@
/ ﬁ tinbergen
'. Institute

TI 2025-050/11I
Tinbergen Institute Discussion Paper

The Consistency Principle in the
Reordering Problem

Min-Hung Tsay*
Youngsub Chun?
Rene van den Brink?
Chun-Hsien Yeh?

1 Academia Sinica
2 Seoul National University
3 Vrije Universiteit Amsterdam, Tinbergen Institute

4 Academia Sinica



Tinbergen Institute is the graduate school and research institute in economics of
Erasmus University Rotterdam, the University of Amsterdam and Vrije Universiteit
Amsterdam.

Contact: discussionpapers@tinbergen.nl

More TI discussion papers can be downloaded at https://www.tinbergen.nl

Tinbergen Institute has two locations:

Tinbergen Institute Amsterdam
Gustav Mahlerplein 117

1082 MS Amsterdam

The Netherlands

Tel.: +31(0)20 598 4580

Tinbergen Institute Rotterdam
Burg. Oudlaan 50

3062 PA Rotterdam

The Netherlands

Tel.: +31(0)10 408 8900


mailto:discussionpapers@tinbergen.nl
https://www.tinbergen.nl/

The Consistency Principle in the Reordering Problem*

Min-Hung Tsay! Youngsub Chun* René van den Brink® Chun-Hsien Yeh

August 19, 2025

Abstract

We investigate implications of the consistency principle for the reordering prob-
lem, also known as the queueing problem with an initial queue. The consistency
principle specifies how an allocation rule should respond when an agent leaves the
problem. We introduce four different consistency properties for the reordering prob-
lem and characterize three allocations rules, the pairwise equal-splitting rule (Curiel
et al., 1989), the maximum price rule and the minimum price rule. Balanced con-
sistency requires that for each pair of agents i and j, the impact on agent i’s net
utility when agent j leaves the initial queue and the agents behind her move forward
by one position, should be equal to the impact on agent j’s net utility when agent
i leaves the initial queue and the agents behind her move forward by one position.
Balanced cost reduction requires that if an agent leaves the initial queue and the
agents behind her move forward by one position, then the total net utilities of the
remaining agents should be reduced by the amount equal to the net utility of the
departing agent. Smallest-cost consistency (respectively, largest-cost consistency)
requires that if an agent with the smallest (respectively, largest) unit waiting cost
leaves the initial queue and the agents behind her move forward by one position,
then the net utilities of the remaining agents should not be affected. We show that
either balanced consistency or balanced cost reduction, together with the three basic
properties of queue-efficiency, budget-balance and Pareto indifference, characterizes
the pairwise equal-splitting rule. On the other hand, together with the three ba-
sic properties, smallest-cost consistency characterizes the maximum price rule and
largest-cost consistency the minimum price rule.
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1 Introduction

We are interested in the reordering problem, also known as the queueing problem with
an initial queue, introduced in Curiel et al. (1989). Agents are lined up in an initial
queue to have a service in a facility. Each agent needs the same amount of service time,
which is normalized to one, but differs in the unit waiting cost. The facility can serve
only one agent at a time. We are concerned with finding an order to serve agents and
(monetary) transfers that are reasonable and motivate the agents to reorder themselves
into an efficient queue which minimizes the aggregate waiting cost. Although the first-
come-first-served rule is the most common, it is usually not efficient and the agents can
be better off by switching positions with transfers. To motivate all agents to cooperate
in reordering into an efficient queue, we design transfers among the agents such that
no agent is worse off than in the initial queue. An allocation for a reordering problem
consists of a reordered queue and a vector of transfers to the agents. A reordering rule
(or a rule, for short) is a correspondence that associates with each reordering problem
a set of feasible allocations. We assume that each agent has quasi-linear preferences so
that each agent’s net utility obtained by reordering the initial queue is defined as the
sum of the transfer to her together with the difference in her total waiting cost between
the initial queue and the reordered queue.

The reordering problem has been studied from various perspectives in recent lit-
erature. Curiel et al. (1989) and Hamers et al. (1996) adopt a normative viewpoint,
examining the pairwise equal-splitting rule and the split core, respectively. The pairwise
equal-splitting rule selects an efficient queue and allocates the cost-savings from swap-
ping the positions of any two neighboring agents equally between them. The split core
generalizes this rule by allowing all nonnegative allocations of the cost-savings obtained
from such swaps. Gershkov and Schweinzer (2010) and Chun et al. (2017) analyze the
reordering problem from an incentive viewpoint. Yang et al. (2019) take a strategic
viewpoint to study the pairwise equal-splitting rule. Additionally, Tsay et al. (2025a,
b) investigate the connected equal-splitting rule (Curiel et al., 1989),! which selects
an efficient queue and allocates the cost-savings from swapping the positions of any
two agents equally among themselves and all agents initially positioned between them,
and the pairwise equal-splitting rule, respectively, from both normative and strategic
viewpoints.

In this paper, we adopt a normative viewpoint to study the reordering problem, with
a particular focus on the consistency principle, which specifies how an allocation rule

'This rule is called as the Shapley value in Curiel et al. (1989). We follow the terminology in Chun
(2019).



should respond when an agent leaves the problem. An allocation rule is “consistent” if
the recommendation it makes for each problem aligns with the recommendation it pro-
vides for each associated reduced problem, obtained by imagining some agents leaving
with their assignments. This principle has been widely examined in various allocation
problems.?

We formulate four different consistency properties for the reordering problem. Bal-
anced consistency requires that for each pair of agents ¢ and j, the impact on agent i’s
net utility when agent j leaves the initial queue and the agents behind her move forward
by one position, should be equal to the impact on agent j’s net utility when agent i
leaves and the agents behind her move forward by one position. Balanced cost reduction
requires that if an agent leaves the problem and the agents behind her move forward
by one position, then the total net utilities of the remaining agents should be reduced
by the amount equal to the net utility of the departing agent. Smallest-cost consis-
tency (respectively, largest-cost consistency) requires that if an agent with the smallest
(respectively, largest) unit waiting cost leaves the problem and the agents behind her
move forward by one position, then the net utilities of the remaining agents should not
be affected.

We present axiomatic characterizations of three allocations rules, the pairwise equal-
splitting rule, the maximum price rule and the minimum price rule. In contrast with
the pairwise equal-splitting rule, both the maximum and the minimum price rules select
an efficient queue, and each rule allocates the entire cost-savings obtained by swapping
the positions of any two agents to either one of the two agents. The maximum price rule
chooses the largest amount of transfer between any two agents whose initial positions
are swapped to form an efficient queue, ensuring that no one is worse off from the
swapping. This amount is equal to the larger unit waiting costs of the two corresponding
agents, implying that the entire cost-savings that can be obtained from these two agents
swapping positions in case they are neighbours in the initial queue, are allocated to the
agent with the smaller unit waiting cost among the two of them. On the other hand,
the minimum price rule chooses the smallest amount of transfer between any two agents
whose initial positions are swapped to form an efficient queue, ensuring that no one is
worse off from the swapping. This amount is equal to the smaller unit waiting costs of
the two corresponding agents, implying that the entire cost-savings that can be obtained
from these two agents swapping positions in case they are neighbours in the initial queue,
are allocated to the agent with the larger unit waiting cost among the two of them.

These three rules satisfy three basic properties widely used in the literature: queue-
efficiency, budget-balance and Pareto indifference. Queue-efficiency requires that a rule
should choose feasible allocations with an efficient queue. Budget-balance requires that
a rule should choose feasible allocations whose sum of transfers is equal to zero. Finally,
Pareto indifference requires that if a feasible allocation is chosen by a rule, then all other
feasible allocations which give the same net utilities to all agents should be chosen by

2For comprehensive surveys on the consistency principle, see Thomson (2011, 2025).



the rule as well. We show that either balanced consistency or balanced cost reduction,
together with the three basic properties of queue-efficiency, budget-balance and Pareto
indifference, characterizes the pairwise equal-splitting rule. On the other hand, together
with these three basic properties, smallest-cost consistency characterizes the maximum
price rule and largest-cost consistency the minimum price rule.

In a related stream of literature, another type of problem, known as the queueing
problem and studied in Maniquet (2003), Chun (2006), and Ju et al. (2014), considers
a group of agents who must be served at a facility. These agents have different unit
waiting costs, but there is no initial queue. Thus, each agent has the same “right”
on being served first, second, etc. Again, the goal is to serve the agents in an efficient
queue and a main question is how agents served earlier should compensate agents served
later.> A rule for such problems assigns to each queueing problem (without an initial
queue) an allocation consisting of a queue and transfers that are based only on the unit
waiting costs since the agents have equal rights to any position in the queue. Similarly
to the current paper, which focuses on the consistency principle in the reordering prob-
lem, Chun (2011) and van den Brink and Chun (2012) formulate different consistency
properties and examine their implications in the queueing problem.

The paper is organized as follows. Section 2 introduces the reordering problem and
the three basic properties of queue-efficiency, budget-balance and Pareto indifference.
Section 3 defines the three rules and explains how the net utilities can be calculated for
each rule. Section 4 introduces the properties of balanced consistency and balanced cost
reduction and shows that either one of these two properties, together with the three
basic properties, characterizes the pairwise equal-splitting rule. Section 5 introduces
the properties of smallest- and largest-cost consistency and shows that together with
the three basic properties, smallest-cost consistency characterizes the maximum price
rule and largest-cost consistency the minimum price rule. Concluding remarks follow in
Section 6.

2 Preliminaries

Let N={1,2,...} be an (infinite) universe of potential agents and N be the family of
all non-empty finite subsets of N with a generic element N.* For each N € N, a queue o
is a permutation on N. Let II(N) be the set of all permutations of N. For each N € N,
let 0 = (6;);en € RY, be the vector of unit waiting costs and 0¥ = (69);en € II(V) be
the initial queue. Each agent i € N is characterized by two parameters: (6;,07), where
0; € R+ is her waiting cost per unit of time, or unit waiting cost, and o? € {1,...,|N|}
is her position in the initial queue. Each agent wants to receive a service at a service
facility which can process only one agent at a time. Moreover, each agent needs the

same amount of service time, which is normalized to one.

3For a comprehensive survey on the queueing problem, see Chun (2016).
“The cardinality of N is denoted by |N]|.



For each N € N and each o € II(N), let Pj(0) = {j € N|o; < o;} be the set of
agents preceding agent ¢ in o, and Fj(0) = {j € N|o; > 0;} the set of agents following
her.

A reordering problem, or simply a problem, is a list (N, 8, 0%), where N € N is the
set of agents, 6 = (0;);en € RY, is the vector of unit waiting costs and 0¥ € II(N) is
the initial queue. If there is no confusion, then we denote a reordering problem on N
just as a pair (#,0°) instead of (N,6,0°). For each N € N, let QY be the class of all
reordering problems for V.

For each N € N and each (0,0°) € QN an allocation is a pair (o,t) € II(N) x RY,
where o € TI(N) is a reordered queue and ¢t € R™ a vector of (monetary) transfers.
For each ¢ € N, g; denotes agent i’s reordered position, and t; the transfer to her. The
pair (o, t;) is the assignment to agent i. It is most likely that the transfer is positive if
an agent moves backward in the queue, and the transfer is negative if an agent moves
forward in the queue. An allocation is feasible if the sum of transfers is non-positive,
that is, for each (o,t) € II(N) x RN, 3,y t; < 0. For each (6,0°) € QN let F(6) be
the set of all feasible allocations. Each agent is assumed to have quasi-linear preferences,
so that agent i’s utility under (o,t) is:

ui(a,t; 9) = —(O’i — 1)01 + ti.

Taking account of the utility gain/loss that the agent ¢ obtains compared to her position
in the initial queue, her net utility is:

Ui(0—7t; 07 JO) = ui(0—7t; 9) =+ (0—7,0 - 1)91 = (0—7,0 - 01)91 + ;.

A queue o is queue-efficient in (#,0°) if it minimizes the sum of all agents’ total
waiting costs, that is, o € argmin, ey D ;e 0i0i- As shown in Smith (1956), queue-
efficiency can be achieved if the agents are served in a non-increasing order of their unit
waiting costs. Clearly, an efficient queue does not depend on the initial queue. Moreover,
it is essentially unique except for agents with the same unit waiting cost, who will be
next to each other, but in any order. For each N € N and each (#,0%) € QV, let £(6)
be the set of all efficient queues in (6, 0?).

A reordering rule, or simply a rule, is a correspondence ¢ that associates with each
N € N and each (0,0°) € QN a non-empty set ¢(0, %) C F(). For each N € N, each
N’ C N, each (0,06°) € QV, and each i € N, let Onr = (0x)xenr and 0_; = (Ok) ken\{i}-

We now introduce three basic properties for rules: queue-efficiency, budget-balance
and Pareto indifference. Queue-efficiency requires that a rule should choose feasible
allocations with an efficient queue. Budget-balance requires that a rule should choose
feasible allocations whose sum of transfers is equal to zero. Finally, Pareto indifference
requires that if a feasible allocation is chosen by a rule, then all other feasible allocations
which give the same net utilities to all agents should be chosen by the rule as well.

Queue-efficiency: For each N € N, each (6,¢") € QV, and each (o,t) € ¢(6,0Y),
oe&(0).



Budget-balance: For each N € N, each (6,06°) € QV, and each (0,t) € ¢(0,°),

Pareto indifference: For each N € N, each (6,0%) € OV, each (0,t) € ¢(0,0°), and
each (o/,t') € F(0), if for each i € N, U;(o’,t';0,0°) = Ui(0,t;0,0°), then (o/,t') €
¢(0,0°).

3 Three Rules

Following Curiel et al. (1989), we are interested in finding a fair way of serving agents
by providing an incentive to switch positions of agents. Of course, it is natural to ask
agents who move forward in the queue to compensate agents who move backward in
the queue, which can be done by monetary transfers. We introduce three rules for
the reordering problem: the pairwise equal-splitting rule, the maximum price rule, and
the minimum price rule. Each rule chooses an efficient queue and determines different
amounts of transfers to agents. They all satisfy the three basic properties.

We begin with the pairwise equal-splitting rule (Curiel et al. 1989; Tsay et al. 2025b)
which selects an efficient queue and allocates the cost-savings obtained by swapping the
positions of any two agents equally between them.

Pairwise equal-splitting rule, ¢”': For each N € A and each (#,0°) € QV,

of € £(), and for each i € N,
¢P(9a00) = (UPatP) € f(e) P — 0;+0; 0;+0;
i = ZjeFi(oo)ﬁPi(UP) 2 ZjePi(ao)ﬂFi(oP) 2

It is easy to check that each agent ends up with the same utility under any allocation
chosen by the pairwise equal-splitting rule. For each z € R, let ()™ = max(x,0). Then,
for each N € N, each (6,0°) € QY and each (¢, t") € ¢*(6,5°), the utility of agent i
is given by:

uf’(0,0%) = —(6f —1)6; +1F
1
_ _(05—1)9#5[ > - Y (646
jEF;(a0)NPy(aP) JEP;(eO)NFi(ab)



and her net utility is:

Ul (6,0
= (o) —0f)0; +t
1
= (Ug—af)aﬂri[ > (0 +6;) — > (9i+9j)}
JEF;(69)NP;(cP) JEP;(cY)NFi(c?)
1
= (o =oD)0i+5| D G- Y (G0
JjeF;(c%) JEF(eO)NF;(aF)
- o+ Y B+ ej)} (1)
JEF;(oP) JEF; (cO)NF;(aP)
1
= (U?—Uf)9i+§[(w\ —o))bi+ > 0 —(INl—al)0i— > 6]
jEFi(JO) jEFZ‘(O'P)
0, 0. 0.
_ 0 P 1 J J
= (el 2 5 2 g
JEF;(al) JEF;(00)
0; 0; 0; 0
= D57 2 5 X ot X 5
JEP;(00) JEP;(aP) JEF;(aP) JEF;(00)
0; 0; 0; 0;
= >, 5T . 5 > 57 >, 5
JEP;(69)\Pi(cP) JEP;(69)NP;(cP) JEP;(aP)\P;(c0) JEP;(eP)NP;(00)
0; 0; 0; 0;
D P O D DI D DI
]EFi(UP)\Fi(O'O) ]EFi(O'P)ﬂFi(O'O) ]EFZ'(O'O)\FZ'(UP) ]EFi(O'O)ﬂFi(O'P)
91- ‘91 9]‘ 9]‘
PO TD DR S DI S D DI
jEPi(O’O)\Pi(O'P) ]EPZ'(O'P)\PZ'(UO) ]EFZ'(O'P)\FZ‘(O'O) jEFi(O'O)\Fi(O'P)
B 0; — 0, 0; — 0;
= Z 2 + Z T (2)
JEP;(cO)\P;(aT) JEF;(0V)\Fi(aF)
_ (0: —0,)" (0, —0:)"
= Y e Y (3)
JEP;(a9) JjeF;(c%)

where Eq. (1) follows from
Fi(0°)NP(o") = Fi(o")\(F;(0°)NFi(o")) and P(0°)NEi(0”) = Fi(o")\(Fi(o")NFi(0")),
Eq. (2) from
Fi(o")\ Fi(0®) = Fi(0”) \ Fi(o") and P,(c") \ Pi(0°) = Fy(0°) \ Fy(o"),
and Eq. (3) from
[] S Pi(O'O) N Pi(UP) = 0; — Oj < 0] and [] S Fi(do) N Fi(O'P) = Qj -0, < 0].
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Instead of the ‘equal split’ idea behind the pairwise equal-splitting rule, the maxi-
mum and the minimum price rules select an efficient queue, but each rule allocates the
entire cost-savings obtained by swapping the positions of any two agents to either one of
the two agents. The maximum price rule chooses the largest amount of transfer between
any two agents whose initial positions are swapped to form an efficient queue, ensuring
that no one is worse off from the swapping. This amount is equal to the larger unit
waiting cost of the two corresponding agents, implying that the entire cost-savings that
can be obtained from these two agents switching positions in case they are neighbours
in the initial queue, are allocated to the agent with the smaller unit waiting cost among
the two of them.

Maximum price rule, ¢*: For each N € N/ and each (0,0°) € QV,

M .

Min 0 M .M o™ € &(0), and for each i € N, }

0,0°) =4 (c,t") e F(O )
> ) {( ) (6) tzM = EjePi(aM)ﬂFi(ao) 0 — ZjEPZ'(JO)ﬂFi(UM) 0i

Note that each agent ends up with the same utility under any allocation chosen by the
maximum price rule. Thus, for each N € N, each (8,0°) € QY and each (oM ,tM) ¢
oM (6, 5°), the utility of agent 4 is given by:

uf»w(é’, UO) —(a{w - 1)0; + tZM

G VR D DTS S

JEP;(eM)NF; () JEP;(aO)NF; (M)

and her net utility is:



UM(6,0°)
= (a? — O'Z-]W) 0; +tM

= J?HZ-—UZMGZ-—F Z 0; — Z 0;

JEP;(cM)NF;(a0) JEP;(cO)NF;(aM)
= Z 0; + Z 0; — Z 0; — Z 0;
JEP; (e M)NF;(a0) JEP;(09) JEP;(aM) JEP; (aO)NF; (M)
= Z 0; — Z 0; + Z 0; — Z 0; (4)
JEP;(eM)NF;(o0) JE€F;(0°) JEF;(aM) JEP;(eO)NFi (o)
— > 0;— > i+ > 0,
JEP;(eM)NF;(o0) jEFi(a0) JEF; (aM)\P;(00)
JEP;(eM)NF;(00) JEF;(00) JEF(eM)NF;(a®)
JEP;(aeM)NF;(c0) JEF; (6O)\F;(aM)
JEP;(eM)NF;(a0) JEF;(a9)NP; (M)
= > (05 — 0:)
jEFi(UO)ﬂPi(UM)
= > (6-6" @
JEF;(09)

where Eq. (4) follows from

Z 0; = (|IN|—1)0; — Z g; for each o € II(N),
jEP;(o) jeF, (o)

Eq. (5) from Fj(c™)\ Pi(¢°) = Fi(c™) N Fi(6%), Eq. (6) from F;(c?) \ Fj(cM) =
Fi(e®) N Pi(o™), and Eq. (7) from j € F;(0°) \ P;(e™) = 0; — 6, < 0.

On the other hand, the minimum price rule chooses the smallest amount of transfer
between any two agents whose initial positions are swapped to form an efficient queue,
ensuring that no one is worse off from the swapping. This amount is equal to the
smaller unit waiting cost of the two corresponding agents, implying that the entire cost-
savings that can be obtained from these two agents switching positions in case they are
neighbours in the initial queue, are allocated to the agent with the larger unit waiting
cost among the two of them.



Minimum price rule, ¢": For each N € N and each (§,0°) € QV,

™ e £(0), and for each i € N
me,aoz{am,tm ceFO)| ., < ’ ’ }
" (0,07) ( ) © G =2 jepomnFi(o0) % — 2 jepiom)nF(om) 9

As in the other two rules, each agent ends up with the same utility under any allocation
chosen by the minimum price rule. Thus, for each N € N, each (6,0°) € OV and each
(o™, t™) € ¢™(0,0"), the utility of agent 7 is given by:

u (0, 00) = —(o]"—1)6; +t"

E PR SEN T S R

FEP;(6™)NF;(c9) JEP(a0)NF;(0™)

and her net utility is:

U (e, 00)

(O‘ZO —of")b; + t7"

= a?@i—aim@mL Z 0; — Z 0;

JEP;(a™)NF;(a9) JEP;(a0)NFi(o™)
= Z 0; + Z 0; — Z 0; — Z 0]'
jEPZ‘(O’m)ﬂFi(O’O) jEPi(O'O) jGPi(O'm) jEPi(O'O)ﬁFi(O'm)
= — Z 0; + Z 0; — Z Oj
JEP;(o™)\F;(c0) JEP;(09) JEP(a%)NFi(0™)
JEP;(em)NP;(a9) JEP;(09) JEP;(69)NEF;(o™)
JEP;(60)\P; (™) JEP;(a0)NFi(o™)
T S )
JEP;(6)NF;(0™) JEP; (aV)NFi(o™)
= > (0; — 0;)
jEPZ‘(UO)mFi(U'm)
— (0; —0,)*. (10)
JEP;(a9)

where Egs. (8) and (9) follow from P;(c™) \ F;(c%) = P;(c™) N P;(¢°) and P;(c?) \
P,(¢™) = Pi(c) N Fj(0™), respectively, and Eq. (10) from

j € Pi(a”)\ Fi(a™) = 6; — 0; < 0.
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4 Balanced Consistency and Balanced Cost Reduction

Myerson (1980) introduces a notion of fairness in cooperation, the balanced contributions
principle, which requires that for any two agents ¢ and j, the departure of agent i has
the same effect on the payoff of agent j as the departure of agent j has on the payoff of
agent i. By applying this principle to the queueing problem (without an initial queue),
van den Brink and Chun (2012) propose a property of allocation rules in the queueing
problem to consider the impact on the utilities of other agents due to the departure of
one agent. This property requires that for any two agents, the impact on the utility due
to the departure of one agent ¢ on the utility of another agent j # i, should be equal
to the impact of the departure of agent j on the utility of agent i. Similarly, in the
reordering problem, the balanced contribution principle implies that for any two agents,
the net utility gain of one agent from the departure of the other should be equal to that
of the latter agent from the departure of the former. Balanced consistency embodies
this principle for reordering rules and requires that for each reordering problem and
each pair of agents ¢ and j, the impact on agent ¢’s net utility when agent j leaves the
initial queue and the agents behind her move forward by one position, should be equal
to the impact on agent j’s net utility when agent ¢ leaves the initial queue and the
agents behind her move forward by one position. For each o € II(N) and each i € N,
let 0%1=% € TI(N \ {i}) be the queue obtained after the departure of agent i defined by

02‘_i =0l if k € P;(oY) and 0_2|—z =o) — 1if k € Fi(c?).

Balanced consistency: For each N € N, each (0,0°) € QV, each pair {i,j} C N
with i # j, each (o,t) € ¢(0,0°), each (¢/,t') € #(0_;,0°77), and each (¢”,t") €
$(0_, 0%,

Ui(o,t;0,0°) — U (o', t; 9_j,00|7j) =Uj(o,t; 0,0%) — Uj(a”,t”;H_i,aoFi). (11)

On the other hand, for the queueing problem (without an initial queue), van den
Brink and Chun (2012) take another viewpoint by considering the impact on the total
utility of all other agents when one agent leaves a problem. In the queueing problem,
the total waiting cost of all other agents decreases due to the departure of an agent.
This implies that the presence of an agent imposes a negative externality on other
agents. They formulate balanced cost reduction in the queueing problem that requires
the utility of each agent to be equal to the total externality she imposes on the other
agents with her presence. By applying this idea to reordering problems, balanced cost
reduction requires that if an agent leaves the initial queue and the agents behind her
move forward by one position, then the total net utility of the remaining agents should
be reduced by an amount equal to the net utility of the departing agent assigned to her
before her departure.

11



Balanced cost reduction: For each N € N, each (9’00) € OV each i € N, each
(0,t) € ¢(9,00), and each (¢/,t') € ¢(9ﬂ.’00\—i)’

Z {Uj(a,t;Q,ao) - Uj(a’,t';Q_i,a()'*i)] = Ui(a,t;Q,ao). (12)
JF#i

We now investigate the implications of balanced consistency and balanced cost reduc-
tion in the reordering problem. In particular, we show that either balanced consistency
or balanced cost reduction, together with the three basic properties of queue-efficiency,
budget-balance and Pareto indifference, characterizes the pairwise equal-splitting rule.

4.1 Balanced consistency and the pairwise equal-splitting rule

Our first result characterizes the pairwise equal-splitting rule by the properties of queue-
efficiency, budget-balance, Pareto indifference, and balanced consistency.’

Theorem 1 The pairwise equal-splitting rule is the only rule satisfying queue-efficiency,
budget-balance, Pareto indifference, and balanced consistency.

Proof. Since it is obvious that the pairwise equal-splitting rule satisfies queue-efficiency,
budget balance and Pareto indifference, we only show that it satisfies balanced consis-
tency. Let N € N, (0,00) € QN and i,j € N be such that i € P;j(0%). By Eq. (3), for
each (o%,t*) € ¢T(0,0°) and each (¢o/,t) € ¢T'(6_;, %),

Ur9,0% -l 6_;,06%7)

:[ZW+ZW}

kEPi(O'O) kGFi(O'O)
(0; — O)" (0 — 0;)"
- X Hee Y
keP;(c01-7) keF;(o0l=7)
0 —0;)"
(12) (13)

where Eq. (13) follows from i € Pj(c°) = P;(¢”) = Pi(¢%77) and F;(¢°) = F;(c®=7) U
{7}

5In the appendix, we provide examples to demonstrate that all properties listed in each of the
following theorems are independent.
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Similarly, for each (o”,t") € ¢F(0_;, 0177,
UF(9,0% —UF(05,0%7)

R R

keP;(a0) keF;(a?)
(05 — 0k) " (0 —0,)"
_[ Z _ 2 * Z _ 2 }
kEPj(O’Ol*Z) kEFj(O’OI*l)
0; — 0;)*
- Gz hT (14

where Eq. (14) follows from i € Pj(¢°) = Pj(¢°) = Pj(¢"7%) U {i} and Fj(0°) =
Fj(0%7%). Therefore, by Eqgs. (13) and (14), the pairwise equal-splitting rule satisfies
balanced consistency.

Conversely, let ¢ be a rule satisfying the four properties. We show that ¢ = ¢ by
induction on |N]|.

Case 1: |[N| = 2. Let N = {i,j} with i # j. Then, for each (6,0°) € QV, we may
assume without loss of generality that ¢ € Pj(ao). Note that budget-balance guarantees
that ¢(6_;,0%~%) = (¢°7%,0) and ¢(0_;, 0% 7) = (¢°177,0), and thus U; (0%, 0;60_;, 07 =
U; (00|_i,0; G,i,am_i) = 0. Then, for each (o,t) € ¢(6,0"),
U; (U,t;ﬂ,ao) = U; (U,t;G,JO) —U; <00|—j70;97j’00|—j)
= U (a,t; 9,00) -U; (UO‘_i,O;9_¢,00|_i> (15)
= U (U,t; 9,00) , (16)

where Eq. (15) follows from balanced consistency.
Moreover, by queue-efficiency and budget-balance,

U; (U,t; 0, UO) +U; (U,t; 0, UO) = (0, — 0;)". (17)
Therefore, Egs. (3), (16) and (17) together imply that

Ui (0,:0,0%) = U, (0 1:0,0%) = L1090 _ e (5 50y — P (9, 09)
[ IRSRS] - Y RS RS - 2 ] ) - Y ) .

By Pareto indifference, we conclude that ¢(6,0°) = ¢” (6, 00).
Case 2: |N| > 2. Proceeding by induction, suppose that the net utilities of agents

are uniquely determined for |[N| = 2,...,n — 1. We show that they are also uniquely
determined for [N| = n.
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Given (0,06%) € QN let i,j € N be such that j # i. By balanced consistency, for

each (0*,t*) € ¢(6,0"),

U; (J*,t*;e,ao) - U; (a’,t';e,j,a()'_j) =U; (0*,t*; 9,00) - Uj (a",t";H,i,aol_i) ,(18)

where (o/,t') € ¢(0_;,06%77) and (o”,t") € $(0_;,6%~). By the induction hypothesis

and Eq. (3), for each j # 1,

(
Us (a’,t’;e,j,aﬂ\—j> =< E
(

Ul (6,0° if j € P;(0%) N Pi(0*),
UP(0.0°) + %5% if j € Py(0°) N Fy(0¥),
UP(0,0%) + %% it j € F(0°) N Pi(o*),
UP (0,0 if j € F;(o%) N F;(c").

(19)

By summing up Eq. (18) over all j # i and adding U;(c*,t*; 0, 0°) to both sides, we

obtain that
nU; (J*, t*; 0, UO)

= Z U; (0*,t*; 0, 00)

JEN

= >, > (G0

keEN jePy (oY)

+(n—1)UF 0,0 +

- Z[ S 00"

kEN  jePy(0?)

+(n—1)UF 0,0 —

= ) (B—0)"+

kEFZ‘(O'O)

+(n—-1UF(6,0°) -

= (n— l)UiP(G,UO) +

= nUiP(G, JO),

_ Z of <01/7 "0, o0
j#i j#i
- > > (B—0)7"

keN\{i} jePy(c)N(N\{i})

0; — 0;
> =+ >

JEP;(cO)NF;(o*) JEF;(c9)NP;(c*)

6; — 0,

D UMD SN
JEPL(e9)N(N\{i}) JEP;(a0)
3 (0: —0;)" 3 (0, —6:)"
jePi(O'o) 2 jGFZ’(UO) 2
> (Bi—-0)*
JEP; (%)
3 (0; —0;)* 3 (0; —0;)*
jEPi(O'O) 2 jEFi(O'O) 2
(0; —0;)* (0, —0:)"
D D Dl
]epi(O'o) jEFi(O'O)

N EDNACRITEN )

(21)

where Eq. (20) follows since (i) queue-efficiency and budget-balance of ¢ imply that

> U (

JEN

a*,t*;ﬂ,ao) =

Y (e—0))t

keEN jePy (o)
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and

Z of (U”,t”; 0_i, UOI—Z’) _ Z Z (0, — 9],)4—’

J#i keN\{i} j€Px (a?)N(N\{i})
(ii) Eq. (19) implies that

ZUZ (O'/’t/;efj,O'O‘_J) = (n_]_)UZP(97O.0)_|_ Z u_{— Z 0; ; 0]

2
VES JEP;(cO)NF;(o*) JEF;(c®)NP;(0*)
and Eq. (21) follows from Eq. (3). Finally, Eq. (21) implies that
U; (U*,t*; 9,00) = Uz-P(G,UO),

and by Pareto indifference, we conclude that ¢(0, %) = ¢*'(6,0°). m

4.2 Balanced cost reduction and the pairwise equal-splitting rule

Next, we show that balanced cost reduction, together with the three basic properties
of queue-efficiency, budget-balance and Pareto indifference, characterizes the pairwise
equal-splitting rule.

Theorem 2 The pairwise equal-splitting rule is the only rule satisfying queue-efficiency,
budget-balance, Pareto indifference, and balanced cost reduction.

Proof. Since it is obvious that the pairwise equal-splitting rule satisfies queue-efficiency,
budget-balance and Pareto indifference, it suffices to show that it satisfies balanced cost
reduction. Let N € N, (9,00) € QN and i € N. Then, for each (c*,t*) € ¢ (0, 0°)
and each (o, t') € ¢¥'(6_;,0%77),

Z [UJP (0,00) — UjP (9_Z~,ao|_i)}

i
_ (0; —0k)" (0r —0;)"
- Z [ Z 2 * Z 2 }
j?é't k‘EPj(O’O) kEFj(O’O)
_Z[ 3 (0; —0)" N (0 —0,)"
— _ 2 ) 2
J#t keP;(o0l-1) keF;(c01-1)
_ (0; —0;)" (0, —0:)"
R
JEP; (o) JEF;(09)
= Ul (0,0%). (22)

where Eq. (22) follows from Eq. (3).
Therefore, the pairwise equal-splitting rule satisfies balanced cost reduction.
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Conversely, let ¢ be a rule which satisfies the four properties. We show that ¢ = ¢*
by induction on |N]|.

Case 1: |[N| = 2. Let N = {i,j} with ¢ # j. Note that, similarly to the proof of
Theorem 1, budget-balance guarantees that ¢(6_;,c%7) = (¢°=7,0). Then, for each
(0,0°) € @V and each (o,t) € ¢(0, "),

Ui (0,t;0,0°) = Ui(0,t0,0°) = U; <UO|*j,0;9_j,00|7j>
= U (U,t; 9,00) , (23)

where Eq. (23) follows from balanced cost reduction. Moreover, by queue-efficiency and
budget-balance,

(92 — Gj)+ ifj S Pi(JO),
(0; — 0;)" if j € F;(oY).

Since Egs. (3), (23) and (24) together imply that
U; (J,t;G,JO) =Uj (U,t;H,UO) = UJP (9,00) = UiP (9,00) ,

by Pareto indifference, we conclude that ¢(6,0%) = ¢ (0, cY).

U; (U,t;H,UO) +U; (a,t;Q,aO) = { (24)

Case 2: |N| > 2. Proceeding by induction, suppose that the net utilities of agents
are uniquely determined for |[N| = 2,...,n — 1. We show that they are also uniquely
determined for |N| = n.

For each (A,0°) € QV, each i € N, each (o*,t*) € ¢(0,0%), and each (o’,t) €
d(0_;, 0=, by balanced cost reduction, the induction hypothesis and Eq. (3), we have

U; (U*,t*; 0, (70)

= Y [0 #50.0%) ~ U (o400, 0°) |

J#

= Z [Uj (U*,t*;H,UO) — UJP (a_i,golﬂ')}
J#i

= S U, (0", 10,0%) = YU (6,0%) + (6 —0;)" —9 s @—Qeﬁ
J#i J#i JEP;(00) JEF(09)

= ZUJ (0’*775*;(9,0'0) _ZUJP (9,0’ +Uz (970' ) (25)
7 ji

By queue-efficiency and budget balance, Eq. (25) implies that

2U; (U*,t*;ﬁ,ao) = Z U; (0*,75*;9,00) — Z U;»D (9,00) + 2UZ-P (9,00)
jEN jEN
= 2U0F (9,0,
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and therefore,
U; (0*,t*; 9,0’0) = Ul-P(G,UO).
Finally, by Pareto indifference, we conclude that ¢(,0%) = ¢'(0,0°). =

Remark 1 By exploring the implications of balanced consistency and balanced cost
reduction in the reordering problem, we characterize the pairwise equal-splitting rule
which shares the cost-savings obtained from switching the positions of any two neigh-
boring agents equally between them. Although each agent has an “unequal” initial
position in the queue, these two properties characterize the pairwise equal-splitting rule
which seems to be fair for any two neighboring agents switching their positions. On the
other hand, in the queueing problem, these axioms characterize the minimal transfer
rule (Maniquet, 2003) which benefits an agent with a larger unit waiting cost. Although
the queueing problem assumes that all agents have “equal” rights on each position in
the queue, these two properties characterize the minimal transfer rule which is more
beneficial to an agent with a larger unit waiting cost.

Remark 2 Tsay et al. (2025a) formulate another property, balanced reduction of
agents, by applying Myersons (1980) balanced contributions principle to the reordering
problem in a different way. Suppose that for each reordering problem and each pair
of agents 7 and j such that agent ¢ is positioned behind agent j in the initial queue,
if agent j leaves from the initial queue, then agent i cannot switch positions with any
other agents initially positioned after agent j and if agent 7 leaves from the initial queue,
then agent j cannot switch positions with any other agents initially positioned before
agent ¢. Then, this property requires that the impact on any one agent’s net utility,
resulting from another agent’s departure from the initial queue, should be equal for any
two agents. Moreover, they show that together with queue-efficiency, budget-balance
and Pareto indifference, balanced reduction of agents characterizes the connected equal-
splitting rule (Curiel et al. 1989).

5 Smallest- and Largest-Cost Consistency

Now, we introduce two alternative consistency properties and investigate their implica-
tions in the reordering problem. Each of these two properties requires the invariance of
the net utilities of the remaining agents when a certain agent leaves the initial queue.
Specifically, the first property, smallest-cost consistency, requires that if an agent with
the smallest unit waiting cost leaves the initial queue and the agents behind her move
forward by one position, then the net utilities of all remaining agents should not be
affected.

Smallest-cost consistency: For each N € N, each (6,0°) € ON each agent i € N
with 6; = mingepy 0y, each (o,t) € $(8,0°), each (o/,t') € ¢(A_;,0°17%), and each

17



J € N\ {i},

Uj(o,t;0, o) = Uj(o' 1 H_i,a()'_i). (26)

The second property, largest-cost consistency, requires that if an agent with the
largest unit waiting cost leaves the initial queue and the agents behind her move forward
by one position, then the net utilities of all remaining agents should not be affected.

Largest-cost consistency: For each N € N, each (6,0°) € QN each i € N with
6; = maxyey O, each (0,t) € ¢(6,0), each (o', 1) € p(A_;,0%1~%), and each j € N\ {i},

Uj(o,t;0,0%) = Uj (o', t; 0_;,0"7%). (27)

The next two results show that the maximum price rule and the minimum price rule
can be characterized by smallest-cost consistency and largest-cost consistency, respec-
tively, together with the three basic properties of queue-efficiency, budget-balance and
Pareto indifference.

5.1 Smallest-cost consistency and the maximum price rule

We first characterize the maximum price rule by the properties of queue-efficiency,
budget-balance, Pareto indifference, and smallest-cost consistency.

Theorem 3 The maximum price rule is the only rule satisfying queue-efficiency, budget-
balance, Pareto indifference and smallest-cost consistency.

Proof. Since it is obvious that the maximum price rule satisfies queue-efficiency, budget-
balance and Pareto indifference, we only show that it satisfies smallest-cost consistency.
For each N € N, each (9,00) € QN each i € N such that §; = mingcy 6i, and each
j € N\ {i}, by Eq. (7), we have

UM (0,6%) = > (6k—0,)"

]{:EF]‘(O'O)
_ > ke o0l-iy (O — 05)7 if 0 > o
(92' - ej)Jr + ZkeFj(gm—i)(ek — (9j)+ if U;] < U?

= > (-0t (28)

kEFj(O’O‘fi)
= M (6-0,0%77),

where Eq. (28) follows from 6; = mingey 0. Therefore, the maximum price rule satisfies
smallest-cost consistency.

18



Conversely, let ¢ be a rule which satisfies the four properties. We show that ¢ = ¢™
by induction on |N]|.

Case 1: |[N| = 2. Let N = {i,5} with i # j. For each (0,0°) € QV, we may
assume without loss of generality that 0; < 0;. By smallest-cost consistency, for each
(0,t) € ¢(6,0°) and each (o/,t') € ¢(0_;,0°177),

U; (U,t; 9,00) = U; <0’7t’;g_i700|*i) . (29)

Next, by budget-balance, t' = 0 and then U; (J’,t’;e,i,ao‘_i) = 0. Therefore, Eq.
(29) implies that U; (a,t;H,aO) =0= UjM (9,00). Moreover, by queue-efficiency and
budget-balance, we have
U; (a,t;&ao) = U; (U,t; 9,00) +Uj (U,t;ﬁ,ao)
_ Qj—ei if0?<0'§~)
0 if O’? > a?
= UM (0,0%).
Therefore, by Pareto indifference, we conclude that ¢(6,0°) = ¢ (0, 09).
Case 2: |N| > 2. Proceeding by induction, suppose that the net utilities of agents
are uniquely determined for |[N| = 2,...,n — 1. We show that they are also uniquely
determined for |N| = n.
Given (0,0°) € QN let i € N be such that §; = mingey 0. By smallest-cost
consistency, for each (o*,t*) € ¢(0,0°), each (o/,t') € ¢(A_;,0°="), and each j € N\{i},
U; (0*,t*;0,00) =U; (U’,t';e,i,ao‘_i) . (30)
By the induction hypothesis, Eq. (30) implies that for each j € N\ {i},
U; (U*,t*;H,ao) = U (U',t/;Q_,',JO‘_i)
= UM(0_;, 0"
= U}"(0.0), (31)

where Eq. (31) follows from smallest-cost consistency of the maximum price rule. More-
over, by queue-efficiency and budget-balance of ™ and ¢, and Eq. (31), we have

M 0 . 0
%Uk ,06°) = gé%l(rjlv)keN (op — ok) Ok
= Z Ug (0*,75*;0,00)
keN
= Z UM 9,0% + U (0%, t*;0,0), (32)
kEN\{i}
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which implies that

U; (0*,t*; 0, UO) =UM(0,0Y). (33)

Therefore, by Pareto indifference, we conclude that ¢(6,0%) = ¢M(0,0°). =

5.2 Largest-cost consistency and the minimum price rule

Next, we characterize the minimum price rule by the properties of queue-efficiency,
budget-balance, Pareto indifference, and largest-cost consistency.

Theorem 4 The minimum price rule is the only rule satisfying queue-efficiency, budget-
balance, Pareto indifference, and largest-cost consistency.

Proof. Since it is obvious that the minimum price rule satisfies queue-efficiency, budget-
balance and Pareto indifference, we only show that it satisfies largest-cost consistency.
For each N € N, each (0,00) € QN each i € N such that §; = maxycy 05, and each
j € N\ {i}, by Eq. (10), we have

ur.0°) = > (0,— 0"

ker(oo)
_ ) Zkeryooi- (05— 0)T if 0¥ < o?
(QJ - 02)+ + zker(UOI*i)(gj — 0k)+ if O'? > O'zQ

= > -0t (34)

keP;(c01-7)
- U (9_1», aolﬂ‘)

where Eq. (34) follows from 6; = maxgepn 0. Therefore, the minimum price rule satisfies
largest-cost consistency.

Conversely, let ¢ be a rule satisfying the four properties. We show that ¢ = ¢™ by
induction on |N]|.

Case 1: |[N| = 2. Let N = {4,5} with i # j. For each (0,0°) € QV, we may
assume without loss of generality that 6; > 0;. By largest-cost consistency, for each
(0,t) € $(8,0°) and each (o’,t') € ¢(6_;, %177 |

U; (U,t; 9,00) = U; (a’,t’;e_i,aoki) . (35)

By budget-balance, t' = 0 and thus, U; (0’,t’;0_,~,00‘_i) = 0. Therefore, Eq. (35)

implies that U; (J,t; 0, 00) =0=U" (19, 00). On the other hand, by queue-efficiency
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and budget-balance, we have

U; (a, t; 9,00) = U; (U,t; 9,00) +Uj (O‘, t; 9,00)
. Gi—ej ifO’?<O’?
- 0 if a? > O'ZO
= U™(0,0°).

Therefore, by Pareto indifference, we conclude that ¢(0,0°) = ¢™ (6, 0?).

Case 2: |N| > 2. Proceeding by induction, suppose that the net utilities of agents
are uniquely determined for |[N| = 2,...,n — 1. We show that they are also uniquely
determined for |N| = n.

Given (0,0%) € QN let i € N be such that §; = maxzen 0. By largest-cost
consistency, for each (0%, %) € ¢(0,00), each (o/,t') € ¢(A_;,c°=%) and each j € N\ {i},

U; (U*,t*;e,ao) =U; (O’l,t,;e_i,O'O‘_Z) ) (36)
By the induction hypothesis, Eq. (36) implies that for each j € N\ {i},
U; (U*,t*;é?,ao) = U (a',t/;e_l-,a()'_i)
— m 0|—1
= U™, 0"
m 0

where Eq. (37) follows from largest-cost consistency of the minimum price rule. More-
over, by queue-efficiency and budget-balance of @™ and ¢, and Eq. (37), we have

m 0 : 0
%Uk (0, o ) = Ué%l(I]lV) 2 (Uk: — ak) 0;.
= Z Uy (a*,t*;Q,ao)
keN
= Z um,0°) + U; (0*,t*;9,00),
kEN\{i}

which implies that
Ui (o, t%; 9,00) = U™(6,0Y). (38)

Therefore, by Pareto indifference, we conclude that ¢(0, %) = ¢™(0,0%). =
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Remark 3 We can strengthen the property of smallest-cost consistency to smaller-cost
consistency, which compares the unit waiting costs of each pair of agents by requiring
that for each problem and each pair of agents ¢ and j such that ¢; < 6;, agent j’s net
utility is unaffected if agent ¢ leaves the initial queue and the agents behind her move
forward by one position.

Smaller-cost consistency: For each N € N, each (0,0°) € QV, each pair i, j € N
with 0; < 0;, each (o,t) € ¢(0,0°), and each (o, ') € ¢(0_;, %177,

Uji(o,t:0,0°%) = U (o', t';0_;, o*1 ).

Since the maximum price rule satisfies smaller-cost consistency, Theorem 3 still holds
when smallest-cost consistency is replaced by smaller-cost consistency.

Similarly, largest-cost consistency can be strengthened to larger-cost consistency,
which compares the unit waiting costs of each pair of agents by requiring that for each
problem and each pair of agents ¢ and j such that 6; < 0;, agent i’s net utility is
unaffected if agent j leaves the initial queue and the agents behind her move forward
by one position.

Larger-cost consistency: For each N € N, each (6,0") € QV, each pair i,j € N
with 0; > 0, each (0,t) € ¢(6,0°), and each (0/,') € ¢(On 5y, VM),

Uj(o,t;0, o) = Uj(o',t; 9_“00|7i)'

Since the minimum price rules satisfies larger-cost consistency, Theorem 4 still holds
when largest-cost consistency is replaced by larger-cost consistency.

6 Concluding Remarks

First, we discuss whether our results can be generalized to sequencing problems with
an initial queue in which each agent is characterized by three parameters: the amount
of service time, the unit waiting cost, and the position in the initial queue. As shown in
Smith (1956), an efficient queue can be obtained by ordering agents in a non-decreasing
order of their urgency indices defined as the ratio of her unit waiting cost to her service
time. As it turns out, our two results for the pairwise equal-splitting rule continue to
hold for sequencing problems with an initial order. Furthermore, our results for the
maximum and the minimum price rules remain valid if the properties of smallest-cost
and largest-cost consistency are modified to smallest-inder and largest-index consis-
tency. These properties require that when an agent with the smallest or largest urgency
index leaves the initial queue and the agents behind her move forward by one position,
the net utilities of all remaining agents should remain unaffected.

We conclude this paper by mentioning an alternative approach to the reordering
problem. Curiel et al. (1989) and van den Brink et al. (2007) try to solve the reordering
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problem by applying a cooperative game theoretic approach. In this approach, each
agent is assigned with the net utility in the reordered queue, instead of a pair consisting
of a position in the reordered queue and the amount of transfer as in our reordering
problem. To do this, reordering problems should be mapped into reordering games
(or (cost-saving) sequencing games in Curiel et al. (1989)) by appropriately defining a
worth of each coalition. Curiel et al. (1989) and van den Brink et al. (2007) define the
worth of a coalition consisting of consecutive agents in the queue as the cost-savings that
these agents can obtain by reordering themselves into an efficient queue, while the worth
of any nonconsecutive coalition as the sum of its maximally consecutive components.
Moreover, van den Brink et al. (2007) represent an initial queue as a line-graph and
formulate various properties assuming a deletion of some link: (i) upper equivalence,
which requires that if a link between any two agents is deleted, then the net utilities
of all agents in front of the deleted link should not be affected, (ii) lower equivalence,
which requires that if a link between any two agents is deleted, then the net utilities
of all agents at the back of the deleted link should not be affected, and (iii) equal-loss
property, which requires that the impact of the deletion of some link on the total net
utilities of the agents in front of the deleted link should be equal to the impact of the
deletion of this link on the total net utilities of the agents at the back of the deleted
link. Note that if a link is deleted, then agents cannot reorder their positions over the
deleted link. They show that together with component efficiency,® the minimum price
rule is the only rule satisfying upper equivalence, the maximum price rule the only rule
satisfying lower equivalence, and the pairwise equal-splitting rule the only rule satisfying
equal-loss property.” Whereas all these axioms are formulated by varying the set of links
with the fixed set of agents, our consistency axioms are concerned with how the rule
should respond to the variations in the set of agents.
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Appendix. Independence of the Properties in Theorems
1-4

In this appendix, we demonstrate that the four properties listed in each theorem are
independent. For each property, we provide an example of a rule that satisfies the other
three properties but fails to satisfy the specified property.

Example 1. (Dropping queue-efficiency.) Let ¢°¢ be the status-quo rule, which chooses
all allocations such that each agent receives her utility at the initial position. This
implies that each agent has zero net utility. Formally, for each N € N and each

0,0%) € OV,
51(9, 0" { ' Sien(0i = 1)8; = X n (09 — 1)8;, and }

for each i € N, t; = (O’l — a0,

This status-quo rule satisfies all properties listed in Theorems 1 to 4 except queue-
efficiency.

Example 2. (Dropping budget-balance.) Let ¢™" be the no-rent rule, which chooses all
allocations with efficient queues, but each agent receives zero net utility. Formally, for
each N € N and each (0,0%) € QV,

o € E(0), and for each i € N,
ti = (o; — 09)b; ’

)

56,5 ={ (.0

This no-rent rule satisfies all properties listed in Theorems 1 to 4 except budget-balance.

Example 3. (Dropping Pareto indifference.) For each N € N, let =~ be a priority
order on N and > = (=")yen be the family of priority orders on . Let ¢ be a
single-valued selection of the pairwise equal-splitting rule complying with ». Then, this
rule satisfies all four properties listed in Theorems 1 and 2 except Pareto indifference.
Next, let ¢M’> be a single-valued selection of the maximum price rule complying
with . Then, this rule satisfies all four properties listed in Theorem 3 except Pareto
indifference. Finally, in the same manner, a single-valued selection of the maximum
price rule satisfies all four properties listed in Theorem 4 except Pareto indifference.

Example 4. (Dropping balanced consistency.) The maximum or the minimum price
rule satisfies all four properties listed in Theorem 1 except balanced consistency.

Example 5. (Dropping balanced cost reduction.) The maximum or the minimum price
rule satisfies all four properties listed in Theorem 2 except balanced cost reduction.

Example 6. (Dropping smallest-cost consistency.) The minimum price or the pairwise
equal-splitting rule satisfies all four properties listed in Theorem 3 except smallest-cost
consistency.
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Example 7. (Dropping largest-cost consistency.) The maximum price or the pairwise
equal-splitting rule satisfies all four properties listed in Theorem 4 except largest-cost
consistency.
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