetic confounding is responsible for 3.7

17Appendix G.5 shows the first stage regressions. The independent PGIs are highly predictive of each other and the F-statistic varies
between 400 and 1500 (see Table G13). Appendix G.5 also repeats the results using two PGIs based on summary statistics of two
independent halves of the UK Biobank data set. Arguably, the assumptions of (OR)IV are more likely to hold when the PGIs are constructed
from the exact same discovery sample rather than two discovery samples from different countries. The results are similar.
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and 2.7 of the original association for mothers and fathers, respectively. Column 7 shows that ORIV produces

much larger values, of 6.4 and 5.1, respectively. Using ORIV and taking the ratio of our estimated broad genetic

confounding with respect to the original association in column (1), we estimate that broad genetic confounding

explains 45.1% and 41.1% of the parent-child education association for mothers and fathers, respectively.

Similarly, using OLS based on a single PGI suggests that narrow genetic confounding is 2.7 and 2.1, while

using ORIV reveals much larger values, 4.7 and 4.0, for mothers and fathers, respectively.18 Again comparing

to column (1), narrow genetic confounding explains 33.7% and 32.4% for mothers and fathers, respectively, or

around 75% of broad genetic confounding.

5.2 Robustness and heterogeneity

In this section, we probe the robustness of our baseline specification by introducing alternative model specifi-

cations. While in our main specification we use the total points in the Key Stage 4 exam as our main outcome

variable, in Appendix G.1 we use the average points per Key Stage 4 examination, and the highest points ob-

tained in the Key Stage 4 Science examination instead. The results are very similar in both cases. In Appendix

G.2 we include gender and a set of principal components of the genetic relationship matrix as basic controls.

Table G9 shows that the results are virtually identical. In Appendix G.3 we present estimates separately for

boys and girls. The results are very similar across genders.

Appendix G.4 presents the results when parental education is measured in levels. Higher educational levels

are always associated with larger KS4 results, with the raw associations monotonically increasing in paternal

education and close to linear. We observe a proportional reduction of around 30-40% in the coefficients of

educational levels when controlling for parental PGIs, which varies a little depending on the reference category

and seems slightly higher at higher levels of education.

Our main ORIV estimates rely on instrumenting the EA PGI based on UK Biobank summary statistics with

the EA PGI based on 23andMe summary statistics, and vice versa. Appendix G.5 presents the results for the

individual IV estimates, as well as ORIV estimates where we split the UK Biobank discovery sample into two

equal halves. Arguably, using two UK Biobank-based EA PGIs as instruments for each other is more likely to

satisfy the assumption that the genetic correlation between the two independent PGIs is 1 (DiPrete et al., 2018).

Broad genetic confounding is slightly lower in this specification, estimated at 35-36%, likely due to the smaller

predictive power of the PGIs resulting from smaller discovery samples.

Although imputing the father’s genotype from the child’s and mother’s information enhances statistical

power by increasing sample size and leads to unbiased estimates (Young et al., 2022), the imputation remains an

approximation rather than an exact representation. In Appendix G.6 we present our results for the non-imputed

18Narrow genetic confounding is estimated as 0.5ρ̂
Cov(Gp ,Ỹp)

V (Ỹp)
. ρ̂ is estimated in columns (4) and (7). Using OLS, the final term is

estimated as 0.178 and 0.104 for mothers and fathers, respectively, while using ORIV the terms are 0.245 and 0.147 for mothers and
fathers, respectively. See Appendix E for details.
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sample of 1,022 trios with observed genetic information. Not surprisingly, standard errors increase as a result

of the smaller sample size. More substantially, we observe that broad genetic confounding is estimated to be

somewhat smaller than in our baseline specification (24.2-31.4%), with larger differences between mothers and

fathers. Part of this discrepancy arises from the differences in the baseline sample, as the simple associations

also differ in comparison to our baseline estimates.

It is possible that intergenerational persistence also arises from a non-additive interplay between or within

genetic and environmental factors. Table G20 in Appendix G.7 presents the results with interaction terms. We

find the interactions between mother’s and father’s education to be small and insignificant. We do detect a

statistically significant interaction between the maternal and paternal PGIs, with the returns to one parent’s PGI

declining as the partner’s PGI increases. Accounting for this interaction however leads to similar estimates

of broad genetic confounding. Finally, we find the interactions between the PGI’s and maternal and paternal

education to be statistically insignificant and quantitatively small. Clearly, the endogeneity of parental educa-

tion as well as the additive construction of the EA PGI may prevent us from detecting subtle forms of G×E

(Biroli et al., 2025). However, our results are at least suggestive that while both genetic and environmental

transmission are quantitatively important, the interaction between genetic and environmental factors appears

quantitatively less important (see also Isungset et al., 2022).

Finally, we study the influence of maternal and paternal years of education separately in Appendix G.8. As

anticipated, the raw associations between a single parent’s years of education and the child’s KS4 score are

higher when spousal education is not controlled for. This occurs because the association partially reflects the

influence of spousal educational attainment through assortative mating. The role of broad genetic confounding

in this specification is around 30%, a little smaller than our baseline scenario where we include both parents

simultaneously. This specification contains a bias term as assortative mating is stronger at the educational

level (correlation of 0.52) than at the genome level (correlation of 0.13, not shown). Consequently, the simple

association captures a larger share of the partner’s influence, while the subsequent regression controlling for a

single parental PGI removes a smaller proportion of the partner’s genetic confounding. As such, we find that

is not innocuous to omit one of the parents.

5.3 Relaxing assumptions

Our theoretical model assumes (A1) a two generation model where parental circumstances are environmental

and uncorrelated with parental genetics, and (A2) assortative mating occurs only on education. These as-

sumptions simplify the derivations, and transparently show where differences across approaches stem from.

Appendix F explores the impact of relaxing these assumptions. We find that our estimates of both broad and

narrow genetic confounding are slightly overestimated.

Appendix F.2 shows that our estimates of narrow genetic confounding may be subject to an upward bias.
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To understand this intuitively, note that the term Cov(Gp,Ỹp)

V (Ỹp)
is equal to ρyp

V (Ỹp)
, where ρyp is the causal effect of

parental G on parental education Y (see Equation 39). Under assumptions A1 and A2, the causal effect ρyp can

be estimated in the full sample. Relaxing A1 reveals that this coefficient also reflects population stratification

and genetic nurture —- for example, the influence of grandparents on parental education. Using a subsample

of sibling mothers (N = 195) and applying sibling fixed effects, we estimate the causal effect of a mother’s PGI

on her years of education, ρym. Plugging in this value indicates that narrow genetic confounding accounts for

roughly 18% of the original mother–child association.

For broad genetic confounding, the primary threat to our estimates comes from assortative mating on traits

other than education (A2; see Equation 42, third term). In simple terms, if assortative mating does not just

take place at the level of educational attainment, then the father’s genetic endowments may still correlate with

mother’s educational attainment even conditional on father’s educational attainment. We gauge the size of

the bias using two different approaches. First, we directly compute the association between father’s PGI and

mother years of education conditional on father’s years of education. We demonstrate that conditioning on

education captures the majority of assortative mating at the genomic level, but not all. Second, we include

the partner’s PGI in our baseline estimation – that is, the baseline regression for mothers is a regression of the

child’s test score on maternal years of education, father’s years of education, as well as the father’s PGI. This

effectively strips the baseline estimation from conditional assortative mating (see Equations 44 and 45) and

ensures that we are estimating broad genetic confounding without the influence of parental assortative mating.

Both approaches give remarkably similar estimates, and result in an estimate of broad genetic confounding of

around 32% for mothers and 29% for fathers.19

5.4 Instrumenting for parental education

Whereas the results in Table 2 provide a novel and compelling way to estimate genetic confounding in in-

tergenerational persistence of educational outcomes, the method stops short of establishing a causal effect of

parental education on offspring outcomes. This is because genetic confounding is not the only possible source

of confounding, and the remaining association between parental education could still reflect other unobserved

environmental correlates of parental education. In earlier work, Dickson et al. (2016) exploit the introduction

of the 1972 RoSLA reform as an exogenous increase in parental educational attainment in ALSPAC to study

its influence on offspring test scores. In Appendix H we replicate their results in the full sample. The reduced

form results suggest that if mothers and fathers were induced by the RoSLA reform to stay an extra year in

school, their offspring’s KS4 test scores would increase by 15-25 points (or 3.5-6%). At face value, these

results therefore suggest that a sizable share of the remaining environmental association can be attributed to a

19The remaining sources of bias—stemming from environmental confounding and population stratification—are residuals and scaled by
factors that are very close to zero. Additionally, the genetic homogeneity of the ALSPAC sample substantially limits bias stemming from
population stratification. See Appendix F.3 for details.
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causal effect of parental education on offspring test scores.

There are, however, some caveats to this interpretation. First, as is well-known, IV estimates a local average

treatment effect based on compliers – i.c., fathers and mothers who would have liked to drop out of school in the

absence of the reform, but were forced to stay due to the new rules – whereas our intergenerational association

seeks to capture an average treatment effect on the treated. It is therefore impossible to directly compare the

effect sizes and make claims regarding the share of intergenerational association stemming from a causal effect

of parental education. Second, whereas the reduced-form results of Dickson et al. (2016) are relatively stable,

the first stage estimates suggest that the results may suffer from weak instrument bias according to recent

standards (Lee et al., 2022), especially for fathers for whom the birth date was often imputed. The sample size

of ALSPAC may just be too small with too few fathers and mothers around the cutoff of 1 September 1957.

Indeed, in our reduced sample of parent-offspring trio’s for whom we observe genetic data, we were not able to

replicate their results. While the lack of an effect in our sample may partly be due to selection into the sample

who were genotyped, it plausibly also derives simply from the sheer reduction in sample size that renders our

first stage estimates to being borderline significant (mothers) or even of opposite sign (fathers).

Overall, our take-away from this analysis is that there is suggestive evidence from ALSPAC as well as other

studies (see Mogstad and Torsvik, 2022, for a recent review) to believe that some part of the environmental as-

sociation between parental education and offspring test scores stems from a causal effect of parental education.

However, data limitations prevent us from decomposing the environmental component into a causal effect and

unobserved correlates of parental educational attainment.

6 Discussion and conclusion

This paper exploits molecular genetic data on 4,032 mother-father-child trios to quantify the role of genetic

confounding in the intergenerational transmission of educational attainment. We go beyond the literature by

developing a theoretical framework that incorporates empirical findings from the social genetics literature –

such as genetic nurture and population stratification – and by using two independent PGIs for educational

attainment to reduce measurement error in the genetic measures. Our results reveal that direct genetic trans-

mission, or narrow genetic confounding, accounts for 18-33% of the intergenerational persistence in education,

while broad genetic confounding accounts for 30-45%. We find no meaningful differences between fathers and

mothers.

How do our results compare and add to the literature? Holmlund et al. (2011) review the literature and

conclude that twin studies indicate that mother’s schooling has little impact, whereas father’s schooling seems

more important in explaining children’s educational outcomes. In other words, broad genetic confounding is

estimated to be quantitatively meaningful, and larger for mothers than for fathers. Adoptee studies find narrow

genetic confounding estimates that ranges from 0-47% for fathers and 0-71% for mothers (Holmlund et al.,
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2011), with if anything again larger effects of father’s education than mother’s education. Interestingly, and

completely opposite to this conclusion, Rasmussen et al. (2024) uses children conceived using sperm or egg

donors to find an estimate of narrow genetic confounding of 100% for fathers and 0% for mothers, at least for

reading outcomes. In sum, estimates vary widely, although one recurring finding is sizeable differences in the

magnitude of maternal and paternal genetic confounding (Holmlund et al., 2011).

In contrast, our study aligns closely with the results found using molecular genetic data by Isungset et al.

(2022), even though they are based on different samples and countries – United Kingdom vs Norway. While we

find OLS broad genetic confounding estimates of 23-26% before correcting for measurement error, Isungset

et al. (2022) finds OLS broad genetic confounding estimates of 15-18%. Similar to theirs, and unlike other

methodologies, we also find very similar estimates for mothers and fathers. Whereas our framework demon-

strates theoretically why different methodologies might differ, an important area of future research is to empiri-

cally reconcile these differences across molecular genetic versus twin, adoptions and donor-conception studies,

preferably in the same population.

This study has a few limitations. While we implement solutions to deal with the measurement error in

PGIs, these solutions might not be perfect. PGIs only capture additive effects of common genetic variants and

not gene-gene interactions or rare genetic variants. Whereas the variance explained by rare coding variants is

much smaller than the one explained by PGIs (Chen et al., 2023), we cannot rule out some underestimation of

the importance of genetic confounding. Another limitation is that PGIs might capture subtle forms of popula-

tion stratification, which can’t be fully controlled for by employing principal components. A final limitation

concerns the fact that individuals that choose to supply their DNA can be different than the ones who do not

(e.g., Domingue et al., 2017; van Alten et al., 2024). Finally, parental education is self-reported and therefore

may be subject to measurement error. We expect this issue to be minor for mothers, since years of education

are derived from the highest degree attained, which is a salient and easy to remember life achievement. By

contrast, reports of the partner’s education may involve a larger degree of measurement error.

Despite those limitations, using molecular genetic data in economics research is a promising avenue that

has the potential to advance our understanding of inequality and its persistence across generations. Using

molecular genetic data to inform the field of intergenerational education persistence improves our theoretical

understanding of genetic transmission and serves as an important test of previous methods. By employing

direct genetic measures, we can directly test some assumptions of our theoretical framework, and differentiate

between direct genetic transmission (narrow genetic confounding) and genetic nurture (part of broad genetic

confounding) in the same sample. This uncovers novel and more subtle aspects of the broader role of the family

in human capital production (Heckman and Mosso, 2014).
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A Theoretical framework derivations

Under the true data generating process specified in equations (1) to (4), and when estimating equation (5), the

resulting estimate (equation 6 in the main text) is given by:

β̂m =
Cov(Yc,Ỹm)

V (Ỹm)
=

Cov(ρGc +βmYm +β fYf +ωmEm +ω f E f ,Ỹm)

V (Ỹm)

= βm +ρ
Cov(Gc,Ỹm)

V (Ỹm)
+β f

Cov(Yf ,Ỹm)

V (Ỹm)︸ ︷︷ ︸
=0

+ωm
Cov(Em,Ỹm)

V (Ỹm)
+ω f

Cov(E f ,Ỹm)

V (Ỹm)︸ ︷︷ ︸
=0 (due to A2)

= βm +ρκm
Cov(Gm,Ỹm)

V (Ỹm)
+ρκ f

Cov(G f ,Ỹm)

V (Ỹm)︸ ︷︷ ︸
=0 (due to A2)

+ωmρem
Cov(Gm,Ỹm)

V (Ỹm)
+ωmλem

Cov(Cm,Ỹm)

V (Ỹm)

= βm + ρκm
Cov(Gm,Ỹm)

V (Ỹm)︸ ︷︷ ︸
Direct genetic transmission

+ωmρem
Cov(Gm,Ỹm)

V (Ỹm)︸ ︷︷ ︸
Genetic nurture

+ ωmλem
Cov(Cm,Ỹm)

V (Ỹm)︸ ︷︷ ︸
Environmental confounding

(12)

With Ỹm representing maternal education conditional on paternal education. The derivations are symmetri-

cal for fathers.

A.1 Narrow genetic confounding

Narrow genetic confounding (NGC) measures the extent of the bias that is driven by direct genetic transmission.

In our setting, is equal to:

NGC = ρκm
Cov(Gm,Ỹm)

V (Ỹm)
(13)

A.2 Broad genetic confounding

Broad genetic confounding is equal to the sum of direct genetic transmission and genetic nurture. However,

since ωmλem is unobserved, we calculate it as follows:

31



BGC = β̂m − β̂
gc
m

= βm +ρκm
Cov(Gm,Ỹm)

V (Ỹm)
+ωmρem

Cov(Gm,Ỹm)

V (Ỹm)
+ωmλem

Cov(Cm,Ỹm)

V (Ỹm)

−

βm +ρκm
Cov(Gm,Ỹ

gc
m )

V (Ỹ gc
m )︸ ︷︷ ︸

=0

+ωmρem
Cov(Gm,Ỹ

gc
m )

V (Ỹ gc
m )︸ ︷︷ ︸

=0

+ωmλem
Cov(Cm,Ỹ

gc
m )

V (Ỹ gc
m )


= ρκm

Cov(Gm,Ỹm)

V (Ỹm)
+ωmρem

Cov(Gm,Ỹm)

V (Ỹm)
+ωmλem

(
Cov(Cm,Ỹm)

V (Ỹm)
− Cov(Cm,Ỹ

gc
m )

V (Ỹ gc
m )

)
≈ ρκm

Cov(Gm,Ỹm)

V (Ỹm)
+ωmρem

Cov(Gm,Ỹm)

V (Ỹm)
(14)

With Ỹ gm
m representing maternal education conditional on paternal education, father and mother genetic

endowments. The derivations are symmetrical for fathers.
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B Comparison to other methods

B.1 Controlling for the child’s genetic endowments

One obvious alternative to our approach of controlling for the parental genetic endowments is to control for the

child’s genetic endowments. Figure 2 illustrates these relationships in a Directed Acyclical Graph (DAG).

Figure 2 Directed Acyclic Graph (DAG) representing the causal paths between our interest variables.

The estimated model then takes the form

Yc = α +ρGc +βmYm +β fYf + εc (15)
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Under Assumption 2 (see Section 2), the estimated coefficient of equation (15) is given by

β̂
B.1
m =

Cov(Yc,Ỹ
g
m)

V (Ỹ g
m)

=
Cov(ρGc +βmYm +β fYf +ωmEm +ω f E f ,Ỹ

g
m)

V (Ỹ g
m)

= βm +ρ
Cov(Gc,Ỹ

g
m)

V (Ỹ g
m)︸ ︷︷ ︸

=0

+β f
Cov(Yf ,Ỹ

g
m)

V (Ỹ g
m)︸ ︷︷ ︸

=0

+ωm
Cov(Em,Ỹ

g
m)

V (Ỹ g
m)

+ω f
Cov(E f ,Ỹ

g
m)

V (Ỹ g
m)︸ ︷︷ ︸

=0 (due to A2)

= βm +ωmρem
Cov(Gm,Ỹ

g
m)

V (Ỹ g
m)

+ωmλem
Cov(Cm,Ỹ

g
m)

V (Ỹ g
m)

(16)

With Ỹ g
m representing maternal education conditional on paternal education and offspring’s genetic endow-

ments. It is important to note that controlling for the child’s genetic endowments does not completely erase

genetic confounding as in equation (8). Instead, the second term on the RHS shows that genetic nurture is not

completely controlled for as the child’s genetic endowments Gc exhibit a correlation of only 0.5 in expectation

with the maternal genetic endowments Gm. As a result, taking differences with the coefficient of the simple

association in equation (5) yields:

β̂m − β̂
B.1
m = βm +ρκm

Cov(Gm,Ỹm)

V (Ỹm)
+ωmρem

Cov(Gm,Ỹm)

V (Ỹm)
+ωmλem

Cov(Cm,Ỹm)

V (Ỹm)

−
(

βm +ωmρem
Cov(Gm,Ỹ

g
m)

V (Ỹ g
m)

+ωmλem
Cov(Cm,Ỹ

g
m)

V (Ym|Yf ,Gc)

)
= ρκm

Cov(Gm,Ỹm)

V (Ỹm)︸ ︷︷ ︸
Direct genetic transmission

+ωmρem

(
Cov(Gm,Ỹm)

V (Ỹm)
− Cov(Gm,Ỹ

g
m)

V (Ỹ g
m)

)
︸ ︷︷ ︸

Genetic nurture (fraction)

+ωmλem

(
Cov(Cm,Ỹm)

V (Ỹm)
− Cov(Cm,Ỹ

g
m)

V (Ỹ g
m)

)
︸ ︷︷ ︸

Environmental confounding (residual)

(17)

Controlling for the child’s genetic endowments to account for direct genetic transmission or narrow genetic

confounding captures two additional components: a residual of genetic nurture and a residual of environmental

confounding. Whereas the latter residual is similar in nature to our broad genetic confounding estimate in

equation (9), and plausibly small, the genetic nurture bias term is likely larger. Given that the correlation

between Gm and Ym to be 0.5, it is expected that the magnitude of the correlation halves once we residualize

Ym with respect to Gm. In contrast, the correlation between Cm and Ym is environmental in nature such that

we don’t expect that residualizing with respect to Gm will significantly alter this correlation. The latter is

verified empirically in Appendix F.3. As such, the genetic nurture term in equation (17) can be quantitatively

meaningful and renders the estimated difference hard to interpret.
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B.2 Adoption Studies

Adoption studies exploit the lack of genetic relationship between parents and their adoptive children. These

studies rely on a variation of Assumption 1 (see Section 2), that adoptees are randomly assigned, such that

there is no correlation between parental genetic endowments and the adopted child’s genetic endowments

(Cov(Gp,Gc) = 0). In addition, random assignment of adoptees also ensures that the environment, education,

and genetic endowments of biological parents are uncorrelated with the educational attainment of adoptive

parents. Specifically, this entails that Cov(Yp,Y b
p ) = 0, Cov(Yp,Gb

p) = 0, and Cov(Yp,Eb
p) = 0, where b denotes

the biological parent. Adoption studies also rely on Assumption 2, which assumes that assortative mating

occurs only based on educational attainment.

Figure 3 illustrates these relationships in a Directed Acyclical Graph (DAG).

Figure 3 Directed Acyclic Graph (DAG) representing the causal paths between our interest variables.

In adoption studies, adopted children have two sets of parents: biological ones and adoptive ones. Educa-

tional attainment of the child is influenced by both:

Yc = α +ρGc +βmYm +β fYf +β
b
mY b

m +β
b
f Y b

f +ωmEm +ω f E f +ω
b
mEb

m +ω
b
f Eb

f + ec, (18)
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where b denotes the biological parent. Assumption 1 ensures that biological parents’ education and environ-

ment do not bias the β estimates. However it is important to notice that β and ω in this context only capture

the impact of adoptive parents on the child’s outcomes after adoption. Biological parents influence the in-utero

environment, while foster care systems and/or biological parents may shape aspects of the early childhood

environment. Consequently, β and ω are expected to differ between adopted and biological children.

β̂
B.2
m =

Cov(Yc,Ỹm)

V (Ỹm)
=

Cov(ρGc +βmYm +β fYf +β b
mY b

m +β b
f Y b

f +ωmEm +ω f E f +ωb
mEb

m +ωb
f Eb

f ,Ỹm)

V (Ỹm)

= βm +ρ
Cov(Gc,Ỹm)

V (Ỹm)︸ ︷︷ ︸
=0 (due to A1)

+β f
Cov(Yf ,Ỹm)

V (Ỹm)︸ ︷︷ ︸
=0

+β
b
m

Cov(Y b
m,Ỹm)

V (Ỹm)
+β

b
f

Cov(Y b
f ,Ỹm)

V (Ỹm)︸ ︷︷ ︸
=0 (due to A1)

+ωm
Cov(Em,Ỹm)

V (Ỹm)
+ω f

Cov(E f ,Ỹm)

V (Ỹm)︸ ︷︷ ︸
=0 (due to A2)

= βm +ωmρem
Cov(Gm,Ỹm)

V (Ỹm)
+ωmλem

Cov(Cm,Ỹm)

V (Ỹm)
(19)

With Ỹm representing maternal education conditional on the father’s education. Equation (19) illustrates

that the association between an adopted child’s outcomes and their adoptive parents’ outcomes reflects three

components: the causal effect of parental education on child outcomes, genetic nurture, and environmental

confounding.

To estimate the effect of narrow genetic confounding, it is standard practice in adoption studies to subtract

the β estimated in the adoptive children sample to the β b estimated in the biological children sample. This

comparison can be conducted within families (e.g. Sacerdote, 2007), or between different families (e.g., Plug,

2004). In both cases, differences between these estimates may arise due to the removal of direct genetic trans-

mission, but also due differences in the causal effects of parental education, and environments on childhood

educational attainment due to absence of parental in-utero and early childhood influence; β b ̸= β and ωb ̸= ω:

β̂
b
m − β̂

B.2
m = β

b
m +ρκm

Cov(Gm,Ỹm)

V (Ỹm)
+ω

b
mρem

Cov(Gm,Ỹm)

V (Ỹm)
+ω

b
mλem

Cov(Cm,Ỹm)

V (Ỹm)

−
(

βm +ωmρem
Cov(Gm,Ỹm)

V (Ỹm)
+ωmλem

Cov(Cm,Ỹm)

V (Ỹm)

)
=
(

β
b
m −βm

)
︸ ︷︷ ︸
∆ causal effect

+ ρκm
Cov(Gm,Ỹm)

V (Ỹm)︸ ︷︷ ︸
direct genetic transmission

+ρem
Cov(Gm,Ỹm)

V (Ỹm)
(ωb

m −ωm)︸ ︷︷ ︸
∆ genetic nurture

+λem
Cov(Cm,Ỹm)

V (Ỹm)
(ωb

m −ωm)︸ ︷︷ ︸
∆ environmental confounding

(20)

Adoption studies aim to eliminate narrow genetic confounding from the parent-child education association.

They depend on similar assumptions compared to other methods. However, by comparing adoptive and bio-

logical parents they are comparing parents whose influence on their children is inherently different due to the
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lack of exposure of adopted children to the in-utero and early childhood environment of the adoptive parents.

B.3 Donor conceived children

A recent alternative to adoption studies has been to exploit donor conceived children (Rasmussen et al., 2024).

In this case, a donor provides an egg or sperm to the parent such that the genetic transmission between at least

one of the parents and child is broken. Compared with regular adoption designs, the issue of the biological

parent influencing the child’s prenatal and early childhood environment is solved, which is a major advantage.

However, since this donor will only replace one parent in genetic transmission, the educational attainment of

one parent will still correlate with the genetic endowments of their partner. This means that controlling for

the partner’s educational attainment and assuming Assumption 2 (see Section 2) is necessary. This design also

requires a variation of Assumption 1, that parents do not select the donor based on relevant characteristics,

ensuring no correlation between the genetic endowments of the non-biological parent (here, the mother) and

the child, Cov(Gm,Gc) = 0. Figure 4 shows how the link between one parent and offspring genetic endowments

is broken.

Figure 4 Directed Acyclic Graph (DAG) representing the causal paths between our interest variables, assuming an
egg donor.
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The derivations are similar to the ones from adoption studies B.2. Under a variation of Assumption 1

and Assumption 2, direct genetic transmission is effectively controlled for. However, obtaining an estimate of

narrow genetic confounding requires comparing β ′s between biological and donor-conceived children. In this

case, donors are not expected to influence in-utero or early childhood environment. Nevertheless, it is possible

that parents who resort to IVF might be different than those who have biological children in ways we cannot

measure and hence, it is possible that the coefficients from the two samples are not comparable in expectation

and do not cancel out (see equation 20).

B.4 Children of Twins

The children of twins design exploits the fact that identical (homozygotic) twins share the same genetic ma-

terial. By comparing the outcomes of children of identical twins, the genetic endowments from one parent is

controlled for. Consequently, this approach accounts for the three mechanisms stemming from parental genetic

endowments: genetic transmission, parental educational attainment, and environmental factors. This design

relies on Assumption 1 and 2 (see Section 2), which state that maternal genetic endowments do not correlate

with maternal circumstances, and that assortative mating is only at the educational attainment level (provided

partner educational attainment is controlled for). Figure 5 illustrates this relationship, depicting the case where

the mother belongs to an identical twin pair.
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Figure 5 Directed Acyclic Graph (DAG) representing the causal paths between our interest variables.

In the children of twins design, the educational attainment of the child Yc is replaced by Y 1
c −Y 2

c , which

represents the difference in outcomes between the children of the twin mothers, 1,2. Consequently, the dif-

ferences in maternal education and environment reflect the impact of distinct circumstances alone: ∆Ym =

∆αym +λym∆Cm +∆em and ∆Em = ∆αem +λem∆Cm +∆ηm as ∆Gm = εm, where εm is equal to de novo muta-

tions.

In terms of the estimator,

β̂
B.4
m =

Cov(∆Yc,∆Ỹm)

V (∆Ỹm)
=

Cov(ρ∆Gc +βm∆Ym +β f ∆Yf +ωm∆Em +ω f ∆E f ,∆Ỹm)

V (∆Ỹm)

= βm +ρ
Cov(∆Gc,∆Ỹm)

V (∆Ỹm)
+ωm

Cov(∆Em,∆Ỹm)

V (∆Ỹm)

= βm +ρλym
Cov(∆Gc,(∆Cm|∆Yf ))

V (∆Ỹm)︸ ︷︷ ︸
=0 (due to A1)

+ωmλem
Cov(∆Cm,∆Ỹm)

V (∆Ỹm)

= βm +ωmλem
Cov(∆Cm,∆Ỹm)

V (∆Ỹm)
(21)
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The children of twins design subsequently compares the OLS estimate to the differences estimator, within

the same sample of twins:

β̂m − β̂
B.4
m = βm +ρκm

Cov(Gm,Ỹm)

V (Ỹm)
+ωmρem

Cov(Gm,Ỹm)

V (Ỹm)
+ωmλem

Cov(Cm,Ỹm)

V (Ỹm)

−
(

βm +ωmλem
Cov(∆Cm,∆Ỹm)

V (∆Ỹm)

)
= ρκm

Cov(Gm,Ỹm)

V (Ỹm)︸ ︷︷ ︸
direct genetic transmission

+ωmρem
Cov(Gm,Ỹm)

V (Ỹm)︸ ︷︷ ︸
genetic nurture

+ωmλem

(
Cov(Cm,Ỹm)

V (Ỹm)
− Cov(∆Cm,∆Ỹm)

V (∆Ỹm)

)
︸ ︷︷ ︸

environmental confounding (fraction)

(22)

This design estimates broad genetic confounding by capturing both direct genetic transmission and genetic

nurture effects. It also accounts for a portion of environmental confounding. The portion of environmental con-

founding is captured since the difference between the between and within family association is not necessarily

zero. The between-family term Cov(Cm,Ỹm)
V (Ỹm)

captures the association between all circumstances and education.

In contrast, the within-family association Cov(∆Cm,∆Ỹm)
V (∆Ỹm)

isolates the individual-specific circumstances effect, re-

moving shared family circumstances. For instance, if two twins receive slightly different amounts of tutoring,

but their overall educational attainment is mostly shaped by shared family resources and background, this could

lead to a difference between these two measures. The reason is that tutoring correlates with family resources

and background, and hence the first term would capture a large correlation – stemming from the association

between tutoring and family resources – whereas the second term would capture a small correlation – due to

the small causal effect of tutoring.
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C A primer on genetics

In 2003, a complete sequencing of the human was achieved for the first time. Coupled with an exponential

decrease of the cost of genotyping individuals, this led to the creation of several data sets that contained indi-

vidual genetic information. The availability of data allowed researchers to identify linkages between a person’s

genetic variants and important life outcomes such as health, personality, and education (Benjamin et al., 2012;

Visscher et al., 2017). Virtually all human traits are highly “polygenic” (Visscher et al., 2008; Chabris et al.,

2015). That is, there is no ‘gene for’ these outcomes; instead, the vast majority of human outcomes are affected

by many alleles, each with very small effect sizes. Recent advances in the genetics field such as the completion

of the Human Genome Project in the early 2000s and the development of inexpensive genotyping chips have

made it possible to identify links between a person’s genome and socially relevant outcomes such as health and

education (Beauchamp et al., 2011; Visscher et al., 2017).

The human genome consists of more than 3.2 billion nucleotides located on 23 pairs of chromosomes

(Lehrer and Ding, 2017). These nucleotides come in four varieties: adenine (A), guanine (G), cytosine (C) and

thymine (T). Approximately 99.6 percent of the nucleotides are identical between two randomly selected indi-

viduals (Kidd et al., 2008). There are certain positions or loci where individuals have different nucleotides. The

most common type of such genetic variation is called a single nucleotide polymorphism (SNP). SNPs constitute

the main source of genetic differences between individuals. At each SNP location there can be two different

nucleotides. It is common to measure SNPs by counting the number of minor alleles (the nucleotide that occurs

least frequently in the population) that an individual carries. Hence, a SNP can take the values 0, 1 or 2. It is

common to sum up the number of reference alleles because virtually all genetic variants contribute additively

to genetically influenced traits (Pazokitoroudi et al., 2021). In some rare cases, a difference at a specific posi-

tion on a chromosome can single-handedly lead to a disease: Huntington’s disease is an example. However,

the vast majority of human (behavioral) traits are polygenic, meaning they are influenced by multiple genetic

polymorphisms, each contributing with a tiny effect (Chabris et al., 2015). A polygenic score is constructed

by adding up the individual SNPs, where each SNP is weighted by the strength of the association between the

SNP and the outcome variables as estimated in a genome-wide association study (GWAS) (Dudbridge, 2013).

The underlying rationale is that based on GWAS results, you can assign weights of relative importance to each

SNP. Then, with a polygenic score, one can exploit the joint predictive power of multiple SNPs for a particular

outcome.

C.1 Heritability and predictive power of PGIs

Before genotyping of humans was a possibility, research relied on twin studies to quantify the heritability of

educational attainment. Heritability is defined as the fraction of trait variation in a population due to genetic
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inheritance. Twin studies estimate heritability comparing monozygotic to dizygotic twins. Since monozygotic

twins are genetically identical, whereas non-identical twins share on average half of their genetic material,

greater similarity of identical over non-identical twins is evidence for a contribution of genetic variation to trait

variation. However, the twin design makes several assumptions, most importantly that there is no difference

in shared environment between identical and non-identical twins. Since this assumption has been called into

question (Joseph, 2002; Beckwith and Morris, 2008; Dalmaijer, 2020) it remains controversial whether twin

studies have overestimated heritability for human traits (Felson, 2014).

When genotyping individuals became possible, researchers started to question whether estimating heritabil-

ity from directly measuring genetic variants was possible. This type of estimate is referred to as SNP-based

heritability (Yang et al., 2010). SNP-based heritability is defined as the fraction of phenotypic variance that

can be attributed to variation in the additive effects of common genetic variants. In 2010, the Genomic Relat-

edness Restricted Maximum Likelihood (GREML) (Yang et al., 2011) methodology was developed. GREML

estimates the variance explained by the SNPs by accessessing how similar are the genomes of individuals with

similar traits, without the need of estimating an individual weight for each SNP. GREML restricts the analysis

to distantly related individuals to avoid bias due to to environmental effects shared between close relatives and

genetic interactions (Yang et al., 2010, 2017). Further, at the time, the GREML methodology could only in-

clude genetic variants that are common in the population (Yang et al., 2017; Wainschtein et al., 2022). At that

point SNP-based heritability was much lower than twin-based heritability estimates, which was referred to as

the missing heritability problem (Young, 2019).

Many different explanations for the ‘missing heritability’ have been proposed (Eichler et al., 2010). One

of them is that twin studies have overestimated heritability or that they lack external validity. A second type

of explanations claims that SNP-based heritability only captures additive effects and common variants whereas

complex traits are likely to be affects by many rare variants. To respond to the last proposed explanation, the

GREML methodology was extended to include rarer genetic variations inferred by imputation (Yang et al.,

2015) and subsequently it was further extended to include high quality whole genome sequence (WGS) data

(Wainschtein et al., 2022). This significantly increased the SNP-based heritability estimates of height from

0.49 to 0.56 and 0.70, well in line with twin estimates of 0.7-0.8 (Young, 2019). It also increased the heri-

tability estimates of BMI from 0.21 to 0.29, still below the twin heritability estimates of 0.4-0.6. The GREML

methodology with high quality whole genome data has not been extended to educational attainment yet.

To sum up, the true size of heritability of traits including of educational attainment is an ongoing debate.

On the one hand, twin-based heritability might be overestimated and might not be externally valid. On the

other, SNP-based heritability only captures additive effects, and imputed wide genome data. The SNP-based

heritability for educational attainment is estimated to be between 22 and 28% (Rietveld et al., 2013; Davies

et al., 2016; Tropf et al., 2017). However, the most recent EA PGI predicts up to 16% of the variation in
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educational attainment (Okbay et al., 2022). This implies that PGI-based heritability is currently lower than

SNP-based heritability. van Kippersluis et al. (2023) suggest that measurement error in the PGIs is a key

explanation for this difference and propose using two independent PGIs as instrument for each other, which

provides a considerable increase in PGI-based heritability estimates. We will make use of this method to reduce

the measurement error of our PGI.

It is clear from recent studies that the SNP-based heritability and PGI-based heritability do not necessarily

stem from direct (or ‘causal’) genetic effects only. Remember that the PGI is constructed based on a GWAS,

which is a univariate regression of the outcome on one SNP at a time. Since this SNP is inherited from parents,

any influence of parental (or other family members) SNPs on the offspring outcome will bias the direct genetic

effect of that SNP. These are called indirect genetic effects. Tackling the issue of indirect genetic effects for

traits like educational attainment requires large samples of families coupled with whole genome high qual-

ity data (Young, 2019). Sib-Regression (Wray et al., 2019) or relatedness disequilibrium regression (RDR)

(Young et al., 2018) are SNP-based heritability methods that take advantage of the random variation in relat-

edness between siblings in a family to estimate heritability with little bias from population stratification and

environment. Compared to twin heritability estimates of 65% (Pedersen et al., 2002) and GREML heritability

of 22-28% (Rietveld et al., 2013; Davies et al., 2016; Tropf et al., 2017), RDR estimates an heritability for

educational attainment of 17% (Young et al., 2018), widening the gap between the twin- and SNP-based her-

itability estimates again. Some authors interpret this difference as evidence that twin based heritabilities are

likely overestimated (Young, 2019).
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D Details on PGI construction

D.1 GWAS

The UKBiobank (UKB) EA PGI was constructed using the GWAS summary statistics of Muslimova et al.

(2025). The GWAS was performed using the fastGWA tool for Genome-wide Complex Trait Analysis (GCTA)

developed by Jiang et al. (2019) in the UK Biobank data set. The full UKB GWAS discovery sample includes

392,771 individuals. The UKB discovery sample 1 and 2 were obtained by randomly splitting the full discov-

ery sample into two samples of approximately 196,380 individuals. The full GWAS details are described in

Muslimova et al. (2025).

The 23andMe EA PGI was constructed using the GWAS summary statistics made by 23andMe. The

23andMe sample includes 365,536 individuals. More details GWAS details are described in Lee et al. (2018).

D.2 LDpred weights

The EA PGI was constructed using the sum of the number of reference allele for each SNP multiplied by the

effect size that was corrected for linkage disequilibrium using the software package LDpred (Vilhjálmsson

et al., 2015). In LDpred, a random 30k subsample of the UKB was used as the coordination data set. The

target data set consists of 19,999 individuals; 9,351 mothers, 8,927 children, and 1,721 fathers. A prior of 1

was set. For the LDpred weights constructed using the full UKB summary statistics, a 355-kb window and

1,065,139 HapMap 3 SNPs were used. For the weights constructed using the 23andMe summary statistics a

352-kb window and 1,057,143 HapMap 3 SNPs were used. For the UKB sample 1 and sample 2 a 355-kb

window and 1,065,139 Hapmap 3 SNPs were used.

D.3 Imputation and PGI constructing

In order to expand our trio data set, we used SNIPAR, a software tool developed by Young et al. (2022)

that exploits pedigree information to impute parental or sibling genotypes. We exclude variants with Hardy-

Weinberg equilibrium exact test p-value below 1×10−6, with missing genotyping rate larger than 5%, or with

minor allele frequency of less than 5%. We also excluded 1 twin from each twin duo, and individuals with more

than 5% missing genotype. This resulted in a data set with 16,276 individuals and 1,283 mother-father-child

trios. The 5,513 mother-child pairs were used to impute the genome of 4,230 fathers, resulting in a genotyped

sample of 5,513 trios (or 16,539 individuals). Finally, The LDpred weights described above were used to

construct the PGIs in this expanded trios data set.
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E Estimating narrow genetic confounding

To estimate narrow genetic confounding (see Section 2), we have to compute ρκm
Cov(Gm,Ỹm)

V (Ỹm)
for the mother,

and ρκ f
Cov(G f ,Ỹ f )

V (Ỹ f )
for the father, with Ỹm being maternal education conditional on the father’s and vice versa

for Ỹf .

We estimate ρ̂ as the coefficient of the child’s EA PGI in a regression with the child’s KS4 score as depen-

dent variable and the parental EA PGIs as controls:

KS4 = α +ρPGIc +δmPGIm +δ f PGI f + ε (23)

In this regression, we account for measurement error using ORIV with two independent PGIs for each of the

three PGIs of children, mothers and fathers. Table 2 shows that ρ is estimated as 21.3 (OLS, column 4) and

39.8 (ORIV, column 7).

We know that κm and κ f are 0.5 as both fathers and mothers transmit a half of their genetics to their

offspring.

Finally, we estimate Cov(Gm,Ỹm)
V (Ỹm)

as the regression coefficient of EAm in the regression of PGIm on EAm and

EA f , and Cov(G f ,Ỹ f )

V (Ỹ f )
as the regression coefficient of EA f in the regression of PGI f on EA f and EAm:

PGIm = µ0,m +µm,mEAm +µ f ,mEA f +ψm (24)

PGI f = µ0, f +µm, f EAm +µ f , f EA f +ψ f (25)

Equations 24 and 25 depict a simple OLS estimate, without any measurement error correction. Under this

specification the estimates are given as µ̂m,m = 0.178 and µ̂ f , f = 0.104.

In contrast to equation (23), the PGIs are now on the left-hand-side (24) and (25). Without standardization,

measurement error on the left-hand-side does not cause a bias in the coefficients. However, when the dependent

variables is measured with error and standardized, the resulting coefficients will be biased.

To see this, consider the case where we don’t observe the true latent polygenic index PGI∗, but an estimated

PGI that is measured with error:

PGI = PGI∗+ν , ν ∼ N
(
0,σ2

ν

)
where we assume that the measurement error ν is classical. If – as is common in the literature – the observed
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PGI is standardized to obtain PGIst , it follows that:

PGIst =
PGI∗+ν −µPGI√

σ2
PGI∗ +σ2

ν

=
PGI∗+ν√
σ2

PGI∗ +σ2
ν

(26)

since µPGI = 0 in expectation.

If we now run the regression PGIst = µ +βstY +η , we get

β̂st =
Cov(PGIst ,Y )

V (Y )

=

Cov( PGI∗+ν√
σ2

PGI∗+σ2
ν

,Y )

σ2
Y

=
βσ2

PGI∗√
σ2

PGI∗ +σ2
ν

/
σ

2
Y

= βst
σPGI∗√

σ2
PGI∗ +σ2

ν

/
σ

2
Y (27)

If we have two independent standardized measures of the true PGI∗, each measured with independent errors

that have the same variance

PGI1,st =
PGI∗+ν1√
σ2

PGI∗ +σ2
ν

PGI2,st =
PGI∗+ν2√
σ2

PGI∗ +σ2
ν

(28)

Then

Cov(PGI1,st ,PGI2,st) =Cov
( PGI∗+ν1√

σ2
PGI∗ +σ2

ν

,
PGI∗+ν2√
σ2

PGI∗ +σ2
ν

)
=

σ2
PGI∗

σ2
PGI∗ +σ2

ν

(29)

And in turn, √
Cov(PGI1,st ,PGI2,st) =

σPGI∗√
σ2

PGI∗ +σ2
ν

(30)

Hence, in practice we scale the standardized noisy PGI ex-ante by (30), such that

PGI+ =
PGIst√

Cov(PGI1,st ,PGI2,st)
=

PGI∗+ν

σPGI∗
(31)
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In turn, instead of equations (24) and (25), we run the regressions

PGI+m = µ0,m +µm,mEAm +µ f ,mEA f +ψm (32)

PGI+f = µ0, f +µm, f EAm +µ f , f EA f +ψ f (33)

which gives the correct standardized estimate µ̂m,m for Cov(Gm,Ỹm)
V (Ỹm)

and µ̂ f , f for Cov(G f ,Ỹ f )

V (Ỹ f )
. The resulting esti-

mates are given as µ̂m,m = 0.245 and µ̂ f , f = 0.147.
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F Relaxing assumptions in the baseline model

In this section, we relax the two assumptions in our baseline model and investigate whether their removal

affects our results.

F.1 The model

In our baseline model, we adopt a two-generation model, assuming that maternal and paternal circumstances

are uncorrelated with their genes. However, parental circumstances are likely influenced by grandparental or

other relatives’ genetic endowments through genetic nurture (e.g., Kong et al., 2018). Additionally, parental

genes may correlate with their circumstances due to population stratification (e.g. Young et al., 2019). The idea

of population stratification is that, over generations, genetic variation (allele frequencies) starts to differ across

population subgroups. This happens when mating patterns are shaped by factors such as geographic proximity

or socioeconomic background, rather than occurring randomly. If these same population subgroups in turn have

different cultural habits, this could lead to an association between genes and environmental circumstances. To

model this, we decompose parental circumstances into two components: environmental circumstances, EC, and

genetic driven circumstances, GC. Parental genetic endowments Gp are associated with GCp through genetic

nurture, and with ECp through population stratification.

Our baseline specification also assumes that parents assort based solely on educational attainment. In

reality, it is likely that parents sort on other characteristics. The subsequent subsections relax Assumptions 1

and 2. First, we explore their implications for the narrow genetic confounding estimate, followed by a similar

analysis for the broad genetic confounding estimate. In this section, we adopt a different notation for ease of

derivation: A|B instead of Ã to make it clearer what is being conditioned upon.

Yc = α +ρGc +βmYm +β fYf +ωmEm +ω f E f + ec (34)

Gc = αG +κmGm +κ f G f + εG (35)

Yp = αyp +ρypGp +λypECp +ζypGCp + ep with p = m, f (36)

Ep = αep +ρepGp +λepECp +ζepGCp +ηp with p = m, f (37)

The OLS estimator of equation (5) when the true data generating process is given by equations (34) to (37)
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is

β̂m =
Cov(Yc,(Ym|Yf ))

V (Ym|Yf )

=
Cov(ρGc +βmYm +β fYf +ωmEm +ω f E f ,(Ym|Yf ))

V (Ym|Yf )

= βm +ρ
Cov(Gc,(Ym|Yf ))

V (Ym|Yf )
+ωm

Cov(Em,(Ym|Yf ))

V (Ym|Yf )
+ω f

Cov(E f ,(Ym|Yf ))

V (Ym|Yf )

= βm +ρκm
Cov(Gm,(Ym|Yf ))

V (Ym|Yf )︸ ︷︷ ︸
Estimated NGC

+ρκ f
Cov(G f ,(Ym|Yf ))

V (Ym|Yf )

+ωmρem
Cov(Gm,(Ym|Yf ))

V (Ym|Yf )
+ωmλem

Cov(ECm,(Ym|Yf ))

V (Ym|Yf )
+ωmζem

Cov(GCm,(Ym|Yf ))

V (Ym|Yf )

+ω f ρe f
Cov(G f ,(Ym|Yf ))

V (Ym|Yf )
+ω f λe f

Cov(EC f ,(Ym|Yf ))

V (Ym|Yf )
+ω f ζe f

Cov(GC f ,(Ym|Yf ))

V (Ym|Yf )

(38)

F.2 Narrow genetic confounding

The second term on the right-hand side (“Estimated NGC”) is how we calculate narrow genetic confounding

(NGC) in our baseline model; the amount of genetic confounding attributable to direct genetic transmission.

In our baseline model, we assume that parental genes are independent of parental circumstances. Under this

assumption, the term Cov(Gm,(Ym|Y f ))

V (Ym|Y f )
can be estimated as the regression coefficient of Ym on Gm in a regres-

sion of Gm on Ym and Yf . If we relax this assumption (i.e., when parental genes are correlated to parental

circumstances), the estimator no longer captures narrow genetic confounding only. Gm is now correlated to

the environmental circumstances ECm through population stratification, and to genetic circumstances GCm due

to genetic nurture of other relatives. In this setting, population stratification merely associates with maternal

education – mating patterns generate a spurious association between genes and a trait – whereas genetic nurture

actually influences maternal education Ym (see equation 36) - relatives’ genes causally modify one’s educational

outcome.

To see the logic, consider the narrow genetic confounding term, where for the sake of simplicity, we assume

that Ym is independent of Yf :

Genetic transmission path = ρκm
Cov(Gm,Ym)

V (Ym)

= ρκm
Cov(Gm,ρymGm +λymECm +ζymGCm)

V (Ym)

= ρκm
ρym

V (Ym)︸ ︷︷ ︸
NGC

+ρκmλym
Cov(Gm,ECm)

V (Ym)︸ ︷︷ ︸
Population stratification

+ρκmζym
Cov(Gm,GCm)

V (Ym)︸ ︷︷ ︸
Genetic nurture

(39)
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Hence, our narrow genetic confounding estimator is biased by population structure and genetic nurture.

Whereas bias stemming from population structure is likely small in ALSPAC (see F.3), we cannot rule out

a moderate bias in our estimates from genetic nurture. To be able to calculate narrow genetic confounding

we would have to calculate ρym, this is, the causal impact of maternal (paternal) genes on their educational

attainment. For this purpose, we would require a three generation data set or a sibling sample. Whereas our

data set does not have three generations, it does contain a small subsection of mothers that happen to be sisters

(N = 195).

Table F2 shows the results of an OLS regression explaining maternal educational attainment in ALSPAC,

with and without sibling fixed-effects, and correcting for measurement error using IV. We obtain a ρym estimate

of 0.39.20

OLS IV

(1) (2) (3) (4) (5) (6) (7) (8)
PGI mother (UKB) 0.311∗∗∗ 0.344∗ 0.362∗∗ 0.299

(0.086) (0.146) (0.127) (0.198)

PGI mother (23me) 0.254∗∗ 0.227 0.466∗∗∗ 0.479∗

(0.090) (0.153) (0.137) (0.216)

Sibling fixed effects No No Yes Yes No No Yes Yes
R-squared 0.063 0.040 0.656 0.644 - - - -
N 195 195 195 195 195 195 195 195
First stage F-stat - - - - - 72.901 72.901 31.716 31.716
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table F2 Results of the OLS and IV regressions explaining the maternal years of education. Standard errors in
parenthesis.

Using the variance of maternal years of education, which is equal to 3.063 (see Table 1), this gives NGC=

39.77*0.5*(0.389/3.063)=2.525 which corresponds to 18% of the mother–child association. This calculation

suggests that parental genetic nurture introduces an upward bias in our baseline NGC estimates. The advantage

of this approach is that it provides a flexible way to approximate the magnitude of this bias while relaxing some

of our baseline assumptions. There are nevertheless two main limitations; first, we estimate ρym in a small

subsample of our data, which limits its external validity, and second, we are not able to do a similar exercise

for fathers as there are no fathers who are brothers in ALSPAC.
20We weren’t able to implement ORIV with sibling fixed effects, as demeaning at both the family level (to remove shared environmental

factors) and at the polygenic index (PGI) level led to an induced negative correlation between the instruments. As such, both first and
second stage coefficients were negative. In the raw data, PGIs are positively correlated across siblings, and standard within-family OLS
yields a positive coefficient. This indicates that the negative first stage is a statistical artifact of combining ORIV with sibling fixed-effects,
rather than a genuine feature of the data. As such, for the purpose of this exercise, we use the average of the two IV estimators 0.30 and
0.48 - Column 7 and 8 of Table F2.
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F.3 Broad genetic confounding

In our baseline specification, we define broad genetic confounding as the sum of narrow genetic confounding

and genetic nurture. Genetic nurture was defined as the influence of parental genes on the rearing environment

of their offspring. Here, we expand the framework to include a third generation, the grandparents. In this

expanded setting, genetic nurture also includes the influence of grandparental genes. Grandparental genetic

nurture may influence grandchild’s educational attainment either directly, by shaping their rearing environ-

ment, or indirectly, through the impact on their parents.21 Direct genetic nurture from grandparents may occur,

for example, when grandparents play an active role in raising their grandchildren, sharing caregiving respon-

sibilities with the parents, such that their genes directly influence the rearing environment. Indirect genetic

nurture arises when grandparental genes affect the genes and behaviors of the parents, who in turn create a

different rearing environment for the child.

To understand the consequences for broad genetic confounding, rearrange equation (38):

β̂m =
Cov(Yc,(Ym|Yf ))

V (Ym|Yf )

= βm +ρ
Cov(Gc,(Ym|Yf ))

V (Ym|Yf )
+ωm

Cov(Em,(Ym|Yf ))

V (Ym|Yf )
+ω f

Cov(E f ,(Ym|Yf ))

V (Ym|Yf )

= βm +ρκm
Cov(Gm,(Ym|Yf ))

V (Ym|Yf )︸ ︷︷ ︸
Estimated NGC

+ωmρem
Cov(Gm,(Ym|Yf ))

V (Ym|Yf )︸ ︷︷ ︸
Parental Genetic Nurture

+ωmζem
Cov(GCm,(Ym|Yf ))

V (Ym|Yf )︸ ︷︷ ︸
Grandparental Genetic Nurture

+ ωmλem
Cov(ECm,(Ym|Yf ))

V (Ym|Yf )︸ ︷︷ ︸
Environmental confounding + population stratification

+
(
ω f ρe f +ρκ f

)Cov(G f ,(Ym|Yf ))

V (Ym|Yf )
+ω f λe f

Cov(EC f ,(Ym|Yf ))

V (Ym|Yf )
+ω f ζe f

Cov(GC f ,(Ym|Yf ))

V (Ym|Yf )︸ ︷︷ ︸
Conditional Assortative Mating

(40)

In a three-generation model, broad genetic confounding is still the sum of direct genetic transmission and

genetic nurture, except that in a three generation model, genetic nurture can be at the parent level, or at the

grandparental level, which can run directly or indirectly. The next step is to derive the estimator of βm when

Gm and G f are added as controls.

21In practice, broad genetic confounding encompasses all confounding attributable to the causal effects of genes of relatives on the
child’s educational attainment, irrespective of the family member involved or the pathway through which these effects operate. For this
analysis, however, we interpret it as the influence of grandparents.
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β̂
2
m =

Cov(Yc,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )

= βm +ρκm
Cov(Gm,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )︸ ︷︷ ︸
=0

+ρκ f
Cov(G f ,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )︸ ︷︷ ︸
=0

+β f
Cov(Yf ,(Ym|Yf ,Gm,G f )

V (Ym|Yf ,Gm,G f )︸ ︷︷ ︸
=0

+ωmρem
Cov(Gm,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )︸ ︷︷ ︸
=0

+ω f ρe f
Cov(G f ,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )︸ ︷︷ ︸
=0

+ωmλem
Cov(ECm,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )
+ωmζem

Cov(GCm,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )

+ω f λe f
Cov(EC f ,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )
+ω f ζe f

Cov(GC f ,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )
(41)

The difference between βm with and without controls is depicted below.

β̂m − β̂
2
m = ρκm

Cov(Gm,(Ym|Yf ))

V (Ym|Yf )︸ ︷︷ ︸
Estimated NGC

+ωmρem
Cov(Gm,(Ym|Yf ))

V (Ym|Yf )︸ ︷︷ ︸
Parental genetic nurture︸ ︷︷ ︸

Broad genetic confounding

+ωmζem

(
Cov(GCm,(Ym|Yf ))

V (Ym|Yf )
−

Cov(GCm,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )

)
︸ ︷︷ ︸

Grandparental genetic nurture mother (residual)︸ ︷︷ ︸
Broad genetic confounding

+
(
ω f ρe f +ρκ f

)Cov(G f ,(Ym|Yf ))

V (Ym|Yf )︸ ︷︷ ︸
Conditional assortative mating

+ω f ζe f

(
Cov(GC f ,Ym|Yf )

V (Ym|Yf )
−

Cov(GC f ,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )

)
︸ ︷︷ ︸

Cond. assort. mating + grandparental genetic nurture father (residual)

+ ω f λe f

(
Cov(EC f ,(Ym|Yf ))

V (Ym|Yf )
−

Cov(EC f ,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )

)
︸ ︷︷ ︸

Cond. assort. mating + environmental confounding + pop. stratification father (residual)

+ωmλem

(
Cov(ECm,(Ym|Yf ))

V (Ym|Yf )
−

Cov(ECm,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )

)
︸ ︷︷ ︸

Environmental confounding + pop. stratification mother (residual)

(42)

Relaxing our model assumptions leads to the conclusion that our baseline estimate for broad genetic con-

founding is similar to our baseline estimate in (14), but has a few additional terms. First, broad genetic con-

founding now also includes a residual term associated with genetic nurture from grandparents. This residual
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term is not a bias, since it still captures indirect yet causal effects of ancestors’ genes. Second, the estimate may

also capture conditional assortative mating and several residual terms related to environmental confounding and

population structure (i.e., the last four terms of equation 42). We discuss these terms in turn.

Residual terms The residual terms (last three terms of equation 42) are a combination of conditional assorta-

tive mating, genetic nurture, environmental confounding, and population stratification. It should be emphasized

that these terms are residuals – they only arise if the conditional covariances between two characteristics (e.g.,

between ECm and Ym in the final term of equation 42) is different when conditioning on Yf only compared with

conditioning on Yf , Gm and G f . The first two of these residual terms stem from a possible correlation between

paternal circumstances – genetically driven, GC f , or purely environmental in origin, EC f – and maternal educa-

tional attainment Ym. This is again an example of conditional assortative mating, where father’s characteristics

correlate with maternal educational attainment, even conditional on father’s educational attainment. The final

term is akin to our baseline equation (9).

The ALSPAC dataset provides limited detail on the environments in which parents were raised given that its

focus is on the children. As such, we attempt to assess the potential magnitude of environmental confounding

by examining a set of proxy variables. These include grandparental characteristics that likely shaped parental

environments (e.g., maternal grandparents’ years of education, or whether they are involved in providing child-

care), as well as parental outcomes that may partly reflect early-life exposures (e.g., maternal social class and

birth weight). Table F3 presents the estimated covariance-to-variance ratios between these proxies and residual

parental education, comparing specifications with and without genetic controls.

Table F3 shows the resulting coefficient estimates for a list of environmental circumstances. Across all

variables considered, the difference between the two specifications is minimal, suggesting that the magnitude

of these residual terms is likely to be very small. For instance, regressing grandmother’s years of education

on father’s years of education conditional on mother’s years of education produces a coefficient of 0.107.

Additionally controlling for both parent’s PGIs changes the coefficient slightly to 0.092. Hence the term within

parentheses (denoted by ∆ in the Table) in this case is 0.015. Overall, it seems plausible that the magnitude of

these residual environmental terms is very small.
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Cov(Cm,Ỹm)
V (Ỹm)

Cov(Cm,Ỹ
gc
m )

V (Ỹ gc
m )

[∆]
Cov(Cm,Ỹ f )

V (Ỹ f )

Cov(Cm,Ỹ
gc
f )

V (Ỹ gc
f )

[∆]

Social class (mom) -0.219 -0.205 -0.014 -0.078 -0.070 -0.008
Social class (father) -0.058 -0.041 -0.018 -0.338 -0.330 -0.009
Childcare by grandparents -0.031 -0.026 -0.005 -0.032 -0.030 -0.003
Grandfather educ. (mom, yrs) 0.198 0.156 0.042 0.115 0.095 0.020
Grandmother educ. (mom, yrs) 0.158 0.120 0.038 0.107 0.092 0.015
Birthweight (mom, kgs) 0.006 -0.001 0.007 0.005 0.003 0.002
Grandfather involved (mom) -0.010 -0.007 -0.003 -0.013 -0.012 -0.002
Grandmother involved (mom) -0.016 -0.015 -0.002 -0.019 -0.017 -0.002

Table F3 Estimates of covariance to variance ratios between parental environment proxies and residual parental edu-
cation. Residuals are obtained from regressions controlling for the other parent’s education, with and without controls
for parental polygenic indices. Social class is a variable coded based on parental occupation, where 1 indicates pro-
fessional occupations, 2 managerial and technical, 3 skilled (non-manual or manual), 4 partly skilled, and 5 unskilled.
Childcare by grandparents is a binary variable equal to 1 if either grandparent provides any childcare. Grandfather’s
education and grandmother’s education refer to the years of schooling completed by the maternal grandparents. Birth
weight corresponds to the mother’s own birth weight in kilograms. Grandfather involved and grandmother involved are
binary indicators equal to 0 if the respective maternal grandparent is involved in activities with the grandchild.

The final two residual terms partially involve population stratification. In Appendix G.2 we add the 20 first

principal components of the mother and child, and our results remain virtually unchanged. Of course, residual

population stratification can still occur when there are geographic or regional differences in allele frequencies

relating to a trait of interest that cannot necessarily be controlled for with principal components (e.g., Haworth

et al., 2019). Still, ALSPAC is known to be a very homogeneous genetic group, as it focuses on white ancestry

individuals in a small geographic region of the UK (Fraser et al., 2013). This is reflected is a high genetic

homogeneity (Ruisch et al., 2019). In this sense, it is plausible that our estimates are less affected by bias from

residual population stratification than other datasets, with more heterogeneous populations.

Conditional Assortative mating The term “conditional assortative mating” in equation (42) directly follows

from relaxing assumption A.2. If assortative mating does not just take place at the level of educational attain-

ment, then the father’s genetic endowments may still correlate with mother’s educational attainment conditional

on father’s educational attainment. We can partially test our assumption that assortative mating occurs exclu-

sively at the educational attainment level. To do this, we compute the terms Cov(G f ,(Ym|Y f ))

V (Ym|Y f )
and Cov(Gm,(Y f |Ym))

V (Y f |Ym)
.

Table F4 shows that controlling for the partner’s educational attainment controls for a large share of assortative

mating; 49% for mothers and 62% for fathers. This suggests that educational attainment is the most important,

albeit not unique, sorting mechanism, as the association remains statistically significant, indicating that other

traits also contribute to assortative mating.
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EA PGI father (UKB) EA PGI mother (UKB)

(1) (2) (3) (4)
Mother years of education 0.120∗∗∗ 0.061∗∗∗ 0.179∗∗∗

(0.009) (0.010) (0.010)
Father years of education 0.104∗∗∗ 0.146∗∗∗ 0.056∗∗∗

(0.010) (0.008) (0.009)
R-squared 0.043 0.070 0.072 0.142
N 4,031 4,031 4,031 4,031
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table F4 Results of the OLS regressions explaining the maternal and paternal EA PGI. Robust standard errors in
parenthesis.

To gauge the magnitude of the unaccounted assortative mating, we would like to know how large the

term
(
ω f ρe f +ρκ f

) Cov(G f ,(Ym|Y f ))

V (Ym|Y f )
is. While we don’t know ω f ρe f we can calculate ρκ f

Cov(G f ,(Ym|Y f ))

V (Ym|Y f )
and

ρκm
Cov(Gm,(Y f |Ym))

V (Y f |Ym)
for fathers, where Gm and G f are corrected for measurement error using the technique de-

scribed in Appendix E. The terms are equal to 39.77*0.50*0.09=1.78 for mothers and 39.77*0.50*0.08=1.59

fathers. We can deduct this term to our broad genetic confounding estimates of Table 2: for mothers, broad

genetic confounding is 6.42-1.78=4.64, and for fathers 5.11-1.59=3.52. Accounting for this additional part of

broad genetic confounding reduces our estimates of broad genetic confounding from 45.1% to 32.6% for moth-

ers and from 41.1% to 28.5% for fathers. These differences are upper bounds of the broad genetic confounding

estimate as one would still need to deduct ω f ρe f
Cov(G f ,(Ym|Y f ))

V (Ym|Y f )
, which is likely a positive term.

An alternative approach to overcome the bias induced by conditional assortative mating is to control for the

partner’s genetic endowments in the baseline equation. This approach starts from a different baseline estimator

that also controls for G f in addition to Yf . Let’s call the resulting estimator β̂ G
m , where the G superscript denotes
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that we additionally controlled for G f :

β̂
G
m =

Cov(Yc,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )

= βm +ρ
Cov(Gc,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )
+ωm

Cov(Em,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )
+ω f

Cov(E f ,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )

= βm +ρκm
Cov(Gm,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )︸ ︷︷ ︸
Estimated NGC (biased down)

+ωmρem
Cov(Gm,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )︸ ︷︷ ︸
Parental Genetic Nurture (biased down)

+ ωmζem
Cov(GCm,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )︸ ︷︷ ︸
Grandparental Genetic Nurture (biased down)

+ ωmλem
Cov(ECm,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )︸ ︷︷ ︸
Environmental confounding + population stratification

+
(
ω f ρe f +ρκ f

)Cov(G f ,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )︸ ︷︷ ︸
=0

+ω f λe f
Cov(EC f ,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )
+ω f ζe f

Cov(GC f ,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )

︸ ︷︷ ︸
Conditional Assortative Mating

(43)

β̂
G
m − β̂

2
m = ρκm

Cov(Gm,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )︸ ︷︷ ︸
Estimated NGC (BD)

+ωmρem
Cov(Gm,(Ym|Yf ))

V (Ym|Yf )︸ ︷︷ ︸
Parental genetic nurture (BD)︸ ︷︷ ︸

Broad genetic confounding (BD)

+ωmζem

(
Cov(GCm,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )
−

Cov(GCm,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )

)
︸ ︷︷ ︸

Grandparental genetic nurture mother (residual, BD)︸ ︷︷ ︸
Broad genetic confounding (BD)

+ω f ζe f

(
Cov(GC f ,Ym|Yf ,G f )

V (Ym|Yf ,G f )
−

Cov(GC f ,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )

)
︸ ︷︷ ︸

Cond. assort. mating + grandparental genetic nurture father (residual)

+ ω f λe f

(
Cov(EC f ,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )
−

Cov(EC f ,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )

)
︸ ︷︷ ︸

Cond. assort. mating + environmental confounding + pop. stratification father (residual)

+ωmλem

(
Cov(ECm,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )
−

Cov(ECm,(Ym|Yf ,Gm,G f ))

V (Ym|Yf ,Gm,G f )

)
︸ ︷︷ ︸

Environmental confounding + pop. stratification mother (residual)

(44)

Ignoring the residual terms, this difference simplifies to

β̂
G
m − β̂

2
m ≈ (ρκm +ωmζem)

Cov(Gm,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )
(45)
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The advantage of this estimation is that it gets rid of the residual assortative mating term and only captures

broad genetic confounding. However, the estimate of BGC may be slightly underestimated, given that the

father’s genes will correlate with the mothers and the child’s. As such, we know that:

Cov(Gm,(Ym|Yf ,G f ))

V (Ym|Yf ,G f )
<

Cov(Gm,(Ym|Yf ))

V (Ym|Yf )

To get a feeling for the size of the bias, we add the other parent’s EA PGI as a control in our baseline

specification. Table F5 implements this estimate, where the partner’s EA PGI is always added as control. Due

to this, our ORIV estimates of broad genetic confounding reduce from 6.4 to 4.42 for mothers and 5.1 to 3.6

for fathers. This leads to the conclusion that the percentage of the parent-child association explained by broad

genetic confounding is likely leaning towards 31.1% for mothers and 28.9% for fathers. This fits well with our

previous estimate, of 32.6% and 28.5%.

OLS ORIV

(1) (2) (3) (4) (5) (6)
Mother years of education 13.007∗∗∗ 11.465∗∗∗ 10.460∗∗∗ 12.219∗∗∗ 9.565∗∗∗ 7.797∗∗∗

(1.298) (1.358) (1.354) (0.941) (1.054) (1.072)
Father years of education 10.324∗∗∗ 11.459∗∗∗ 9.568∗∗∗ 8.627∗∗∗ 10.789∗∗∗ 7.224∗∗∗

(1.250) (1.245) (1.249) (0.934) (0.895) (0.949)
EA PGI father 19.416∗∗∗ 18.765∗∗∗ 26.986∗∗∗ 26.397∗∗∗

(2.031) (2.006) (2.181) (2.176)
EA PGI mother 15.454∗∗∗ 14.543∗∗∗ 21.522∗∗∗ 20.678∗∗∗

(2.113) (2.074) (2.282) (2.284)
R-squared 0.117 0.109 0.127 0.091 0.094 0.088
N 4032 4032 4032 8064 8064 8064
Broad genetic conf mom . . 2.547 . . 4.423
Broad genetic conf dad . . 1.891 . . 3.565
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table F5 Results of the OLS regressions explaining the maternal and paternal EA PGI. Robust standard errors in
parenthesis.

In conclusion, relaxing the assumptions of our model reveals that our broad genetic confounding estimates

may be subject to an upward bias arising mostly from assortative mating based on other characteristics besides

education. Compared to adoption and twin approaches, a key advantage of using molecular genetic data is its

ability to quantify and account for genetic sources of assortative mating.

57



G Results of robustness checks

G.1 Results with other measures of Key Stage 4 grades

This section replicates the main results but with alternative measures of the Key Stage 4 results. While our

baseline measure aggregates all points across examinations, here we employ a measure of average point per

exam, and the highest point score obtain in the Key Stage 4 Science exam. Table G6 shows the summary

statistics of these two measures. The maximum number of points decreases from 1,171 (see Table 1) to 61 and

58, respectively.

Mean S.D. Min. Max. N
Key stage 4 average points per exam 41.29 8.76 0 61 4,030
Key stage 4 highest point score in the Science exam 43.47 9.39 0 58 3,861

Table G6 Summary statistics of alternative Key Stage 4 measures (ALSPAC). S.D.=Standard deviation;
Min.=Minimum; Max.=Maximum

Table G7 and G8 replicate our baseline results depicted in Table 2, but with average Key Stage 4 point per

exam and highest point score obtained in the Science exam. The percentages of broad and narrow genetic con-

founding are strikingly similar to the ones obtained in our baseline estimation. If anything, genetic confounding

for fathers seems to be slightly lower for the highest points obtained in the Science exam, but differences are

small.
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OLS ORIV

(1) (2) (3) (4) (5) (6) (7)
Mother years of education 1.205∗∗∗ 0.884∗∗∗ 0.662∗∗∗

(0.080) (0.081) (0.065)
Father years of education 1.098∗∗∗ 0.869∗∗∗ 0.686∗∗∗

(0.077) (0.077) (0.060)
EA PGI mother (UKB) 2.196∗∗∗ 1.278∗∗∗ 1.320∗∗∗ 2.654∗∗∗ 1.810∗∗∗ 1.109∗∗∗

(0.128) (0.130) (0.185) (0.134) (0.145) (0.211)
EA PGI father (UKB) 2.114∗∗∗ 1.514∗∗∗ 0.880∗∗∗ 2.624∗∗∗ 2.054∗∗∗ 0.471

(0.128) (0.127) (0.224) (0.139) (0.140) (0.269)
EA PGI child (UKB) 1.801∗∗∗ 3.153∗∗∗

(0.272) (0.335)
Broad genetic conf mom 0.321 0.543
(in %) (26.7%) (45.1%)

Broad genetic conf dad 0.229 0.412
(in %) (20.9%) (37.5%)

Narrow genetic conf mom 0.160 0.387
(in %) (13.3%) (32.1%)

Narrow genetic conf dad 0.093 0.232
(in %) (8.5%) (21.1%)
R-squared 0.170 0.137 0.218 0.146 - - -
N 4,030 4,030 4,030 4,030 4,030 4,030 4,030
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G7 Results of the OLS and ORIV regressions explaining the offspring Key Stage 4 average grade per exam.
Robust standard errors in parentheses.
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OLS ORIV

(1) (2) (3) (4) (5) (6) (7)
Mother years of education 1.301∗∗∗ 0.968∗∗∗ 0.727∗∗∗

(0.085) (0.085) (0.070)
Father years of education 1.164∗∗∗ 0.926∗∗∗ 0.728∗∗∗

(0.085) (0.084) (0.066)
EA PGI mother (UKB) 2.278∗∗∗ 1.268∗∗∗ 1.347∗∗∗ 2.775∗∗∗ 1.849∗∗∗ 1.169∗∗∗

(0.140) (0.143) (0.211) (0.150) (0.164) (0.238)
EA PGI father (UKB) 2.347∗∗∗ 1.714∗∗∗ 1.034∗∗∗ 2.930∗∗∗ 2.323∗∗∗ 0.677∗

(0.136) (0.136) (0.257) (0.153) (0.154) (0.309)
EA PGI child (UKB) 1.919∗∗∗ 3.292∗∗∗

(0.313) (0.381)
Broad genetic conf mom 0.333 0.574
(in %) (25.6%) (44.1%)

Broad genetic conf dad 0.238 0.437
(in %) (20.4%) (37.5%)

Narrow genetic conf mom 0.173 0.410
(in %) (13.3%) (31.5%)

Narrow genetic conf dad 0.095 0.232
(in %) (8.2%) (19.9%)
R-squared 0.172 0.137 0.220 0.146 - - -
N 3,861 3,861 3,861 3,861 3,861 3,861 3,861
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G8 Results of the OLS and ORIV regressions explaining the offspring Key Stage 4 grade in the Science exam.
Robust standard errors in parentheses.

G.2 Results with control variables

This section replicates the main results while adding gender and the first 20 principal components of the ge-

nomic relationship matrix of the child and the mother. Adding these controls does not alter our results in any

meaningful way.
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OLS ORIV

(1) (2) (3) (4) (5) (6) (7)
Mother years of education 14.092∗∗∗ 10.382∗∗∗ 7.658∗∗∗

(1.293) (1.340) (1.066)
Father years of education 12.205∗∗∗ 9.476∗∗∗ 7.117∗∗∗

(1.234) (1.236) (0.939)
EA PGI mother 24.753∗∗∗ 14.365∗∗∗ 14.512∗∗∗ 30.066∗∗∗ 20.734∗∗∗ 10.209∗∗

(1.956) (2.054) (2.873) (2.047) (2.297) (3.222)
EA PGI father 25.749∗∗∗ 18.965∗∗∗ 11.300∗∗ 32.990∗∗∗ 26.771∗∗∗ 5.281

(2.002) (2.027) (3.577) (2.128) (2.200) (4.146)
EA PGI child 20.997∗∗∗ 40.361∗∗∗

(4.287) (5.115)
Female 42.205∗∗∗ 41.924∗∗∗ 42.029∗∗∗ 42.012∗∗∗ 42.346∗∗∗ 42.292∗∗∗ 42.466∗∗∗

(4.026) (4.060) (3.960) (4.050) (2.964) (2.858) (2.973)
Child’s PCs Yes Yes Yes Yes Yes Yes Yes
Mother’s PCs Yes Yes Yes Yes Yes Yes Yes
R-squared 0.128 0.113 0.158 0.118 - - -
N 3,980 3,980 3,980 3,980 3,980 3,980 3,980
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G9 Results of the OLS and ORIV regressions explaining the offspring Key Stage 4 grade. Robust standard
errors in parenthesis.

G.3 Results by gender

This section replicates the results separately by females and males. Table G10 depicts the results for females

(daughters) and Table G11 depicts the results for males (sons). While father-son education association seems

to be lower – with or without controlling for genetic transmission – the differences are small in magnitude.

OLS ORIV

(1) (2) (3) (4) (5) (6) (7)
Mother years of education 13.132∗∗∗ 9.832∗∗∗ 7.401∗∗∗

(1.722) (1.777) (1.418)
Father years of education 13.581∗∗∗ 10.591∗∗∗ 8.580∗∗∗

(1.652) (1.670) (1.269)
EA PGI mother 25.689∗∗∗ 15.014∗∗∗ 13.247∗∗∗ 30.754∗∗∗ 20.507∗∗∗ 10.687∗

(2.678) (2.767) (3.846) (2.742) (3.068) (4.519)
EA PGI father 24.240∗∗∗ 17.611∗∗∗ 6.852 29.971∗∗∗ 23.611∗∗∗ 2.256

(2.542) (2.585) (4.499) (2.668) (2.735) (5.569)
EA PGI child 25.267∗∗∗ 39.679∗∗∗

(5.498) (6.967)
R-squared 0.105 0.085 0.136 0.093 - - -
N 2,104 2,104 2,104 2,104 2,104 2,104 2,104
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G10 Results of the OLS and ORIV regressions explaining the offspring Key Stage 4 grade, for the subsample
of daughters. Robust standard errors in parenthesis.
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OLS ORIV

(1) (2) (3) (4) (5) (6) (7)
Mother years of education 14.821∗∗∗ 10.607∗∗∗ 7.538∗∗∗

(1.897) (1.986) (1.571)
Father years of education 11.558∗∗∗ 9.054∗∗∗ 6.350∗∗∗

(1.807) (1.798) (1.368)
EA PGI mother (UKB) 24.087∗∗∗ 13.715∗∗∗ 15.756∗∗∗ 29.207∗∗∗ 20.736∗∗∗ 10.095∗

(2.797) (2.976) (4.133) (2.983) (3.327) (4.453)
EA PGI father (UKB) 27.308∗∗∗ 20.147∗∗∗ 15.471∗∗ 36.192∗∗∗ 29.833∗∗∗ 9.348

(2.999) (3.040) (5.319) (3.276) (3.421) (5.902)
EA PGI child (UKB) 17.381∗∗ 40.253∗∗∗

(6.342) (7.222)
R-squared 0.095 0.082 0.125 0.085 - - -
N 1,928 1,928 1,928 1,928 1,928 1,928 1,928
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G11 Results of the OLS and ORIV regressions explaining the offspring Key Stage 4 grade, for the subsample
of sons. Robust standard errors in parenthesis.

G.4 Results by education level

This section uses parental education levels instead of parental years of education to estimate broad genetic

confounding. In this section we exclude the only family whose mother reported having no educational degree.

Figure 6 depicts the distribution of parental educational attainment. Table G12 replicates the main results

with a binary variable for each education level and having a CSE as baseline. The results reveal that the raw

association between parental and offspring education is roughly linear over the additional degrees. The results

also reveal larger attenuation percentages for higher levels of education. For mothers, the coefficient reduces

30.5% for having a degree (from 109.1 to 75.8), for A-levels 23.3% (from 74.9 to 57.6), for O-levels 15.8%

(from 52.7 to 44.4), and vocational 10.4% (from 27.1 to 24.3). For fathers, the coefficient for having a degree

reduces 34.3% (from 75.3 to 49.5), for A-levels 24.8% (from 45.3 to 34.1), for O-levels 18-8% (from 45.5 to

34.1), and for vocational 6.72% (from 10.6 to 9.9 albeit the coefficients are not significant). This suggests that

broad genetic confounding plays a larger role in the transmission of higher levels of education.
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Figure 6 Distribution of Maternal and Paternal education. The blue bar corresponds to having CSE or O-levels, the
red column to having a vocational education, the green to having A-levels, and the yellow to having a university degree.

OLS ORIV

(1) (2) (3) (4) (5)
Mother education: Vocational 27.103∗∗ 24.065∗ 24.286∗∗∗

(10.174) (10.051) (7.169)
Mother education: O level 52.715∗∗∗ 47.627∗∗∗ 44.391∗∗∗

(7.874) (7.829) (5.669)
Mother education: A level 74.875∗∗∗ 64.370∗∗∗ 57.462∗∗∗

(8.264) (8.312) (6.197)
Mother education: Degree 109.069∗∗∗ 89.983∗∗∗ 75.768∗∗∗

(9.569) (9.845) (7.675)
Father education: Vocational 10.642 11.161 9.927

(8.474) (8.408) (6.040)
Father education: O level 33.496∗∗∗ 29.839∗∗∗ 27.198∗∗∗

(6.679) (6.584) (4.741)
Father education: A level 45.319∗∗∗ 39.604∗∗∗ 34.093∗∗∗

(6.558) (6.481) (4.709)
Father education: Degree 75.279∗∗∗ 61.304∗∗∗ 49.486∗∗∗

(7.789) (7.795) (5.841)
EA PGI mother 25.014∗∗∗ 11.807∗∗∗ 41.516∗∗∗ 23.593∗∗∗

(1.977) (2.094) (2.812) (3.241)
EA PGI father 25.523∗∗∗ 17.382∗∗∗ 46.425∗∗∗ 35.580∗∗∗

(1.980) (1.984) (2.994) (3.074)
R-squared 0.127 0.081 0.150 - -
N 4,031 4,031 4,031 4,031 4,031
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G12 Results of the OLS and ORIV regressions explaining the offspring Key Stage 4 grade. Maternal and
paternal education is a categorical variable that ranges from having CSE or O-levels, having a vocational education,
having A-levels, or having a university degree. Robust standard errors in parenthesis.
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G.5 Robustness of the ORIV estimates

Table G13 presents the results of the first stage regressions predicting each PGI. Each independent PGI is highly

predictive of the other (that is, the child’s PGI based on 23andMe is highly predictive of the child’s PGI based

on UKB, and vice versa). The F-statistic varies between approximately 382 and 1542.

EA PGI (UKB)
child mother father

(1) (2) (3) (4) (5)

EA PGI child (23andMe) 0.513∗∗∗

(0.014)
EA PGI mother (23andMe) 0.525∗∗∗ 0.453∗∗∗ -0.009

(0.013) (0.013) (0.014)
EA PGI father (23andMe) 0.022 0.494∗∗∗ 0.458∗∗∗

(0.013) (0.014) (0.014)
Mother years of education 0.116∗∗∗ 0.044∗∗∗

(0.009) (0.009)
Father years of education 0.033∗∗∗ 0.063∗∗∗

(0.008) (0.009)
F-statistic 1388.569 1542.574 497.194 1294.959 382.308
R-squared 0.263 0.276 0.331 0.244 0.271
N 4,032 4,032 4,032 4,032 4,032
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G13 Results of the OLS (first stage) predicting the the EA PGI based on the summary statistics of the UK
Biobank data set. Robust standard errors in parenthesis.

Table G14 presents our IV results with the 23andMe-based PGI instrumenting for the UKB-based PGI

(columns 1, 3, 5, and 7), and vice versa (columns 2, 4, 6, 8). The point estimates differ somewhat, illustrating

the benefit of ORIV rather than arbitrarily relying on one of the two sets of estimates.

(1) (2) (3) (4) (5) (6) (7) (8)
Mother years of education 12.012∗∗∗ 12.493∗∗∗ 9.377∗∗∗ 9.896∗∗∗

(1.331) (1.331) (1.525) (1.459)
Father years of education 8.668∗∗∗ 8.640∗∗∗ 10.795∗∗∗ 10.819∗∗∗

(1.317) (1.324) (1.262) (1.269)
EA PGI father (UKB) 48.825∗∗∗ 35.413∗∗∗

(4.095) (4.293)
EA PGI father (23andMe) 58.561∗∗∗ 41.263∗∗∗

(4.330) (4.466)
EA PGI mother (UKB) 44.083∗∗∗ 27.190∗∗∗

(3.910) (4.474)
EA PGI mother (23andMe) 54.257∗∗∗ 31.951∗∗∗

(3.963) (4.396)
N 4,032 4,032 4,032 4,032 4,032 4,032 4,032 4,032
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G14 Results of the Two Stage Least Square (2SLS) predicting the Key Stage 4 grade. The father’s (mother’s)
UKB PGI is used as an instrument for the father’s (mother’s) 23andME PGI and vice-versa. Robust standard errors in
parenthesis.
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Finally, we replicate the main results with two independent PGIs built from two non-overlapping samples

of the UK Biobank. Given that the discovery sample is based on individuals residing in the same country, the

discovery sample is expected to be more homogeneous and the PGIs are expected to have a larger correlation

with each other. Figure 7 depicts the relationship between the Key Stage 4 of the child and the PGIs. One can

observe a clear positive relationship between the grade and the PGIs. Since these PGIs were constructed based

on smaller discovery samples, their predictive power is smaller than the PGIs constructed using the full UK

Biobank and 23andMe as discovery samples.

Figure 7 Scatterplot of Key Stage 4 and the EA PGI of the child with a locally weighted regression line. On the left,
the PGI based on the summary statistics of one half of the UK Biobank sample. On the right, the PGI based on the
summary statistics of the other half of the UK Biobank sample.

Table G15 replicates the results of Table 2 but with the split sample PGIs. Comparing columns 1 and 5

one can conclude that the coefficients of maternal and paternal education shrink by approximately 35% each,

slightly less than in our main specification. This can be explained by the lower predictive power of these PGIs.

Qualitatively, all the results from the original specification hold.

To dig a little deeper into this, Table G16 shows the relationship between the two independent EA PGIs

for the child, mother, and father. While in theory, the correlation between the PGIs could be larger under this

specification since the PGIs originate from the same discovery sample, this doesn’t hold in practice, perhaps

due to the lower predictive sample of these PGIs. While under the original specification the coefficients of a

regression explaining the child, mother, and father UKB PGI with the other 23andMe PGI is 0.513, 0.525, and

0.494 – see Table G13, –, here the coefficients of the same regressions are 0.507, 0.497, and 0.464 - Table G16.

Likewise, the F-statistics are slightly smaller – 1377.1 versus 1388.6, 1542.6 versus 1331.7, and 1295.0 versus

1081.9. In sum, it seems that the statistical properties of the two-sample ORIV estimates are slightly better,

and since ORIV is robust against small deviations from a genetic correlation of 1 (see van Kippersluis et al.,

2023), the two-sample ORIV estimates constitutes our main estimates.
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OLS ORIV

(1) (2) (3) (4) (5) (6) (7)
Mother years of education 14.214∗∗∗ 11.470∗∗∗ 9.160∗∗∗

(1.305) (1.340) (1.061)
Father years of education 12.334∗∗∗ 10.135∗∗∗ 8.067∗∗∗

(1.246) (1.248) (0.942)
EA PGI mother 22.385∗∗∗ 12.876∗∗∗ 13.716∗∗∗ 26.098∗∗∗ 15.895∗∗∗ 12.360∗∗∗

(2.027) (2.056) (2.890) (2.157) (2.347) (3.232)
EA PGI father 23.766∗∗∗ 17.009∗∗∗ 11.194∗∗ 30.687∗∗∗ 24.353∗∗∗ 10.530∗

(2.025) (2.007) (3.592) (2.266) (2.276) (4.245)
EA PGI child 18.023∗∗∗ 29.573∗∗∗

(4.266) (5.213)
R-squared 0.097 0.066 0.122 0.070 - - -
N 4,032 4,032 4,032 4,032 4,032 4,032 4,032
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G15 Results of the OLS and ORIV regressions explaining the offspring Key Stage 4 grade. Robust standard
error in parenthesis.

EA PGI (UKB, sample 1)
child mother father

(1) (2) (3)

EA PGI child (UKB, sample 2) 0.507∗∗∗

(0.014)
EA PGI mother (UKB, sample 2) 0.497∗∗∗

(0.014)
EA PGI father (UKB, sample 2) 0.464∗∗∗

(0.014)
F-statistic 1377.115 1331.788 1081.895
R-squared 0.258 0.247 0.216
N 4,032 4,032 4,032
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G16 Results of the OLS regression predicting each sample 2 EA PGI based on the summary statistics of sample
1 of the UK Biobank data set. Robust standard errors in parenthesis.
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G.6 Results using trios with non-imputed genetic information

This section replicates the main analysis on the subsample of trios for which there is actual genetic imputation

(see Appendix D). For the 1,022 trios for which we have genetic information, we imputed the father genomes,

such that we could compare the imputed and real paternal PGIs. Table G17 depicts pairwise correlations

between imputed and actual PGIs for the fathers. The imputed and actual PGIs constructed using the same

summary statistics have a correlation of 0.66-0.67, indicating a relatively large accuracy in predicting the

paternal genome based on the mother and the child’s.

EA PGI father EA PGI father EA PGI father EA PGI father
(23andMe, non-imputed) (23andMe, imputed) (UKB, non-imputed) (UKB, imputed)

EA PGI father (23andMe, non-imputed) 1.00
EA PGI father (23andMe, imputed) 0.67∗∗∗ 1.00
EA PGI father (UKB, non-imputed) 0.56∗∗∗ 0.37∗∗∗ 1.00
EA PGI father (UKB, imputed) 0.36∗∗∗ 0.46∗∗∗ 0.66∗∗∗ 1.00
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G17 Pairwise correlations between imputed and non-imputed EA PGI for fathers. N=1,022.

Table G18 replicates the main results on the reduced sample of genotyped trios. In this subsample, broad

genetic confounding is estimated to be 24.2-31.4% and narrow genetic confounding is 19.7-31.0%. Broad

genetic confounding is estimated to be lower than the attenuation in our original specification, and differences

between mothers and fathers are estimated to be slightly larger. However, since the raw intergenerational

association is also different compared to our main sample, in particular for fathers, it suggests that the samples

are also simply somewhat different. Table G19 replicates the first stage regressions for this subsample, for both

observed and imputed parental PGI’s. It is evident that regardless of the PGI’s utilized, the first stage is strong

and the F-statistic is well above 10. Overall, this specification is qualitatively similar to our main specification.
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OLS ORIV

(1) (2) (3) (4) (5) (6) (7)
Mother years of education 13.983∗∗∗ 12.439∗∗∗ 10.605∗∗∗

(2.308) (2.370) (1.819)
Father years of education 7.279∗∗ 6.471∗∗ 4.995∗∗

(2.276) (2.375) (1.764)
EA PGI mother 19.499∗∗∗ 7.777∗ 15.443∗∗∗ 25.151∗∗∗ 13.234∗∗ 14.336∗∗

(3.788) (3.811) (4.504) (3.975) (4.390) (4.926)
EA PGI father 11.515∗∗ 2.694 7.763 15.047∗∗∗ 6.929 4.177

(3.591) (3.663) (4.450) (3.734) (3.914) (5.037)
EA PGI child 8.087 22.007∗∗∗

(5.298) (6.529)
Broad genetic conf. mother 1.544 3.378
Broad genetic conf. father 0.807 2.284
Narrow genetic conf mom . . . 0.729 . . 2.748
Narrow genetic conf dad . . . 0.620 . . 2.256
R-squared 0.094 0.041 0.098 0.043 - - -
N 1,022 1,022 1,022 1,022 1,022 1,022 1,022
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G18 Results of the OLS and ORIV regressions explaining the offspring Key Stage 4 grade, for the subsample
of genotyped trios. Robust standard errors in parenthesis. All PGI’s included are derived from observed genetic data.

EA PGI (UKB)
child mother father

(1) (2) (3)

EA PGI child (23andMe, observed) 0.503∗∗∗

(0.027)
EA PGI mother (23andMe, observed) 0.522∗∗∗

(0.026)
EA PGI father (23andMe, observed) 0.559∗∗∗

(0.026)
F-statistic 342.124 394.623 479.974
R-squared 0.253 0.272 0.312
N 1,022 1,022 1,022
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G19 Results of the OLS regression predicting each EA PGI based on the summary statistics of the UK Biobank
data set, for the subsample of genotyped trios. Robust standard errors in parenthesis.
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G.7 Results with an interaction term

This section extends the main OLS results by including interaction terms. Table G20, columns 1 and 2 include

interactions between maternal and paternal education and each EA PGI. We find that the coefficients are close

to zero and insignificant in all cases, except a marginally significant negative interaction between father years of

education and father’s EA PGI. Table G20, columns 3 and 4, report interactions between maternal and paternal

education and between maternal and paternal PGIs. We find evidence of non-linearities in the case of the

parental PGIs: the returns to a parent’s EA PGI decline as the partner’s EA PGI increases. This suggests that

having at least one parent with a high EA PGI is particularly important for educational success. By contrast, the

interaction at the education level is small in magnitude and statistically insignificant, indicating no evidence

of non-linearities in parental education. Accounting for this interaction leads to broad genetic confounding

estimates of 5.0 (21.7%) for mothers and 4.0 (19%) for fathers, similar to our OLS baseline estimates of 26.4%

and 22.4%, respectively.

(1) (2) (3) (4)
Mother years of education 11.480∗∗∗ 11.276∗∗∗ 23.172∗∗ 18.140∗

(1.362) (1.392) (8.187) (8.128)
Father years of education 10.098∗∗∗ 10.201∗∗∗ 20.903∗∗ 16.919∗

(1.265) (1.272) (7.892) (7.827)
EA PGI child (UKB) 68.808∗∗∗

(15.987)
EA PGI child (UKB) 0.000

(.)
EA PGI mother (UKB) 3.147 37.267∗∗ 14.447∗∗∗

(2.917) (13.641) (2.071)
EA PGI father (UKB) 2.681 50.228∗∗∗ 18.648∗∗∗

(3.469) (13.347) (1.994)
Mother years of education × EA PGI child (UKB) -2.335

(1.207)
Father years of education × EA PGI child (UKB) -1.314

(1.153)
Mother years of education × EA PGI mother (UKB) -1.831

(1.070)
Father years of education × EA PGI father (UKB) -2.485∗

(1.016)
Mother years of education × Father years of education -0.662 -0.555

(0.595) (0.592)
EA PGI mother (UKB) × EA PGI father (UKB) -5.171∗∗

(1.866)
R-squared 0.135 0.129 0.097 0.129
N 4032 4032 4032 4032
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G20 Results of the OLS regressions explaining the offspring Key Stage 4 grade. Robust standard errors in
parenthesis.
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G.8 Results without accounting for assortative mating

This section replicates the results by analyzing the mother-child or father-child association separately. Given

assortative mating, meaning that couples tend to be more similar to each other than any two random individuals,

it is likely that including a single parent will lead to an upward bias on the coefficient of parental educational

attainment. Table G21 confirms this prediction for mother-child pairs and Table G22 does the same for father-

child pairs. Indeed, including only one parent educational attainment results in an upward bias of the estimates,

both before and after controls for genetic transmission are employed. While OLS without controls finds an

association of 21.0 for mothers and 19.4 for fathers – column 1, G21 and G22 – our original estimation finds

and association of 14.2 for mothers and 12.3 for fathers. In our main specification, where we employ an ORIV

estimation that controls for genetic confounding, we find an association of 14.9 for mothers and 14.35 for

fathers – column 8 of Tables G21 and G22. This leads to a broad confounding estimate of 29% for mothers and

26% for fathers, much lower than in our baseline specification of 41-45%. The reasoning for this downward

bias is that the maternal (paternal) education highly associates with paternal (maternal) education. In contrast

the association between education PGI’s of parents is lower. As such, maternal (paternal) education will pick

up a larger chunk of the partner education than the maternal (paternal) PGI is picking up of the partner’s

genetic advantage. As such, only considering one of the parents introduces a mechanical bias in the genetic

confounding estimates.

OLS ORIV

(1) (2) (3) (4) (5) (6) (7)
Mother years of education 21.049∗∗∗ 17.430∗∗∗ 14.935∗∗∗

(1.098) (1.171) (0.958)
EA PGI mother 28.492∗∗∗ 17.297∗∗∗ 9.807∗∗∗ 35.631∗∗∗ 23.906∗∗∗ 8.115∗∗

(2.026) (2.120) (2.357) (2.014) (2.283) (2.577)
EA PGI child 32.393∗∗∗ 45.541∗∗∗

(2.386) (2.620)
R-squared 0.076 0.045 0.091 0.085 - - -
N 4,032 4,032 4,032 4,032 4,032 4,032 4,032
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G21 Results of the OLS and ORIV regressions explaining the offspring Key Stage 4 grade. Robust standard
errors in parenthesis.
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OLS ORIV

(1) (2) (3) (4) (5) (6) (7)
Father years of education 19.439∗∗∗ 16.568∗∗∗ 14.346∗∗∗

(1.062) (1.083) (0.842)
EA PGI father (UKB) 28.918∗∗∗ 21.329∗∗∗ 0.925 37.731∗∗∗ 29.222∗∗∗ -2.084

(2.020) (2.047) (2.902) (2.092) (2.190) (3.309)
EA PGI child (UKB) 37.357∗∗∗ 52.038∗∗∗

(2.942) (3.269)
R-squared 0.072 0.047 0.096 0.081 - - -
N 4,032 4,032 4,032 4,032 4,032 4,032 4,032
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G22 Results of the OLS and ORIV regressions explaining the offspring Key Stage 4 grade. Robust standard
errors in parenthesis.

G.9 Results with standardized variables

Table G23 presents the results of the OLS and ORIV regressions predicting Key Stage 4 grade, where all

variables are standardized. The implied R-squared of the ORIV regressions on columns 4 to 6 is calculated as

the square of the coefficient.

OLS ORIV

(1) (2) (3) (4) (5) (6)
EA PGI child 0.285∗∗∗ 0.527∗∗∗

(0.015) (0.021)
EA PGI mother 0.213∗∗∗ 0.368∗∗∗

(0.015) (0.021)
EA PGI father 0.216∗∗∗ 0.402∗∗∗

(0.015) (0.022)
R-squared 0.081 0.045 0.047 0.278 0.135 0.162
N 4,032 4,032 4,032 4,032 4,032 4,032
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G23 Results of the OLS and ORIV regressions explaining the standardized offspring Key Stage 4 grade. The
R-squared in columns 4 to 6 is equal to the square of the coefficient. Robust standard errors in parenthesis.
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G.10 Testing conditional independence

This section tests the independence of the child EA PGI conditional on parental PGI’s. Table G24 shows that

the existing association between parental educational attainment and the child PGI – between 0.08 and 0.125,

column 1 and 3 – jumps to a well-defined zero – columns 2 and 4 –when parental PGI’s are added as controls.

EA PGI child (23andMe) EA PGI child (UKB)

(1) (2) (3) (4)
Father years of education 0.082∗∗∗ -0.005 0.096∗∗∗ -0.003

(0.009) (0.005) (0.010) (0.005)
Mother years of education 0.094∗∗∗ -0.002 0.125∗∗∗ -0.005

(0.010) (0.005) (0.010) (0.005)
EA PGI mother (23andMe) 0.490∗∗∗

(0.007)
EA PGI father (23andMe) 0.715∗∗∗

(0.008)
EA PGI mother (UKB) 0.490∗∗∗

(0.008)
EA PGI father (UKB) 0.687∗∗∗

(0.008)
R-squared 0.076 0.795 0.120 0.794
N 4,032 4,032 4,032 4,032
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table G24 Results of the OLS regression explaining the EA PGI of the child. Robust standard errors in parenthesis.
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H Replicating Dickson

This section replicates the results of Dickson et al. (2016). They exploit a schooling reform in the UK that

raised the minimum school leaving age from 15 to 16 years in 1972. Table H25 replicates Table 9 in their

paper, for Key Stage 4. The three columns show results using different bandwidths (respectively 3, 6 and 12

years around the threshold). While our sample size is somewhat smaller than in Dickson et al. (2016), we are

able to replicate their results fairly well: Table H25 show our reduced-form estimates of the Raising of School

Leaving Age (ROSLA) ranging from 15.6 to 25.0, against estimates between 16.4 and 23.5 in the original

paper. Table H26 shows the results of the corresponding first stage regressions explaining mother and father

years of education. While the coefficient of the reform is always significant for the mother, The F-statistic is

only above 10 when the bandwidth around the reform threshold is of 6 or 12 years – columns 2 and 3. The

reform is nonetheless a weak instrument for the father education, with the F-statistic being less than 10 for all

three bandwidths around the reform.

(1) (2) (3)
Key Stage 4 Score Key Stage 4 Score Key Stage 4 Score

RoSLA Treatment of mother (type 1) 19.579* 15.663* 16.866**
(9.702) (6.458) (6.257)

RoSLA Treatment of father (type 1) 25.007* 21.317** 24.958***
(9.827) (6.845) (6.621)

Mother’s Age at child’s birth (born before sample window) 5.725** 5.443*** 4.108***
(1.785) (1.194) (1.027)

Mother’s Age at child’s birth (born in sample window) 7.267*** 6.761*** 4.580***
(1.858) (1.188) (0.852)

Mother’s Age at child’s birth (born after sample window) 7.511*** 7.588*** 5.014***
(2.118) (1.475) (1.180)

Father’s Age at child’s birth (born before sample window) 1.723 2.264* 1.840*
(1.676) (1.116) (0.795)

Father’s Age at child’s birth (born in sample window) 2.470 3.309* 2.673**
(1.916) (1.297) (0.945)

Father’s Age at child’s birth (born after sample window) 2.415 3.309* 2.439
(2.184) (1.626) (1.333)

R-squared 0.213 0.205 0.191
N 1,353 3,587 6,593
Outcome Mean 433.33 426.89 419.48
Outcome SD 145.17 145.22 147.03
Treatment as % of SD 30.71 25.46 28.45
Treatment joint significance p-value 0.0048 0.0002 0.0000
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table H25 Results of the OLS (reduced form) predicting Key Stage 4 results.

73



Mother years of education Father years of education
(1) (2) (3) (4) (5) (6)

RoSLA Treatment of mother (type 1) 0.289∗ 0.319∗∗∗ 0.263∗∗∗

(0.142) (0.081) (0.063)
RoSLA Treatment of father (type 1) 0.373 0.854∗∗ 0.361

(0.480) (0.284) (0.208)
F-statistic 4.129 15.522 17.631 0.602 9.011 3.023
R-squared 0.004 0.006 0.004 0.001 0.004 0.001
N 970 2,523 4,319 970 2,523 4,319
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table H26 Results of the OLS (first stage) predicting maternal and paternal education.

Next, we replicated the analysis in our analysis sample, where we observe genetic information on both

parents and children. Table H27 compares the OLS, ORIV and ROSLA reform for the three bandwidths

around the reform. The OLS (columns 1, 4 and 7) replicates our simple intergenerational association. ORIV

(columns 2, 5 and 8) replicates our results controlling for parental EA PGIs using ORIV. Columns 3, 6 and 9

show the reduced form effect of the ROSLA reform using the same specification as in Dickson et al. (2016),

but using our analysis sample. For the most part, exploiting the ROSLA reform in these smaller subsamples

leads to insignificant results. Table H28 depicts the first stage of the ROSLA reform in the same subsamples.

The F-statistic is always below 10 for maternal education, whereas for the father, the coefficient even has the

opposite sign as would be expected. In short, this analysis simply does not seem viable in our smaller baseline

sample.
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Mother years of education Father years of education
(1) (2) (3) (4) (5) (6)

RoSLA Treatment of mother (type 1) 0.308 0.290** 0.140
(0.186) (0.100) (0.073)

RoSLA Treatment of father (type 1) -0.369* -0.206* -0.285***
(0.173) (0.101) (0.074)

F-statistic 2.744 8.480 3.656 4.520 4.147 14.974
R-squared 0.005 0.005 0.001 0.008 0.003 0.005
N 591 1,557 2,800 591 1,557 2,800
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table H28 Results of the OLS (first stage) predicting maternal and paternal education.
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