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Abstract

We introduce a new time-varying parameter spatial matrix autoregressive model that
integrates matrix-valued time series, heterogeneous spillover effects, outlier robust-
ness, and time-varying parameters in one unified framework. The model allows for
separate dynamic spatial spillover effects across both the row and column dimensions
of the matrix-valued observations. Robustness is introduced through innovations that
follow a (conditionally heteroskedastic) matrix Student’s t distribution. In addition,
the proposed model nests many existing spatial autoregressive models, yet remains
easy to estimate using standard maximum likelihood methods. We establish the sta-
tionarity and invertibility of the model and the consistency and asymptotic normality
of the maximum likelihood estimator. Our simulations reveal that the latent time-
varying two-way spatial spillover effects can be successfully recovered, even under
severe model misspecification. The model’s usefulness is illustrated both in-sample
and out-of-sample using two different applications: one in international trade, and
the other based on global stock market data.
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1 Introduction

Recent years have highlighted some of the limitations of traditional vector-based modeling

approaches for complex data structures. Specifically, when the data inherently exhibit a

row and column structure, it is natural to move beyond the scope of vector-valued represen-

tations and consider matrix-valued time series; see, e.g., Chen and Chen (2022) and Chen

et al. (2024) for an example with bilateral trade data between countries and Chang et al.

(2023) and Li and Xiao (2024) for a financial portfolio example with data across multiple

countries and sectors. One of the core models for matrix-valued time-series is the Matrix

Autoregressive (MAR) model proposed by Chen et al. (2021). It substantially reduces

the dimensionality of the model’s parameter space without compromising interpretability.

This model has by now been extended to accommodate non-stationarity and cointegration,

non-linearities, and high-dimensional settings (see, for instance, Jiang et al., 2024; Li and

Xiao, 2024; Yu et al., 2024; Zhang, 2024).

For many matrix-valued time-series, the rows and columns of the observations relate to

some form of spatial dependence, either through geographic connections, trade relations,

social connections, or otherwise. Such connections can be exploited to build parsimonious,

interpretable spatial (regression) models (for an overview of spatial models in the vector-

valued case, see, e.g., LeSage and Pace, 2009; Elhorst et al., 2021; Anselin, 2022). It

is unlikely, however, that the strength and impact of the underlying spatial connections

remains constant over time, particularly if we consider a longer sample period. This poses

challenges to existing matrix-valued time series models, as a spatial version of those models

that accounts for time-varying spatial spillovers is thus far lacking from the literature.

In this paper, we therefore develop a new time-varying parameter spatial MAR (TVP-

SMAR) model. The model enjoys three distinguishing features. First, it allows for the
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inclusion of different observed network effects for the row versus the column dimension of the

observations. These network effects are further amplified or mitigated by so-called spatial

spillover parameters, which are again allowed to be different across rows and columns.

The design ensures a considerable dimension reduction of the parameter space, while also

preserving empirical interpretability.

Second, we allow the spatial spillover parameters to be heterogeneous both across time

and across the individual rows and columns of the observations. For vector-valued observa-

tions, both forms of heterogeneity have been shown to be important (see, e.g., Aquaro et al.,

2021; Catania and Billé, 2017; Yang and Lee, 2021; Gasperoni et al., 2023; D’Innocenzo

et al., 2024) and we generalize them to the matrix-valued context both across row and

column dimensions. In addition, we introduce time variation in the spatial spillover pa-

rameters. Allowing for dynamic spatial spillover effects sets our approach substantially

apart from models like Yang and Lee (2021) and Pu et al. (2024). These earlier mod-

els also study spatial spillovers for matrix observations, but either only consider one-way

(column-related) effects, or omit spatial spillover heterogeneity, or (in all cases) require the

spatial spillovers to be time-invariant. Relaxing the time-invariance assumption for matrix-

valued observations is challenging, but important (see, for instance, Chen et al., 2024; He

et al., 2024; Zhang and Chan, 2024; Yu et al., 2025, for examples on time-varying parame-

ters in matrix models outside the spatial context). Our set-up overcomes these challenges

by using the score-driven time-varying parameter framework of Creal et al. (2013) and Har-

vey (2013) and deriving recurrence relations that explicitly exploit the matrix structure of

the observations. As established in the literature, score-driven parameter updates result in

expected improvements in Kullback-Leibler divergence of the model upon every parameter

update (Blasques et al., 2015; Gorgi et al., 2023; Creal et al., 2024; de Punder et al., 2024)

3



and offer robustness to potential dynamic misspecification (Beutner et al., 2023).

Third, our model can robustly cope with outliers and influential observations by using

the matrix Student’s t distribution of Gupta and Nagar (2018). Again, this matrix Stu-

dent’s t exploits the row and column dimensions of the data and is more than merely a

re-shaped version of the well-known vector-valued Student’s t distribution. The matrix Stu-

dent’s t distribution also links directly to the dynamics of the spatial spillover parameters

via the score-driven framework of Creal et al. (2013) and Harvey (2013): due to the fat-

tailedness of the matrix t, these updates automatically downweight outlying observations,

resulting in robust dynamics for the spatial spillovers.

Despite its flexibility, the log-likelihood function of the new model is available in closed

form. This makes parameter estimation and inference possible via standard maximum

likelihood procedures. We show that the model is stationary, ergodic, and invertible, and

that the maximum likelihood estimator for its parameters is consistent and asymptotically

normal. This allows us to recover the time-varying spatial spillover parameter paths from

the data exponentially fast almost surely. Using simulations, we also show that the new

model can recover the time-varying two-way spatial spillover effects, including settings

where the model is severely misspecified.

We present two applications to support the new model’s usefulness. In our first appli-

cation, we analyze monthly trade growth rates in an international bilateral import-export

trade network. Our second application looks at weekly sector-level global stock returns.

Both applications showcase the improved in-sample fit and interpretability of our new spa-

tial MARmodel with time-varying parameters, as well as its robust out-of-sample predictive

performance.

The remainder of this paper is structured as follows. Section 2 introduces the model
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and estimation framework. Section 3 studies the model’s asymptotic properties. Section 4

presents an extensive simulation study, while Section 5 explores two empirical applications.

Section 6 concludes. Technical proofs and additional empirical results are available in the

supplementary material.

Throughout, we adopt the following notational conventions. Vectors and matrices are

in bold, whereas scalars are non-bold. A block-diagonal matrix with, for instance, two

blocks A and B is written as diag (A,B). We also write diag(A) to denote a column

vector holding the diagonal elements of a single square matrix A. For any matrix A, let

Ai,j denote its (i, j)th element and let Im denote the m×m identity matrix.

2 Modelling framework

We first introduce the general model in Section 2.1. Section 2.2 outlines the distributional

assumptions, while Section 2.3 discusses the parameter dynamics and the outlier-robust

features of the model. Section 2.4 addresses the estimation of the model’s static parameters.

2.1 The TVP-SMAR model

Let Yt ∈ Rm×n denote a matrix-valued observation for t = 1, . . . , T and some finite m

and n, where, for instance, m may be the number of different regions or countries, and n

the number of sectors in a production type network. Our time-varying parameter spatial

matrix-valued autoregressive (TVP-SMAR) model takes the following form:

Yt = R
r
t W

r
t YtB

⊤ +AYtW
c
t
⊤Rc

t +CXtD
⊤ +Et, Et

i.i.d.∼ pE (Et; ξE) , (1)
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where Rr
t ∈ Rm×m and Rc

t ∈ Rn×n are diagonal parameter matrices holding the hetero-

geneous, time-varying row and column-related spatial spillovers, respectively, and W r
t ∈

Rm×m and W c
t ∈ Rn×n denote the observed corresponding network connection matrices.

The coefficient matrices B ∈ Rn×n and A ∈ Rm×m are assumed to be diagonal, though

this assumption can be relaxed if one is willing to impose further identification restrictions.

Finally, Xt ∈ Rk1×k2 is a matrix containing observed exogenous variables with associated

parameter matrices D ∈ Rn×k2 and C ∈ Rm×k1 . We assume that the matrix-valued error

term Et ∈ Rm×n is independent and identically distributed (i.i.d.) with a predetermined

density function pE ( · ; ξE), where ξE represents the parameters characterizing the distri-

bution.

The proposed TVP-SMAR model in (1) encompasses several existing spatial autoregres-

sive models from the literature, such as the time-varying parameter spatial autoregressive

(TVP-SAR) model of D’Innocenzo et al. (2024) using n = 1; the TVP-SAR model with a

single time-varying spatial spillover parameter of Blasques et al. (2016) using n = 1 and

Rr
t = ρtIm; the static heterogeneous spatial spillover model of Aquaro et al. (2021) using

n = 1 and Rr
t = Rr; and the standard spatial regression model of, for instance, Anselin

et al. (2009), Asgharian et al. (2013), Kou et al. (2018), and Denbee et al. (2021), by

setting n = 1 and Rr
t = ρIm. At the same time, for n > 1, the model in (1) encompasses

the dynamic panel spatial vector autoregression model of Yang and Lee (2021), which at

the core reduces to Yt = W r
t YtB + Et.

1 Our model in Eq. (1) substantially extends

this specification by allowing for both row and column-related networks and corresponding

heterogeneous spatial spillover strengths, as well as by allowing these spillover parameters

to vary over time.

1For simplicity, we consider a reduced version of the model in Yang and Lee (2021) to highlight the core
differences in the spatial effects. Yang and Lee (2021) also allow for spatial time-lags and lagged terms of
Yt, which could be included in a similar way in our specification in (1).
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To better understand how the spatial spillover specification in (1) exploits the row and

column structure of the data, let Yi,•,t and Y•,j,t denote the ith row and jth column of Yt,

respectively. Consider the jth column of Yt for a model without exogenous regressors. In

that case (1) reduces to

Y•,j,t = Bj,jR
r
t W

r
t Y•,j,t +R

c
j,j,tAYt (W

c
j,•,t)

⊤ +E•,j,t =⇒ (2)

Yi,j,t = Bj,jR
r
i,i,t

n∑
k=1

W r
i,k,t Yk,j,t +Ai,iR

c
j,j,t

m∑
k=1

W c
j,k,t Yi,k,t +Ei,j,t.

The first term in (2) resembles the model for vector-valued time series with heterogeneous

row-wise time-varying spillovers (D’Innocenzo et al., 2024). The spatial matrix-valued spec-

ification imposes parsimony by requiring that these time-varying row-wise spatial dynamics

are the same across columns j, differing only by a proportionality constant Bj,j. Substan-

tially different from D’Innocenzo et al. (2024), however, the second term in (2) imposes

further static, heterogeneous row-wise spillovers via the static diagonal matrix A. These

somewhat resemble the static heterogeneous spillovers in for instance Aquaro et al. (2021),

Yang and Lee (2021), or Heil et al. (2022). In contrast to these earlier papers, however, the

static heterogeneous spillovers are scaled by the time-varying scalar spatial spillover coeffi-

cient Rc
j,j,t and operate on different time-varying linear combinations of the columns of Yt

via the jth column ofW c
t
⊤. The scalar effect of Rj,j,t bears some resemblance to the scalar

spatial dynamics in Blasques et al. (2016), but it is substantially adjusted to allow for cross-

sectional heterogeneity via the static matrix A, and for more complex row-wise dynamics

via the first term in (2). A similar argument can be made if one considers the ith row of Yt

rather than the jth column, obtaining Y ⊤
i,•,t = Ai,iR

c
tW

c
t Y

⊤
i,•,t +R

r
i,i,tBY

⊤
t W

r
i,•,t

⊤ +E⊤
i,•,t.

In short, the new specification in (1) extends and parsimoniously combines several earlier

proposals from the literature to introduce time-variation and heterogeneity in spatial au-
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toregressions, while being specifically tailored to matrix-valued data Yt through explicit

use of its row and column structure.

One special case of the general specification in (1) is worth noting. If one is exclu-

sively focused on the time-varying spatial spillover effects along either the row or column

dimension of Yt, the following special form of the model can be considered:

Yt = R
r
tW

r
t YtB

⊤ +CXtD
⊤ +Et, Et

i.i.d.∼ pE (Et; ξE) , (3)

where B can be a full n × n matrix (with B1,1 = 1 for identification). Note that this

specification is still more general than the core panel specification of Yang and Lee (2021),

which has B as diagonal and static Rr
t = Im for all t. We also note that model (1) can be

further extended to allow for heterogeneity in network structures between columns or rows

by considering

Yt =
n∑

j=1

Bj,jR
r
t W

r
j,t Yt +

m∑
i=1

Ai,i YtW
c⊤
i,t R

c
t +CXtD

⊤ +Et, (4)

where W r
j,t ∈ Rm×m and W c

i,t ∈ Rn×n are row (column) connection matrices that vary

across columns (rows). Models like (4) can be directly linked to the multi-country, multi-

sector specifications in for instance Blasques et al. (2023), where the network connections

between countries are allowed to vary across sectors. The TVP-SMAR model can be further

extended to incorporate spatial spillover effects in the disturbance Et, by specifying

Et = Λr
tW

r
t EtB̃

⊤ + ÃEtW
c
t Λ

c
t + Vt, Vt

i.i.d.∼ pV (Vt; ξV ) , (5)

where Λr
t , Λ

r
t , Ã, and B̃ are diagonal matrices, and ξV contains the parameters. Note
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that for n = 1 and Rr
t = ρtIm, Eq. (5) encompasses the DySARAR model considered in

Catania and Billé (2017).

As a final note, not all parameters in (1) are identified. For instance, only the Kronecker

products B ⊗ Rr
tW

r
t , R

c
tW

c
t ⊗ A, and D ⊗ C are identified. To address this issue, we

impose the constraint A1,1 = B1,1 = 1. Together with the diagonality assumption for A

and B, this solves the identification issue for A, B, Rc
t , and R

r
t . As mentioned earlier,

relaxing the diagonality assumption for A and B possibly requires further identification

restrictions. We also impose C1,1 = 1 to avoid the identification issue for C and D.

2.2 Distributional assumptions

We assume that the error terms Et follow the matrix Student’s t distribution of Gupta

and Nagar (2018, Chapter 4). As we see later, this endows the model with a two-fold

robustness property. More specifically, for ν > 2, we assume that the probability density

function (pdf) of Et is given by

pE (Et|Σ,Ω, ν) =
Γm

(
1
2
(ν +m+ n− 1)

)
Γm

(
1
2
(ν +m− 1)

)
[(ν − 2)π]

mn
2

|Σ|−
n
2 |Ω|−

m
2

×
∣∣∣∣Im +

Σ−1EtΩ
−1E⊤

t

(ν − 2)

∣∣∣∣− 1
2
(ν+m+n−1)

,

(6)

where Γm(·) = πm(m−1/4)
∏m

i=1 Γ[a + (1 − i)/2] denotes the multivariate gamma function

for a > (m − 1)/2, and Γ(·) the standard gamma function. We denote this zero-mean

distribution as Et ∼ Tm,n(ν,Σ,Ω). We assume the matrices Σ ∈ Rm×m and Ω ∈ Rn×n

to be diagonal, with the identifying restriction Ω1,1 = 1 if m,n > 1. The matrix-valued

Student’s t distribution collapses to the multivariate (vector-valued) Student’s t distribu-

tion if either m = 1 or n = 1, and to the matrix-valued normal if ν → ∞. Moreover,

Cov (vec(Et)) = Ω ⊗Σ for ν > 2.
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Figure 1: Log-pdf contour plots for the matrix and vector-valued t distribution
Note: For the matrix-valued E ∼ T2,2(5, 2I2, 2I2) and the multivariate t distribution vec(E) ∼ t4(5, 4I4),
panels 1(a) and 1(b) give contours of the log-pdf for a row (or column) of E, the remaining elements set
to zero. Panels 1(c) and 1(d) do the same for the diagonal of E.

The assumption of a diagonal Σ and Ω implies a diagonal covariance structure for

vec (Et). As a result, the shocks Et can be interpreted as idiosyncratic structural shocks

to a particular row and column of Yt. The static (A and B) and dynamic (Rr
t and Rc

t)

spillover matrices, along with the connection networks W r
t and W c

t , then determine how

these shocks propagate through the system.

Interestingly, the distribution of Et is not merely a reshaped version of a vector-valued

multivariate Student’s t distribution for vec(Et). In particular, if m,n > 1 and ν is finite,

vec(Et) does not follow a multivariate t with mean zero and covariance matrix Ω ⊗ Σ.

To illustrate this, consider a toy example with m = n = 2, a matrix Student’s t random

variable E ∼ T2,2(5, 2Im, 2In), and a multivariate t vec(E) ∼ t4(5, 4Imn). Figure 1 plots

the contours of these two log joint densities if we put two elements to zero and evaluate the

density as a function of the other two arguments. Panels 1(a) and 1(b) set the bottom row

elements to zero (E2,1 = E2,2 = 0), while panels 1(c) and 1(d) set the off-diagonal entries

to zero (E1,2 = E2,1 = 0). Clearly, the first two panels show that the marginal densities for

E2,1 = E2,2 = 0 are the same for the matrix and the multivariate t. The last two panels,

however, show that the marginal densities for E1,2 = E2,1 = 0 are very different. Whereas
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the multivariate t retains its elliptical nature, the matrix t resembles much more the case

of two independent univariate t distributions. The latter follows immediately from the

density specification in (6). For E1,2 = E2,1 = 0 and the example from Figure 1, we obtain

a density kernel of the form
∣∣I2+ 4

3
diag(E2

1,1,E
2
2,2)
∣∣−5

, which reduces to
∏2

i=1

(
1+ 4

3
E2

i,i

)−5
.

The distribution thus induces more dependence if two entries Yi,j,t and Yi′,j′,t of Yt have an

overlapping row (i = i′) or column (j = j′) index (or both), and less if both their row and

column indices differ. The matrix t thus more clearly exploits the matrix nature of the data

than its multivariate vector-valued counterpart. We therefore use the matrix Student’s t

distribution for the error term Et. This also influences the spatial spillover dynamics via

the score-driven specification for Rr
t and Rc

t , as we explain in the next section.

2.3 Score-driven spillover dynamics

To capture the time variation in the spatial spillover parameters, we use the score-driven

framework introduced by Creal et al. (2011, 2013) and Harvey (2013). Let ft =
(
f r⊤
t ,f c⊤

t

)⊤
,

with ft ∈ F ⊂ Rm+n containing the time-varying parameters of interest, and f r
t and f c

t con-

taining the diagonal elements of Rr
t and R

c
t , respectively. Let pY ( · | X t,ft,θs) denote the

conditional pdf of Yt, where X t = (Xt,W
r
t ,W

c
t ) collects the observed variables external

to Yt, and θs represents the vector of unknown static parameters in (Σ,Ω, ν,A,B,C,D).

The score-driven update for ft is then given by

ft+1 = ψt

(
ft,θ

)
= ω +Φft +Kst

(
Yt,ft,θs

)
,

st
(
Yt,ft,θs

)
= St(ft,θs) ·

∂ log pY (Yt | X t,ft,θs)

∂ft
,

(7)

with intercept ω ∈ Rm+n and parameter matrices Φ,K ∈ R(m+n)×(m+n) controlling the

dynamics of ft. Here, θ consists of all static parameters, including those in (ω,Φ,K) as
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well as θs. Furthermore, the scaling matrix St(·) is allowed to depend on (Yt,X t). Note

that we do not impose any transformations on the elements of Rr
t and Rc

t . For example,

Blasques et al. (2016) and Catania and Billé (2017) use tanh and logistic transformations,

respectively, to constrain Rr
i,i,t and R

c
i,i,t within the unit interval to ensure system stability.

However, such constraints can lead to significant losses in flexibility and are unsuitable in

our empirical setting, where much more heterogeneity in the elements of Rc
t and Rr

t is

called for; compare D’Innocenzo et al. (2024). This can be done without jeopardizing the

model’s spatial stability, as we see later.

To proceed, let P (j)
K ∈ RK×K denote a matrix with zeros everywhere except for a single

1 at the jth diagonal position for j = 1, . . . , K. Note that P (j)
K Q acts as a row selector

that zeroes out all but the jth row from a K ×K matrix Q. We now have the following

result.

Proposition 2.1. Let Yt be as defined in (1), with Et ∼ Tm,n(ν,Σ,Ω) for ν > 2, where

Σ and Ω are symmetric, invertible matrices. Recall ft =
(
f r⊤
t ,f c⊤

t

)⊤
with f r

t and f c
t

containing the diagonal elements of Rr
t and Rc

t , respectively, and define

Gt = Gt(ft,θs) = B ⊗Rr
tW

r
t +Rc

tW
c
t ⊗A. (8)

If the spectral radius ϱ(Gt) of Gt satisfies ϱ(Gt) < 1, then the (scaled) score term in (7)

with scaling matrix St(ft,θs) =
∣∣Imn −Gt(ft,θs)

∣∣ · Imn takes the form

st
(
Yt,ft,θs

)
=

srt(Yt,ft,θs
)

sct
(
Yt,ft,θs

)
 =

|Zt| diag
(
Y r

t B
⊤Ẽ

⊤
t W t

)
− brt (Z̃t,B)

|Zt| diag
(
Ẽ

⊤
t W tAY

c
t

)
− bct(Z̃t,A)

 , (9)

where Y r
t = W r

t Yt, Y
c
t = YtW

c⊤
t , Ẽ

⊤
t = Ω−1E⊤

t Σ
−1, Z̃t = |Zt|Z−1

t , Zt = Zt(ft,θs) =
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Imn −Gt(ft,θs), and the residual E t and weight W t are defined as

E t = E t(ft,θs) = Yt − diag(f r
t )Y

r
t B

⊤ −AY c
t diag(f

c
t )−CXtD

⊤,

W t = W t(ft,θs) =
ν +m+ n− 1

ν − 2

(
Im + (ν − 2)−1E t(ft,θs)Ω

−1E t(ft,θs)
⊤Σ−1

)−1

,

with the bias-correction terms

brt
(
Z̃t,B

)
=


[
vec(B⊤⊗W r⊤

t P(1)
m )
]⊤

...[
vec(B⊤⊗W r⊤

t P(m)
m )
]⊤
 vec

(
Z̃t

)
, bct

(
Z̃t,A

)
=


[
vec(W c⊤

t P(1)
n ⊗A⊤)

]⊤
...[

vec(W c⊤
t P(n)

n ⊗A⊤)
]⊤
 vec

(
Z̃t

)
.

The raw score in Proposition 2.1 is scaled by |Imn−Gt|, such that the step sizes reduce

as the spectral radius of Gt approaches one; compare the scaling in D’Innocenzo et al.

(2024). Note that the expressions remain valid also for more general specifications of the

model than the ones considered in this paper, e.g., for non-diagonalΣ andΩ. The scores srt

and sct each consist of two terms that have an intuitive interpretation. The first terms arise

from the matrix-valued linear regression model with time-varying coefficients, as described

in (1). For instance, the first term in the first row of (9) adjustsRr
i,i,t to be more in line with

the new observation (Y r
t B

⊤,Yt) conditional on the other parameters of the model. The

second term then corrects the first step for the bias arising from the endogeneity due to the

contemporaneous network structure. Finally, the weight matrix W t mitigates the effect of

outliers in Yt on the scores, thereby ensuring that the filter remains robust; compare Creal

et al. (2013), Blasques et al. (2016), and Zheng et al. (2023). As E t diverges to infinity, the

weight W t tends to zero for finite ν. Note that for ν → ∞, we have W t = Im for all t.

Note that also the score-driven dynamics for Rr
t and Rc

t explicitly exploit the matrix

structure of the data as opposed to modeling the data in vectorized form. This induces a

substantial reduction in the number of parameters. For instance, with regard to spillover
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effects we now have m + n time-varying parameters rather than the m · n time-varying

parameters we would have under a vectorized form. Moreover, we only have m + n − 1

covariance related parameters in Σ and Ω rather than m · n of them. This considerably

simplifies the estimation problem.

2.4 Maximum likelihood estimation

The static parameter vector θ, which includes all the static parameters in the model, is

estimated via maximum likelihood estimation (MLE). We initialize the filter recursion at

a fixed nonrandom value f̂0 ∈ F, and denote the resulting initialized sequence by f̂t(θ) =

f̂t(θ, f̂0). For each t, the log-likelihood contribution is given by

ℓt
(
ft(θ),θs

)
= log pY

(
Yt | X t,ft(θ),θs

)
= log

Γm

(
(ν +m+ n− 1)/2

)
Γm

(
(ν +m− 1)/2

)(
(ν − 2)π

)mn/2
− n

2
log |Σ| − m

2
log |Ω|+ log

∣∣Zt(ft(θ),θs)
∣∣

− (ν +m+ n− 1)

2
log
∣∣∣Im + (ν − 2)−1Σ−1E t(ft(θ),θs)Ω

−1E t(ft(θ),θs)
⊤
∣∣∣.

The MLE is then defined as

θ̂T = θ̂T
(
f̂0
)
= argmax

θ∈Θ
L̂T (θ) = argmax

θ∈Θ
T−1

T∑
t=1

ℓt
(
f̂t(θ),θs

)
. (10)

Note that for a given value of θ, the evaluation of (10) is straightforward given the recursive

nature of the data. The MLE can thus be found numerically by standard optimization

techniques. Additionally, the estimation framework can be readily extended to incorporate

conditional heteroskedasticity; further details are provided in Online Appendix F.
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3 Asymptotic analysis

In this section we study some of the theoretical properties of the TVP-SMAR model, as well

as the asymptotic behavior of the MLE defined in Section 2.4. We first show in Section 3.1

that the stochastic recurrence equation (SRE) in (7) admits a unique strictly stationary and

ergodic (SE) solution, which ensures the existence of an SE process {Yt, t ∈ Z}. We then

demonstrate that the initialized filter sequence
{
f̂t(θ) = f̂t(θ, f̂0), t = 1, . . . , T

}
, when

applied to SE data, converges uniformly in θ to an SE limit for any initial value f̂0 ∈ F.

Building on these results, Section 3.2 establishes the strong consistency and asymptotic

normality of the MLE θ̂T in (10). Throughout, for a vector a = (aj) ∈ Rn, its p-norm is

denoted by ∥a∥p = (
∑n

j=1 |aj|p)1/p. For a matrix A, ∥A∥p represents the induced p-norm

(i.e., ∥A∥p = supx̸=0 ∥Ax∥p/∥x∥p), where the subscript is omitted whenever p = 2. For a

square matrixA, let ϱ(A) be its spectral radius. Moreover, let log+(x) = max{log(x), 0} for

x > 0, and let λmin(·) and λmax(·) denote the smallest and largest eigenvalues, respectively.

3.1 Stationarity and filter invertibility

We begin by introducing the following assumptions.

Assumptions: A1 There exists a complete and separable metric space (F, ∥·∥) a.s. such

that F ⊂
{
f ∈ Rm+n : sup(t,θ)∈Z×Θ ϱ

(
Gt(f ,θs)

)
< 1
}
.

A2 ∀f ∈ F, E
(
log+ supθ∈Θ

∥∥[Zt(f ,θs)
]−1∥∥) < ∞;

A3 The joint process
{
(Et,Xt,W

r
t ,W

c
t ), t ∈ Z

}
is strictly stationary and ergodic. More-

over, for t ∈ Z,

(a) the errors Et are i.i.d. and follow a zero-mean matrix-valued t distribution with

pdf given in (6), degrees of freedom ν > 2, and real symmetric spread matrices
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Σ and Ω satisfying 0 < λL ≤ λmin(Σ) ≤ λmax(Σ) ≤ λU < ∞ and 0 < λL ≤

λmin(Ω) ≤ λmax(Ω) ≤ λU < ∞, for some constants λL and λU ;

(b) the exogenous regressors Xt satisfy E
(
log+ ∥Xt∥

)
< ∞;

(c) the (observable) spatial weight matricesW r
t andW c

t have zero diagonal elements

and satisfy the moment condition E
(
log+

∥∥W r
t

∥∥)+ E
(
log+

∥∥W c
t

∥∥) < ∞.

Assumption A1 requires the existence of a Polish space in which the filters reside,

ensuring both the stability of {Yt, t ∈ Z} and the invertibility ofZt(f ,θs) = Imn−Gt(f ,θs)

for all f ∈ F. This assumption is typically not hard to verify. For instance, note that

sup(t,θ)∈Z×Θ ϱ
(
Gt(f ,θs)

)
≤ ∥f∥∞ sup(t,θ)∈Z×Θ

(
∥B∥ ∥W r

t ∥ + ∥A∥ ∥W c
t ∥
)
. If there exists

a constant C0 ∈ (0, 1) such that sup(t,θ)∈Z×Θ

(
∥B∥ ∥W r

t ∥ + ∥A∥ ∥W c
t ∥
)
≤ C0, we can

take F = {f ∈ Rm+n : ∥f∥∞ ≤ C−1
0 }, which is a closed subset of the finite dimensional

Euclidean space Rm+n and therefore (under the norm ∥ · ∥) complete and separable.

Assumption A2 is required to guarantee the existence of a logarithmic moment for the

process {Yt, t ∈ Z}. Note that Assumption A1 alone does not imply the moment condition

in Assumption A2. Essentially, for f ∈ F, Assumption A1 ensures strict positiveness and

boundedness of the absolute eigenvalues of Zt(f ,θs) uniformly in (t,θ). However, since

Zt(f ,θs) is not symmetric, this does not necessarily provide control over the individual

elements of its inverse (and also its adjoint).

Assumption A3 requires that the random components in (1) are jointly SE. It can be

shown that {Yt, t ∈ Z} is SE in our context with some additional arguments. Assumptions

A3(a)-A3(c) further impose (moment) conditions on each random component, all of which

are rather mild.

The following result establishes that the score-driven dynamics in (7) admit an SE

solution as a potential data generating process (DGP).
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Proposition 3.1 (Existence of a DGP). Consider the stochastic recurrence equation (SRE)

in Eq. (7), with the updating step provided in Proposition 2.1. Let the SRE be evaluated

at f̂ ⋆
t =

(
f̂ ⋆r⊤
t , f̂ ⋆c⊤

t

)⊤ ∈ F as f̂ ⋆
t+1 = ω + Φf̂ ⋆

t +Kst
(
Y ⋆

t , f̂
⋆
t ,θs

)
, with nonrandom ini-

tialization f̂ ⋆
0 ∈ F, where st(·) is given in (9), and Y ⋆

t = R̂∗r
t W

r
t Y

⋆
t B

⊤ +AY ⋆
t W

c
t
⊤R̂∗c

t +

CXtD
⊤ +Et for R̂

∗r
t = diag(f̂ ⋆r

t ) and R̂∗c
t = diag(f̂ ⋆c

t ). Then, for θ ∈ Θ, f̂ ⋆
t follows the

SRE given by f̂ ⋆
t+1 = ψ

⋆
t

(
f̂ ⋆
t ,θ
)
a.s., where

ψ⋆
t

(
f ,θ

)
= ω +Φf +Ks⋆t

(
f ,θs

)
, s⋆t

(
f ,θs

)
=

(
s⋆rt

(
f ,θs

)
s⋆ct

(
f ,θs

) ) , (11)

where s⋆rt
(
·,θs

)
and s⋆ct

(
·,θs

)
and their derivatives are defined explicitly in the proof of this

proposition and in Lemma E.1 .

If Assumptions A1 - A3 hold and if, moreover, for θ ∈ Θ,

SE1 E
(
log+ supf∈F

∥∥∥∥Φ+K
∂

∂f⊤s
⋆
t

(
f ,θs

)∥∥∥∥) < ∞;

SE2 E
(
log supf∈F

∥∥∥∥ ∂

∂f⊤ψ
⋆(r)
t (f ,θ)

∥∥∥∥) < 0 for some integer r ≥ 1, where ψ
⋆(r)
t ( · ,θ)

denotes the r-fold convolution of ψ⋆
t

(
· ,θ
)
as ψ

⋆(r)
t ( · ,θ) = ψ⋆

t

(
· ,θ
)
◦ ψ⋆

t−1

(
· ,θ
)
◦

. . . ◦ψ⋆
t−r+1

(
· ,θ
)
;

then, for all θ ∈ Θ, there exists a unique strictly stationary and ergodic solution
{
f ⋆
t (θ), t ∈

Z
}
with values in F, as t → ∞. Moreover, each f ⋆

t (θ) is measurable with respect to the

σ-field generated by
{
ψ⋆

t−k

(
· ,θ
)
, k ≥ 1

}
.

The proof of Proposition 3.1 builds on fundamental results by Bougerol (1993) and

Straumann and Mikosch (2006). Given the inherent complexity of our matrix-valued spa-

tial model, as seen for instance by the construction of s⋆t
(
f ,θs

)
in Lemma E.1, these

assumptions are not simple to check analytically. Nevertheless, Assumptions SE1 - SE2

echo conditions found in the seminal work of Blasques et al. (2022) within the score-driven
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literature. Notably, the r-fold convolution in Assumption SE2 serves to enlarge the con-

traction region. When r = 1, this assumption reduces to those in D’Innocenzo et al. (2024)

for the much simpler vector-valued setting.

Proposition 3.2 (Invertibility). Let {Yt, t ∈ Z} be generated by (1), with dynamics spec-

ified in Proposition 2.1, for some “true” parameter θ0 ∈ Θ. Suppose the assumptions in

Proposition 3.1 are satisfied and that Θ is compact. Moreover, assume that

IV1 E
(
log+ supθ∈Θ supf∈F

∥∥∥∥Φ+K
∂

∂f⊤st
(
Yt,f ,θs

)∥∥∥∥) < ∞;

IV2 E
(
log supθ∈Θ supf∈F

∥∥∥∥ ∂

∂f⊤ψ
(r)
t (f ,θ)

∥∥∥∥) < 0 for some integer r ≥ 1, with ψ
(r)
t ( · ,θ) =

ψt

(
· ,θ
)
◦ψt−1

(
· ,θ
)
◦ . . . ◦ψt−r+1

(
· ,θ
)
the r-fold convolution of ψt

(
· ,θ
)
.

Then, the sequence
{
f̂t(θ), t ∈ Z+

}
, initialized at any nonrandom starting value f̂0 ∈ F,

converges exponentially fast almost surely (e.a.s.) to a unique SE sequence
{
ft(θ), t ∈ Z

}
with values in F, uniformly in θ ∈ Θ, as t → ∞; that is, there exists a ρ > 1 such that

ρi supθ∈Θ
∥∥f̂t(θ)− ft(θ)∥∥ a.s.−→ 0 as t → ∞.

Proposition 3.2 establishes that the initialized filter process converges uniformly in

θ ∈ Θ to a unique SE limiting process irrespective of the initial value. This result forms

the basis for the consistency of the MLE and is known as the invertibility of the filter.

3.2 Strong consistency and asymptotic normality of the MLE

To establish the strong consistency of θ̂T , some additional assumptions are required.

Assumptions: SC1 supθ∈Θ ∥Φ∥ < 1 and sup(t,f ,θ)∈Z×F×Θ ϱ
(
Gt(f ,θs)

)
< 1.

SC2 For 0 < q2 ≤ q1/2 ≤ 1, the following moment condition holds:

E
(

sup
(θ,f)∈Θ×F

∥∥∥[Zt(f ,θs)
]−1
∥∥∥q1)+ E∥Xt∥q1 + E

∥∥W r
t

∥∥q2 + E
∥∥W c

t

∥∥q2 < ∞. (12)
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SC3 For all t ∈ Z, pY
(
Y | X t,f ,θs

)
= pY

(
Y | X t,f

†,θ†s
)
for almost every Y ∈ Rm×n

with respect to the Lebesgue measure if and only if f = f † and θs = θ†s. Moreover,

det(K0) ̸= 0, where K0 denotes the true parameter value of K in the SRE (7).

Assumption SC1 is needed to ensure the existence of a moment E
(
supθ∈Θ

∥∥ft(θ)∥∥p) <

∞ for some p > 0. Note that the condition sup(t,f ,θ)∈Z×F×Θ ϱ
(
Gt(f ,θs)

)
< 1 in Assumption

SC1 is stronger than Assumption A1. It essentially requires that there exists some ϱU ∈

[0, 1) such that F ⊂
{
f ∈ Rm+n : sup(t,θ)∈Z×Θ ϱ

(
Gt(f ,θs)

)
≤ ϱU < 1

}
. This condition

ensures that the eigenvalues of Zt(f ,θs) are uniformly bounded away from zero over all

(θ,f) ∈ Θ × F. The condition (12) in Assumption SC2 is stronger than those stated in

Assumptions A2-A3, which together imply the existence of the q1 ∈ (0, 2] moment of Yt.

Finally, Assumption SC3 imposes a generic condition for the identifiable uniqueness of the

true static parameters. There are several common approaches to ensure identification. As

discussed before, in this paper we achieve identifiability by normalizing A1,1 = B1,1 =

C1,1 = Ω1,1 = 1, with both A and B assumed to be diagonal matrices. Under this

normalization, Assumption SC3 is satisfied, provided that there exists a t ≥ 1 such that

bothW r
t andW c

t contain no zero rows. While neither Σ nor Ω is required to be diagonal

for identification, it is worth noting that we impose diagonality to facilitate a structural

interpretation on the model’s error terms Et.

The following lemma establishes that the empirical maximum likelihood objective func-

tion defined in (10), based on a nonrandom initial value f̂0 ∈ F, converges uniformly and

a.s. to a continuous objective as T → ∞.

Lemma 1. Recall L̂T (θ) = T−1
∑T

t=1 ℓt
(
f̂t(θ),θs

)
. Define LT (θ) = T−1

∑T
t=1 ℓt

(
ft(θ),θs

)
and L(θ) = E

(
ℓt
(
ft(θ),θs

))
. Under the assumptions of Proposition 3.2 and Assumptions
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SC1 - SC2, we have

sup
θ∈Θ

∣∣L̂T (θ)− L(θ)
∣∣ a.s.−→ 0, T → ∞, (13)

where L(·) is continuous on Θ.

Together, Lemma 1 and the identification condition in Assumption SC3 provide the key

elements for establishing the strong consistency of θ̂T .

Theorem 3.1 (Strong Consistency). Suppose the assumptions of Proposition 3.2 and As-

sumptions SC1 - SC3 hold. Then, for any filter initialization f̂0 ∈ F, the maximum likeli-

hood estimator defined in (10) is strongly consistent; that is, θ̂T
a.s.−→ θ0 as T → ∞.

In what follows, we introduce an additional set of assumptions to establish the asymp-

totic normality of θ̂T .

Assumptions: AN1 The compact parameter space Θ coincides with the closure of its open

interior.

AN2 There exists a constant ε > 0 and functions g0, g1 ≥ 0 such that the following holds

a.s.: for all t ∈ Z, all Y ∈ Rm×n, and all θ ∈ Bε(θ0) =
{
θ ∈ Θ : ∥θ − θ0∥ ≤ ε

}
,

∣∣∣ pY (Y | X t,ft(θ),θs
)
− pY

(
Y | X t,ft(θ0),θs0

)∣∣∣ ≤ g0(Y ,X t)∥θ − θ0∥, (14)∥∥∥∥∥∂ pY
(
Y | X t,ft(θ),θs

)
∂θ

−
∂ pY

(
Y | X t,ft(θ0),θs0

)
∂θ

∥∥∥∥∥ ≤ g1(Y ,X t)∥θ − θ0∥, (15)

where
∫
g1(Y ,X t) dY < ∞ and

∫
g2(Y ,X t) dY < ∞.

AN3 E
(
log+ supf∈F

∥∥∥∂ℓt(f ,θs0)
∂θ∂f⊤

∥∥∥) < ∞ and E
(∥∥∥∂ℓt(ft(θ0),θs0)

∂θ

∥∥∥2) < ∞.

AN4 Suppose that supθ∈Θ

∥∥∥∂2L̂T (θ)
∂θ∂θ⊤ − E

(
∂2ℓt(ft(θ),θs)

∂θ∂θ⊤

)∥∥∥ a.s.−→ 0 as T → ∞.
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Assumption AN1 ensures that partial (high-order) derivatives with respect to θ ∈ Θ are

well defined by ruling out “unusual” cases, such as whenΘ has an empty interior or consists

of isolated points; see also Lin and Lucas (2025). Assumption AN2 guarantees that, for all

Y ∈ Rm×n, integration and differentiation with respect to θ can be interchanged a.s. for the

maps θ 7→ pY
(
Y | X t,ft(θ),θs

)
and θ 7→ ∂ pY

(
Y | X t,ft(θ),θs

)/
∂θ evaluated at θ = θ0.

Note that, as usual, the integral of a scalar function of a matrix argument is interpreted as

an iterated integral over each entry of the matrix; cf. Gupta and Nagar (2018, Chapter 1.4).

Assumption AN3 imposes moment conditions needed to establish asymptotic normality,

while Assumption AN4 requires that a uniform law of large numbers can be applied to

the empirical Hessian matrix of the likelihood objective function. These two conditions

can, in principle, be derived from more primitive assumptions. However, the associated

proofs are extremely tedious in our matrix-valued setting, as they involve verifying the

invertibility of the first- and second-order derivative processes of f̂t(θ) with respect to θ,

ultimately requiring computation of third-order derivatives of the scaled score term defined

in (9). The expressions of these derivatives become increasingly long and opaque. Since

these technicalities contribute little to the overall understanding of the asymptotic theory,

we impose these conditions directly as assumptions. We expect no particular difficulties,

however, given results for scalar and vector-valued models with score-driven dynamics; see

for instance Blasques et al. (2016) and D’Innocenzo et al. (2024).

Theorem 3.2 below provides the asymptotic distribution of the estimator of the static

parameters.

Theorem 3.2. Suppose θ0 ∈ int(Θ), where int(Θ) denotes the interior of Θ. Under

the assumptions of Theorem 3.1 and Assumptions AN1 - AN4, we have
√
T
(
θ̂T − θ0

) d→

N
(
0,I−1

0

)
as T → ∞, provided that I0 = E

(
∂ℓt(ft(θ0),θs0)

∂θ
∂ℓt(ft(θ0),θs0)

∂θ⊤

)
is invertible.
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4 Simulation study

This section consists of two main parts. First, we examine whether the asymptotic results

derived in Section 3 hold up in finite samples under correct model specification. Second, we

assess the finite-sample performance of the proposed score-driven filters in terms of mean

squared error.

Correct model specification. We set (m,n) = (4, 3) and omit the exogenous vari-

ables. Let diag(A) = (1, 0.9, 0.1, 0.8)⊤, diag(B) = (1, 0.8, 1.2)⊤, Σ = 5 · Im, diag(Ω) =

(1, 0.8, 0.8)⊤, Et ∼ T4,3(5,Σ,Ω), where ω, K, and Φ in (7) are specified given by

ω =

ωr

ωc

 , K =

kr · Im 0

0 kc · In

 , Φ =

ϕr · Im 0

0 ϕc · In

 ,

with ωr = (−0.045,−0.015, 0.015, 0.045)⊤, ωc = (−0.651, 0, 0.651)⊤, kr = 0.05, kc = 0.07,

ϕr = 0.95, ϕc = 0.8. We simulate a 4 × 4 row connection network W r
t ≡ W r, where

vec(W r) is simulated withW r
i,j

i.i.d.∼ N(0, 1). We then remove the diagonal elements ofW r

and perform column normalization. A similar procedure is followed for the 3 × 3 column

connection network W c
t ≡W c. Next, we fix W r and W c, simulate 500 random data sets

for each of the three sample sizes T = 500, 1000, 2000, and estimate the model for each

simulated data set using the MLE defined in (10).

Figure 2 shows the kernel density estimates of a subset of the model parameters. Results

are similar for the remaining parameters and are therefore omitted. We see that as the

sample size T increases, the kernel density estimates center more and more tightly around

the true value (indicated by the red vertical line). Also the shape of the distribution

appears to converge to the normal distribution. This suggests that the asymptotic results of
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Theorem 3.2 provide a reasonable approximation and, thus, an adequate basis for inference

in finite samples.

Model misspecification. To investigate whether our new model can successfully filter

the spatial spillover dynamics if the model is misspecified, we consider a setting with

(m,n) = (2, 2), diag(A) = diag(B) = (1, 1)⊤, Σ = 5 · Im, and diag(Ω) = (0.8, 0.8)⊤.

The connection matrices W r and W c follows the same procedure as before. We assume

Et ∼ T2,2(3,Σ,Ω). Given an initial value Rr
0, we consider five types of dynamics for Rr

t =

diag(Rr
1,1,t,R

r
2,2,t): (1) Const: R

r
i,i,t = R

r
i,i,0; (2) FastS: R

r
i,i,t = R

r
i,i,0

(
1+0.6·sin(2πt/200)

)
;

(3) SlowS: Rr
i,i,t = R

r
i,i,0

(
1+0.6·sin(2πt/20)

)
; (4) Break: Rr

i,i,t = R
r
i,i,0

(
1+0.91{t > T/2}

)
;

(5) AR: Rr
i,i,t = 0.01Rr

i,i,0 + 0.99Rr
i,i,t−1 + 0.01ei,t, where ei,t

i.i.d.∼ N (0, 1) for i = 1, 2. We

then generate Yt according to (1), fixing the initial values as Rr
0 = Rc

0 = diag(0.5, 0.5),

and considering T ∈ {250, 500, 1000}. We set Rr
t = R

c
t and let the two diagonal elements

of Rr
t follow one of the (possibly) different dynamic specifications formulated above. For
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Table 1: Empirical MSE of time-varying spatial spillover effects.

Dynamics T Static-SMAR-t TVP-SMAR-t Static-SMAR-N TVP-SMAR-N

Const + Break
250 0.205 0.040 0.213 0.048
500 0.201 0.032 0.209 0.040
1000 0.201 0.026 0.208 0.035

SlowS + Break
250 0.229 0.068 0.243 0.075
500 0.230 0.048 0.245 0.060
1000 0.234 0.051 0.250 0.063

FastS + Break
250 0.236 0.069 0.253 0.081
500 0.234 0.063 0.251 0.074
1000 0.235 0.059 0.251 0.068

Break + AR
250 0.127 0.042 0.139 0.051
500 0.127 0.033 0.138 0.041
1000 0.124 0.026 0.133 0.033

each case, we repeat the simulation M = 200 times. We then compute the mean squared

error (MSE) as (4MT )−1
∑T

t=1

∑M
k=1

(
∥R̂(k),r

t −R(k),r
t ∥2 + ∥R̂(k),c

t −R(k),c
t ∥2

)
, where R̂

(k),r
t

and R
(k),r
t denote the estimated and true paths of Rr

t in the kth replication, respectively,

and similarly for R̂
(k),c
t and R

(k),c
t .

Table 1 displays a subset of the results. The full set of results can be found in Ap-

pendix G.1. Three key findings emerge. First, the TVP-SMAR-t model consistently

achieves the lowest MSE across all scenarios and sample sizes, confirming its robustness

and superior ability to capture heterogeneous time-varying spillover effects, even if the

model is dynamically misspecified. Second, models based on the matrix Student’s t dis-

tribution generally outperform their Gaussian counterparts, particularly in nonstationary

environments such as Break and FastS. Third, estimation accuracy improves with larger

sample sizes, despite the misspecification of the dynamics of Rr
t and Rc

t . We conclude

that the new model can be estimated using typical empirical samples sizes and that the

asymptotic theory provides a good framework for inference and for the convergence of the

filtered paths.
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5 Two empirical applications

We study two applications. Section 5.1 examines an international bilateral import-export

trade network, while Section 5.2 analyzes weekly sector-level global stock returns. The

variables of interest in both applications are subject to incidental shocks.

5.1 Application 1: dynamic transport network

We study the monthly bilateral trade data between Canada (CA), Mainland China (CN),

Mexico (MX), and United States (US) using the IMF-DOTS database and constructing a

matrix valued import-export variable as in Cai et al. (2025). To account for discrepancies in

reported import and export values between countries, we use the CIF (Cost, Insurance, and

Freight) import data to represent trade flows between countries and regions. For example,

the value of China’s exports to the United States in January 2022 is based on the import

figures reported by the United States for the same month. We compute the year-on-year

growth rate of monthly imports.2

Figure 3(a) displays the monthly trade growth rate time series for the four economies,

covering 241 time points from October 2004 to October 2024. For example, the time series in

the first row and second column represents the monthly export from China (CN) to Canada

(CA). The figure clearly shows that the import-export time series often exhibit outliers, par-

ticularly around the COVID-19 pandemic, where some countries’ trade figures experienced

significant jumps. This underlines the importance of employing a model that can account

for such large fluctuations. For the connection network, we defineW r
t =W c

t =W , where

W is a 4× 4 matrix representing the inverse of geographical distances between countries,

with distance measurements following the methodology described in Mayer and Zignago

2The year-on-year growth rate rt is calculated by rt = (yt − yt−12)/yt−12 × 100, where yt denotes the
monthly import level.
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(a) Monthly import-export time series data
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(b) Weekly country-sector time series data

Figure 3: Data used in Section 5.1 (left) and Section 5.2 (right).

Table 2: Estimation results for global trade network dynamics.

static dynamic static dynamic
scalar scalar diagonal diagonal

Loglik -3805 -3792 -2988 -2879

AIC 7672 7650 6041 5820

(2011). We normalize W by its largest eigenvalue. It is important to note that while

the row-wise and column-wise connection matrices are identical, the economic interpreta-

tions of row-wise and column-wise spatial spillover effects differ. Specifically, Rr
t captures

the time-varying spatial spillover effects from the perspective of imports, reflecting how a

country’s import growth rate is influenced by changes in the import growth rates of other

countries. By contrast, Rc
t examines the export spillover effects, describing how a country’s

export growth rate is affected by fluctuations in other countries’ export growth rates.

Table 2 presents the full-sample log-likelihood and AIC results for four different model

specifications. The first two columns correspond to homogeneous models: the first assumes

Rr
t = ρrI4 and Rc

t = ρcI4, while the second one allows for time-varying (scalar) spillover
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parameters, Rr
t = ρrtI4 and Rc

t = ρctI4. The last two columns represent heterogeneous

model specifications with diagonal Rr
t and Rc

t . To maintain parsimony, we assume that

K is diagonal and that Φ = diag(ϕrIm, ϕ
cIn). Despite this pooling of some of the static

parameters, the individual time-varying parameters in Rr
t and R

c
t are still allowed to be all

different. Overall, compared to the static homogeneous model (column 1), incorporating

heterogeneity (column 3) results in an increase of 817 points in the log-likelihood, while

introducing time-varying parameters further improves the log-likelihood by an additional

109 points. A comparison of the first and second columns, as well as the third and fourth

columns, reveals that dynamic models typically yield higher log-likelihoods and lower AIC

values than their static counterparts. This highlights the importance of incorporating dy-

namic spillover effects in matrix network dynamics. Furthermore, a comparison of the first

and third columns, as well as the second and fourth columns, shows that accounting for

heterogeneity significantly improves model fit, thereby validating the benefits of incorpo-

rating individual heterogeneity at both the row and column levels from an in-sample fitting

perspective. Both time-variation as well as row and column heterogeneity thus appear to

be important stylized facts.

Figure 4 presents the estimated time-varying spatial spillover effects from the import

and export perspectives under both homogeneous and heterogeneous scenarios. Comparing

the left and right panels, the homogeneous models are too restrictive: the heterogeneous

spatial spillovers exhibit much greater variability and substantial differences across coun-

tries. It is thus important to consider network dynamics within a heterogeneous rather

than homogeneous matrix spatial autoregressive model setting. Comparing the import and

export spillovers in Figures 4(b) and 4(d), we also see that the export spatial spillover

effects are more dispersed than their import counterparts. In particular, from an imports
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Figure 4: Filtered spatial autoregressive parameters for the import and export trade flow.
The left and right panels are for the homogeneous and heterogeneous models, respectively.
The sample ranges from October 2004 to October 2024.

perspective, Mexico (MX) experiences stronger positive spillover effects, while from an ex-

ports perspective, Canada (CA) experiences more pronounced negative spillover effects. We

also see that there is strong time-variation in several of the individual spillover parameters

(such as the US, Mexico, China), and somewhat less in others (like Canada).

Also note that the spillover parameters can exceed one or go below zero. The spec-

tral radius ϱ(Gt), however, remains well below 1 in all cases, illustrating that the model

remains spatially stable. We also see that pooling all the different types of spillover into

a homogeneous (scalar) specification as in Figures 4(a) and 4(c) masks the wide cross-

sectional variation in spillover strengths. In addition, it also reduces the time-variation,

as some spatial spillovers increase at a time where others decrease. Due to the pooling,
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these off-setting effects cause the scalar spillover parameter to hardly move or not move

at all. For instance, during 2015-2017, Mexico’s and China’s export spillover parameters

show substantial variation and go through a trough and a peak period, respectively. The

scalar model in Figure 4(c), however, hardly moves at all because it pools these offsetting

parameters and their dynamics, and because a scalar parameter needs to remain between

−1 and +1 for spatial stability.

5.2 Application 2: global equity market network

In our second application we highlight the usefulness of the restricted TVP-SMAR specifi-

cation in Eq. (3) and consider weekly stock (log) return data from four sectors: Insurance

(Ins), Technology (Tech), Health Care (HC), and Basic Resources (BR), across the same

four countries examined in Section 5.1. The data come from the London Stock Exchange

Group (LSEG) Datastream database and span the period from March 08, 2009, to March

10, 2024, comprising 784 weekly observations. Figure 3(b) shows the data.

Since column-wise network information is not available, we focus exclusively on row-wise

spatial spillover effects, corresponding to country-level interactions. The row-wise time-

varying connection matrixW r
t is constructed using the time-varying trade figures between

countries using the IMF-DOTS database. We normalize W r
t by its largest eigenvalue at

each time point.

Table 3 compares the in-sample performance of the four alternative model specifications.

In line with our earlier findings, incorporating time-variation enhances the in-sample fit.

We also see that the network heterogeneity adds less in this case. This outcome may

be attributed to the heterogeneity that is already captured by the heterogeneity in the

row-wise network connection matrix W r
t .
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Table 3: Estimation results for global equity markets.

static dynamic static dynamic
scalar scalar diagonal diagonal

Loglik -16075.09 -15969.04 -16068.98 -15946.24

AIC 32240 32028 32228 31994

To investigate the out-of-sample performance of the different models, we split the data

into a training set consisting of the first 680 observations, and a test set comprising the last

104 observations (about two years). For each week in the forecasting period, each model

provides a forecast of next week’s covariance matrix of the returns. We use these forecasts

to construct a minimum variance portfolio (MVP) for each model and each week by solving

the optimization problem:

min
wt∈R16

w⊤
t Zt+1(Ωt+1 ⊗Σt+1)Z

⊤
t+1wt, Zt =

(
Imn − (B ⊗Rr

tW
r
t )
)−1

,

where Ωt and Σt are indexed by t in case we allow for conditional heteroskedasticity of

the structural shocks; see Appendix F. We do so with and without short-sale constraints

(wt ≥ 0). We compare our model with the recent matrix factor GARCH (MF-GARCH)

model of Yu et al. (2024), which shows better out-of-sample performance than traditional

multivariate GARCH-type models.

Table 4 summarizes the out-of-sample annualized average returns (AV), their standard

deviation (SD), the information ratio (IR = AV/SD), and the p-values of the model con-

fidence set (MCS) test for each model. Details on the computation of these numbers are

provided in Appendix G.2. For each measure, the model with the best performance is

highlighted in bold. The results clearly show that accounting for both time-variation in

spatial spillovers and heterogeneity delivers superior out-of-sample performance, yielding

the highest AV, the lowest SD, the highest IR, and the highest p-value among all models
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Table 4: Performance comparison of unconstrained and constrained MVP strategies

Unconstrained MVP Constrained MVP

Model AV SD IR MCS AV SD IR MCS

dynamic diagonal 3.65 12.09 2.18 1.00 3.88 12.01 2.33 1.00

static diagonal 0.98 12.12 0.58 0.93 0.98 12.12 0.59 0.92

dynamic scalar -1.90 12.75 -0.51 0.32 0.97 12.25 0.57 0.31

static scalar 0.92 12.18 0.54 0.32 0.92 12.18 0.54 0.31

MF-GARCH -1.92 14.97 -0.92 0.01 -2.55 14.53 -1.12 0.01

equal weights 0.24 13.65 0.12 0.02 0.24 13.65 0.13 0.02

considered, including the MF-GARCH model.

6 Conclusion

In this paper we introduced the time-varying parameter spatial matrix autoregressive

(TVP-SMAR) model. The model integrated matrix-valued time series analysis, time-

varying spatial dependence, and spatial heterogeneity into one unified modeling frame-

work. By explicitly exploiting the two-way spatial spillover effects along rows and columns,

the model addresses the inherent complexities of matrix-valued time series data in a flex-

ible, yet parsimonious way. The new model also leveraged the matrix-valued Student’s

t-distribution to provide robust score-driven dynamics for the time-varying spillovers and

encompassed a wide range of earlier spatial models. In particular, the use of a matrix Stu-

dent’s t distribution sets the model apart from spatial autoregressions applied to vectorized

matrix-valued observations, as it also exploits the differences between the row and column

dimensions of the data.

Despite its flexibility, the model could still be estimated by straightforward maximum

likelihood procedures, for which we proved the required consistency and asymptotic nor-

mality result. We also showed that the model was invertible, such that the estimated
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time-varying spillover paths can be recovered from the data and these paths converge ex-

ponentially fast almost surely to their true, limiting counterparts.

Empirically, we showcased the model’s usefulness through two different applications.

The first application based on international trade data demonstrated the importance of

incorporating both dynamic and heterogeneous spatial spillover effects when analyzing

trade relationships at the country level. It also revealed that the spatial spillovers can

differ substantially across the row and column dimensions of the matrix-valued data. In our

second application we examined global stock market data and applied a restricted version

of the TVP-SMAR to portfolio selection problems. We showed that the TVP-SMAR with

time-varying and heterogeneous spillovers outperformed various alternative specifications,

including a recent matrix-valued factor GARCH model, in an out-of-sample setting. Both

real-world applications underscore the model’s effectiveness in parsimoniously capturing

complex, dynamic interactions in large-dimensional contexts.
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Further Notation: Recall that a vector-valued sequence {at, t ∈ Z} is said to converge

to zero exponentially fast almost surely (e.a.s.) as t → ∞, denoted by at
e.a.s.−→ 0, if there ex-

ists some γ > 1 such that γt∥at∥
a.s.−→ 0, where

a.s.−→ denotes almost sure (a.s.) convergence.

To facilitate the proofs in the sections that follow, we introduce some additional notation:

(i) For a matrix A, ∥A∥F denotes the Frobenius norm (i.e., ∥A∥F =
√

tr(A⊤A)). (ii)

The symbol C denotes a generic positive constant, which may differ from one occurrence

to another. (iii) Consider a complete separable metric space denoted by (E, dE). Following

Bougerol (1993, Section 3), we define the Lipschitz coefficient ρ associated with a random

map φ : E → E as:

ρ(φ) = sup
x,y∈E, x ̸=y

{
dE
(
φ(x), φ(y)

)
dE(x, y)

}
. (N1)

It is important to note that if φ is measurable, then so is ρ(φ) (Bougerol, 1993, p. 955).

This definition will be used repeatedly in the subsequent sections, with the specific space E

being identified in each instance. (iv) We adopt the “good” notation for matrix derivatives

as suggested by Magnus and Neudecker (2019), and define:

DXF (X) =
∂vec(F (X))

∂vec(X)⊤
. (N2)
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A Proof of Proposition 2.1

In what follows, we use | det(Q)| to denote the absolute value of the determinant of a matrix

Q, and |Q| to denote the determinant itself. RecallGt = B⊗diag(f r
t )W

r
t +diag(f c

t )W
c
t ⊗

A and E t = Yt−diag(f r
t )W

r
t YtB

⊤−AYtW
c
t
⊤diag(f c

t )−CXtD
⊤. DefineΞt = E tΩ

−1E⊤
t .

Note that Yt is a linear transformation of Et as defined in (1). Write f r
t = (f r

1,t, . . . , f
r
m,t)

⊤

and f c
t = (f c

1,t, . . . , f
c
n,t)

⊤. By Gupta and Nagar (2018, Chapter 1.3), one has pY
(
Yt |

X t,ft,θs
)
= pE

(
E t | X t,ft,θs

)∣∣∣ det (DYtE t

)∣∣∣ = pE
(
E t | X t,ft,θs

)∣∣ det(Imn −Gt)
∣∣. Given

that ϱ(Gt) < 1, the determinant of Imn −Gt is positive. Then, the log conditional density

of Yt is given by:

log pY
(
Yt | X t,ft,θs

)
= log

Γm

(
(ν +m+ n− 1)/2

)
Γm

(
(ν +m− 1)/2

)(
(ν − 2)π

)mn/2
− n

2
log |Σ| − m

2
log |Ω|

+ log |Imn −Gt| −
(ν +m+ n− 1)

2
log
∣∣∣Im + (ν − 2)−1Σ−1Ξt

∣∣∣. (A.1)

Note that d log |X| = tr(X−1dX) for any matrix X. This implies

d log pY
(
Yt | X t,ft,θs

)
= −1

2
tr
(
Σ−1W t dΞt

)
− tr

(
Z−1

t dGt

)
=: P1,t − P2,t, (A.2)

where W t =
ν+m+n−1

ν−2

(
Im + (ν − 2)−1ΞtΣ

−1
)−1

, and Zt = Imn −Gt (also defined in the

proposition).

For P1,t, note that −dE t =
∑m

j=1P
(j)
m W

r
t YtB

⊤df r
j,t +

∑n
j=1AYtW

c
t
⊤P (j)

n df c
j,t, where

P (j)
K denotes K ×K matrix with zeros everywhere except for a single 1 at the jth diagonal

position for any K ∈ Z+ and j = 1, . . . , K. Then, we have

−dΞt = (−dE t)Ω
−1E⊤

t + E tΩ
−1(−dE t)

⊤
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=
m∑
j=1

(
P (j)

m W
r
t YtB

⊤Ω−1E⊤
t + E tΩ

−1BY ⊤
t W

r⊤
t P (j)

m

)
df r

j,t

+
n∑

j=1

(
AYtW

c⊤
t P (j)

n Ω
−1E⊤

t + E tΩ
−1P (j)

n W
c
t Y

⊤
t A

⊤
)
df c

j,t.

SinceΣ is symmetric,Σ−1W t =
ν+m+n−1

ν−2

(
Σ+(ν−2)−1Ξt

)−1
is also symmetric. It implies

that tr
(
Σ−1W t(Q + Q⊤)

)
= tr

(
Σ−1W tQ

)
+ tr

((
Σ−1W t

)⊤
Q
)⊤)

= 2tr
(
Σ−1W tQ

)
for

any Q ∈ Rm×m. Using this identity and given the symmetry of Ω, it follows that

P1,t =
1

2

m∑
j=1

tr
(
Σ−1W t

(
P (j)

m W
r
t YtB

⊤Ω−1E⊤
t + E tΩ

−1BY ⊤
t W

r⊤
t P (j)

m

))
df r

j,t

+
1

2

n∑
j=1

tr
(
Σ−1W t

(
AYtW

c⊤
t P (j)

n Ω
−1E⊤

t + E tΩ
−1P (j)

n W
c
t Y

⊤
t A

⊤))df c
j,t

=
m∑
j=1

tr
(
Σ−1W tP (j)

m W
r
t YtB

⊤Ω−1E⊤
t

)
df r

j,t +
n∑

j=1

tr
(
Σ−1W tAYtW

c⊤
t P (j)

n Ω
−1E⊤

t

)
df c

j,t

=
m∑
j=1

[
W r

t YtB
⊤Ω−1E⊤

t Σ
−1W t

]
j,j
df r

j,t +
n∑

j=1

[
Ω−1E⊤

t Σ
−1W tAYtW

c⊤
t

]
j,j
df c

j,t,

where [Q]k,ℓ denotes the (k, ℓ)th element of the matrix Q.

Similarly, we obtain

P2,t =
m∑
j=1

tr
(
Z−1

t

(
B ⊗P (j)

m W
r
t

))
df r

j,t +
n∑

j=1

tr
(
Z−1

t

(
P (j)

n W
c
t ⊗A

))
df c

j,t

=
m∑
j=1

[
vec
(
B⊤ ⊗W r⊤

t P (j)
m

)]⊤
vec
(
Z−1

t

)
df r

j,t +
n∑

j=1

[
vec
(
W c⊤

t P (j)
n ⊗A⊤)]⊤vec(Z−1

t

)
df c

j,t,

where the second step follows from the identity tr(Q1Q2) =
[
vec(Q⊤

1 )]
⊤vec(Q2) for any

compatible matricesQ1,Q2. Combining these results, we obtain that d log pY
(
Yt

∣∣X t,ft,θs
)

equals to
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m∑
j=1

([
W r

t YtB
⊤Ω−1E⊤

t Σ
−1W t

]
j,j

−
[
vec
(
B⊤ ⊗W r⊤

t P (j)
m

)]⊤
vec
(
Z−1

t

))
df r

j,t

+
n∑

j=1

([
Ω−1E⊤

t Σ
−1W tAYtW

c⊤
t

]
j,j

−
[
vec
(
W c⊤

t P (j)
n ⊗A⊤)]⊤vec(Z−1

t

))
df c

j,t.

Note that the coefficient associated with df r
j,t yields ∂ log pY (Yt|X t,ft,θs)

∂fr
j,t

, and similarly for

df c
j,t. These observations lead to (9).

S5



B Proofs of filter properties

Proof of Proposition 3.1. We treat the sequence
{
f̂ ⋆
t+1, i ∈ Z+

}
as a random process

that takes values in the Polish space (E, dE) =
(
F, ∥ · ∥

)
(see the discussion above (N1)),

and then apply Theorem 3.1 of Bougerol (1993) to obtain the proposition. First, note that

under Assumption A1 it holds a.s. that

∣∣Zt

(
f̂ ⋆
t ,θs

)∣∣ vec(Y ⋆
t ) = Z̃

⋆
t vec

(
CXtD

⊤ +Et

)
, (B.1)

where Z̃⋆
t = Z̃t

(
f̂ ⋆
t ,θs

)
with Z̃t

(
f ,θs

)
=
∣∣Zt(f ,θs)

∣∣Zt(f ,θs)
−1. DefineW⋆

t =
ν+m+n−1

ν−2

(
Σ+

(ν−2)−1EtΩ
−1E⊤

t

)−1
, and let Sk×k2 be a selection matrix such that diag(Q) = Sk×k2 vec(Q)

for any k × k matrix Q, where k ∈ Z+. This, for instance, allows us to write

diag
(
W r

t Y
⋆
t B

⊤Ω−1E⊤
t W⋆

t

)
= Sm×m2vec

(
W r

t Y
⋆
t B

⊤Ω−1E⊤
t W⋆

t

)
= Sm×m2

((
W⋆

tEtΩ
−1B

)
⊗W r

t

)
vec(Y ⋆

t ).

Then, for θ ∈ Θ, using (B.1), the SRE can equivalently be reformulated as f̂ ⋆
t+1 = ϕ

⋆
t

(
f̂ ⋆
t

)
=

ψ⋆
t

(
f̂ ⋆
t ,θ
)
, where ψ⋆

t

(
·,θ
)
is given in (11) with

s⋆rt
(
f ,θs

)
= Sm×m2

((
W⋆

tEtΩ
−1B

)
⊗W r

t

)
× Z̃t(f ,θs) vec

(
CXtD

⊤ +Et

)
− brt

(
Z̃t(f ,θs),B

)
, (B.2)

s⋆ct
(
f ,θs

)
= Sn×n2

(
W c

t ⊗
(
Ω−1E⊤

t W⋆
tA
))

× Z̃t(f ,θs) vec
(
CXtD

⊤ +Et

)
− bct

(
Z̃t(f ,θs),A

)
. (B.3)

Since the joint process
{
(Et,Xt,W

r
t ,W

c
t ), t ∈ Z

}
is SE (Assumption A3), it follows that

{ϕ⋆
t} is also SE for any θ ∈ Θ (see, e.g., White, 2001, Theorem 3.35). As in Lin and Lucas

S6



(2025, Proposition 3), the following high-level (HL) conditions suffice to apply Theorem

3.1 in Bougerol (1993) or Straumann and Mikosch (2006, Theorem 2.8): For θ ∈ Θ,

HL1 E
(
log+

∥∥ϕ⋆
1

(
f̂ ⋆
0

)
− f̂ ⋆

0

∥∥) < ∞ for some f̂ ⋆
0 ∈ F;

HL2 E
(
log+ ρ(ϕ⋆

1)
)
< ∞;

HL3 E log ρ
(
ϕ

⋆(r)
t

)
< 0 for some r ≥ 1, where ϕ

⋆(r)
t = ϕ⋆

t ◦ ϕ⋆
t−1 ◦ · · · ◦ ϕ⋆

t−r+1 is the r-fold

convolution of ϕ⋆
t (·).

Verification of Condition HL1: For completeness, the following inequalities are adopted

from Lin and Lucas (2025, (B.3) - (B.4)): For any matricesXi with compatible dimensions,

where i = 1, . . . , K for K ∈ Z+, we have

log+

∥∥∥∥∥
K∏
i=1

Xi

∥∥∥∥∥ ≤ log+

(
K∏
i=1

∥Xi∥

)
≤

K∑
i=1

log+ ∥Xi∥, (B.4)

log+

∥∥∥∥∥
K∑
i=1

Xi

∥∥∥∥∥ ≤ log+

(
K∑
i=1

∥Xi∥

)
≤ log(K) +

K∑
i=1

log+ ∥Xi∥. (B.5)

Using (B.4) - (B.5), we obtain

E
(
log+

∥∥ϕ⋆
1

(
f̂ ⋆
0

)
− f̂ ⋆

0

∥∥) ≤ log(3) + log+ ∥ω∥

+ log+
∥∥(Φ− Im+n

)
f̂ ⋆
0

∥∥+ log+ ∥K∥+ E
(
log+ ∥s⋆1

(
f̂ ⋆
0 ,θs

)
∥
)
, (B.6)

for any θ ∈ Θ. Since
{
s⋆t
(
· ,θs

)
, t ∈ Z

}
is strictly stationary, it suffices to show that

E
(
log+

∥∥s⋆t (f̂ ⋆
0 ,θs

)∥∥) < ∞. By the norm equivalence in finite dimensional spaces, it

suffices to consider each block in s⋆t
(
f̂ ⋆
0 ,θs

)
separately. It is well known ∥X1 ⊗ X2∥ =

∥X1∥ ∥X2∥ for any matrices X1,X2. Using (B.4) - (B.5), we have, for θ ∈ Θ,
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E
(
log+ ∥s⋆rt

(
f̂ ⋆
0 ,θs

)
∥
)
≤ C + E

(
log+

∥∥W⋆
tEtΩ

−1
∥∥+ log+

∥∥W r
t

∥∥+ log+
∥∥Z̃t(f̂

⋆
0 ,θs)

∥∥
+ log+

∥∥vec(CXtD
⊤ +Et

)∥∥+ log+
∥∥brt(Z̃t(f̂

⋆
0 ,θs),B

)∥∥). (B.7)

To proceed, we will repeatedly use the following property: for any random matrixQ, if there

exists an p > 0 such that E∥Q∥p < ∞, then E
(
log+ ∥Q∥

)
< ∞. First, the real matrices Σ

and Ω are positive definite (Assumption A3(a)). It follows that E
(
log+

∥∥W⋆
tEtΩ

−1
∥∥) <

∞ because supt∈Z
∥∥W⋆

tEtΩ
−1
∥∥ ≤ C

∥∥Σ−1/2
∥∥( supt∈Z

∥∥W⋆1/2
t EtΩ

−1/2
∥∥)∥∥Ω−1/2

∥∥ ≤ C.

Second, E
(
log+

∥∥W r
t

∥∥) + E
(
log+

∥∥Z̃t(f̂
⋆
0 ,θs)

∥∥) < ∞ follows directly from Assumptions

A1, A2, and A3(c). Third, given Assumption A3(b) and the fact that, in finite dimensions,

E
∥∥vec(Et)

∥∥q < ∞ for any q ∈ (0, ν), we obtain E
(
log+

∥∥vec(CXtD
⊤ + Et

)∥∥) < ∞.

Finally, it suffices to consider each element of brt
(
Z̃t(f̂

⋆
0 ,θs),B

)
. Note that |tr(Q)| ≤

mn∥Q∥ for any Q ∈ Rmn×mn. For j = 1, . . . ,m, we have

E
(
log+

∣∣∣tr((B ⊗P (j)
m W

r
t

)
Z̃t(f̂

⋆
0 ,θs)

)∣∣∣)
≤ E

(
log+(mn) + log+ ∥B∥+ log+ ∥W r

t ∥+ log+
∥∥Z̃t(f̂

⋆
0 ,θs)

∥∥) < ∞.

This implies E
(
log+

∥∥brt(Z̃t(f̂
⋆
0 ,θs),B

)∥∥) < ∞. Then, E
(
log+ ∥s⋆rt

(
f̂ ⋆
0 ,θs

)
∥
)
< ∞ fol-

lows from (B.7). By similar arguments, one can show that the second block s⋆ct
(
f̂ ⋆
0 ,θs

)
in

s⋆t
(
f̂ ⋆
0 ,θs

)
satisfies E

(
log+ ∥s⋆ct

(
f̂ ⋆
0 ,θs

)
∥
)
< ∞.

Verification of Condition HL2: By applying the mean value theorem for vector-valued

functions in Rudin (1976, Theorem 9.19), we have

ρ(ϕ⋆
1) = sup

∥f1−f2∥>0

∥ϕ⋆
1(f1)− ϕ⋆

1(f2)∥
∥f1 − f2∥

≤ sup
f∈F

∥∥∥∥Φ+K
∂

∂f⊤s
⋆
t

(
f ,θs

)∥∥∥∥. (B.8)
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Condition HL2 is then fulfilled under Assumption SE1.

Verification of Condition HL3: Similarly, by the mean value theorem above, we have

ρ
(
ϕ

⋆(r)
t

)
= sup

∥f1−f2∥>0

∥∥ϕ⋆(r)
t (f1)− ϕ⋆(r)

t (f2)
∥∥

∥f1 − f2∥
≤ sup

f∈F

∥∥∥∥ ∂

∂f⊤ϕ
⋆(r)
t (f)

∥∥∥∥. (B.9)

Condition HL3 is also satisfied under Assumption SE2.

Proposition 3.1 follows directly from Theorem 3.1 of Bougerol (1993), together with

the fact that, for any θ ∈ Θ, f ⋆
t (θ) admits an almost sure representation in terms of{

ψ⋆
t−k

(
· ,θ
)
, k ≥ 1

}
and is therefore measurable with respect to the σ-field it generates;

see also Straumann and Mikosch (2006, Theorem 2.8).

Next, we establish the invertibility of the filter. To that end, additional notation is

introduced. Let C0
(
Θ,F

)
denote the space of continuous F-valued functions onΘ, equipped

with the supremum norm ∥·∥Θ, defined by ∥f∥Θ = supθ∈Θ ∥f(θ)∥ for f ∈ C0
(
Θ,F

)
. Given

that dim(f) < ∞,
(
C0
(
Θ,F

)
, ∥ · ∥Θ

)
is a complete and separable (and thus Polish) space,

provided that Θ is compact (Kechris, 2012, Theorem 4.19).

Proof of Proposition 3.2. In contrast to Proposition 3.1, the result here requires con-

vergence to be uniform in θ ∈ Θ. To invoke Bougerol (1993, Theorem 3.1), we treat the

sequence
{
f̂t(·), t ∈ Z+

}
, initialized at some f̂0 ∈ F, as a sequence of random elements

in the Polish space (E, dE) =
(
C0
(
Θ,F

)
, ∥ · ∥Θ

)
; see Eq. (N1). Moreover, one can write

f̂t+1 = ϕt

(
f̂t
)
, where the random maps ϕt :

(
C0
(
Θ,F

)
, ∥ · ∥Θ

)
→
(
C0
(
Θ,F

)
, ∥ · ∥Θ

)
are

given by
[
ϕt(f)

]
(θ) = ψt

(
f(θ),θ

)
with ψt

(
· ,θ
)
provided in (7).

Note that
{
ϕt, t ∈ Z

}
is SE. This follows from the following arguments. If {Ut, t ∈ Z}

is an SE sequence and Vt = F (Ut,Ut−1, . . .) for some measurable function F that is inde-
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pendent of t, then {Vt, t ∈ Z} is also SE; see, for example, White (2001, Theorem 3.35). It

is then straightforward to verify that the joint process
{
(Ut,Vt), t ∈ Z

}
is SE as well. Since

f ⋆
t (θ0) is measurable with respect to the σ-field generated by

{
(Es,Xs,W

r
s ,W

c
s ), s ≤ t−1

}
(Proposition 3.1), the process

{
(f ⋆

t (θ0),Et,Xt,W
r
t ,W

c
t ), t ∈ Z

}
is SE under Assump-

tion A3. It then follows that the process
{
(Yt,Xt,W

r
t ,W

c
t ), t ∈ Z

}
is jointly SE, which

in turn implies that
{
ϕt, t ∈ Z

}
is SE.

As in Proposition 3.1, the following high-level conditions (abbreviated as H̃L) are suffi-

cient to apply Theorem 3.1 of Bougerol (1993) and Theorem 2.8 of Straumann and Mikosch

(2006):

H̃L1 E
(
log+

∥∥ϕ1(f̂0)− f̂0
∥∥
Θ

)
< ∞, where f̂0(θ) = f̂0 ∈ F for all θ ∈ Θ;

H̃L2 E
(
log+ ρ(ϕ1)

)
< ∞;

H̃L3 E
(
log ρ

(
ϕ

(r)
t

))
< 0 for some integer r ≥ 1, where ϕ

(r)
t = ϕt ◦ ϕt−1 ◦ · · · ◦ ϕt−r+1 is

the r-fold convolution of ϕt.

Verification of Condition H̃L1: By repeatedly applying (B.4)- (B.5), and using the

strict stationarity of {ϕt}, we obtain

E
(
log+

∥∥ϕ1(f̂0)− f̂0
∥∥
Θ

)
≤ log(3) + log+ sup

θ∈Θ
∥ω∥+ log+ sup

θ∈Θ

∥∥(Φ− Im+n

)
f̂ ⋆
0

∥∥
+ log+ sup

θ∈Θ
∥K∥+ E

(
log+ sup

θ∈Θ
∥st
(
Yt, f̂0,θs

)
∥
)
. (B.10)

Since Θ is compact, it remains to verify that the last quantity is finite. By the norm

equivalence in finite dimensional spaces, it suffices to consider each block in st
(
Yt, f̂0,θs

)
separately. Note that ∥diag(Q)∥ ≤

√
k ∥Q∥ for any k × k matrix Q with k ∈ Z+. For the
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upper block, we have

E
(
log+ sup

θ∈Θ

∥∥srt(Yt, f̂0,θs
)∥∥) ≤ C+E

(
log+ sup

θ∈Θ

∣∣∣ det (Zt(f̂0,θs)
)∣∣∣+log+

∥∥W r
t

∥∥+log+
∥∥Yt

∥∥
+ log+ sup

θ∈Θ

∥∥∥Ω−1E t(f̂0,θs)
⊤W̃ t(f̂0,θs)

∥∥∥+ log+ sup
θ∈Θ

∥∥brt(Z̃t(f̂0,θs),B
)∥∥), (B.11)

where W̃ t(f̂0,θs) = Σ
−1W t(f̂0,θs) =

ν+m+n−1
ν−2

(
Σ+(ν−2)−1E t(f̂0,θs)Ω

−1E t(f̂0,θs)
⊤
)−1

.

If E
(
log+

∥∥Yt

∥∥) < ∞, then by arguments similar to those following (B.7), it follows that

E
(
log+ supθ∈Θ

∥∥srt(Yt, f̂0,θs
)∥∥) < ∞. Similar to (B.1), vec(Yt) admits an almost sure

representation: vec(Yt) =
[
Zt(ft(θ0),θs0)

]−1
vec
(
C0XtD

⊤
0 +Et

)
, where θs0, C0, and D0

denote the true parameter values. Under Assumptions A2 and A3, we arrive at

E
(
log+

∥∥Yt

∥∥) ≤ E
(
log+ ∥vec(Yt)∥

)
≤ E

(
log+

∥∥[Zt(ft(θ0),θs0)
]−1∥∥)+ E

(
log+

∥∥vec(C0XtD
⊤
0 +Et

)∥∥) < ∞.

(B.12)

Similarly, for the bottom block, we also have E
(
log+ supθ∈Θ

∥∥sct(Yt, f̂0,θs
)∥∥) < ∞. It

then follows from (B.10) that Condition H̃L1 is satisfied.

Verification of Condition H̃L2: As in Lin and Lucas (2025, Proof of Proposition 3),

one has

ρ(ϕ1) = sup
∥f1−f2∥Θ>0

∥ϕ1(f1)− ϕ1(f2)∥Θ
∥f1 − f2∥Θ

= sup
∥f1−f2∥Θ>0

sup
θ∈Θ

{∥∥ψ1

(
f1(θ),θ

)
−ψ1

(
f2(θ),θ

)∥∥
∥f1(θ)− f2(θ)∥

∥f1(θ)− f2(θ)∥
∥f1 − f2∥Θ

}

≤ sup
∥f1−f2∥Θ>0

sup
θ∈Θ

{∥∥ψ1

(
f1(θ),θ

)
−ψ1

(
f2(θ),θ

)∥∥
∥f1(θ)− f2(θ)∥

}
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≤ sup
θ∈Θ

sup
f̄1,f̄2∈F,

∥f̄1−f̄2∥>0

{∥∥ψ1

(
f̄1,θ

)
−ψ1

(
f̄2,θ

)∥∥
∥f̄1 − f̄2∥

}

≤ sup
θ∈Θ

sup
f∈F

∥∥∥∥Φ+K
∂

∂f⊤s1
(
Y1,f ,θs

)∥∥∥∥, (B.13)

where we apply the mean value theorem in Rudin (1976, Theorem 9.19) to the vector-valued

function ψ1

(
· ,θ
)
in the last step. Hence, E

(
log+ ρ(ϕ1)

)
< ∞ by Assumption IV1.

Verification of Condition H̃L3: In a similar manner to (B.13), we obtain

E
(
log ρ

(
ϕ

(r)
t

))
≤ E

(
log sup

θ∈Θ
sup
f∈F

∥∥∥∥ ∂

∂f⊤ψ
(r)
t (f ,θ)

∥∥∥∥
)
. (B.14)

Condition H̃L3 then immediately follows from Assumption IV2.

Proposition 3.2 then follows from an application of Bougerol (1993, Theorem 3.1) or Strau-

mann and Mikosch (2006, Theorem 2.8).
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C Strong consistency

Proof of Lemma 1. We show that supθ∈Θ
∣∣L̂T (θ)−LT (θ)

∣∣ a.s.−→ 0 and supθ∈Θ
∣∣LT (θ)−

L(θ)
∣∣ a.s.−→ 0, as T → ∞. Then, (13) follows directly from the triangle inequality.

Note that there exists some ρ > 1 such that supθ∈Θ
∥∥f̂t(θ) − ft(θ)∥∥ ≤ Cρ−t a.s. for

all t ∈ Z+ by Proposition 3.2. Applying a mean value theorem of ℓt
(
f̂t(θ),θs

)
around

ℓt
(
ft(θ),θs

)
, we have

sup
θ∈Θ

∣∣L̂T (θ)− L(θ)
∣∣ ≤ T−1

T∑
t=1

sup
θ∈Θ

∣∣∣ℓt(f̂t(θ),θs)− ℓt
(
ft(θ),θs

)∣∣∣
≤ T−1

T∑
t=1

sup
(θ,f)∈Θ×F

∥∥∥∥∂ℓt
(
f ,θs

)
∂f

∥∥∥∥ sup
θ∈Θ

∥∥∥f̂t(θ)− ft(θ)∥∥∥
≤ CT−1

T∑
t=1

{
ρ−t sup

(θ,f)∈Θ×F

∥∥∥∥∂ℓt
(
f ,θs

)
∂f

∥∥∥∥
}
, (C.1)

where ∂ℓt(f ,θs)
/
∂f =

∣∣Zt(f ,θs)
∣∣−1
st
(
Yt,f ,θs

)
. Since the determinant function is con-

tinuous, it follows that for every (θ,f) ∈ Θ × F, the quantity
∥∥∂ℓt(f ,θs)/∂f∥∥ is a

continuous function of the jointly SE process
{
(Yt,Xt,W

r
t ,W

c
t ), t ∈ Z

}
(see p. S10).

Moreover, for fixed (Yt,Xt,W
r
t ,W

c
t ) and θ ∈ Θ, the mapping f 7→

∥∥∂ℓt(f ,θs)/∂f∥∥ is

continuous over F. Given the compactness of Θ and the separability of F, the supremum

sup(θ,f)∈Θ×F
∥∥∂ℓt(f ,θs)/∂f∥∥ is measurable with respect to

{
(Yt,Xt,W

r
t ,W

c
t ), t ∈ Z

}
and hence is SE by White (2001, Theorem 3.35). Furthermore, using Assumption SC2 and

arguments similar to those for (B.11), we have E
(
log+ sup(θ,f)∈Θ×F

∥∥∂ℓt(f ,θs)/∂f∥∥) is

bounded by

E
(
log+ sup

(θ,f)∈Θ×F

∣∣∣ det (Zt(f ,θs)
)−1
∣∣∣)+ E

(
log+ sup

(θ,f)∈Θ×F

∥∥st(Yt,f ,θs
)∥∥) < ∞. (C.2)

Hence, by Lemma 2.2 of Berkes et al. (2003),
∑T

t=1

{
ρ−t sup(θ,f)∈Θ×F

∥∥∂ℓt(f ,θs)/∂f∥∥} <
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∞. As a result, we have supθ∈Θ
∣∣L̂T (θ)− LT (θ)

∣∣ a.s.−→ 0 as T → ∞.

It remains to show that supθ∈Θ
∣∣LT (θ) − L(θ)

∣∣ a.s.−→ 0, which follows from the uni-

form law of large numbers in White (1996, Theorem A.2.2), applied to the SE sequence{
ℓt
(
ft(θ),θs

)
, t ∈ Z

}
for θ ∈ Θ, provided that E

(
supθ∈Θ

∣∣ℓt(ft(θ),θs)∣∣) < ∞. Note

that E
(
supθ∈Θ

∣∣ log det (Zt(ft(θ),θs)
)∣∣) < ∞ given Assumption A1. Under Assumption

A3(a), to prove E
(
supθ∈Θ

∣∣ℓt(ft(θ),θs)∣∣) < ∞, it suffices to establish that

E
(
sup
θ∈Θ

∣∣∣∣ log det(Σ + (ν − 2)−1E t(ft(θ),θs)Ω
−1E t(ft(θ),θs)

⊤
)∣∣∣∣) < ∞. (C.3)

For convenience, define St(ft(θ),θs) = Σ + (ν − 2)−1E t(ft(θ),θs)Ω
−1E t(ft(θ),θs)

⊤, and

denote by λi(·) the ith eigenvalue of a matrix. Clearly, one has
∣∣∣ log det (St(ft(θ),θs)

)∣∣∣ ≤∑m
i=1

∣∣∣ log λi

(
St(ft(θ),θs)

)∣∣∣. By applying Weyl’s inequality and Assumption A3(a), it is

not hard to see

0 < λL ≤ λi

(
St(ft(θ),θs)

)
≤ λU +

1

(ν − 2)λL

∥∥E t(ft(θ),θs)
∥∥2, i = 1, . . . ,m. (C.4)

Before continuing, note that for any x ∈ [xL, xU ] ⊂ (0,∞), it follows that

| log(x)| = log+(x) + log−(x) ≤ log+(xU) + log−(xL), (C.5)

where log−(·) = max{− log(·), 0}. Using (C.4), in conjunction with (C.5) and (B.4)–(B.5),

we obtain

E
(
sup
θ∈Θ

∣∣∣∣ log det(Σ + (ν − 2)−1E t(ft(θ),θs)Ω
−1E t(ft(θ),θs)

⊤
)∣∣∣∣)

≤
m∑
i=1

E
(
sup
θ∈Θ

∣∣∣∣ log λi

(
Σ + (ν − 2)−1E t(ft(θ),θs)Ω

−1E t(ft(θ),θs)
⊤
)∣∣∣∣)
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≤ mE

(
sup
θ∈Θ

log+
(
λU +

1

(ν − 2)λL

∥∥E t(ft(θ),θs)
∥∥2)+ log−(λL)

)

≤ C + CE
(
sup
θ∈Θ

log+
∥∥E t(ft(θ),θs)

∥∥). (C.6)

Note that, given the compactness of Θ,

sup
θ∈Θ

log+
∥∥E t(ft(θ),θs)

∥∥ ≤ C + 3 log+
∥∥Yt

∥∥+ log+
∥∥Xt

∥∥
+ log+

∥∥W r
t

∥∥+ log+
∥∥W c

t

∥∥+ 2 log+ sup
θ∈Θ

∥∥ft(θ)∥∥.
By Eq. (C.6), the moment result of Yt in (B.12) and Assumptions A3(b)–(c), establishing

(C.3) reduces to verifying that E
(
log+

∥∥ft∥∥Θ) < ∞. We establish that there exists some

p ∈ (0, 1] such that E
(∥∥ft∥∥pΘ) < ∞. We iterate the SRE (7) backward k ∈ Z+ steps and

apply the cr inequality for p ∈ (0, 1], yielding

E
(∥∥ft+1

∥∥p
Θ

)
= E

(
sup
θ∈Θ

∥∥∥∥∥Φkft−k+1(θ) +
k−1∑
j=0

Φj
(
ω +K st−j

(
Yt−j,ft−j(θ),θs

))∥∥∥∥∥
p)

≤
(
sup
θ∈Θ

∥Φ∥p
)k

E
(∥∥ft−k+1

∥∥p
Θ

)
+

k−1∑
j=0

(
sup
θ∈Θ

∥Φ∥p
)j

E
(
sup
θ∈Θ

∥∥∥ω +K st−j

(
Yt−j,ft−j(θ),θs

)∥∥∥p).
If E

(
supθ∈Θ

∥∥ω +K st−j

(
Yt−j,ft−j(θ),θs

)∥∥p) ≤ C, using Assumption SC1 and the SE

property of
{
ft(θ), t ∈ Z

}
(Proposition 3.2), we immediately obtain

E
(∥∥ft∥∥pΘ) ≤ C

1

1− supθ∈Θ ∥Φ∥p
< ∞ (C.7)

by letting k → ∞. By the compactness of Θ and the cr inequality for p ∈ (0, 1] again,

we have E
(
supθ∈Θ

∥∥ω+K st
(
Yt,ft(θ),θs

)∥∥p) ≤ C +CE
(
sup(θ,f)∈Θ×F

∥∥st(Yt,f ,θs
)∥∥p).

Thus, we are left to prove that E
(
sup(θ,f)∈Θ×F

∥∥st(Yt,f ,θs
)∥∥p) ≤ C.
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Similar to the proof of Proposition 3.2, by the norm equivalence in finite dimen-

sional spaces, it suffices to consider each block in st
(
Yt,f ,θs

)
separately. Recall that

W̃ t(f ,θs) = Σ
−1W t(f ,θs). It is simple to obtain that sup(θ,f)∈Θ×F

∣∣ det (Zt(f ,θs)
)∣∣p ≤ C

given Assumption A1. Since ∥diag(Q)∥ ≤ ∥Q∥F ≤
√
k∥Q∥ for any k × k matrix Q, we

arrive at

E
(

sup
(θ,f)∈Θ×F

∥∥srt(Yt,f ,θs
)∥∥p)

≤ CE

{(
sup

(θ,f)∈Θ×F

∣∣∣ det (Zt(f ,θs)
)∣∣∣p)∥∥W r

t

∥∥p∥∥Yt

∥∥p}+ CE
(

sup
(θ,f)∈Θ×F

∥∥∥Z̃t(f ,θs)
∥∥∥p)

≤ CE
(∥∥W r

t

∥∥p∥∥Yt

∥∥p)+ CE
(

sup
(θ,f)∈Θ×F

∥∥∥Z̃t(f ,θs)
∥∥∥p)

≤ C

√
E
∥∥W r

t

∥∥2pE∥∥Yt

∥∥2p + C, (C.8)

where the last step follows from the Cauchy-Schwarz inequality and Assumptions A1 and

SC2. Note that, by the Cauchy-Schwarz inequality again, we have

E
∥∥Yt

∥∥2p ≤ (E∥∥∥[Zt(ft(θ0),θs0)
]−1
∥∥∥4p)1/2(

E
∥∥∥vec(C0XtD

⊤
0 +Et

)∥∥∥4p)1/2

. (C.9)

Take p ≤ q1/4 ∈ (0, 1/2] above, where q1 is specified in Assumption SC2. By As-

sumption SC2, we have E∥Yt∥2p ≤ C. Therefore, by (C.8) and Assumption SC2, we

conclude that E
(
sup(θ,f)∈Θ×F

∥∥srt(Yt,f ,θs
)∥∥p) ≤ C. Similarly, one can also show that

E
(
sup(θ,f)∈Θ×F

∥∥sct(Yt,f ,θs
)∥∥p) ≤ C.

Finally, the continuity of θ 7→ L(θ) follows from Theorem A.2.2 of White (1996). This

completes the proof.

Proof of Theorem 3.1. The proof follows the standard consistency arguments presented
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in Blasques et al. (2022, Theorem 4.6) and Lin and Lucas (2025, Theorem 1), which are

grounded in classical results such as Theorem 3.4 of White (1996) and Theorem 3.3 of

Gallant and White (1988). Recall that Lemma 1 establishes the uniform convergence of

the empirical criterion function θ 7→ L̂T (θ) to the continuous limiting function θ 7→ L(θ) =

E
(
ℓt
(
ft(θ),θs

))
over the compact parameter space Θ. It then remains to establish the the

identifiable uniqueness of θ0 ∈ Θ.

Given the continuity of θ 7→ L(θ) and the compactness of Θ, by Definition 3.3 of White

(1996), it only requires to prove L(θ0) > L(θ) for every θ ̸= θ0 where θ ∈ Θ. Note that, by

the law of total expectation and Gibbs’ inequality for the Kullback-Leibler divergence (see,

e.g., White, 1996, Theorem 2.3), it follows that L(θ0) ≥ L(θ), with equality if and only if

pY
(
Y | X t,ft(θ0),θs0

)
= pY

(
Y | X t,ft(θ),θs

)
for almost every Y ∈ Rm×n with respect

to the pdf pY
(
· | X t,ft(θ0),θs0

)
. By Assumption SC3, one has, ∀t ∈ Z, ft(θ) = ft(θ0)

and θs = θs0. Given these conditions, together with the assumption that det(K0) ̸= 0, it

is straightforward to obtain θ = θ0 (i.e., uniqueness) by following the steps outlined in Lin

and Lucas (2025, Proof of Theorem 1), and the details are therefore omitted.
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D Asymptotic normality

Lemma D.1. Under the assumptions of Proposition 3.2 and Assumptions AN1 - AN3,

we have
√
T ∂L̂T (θ0)

∂θ

d→ N
(
0,I0

)
as T → ∞, where I0 = E

(
∂ℓt(ft(θ0),θs0)

∂θ
∂ℓt(ft(θ0),θs0)

∂θ⊤

)
as

defined in Theorem 3.2.

Proof of Lemma D.1. We first argue that
√
T
∥∥∥∂L̂T (θ0)

∂θ
− ∂LT (θ0)

∂θ

∥∥∥ a.s.−→ 0 as T → ∞. By

Proposition 3.2, and using arguments similar to those in (C.1), the result follows under the

assumption that E
(
log+ supf∈F

∥∥∥∂ℓt(f ,θs0)
∂θ∂f⊤

∥∥∥) < ∞.

Next, we apply the Cramér-Wold device to derive the asymptotic distribution
√
T ∂LT (θ0)

∂θ
.

As such, let a ∈ Rdim(θ0) be any unit vector. The next step is to consider the limiting dis-

tribution of

√
T

(
a⊤∂LT (θ0)

∂θ

)
=

T∑
t=1

XT,t(θ0), XT,t(θ0) =
1√
T
a⊤∂ℓt

(
ft(θ),θs

)
∂θ

∣∣∣∣∣
θ=θ0

, (D.1)

as T → ∞. As in Lin and Lucas (2025, Lemma E.1), we apply the CLT for a martingale

difference array, as stated in Davidson (1994, Theorem 24.3), by verifying the following

conditions:

CLT1
{
XT,t(θ0),FT,t

}
is a martingale difference array, where FT,t = σ

(
(Ys,X s), s ≤ t

)
for

all t ≤ T ;

CLT2
∑T

t=1X
2
T,t(θ0)

p→ a⊤I0a;

CLT3 max1≤t≤T |XT,t(θ0)|
p→ 0.

Consider CLT1 first. Let Et(·) = E( · | FT,t). Note that both the multivariate gamma

function and the determinant function are differentiable. It is then straightforward to

see that pY
(
Y | X t,ft(θ),θs

)
is differentiable with respect to θ for every Y . Under
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Assumption AN2, one can interchange the integration and differentiation of θ 7→ pY
(
Y |

X t,ft(θ),θs
)
with respect to θ at θ = θ0; see, for example, basic textbooks such as Schilling

(2017, Theorem 12.5) or Casella and Berger (2024, Theorem 2.4.3). It is worth noting that

the integral of a scalar function of a matrix argument is interpreted in the usual way, as an

iterated integral over each entry of the matrix; see Gupta and Nagar (2018, Chapter 1.4).

We arrive at

Et−1

(
∂ℓt
(
ft(θ),θs

)
∂θ

∣∣∣∣∣
θ=θ0

)
=

∫
∂ log pY

(
Y | X t,ft(θ),θs

)
∂θ

∣∣∣∣∣
θ=θ0

pY
(
Y | X t,ft(θ0),θs0

)
dY

=

∫
∂ pY

(
Y | X t,ft(θ),θs

)
∂θ

∣∣∣∣∣
θ=θ0

dY

=
∂

∂θ

∫
pY
(
Y | X t,ft(θ),θs

)
dY

∣∣∣∣
θ=θ0

= 0,

where the last step follows from the fact that
∫
pY
(
Y | X t,ft(θ),θs

)
dY = 1.

It remains to verify CLT2 and CLT3. As discussed in Chapter 24.3 of Davidson (1994, p.

385), if the sequence
{
a⊤ ∂ℓt(ft(θ),θs)

∂θ

∣∣∣
θ=θ0

, t ∈ Z
}
is SE with finite variance, then Condition

CLT2 follows from Theorem 13.12 of Davidson (1994). Moreover, Condition CLT3 is

implied by Theorem 23.16 of Davidson (1994), which ensures the Lindeberg condition

holds for the triangular array {XT,t}; see also Billingsley (1999, Theorem 18.3). By the

chain rule, it is not hard to see that ∂ℓt(ft(θ),θs)
∂θ

∣∣∣
θ=θ0

is a measurable function of the tuple(
Et,Xt,W

r
t ,W

c
t ,ft(θ0),f

(1)
t (θ0)

)
, where f

(1)
t (θ0) = ∂ft(θ0)/∂θ

⊤, and is thus measurable

with respect to the σ-field generated by
{
(Es,Xs,W

r
s ,W

c
s ), s ≤ t

}
. Under Assumption

A3, and using arguments similar to those in the proof of Proposition 3.2, it follows that

the sequence
{
a⊤ ∂ℓt(ft(θ),θs)

∂θ

∣∣∣
θ=θ0

, t ∈ Z
}
is SE. Finally, we have E

∥∥∥a⊤ ∂ℓt(ft(θ),θs)
∂θ

∣∣∣
θ=θ0

∥∥∥2 ≤
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E
∥∥∥∂ℓt(ft(θ),θs)

∂θ

∣∣∣
θ=θ0

∥∥∥2 < ∞ by Assumption AN3. This completes the proof.

Proof of Theorem 3.2. The proof follows standard arguments used in establishing the

asymptotic normality of M-estimators; see, for example, White (1996, Theorem 6.2) and

Hayashi (2000, Proposition 7.8). First, Theorem 3.1 and Assumption AN1 imply that

θ̂T
a.s.−→ θ0 ∈ int(Θ) ̸= ∅, as T → ∞. Second, Lemma D.1 shows

√
T ∂L̂T (θ0)

∂θ

d→ N
(
0,I0

)
,

as T → ∞. Third, the construction of L̂T and Assumption AN4 imply that L̂T is a.s.

twice continuous differentible on Θ, and supθ∈Θ

∥∥∥∂2L̂T (θ)
∂θ∂θ⊤ − J (θ)

∥∥∥ e.a.s.−→ 0, as T → ∞,

where J (θ) = E
(

∂2ℓt(ft(θ),θs)
∂θ∂θ⊤

)
. Finally, note that, given Assumption AN2, the integration

and differentiation of ∂ pY
(
Y | X t,ft(θ),θs

)/
∂θ with respect to θ can be interchanged at

θ = θ0 a.s. for all Y ∈ Rm×n. Using standard textbook arguments together with the law

of iterated expectation, it is not hard to obtain that I0 = −J (θ0). It then follows that

Theorem 3.2 holds.
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E Auxiliary theoretical results

Lemma E.1 (Jacobian matrices of scores in the DGP). Recall s⋆rt
(
· ,θs

)
and s⋆ct

(
· ,θs

)
from (B.2) and (B.3), respectively. We obtain

Dfs
⋆r
t

(
f ,θs

)
=
([

vec
(
CXtD

⊤ +Et

)]⊤ ⊗
[
Sm×m2

((
W⋆

tEtΩ
−1B

)
⊗W r

t

)]
−Br

t (B)
)

×
(

vec
(
Dr

t,1(f ,θs)
)

··· vec
(
Dr

t,m(f ,θs)
)

vec
(
Dc

t,1(f ,θs)
)

··· vec
(
Dc

t,n(f ,θs)
) )

, (E.1)

Dfs
⋆c
t

(
f ,θs

)
=
([

vec
(
CXtD

⊤ +Et

)]⊤ ⊗
[
Sn×n2

(
W c

t ⊗
(
Ω−1E⊤

t W⋆
tA
))]

−Bc
t(A)

)
×
(

vec
(
Dr

t,1(f ,θs)
)

··· vec
(
Dr

t,m(f ,θs)
)

vec
(
Dc

t,1(f ,θs)
)

··· vec
(
Dc

t,n(f ,θs)
) )

, (E.2)

where Br
t (B) =


[
vec(B⊤⊗W r⊤

t P(1)
m )
]⊤

...[
vec(B⊤⊗W r⊤

t P(m)
m )
]⊤
, Bc

t(A) =


[
vec(W c⊤

t P(1)
n ⊗A⊤)

]⊤
...[

vec(W c⊤
t P(n)

n ⊗A⊤)
]⊤
, and

Dr
t,j(f ,θs) =

[
Z̃t(f ,θs)

(
B ⊗P (j)

m W
r
t

)
− tr

((
B ⊗P (j)

m W
r
t

)
Z̃t(f ,θs)

)]
Zt(f ,θs)

−1,

Dc
t,j(f ,θs) =

[
Z̃t(f ,θs)

(
P (j)

n W
c
t ⊗A

)
− tr

((
P (j)

n W
c
t ⊗A

)
Z̃t(f ,θs)

)]
Zt(f ,θs)

−1.

Proof of Lemma E.1. Let f = (f r⊤,f c⊤)⊤, where f r = (f r
1 , . . . , f

r
m)

⊤ and f c = (f c
1 , . . . , f

c
n)

⊤.

One can equivalently write

s⋆rt
(
f ,θs

)
=
([

vec
(
CXtD

⊤ +Et

)]⊤ ⊗
[
Sm×m2

((
W⋆

tEtΩ
−1B

)
⊗W r

t

)]
−Br

t (B)
)
vec
(
Z̃t(f ,θs)

)
,

s⋆ct
(
f ,θs

)
=
([

vec
(
CXtD

⊤ +Et

)]⊤ ⊗
[
Sn×n2

(
W c

t ⊗
(
Ω−1E⊤

t W⋆
tA
))]

−Bc
t(A)

)
vec
(
Z̃t(f ,θs)

)
.

To compute Dfs
⋆
t

(
f ,θs

)
, the key is to obtain Df Z̃t(f ,θs) by the chain rule. Note that

dZt(f ,θs) = −B ⊗
(
d diag(f r)W r

t

)
−
(
d diag(f c)W c

t

)
⊗A
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= −B ⊗

(
m∑
j=1

P (j)
m W

r
t df

r
j

)
−

(
n∑

j=1

P (j)
n W

c
t df

c
j

)
⊗A

= −
m∑
j=1

(
B ⊗P (j)

m W
r
t

)
df r

j −
n∑

j=1

(
P (j)

n W
c
t ⊗A

)
df c

j .

By using the identities d|X| = |X| tr
(
X−1dX

)
and dX−1 = −X−1(dX)X−1, we obtain

dZ̃t(f ,θs) = d
(∣∣Zt(f ,θs)

∣∣Zt(f ,θs)
−1
)

=
(
d
∣∣Zt(f ,θs)

∣∣)Zt(f ,θs)
−1 +

∣∣Zt(f ,θs)
∣∣(dZt(f ,θs)

−1
)

= tr
(
Z̃t(f ,θs)dZt(f ,θs)

)
Zt(f ,θs)

−1 − Z̃t(f ,θs)
(
dZt(f ,θs)

)
Zt(f ,θs)

−1

=:
m∑
j=1

Dr
t,j(f ,θs) df

r
j +

n∑
j=1

Dc
t,j(f ,θs) df

c
j .

This gives dvec
(
Z̃t(f ,θs)

)
=
(

vec
(
Dr

t,1(f ,θs)
)

··· vec
(
Dr

t,m(f ,θs)
)

vec
(
Dc

t,1(f ,θs)
)

··· vec
(
Dc

t,n(f ,θs)
) )

df ,

and as a result,

Df Z̃t(f ,θs) =
(

vec
(
Dr

t,1(f ,θs)
)

··· vec
(
Dr

t,m(f ,θs)
)

vec
(
Dc

t,1(f ,θs)
)

··· vec
(
Dc

t,n(f ,θs)
) )

. (E.3)

Using (E.3) and the chain rule, i.e., Dfs
⋆r
t

(
f ,θs

)
=
(
DZ̃t(f ,θs)

s⋆rt
(
f ,θs

))(
Df Z̃t(f ,θs)

)
,

we arrive at (E.1); the expression (E.2) follows analogously.
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F Accommodating conditional heteroskedasticity

The model can be further extended to account for the conditional heteroskedasticity of the

disturbances. Consider log(Σt) = diag(fσ
t ) and log(Ωt) = diag

(
(1,fω⊤

t )
)
, where

fσ
t =

(
logΣ1,1,t, . . . , logΣm,m,t

)⊤
, fσ

t =
(
logΩ2,2,t, . . . , logΩn,n,t

)⊤
, (F.1)

and we set the first diagonal element of Ωt to be 1 for identification as before. Without

confusion, we now let ft =
(
f r⊤
t ,f c⊤

t ,fσ⊤
t ,fω⊤

t

)⊤
follow the updating scheme as in Eq.

(7), with st(·) =
(
srt (·)⊤, sct(·)⊤, sσt (·)⊤, sωt (·)⊤

)⊤
, where srt

(
Yt,ft,θs

)
and sct

(
Yt,ft,θs

)
are given in Proposition 2.1, with Σ and Ω replaced by Σt and Ωt, respectively. The

constructions of sσt
(
Yt,ft,θs

)
and sωt

(
Yt,ft,θs

)
are provided below.

Proposition F.1. Under the assumptions of Proposition 2.1, we have

sσt (Yt,ft,θs
)

sωt
(
Yt,ft,θs

)
 =

∂ log pY (Yt|X t,ft,θs)
∂fσ

t

∂ log pY (Yt|X t,ft,θs)
∂fω

t

 =

 1
2
diag

(
E tẼ

†
tW

†
t

)
− n

2
ιm

1
2
diag

(
Ẽ

†
tW

†
tE t

)
− m

2
ιn−1

 , (F.2)

where, for k ∈ Z+, ιk denotes the k-dimensional vector of ones, Ẽ
†
t = Ω

−1
t E⊤

t Σ
−1
t , and

W†
t = W†

t(ft,θs) =
ν +m+ n− 1

ν − 2

(
Im + (ν − 2)−1E t(ft,θs)Ω

−1
t E t(ft,θs)

⊤Σ−1
t

)−1

.

All other notation is defined in Proposition 2.1.

Proof of Proposition F.1. Similar to Eq. (A.2), we have

d log pY
(
Yt | X t,ft,θs

)
= −1

2
tr
(
Σ−1

t W†
tdΞ

†
t

)
−tr
(
Z−1

t dGt

)
+
1

2
tr
(
Σ−1

t W†
t

(
dΣt

)
Σ−1

t Ξ
†
t

)
− n

2
tr
(
Σ−1

t dΣt

)
− m

2
tr
(
Ω−1

t dΩt

)
=: P †

1,t − P2,t + P3,t − P4,t − P5,t,

S23



where Ξ†
t = E tΩ

−1
t E⊤

t . Write fσ
t = (fσ

1,t, f
σ
2,t, . . . , f

σ
m,t)

⊤ and fω
t = (fω

2,t, f
ω
3,t, . . . , f

ω
n,t)

⊤. By

dX−1 = −X−1(dX)X−1, and the identities Σ−1
t dΣt =

∑m
j=1P

(j)
m dfσ

j,t and Ω−1
t dΩt =∑n

j=2P
(j)
n dfω

j,t, using similar steps as in the proof of Proposition 2.1, we obtain

P †
1,t =

m∑
j=1

[
W r

t YtB
⊤Ω−1

t E⊤
t Σ

−1
t W†

t

]
j,j
df r

j,t +
n∑

j=1

[
Ω−1

t E⊤
t Σ

−1
t W†

tAYtW
c⊤
t

]
j,j
df c

j,t

+
1

2

n∑
j=2

[
Ω−1

t E⊤
t Σ

−1
t W†

tE t

]
j,j
dfω

j,t,

P2,t =
m∑
j=1

[
vec
(
B⊤ ⊗W r⊤

t P (j)
m

)]⊤
vec
(
Z−1

t

)
df r

j,t

+
n∑

j=1

[
vec
(
W c⊤

t P (j)
n ⊗A⊤)]⊤vec(Z−1

t

)
df c

j,t,

P3,t =
1

2

m∑
j=1

tr
(
P (j)

m Ξ
†
tΣ

−1
t W†

t

)
dfσ

j,t =
1

2

m∑
j=1

[
Ξ†

tΣ
−1
t W†

t

]
j,j
dfσ

j,t,

and P4,t = −n

2

∑m
j=1 df

σ
j,t, P5,t = −m

2

∑n
j=2 df

ω
j,t. By combining the preceding results, the

proposition follows.
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Figure F5: Filtered log volatility for the import and export trade flow. The left and right
panels are for the import and export, respectively. The sample ranges from January 2000
to October 2024.

Figure F5 presents the time-varying log-volatilities for the import-export application

from Section 5.1, more specifically the import (log(Σt) and export (log(Ωt)) log volatil-
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ity levels. The results indicate that, overall, the log-volatilities of imports and exports

across countries remain relatively stable, with some exceptions during the aftermath of the

financial crisis (2009–2010) and after the COVID-19 crises.
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G Additional finite sample results

G.1 Additional simulation outputs

Table G.5: Empirical MSE of time-varying spatial spillover effects.

Dynamics T Static-SMAR-t TVP-SMAR-t Static-SMAR-N TVP-SMAR-N

Const + SlowS

250 0.139 0.046 0.153 0.056

500 0.136 0.038 0.145 0.044

1000 0.125 0.033 0.134 0.039

Const + FastS

250 0.131 0.047 0.142 0.053

500 0.127 0.043 0.136 0.047

1000 0.124 0.039 0.134 0.043

Const + Break

250 0.205 0.040 0.213 0.048

500 0.201 0.032 0.209 0.040

1000 0.201 0.026 0.208 0.035

Const + AR

250 0.107 0.033 0.120 0.037

500 0.106 0.027 0.114 0.028

1000 0.102 0.023 0.110 0.024

SlowS + FastS

250 0.156 0.069 0.172 0.077

500 0.154 0.063 0.167 0.071

1000 0.154 0.062 0.167 0.068

SlowS + Break

250 0.229 0.068 0.243 0.075

500 0.230 0.048 0.245 0.060

1000 0.234 0.051 0.250 0.063

SlowS + AR

250 0.134 0.057 0.152 0.062

500 0.132 0.047 0.141 0.051

1000 0.131 0.044 0.140 0.049

FastS + Break

250 0.236 0.069 0.253 0.081

500 0.234 0.063 0.251 0.074

1000 0.235 0.059 0.251 0.068

FastS + AR

250 0.136 0.059 0.150 0.065

500 0.133 0.055 0.144 0.058

1000 0.130 0.051 0.139 0.054

Break + AR

250 0.127 0.042 0.139 0.051

500 0.127 0.033 0.138 0.041

1000 0.124 0.026 0.133 0.033
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G.2 Additional details of Section 5.2

This section supplements Section 5.2 by providing additional details on the out-of-sample

estimation procedure, portfolio selection methodology, specifications of the benchmark

models used for comparison, and the computation of evaluation metrics for model per-

formance.

First, for the out-of-sample estimation procedure. We split the data into a training set

consisting of the first Ttrain = 537 observations and a test set comprising the last Ttest = 300

observations. At each time point t0, we fit the one-side TVP-MSAR model based on the

latest Ttrain observations {Yt}t0−1
t=t0−Ttrain

, then use the fitted model to predict the conditional

covariance matrix of vec(Yt0) by Ĥt0 , where Ĥt0 is computed by:

Ĥt0 =
(
Imn − Ĝto

)−1 (
Ω̂t0 ⊗ Σ̂t0

)((
Imn − Ĝto

)−1
)⊤

, (G.1)

where Ĝt0(f̂t0 , Ŵ
r
t0
), Ω̂t0(f̂t0), and Σ̂t0(f̂t0), and f̂t0 are obtained by the score-driven up-

date given the estimated model parameters and the training observations. For the spatial

connection matrix Ŵ r
t0
, we simply let Ŵ r

t0
=W r

t0−1.

Using Ĥt0 , we select the unconstrained minimum variance portfolio (MVP) from 16

sector indexes by choosing the weight vector:

ŵu
t0
:= argmin

w′
t0
1mn=1

w⊤
t0
Ĥt0wt0 =

Ĥ−1
t0 1mn

1⊤
mnĤ

−1
t0 1mn

, (G.2)

for m = n = 4. If the short sales are not allowed, one can also select the constrained MVP

by choosing the weight vector:

ŵu
t0
:= argmin

w′
t0
1mn=1, wt0≥0

w⊤
t0
Ĥt0wt0 , (G.3)
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where (G.3) has no closed form solution and needs to be computed by numerical optimiza-

tion methods.

For the benchmark matrix factor GARCH (MF-GARCH) model, we implement the R

code provided by Yu et al. (2024) and select the factor dimensions r1 = r2 = 2 for all fitted

models. The choice of factor dimensions is based on the eigenvalue ratio method (Yu et al.,

2022), as recommended in Yu et al. (2024).

Finally, we construct out-of-sample averaged return (AV), standard deviation (SD),

and information ratio (IR) to compare the out-of-sample portfolio selection performance of

different models, where

AV =
1

Ttest

∑
t0

ŵ⊤
t0
Rt0 , SD =

√
1

Ttest − 1

∑
t0

(
ŵ⊤

t0Rt0 − AV
)2
,

and IR = AV/SD. We also perform model confidence set (MCS) tests for the squared

returns according to Hansen et al. (2011).
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