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Abstract

We develop a data-driven procedure to identify which correlations in high-dimensional dy-

namic systems should be time-varying, constant, or zero. The method integrates a vine-based

multivariate partial correlation model with sequential penalized estimation. Applied to 50

US equities and systematic risk factors, results indicate that asset-level correlation dynamics

are primarily induced by time-varying exposures to systematic factors. We further uncover

persistent, non-zero, and occasionally time-varying partial correlations within industries,

even after controlling for standard risk and industry factors. Finally, we show how the new

methodology may be used to explore the relevance of systematic risk factors in an impartial

way.

Keywords: conditional correlations, score-driven models, financial market structure,

regularization

JEL codes: C58, C32.

1 Introduction

Asset correlations play a dominant role in many areas of finance, ranging from modern portfolio

theory to asset pricing and risk management. Though there are clear indications from the

econometric literature that such asset correlations may not be constant over time (Engle, 2002;

Engle et al., 2019), the debate in the finance literature still questions whether such time-varying

(or even constant) non-zero correlations can be exploited at all (see, for instance, DeMiguel et al.,

2009). It is therefore important to decide on the issue of time-variation in asset correlations and its

exploitability in an impartial, data-driven way. To do so, there are at least three main challenges.

First, we need to correct for the marginal properties of asset returns, including the well-known

stylized fact of time-varying volatilities of individual returns (see, e.g., Hansen and Lunde, 2005).

Such time-variation in volatilities automatically spills over into time-varying covariances, but need

not imply that correlations vary over time. Second, though pairwise asset correlations are of key
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interest, one typically first wants to correct these pairwise correlations for any systematic risk

exposures; see Fama and French (1993), Carhart (1997), Fama and French (2015, 2016), Feng et al.

(2020), and many others. It is therefore key to find out whether the correlations of asset returns

with such systematic risk factors vary over time or not, and whether any pairwise asset correlations

that remain after systematic risk exposures have been accounted for, are still time-varying or not.

This shifts the focus from correlations to partial correlations. Third, once more and more assets

are included in the analysis and the setting becomes high-dimensional, biases in usual estimation

procedures start to emerge and need to be addressed. For instance, Ledoit and Wolf (2022) and

Engle et al. (2019) consider shrinkage techniques to target large-dimensional covariance matrices

using random matrix theory results. Pakel et al. (2021), by contrast, mitigate biases in the familiar

DCC framework of Engle (2002) by introducing composite maximum likelihood methods and

splitting the high-dimensional problem into a sequence of lower-dimensional ones. See also Fan

et al. (2016) for an overview of other methods. Also in our current context of investigating the

time-variation in asset correlations, some form of correction or shrinkage is needed if the number

of assets grows larger.

In this paper we therefore propose a new modeling framework that addresses the above

challenges and provides an impartial, data-driven perspective on the question of time-variation

in partial asset correlations. For this, we build on the dynamic vine copula framework of

D’Innocenzo and Lucas (2024). The vine structure allows us to address the layered format of asset

correlations, first accounting for correlations with systematic risk factors, and only then looking at

any remaining partial correlation patterns. This distinguishes our approach from, for instance,

Engle et al. (2019), who instead consider the Pearson correlation matrix. It also distinguishes

the paper from approaches that consider time-varying precision matrices, i.e., inverse correlation

matrices, as developed in Lee et al. (2021), Zhu et al. (2024) and Chen et al. (2025). Entries

in the precision matrix can also be interpreted as partial correlations between two assets, but

after accounting for the correlation with all other assets in the system. Again, this would step
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over the clear ordering in such analyses and the distinction between systematic and residual risk.

By considering partial correlations, our approach also has the advantage that we do not need to

account for positive definiteness of the partial correlation matrix. It suffices that all individual

partial correlations in the vine structure are between +1 and −1, which can easily be accomplished

be simple parameter transformations without the need of more complex correlation (or precision)

matrix parameterizations (Creal et al., 2011; Buccheri et al., 2021; Archakov and Hansen, 2021;

Hafner and Wang, 2023; Abadir and Rockinger, 2025).

To investigate the issue of time-variation in partial correlations and address the challenge of

possible biases if the number of assets increases, we introduce a sequence of lasso-type penalty

functions during estimation. These penalties are constructed in such a way that the estimator

automatically shrinks to a constant (or even a zero) correlation patterns if the time-variation is

not sufficiently pronounced. We set the penalty parameters in a data-driven way. Simulations

support that the new method is able to find the time-varying versus the constant correlations

both in well-specified and mis-specified settings.

We apply the new method to study the market structure of asset correlations in an application

to 50 blue-chip US stock returns selected from 10 different industries and a range of systematic risk

factors from the financial literature. Though the number of assets is considerably smaller than in

the vast dimensional application of, for instance, Engle et al. (2019), biases already arise in these

settings (see Pakel et al., 2021; Lee et al., 2021). Moreover, by concentrating on the firms with the

largest average trading volumes across a range of industries, we are able to concentrate more on the

financial implications of our econometric analysis. We find clear signals that correlations between

individual stocks and the market factor are typically time-varying, irrespective of the frequency

of the data (daily, weekly, monthly). We also find that partial asset correlations with familiar

risk factors (like size or value) vary over time as well, even after accounting for (time-varying)

correlations with the market factor. This latter time-variation, however, is less robust and fades

into constant or even zero partial correlations for many assets if the frequency lowers to weekly or
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monthly.

Interestingly, we also find that after accounting for systematic risk, many of the remaining

partial correlations are set to zero by the penalized estimator, particularly at lower frequencies.

This result continues to hold if we alter the number and type of risk factors. One major exception

is given by several within industry partial correlation patterns. These within industry effects are

non-zero and sometimes even time-varying and are highly robust to the precise specification used.

They fade if the model is extended, but do not fully vanish even when we include industry factors

as systematic risk factors in the model. Given that we select the five firms with the largest average

trading volume in each industry, the (partial) correlations between such industry leaders cannot

be fully accounted for by the systematic risk factors and broad industry developments (beyond

the top five).

The remainder of this paper is set up as follows. Section 2 introduces the modeling framework.

Section 3 presents simulation evidence about the performance of the new approach, both under

correct and incorrect model specification. Section 4 provides our empirical application to US

stocks. Section 5 concludes.

2 Model

In this section, we first describe the vine-based partial correlation framework of D’Innocenzo and

Lucas (2024). Next, we discuss how to regularize the estimator of the model’s parameters to

distinguish between time-varying, constant, and zero partial asset correlations in a data-driven

way.

2.1 Modeling dependence via partial correlations

Let rt = (r1,t, . . . , rN,t)
> ∈ RN×1 be a vector of (excess) asset returns. Following D’Innocenzo

and Lucas (2024), we split the modeling stage of rt into two steps. In a first step, we estimate
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individual t(νi)-GARCH(1,1) volatility models and use the estimated volatility patterns of each

asset. Alternative volatility models could be used as well, but the GARCH(1,1) has proven difficult

to beat for most financial time series; see Hansen and Lunde (2005). We then focus on modeling

the devolatilized series yt, with yt = (y1,t, . . . , yN,t)
> and yi,t = ri,t/σ̂i,t; compare the approach for

the well-known Dynamic Conditional Correlation (DCC) model of Engle (2002).

Let Ft−1 = {yt−1,yt−2, . . .} denote a filtration. Then we assume that the conditional distribu-

tion of yt for t ∈ Z is given by a Student’s t distribution with ν degrees of freedom,

yt | Ft−1 ∼ t
(
0, (1− 2ν−1) ·Rt, ν

)
, ν > 2, (2.1)

where t(µ,Ω, ν) denotes an N -dimensional Student’s t-distribution with location µ, scale matrix

Ω, and ν > 2 degrees of freedom.

Rather than modeling the dynamics of the correlations in Rt directly using a parametrization

of the Pearson correlation matrix such as the normalized covariance matrix in the DCC (Engle,

2002), the hypersphere parameterization (Jaeckel and Rebonato, 2000; Creal et al., 2011; Buccheri

et al., 2021), the log-correlation matrix parameterization (Archakov and Hansen, 2021; Hafner

and Wang, 2023), or the normalized spectral parameterization (Abadir and Rockinger, 2025),

D’Innocenzo and Lucas (2024) use a vine structure and model the partial correlations instead. An

advantage is that the vine-based pairwise partial correlations only need to lie between −1 and

+1, and no further restrictions are needed to ensure that the implied Pearson partial correlation

matrix Rt is positive definite.

Let ρi,j ; t denote the (i, j)th element of Rt, i.e., the Pearson correlation between assets i and j

at time t, conditional on the filtration Ft−1. Similarly, let ri,j ; t denote the corresponding partial

correlation. Such partial correlations can be defined in different ways. For instance, from a

re-normalized R−1
t we easily obtain the partial correlations between assets i and j conditional

on all other assets in the system. Here, however, we define the partial correlation sequentially
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through a vine structure. This directly implies that the sequence of the vine structure determines

the model, and that the model changes if the type of vine or order of the assets in the vine changes.

In general, this might be deemed less desirable. In the context of our research question, however,

we argue that this structure comes with two distinct advantages. First, like in D’Innocenzo and

Lucas (2024), the estimation problem can easily be split into a sequence of lower-dimensional,

bivariate estimation problems. This considerably simplifies the estimation process, particularly if

the number of assets is larger, and also turns out to be helpful for the penalization strategy. Second,

the order in the vine allows us to explicitly investigate one of our main research questions in an

impartial, data-driven way. By first accounting for systematic risk factors in the vine structures,

we can investigate whether there are any remaining partial correlations between individual assets

after partialling out the correlations with the systematic risk factors, or whether time-varying

Pearson correlations between individual assets are mainly due to time-varying correlations with

common systematic risk factors. Such a test is easy to address in a vine-based framework, but

less immediate when concentrating on the partial correlations of two assets after partialling out

the correlations with all other assets. In addition and as mentioned before, partialling out the

correlations with all other assets introduces complicating positive definiteness constraints back

into the estimation process.

Figure 1 presents two well-known vine structures, namely a vertical and diagonal vine. For the

vertical vine, we first estimate the pairwise correlations between the assets in the first column. Next,

we estimate the partial correlations between the assets in the second column after accounting

for the correlations of these assets with the first asset. Similarly, the partial correlations in

the third column account for the correlations with the first two assets, and so on. A diagonal

vine structure is similar, but does not account for the correlations with all previous assets, but

rather the correlations with all intermediate assets; e.g., the partial correlation of assets 1 and

4 after accounting for the correlations with the intermediate assets 2 and 3. Given that we

want to investigate the pairwise partial autocorrelations after accounting first for systematic risk
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

r2,1

r3,1 r3,2|{1}

r4,1 r4,2|{1} r4,3|{1,2}

r5,1 r5,2|{1} r5,3|{1,2} r5,4|{1,2,3}


Vertical vine structure



r2,1

r3,1|{2} r3,2

r4,1|{2,3} r4,2|{3} r4,3

r5,1|{2,3,4} r5,2|{3,4} r5,3|{4} r5,4


Diagonal vine structure

Figure 1: A comparison of two common vine structures for partial correlations

components, the vertical vine structure is most appropriate. This still leaves some sensitivity

to the order of the vine for all assets after the systematic risk factors, and we investigate the

robustness of our results to such variations in orderings in the empirical application in Section 4.

The mapping from Pearson correlations ρi,j ; t to partial correlations ri,j ; t can be specified

recursively by the equations

ρi,j ; t = Ri,1:i−1;tR
−1
1:i−1,1:i−1;tR1:i−1,j;t + ri,j ; t

√
Vi,i ; t Vj,j ; t,

Vi,j = ρi,j ; t −Ri,1:i−1;t R
−1
1:i−1,1:i−1;t R1:i−1,j;t,

(2.2)

for i = 1, . . . , N − 1, and j = i + 1, . . . , N , where Ri:j,k:`;t is the submatrix from Rt containing

rows i to j and columns k to `, with Ri:j,k:`;t being empty if j < i or ` < k. Using this relation,

we can easily convert partial correlations ri,j ; t into Pearson correlations ρi,j ; t, and vice versa. If

all partial correlations lie strictly between −1 and +1, the implied Pearson correlation matrix Rt

is automatically positive definite, with ones on the diagonal.

2.2 Modeling partial correlation dynamics

To model the time-variation in the partial correlations ri,j ; t, we define time-varying parameters

fi,j ; t, with ri,j ; t = ε tanh(fi,j ; t) ∈ (−ε,+ε) for some constant 0 < ε < 1. As a result of this

parameterization, the partial correlations automatically lie in the correct interval −1 to +1.

Time-variation in fi,j ; t can now be captured via the score-driven framework of Creal et al. (2013)
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and Harvey (2013). For this, we first realize from the distributional assumption in Eq. (2.1) that

two elements yi,t and yjt for j > i conditional on Ft−1 and on all assets 1, . . . , i − 1 follow a

bivariate Student’s t distribution

yi,j ; t |Ft−1,y1:i−1;t ∼ t
(
µi,j ; t , D

−1/2
i,j ; t Pi,j ; tD

−1/2
i,j ; t , νi,j

)
, (2.3)

Di,j ; t =
ν − 2 + y>

1:i−1;tR
−1
1:i−1,1:i−1;ty1:i−1;t

νi,j

Vi,i ; t 0

0 Vj,j ; t

 ,

µi,j ; t =

Ri,1:i−1;t

Rj,1:i−1;t

R−1
1:i−1,1:i−1;t y1:i−1;t, νi,j = ν + j − i− 1,

Pi,j ; t =

 1 ri,j ; t

ri,j ; t 1

 , yi,j ; t =

yi,t

yjt

 , y1:i−1;t =


y1,t

...

yi−1,t

 ,

for i = 1, . . . , N − 1 and j = i+ 1, . . . , N . The score-driven dynamics for fi,j ; t are then given by

fi,j ; t+1(θ) = ωi,j + βi,j fi,j ; t(θ) + αi,j si,j ; t(θ), ri,j ; t(θ) = ε · tanh (fi,j ; t(θ)) , (2.4)

si,j ; t(θ) = si,j ; t
(
fi,j ; t(θ),y

?
i,j ; t;θ

)
=

ε

1− ri,j ; t(θ)2
·
((

1 + ri,j(θ)
2
) (

wi,j ; t y
?
i,t y

?
jt − ri,j ; t(θ)

)
(2.5)

− ri,j ; t(θ)
(
wi,j|Li,j ; ty

?
i,j ; t

>y?
i,j ; t − 2

))
,

wi,j ; t = wi,j ; t

(
fi,j ; t(θ),y

?
i,j ; t;θ

)
=

νi,j + 2

νi,j + y?
i,j ; t

>P−1
i,j ; t y

?
i,j ; t

, (2.6)

y?
i,j ; t =

y?i,t

y?jt

 = y?
i,j ; t(θ) = D

−1/2
i,j ; t (yi,j ; t − µi,j ; t) ,

for i = 1, . . . , N − 1 and j = i + 1, . . . , N , where θ gathers the static parameters in the model,

and where we made the dependence of quantities like fi,j ; t(θ), ri,j ; t(θ), etc., on θ more explicit in
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the notation; see D’Innocenzo and Lucas (2024) for further details. As mentioned earlier, from

the pairwise partial correlations ri,j ; t(θ) we can easily construct the implied pairwise Pearson

correlations ρi,j ; t(θ) via (2.2).

2.3 Sequential regularized estimation in high dimensions

D’Innocenzo and Lucas (2024) estimate their dynamic vine copula model by maximum likelihood

or by a sequential estimation strategy. Full maximum likelihood estimation quickly becomes

computationally impractical in high dimensions given the number of parameters and the non-

linearity of the model. In our context, we therefore adopt a sequential estimation strategy. Here

we first estimate the models for j = i+1, . . . , N for given i. Note that this step can be parallelized,

yielding further computational gains. We then loop the estimation over i = 1, . . . , N − 1. We

further increase the numerical speed of the algorithm by treating the degrees of freedom parameter

during this stage as a tuning constant and fixing it at a reasonable value given estimation results

from the literature. In our case, we fix ν = 7 and investigate the sensitivity of the final results

to this choice. In the empirical application in Section 4 this choice does not affect the main

results. After the parameters for the pairs (i, j) for j = i + 1, . . . , N have been estimated, we

compute y?
i+1:N ;t = y?

i+1:N ;t(θ) and use this new standardized data vector to estimate the pairwise

parameters for i+ 1 and j = i+ 2, . . . , N .

A key difference with D’Innocenzo and Lucas (2024), however, is that we introduce a penalized

objective function to estimate the pairwise parameters in θi,j = (ωi,j, αi,j, βi,j)
> using the penalized

sequential maximum likelihood estimator (MLE)

θ̂i,j = argmin
θi,j

Li,j (θ) + λi,j

√
α2
i,j + β2

i,j + λi,j|ωi,j|, (2.7)
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where

Li,j(θi,j) =
T∑
t=1

− log(2π)− 1
2
log |Pi,j ; t| −

νi,j + 2

2
log
(
1 + ν−1

i,j y?
i,j ; t

>P−1
i,j ; t y

?
i,j ; t

)
. (2.8)

The penalized estimator in (2.7) introduces two types of penalties. The first penalty involving

(α2
i,j + β2

i,j)
1/2 introduces a joint penalty on αi,j and βi,j and shrinks both parameters jointly to

zero. The advantage of this approach over shrinking the parameters individually is that any sticky

time-variation in the partial correlation ri,j ; t is determined by both αi,j and βi,j. Absence of

time-variation in the partial correlations, therefore, corresponds to both parameters being jointly

zero. If both αi,j and βi,j are zero, the time-varying parameter fi,j ; t collapses to the intercept

value ωi,j, yielding a constant partial correlation ri,j ; t = ε · tanh(ωi,j). The joint rather than

separate penalty functions also avoids an identification issue: if αi,j = 0, the parameters ωi,j and

βi,j cannot be identified separately (see, for instance, the identification part in Blasques et al.,

2022). By enforcing joint selection of αi,j and βi,j, this issue is mitigated. Finally, the second

penalty in (2.7) is a standard L1 Lasso type penalty. Whereas the first penalty shrinks toward

constant partial correlations, this second penalty shrinks towards partial correlations that are

(constant at or fluctuating around) zero.

To solve for the MLE, we use a proximal gradient descent algorithm; see Appendix C. For

given i, we parallelize the optimizations over j = i + 1, . . . , N . Particularly for the first layers

of the vine structure, this produces substantial further computational gains. Throughout the

remainder of this paper, we choose λi,j separately for each data slice using a grid of 20 different λi,j

values. This grid ranges from 1 to 1,000 and is evenly spaced on a natural logarithmic scale. After

estimating all 20 solutions, the optimal solution is determined based on the BIC using the number

of non-zero parameters as a proxy for the degrees of freedom. We investigate the robustness to this

choice of the model selection criterion in Section 4 by considering alternative criteria like the AIC.
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3 Simulations

3.1 Set-up

In this section, we explore the finite sample performance of our method through Monte Carlo

simulations. First, we explore the predictive performance, estimation accuracy and selection

capabilities of our estimator in a correct specification setting. Next, we evaluate the robustness of

our filtering approach to model mis-specification.

We consider three variations of our estimator as defined in (2.7), which we label VCC (for

λi,j = 0), standing for Vine Conditional Correlation, and the penalized VCC or P-VCC (for

λi,j 6= 0), respectively. For the P-VCC estimator, we consider a version that selects λi,j using the

BIC and AIC, respectively. In addition to our three VCC specifications, we also include the DCC

model of Engle (2002) as a typical benchmark.

We initialize the VCC filters by first computing the sample correlation matrix R̂init of the

observations yt for t = 1, . . . , T . Using the vine structure and R̂init, we can calculate the implied

partial correlations r̂init
i,j and use them to set f̂ init

i,j = tanh−1(r̂init
i,j /ε). Moreover, to reduce the

risk of local optima for the likelihood maximization of each slice, we consider three different

initializations for θi,j, namely (i) θi,j = (f̂ init
i,j (1 − 0.95), 0.04, 0.95)>, (ii) θi,j = (f̂ init

i,j , 0, 0)>, and

(iii) zero (θi,j = (0, 0, 0)>. These correspond to specifications with (i) dynamic, (ii) static, and (iii)

zero partial correlations, respectively. Experiments with other initializations show that the results

are robust.

In each simulation s, we generate Ttrain+Ttest observations. We use the first Ttrain observations to

estimate the model’s parameters, and the remaining Ttest observations to compute the performance

metrics for each estimator in each simulation to avoid optimistic performance measured due to over-

fitting. We consider four different performance metrics. To evaluate the predictive performance,
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we use the root mean squared forecast error (RMSFE)

RMSFE =

(
2

N(N − 1) · S · Ttest

S∑
s=1

Ttest∑
t=1

∥∥∥ vech
(
R̂

(s)
t −R

(s)
t

) ∥∥∥2
2

)1/2

,

where S denotes the number of simulations, and R̂
(s)
t and R

(s)
t denote the one-step-ahead forecast

and the true value of the Pearson correlation matrix R
(s)
t in simulation s, respectively.

As a measure of estimation accuracy, we compute the root mean squared error (RMSE) for

each estimator as

RMSE =

(
1

dim(θ(s)) · S

S∑
s=1

∥∥∥θ̂(s) − θ(s)
∥∥∥2
2

)1/2

,

where θ(s) denotes the true vector of static parameters in simulation s, and θ̂(s) its corresponding

estimate. Since θ is sparse, the RMSE is naturally expected to be lower for penalized versions

of VCC. However, such a gain in estimation accuracy may come at the expense of substantial

shrinkage bias for the non-zero parameters. To explore this possibility, we also compute the RMSE

over the set of non-zero parameters as

RMSETV =

(
1

dim(θ(s)) · S

S∑
s=1

∥∥∥θ̂(s)
TV − θ

(s)
TV

∥∥∥2
2

)1/2

,

where θ
(s)
TV denotes the set of non-zero parameters that governs the dynamics of the time-varying

partial correlations.

Finally, to evaluate the ability of the P-VCC estimator to select the correct non-zero parameters,

we also report the nonzero (NZP) and zero precision (ZP) metrics

NZP =
1

S

S∑
s=1

∑M
j=1 1{θ̂

(s)
j 6= 0} · 1{θ(s)j 6= 0}∑M
j=1 1{θ(s) 6= 0}

, ZP =
1

S

S∑
s=1

∑M
j=1 1{θ̂

(s)
j 6= 0} · 1{θ(s)j 6= 0}∑M
j=1 1{θ(s) 6= 0}

,

where M denotes the number of elements in the parameter vector θ(s), including both zero and
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non-zero elements.

3.2 Correct specification

In the correctly specified setting, we draw samples directly from (2.1) with ν = 7, where the time-

varying correlation matrices Rt for t = 1, . . . , T , are generated via sequences of Ft−1-measurable

partial correlations. These partial correlations follow the filter process in (2.4). The corresponding

Pearson correlation matrices are constructed from the partial correlations via a vertical vine

structure, similar as in our empirical application in Section 4. The first column of the vine

structure, containing N − 1 Pearson correlations, is generated through (2.4) with parameters

θ(1,j) = (ω1,j, α1,j, β1,j)
>, where α1,j = 0.1, β1,j = 0.97, and ω1,j ∼ N(µ, 0.3) with P(µ = 0.7) = 0.8

and P(µ = −0.7) = 0.2, for j = i+ 1, . . . , N . The other columns in the vertical vine structure are

generated as zeros, i.e., θi,j = 0 for all i = 2, . . . , N .

We draw S = 500 training samples of varying sample sizes T ∈ {750, 1500, 3000}. At the end

of each training sample, we draw an additional test sample of size Ttest = 50 on the basis of which

we compare the out-of-sample predictive performance. In addition, we vary the dimensionality of

the sample by setting N ∈ {10, 50}, which corresponds to a total of 135 or 3,675 parameters to be

estimated, respectively. The results are reported in Table 1.

For the low-dimensional case (N = 10) as reported in panel A, the results show that in terms

of forecasting accuracy all VCC variants obtain low RMSFEs, with a maximum discrepancy

between the true and filtered out-of-sample Pearson correlation of about 0.05. The most precise

forecasts are obtained by P-VCC tuned by the BIC, closely followed by P-VCC tuned by the AIC.

Despite the relatively small dimension, we observe that the penalization improves the predictive

performance from 11% (T = 750) to 20% (T = 3, 000), respectively, vis-à-vis the unpenalized VCC.

We also note that the RMSFE decreases in T for all VCC variants. The DCC model predicts

substantially less accurately with a minimum deviation of around 0.136 (T = 3, 000) from the true

correlations.

14



Table 1: This table contains the simulation results on a correctly specified model. The reported metrics
are the root mean squared forecast error (RMSFE), root mean squared error (RMSE), nonzero precision
(NZP) and zero precision (ZP).

Metric T VCC penalty DCC VCC penalty DCC
no BIC AIC no BIC AIC
Panel A: low-dimensional (N = 10) Panel B: high-dimensional (N = 50)

RMSFE
750 0.052 0.046 0.047 0.145 0.052 0.045 0.046 0.197
1,500 0.035 0.029 0.031 0.140 0.036 0.030 0.031 0.187
3,000 0.025 0.020 0.021 0.136 0.025 0.020 0.021 0.178

RMSE
750 0.469 0.013 0.070 0.513 0.008 0.074
1,500 0.471 0.006 0.068 0.516 0.004 0.072
3,000 0.471 0.004 0.068 0.516 0.003 0.069

RMSETV

750 0.019 0.026 0.020 0.020 0.029 0.021
1,500 0.012 0.012 0.012 0.012 0.012 0.012
3,000 0.008 0.008 0.008 0.008 0.008 0.008

NZP
750 1.000 0.999 1.000 1.000 0.995 0.997
1,500 1.000 1.000 1.000 1.000 0.997 0.998
3,000 1.000 1.000 1.000 1.000 0.998 0.999

ZP
750 0.000 0.999 0.944 0.000 0.999 0.946
1,500 0.000 0.999 0.949 0.000 0.999 0.949
3,000 0.000 0.999 0.950 0.000 0.999 0.952

In terms of estimation accuracy, we find that the penalized VCC estimators substantially

outperform the unpenalized version. When comparing RMSES computed over the full set of

parameters, the P-VCC tuned by the BIC emerges as the clear winner. This method obtains

a reduction in RMSE of around 97%-99% compared to the non-regularized VCC and 81%-94%

compared to P-VCC tuned by AIC, indicating clear efficiency gains by exploiting sparsity through

(substantial) regularization. Perhaps even more impressively, these gains do not seem to come

at the cost of substantial shrinkage bias in the estimation of the non-zero parameters. Although

for T = 750, we actually observe a somewhat higher RMSETV for P-VCC relative to VCC, this

differential completely vanishes for the two larger sample sizes.

The selection abilities of P-VCC are excellent, regardless of the choice of information criterion.

As measured by the NZP, both the BIC and AIC tuned versions are able to retain virtually all

non-zero parameters in the final model specification. However, as expected, the AIC results in

more conservative selection and, consequently, higher ZP scores. In simpler terms, more zero

parameters are estimated as nonzero in the final model when P-VCC is tuned by the AIC. This
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largely explains the earlier observed differences in RMSE between the BIC and AIC variants.

The results are very similar if we increase the cross-sectional dimension to N = 50. All VCC-

variants obtain highly similar performance metrics, demonstrating that the vine-based penalization

approach scales well to high-dimensional settings. In contract, the forecast errors of the DCC

model increases by about 30%-50% compared to the low-dimensional setting (N = 10), depending

on the precise value of T .

Table A.1 in Appendix A presents another robustness check of the results in Table 1 for different

degrees of freedom choices. These results show that the performance of the new methodology is

robust to the precise choice of ν ∈ {5, 10, 20}.

3.3 Incorrect specification

To investigate the robustness of our filtering and selection approach to mis-specification, we

consider alternative dynamics for the partial correlations. We again draw samples from (2.1) with

ν = 7, but the time-varying partial correlations are now given by

ρ1,j;t =


µj + 0.2 cos

((
2t
365

−Bj

)
π
)
+ εt, if j is odd,

µj +
0.3ft

max1≤t≤T |ft| , if j is even,

ρi,j ; t = 0 for j > i > 1,

where µj is a uniform draw from the discrete set {−0.5, 0.5}, Bj ∼ Bernoulli(0.5), εt ∼ U(−0.1, 0.1),

and ft = 0.95ft−1 + υt, with υt ∼ N(0, 1). This produces a design with slowly varying partial

correlations, either with an autoregressive (j is even) or with sinusoid (j is odd) dynamics.

Note that in the mis-specified setting we can no longer report the RMSE of θi,j, as there is

no corresponding true parameter value of this parameter. We can, however, still report adjusted

versions of the precision metrics that count how many of the true (non)zero correlation paths

have been identified. Letting θi,j = (ωi,j, αi,j, βi,j)
> denotes the vector of parameters governing
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Table 2: This table contains the simulation results under mis-specification. The reported metrics are
the root mean squared forecast error (RMSFE), nonzero precision (NZP) and zero precision (ZP).

Metric T VCC penalty DCC VCC penalty DCC
no BIC AIC no BIC AIC
Panel A: low-dimensional (N = 10) Panel B: high-dimensional (N = 50)

RMSFE
750 0.089 0.092 0.087 0.102 0.086 0.088 0.083 0.102
1,500 0.078 0.079 0.076 0.081 0.073 0.073 0.071 0.079
3,000 0.078 0.079 0.077 0.074 0.074 0.075 0.073 0.069

NZP
750 1.000 1.000 1.000 1.000 1.000 1.000
1,500 1.000 1.000 1.000 1.000 1.000 1.000
3,000 1.000 1.000 1.000 1.000 1.000 1.000

ZP
750 0.000 0.996 0.909 0.000 0.996 0.904
1,500 0.000 0.997 0.913 0.000 0.997 0.906
3,000 0.000 0.998 0.912 0.000 0.998 0.910

the dynamics of the time-varying partial correlations between assets i and j given a vertical vine

structure, we compute

NZP =
1

S

S∑
s=1

∑N−1
i=1

∑N
j=i+1 1

{
θ̂
(s)
i,j 6= 0

}
· 1
{
θ
(s)
i,j 6= 0

}
∑N−1

i=1

∑N
j=i+1 1

{
θ
(s)
i,j 6= 0

} ,

ZP =
1

S

S∑
s=1

∑N−1
i=1

∑N
j=i+1 1

{
θ̂
(s)
i,j = 0

}
· 1
{
θ
(s)
i,j = 0

}
∑N−1

i=1

∑N
j=i+1 1

{
θ
(s)
i,j = 0

} .

The results are reported in Table 2. We first note that the DCC now performs better than

in Table 1 as the correlation dynamics are not score-driven and are generated directly, varying

slowly over time. In Table 1, by contrast, the Pearson correlations were generated indirectly via

the partial correlation dynamics. As a result, the performance metrics of the DCC and VCC

estimators lie closer together. For T = 750 and T = 1, 500, the penalized VCC estimators perform

better in terms of forecasting power than the DCC, with the AIC-tuned variant coming out on top.

Only for very long samples of T = 3, 000, the DCC has the smallest RMSFE, but the differences

are quite small for such large sample sizes anyway, as shrinkage matters less. The results are very

comparable between the low-dimensional (N = 10) and high-dimensional (N = 50) setting.

The penalized estimators can still identify the zero and non-zero correlations quite well. The
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penalized VCC methods perfectly identify the non-zero partial correlations and are able to recover

the zero partial correlations very well with a precision above 90%. By construction, the DCC does

not allow any of the (true) zero correlation paths to be estimated as zero, which would imply

trivial (non-reported) values of ZP = 0 and NZP = 1. The strong performance of our methodology

in terms of selection ability even under severe model misspecification provides reassurance that our

method can safely be used in real-world applications in which the interpretation of the sparsity

pattern has an economic meaning, such as in the empirical application in Section 4.

4 Empirical Application

4.1 Data

In this section, we apply our approach empirically to US stock returns. We select 50 different

US stocks from 10 different industries. The industries are constructed in line with the industry

classification adopted for the 10 industry portfolios in Ken French’s data library.1 Using the

CRSP-Compustat dataset, we select firms that have observations over the period January 3, 2000

to December 30, 2024, thus covering both the financial crisis and the Covid pandemic period.

Within each period, we select the 5 stocks that have the highest average trading volume throughout

the sample period. Both selections give rise to a survivorship bias in the data. Survivorship biases

may be very important in various areas of finance, such as studies related to expected returns and

the size of risk premia. Here, however, we argue a possible survivorship bias is less of an issue for

the research question at hand, which relates to the time-variation or time-invariance of partial

asset correlations after accounting for systematic risk factors and industry returns.

We construct three different data sets of excess returns, namely at daily, 5-daily (weekly),

and 22-daily (monthly) frequency. For each dataset, we first estimate a t-GARCH(1,1) model to

filter out the marginal volatility effects and to construct de-volatilized time series. We use these

de-volatilized time series as our input yt for the VCC model from Section 2.
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(a) Mean and St.Dev. (b) Skewness and Kurtosis
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(c) Estimated degrees of freedom

Figure 2: Descriptive statistics for the daily factor (16) and individual stock (50) returns.
Note: standard deviations and kurtosis are plotted on a logarithmically scaled axis.

We also use readily available systematic risk factors from Ken French’s data library. In

particular, we use the market, size (SMB) and value (HML) factors of Fama and French (1993), the

momentum (MOM) factor of Carhart (1997), and the additional Robust minus Weak (RMW) and

Conservative Minus Aggressive (CMA) factors of Fama and French (2015, 2016). We de-volatilize

the factor return series in the same way as the individual stock returns. Finally, we download the

10 value weighted industry portfolio returns from the same site and again de-volatilize them in

the same way.

Before fitting VCC, we explore some descriptive statistics of the data in Figure 2. In Figures

2a and 2b, we see the means, standard deviations, and skewness and kurtosis measures of the daily

returns for all assets and factors, including the industry factors. The top and bottom three asset

in each box plot are indicated by their ticker. Table B.1 in Appendix B provides the underlying

data. Figure 2a reveals that the average daily returns (left axis) are slightly positive for all assets.

Averages for individual stocks are typically higher than for factors. As expected, also standard

deviations (right axis) of individual stocks are typically higher than those of the factors. Figure 2b
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Figure 3: Average daily industry share of trade volumes

shows that some of the daily individual stock returns are right or left skewed, but that skewness

(left axis) is limited for most of the stocks considered. For the factors, only the momentum factor

shows some mild negative skewness. In terms of kurtosis (right axis), the picture changes. The

figure shows that all stocks and factors show excess kurtosis. Kurtosis values range from 7.2 (SMB

factor) to 115.6 (PCG stock). This substantiates our use of the fat-tailed Student’s t distribution

in the rest of our analysis. Furthermore, Figure 2c shows the estimated degrees of freedom of

the univariate t-GARCH(1,1) filters and illustrates that there is also considerable conditional

fat-tailedness in the data. Most degrees of freedom values are estimated between 4 and 10, again

supporting our use of the Student’s t distribution. The relative homogeneity of the different

estimates also supports our use of the ν as a robustness parameter with a common value of ν = 7,

where we can investigate the sensitivity to this value in robustness checks. Only the SMB (ν ≈ 12)

and the RMW (ν ≈ 15.5) factors have a slightly higher estimated degrees of freedom and, thus,

somewhat lighter conditional tails.

Finally, we explore the trading structure of each industry by plotting the average daily trading

volume of each asset as a fraction of its industry trading volume in Figure 3. For some industries

such as Tech or Shops, the shares in trading volumes for the first five firms are roughly equally

sized. For other industries, the distribution of trading volumes is highly asymmetric within the
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industry. For instance, for Consumer Durables we see that Ford Motor Company makes up a

disproportionally large 27.9% of the industry’s trading volume, and for Telecommunication the

pair Sirius International Holding and AT&T Inc. represent 10.6% and 8.4% of the industry’s

trading volume, respectively. We also see clear differences across industries. Whereas the five firms

selected from the Consumer Durables industry make up more than 35% of the industry’s trading

volume, the percentages for Shops, Manufacturing, and Health are each much lower, settling at

levels around 12%-13%. There may thus be more additional information impounded into prices

outside the top five trading volume firms for industries like Shops, Manufacturing, or Health than

for an industry like Consumer Durables.

4.2 Baseline market structure result

In our first analyses, we use the three Fama and French (1993) risk factors RMRF (market), SMB

(size), and HML (value) together with the 50 individual stock returns. The systematic risk factors

are put into the first three positions of yt, starting with the market factor. Figure 4 shows the

results. In Panel 4a, we put the industries in arbitrary order, while the firms within each industry

are ordered in terms of trading volume size over the sample period. Figure 4a directly shows

that the correlation between the market factor and each of the individual stocks is estimated as

time-varying: all boxes in the first column are colored green. Time-varying correlations with the

market factor also imply that these stocks have market betas that vary over time, above and

beyond any time-variation due to their individual or the market factor’s time-varying volatility;

see also Engle (2016), Umlandt (2023), and Giroux et al. (2024).

After correcting for market risk, the partial correlations with SMB and HML are also non-zero

and time-varying for almost all stocks (see the second and third column of the matrix in Figure 4a).

Only after the effects of these three risk factors has been washed out, it turns out that most

of the remaining pairwise partial correlations are set to zero, with some exceptions where the

correlation is constant, but non-zero: the majority of the boxes in the 50×50 lower-right corner of
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(a) BIC fixed ordering
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(b) BIC random ordering
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(c) BIC re-ordered

Figure 4: Sparsity patterns computed on daily returns for fixed industry ordering, random ordering,
and a post-estimation re-ordering of the random ordering. The penalty parameter is chosen separately
for each data slice based on the BIC

Figure 4a are yellow. Only in very few cases we see that the stock pairwise partial correlations

are time-varying, and most of these relate to a within-industry effect. The latter can be seen by

considering the 5×5 blocks on the main diagonal. These blocks are also highlighted by red boxes

in Figure 5a. Our first analysis therefore results in two main takeaways. First, time-varying asset

correlations may be mainly attributable to time-varying correlations with systematic risk factors.

After washing out these effects, remaining partial pairwise correlations between individual assets

are predominantly constant, and most often zero. Second, the main exception to the previous

takeaway is the within-industry partial correlations. These appear to persist and are regularly

time-varying, even after first filtering out the time-varying correlations with the systematic risk

factors. We come back to this second issue in our follow-up analyses below.

A concern that one might have is that the vine structure of the VCC model induces a tightly

ordered cascade of partial correlations and that this ordering might affect the previous main

conclusions. To investigate this, we conduct a second analysis in Figures 4b and 4c. First, we

randomly order the 50 individual stocks and redo our original analysis of Figure 4a. The result is

presented in Figure 4b. We indeed see that the result changes to some extent, but also that the

main first conclusion survives. In particular, we see most time-varying correlations with the main

market factor. Also the partial correlations with the value factor HML and the size factor (SMB)
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(a) Daily returns
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(b) Weekly returns
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(c) Monthly returns

Figure 5: Sparsity patterns computed on daily, weekly, and monthly returns. The penalty parameter is
chosen separately for each data slice based on the BIC

are mostly time-varying, even after correcting for the market factor. We also see that most of the

remaining pairwise correlations between individual assets after correcting for the three risk factors,

are zero or constant. Again we conclude that pairwise time-variation in correlations between

individual assets is likely to be due to time-varying correlations with systematic risk factors.

Figure 4b does not allow us to inspect the industry clustering effects given the random ordering

of the individual stocks. Therefore, Figure 4c repeats Figure 4b, but now with the stocks put in the

same order as in Figure 4a. No re-estimation is needed for this. By re-ordering the results in this

way, also the second conclusion emerges clearly again: even after partialling out the time-variation

with systematic risk factors, residual partial correlations remain within industries. Also this result,

therefore, is a robust pattern in the data.

4.3 Robustness: data frequency, other factors, penalization choice

We consider several robustness analysis of our baseline results. First, in Figure 5 we investigate

whether the time-variation of correlations with systematic risk factors and the remaining within-

industry partial correlations are only present in the daily data, or whether these effects are also

present in weekly and monthly data. Such lower data frequencies might be more practically

relevant for large institutional asset managers.

Panels 5a, 5b, and 5c show the results for daily, weekly, and monthly data, respectively. Three
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main conclusions emerge. First, the time-varying correlations with the market factor are robust,

irrespective of the frequency of the data: most entries in the first column remain green in all three

panels. Second, the partial correlations with the SMB and HML factors are less robust: for lower

data frequencies, these partial correlations between SMB/HML and the individual stocks (after

partialling out the market factor) become mostly constant and regularly even zero. This again

illustrates that much of the pairwise time-variation in correlations between individual stocks might

originate from time-varying correlations with the market factor. We do note, however, that the

risk factors themselves remain mutually correlated with time-varying correlations irrespective of

the data frequency, as can be seen from the upper-left 3×3 block in each of the panels. Third,

we also see that the within-industry effects survive the variation over data frequencies, though

the results are less strong than for the daily data. Within industries, residual partial correlations

remain present even at monthly frequencies and after partialling out the correlations with the

three systematic Fama and French (1993) factors.

An obvious follow-up question is therefore whether the within-industry effects disappear if we

account for more systematic risk factors. This question is picked up in Figure 6. Panel 6b presents

the baseline result for daily data, identical to Figure 5a. Panel 6a by contrast only considers

the 50 individual stocks without any systematic risk factors. The difference with the baseline

result is evident: many of the pairwise partial correlations are no longer zero. Still, even here it

is clear that much of the time-variation is picked up by the first few series in the vine structure,

which partly take over the role of the market factor and other systematic risk factors. Many of

the remaining partial correlations are constant. Again, the main exceptions are formed by the

within-industry blocks on the main diagonal, underlining the robustness of the presence of within

industry partial correlations.

In Panels 6c and 6d we add the additional RMW and CMA factors of the 5-factor model

of Fama and French (2015, 2016) and the MOM factor of Carhart (1997), respectively. Both

panels confirm our earlier findings. Most of the correlations with systematic risk factors at a daily
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(b) 3 factors
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(c) 5 factors
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(d) 6 factors
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(e) 6 + industry factors

Figure 6: Sparsity patterns computed on daily returns for models with a different number of factors.
The penalty parameter is chosen separately for each data slice based on the BIC

frequency are time-varying, but remaining pairwise partial correlations between individual assets

are mostly zero, and otherwise constant, with one major exception: within industries pairwise

partial correlations are often non-zero and even time-varying.

Given the persistence of the within-industry partial correlations even after including many

systematic risk factors, we investigate in Figure 6e whether these effects disappear if we also

include industry factors. There are three main takeaways. First, the inclusion of industry factors

indeed reduces the number of non-zero pairwise partial correlations after systematic risk and 10

industry factors have been washed out. Second, each industry factor indeed shows time-varying

partial correlations with the 5 individual stocks, even after partialling out the 6 systematic risk

factors first. This is seen by the (typically) 5 green block-diagonal entries in columns 7 (HiTec)

through 16 (Other), such as rows 17-21 (stocks INTC–AAPL) for column 7 (HiTec), through
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rows 112-116 (stocks BAC–FCX) for column 16 (Other), respectively. We also note that the

industry factor for the Energy (Enrgy column) industry not only has strong and time-varying

partial correlations with the Energy stocks, but also with the Utility (Util) stocks. This makes

intuitive sense given the clear relations between these two industries.

The third main takeaway from this figure is that even after correcting for systematic risk factors

and the industry factors, within-industry partial correlations still remain for several industries.

To understand this result, we note that our five stocks chosen per industry are selected based on

their trading volume over the sample period. They therefore only constitute part of the industry,

which suggest that the broad industry factors may also be subject to other movements besides

those of the top five firms with the highest average trading volume.

Finally, in Figure 7 we investigate the effect of choosing the penalty parameter λ. So far, we

have chosen this parameter for each slice based on the BIC. The left-hand panels in Figure 7

present these baseline results for three different sets of systematic risk factors. The right-hand

columns provide the corresponding results when λ is set using the AIC. The results are as

expected. When using the AIC, more partial correlations are estimated to be non-zero and even

time-varying. Even then, however, we still see the dominant takeaway of our data-driven analysis

of the market structure. Partial correlations with systematic risk factors are typically time-varying.

After accounting for this, most of the remaining pairwise partial correlations between individual

stocks are mostly constant at either zero or non-zero levels. Time-variation in pairwise Pearson

correlations thus appears to be mainly attributable to time-varying correlations with common

systematic risk-factors. Only within industries, further partial correlations may remain, even after

correcting for the systematic risk factor effects.

4.4 Relation to factor model comparisons

Thus far, we have concentrated on the structure of the partial correlations between factors and

assets and concluded that time-varying Pearson correlations between individual stocks appear
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(a) BIC no factors
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(b) AIC no factors
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(c) BIC 6 factors
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(d) AIC 6 factors
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(e) BIC, 6 + industry factors
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Figure 7: Sparsity patterns computed on daily returns for different models where the penalty parameter
is chosen separately for each data slice based on either the BIC or AIC

to be mainly driven by time-varying partial correlations with systematic risk factors. In this

section, we consider the role of our method in evaluating competing asset pricing models. As

explained in Section 2, the current methodology does not allow us to perform a formal test of

correct specification. However, we can use standard intuitive test statistics for various relevant
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Table 3: This table contains the results of likelihood ratio tests based on varying frequencies and
restrictions. For each frequency, four different sets of restrictions are considered: (i) all partial correlations
between individual assets are set to zero (full); (ii) all partial correlations between assets in different
industries are set to zero (ind); (iii) the zero restrictions are enforced by the VCC estimator tuned by BIC
(VCC-BIC) and (iv) the zero restrictions are enforced by the VCC estimator tuned by AIC (VCC-AIC).
The first column displays the model specification which may be either the single factor model (1F), three
factor model (3F), six factor model (6F) or the six factor model with ten industry portfolios added (IPF).
The metrics reported are the likelihood ratio test statistic (LRT), the critical value for the corresponding
Chi-squared distribution (cval), the number of zero restriction imposed (df) and the corresponding p-value
(pval).

Daily Weekly Monthly
full ind VCC full ind VCC full ind VCC

BIC AIC BIC AIC BIC AIC

1F

LRT 57,610 16,218 4,159 1,977 13,574 5,052 2,804 1,371 4,582 2,674 2,442 1,470
cval 3,817 3,511 3,238 2,524 3,817 3,511 3,521 3,010 3,817 3,511 3,722 3,343
df 3,675 3,375 3,107 2,409 3,675 3,375 3,385 2,884 3,675 3,375 3,582 3,210
pval 0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00

3F

LRT 45,141 11,915 3,609 1,569 10,856 4,100 2,968 1,340 4,150 2,535 2,680 1,615
cval 3,817 3,511 3,424 2,776 3,817 3,511 3,772 3,184 3,817 3,511 4,012 3,596
df 3,675 3,375 3,289 2,655 3,675 3,375 3,631 3,054 3,675 3,375 3,866 3,458
pval 0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 1.00 1.00

6F

LRT 34,671 8,036 3,175 1,028 9,208 3,489 3,444 1,399 3,709 2,300 3,136 1,846
cval 3,817 3,511 3,636 2,958 3,817 3,511 4,138 3,436 3,817 3,511 4,468 3,964
df 3,675 3,375 3,497 2,833 3,675 3,375 3,990 3,301 3,675 3,375 4,314 3,819
pval 0.00 0.00 1.00 1.00 0.00 0.08 1.00 1.00 0.34 1.00 1.00 1.00

IPF

LRT 13,445 4,638 5,812 1,358 4,499 2,522 5,833 2,444 2,874 2,241 4,951 2,946
cval 3,817 3,511 5,024 3,899 3,817 3,511 5,677 4,706 3,817 3,511 6,169 5,434
df 3,675 3,375 4,861 3,755 3,675 3,375 5,503 4,548 3,675 3,375 5,988 5,264
pval 0.00 0.00 0.00 1.00 0.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00

hypotheses to compare different model specifications as a diagnostic device. A similar approach

is regularly adopted in the finance literature, where comparisons of asset pricing models are

commonly performed based on the so-called GRS (Fama and French, 2017, 2018; Giglio et al.,

2022) or BKRS statistic (Barillas et al., 2020; Dickerson et al., 2023).2

Table 3 provides the results for four model specifications, four sets of restrictions, and three

data frequencies. The specifications differ between the number of risk factors incorporated, where

we distinguish between: (1F) the factor model that only includes the market factor; (3F) a three

factor model with the market, SMB, and HML factors of Fama and French (1993); (6F) a six factor

model that adds the RMW and CMA factors of Fama and French (2015, 2016) and the MOM factor

of Carhart (1997) to 3F; and (IPF) a sixteen factor model that adds ten value-weighted industry

portfolios to 6F. Within each specification, we further distinguish the following restrictions: (i)
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‘full’ denotes a fully restricted model where all pairwise partial correlations between individual

stocks are set to zero (after correcting for the effects of the systematic risk factors); (ii) ‘ind’

denotes a model where all pairwise partial correlations between individual stocks in different

industries are zero, but possibly non-zero and time-varying between individual stocks in the same

industry; (iii) ‘VCC-BIC’ denotes our penalized estimator for all pairwise partial correlations

tuned by BIC per data slice; and finally, (iv) ‘VCC-AIC’ denotes our penalized estimator tuned

by AIC instead. Each time, a likelihood ratio test statistic (LRT) is computed vis-à-vis the

fully unrestricted model. Table 3 reports the value of this LRT statistic, a ‘critical value’ of the

Chi-squared distribution (cval) based on the corresponding number of zero-restrictions (df), and

the ‘p-value’ based on a chi-squared distribution with the same degrees of freedom parameter as

the number of zero restrictions. We stress once more that we do not consider this to be a formal

testing procedure, but instead use the LRT as a model comparison device in a similar spirit as

in, for instance, Fama and French (2018). The analysis is repeated for weekly and monthly data

frequencies to investigate the robustness of the results.

Focusing first on the daily frequency, the results in Table 3 make clear that systematic risk

factors only do not fully account for all partial correlations between individual stocks: setting all

these pairwise partial correlations between individual stocks to zero is clearly incongruent with

the data. Although LRTs are monotonically decreasing if we include more systematic risk factors

in the model, the statistic remains very high for all models considered, ranging from 57,610 (1F)

to 13,445 (IPF). All of these are well above the informal reference level of the 5% chi-squared

critical value. The models that only allow for systematic risk factor and intra-industry partial

correlations (‘ind’ column) fare considerably better in terms of their LRTs than models that only

allow for systematic risk partial correlations. The LRTs in the ‘ind’ column again monotonically

decrease in the number of included risk factors, and are considerably smaller than before at levels

ranging from 16,218 to 4,638.

When considering the models with penalization, we see a further substantial decrease in LRTs.
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These models therefore appear to be much more in line with the data than their more restricted

counterparts. In particular, when conservatively tuned by the AIC, the LRTs are consistently

far below the corresponding informal critical values at any reasonable significance level, despite

the number of zero restrictions ranging from 2,409 (1F) to 3,755 (IPF). This signals that even

after accounting for intra-industry correlations, pairwise partial correlations for some stocks in

different industries remain. Such remaining partial correlations may be attributable to industries

themselves being in the same production line (such as the Energy and Utils sectors), or hint at

further omitted risk factors.

When lowering the data frequency the results become even more favorable to the VCC

specifications. An immediate finding is that the LRT statistics are consistently lower compared

to the daily frequency. Nevertheless, for the weekly frequency the fully restricted model remains

too restrictive as indicated by the LRTs exceeding the informal critical values by far. However,

when allowing for intra-industry partial correlations, the LRTs for the six factor model and its

extension with industry portfolios fall below the ‘critical values’, suggesting that the six factors

may adequately capture the systemic risk among the assets in our sample. The VCC methods

remain even more congruent with the data, with the exception of the VCC-BIC variant applied to

the IPF model, which seems to introduce too much sparsity. At the monthly frequency, we observe

that the fully restricted model may provide an adequate representation of the data, as long as the

six risk factors and the industry portfolios are included. If we include fewer factors but allow for

remaining intra-industry partial correlations (‘ind’ column), even the single factor model no longer

exceeds the informal chi-squared critical value. For monthly data, systematic risk augmented

possibly with industry factors thus appear to mop up all the (constant and time-varying) pairwise

partial correlations between individual stocks, suggesting that at this frequency long-term changes

in underlying fundamental values are probably the dominant driving forces in price dynamics.
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5 Conclusion

In this paper we introduced a penalized vine partial correlation model to uncover the market

structure and investigate the time-variation (or absence thereof) of partial pairwise correlations

between individual stock returns. As opposed to direct Pearson matrix correlation modeling, the

partial correlation approach combined with a vertical vine structure allowed us to first filter out

any correlations with systematic risk factors. For an empirical sample of 50 US stock returns over

the period 2000–2024 we found that time-variation in pairwise Pearson correlations between stocks

appears largely attributable to time-varying correlations with common systematic risk factors.

Once these have been corrected for, remaining time-variation in partial correlations between

individual stocks largely disappears and the partial pairwise correlations are mainly constant

or zero. The main exception is formed by within industry partial correlations, which remain

persistently present even after correcting for several well-known systematic risk factors.

The results are robust to a variety of alternative specifications, including variations in the

systematic factors, the data frequency, the way in which the penalization parameter is chosen, and

the ordering of the assets in the vine structure. The approach also lent itself as a diagnostic device

to compare models, similar to Fama and French (2017, 2018); Giglio et al. (2022); Barillas et al.

(2020); Dickerson et al. (2023). Such comparisons corroborated the earlier results and suggest that

multivariate time-varying correlation models may developed into more parsimonious structures

by exploiting the relation of time-variation in pairwise Pearson correlations between individual

assets to the time-variation in correlations of these assets with common systematic risk factors.

We leave such developments to a next paper.
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Notes

1 See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/det_10_ind_port.html.

2 Another alternative would be to investigate the pricing errors as induced by the different models. Our approach

in this paper, however, is not so much geared toward minimizing pricing errors as it is toward uncovering the

market structure and the origins of the time-variation in pairwise Pearson correlations between individual stocks

after correcting for systematic risk factor effects. Pricing error tests have a different focus, which is why we do not

pursue this approach in the present paper.
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A Additional robustness checks

Table A.1: This table contains the robustness results for the same Monte Carlo experiments conducted
in Section 3.2 across alternative degrees of freedom parameters (ν = 5, 10, 20). See Table 1 for additional
details.

Metric T ν = 5 ν = 10 ν = 20
DCC VCC DCC VCC DCC VCC

BIC AIC BIC AIC BIC AIC
Panel A: N = 10

RMSFE
750 0.055 0.050 0.051 0.056 0.049 0.051 0.066 0.060 0.062
1500 0.040 0.036 0.037 0.039 0.034 0.035 0.052 0.048 0.049
3000 0.032 0.029 0.030 0.030 0.026 0.027 0.045 0.042 0.043

RMSE
750 0.469 0.012 0.067 0.469 0.013 0.074 0.468 0.014 0.083
1500 0.471 0.006 0.065 0.471 0.006 0.072 0.470 0.007 0.083
3000 0.471 0.004 0.063 0.471 0.004 0.072 0.471 0.005 0.081

RMSETV

750 0.019 0.026 0.020 0.020 0.027 0.020 0.021 0.028 0.022
1500 0.012 0.012 0.012 0.012 0.012 0.012 0.014 0.014 0.014
3000 0.008 0.008 0.008 0.008 0.008 0.008 0.011 0.011 0.011

NZP
750 1.000 0.999 1.000 1.000 0.999 1.000 1.000 0.999 1.000
1500 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
3000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ZP
750 0.000 0.999 0.947 0.000 0.998 0.939 0.000 0.997 0.929
1500 0.000 0.999 0.952 0.000 0.999 0.946 0.000 0.999 0.933
3000 0.000 0.999 0.954 0.000 0.999 0.946 0.000 0.999 0.934

Panel B: N = 50

RMSFE
750 0.055 0.049 0.050 0.056 0.048 0.050 0.066 0.059 0.061
1500 0.041 0.036 0.037 0.040 0.034 0.035 0.052 0.047 0.048
3000 0.032 0.029 0.030 0.030 0.025 0.026 0.044 0.040 0.041

RMSE
750 0.514 0.008 0.073 0.513 0.008 0.077 0.513 0.008 0.083
1500 0.516 0.004 0.070 0.516 0.004 0.075 0.515 0.005 0.081
3000 0.516 0.003 0.068 0.516 0.003 0.071 0.516 0.004 0.078

RMSETV

750 0.019 0.030 0.021 0.020 0.028 0.021 0.021 0.029 0.022
1500 0.012 0.012 0.012 0.013 0.012 0.012 0.014 0.014 0.014
3000 0.009 0.008 0.008 0.009 0.008 0.008 0.011 0.011 0.011

NZP
750 1.000 0.995 0.997 1.000 0.995 0.997 1.000 0.995 0.997
1500 1.000 0.997 0.998 1.000 0.997 0.998 1.000 0.997 0.998
3000 1.000 0.998 0.999 1.000 0.998 0.999 1.000 0.998 0.999

ZP
750 0.000 0.999 0.947 0.000 0.998 0.944 0.000 0.998 0.936
1500 0.000 0.999 0.950 0.000 0.999 0.947 0.000 0.999 0.940
3000 0.000 0.999 0.954 0.000 0.999 0.950 0.000 0.999 0.944

App. pg.2



B Full data descriptives

Table B.1: Descriptives

Abr. Name mean variance skewness kurtosis

Systematic factors

Mkt.RF Market 0.03 1.54 -0.22 11.97

SMB Small-minus-big 0.01 0.42 0.11 7.20

HML High-minus-low 0.01 0.62 0.29 9.70

RMW Robust-minus-weak 0.02 0.30 0.24 7.75

CMA Conservative-minus-aggressive 0.01 0.20 -0.51 12.00

MOM Momentum 0.01 1.13 -1.07 14.35

Industry factors

HiTec Technology 0.04 2.78 0.22 9.56

Utils Utilities 0.04 1.44 0.09 17.49

Enrgy Energy 0.05 3.23 -0.12 14.24

Durbl Consumer Durables 0.05 3.88 0.00 8.43

NoDur Consumer Non-durables 0.04 0.92 -0.23 14.61

Shops Shops 0.05 1.52 -0.10 9.14

Manuf Manufacturing 0.04 1.64 -0.24 11.17

Hlth Healthcare 0.04 1.29 -0.11 9.27

Telcm Telecommunications 0.02 1.75 0.10 12.19

Other Other 0.04 2.22 -0.11 13.62

Technology stocks (HiTec)

INTC INTEL CORP 0.02 5.79 -0.34 12.62

MSFT MICROSOFT CORP 0.05 3.62 0.16 12.53

CSCO CISCO SYSTEMS INC 0.03 5.29 0.47 14.69

Continued on next page
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Table B.1 – continued from previous page

Abr. Name mean variance skewness kurtosis

AMD ADVANCED MICRO DEVICES INC 0.10 15.07 0.49 13.04

AAPL APPLE INC 0.12 5.97 -1.46 39.54

Utilities stocks (Util)

WMB WILLIAMS COS 0.08 11.21 1.84 112.76

PCG P G & E CORP 0.05 8.62 1.40 115.85

EXC EXELON CORP 0.04 2.68 0.23 15.46

DUK DUKE ENERGY CORP NEW 0.04 2.27 0.10 15.77

SO SOUTHERN CO 0.05 1.67 0.57 19.72

Energy stocks (Enrgy)

XOM EXXON MOBIL CORP 0.03 2.76 0.23 12.12

HAL HALLIBURTON CO 0.05 8.22 -0.60 22.55

RIG TRANSOCEAN LTD 0.03 13.36 0.90 22.08

SLB SCHLUMBERGER LTD 0.03 5.84 -0.16 10.82

CVX CHEVRON CORP NEW 0.04 3.01 0.11 22.19

Consumer Durables stocks (Durbl)

F FORD MOTOR CO DEL 0.02 7.01 0.55 16.93

NWL NEWELL RUBBERMAID INC 0.02 5.76 0.44 30.30

HOG HARLEY DAVIDSON INC 0.03 6.45 0.56 13.36

PCAR PACCAR INC 0.07 4.37 0.26 8.42

ETN EATON CORP 0.07 3.51 0.39 12.06

Consumer Non-durables stocks (NoDur)

KO COCA COLA CO 0.02 1.67 0.02 12.55

MO ALTRIA GROUP INC 0.06 2.33 -0.03 14.95

ABV COMPANHIA DE BEBIDAS DAS AMERS 0.07 7.59 0.39 15.96

Continued on next page
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Table B.1 – continued from previous page

Abr. Name mean variance skewness kurtosis

PEP PEPSICO INC 0.03 1.57 0.17 17.78

ADM ARCHER DANIELS MIDLAND CO 0.04 3.70 -0.38 15.73

Shops stocks (Shops)

AMZN AMAZON COM INC 0.11 9.71 1.14 18.79

EBAY EBAY INC 0.07 7.21 0.59 14.81

WMT WAL MART STORES INC 0.03 2.17 0.30 11.71

HD HOME DEPOT INC 0.05 3.58 -0.51 18.62

M MACYS INC 0.04 9.01 0.37 9.96

Manufacturing stocks (Manuf)

AMAT APPLIED MATERIALS INC 0.06 7.62 0.34 8.09

AA ALCOA INC 0.04 7.14 0.22 12.45

X UNITED STATES STEEL CORP NEW 0.06 12.51 0.35 9.12

PG PROCTER & GAMBLE CO 0.03 1.74 -2.16 61.89

CX CEMEX S A B DE C V 0.03 8.21 0.42 11.72

Healthcare stocks (Hlth)

PFE PFIZER INC 0.02 2.51 0.02 8.03

MRK MERCK & CO INC NEW 0.03 2.72 -0.69 21.67

BMY BRISTOL MYERS SQUIBB CO 0.02 2.95 -0.64 16.39

BSX BOSTON SCIENTIFIC CORP 0.05 4.79 0.04 16.02

JNJ JOHNSON & JOHNSON 0.03 1.46 -0.21 15.88

Telecommunications stocks (Telcm)

SIRI SIRIUS X M HOLDINGS INC 0.05 20.26 2.53 54.52

T A T & T INC 0.02 2.62 0.16 10.62

VZ VERIZON COMMUNICATIONS INC 0.02 2.24 0.32 10.57

Continued on next page
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Table B.1 – continued from previous page

Abr. Name mean variance skewness kurtosis

DIS DISNEY WALT CO 0.04 3.69 0.28 12.52

CBS C B S CORP NEW 0.02 7.74 0.14 17.37

Other stocks (Other)

BAC BANK OF AMERICA CORP 0.05 7.60 0.87 30.61

GE GENERAL ELECTRIC CO 0.02 4.37 0.25 10.68

WFC WELLS FARGO & CO NEW 0.05 5.72 1.56 31.95

JPM JPMORGAN CHASE & CO 0.06 5.54 0.81 18.74

FCX FREEPORT MCMORAN COPPER & GOLD 0.07 10.50 0.21 9.02
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C Proximal Gradient Descent Algorithm

Algorithm 1 Proximal gradient descent

1: At k = 0, set initial values θ̂
(0)
i,j and compute f (0) = Li,j

(
θ̂
(0)
i,j

)
.

2: Update k = k + 1.
3: Compute ∇Li,j

(
θ̂
(k−1)
i,j

)
.

4: Update1,2 θ̂
(k)
i,j = htλ

(
θ̂
(k−1)
i,j − t · ∇Li,j

(
θ̂
(k−1)
i,j

))
.

5: Compute f (k) = Li,j

(
θ̂
(k)
i,j

)
6: While

∣∣∣f (k)−f (k−1)

f (k−1)

∣∣∣ > c, repeat steps 2-5.

1. The function h is the proximal operator. Letting γi,j = (αi,j, βi,j)
T ,

hλ(θi,j) =

[
ωi,j

|ωi,j | (|ωi,j| − λ)
γi,j

‖γi,j‖2

(
‖γi,j‖2 − λ

)]T
.

2. The step size t is computed via backtracking. First set t = tinit. For step size t, compute the

candidate solution

θ̂
(k)
i,j;t = htλ

(
θ̂
(k−1)
i,j − t · ∇Li,j

(
θ̂
(k−1)
i,j

))
.

Then, while

Li,j

(
θ̂
(k)
i,j;t

)
> Li,j

(
θ̂
(k−1)
i,j

)
+∇Li,j

(
θ̂
(k−1)
i,j

)> (
θ̂
(k)
i,j;t − θ̂

(k−1)
i,j

)
+

1

2t

∥∥∥θ̂(k)
i,j;t − θ̂

(k−1)
i,j

∥∥∥2
2
,

shrink t = mt, for some 0 < m < 1. In our implementation, tinit = 1 and m = 0.5.
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