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Abstract

Ransomware has become the most common cyber risk for businesses. The rise is not
driven by attackers using innovative attacks, but instead by deteriorating negotiation
outcomes. The average payment grew by almost 20,000% since 2018. However, it
remains unclear why attackers can demand ever higher ransoms. Our study explores
potential explanations: lack of backups, cyber insurance, access to incident response
(IR) firms, data exfiltration, and negotiating style. We model negotiation as a six-
stage model: attacker intent, victim engagement, discount offer, discount magnitude,
payment decision, and re-extortion. We test hypothetical explanations for ransom
outcomes using two datasets: (1) 481 police-reported incidents (2019–2023); and (2)
237 negotiation transcripts from 23 ransomware groups.

We discover a pricing paradox: victims are more likely to pay after high initial
demands, followed by large discounts, than after low fixed-price demands. Stage-level
regression resolves this paradox: progression through stages is shaped by backup
status, victim revenue, IR involvement, and negotiation duration. Fully recoverable
backups sharply reduce payment rates and discount offers; higher revenue increases
engagement and discount likelihood; and longer negotiations reduce payment. We find
no evidence that insurance increases payment rates, that discount size matters once
interaction is accounted for, or that re-extortion is common. These results position
ransomware as a market-driven crime shaped by selection effects and signaling.



1 Introduction

Ransomware has evolved from automated software that demands a fixed amount into a

sophisticated criminal enterprise in which attackers engage in selective targeting, dynamic

pricing, and strategic negotiation [46, 51, 72, 5]. The change in business model coincided

with a sharp increase in the frequency and impact of ransomware incidents. Ransomware

comprised 40% of publicly reported incidents impacting businesses in 2024, up from

around 1% in 2016 [30]. In terms of impact, one professional negotiator reports the

average ransom payment rose from $6k in Q3 2018 [16] to $1.13m in Q2 2025 [17].

These rapid changes destablized the cyber insurance market [48, 67] and led politicians to

declare national emergencies related to specific ransomware incidents [27].

The deterioration cannot be explained by ransomware actors using new attacks. In-

dustry reports find the majority of incidents begin with stolen credentials [17, 65, 61],

obtained via well-established cybercrime techniques like phishing [47, 23] or cybercrime

marketplaces [22, 39]. When ransomware groups exploit software vulnerabilities, they

typically rely on longstanding issues like memory safety [18, 54]. The lack of technical

innovation suggests an alternative lens is needed to understand the rise of ransomware.

Poor negotiation is a possible explanation. Ransomware victims consciously bargain

with attackers while the crime is taking place. By contrast, data breach victims do not

interact with stealthy attackers, and phishing and fraud victims unconsciously interact

with deceptive attackers. Negotiation allows attackers to exploit the victim’s wish to avoid

business interruption or publication of confidential data [11].

It is unclear why victims negotiate poorly. Some argue any payment is misguided

because it encourages re-extortion of the original victim [41] and also future victims by

allowing criminals to profit from crime [4]. IR firms argue negotiation by amateurs leads

to outsized payments. Another problem is victims lacking reliable backups, a view that is

complicated by the rise of threats to leak ex-filtrated data [41]. Looking beyond the victim,
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the insurance industry has been accused of incentivizing payment of ransoms [36].

These flaws in negotiation have motivated various proposals like taxing payments [49],

banning ransom insurance [36], and the UK Government’s recent proposal to ban CNI

operators from paying ransoms [4]. These initiatives must be guided by empirical evidence,

which motivates asking:

RQ1: Which factors influence ransomware negotiations?

RQ2: How does negotiation strategy impact discounts?

RQ3: What problems do victims face post-payment?

We answer RQ1 by quantitatively modeling 481 ransomware incidents (2019–2023)

as a six stage sequence. To answer RQ2, we analyze the meta data of 237 negotiation

transcripts across 23 ransomware groups. We conduct a qualitative case-study of post-

payment outcomes to answer RQ3.

Contributions. We find:

RQ1 A seeming paradox: cases with high initial ransom demands show higher payment

rates than low fixed-price demands. Our 6-stage model resolves the paradox: high-

demand, high-discount cases reaching payment are a filtered subset of incidents with

characteristics that make payment more likely, not random variation in pricing.

RQ2 Sustained engagement, measured by message volume, is the strongest predictor of

receiving a discount. Payment rates rise with message volume but plateau once

negotiation frequency is high (100+ messages).

RQ3 Reinfections affected 3.6% of all cases. Among paying victims, 2.5% never received a

decryption key and 6.7% experienced partial, delayed, or initially unusable decryption

keys. Post-payment negotiation occurred 7.6% of the time.

Section 2 presents our conceptual contribution, a six-stage model of ransomware

negotiation. Section 3 shows prior studies have focused on individual stages, not the

entire process. Section 4 outlines our data sources and hypotheses. Section 5 presents the

analyses. Section 6 discusses the findings. Section 7 concludes.
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Figure 1: Six-stage model of ransomware negotiations, showing the sequence of decision
points and the corresponding research questions (RQ1–RQ3) addressed in this study.

2 A Six-Stage Ransomware Negotiation Model

Ransomware payment is typically modeled as a binary event, namely pay or not [12]. In

practice, negotiations must progress through a series of stages that necessitate engagement

and trust from both sides.

We draw on three theoretical foundations. First, from the economics of crime and

signaling theory, we posit that both attacker and victim use observable actions (e.g., ransom

anchoring, message frequency, discounting) to infer the counterparty’s willingness and

constraints. Second, we borrow from industrial organization literature: attackers segment
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their “market” using forms of second-degree price discrimination, adjusting behavior

based on expected willingness to pay (WTP) rather than offering fixed prices. Third, we

recognize that ransomware negotiations defy the classic Coase Conjecture [7]: information

asymmetries and time constraints mean the attacker can profit from sequentially lowering

the ransom over time. This leads to a multi-stage bargaining rational.

This paper formalizes the bargaining process as a six-stage model. Initial compromise

can be considered Stage 0, which is outside our scope. The stages are illustrated in Figure 1

and can be summarized as follows:

Stage 1: Attacker’s Willingness to Negotiate. Negotiation requires the attacker to ex-

pend resources engaging with victims. Rational attackers will offer fixed-ransoms

when the victim’s expected ransom payment is lower than the cost of negotiating.

This typically pccirs when attackers believe the victim lacks financial resources and/or

the skills to facilitate payment via cryptocurrency. For high value victims, rational

attackers provide contact details to create the opportunity for negotiation. This

represents a form of market segmentation distinguishing victims susceptible to less

sophisticated attacks versus ‘high value’ victims.

Stage 2: Victim’s Willingness to Negotiate. When presented with contact details, some

victims initiate communication, whereas others remain silent. This stage reflects the

victim’s assessment of expected losses, recovery prospects, and the informational

value of dialogue. Thus, victim negotiation reflects cost-benefit reasoning under

uncertainty: the direct and indirect costs of delay versus the informational value of

communication. Firms may access expert negotiators—either in-house or via incident

response firms—to inform the decision to negotiate.

Stage 3: Attacker Offers Discount. If the victim makes contact, the attacker may offer a

reduction on the initial ransom demand. Attackers must assess the victim’s perceived

willingness to pay, often by observing message tone, urgency, or payment feasibility.
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Industry lore warns victims that failure to pay within 48 hours doubles the ransom,

but experienced negotiators know this is rarely enforced [43].

Stage 4: Attacker Discount Size. If the attacker is willing to offer a discount they next

need to decide how much of a discount to offer. Larger discounts are sometimes

offered in high-ransom cases or after prolonged engagement. However, attackers may

adopt rigid pricing policies, especially in Ransomware-as-a-Service (RaaS) models,

to avoid setting expectations of large discounts in future attacks. If the attackers

holds information about insurance coverage and revenue size this may also anchor

attackers’ expectations.

Stage 5: Victim Payment Decision. After receiving an offer, the victim must make the

decision of whether to pay the ransom. This includes weighing sanctions risk [63],

the cost of recovering without a decryption key [21], the threat actor’s reputation,

and so on. Not all negotiated cases result in payments [43]. Potentially, the victim

may request a further discount leading to repeated rounds of bargaining, a process

we study in RQ2.

Stage 6: Post-Payment Decision. The final stage captures any further interactions be-

tween victim and threat actor. Attackers may exploit failed decryption or non-deletion

of exfiltrated data to demand further payment. The trade-off is that further demands

may reduce trust among IR companies, insurers, and negotiators. This may have

negative consequences for future negotiations [60].

Our model reinterprets ransomware, not as a coercive ultimatum, but as a bargaining

game shaped by anchoring, signaling, and iterative filtering. It also allows for empirical

differentiation between one-stage “take-it-or-leave-it” attacks and multiple-stage bargaining

processes.
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Table 1: Ransomware studies mapped to our six-stage model.

Investigated Stages
Article Year Data Type n 1 2 3 4 5 6

[12] 2019 Theory -
[21] 2021 Decryptors 78
[15] 2022 Cases 41
[46] 2022 Cases 453
[43] 2023 Cases 382
[11] 2023 Survey 1,798
[10] 2023 Theory -
[24] 2024 Survey 800
[40] 2024 Survey 445
[72] 2025 Theory -

Us 2026 Cases 718

3 Related Work

This section maps prior research according to which stage of our model was studied.

Technical research typically focuses on initial compromise, which cannot be mapped to our

model. For research into negotiations, Table 1 shows we are the first to study all six stages

of our model.

Stage 0. Computer security research into ransomware has mostly focused on how

ransomware actors gain access and encrypt data. This involves proposing novel attacks [71,

52], detection heuristics [31, 73, 66, 75], and defensive measures [58, 34, 29]. These

kinds of questions (how to attack, detect and prevent) are familiar to computer scientists.

However, this line of research does not speak to the unique aspect of ransomware, active

negotiation with criminals.

Stage 1—4. Until around 2016, ransomware actors largely offered fixed ransom

demands [57], which means stages 2—4 were not explored. A 2016 study [59] found

“only a very small portion of the victims actually pays the attacker”, largely because victims

distrust attackers and lack the skills to facilitate cryptocurrency payments. It appears

ransomware actors learned that willingness to negotiate led to greater profits, as evidenced
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by communications between attacker and defender influencing the initial demand [46].

Connolly and Borrion [15] provide examples of firms initiating negotiation. Anecdotal

evidence suggests discounts (Stage 3 and 4) are common, offering a 50–90% reduction on

the initial demand [5]. Zhang and Luo [72] proposed a theoretical bargaining model to

study how negotiation influences ransom demands. We are not aware of work that studies

all stages empirically or theoretically. Instead most studies focus on stage 5 in isolation.

Stage 5. Tracking ransom payments across blockchain networks has been an evergreen

topic [53]. Huang et al. [28] tracked “$16 million USD in likely ransom payments made

by 19,750 potential victims” covering ten ransomware families, which was just $850 per

victim. A 2022 study found $80m of payments associated with one ransomware family

(Conti), highlighting the success of later groups [25]. In a 2024 study, Cable et al. [8]

introduced novel methods to identify $900m of ransom payments. Ransom payments are

also tracked by for-profit firms like Chainanalysis, who traced $1.1 billion of payments in

2023 [13]. These aggregate estimates track the aggregate impact of ransomware, but not

which factors increase whether and how much ransom is paid.

In practice, victims must weigh the payment decision by considering various legal

obligations, such as contractual terms in cyber insurance [68], data breach notification

obligations [26], and sanctions compliance [63]. Game theoretical studies have almost

exclusively focused on Stage 5 and the payment decision (and stage 0 prevention mea-

sures) [12, 70] exploring issues such as data exfiltration [35, 42] and insurance [10].

Empirical surveys of ransom decision making have also focused on Stage 5 exploring the

characteristics of individuals [11, 24] and small business owners/managers [40] willing to

pay a ransom.

Stage 6. We are not aware of any studies that estimate re-extortion prevalence, even

though it is frequently discussed [41]. It is also unclear how often decryption tools fail for

victims, which is likely to be common given a 2021 study found that half of these tools

failed in a lab setting [21]. Our article fills this gap by estimating the prevalence of both
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re-extortion and decryptor failure.

Frequency and Impact. Although influenced by negotiation outcomes, victimization

studies are also outside our model. These studies show ransomware remains mercifully

rare among individuals, with annualized frequency estimated at just 0.1% in a nationally

representative survey [6]. Victimization rates among businesses range from around 1% to

60% depending on the study [69]. Recent capture–recapture estimates for the Netherlands

suggest an annual risk of 1.3% for large companies and 0.6% for medium companies, with

reporting rates to police around 40% [45]. In terms of impact, the average ransomware

incident cost is estimated to cost over $1 million in a study of public incidents [30]. The

mean size mean value of cyber insurance claims resulting from ransomware was $292k in

2024 [14]. These quantitative estimates do not account for impacts like emotional stress

and support networks disruptions [38, 74].

4 Methodology

Studying ransomware negotiations is challenging because they are rare and occur in

private channels. Section 4.1 explains how we collected a convenience sample of historic

ransomware cases from three data sources: the police; an incident response firm; and

an open-source repository. Section 4.2 describes how we analyzed the data. Section 4.3

identifies ethical considerations in studying victims of crime.

4.1 Data Collection

We obtained anonymized data from the police and an IR firm. Both organizations keep

detailed records of historic incidents, which we could reconcile to create a combined dataset

(see Section 4.1.1). To study negotiations, we collected anonymized negotiation transcripts

from ransomware.live (see Section 4.1.2).
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4.1.1 Incident Data

The dataset consists of a combination of 525 ransomware attacks reported to the Police

between 1 January 2019 and 1 January 2023 and a dataset including 116 ransomware

incidents handled by an IR company between 20 February 2020 and 1 January 2023. By

combining law enforcement and private sector sources, we help mitigate reporting biases

that may arise when victims are reluctant to report to authorities.

From these datasets, we excluded attempted attacks and incidents involving individuals,

retaining only successful attacks targeting companies. After removing duplicates between

the datasets, we constructed a combined dataset of 481 unique ransomware attacks on

organizations.

The variables used in the analysis are as follows. The numbering reflects the stage of

the six-stage negotiation model at which each variable is iteratively added to the regression

framework.

• 1a. Revenue (log). Logarithm (base 10) of the estimated revenue of the victim

organization in euro, used as a proxy for organizational size and financial capability.

• 1b. Ransomware-as-a-Service (RaaS). Indicates whether the attack was conducted

by a known Ransomware-as-a-Service group (yes/no).

• 1c. Backups: Unrecoverable. Indicates whether the victim’s backups were rendered

unusable due to the attack.

• 1d. Partial. Indicates whether the victim had partially functioning backups at the

time of the attack.

• 1e. Recoverable. Indicates whether the victim had fully functioning and restorable

backups during the incident.

• 1f. Data exfiltration. Whether data exfiltration occurred as part of the ransomware

attack (yes/no).
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• 2a. Cyber insurance. Indicates whether the victim had cyber insurance that covered

ransomware (yes/no).

• 2b. Incident Response (IR) firm involvement. Whether an incident response firm

assisted the victim during the attack (yes/no).

• 3. Negotiation duration (log). Logarithm of the total number of days in which

negotiation between attacker and victim took place.

• 4a. Initial ransom demand (log). The initial ransom demand made by the attacker

in euro, expressed as a base-10 logarithm.

• 4b. Negotiation (attacker). Binary indicator for whether the attacker engaged in

negotiation.

• 4c. Negotiation (victim). Binary indicator for whether the victim engaged in

negotiation.

• 5a. Discount offered (binary). Indicates whether the attacker offered a discount

on the initial ransom amount during negotiation (yes/no).

• 5b. Discount size (log). The size of the discount in euro, expressed as a base-10

logarithm.

• 6. Payment (yes/no). Indicates whether the victim ultimately paid the ransom.

4.1.2 Negotiation Transcripts

To test the middle stages of our model, we analyzed a corpus of 237 negotiation transcripts

from 23 ransomware groups collected from ransomware.live. We collected a snapshot

measurement on July 31, 2025. Victims are located from around the world. For each

transcript, we extracted metadata that map directly to Stages 3 to 5 of the model. This

leads to the following variables, which are tested in a separate regression to the data from

the previous subsection:
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• 7a. Message volume. A proxy for negotiation depth and progression

• 7b. Initial ransom demand (log).

• 7c. Discount offered (binary).

• 7d. Discount size (proportion ransom).

• 7e. Payment (yes/no).

The following extract illustrates the transition from opening pressure to anchoring and

then bargaining:

Akira: Hello. You’ve reached Akira support chat. Currently, we are preparing

the list of data we took from your network. For now, you have to know that

dealing with us is the best possible way to settle this quick and cheap. Keep in

touch and be patient with us. Do you have permission to conduct a negotiation

on behalf of your organization? Once we get your reply, you will be provided

with all the details.

Victim: Yes. What to do?

Akira: So, we didn’t take your data. We are the ones who can properly decrypt

your data and restore your infrastructure in a short period of time. [...] The

price is $1,000,000. To prove we can decrypt your data, you can upload 2–3

encrypted files up to 10MB.

Victim: Alright, is it negotiable? As you can see, our true finance register. Also,

let us know what all files you have of ours?

Akira: We do not have your files. Do you have a counteroffer for me?

Consistent with the model, the exchange begins with a generic pressure message, fol-

lowed by a request that the victim signal willingness to engage in negotiations. Substantive

pricing appears only after that signal (Stage 1 and 2).
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4.2 Analysis

The ransomware bargaining process is conceptualized as a six-stage model, reflecting

sequential decisions made by both offenders and victims. We draw on economic theory

and bargaining game theory, as well as existing research on ransomware negotiations, to

derive testable hypotheses.

Using forward induction we start by looking at Stage 1. Negotiation is costly for

attackers in terms of time, expertise required, and the opportunity cost, of foregone profit,

by exploiting fewer victims at any one time. The attacker will, therefore, go the route

of indicating a willingness to negotiate only if the expected ransom they can earn is

substantially higher. We consequently predict market segmentation with low ransom

demands for automated attacks with no negotiation and substantially higher initial ransom

demands when the attacker is willing to negotiate. Moreover, we predict higher initial

ransom demands if the attacker has more leverage, as proxied by corrupted backups and/or

data exfiltration.

The market segmentation in Stage 1 means that Stages 2, 3 and 4 will take place

between an attacker who has invested in the attack and a victim that is likely to be high

worth. In Stage 2 the victim’s strategy will rationally informed by their willingness to pay.

This will depend on their readiness and preparedness for an attack in terms of back ups.

Hypothesis 1. Victim preparedness reduces the likelihood of negotiation.

The presence of insurance and access to an IR firm may encourage negotiation as it

means the victim has access to relevant services for negotiation.

Hypothesis 2a. Cyber insurance and access to IR firm increases likelihood of negotiation.

In Stages 3 and 4 the attacker is in negotiation with the victim. Negotiation allows

the attacker to update their belief about the willingness to pay of the victim. For instance,

victims who are more prepared for an attack in terms of, for example, having functioning

back ups can hold out for a lower ransom.

12



Hypothesis 3. Victim preparedness increases the likelihood of a ransom discount and the

size of discount.

A victim’s willingness to be patient in negotiations is also a signal of lower willingness

to pay.

Hypothesis 4a. Longer negotiations lead to larger discount amounts.

Further, access to experts may facilitate negotiation.

Hypothesis 2b. Insurance coverage and IR firm involvement increase the likelihood of a

ransom discount and the size of discount.

Data exfiltration allows the attacker to offer a ‘menu of ransom options’ covering

encryption and/or exfiltration. This may result in larger discounts being offered, such as

when the victim is only willing to pay to cover data exfiltration.

Hypothesis 5. Data exfiltration increases the likelihood of negotiation and discount in

negotiations.

In Stage 5 the victim will rationally pay if their willingness to pay is higher than the final

ransom demand. This will depend on factors like preparedness for attack, the presence

of insurance, and IR firm involvement. This has been studied in previous work [43]. The

novelty in our six-stage model is to capture the stages of negotiation. Bargaining theory

suggests that if negotiation has taken place, and discounts offered, then it is more likely

the victim and attacker will agree on a mutually beneficial ransom amount.

Hypothesis 6. A willingness of the attacker and/or victim to negotiate and ransom discounts

increase the likelihood of ransom payment.

Longer negotiations can be a signal of a failure to reach agreement because the ransom

the victims are willing to pay is below the minimum amount the attackers are willing to

accept (potentially because of reputation reasons).
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Hypothesis 4b. Longer negotiations decrease the probability of payment.

For the sixth stage (post-payment outcomes), there were too few incidents to test the

hypotheses quantitatively, so we instead describe the outcomes. Stage 6 of the model is

part of a ‘larger game’ in which the attackers trade-off the potential gains from re-extortion

or re-infection with the reputational loss that will come from doing so. It is in the interests

of attackers to build a reputation for being ‘trustworthy’ post payment if that will increase

future ransom payments [9, 60]. We would, therefore, hypothesize that unworkable

decryption keys, re-extortion and re-infection are relatively rare. In our data we analyzed

cases that involved post-payment interaction with the threat actor (RQ3). These were

identified through manual review of case records, focusing on incidents where victims

reported faulty decryptors, renewed demands, or reinfection after payment.

Statistical Tests For the first five stages of the model (M1–M5), we ran regression

analyses. We used probit models for binary outcomes (e.g., attacker negotiation in M1,

victim negotiation in M2, discount offered in M3, and payment in M5) and ordinary least

squares (OLS) for continuous outcomes (e.g., discount size in M4). All models control for

basic victim and attacker characteristics like yearly revenue and RaaS ransomware groups)

as controls. We iteratively add predictors at each stage according to the variable numbering

described above. Goodness-of-fit metrics (pseudo-R2 for probit models and adjusted R2

for OLS models) were also calculated; detailed values are reported in the Appendix. The

primary purpose of these models is to identify associations across stages rather than to

maximize predictive accuracy.

4.3 Ethics

This study combines structured incident-level data with publicly available ransomware

negotiation transcripts. The structured dataset was obtained from law enforcement and a

commercial incident response partner under data-sharing agreements. All records were

anonymized before analysis and we focused on incidents where the victim was an organi-
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zation. None of the records contained no personally identifiable information (PII) about

individuals involved in the incident. The public negotiation data were scraped from the

ransomware.live platform, which aggregates chat logs already published by ransomware

groups on leak sites. Although these data are publicly accessible, we further anonymized

details of the incident to reduce the risk of reputation damage and re-victimization. For

example, our case studies (RQ3) do not mention the ransomware group.

The study did not involve direct interaction with human subjects, and no identifiable or

sensitive organizational data were collected without prior anonymization. Ethical approval

was therefore not required under the law or university policy. Nevertheless, we adhered to

the MENLO principles of responsible research [3], including minimizing potential harm and

avoiding the reinforcement of criminal behavior. We acknowledge that studying offender

decision-making may, in theory, expose operational weaknesses or biases that could be

exploited. However, we judge that the primary insights generated here are of far greater

value to defenders than to offenders, and thus contribute to harm reduction.

We recognize the ethical tension inherent in studying ransomware payments, like prior

work [63]. We do not endorse ransom payments, instead we see payment as, in some cases,

the least bad option for organizations facing severe operational and legal pressure. Our

analysis aims to inform victim strategies, not to legitimize payment decisions.

5 Results

We present the results for each research question in turn.

5.1 Factors Influencing Negotiations (RQ1)

5.1.1 Descriptive Results

Figure 2 shows that cases with higher initial ransom demands are more likely to end in

payment than cases with low, fixed demands and no negotiation. This pattern appears

paradoxical: why would victims comply more readily when the starting price is higher and
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Figure 2: Negotiation outcomes by ransom amount distinguishing cases with no negotiation
and negotiation. In the case of negotiation with discount we provide data for both the final
ransom demand and initial ransom demand.

the final amount remains substantial?

Our staged model helps explain this. Each step in the process functions as a filtering

mechanism, progressively narrowing the set of incidents toward those most likely to result

in payment. The subset of cases that reaches Stage 4 (payment) is not randomly distributed

across all ransom amounts and strategies—it is shaped by prior strategic interaction.

In opportunistic attacks (typically characterized by Stage 1 = No), the attacker sets a

fixed, low ransom without negotiation. These cases resemble a one-stage ultimatum game,

where victims must decide whether the ransom is worth paying based solely on immediate

cost. As shown in Figure 2, such cases have low payment rates, especially at ransom levels

below =C10,000.

In contrast, cases that proceed through multiple negotiation stages (typically character-

ized by Stage 1 = Yes) follow a dynamic game structure. The attacker opens with a high

initial ransom demand (Stage 1), the victim engages (Stage 2), and a discount is offered

(Stage 3 and 4). Although the final ransom is higher than in typical opportunistic cases,

the process itself may reshape victim perception. If the victim’s experience is anchored on

the initial high price, a discount may appear generous or as good-faith behavior. In the

terminology of Thaler [62] the victim receives transaction utility from a ‘good’ or ‘fair’ deal.

This process also appears less coercive when the victim is given agency to negotiate and

explain their limitations in paying the high initial demand.
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Table 2: Negotiation Outcome by Initial Ransom and Discount Percentage. Cell values
represent counts, shaded by intensity.

Initial Ransom 0–25% 26–50% 51–75% 76–100%

(euro) No Pay Pay No Pay Pay No Pay Pay No Pay Pay

<1,000 0 0 0 0 0 0 0 0

<10,000 0 1 0 0 0 0 0 0

<100,000 0 5 4 7 0 8 1 2

<1 million 0 5 3 12 1 3 4 4

<10 million 2 3 3 7 2 0 1 2

>10 million 0 0 1 0 2 1 1 2

Table 3: Negotiation outcomes per ransomware group (source: ransomware.live, N=237)

Group n Init. % Paid % Negot. % Med. Init Mean Init Med. Neg Mean Neg Med. Paid Mean Paid Mean Disc. % (Med.)

Akira 61 67.2 32.8 44.3 390k 948k 150k 248k 150k 256k 22.4 (0.0)
Avaddon 7 85.7 14.3 57.1 190k 304k 90k 103k 1.3k 1.3k 32.3 (33.3)
Avos 1 100.0 0.0 100.0 150k 150k 85k 85k – – 43.3 (43.3)
Babuk 2 100.0 0.0 100.0 700k 700k 293k 293k – – 64.4 (64.4)
BlackBasta 5 80.0 80.0 100.0 600k 1.09M 300k 632k 225k 275k 31.2 (28.6)
BlackMatter 2 100.0 0.0 100.0 10.0M 10.0M 14.3M 14.3M – – -95.0 (-95.0)
Cloak 2 0.0 0.0 0.0 – – – – – – 0.0 (0.0)
Conti 32 93.8 31.2 65.6 1.04M 7.93M 325k 1.68M 171k 224k 40.9 (40.0)
Darkside 5 80.0 60.0 60.0 1.50M 3.40M 250k 283k 250k 283k 24.7 (0.0)
Dragonforce 14 50.0 0.0 21.4 1.01M 859k 124k 464k – – 5.8 (0.0)
Hive 8 100.0 0.0 62.5 1.10M 3.78M 276k 3.98M – – 21.4 (15.4)
Hunters International 1 100.0 0.0 0.0 10.0M 10.0M – – – – 0.0 (0.0)
Mallox 3 66.7 33.3 100.0 28.8k 28.8k 20k 23.3k 19.9k 19.9k 6.7 (0.1)
NoEscape 2 50.0 0.0 0.0 80k 80k – – – – 0.0 (0.0)
Qilin 2 0.0 0.0 0.0 – – – – – – 0.0 (0.0)
REvil 20 70.0 35.0 50.0 2.75M 3.12M 290k 425k 280k 348k 34.9 (20.6)
RansomHub 1 0.0 0.0 0.0 – – – – – – 0.0 (0.0)
Ranzy 2 0.0 0.0 0.0 – – – – – – 0.0 (0.0)
RunSomeWares 1 0.0 0.0 0.0 – – – – – – 0.0 (0.0)
fog 6 100.0 50.0 50.0 245k 329k 150k 917k 150k 917k -3.7 (12.5)
lockbit3.0 45 91.1 6.7 31.1 1.40M 5.80M 1.00M 3.11M 40k 40k 7.7 (0.0)
mount-locker 1 100.0 0.0 100.0 9.00M 9.00M 4.12M 4.12M – – 54.3 (54.3)
trinity 14 42.9 7.1 0.0 30k 139k – – 15k 15k 0.0 (0.0)

A complementary explanation is that victims with sufficient financial capacity or pro-

fessional guidance, such as via IR firms, tend to reach the later stages. This induces a

selection effect: higher-value victims are both more likely to be targeted for negotiation

and more likely to pay, conditional on progressing through the funnel. The result is a

strategic equilibrium in which high initial demands, followed by discounts, yield the most

profitable outcomes for attackers.

The amount of the discount itself does not show a linear relationship with payment

rates (Table 2). This supports the view that discounting functions not purely as price
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Table 4: Direction and magnitude of significant predictors across first five stages of ran-
somware negotiation and payment.

Predictor M1: Attacker negotiation M2: Victim negotiation M3: Discount given M4: Discount size M5: Payment

1a. Revenue (log) ns + ns – ns

1b. Ransomware-as-a-Service (RaaS) ns ns ns – ns

1c. Backups: Unrecoverable (vs. no backups) + ns ns ns ns

1d. Backups: Partial (vs. no backups) + ns ns ns ns

1e. Backups: Recoverable (vs. no backups) + –– –– ns ––
1f. Data exfiltration (yes/no) + ns ns – ns

2a. Cyber insurance (yes/no) . ns ns – ns

2b. IR firm involvement (yes/no) . ++ ++ ns ns

3. Negotiation duration (log) . . + ns ––
4a. Initial ransom demand (log) . . . ++ ns

4b. Negotiation (attacker) . . . ns ns

4c. Negotiation (victim) . . . ns ++
5a. Discount offered (yes/no) . . . . ++
5b. Discount size (log) . . . . ns

Legend: ns = non-significant; ++ = significant, β > 1; + = significant, 0< β < 1; –– = significant, β < −1;
- = significant, −1< β < 0; . = predictor not applicable for that stage.

reduction but as a signal of flexibility or legitimacy. In other words, it is the presence of a

discount conditional on prior interaction, and not the amount, that drives payment.

In summary, both attackers and victims strategically engage in negotiations. However,

analysis of outcomes cannot explain how these decisions are shaped by the profile of the

victim or the attacker. The next set of results explore how the victim’s profile shapes these

outcomes, and Table 3 speaks to how these outcomes vary across threat actors.

5.1.2 Regression Results

The full regression results, including estimated β -coefficients and p-values, are presented in

the Appendix (see Table A1). Table 4 summarizes the direction and magnitude of significant

predictors for each stage with α= 0.05.

Stage 1. Consistent with Hypothesis 5, attackers are more likely to open negotiations

if they have exfiltrated data (see Table 4). We found no evidence that attackers are more

likely to negotiate with victim’s with higher revenue, possibly because this is not clear to

attackers until they begin negotiating.

The presence of any form of backups (unrecoverable, partial, or recoverable) is as-

sociated with increased likelihood that the attacker initiates negotiation. This appears

counter-intuitive given that restoring from backups provides an alternative to paying the
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ransom. However, it likely results from a selection effect: organizations that maintain

backups may also hold more valuable or complex data, making them worthwhile targets for

attackers to engage with more deliberately. The existence of backups may correlate with

other attributes (such as larger infrastructure or higher-value data) that justify attacker

investment in a negotiation platform.

Stage 2. Victims with higher revenues are more likely to negotiate with the attacker.

Potential explanations include greater capacity to respond and/or having more to lose

from an extended outage. Consistent with Hypothesis 2a, IR involvement was also strongly

predictive, as evidenced by a larger effect size (β > 1). The presence of experts facilitates

or recommends negotiation as part of incident handling. Consistent with Hypothesis 1,

victims with recoverable backups were much less likely to negotiate, likely because they

had a viable alternative to paying the ransom.

Stage 3. The likelihood of a discount being offered by the attacker was significantly

associated with the victim’s revenue, negotiation duration, and IR involvement (see Table 4).

This is consistent with Hypotheses 2b and 4a. Longer negotiation duration had a particularly

strong effect, indicating that discounts often emerge as part of prolonged back-and-forth

interaction. This supports the interpretation that discounts function as dynamic price

discrimination: high-revenue victims may be more capable of paying, but also more

demanding, prompting attackers to lower their price to close a deal.

Stage 4. The size of the discount was associated with several variables. As expected,

higher initial ransom demands allowed more room for larger discounts. However, discount

size decreased with higher revenue, RaaS involvement, and cyber insurance. This suggests

that attackers operating under a RaaS Model use more rigid pricing strategies, possibly to

maintain reputation or enforce affiliate compliance. Insurance coverage may also anchor

expectations, reducing the need for aggressive discounting. Interestingly, negotiation dura-

tion showed a positive but only marginally relationship with discount size, indicating that

extended interactions may influence not just the decision to discount but also how much.
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Table 5: Negotiation outcomes by message volume bucket (source: ransomware.live,
N=237)

Bucket n Init. Paid Negot. Med. Init Mean Init Med. Neg Mean Neg Mean Disc. %
# msg % % % ($) ($) ($) ($) (Median)

0–10 43 41.9 0.0 0.0 1.35M 8.82M 0 0 0.0 (0.0)
11–25 44 65.9 4.5 22.7 0.40M 0.79M 225k 391k 23.3 (23.3)
26–50 65 80.0 20.0 46.2 0.80M 2.44M 285k 1.24M 42.2 (42.0)
51–100 63 92.1 44.4 73.0 0.53M 3.48M 160k 1.44M 49.5 (58.3)
100+ 22 90.9 45.5 86.4 0.95M 7.38M 250k 2.32M 65.1 (65.8)

Stage 5. Consistent with Hypothesis 6, payment was more likely when the victim

engaged in negotiation and when a discount was offered. Longer negotiations were

negatively associated with payment, consistent with Hypothesis 4b. Prolonged negotiations

may indicate tactical stalling, disagreement, mistrust, or internal delays on the victim’s

side (e.g., legal or executive hesitations) or a failure to reach agreement. Victims with fully

recoverable backups were less likely to pay, consistent with being less likely to negotiate.

The initial ransom amount had a negative but statistically insignificant impact (p = 0.068;

see Appendix A).

5.2 Public Ransomware Negotiations (RQ2)

The negotiation dataset spans various ransomware groups (see Table 3). Four ransomware

groups represent the majority (58%) of the negotiations: Akira (n=61), Lockbit 3.0 (n=45),

Conti (n=32), and REvil (n=20). Akira, REvil and Conti all had a similar payment rate

(31–35%), with comparable average discounts of around 20–40%. By contrast, Lockbit 3.0

appears to be less flexible with a mean discount of just 7.7%, but also much lower payment

rates (6.7%) suggesting a sub-optimal strategy.

Analyzing the data in aggregate, Table 5 shows that negotiation length strongly corre-

lates with the probability and size of a ransom discount, and the payment rate. In very short

exchanges (0–10 messages), no discounts were observed and no victims paid. Once talks

extended to 11–25 messages, 23% of cases saw a discount (median 23%), with payment
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rates still under 5%. Between 26 and 50 messages, nearly half of cases received a discount

(median 42%) and one in five victims paid. The longest negotiations (100+ messages)

yielded discounts in 86% of cases (median 66%) and had payment rates approaching 46%.
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Figure 3 visualizes these stepwise increases by message-count bucket, showing near-

linear growth in both mean and median discounts. Figure 4 plots discount percentage

against raw message count, with a fitted line and confidence interval. While some short

exchanges still yield large discount, the overall trend is that more messages lead to larger

discounts, consistent with Hypothesis 4a.

To formalize these patterns, we estimated two separate logistic regression models:

Regression 1. Discount (Stage 3): The dependent variable is whether a discount was

given (yes/no). Independent variables are: (a) log-transformed message count,

and (b) log-transformed initial ransom amount. Message count is a strong positive

predictor (OR ≈ 52.8, 95% CI: 15.5–216.2, p < .001), while initial ransom size is

not statistically significant (p = .12).

Regression 2. Payment (Stage 5): The dependent variable is whether the victim paid

(yes/no). Independent variables are: (a) log-transformed message count, (b) discount

size as a proportion, and (c) log-transformed initial ransom amount. Message count

is again the dominant predictor (OR ≈ 50.6, 95% CI: 5.5–500.6, p < .001). The

discount variable is not significant after accounting for message count, and larger

initial demands significantly reduce the likelihood of payment (OR ≈ 0.27, p < .001).

Taken together, the results indicate that sustained engagement rather than the size of

the discount is the main driver of settlement. Larger initial demands suppress payment

and shorten the negotiation, while brief exchanges almost never end in agreement. These

results reinforce the importance of analyzing all the stages of negotiation and are consistent

with the results in Table 4: prolonged bargaining is associated with discounts, but resilience

measures and the size of the initial ransom ultimately determine whether payment occurs.

5.3 Post-Payment Outcomes (RQ3)

So far, we examined 481 ransomware incidents, of which 119 victims paid (24.7%). Stage

6 captures post-payment interactions with threat actors. Three post-payment failure modes
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emerged:

1. The decryptor was not delivered or functioned poorly.

2. The attacker renegotiated for additional payment after an initial settlement.

3. The victim was reinfected by the same or another ransomware strain.

These outcomes were relatively rare, which suggests an orderly system where ransom

contracts are mostly respected.

Decryptor Failures. Among the 119 victims who paid, 3 cases (2.5%) involved no

decryptor being provided, and 8 cases (6.7%) involved a decryptor that was initially

unusable or only partially effective. The observed problems included keys that decrypted

only certain file types, restored files without making systems bootable, and waiting several

days before a working key was supplied.

In one manufacturing case (2020), the attacker initially demanded =C38k1, which was

then negotiated down to =C22k (40% discount) in a single day. Backups had been deleted

during the attack, and only one of three decryption keys was provided at first. The victim

persuaded the attacker to release the remaining keys without additional payment by

stressing the reputational damage that non-delivery would cause. In a service-sector case

(2020), the victim paid =C300k after a two-hour negotiation with no discount, yet waited

two more days for a functional key and experienced nine days of total downtime.

The three “no key” incidents affected one SME and two large organizations. In all cases,

backups ranged from partial to non-existent, and the attacker cut off contact immediately

after receiving payment. These figures are likely lower bounds given incomplete post-

incident reporting.

Renegotiation. At least 9 of the 119 paying victims (7.6%) faced additional ransom

demands after making the first payment. This typically occurred when the attacker claimed

the first payment covered only part of the encrypted assets (e.g., certain servers) or when

1Throughout we perturb the values for anonymity.
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additional “fees” were invented after payment. Notably, this did not involve repeat demands

following non-deletion of exfiltrated data.

In one private sector case (2021), the attacker accepted an initial =C10,000 payment but

then demanded approximately =C1.3million after claiming to charge =C10k per server. The

organization, with annual revenue between =C100 million and =C1 billion and no backups,

incurred =C2.5–3.5 million in recovery costs instead of paying the ransom.

In another manufacturing case in 2020, a =C6k payment to a ransomware-as-a-service

variant was immediately followed by a request for =C4,500 more; the second payment finally

unlocked all files. A third case began with a =C24k payment for three servers, escalated

to =C32k for the remaining four, and ended with a final settlement of =C10k more. In the

renegotiation cases, backups were almost always absent or unrecoverable, leaving victims

with little leverage to resist further demands.

Reinfection. Seventeen victims (3.5% of all 481 incidents) experienced another ran-

somware incident after a previous one. These fell into four categories:

Category 1: Immediate reinfection occurred in two cases, when victims restored backups

without fully cleaning systems. Backups enabled recovery, but rushed restoration prolonged

the outage. No incident response (IR) was initially involved.

Category 2.1: Delayed reinfection, no payment in the second incident accounted for 7

cases. In at least two incident, the victim disclosed that the earlier incident had prompted

investment in improved backup strategies (including immutable backups), allowing rapid

recovery without payment.

Category 2.2: Delayed reinfection, payment in the second incident comprised 7 cases. Most

victims in this category disclosed that their IT infrastructure lacked network segmentation,

enabling attackers to locate and encrypt or delete backups in the later incident. The gap

between incidents was at least one year. No clear link between repeated attacks could be

established.

Category 3: No successful reinfection occurred in 1 case (0.2%), about 18 months after
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the first attack. The intrusion was detected early enough to prevent encryption.

Across all categories, no victims paid in the first incident and then experienced a

second infection within one year. Immediate reinfections occurred only when the victim

chose not to pay, typically where backups were restored too quickly without fully cleaning

compromised systems. This suggests threat actors can largely be trusted to honor the

ransom agreement, at least in our sample. Payment itself was likely not a determining

factor for reinfection, as some victims in categories 2.1 and 2.2 had paid in the first incident,

while others had not.

5.4 Summary

The six-stage model reframes the paradox: victims do not pay because the ransom is low.

Instead victims pay because the negotiation structure leads them to believe that payment is

the least bad outcome. Section 5.1 shows how high initial demands enable this structure,

while discounts facilitate closure. Extended message exchanges during negotiations gives

victims a sense of agency as the discount increases, as evidenced by Section 5.2. Further,

the relative infrequency of post-payment complications in Section 5.3 showed that attackers

mostly honor the agreement, thereby increasing trust and managing their reputation.

6 Discussion

We now discuss the implications, limitations and recommendations implied by the empirical

analysis of our six-stage ransomware negotiation model.

6.1 Implications

Our results relate directly to common misconceptions in the ransomware literature and

practice community, which are discussed in turn.

Technical Controls. The majority of security controls are designed to prevent ran-

somware (and other security incidents). By contrast, backups do not help to prevent or
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detect incidents. However, our results show they are valuable because they reduce the

victim’s willingness to negotiate and pay (see Table 4). This explains why backups are one

of the only two controls that appear in the cybersecurity guidance of all 41 countries in

one study [56], given policymakers are so focused on ransom payment [4]. However, the

government guidance is inconsistent regarding how backups should be maintained [56].

This matters because victims are doing something wrong given the prevalence of partial

or non-functioning backups, which provide no benefit over no backups (see Table 4). Unfor-

tunately, our data sources did not identify why these backups failed. Potential explanations

include: (i) attackers destroying backups; (ii) misconfigured or corrupted backups; (iii)

out-of-sync backups; and (iv) delays transferring data. Offsite backups are widely recom-

mended [56], largely because the physical separation is a reliable form of segmentation

that prevents type (i) backup failures. Counter to this advice, one industry study found

offsite backups had the highest failure rate (55% compared to 80% for cloud) [32], possibly

because offsite backups are harder to maintain, leading to type (ii—iv) failures. Exploring

why backups fail is a promising area of future work, most likely for usable security given

the problems are likely rooted in organizational processes.

Discounts. Game-theoretic models treat discounts not as unconditional generosity

but as signals in a screening game [12, 72]. In these models, attackers use early or large

discounts to extract information about willingness to pay. Our staged results align with this

theory by showing that discounts are common, correlate with negotiation length, and help

close deals. However, the size of the discount is a weak predictor once preparedness and

initial pricing are accounted for. The misconception that “larger discounts cause payment”

is not supported. Preparedness and initial price remain the dominant levers, whereas

discounts are better understood as persuasion and closure devices emerging in structured,

multi-round bargaining.

In terms of victim psychology, discounts are known to “increase purchase satisfac-

tion” [19]. This motivates regulatory scrutiny to ensure they are not deceptive or manip-
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ulative, which is reflected in regulatory guidelines [50, 20]. Unfortunately, ransomware

operates within the black market. This lack of oversight means ransomware actors can

employ any persuasive tactics they choose, including arbitrary or misleading discounts,

without being held accountable for consumer harm. Increased data sharing between vic-

tims, law enforcement, IR companies and insurers would allow better understanding of

‘typical’ ransom amounts to judge whether ‘discounts’ are genuine.

Insurance. The insurance industry has faced criticism that cyber coverage encourages

payments [33], a view that is supported by evidence ransomware groups search for cyber

insurance policies post-infection [1]. Cartwright et al. [10] model and empirically show

that insurance can raise payment probability in some settings, mainly through liquidity

provision and claims handling, but the effect is conditional on exclusions and the timing of

insurer involvement. In our six-stage model, insurance did not predict whether victims

engaged or paid. However, insurance pushes victims to hire IR professionals [68], which

raises engagement and the chance of receiving a discount. The latter effect is offset by

insurance being associated with smaller discounts (Stage 4).

The null effect on payment can be explained by insurance also covering lost revenue due

to the outage [55]. Business interruption coverage means victims can incur longer outages,

offsetting the incentive to pay a ransom partly covered by the insurer. Thus, insurance

does not affect the likelihood of paying a ransom because it symmetrically affects both

sides of the calculus. However, both types of coverage increase the magnitude of cost that

can be incurred as either payment or lost revenue. This partly explains why insurance

is associated with higher ransom amounts [42]. Another explanation is selection effects,

whereby organizations with greater IT dependency are more likely to buy cyber insurance.
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Table 6: Summary of post-payment outcomes. Frequencies for decryptor failures and
renegotiations are relative to 119 paying victims; reinfection frequencies are relative to all
481 incidents. Observations are derived from case study analysis.

Category Subtype Frequency (%) Key Observations from Case Studies

1. Decryptor failure No key delivered 3/119 (2.5%) Actor ceased contact after payment; affected
one SME and two large organizations; backups
ranged from none to partial.

Partial or delayed or initially unusable 8/119 (6.7%) Keys worked only for some file types or were
delayed; in some cases systems remained unus-
able after decryption; recovery often extended
by several days despite payment.

2. Renegotiation Aggregated 9/119 (7.6%) Attackers demanded further payment after ini-
tial settlement, often claiming first payment
covered only a subset of servers or data; price
hikes ranged from small to over 100×; back-
ups generally absent or destroyed.

3. Reinfection Category 1: Immediate reinfection 2/481 (0.4%) Both involved restoring backups without clean-
ing infected systems; reinfection occurred
within days, but recovery still possible from
backups.

Category 2.1: Delayed reinfection, no payment in second attack 7/481 (1.5%) Earlier incident sometimes prompted invest-
ment in stronger backups (including im-
mutable backups) which made later recovery
easier.

Category 2.2: Delayed reinfection, payment in second attack 7/481 (1.5%) Lack of segmentation allowed attackers to
delete or encrypt backups in second incident;
most gaps between incidents exceeded one
year.

Category 3: No successful reinfection 1/481 (0.2%) Later intrusion detected about 18 months after
first; encryption prevented in time.

Reputation & Re-extortion. Theoretical reputation models predict that systematic

re-extortion—failing to deliver decryption keys, demanding more after payment—damages

attacker credibility and thus future profits [9]. Our data supports the theoretical predic-

tion that while some failures occur, repeat cheating should be rare. Many repeats appear

linked to technical remediation gaps rather than deliberate re-extortion policy (see Ta-

ble 6). This is further supported by prior work showing that certain attacker TTPs (e.g.,

maintaining decryption reliability) are re-used because they serve as a credible signal of

professionalism [63].

This suggests both attackers and IR firms are engaged in not just a multi-stage game

within each incident as in Figure 1, but a multi-stage game across incidents where bad

actors preserve reputation. While this creates predictable outcomes for individual actors, it

is unclear whether an orderly criminal ecosystem is optimal for society. For comparison,

researchers recommend disrupting trust networks in other areas of cybercrime [37, 2].
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Take-down operations largely avoid these problems by striking the operational capacity of

ransomware groups [44, 64].

6.2 Limitations

This study has several limitations.

Representativeness and scope of data sources. The combination of law enforcement

files, one incident response firm’s reports, and negotiation transcripts from leak sites

introduces selection biases. Police case files tend to over-represent larger or regulated

organisations, and under-represent victims who knowingly violated legal obligations during

the incident (e.g. paying sanctioned entities [63]). Incident response firm data reflects the

characteristics of its own client base, likely well-resourced victims who can afford to pay

for professional help. Leak site transcripts capture only high-profile ransomware groups

that choose to publish victim data [45]. As a result, the findings are most applicable to

well-resourced victims and prominent ransomware operations.

The dataset covers a specific time period (2019—2023) and is weighted toward Eu-

ropean and North American jurisdictions. Changes in regulation or different geopolitical

contexts could alter bargaining patterns. It is also possible that ransomware business

models will evolve again, after all this paper’s focus on negotiation only became relevant

since 2016 when ransomware actors moved away from fixed price demands [57]. Another

such change would reduce the applicability of our results.

Data Access. Only one researcher had full access to sensitive police and incident

response reports, and those results cannot be shared externally. This limitation undermines

the reproduction of these results, a key part of open science. However, widely sharing

victim data undermines privacy and risks facilitating re-victimization if the data was leaked.

This kind of highly limited, data sharing arrangement may be the only way to conduct this

kind of study.

Omitted variables and causality. Important factors such as attacker reputation, decryp-
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tion credibility, and industry-specific ransom norms could not be systematically measured.

These may correlate with over-represented attributes in the dataset, such as company size.

While multiple controls were included to reduce the risk of confounding variables, this

risk cannot be eliminated. The six-stage model assumes a sequential flow, yet the causal

direction might be reversed: some victims might expect a discount for certain ransomware

groups, and therefore be willing to negotiate. As an observational analysis, the model

identifies stage-specific associations but does not confirm causal relationships.

Missing psycho-social dimension of negotiation chats. We did not analyze the

content of ransomware negotiations chats. We therefore missed insights into persuasion

tactics, cultural bargaining strategies, and other factors rooted in psychology or sociology.

Omitting these factors may add noise, but it is unlikely to reverse the direction of significant

effects. For example, negotiation duration and discount size could be interpreted as proxies

for broader psychological and sociological factors.

6.3 Recommendations

Our results have several implications for policy and practice.

Victims. In addition to investing in Stage 0 preventative controls, organizations must

maintain functioning backups via regular testing and backup cadence. More detailed and

consistent guidance is required [56]. This must be guided by evidence and not conventional

wisdom, which is contradicted evidence that offsite backups had the highest failure rate [32].

Academics should conduct user studies on how backup maintenance.

In terms of who to call in a crisis, our findings suggest IR firms help with securing

a discount, but not the size of the discount. More generally, the skill of negotiators is

questionable given ransom payments have soared by over 10,000% since 2018 [16, 17].

Instead IR firms likely provide value in helping victims manage uncertainty, and enforcing

the reputation system that means post-payment complications are relatively rare (see

Table 6).
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Government Policy & Insurance. Our six-stage model argues we should move away

from the understanding of ransomware as question of pay vs not. This binary framing

motivates policy options like banning payment [4], a nuclear option that imposes a ruinous

cost on unprepared victims who must rebuild from scratch. It may also increase data

privacy violations, as criminals seek alternative monetization strategies. Instead of a binary,

policymakers could use a policy lever like a ransom tax or a ransom cap [36] to gradually

tilt the calculus away from paying ransoms. For example, a cap on ransom payments

improves the negotiation discipline of individual victims who can argue they cannot pay

above the cap by law. Such policies exploit attackers’ willingness to negotiate (Stage 2–4),

thereby reducing the size of payments ensures less funds flow to criminals. Crucially, the

gradual approach preserves optionality for unprepared victims.

Insurers can introduce a similar policy, but within each contract. Cyber policies could

make higher limits available for business interruption than is available for extortion pay-

ments. Alternatively, insurers could make extortion payments subject to co-insurance, so

the victim faces a greater cost for paying. This tilts victims away from paying ransoms,

without imposing ruin on victims who simply need to pay.

Data Collection & Research. Governments and industry should strengthen systems for

collecting and sharing structured ransomware data between law enforcement and private

partners. Improved monitoring would make it possible to detect shifts in offender tactics

early and adjust interventions before re-extortion becomes a widespread source of attacker

income. A specific recommendation is for IR firms to collect more fine-grained information

on why backups failed.

7 Conclusion

This paper introduces and advances a six-stage model of ransomware negotiation and

validates it using both incident-level data and public negotiation transcripts. Our findings

show that outcomes are shaped by sequential filtering rather than a one-off payment
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decision. Each stage (victim engagement, discount offering, discount size, and final

payment) narrows the set of incidents and alters the bargaining position of both sides.

Across both structured models and public negotiation transcripts, the strongest predic-

tors of payment are preparedness and initial pricing, not discount size. Functional backups

sharply reduce the likelihood of payment, while insurance primarily operates indirectly

by enabling incident response involvement, which in turn increases victims willingness to

negotiate. The message exchanges during negotiation increase the probability of discount

offers, yet the size of those discounts does not, on its own, raise payment probability.

Our findings also clarify three common misconceptions. Insurance does not mechan-

ically drive ransom payment but influences it through incident handling; discounts are

better understood as persuasion tools emerging in longer negotiations, not simple price

reductions; and systematic re-extortion is rare, likely constrained by attackers preserving

reputation.

Taken together, these findings highlight the value of viewing ransomware as a staged

bargaining process, providing a stronger basis for both future research and evidence-based

interventions for victims and policy-makers alike.
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