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Abstract

This paper examines the effect of land subsidence – the gradual sinking of the Earth’s sur-
face – on property values. Subsidence can negatively affect real estate by damaging building
foundations and increasing vulnerability to flooding. Using detailed property transaction data
from the Netherlands, combined with high-resolution geospatial data on both current and pro-
jected subsidence and flood risk, we find that properties currently experiencing subsidence sell
at a 0.8% discount when built on foundations susceptible to damage. Additionally, flood-prone
properties projected to experience future subsidence sell for 1.5% less. Compared to the actual
costs and occurrence of these risks, our findings suggest that homeowners tend to underestimate
the risks associated with foundation damage while overestimating the threat of future flooding.
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1 Introduction

About 1.6% of the global land surface is sinking (Herrera-Garćıa et al., 2021). This process

is known as land subsidence and can be caused by natural and anthropogenic drivers such as

groundwater extraction, tectonic motions, or soil degradation (Murfin and Spiegel, 2020). Due

to climate change, extreme droughts will become more likely in the future, putting additional

pressure on groundwater levels, further exacerbating the severity of land subsidence (Herrera-

Garćıa et al., 2021). Land subsidence is concentrated in densely populated coastal areas, for

example, in Asia along the eastern coast of China and around the Indonesian capital of Jakarta,

or in the United States of America (US) along the Gulf of Mexico and in California (Murfin

and Spiegel, 2020; Herrera-Garćıa et al., 2021). Subsidence can directly damage the foundation

of buildings and infrastructure (Herrera-Garćıa et al., 2021). Furthermore, the lowering of the

ground interacts with the risk of flooding. Even small changes in land subsidence, particularly

as they add up over time, can lead to large increases in flood risk and associated damages

(Ohenhen et al., 2024).1

This paper aims to examine the effect of land subsidence and flood risk on residential

property prices. Although climate impacts are not limited to housing, real estate is considered

one of the largest asset classes, with about 380 trillion in outstanding value by 2022 globally,

of which housing accounts for about 75% (Tostevin and Rushton, 2023). That is, the potential

impacts are large, and thus there is significant policy interest in those impacts. Moreover, to

the extent that households are aware of these risks, we would expect them to be factored into

property prices. Our specific contribution lies in examining the interaction between subsidence

and flooding risks, and in assessing whether households tend to overestimate or underestimate

these risks based on the actual associated costs and the information available to them. While

there has been research on the perception of flood risk (e.g., Bosker et al., 2019; Giglio et al.,

2021b; Niu et al., 2025) and the effect of sea level rise on property prices (Murfin and Spiegel,

2020), less is known about the perception of subsidence and its effect on property prices.

Due to its long-lasting history with both land subsidence and flood risk, our analysis is

based on housing transaction data from the Netherlands between 2010-2021 and detailed maps

on subsidence and flood risk. The housing transaction data covers up to 95 percent of all housing

transactions in the Netherlands. To capture historical subsidence, we use satellite measurements

1The hydrology literature, for example, uses root functions to map inundation depths into flood damages, as
this class of functions has the best empirical fit (Sieg and Thieken, 2022; Endendijk et al., 2023).
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of 305 million measurement points that cover the entire Netherlands, and projections of future

subsidence are based on the Atlantis Model (Bootsma et al., 2020), which predicts subsidence at

a very granular level until 2050. This level of detail is important because both land subsidence

and flood risks tend to occur near rivers and the coast (i.e., clay and peat soils).

The variation in house prices, flood risk, and land subsidence allows us, like previous studies

(e.g., Murfin and Spiegel, 2020; Yoo and Perrings, 2017; Yoo and Frederick, 2017; Willemsen

et al., 2020; Premchand et al., 2024), to control for detailed location fixed effects. We extend

this approach using a border regression discontinuity design along the lines of Black (1999)

and Gibbons et al. (2013). In addition, the historical versus future subsidence, but also online

search behavior around the introduction of the current subsidence maps allows us to look more

closely at the effect of salience as, for example, suggested by Giglio et al. (2021b) and Niu et al.

(2025) in the case of flood risk. By comparing actual estimated costs with households’ perceived

costs, we can further explore whether subsidence and flood risk are priced appropriately. This

informational story is important for policy makers, and it can explain some of the mixed findings

about the pricing of these types of climate risks in the literature.

We find evidence of both direct and indirect price effects of subsidence. Properties that are

currently subsiding by more than 3.3 mm per year – the cut-off at which subsidence begins to

lead to foundation damage – trade at a discount of 0.8% if built on a foundation prone to damage.

Flood-prone properties predicted to subside by more than 10 cm by 2050 obtain 1.5% lower

prices. These results imply that it is important to simultaneously model the effect of flood risk

and land subsidence on house prices. Furthermore, based on estimates of the number of houses

most at risk (about 17% of houses in the Netherlands), homeowners seem to underestimate

the probability of foundation damages as the implied probability of minor foundation damage

within this subsample is only 23% while it should be around 100%. Instead, they overestimate

the risk of flooding (i.e., in line with Bosker et al., 2019) thinking that flooding occurs every

70 years – within their own lifetime – instead of every 100,000 years as indicated by the Dutch

government. This apparent misperception of risks underlines the benefits of stricter climate risk

disclosure for real estate transactions.

In line with this conclusion, our results further show that an increase in a salience (on-

line search volume) index by one standard deviation further decreases the price of properties

currently subsiding by 0.8%. The index peaks at the introduction of the subsidence maps.

However, the decrease does not affect the price of the properties most at risk, i.e. properties
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with a vulnerable foundation and flood-prone properties. Given that these households did not

adequately price these risks in the first place, this provides further evidence that information

on subsidence risk is not properly priced.

The paper relates to a growing literature on land subsidence and flood risk. Murfin and

Spiegel (2020) look at the level of elevation of residential properties in the US and the relative

sea level rise (RSLR) based on historical trends in regional mean sea levels. RSLR is expected

to mainly proxy for variations in vertical land motion. Murfin and Spiegel (2020) do not find

detectable effects of inundation on property prices. Keenan et al. (2018) analyze real estate and

sea level rise in Miami-Dade County, Florida, and find that homes located at higher elevations

experienced greater price appreciation. Yoo and Perrings (2017) and Yoo and Frederick (2017)

study subsidence in Maricopa County, Arizona. Yoo and Frederick (2017) find a decrease in

property values of 1.8%, while Yoo and Perrings (2017) find a decrease of about 10% for current

subsidence and 7% for future subsidence. Willemsen et al. (2020) investigate subsidence in

the Dutch cities of Rotterdam and Gouda and find a 6% decrease in house prices but only for

uniform subsidence. Premchand et al. (2024) study subsidence in the Green Heart, a relatively

high-priced coastal region in the Netherlands and find that properties exposed to subsidence

trade at a discount of 2.5%-5%, which is more pronounced for older properties with a more

exposed foundation. To our knowledge, there are currently no papers that combine detailed

information on current and future land subsidence with flood risk data to examine the effect of

land subsidence on property prices.

Our paper further relates to the literature on climate and salience. Baldauf et al. (2020)

and Bakkensen and Barrage (2022) suggest that buyers might hold optimistic beliefs about

climate change and the related risks. Therefore, agents are not accurately pricing climate risks.

Recent estimates suggest that the stock of flood-prone houses in the United States is overvalued

by $32-$237 billion (Hino and Burke, 2021; Gourevitch et al., 2023). Moreover,Giglio et al.

(2021b) use the written description of listed properties to create a climate attention index

and find that house prices in flood-prone areas decline relative to non-flood-prone areas if the

index is higher. Instead, using aggregate zip code level data, Bosker et al. (2019) find that

flood-prone properties in the Netherlands trade at a discount of 1%, which implies that market

participants overestimate the probability of flooding, at least compared to official claims about

the state of flood defenses. Niu et al. (2025) use data from Dordrecht, a city in the Netherlands,

between 2005 and 2017 and find that actual flooding decreases property prices and that better
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flood risk information leads to larger sale price-list price discounts. In addition, other works

have emphasized the role of sophistication. Bernstein et al. (2019) find that sea level rise is

only priced in the non-owner occupied segment of the US housing market in which commercial

investors are more experienced and have more resources to assess risks. This argument is echoed

by studies concerned with other forms of commercial real estate (Addoum et al., 2024; Fang

et al., 2024; Holtermans et al., 2024; Ling et al., 2024). By looking at current versus future

land subsidence, as well as online search behavior, we can examine the extent to which salience

affects the effect of land subsidence on property values.

The remainder of this paper proceeds as follows. Section 2 provides background information

on land subsidence, foundation types, and flood risk in the Netherlands. In Section 3, we

describe the data. Section 4 outlines our identification strategy. Results are presented in

Section 5, and implications in Section 6. Finally, Section 7 concludes.

2 Causes and Consequences

2.1 Land Subsidence

Land subsidence refers to the lowering of land surfaces due to anthropogenic and natural pro-

cesses (Dinar et al., 2021). The drivers include groundwater extraction, bedrock dissolution,

tectonic motions, and soil degradation (Murfin and Spiegel, 2020). In total, 1.6% of the global

land surface is affected by land subsidence. As subsidence is concentrated in densely populated

areas with intensive agriculture, affected areas host 12% of global GDP and are home to 484

million people. The most affected areas include South and East Asia, the coasts of California

and the Gulf of Mexico in the US and coastal regions in Europe (Herrera-Garćıa et al., 2021).

The Netherlands is the most affected country in Europe (Herrera-Garćıa et al., 2021). Yearly

costs related to land subsidence are estimated to be up to e3.5 billion (Bucx et al., 2015). This

estimate includes costs related to the maintenance of existing structures and infrastructure as

well as increased construction costs for new structures. In the Netherlands, the main driver

of subsidence is the dehydration of soft soils such as peat and clay. These grounds often have

high groundwater levels and need to be dehydrated in order to support building structures or

heavy machinery for agriculture. Depending on the type of soil, subsidence can be sustained for

an extensive period of time (Erkens et al., 2016). Erkens et al. estimate that since 1,000 AD,

coastal peatlands in the Netherlands have on average subsided by 1.9 metres. About one third of
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this subsidence can be explained by the exploitation of peat as fuel and the remaining two thirds

are caused by dehydration. Partly due to this historic subsidence, 26% of the Netherlands’ land

surface is located below sea level today.

A second driver is the extraction of minerals, which is mainly relevant in the natural gas

fields in the province of Groningen. The largest gas field is about 900 square kilometres large and

located 3 kilometres below the surface (Koster and van Ommeren, 2015). The exploitation of

natural gas leads to subsidence in the deep soil several kilometres below the surface, which causes

seismic activity and, as a result, earthquakes. These earthquakes negatively affect property

prices (Koster and van Ommeren, 2015). As subsidence related to dehydration compresses the

soil close to the surface, this type of subsidence does not cause earthquakes.

Subsidence affects the vicinity of a property as well as the property itself. Therefore, one

would expect subsidence to be capitalised in transaction prices. In principle, the potential

impact of subsidence on property prices is twofold. First, subsidence has a direct effect that

manifests in damages to the foundation of a property (Hommes et al., 2023). Second, there is

an indirect effect that results from the interaction between subsidence and flood risk (Daniel

et al., 2009; Ohenhen et al., 2024). Properties that already are at risk of flooding will face

higher inundation depths, resulting in larger expected damages. Furthermore, houses that are

currently not at risk of flooding might become prone to flood risk due to subsidence. These

effects will be further discussed in the following sections.

2.2 Foundation Damage

Subsidence can have direct effects by leading to damages to the property’s foundation. In the

Netherlands, an estimated one million properties are potentially affected by foundation damages

(Hommes et al., 2023). In case of minor damages to the foundation, repair costs are likely going

to be below e10,000 (Kok and Angelova, 2020). However, in severe cases, repair costs can range

from e50,000 - 100,000 depending on the size of the property (Hommes et al., 2023). These costs

are non-insurable and buyers rarely know about the condition of the foundation when buying

a property (Hommes et al., 2023).2 Therefore, it seems likely that potential damages will be

capitalized into the transaction price. Although we do not have information about the exact

2In the Netherlands, sellers of a property can opt to include a ”foundation clause” in the purchasing contract.
This clause protects the seller from liabilities, if foundation damages occur and no prior knowledge about the
damage can be proven. Hommes et al. (2023) find that properties with a stated foundation clause sell at a 2%
discount, which would be consistent with an expected probability of foundation damages of about 20%.
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damage to foundations due to land subsidence, it heavily depends on the type of foundation.

There are three prevalent types of foundations in the Netherlands (Costa et al., 2020): pole

foundations, shallow foundations, and concrete foundations. Pole foundations are common in

areas with high groundwater levels, which are predominantly found in the north and west of

the Netherlands. Properties with pole foundations are built on a set of wooden poles that are

laid out below groundwater. When the groundwater lowers due to subsidence or droughts, the

poles come in contact with oxygen, which leads to the growth of fungi. These fungi lead to

timber pile degradation, a process that is also known as pole rot. The exact speed and severity

depend on many factors including the size of the poles and the type of wood (Costa et al.,

2020). The share of pole foundations by neighbourhood is shown in Appendix Figure B.1(a).

Pole foundations mainly occur near the northern and southwestern coasts of the Netherlands.

In these areas, groundwater levels are often high so that buildings need to be erected on a

foundation of wooden poles.

Shallow foundations, or natural foundations, are more common in areas with lower ground-

water levels. Shallow foundations transfer most of the weight of a structure onto the earth

near the surface. If the land on which the structure rests subsides at different rates, these

foundations are prone to differential settlement. Differential settlement can lead to damages in

the construction such as cracks along the walls (Costa et al., 2020). The spatial distribution of

shallow foundations is shown in Appendix Figure B.1(b). Shallow foundations are prevalent in

most of the Netherlands.

Concrete foundations, on the other hand, are more robust and not prone to foundation

damages, even when the land beneath them is subsiding. Although concrete foundations were

already used in the beginning of the 20th century, they became widely used in the 1980s due

to a combination of technological advancement, regulatory changes, and urban development

needs. In the 1980s, stricter building codes were introduced that required more durable and

long-lasting foundations. There was also rapid urbanization in the Netherlands, particularly in

its urban core. Furthermore, there was increased prefabrication and mechanization in building,

and concrete was very useful in that respect. As a consequence, all properties built in the

Netherlands after 1975-1980 are extremely likely to possess a concrete foundation (Klimaatef-

fectatlas, 2021). We will utilize this variation to measure the effect of historical subsidence on

property values.

6



2.3 Flood Risk

The Netherlands have an extensive coastline and are located in between several major rivers,

which makes the country particularly prone to floods. Its cultural landscape has been shaped by

the interplay of subsidence and flood risk for centuries. Dehydration of soft soils commenced in

the middle ages, leading to subsidence and increasing the relative sea levels. Major floods were

reported as early as the 13th century, necessitating the construction of the first flood defenses.

The invention of windmills and sluices in the 17th century made drainage of wet soils more

efficient and exacerbated subsidence. At the same time, flood defenses improved and became

more secure, which allowed a larger share of the population to settle in flood-prone areas.

The last major flood resulting from the breaching of sea dikes was the spring tide disaster of

1953, which cost the lives of 1,835 people (Daniel et al., 2009) and led to migration away from

flood-prone areas (Husby et al., 2014).

After this disaster, the Dutch government intensified its flood mitigation efforts. With the

Delta Program, the flood defense infrastructure was updated and extended (Niu et al., 2025).

Today, the Dutch government maintains about 3,750 km of dikes and 1,500 km of primary

waterworks. The e1.1 billion that is spent on upkeep each year is financed out of the general

government budget (Bosker et al., 2019). Furthermore, the government increased its efforts to

educate the population about potential risks. To this end, the Climate Impact Atlas (in Dutch:

Klimaateffectatlas) provides maps on the spatial distribution of flood and other climate risks

(Niu et al., 2025). Several of these maps are used as data sources in the empirical analysis.

Historically, private insurers do not cover flood damages. Instead, the government was

responsible for reimbursing flood-related damages. This insurance regime resulted from the

spring tide disaster of 1953, which caused damages that were so immense that private insurers

could not have compensated them. Insurance policies were reformed after the Meuse floods in

the 1990s. Since then, private insurance covers flood damages caused by heavy rainfall. Damages

caused by flooding from the sea and rivers not originating in the Netherlands continue to be

excluded from insurance policies. The “Compensation of Damages due to Disasters” Act (WTS)

regulates that the Dutch government is only responsible for compensating damages that are not

insurable under private insurance (Bruggeman and Faure, 2018) and which are classified as a

national disaster. However, the extent to which the government reimburses damages is unclear

and varies between different flood events. Daniel et al. (2009) find that compensations after

the Meuse floods in the 1990s (before the WTS was introduced) were rather generous. On the
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other hand, Bosker et al. (2019) point out that the government only reimbursed half of the

damages caused by a small-scale flood event in the province of Utrecht. Of the damages caused

by the Western European Flood of 2021 in the province of Limburg e224 million were covered

by insurers and e104 million were compensated under the WTS (Kok et al., 2023).

3 Data

3.1 Transactions Data

Data on property transactions is collected by the Dutch Association of Realtors (NVM) and

provided by Brainbay. The data set covers transaction prices, property characteristics and

geocoded locations of 3.8 million properties sold between 1990 and 2021. As most variables on

climate risks are only available for recent years, we restrict the sample to the period from 2010

to 2021. This restriction leaves around 1.5 million properties. We exclude a very small number

of observations for which the exact location is unknown (< 0.05%). Furthermore, we exclude

properties for which the recorded transaction price was below e10,000 or above e2.5 million

(< 0.001%). The coverage of the NVM data over the relevant period is very good. Dröes and

Koster (2023) compare the transactions covered in the NVM dataset and recorded in the land

registry and find that the yearly coverage for the period from 2010 to 2015 is between 81% and

94%.

The descriptive statistics of property price data for the period from 2010 to 2021 are shown

in Table 1. The average sales price of a property was around e290,000 with a standard deviation

of e190,000. Around 43% of the properties in the sample are terraced houses. Thus, terraced

houses are the most common property type, followed by apartments (the reference category in

our analysis) with around 27%. Detached and semi-detached properties are less common, each

accounting for around 15% of total property transactions. We further have information on the

state of maintenance, size, number of (bath)rooms, presence of a garden, parking, whether the

property is listed as a monument, and the construction period.3 Previous studies investigating

this data (e.g. Koster and van Ommeren, 2015; Dröes and Koster, 2023) use a similar selection

of variables. Particularly, the construction period is an important variable as it determines

which properties are prone to foundation damages as a result of land subsidence. Indicatively,

more than 62% were built before the 1980s, and these included many homes with shallow or

3Although the exact construction year is included in the data set, the variable is missing for 10% of observa-
tions. Hence, we use the construction period in our analysis.
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Table 1: Descriptive statistics - property characteristics, 2010-2021

Statistic Mean St. Dev. Min Max

Price (e) 290,974 190,474 12,500 2,500,000
Size in m2 122.846 50.848 25 2,400
Number of rooms 4.638 1.586 1 198
Number of bathrooms 0.900 0.509 0 8
Terraced property 0.428 0.495 0 1
Semi-detached property 0.154 0.361 0 1
Detached property 0.147 0.354 0 1
Property has garden 0.630 0.483 0 1
Property has garage 0.277 0.448 0 1
Property has central heating 0.938 0.241 0 1
Maintenance is good 0.858 0.350 0 1
Property is listed as monument 0.010 0.099 0 1
Constructed 1945-1959 0.080 0.272 0 1
Constructed 1960-1970 0.151 0.358 0 1
Constructed 1971-1980 0.162 0.369 0 1
Constructed 1981-1990 0.130 0.336 0 1
Constructed 1991-2000 0.131 0.337 0 1
Constructed after 2000 0.115 0.319 0 1

Note: This table shows housing transactions data from the Dutch Association of Realtors (NVM)
provided by Brainbay. Observations: 1,441,391.

pole foundations.

3.2 Climate Risks

3.2.1 Current Subsidence

Data on current subsidence rates is obtained from version 2.2 of the subsidence map (in Dutch:

bodemdalingskaart) made by a consortium of universities, research centers, and geodetic com-

panies in the Netherlands. The map is based on InSAR technology, applying satellite measure-

ments from eight different positions. The elevation of a total of 305 million points is measured

in 12-day intervals between October 2017 and October 2022. Based on these observations over

the five-year period, a linear trend of yearly subsidence is provided in the data. To ensure the

quality of the measurements and to reduce the dataset to a workable size, we drop all measure-

ments which have a quality index of less than 0.8. A value of 0.8 or higher means good to very

good quality. The measurement points have stable radar reflections over long periods of time,

low noise, and consistent results. This restriction reduces the size of the dataset to 55 million

measurement points for which a yearly trend is available.

In Figure 1, we show the spatial distribution of subsidence. The map shows that the most
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Figure 1: Current subsidence

Note: The map shows the mean value of subsidence for all measurement points that are contained
in grid cells of size 1000m × 1000m. This is an original visualisation based on version 2.2 of the
subsidence map (bodemdaalingskaart).

affected area is the province of Groningen in the north-east of the Netherlands. This is not

surprising as this is the area where gas extraction leads to increased subsidence as well as

earthquakes. However, substantial variation remains outside Groningen, for example, in the

provinces of Friesland and South Holland.

We match each property in our dataset to the five closest measurement points. The median

closest measurement point has a distance of 5.6 metres from the property. For the furthest

measurement point, the median distance is 15.3 metres. The furthest measurement point is

two kilometres away, but those observations are clear outliers. In general, the five closest

measurements have very similar values, with the median largest difference between points being

1 mm per year. The maximum difference is 3 cm per year.

From these five measurement points we compute a measure of property-level subsidence
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using inverse distance weighting according to the formula:

y =

5∑
i=1

d−p
i xi∑5
j=1 d

−p
j

, (1)

where xi denotes the value at measurement point i, di refers to the distance of point i to the

property and p is the power parameter that governs how fast the influence of a measurement

point deteriorates with increasing distance. For the analysis, we choose a conventional parameter

of p = 2 (Shepard, 1968).

Table 2: Descriptive statistics - climate risks, 2010-2021

Statistic Mean St. Dev. Min Max

Current subsidence (m) 0.001 0.001 −0.026 0.030
> 0 mm 0.871 0.335 0 1
> 3.3 mm 0.268 0.443 0 1
> 6.7 mm 0.013 0.112 0 1

Future subsidence (m) 0.040 0.098 0 1.104
> 0 cm 0.220 0.415 0 1
> 10 cm 0.102 0.303 0 1
> 20 cm 0.067 0.250 0 1

Floods 1/10 years 0.001 0.034 0 1
Inundation depth (m) 0.001 0.028 0 4.964

Floods 1/100 years 0.127 0.333 0 1
Inundation depth (m) 0.109 0.414 0 7.300

Floods 1/1,000 years 0.338 0.473 0 1
Inundation depth (m) 0.428 0.833 0 12.180

Floods 1/100,000 years 0.513 0.500 0 1
Inundation depth (m) 0.746 1.071 0 12.620

Search volume intensity 0.122 0.134 0 1
× current subsidence > 3.3 mm 0.033 0.088 0 1
× future subsidence > 10 cm 0.013 0.057 0 1

Search volume intensity (province adjusted) 0.031 0.049 0 1
× current subsidence > 3.3 mm 0.012 0.041 0 1
× future subsidence > 10 cm 0.003 0.019 0 1

Current subsidence × Built before 1980 0.170 0.376 0 1
Current subsidence × Floods 1/100,000 years 0.164 0.371 0 1
Future subsidence × Built before 1980 0.050 0.218 0 1
Future subsidence × Floods 1/100,000 years 0.076 0.265 0 1

Note: This table shows the descriptive statistics of current (historical) subsidence, future subsi-
dence, and flood risk across houses in the Netherlands. The observations vary between 1,438,894 and
1,441,391.

Descriptive statistics of current subsidence at the property level are shown in Table 2. The

average property is subsiding by just 1 mm per year. However, there is substantial variation

across properties. The most affected properties are subsiding by as much as 3 cm per year.

The elevation on some measurement points is actually rising. This could, for example, be

caused by human activity such as soil restoration and waste disposal or by geologic factors such
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as tectonic activity (Murfin and Spiegel, 2020). This affects only a minority of properties as

shown by the fact that 87.1% of properties are affected by a positive degree of soil subsidence.

Furthermore, 26.8% of properties face a significant level of subsidence of more than 3.3 mm per

year, a threshold we will use in our analysis. This threshold is in line with expert advice on

foundation damages (Willemsen et al., 2020), but also corresponds to a 10 cm subsidence level

over 30 years, which has been indicated in the literature as a threshold at which damage to a

building starts to occur (Sundell et al., 2019), and it also corresponds to how future subsidence

until 2050 is classified (see next section). We will also explore alternative thresholds such as

6.7 mm per year. Only 1.3% of properties are exposed to this type of severe subsidence level at

which severe functional and structural damages start to become likely (Sundell et al., 2019).

3.2.2 Future Subsidence

Data on predicted future subsidence and flood risks are based on maps developed by various

knowledge institutions and consulting firms in coordination by the Climate Adaptation Services

(CAS) foundation and commissioned by the Ministry of Infrastructure and Water Management

(www.klimaateffectatlas.nl). The data has a resolution of 100 m × 100 m and we again

match the data to the transactions data.

Forecasts of future subsidence are based on the Atlantis model described in Bootsma et al.

(2020). Atlantis accounts for subsidence caused by consolidation, the compression of soil due

to applied stress, and oxidation of organic soil layers (i.e. peat) above groundwater level. In

Atlantis the entirety of the Netherlands is discretized in a grid of three-dimensional cells called

voxels. For each voxel, the dataset stores the soil layers at depths between 0.5 m to 50 m below

the surface. The values are derived from the GeoTOP dataset that outlines the soil composition

in the entire Netherlands. A voxel covers a surface area of 100 m × 100 m, which corresponds

to the resolution of GeoTOP. Multiple voxels form a water level management area (about 1,200

areas) and groundwater levels are uniformly set for each area.

A strength of the Atlantis model is that it explicitly models policy decisions as water man-

agement policy is a key determinant of soil subsidence. Furthermore, it allows for assumptions

on the severity of climate change. The frequency of droughts can affect groundwater levels,

while higher temperatures can speed up the oxidation of peat (Klimaateffectatlas, 2021).

Predictions of future subsidence based on the Atlantis model are for a high and a low sce-

nario. The scenarios combine assumptions on the severity of climate change and the pursued
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water management policies. The high scenario assumes that the current policy of water level

indexation is continued. Under water level indexation, the distance between surface and ground-

water level is held constant. This is a prerequisite for productive use of the land in agriculture

and construction, but also leads to further subsidence as the required lowering of the ground-

water leads to further dehydration of soil. The low scenario, on the other hand, assumes water

level fixation, which holds the groundwater fixed at the current level. This lowers the extent of

subsidence, but renders the land unusable for agriculture. Therefore, the extensive implemen-

tation of water level fixation is unlikely, which is why we use the high scenario in the analysis.

There is also a map until 2100 but we will use the 2020-2050 map as it is likely more accurate

and a more relevant risk for a typical household.

Figure 2: Future subsidence, 2020-2050

Note: The map shows the future subsidence at 100 m × 100 m grid cells based on the Atlantis model
(Bootsma et al., 2020). Data is obtained from the Climate Impact Atlas (klimaateffectatlas).

The spatial distribution of future subsidence is shown in Figure 2. The map shows that
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land subsidence will be most severe in North and South Holland, Friesland and Flevoland. The

ground in these areas is to a large extent comprised of soft soils like peat and clay, which are

prone to soil subsidence when dehydrated. Parts of these areas are located on polders, which are

land areas reclaimed from the sea that are often subsiding over time due to ongoing dehydration.

Comparing Figures 1 and 2, there appear to be differences between current and future

subsidence. These differences relate to the extraction of natural gas, climate change, and policy

choices in water level management. First, Groningen is currently a hot spot of subsidence due

to the extraction of natural gas (Koster and van Ommeren, 2015). As gas extraction phases out,

subsidence in the area might slow down in the long term (Klimaateffectatlas, 2021). Second,

with the progression of climate change, temperatures and the frequency of droughts in the

Netherlands are expected to increase. More frequent droughts will put pressure on groundwater

levels, which will advance dehydration of soft soils, and higher temperatures accelerate the

oxidation of peat (Klimaateffectatlas, 2021). Therefore, subsidence rates are likely to increase

in areas with peat and clay soils. Finally, water management is an important determinant

of subsidence rates (Bootsma et al., 2020). The response to climate change and progressing

subsidence that authorities adopt can, therefore, cause differences between current and future

subsidence; although radical changes in water management policy seem unlikely, as argued

above (Klimaateffectatlas, 2021).

Descriptive statistics on the forecast of subsidence are presented in Table 2. The average

property will subside by 4 cm until 2050. In extreme cases, the soil beneath a property could

subside by as much as 1.1 metres. Negative subsidence and very small positive subsidence rates

are not considered in the forecast. Until 2050, 22% of properties will experience some degree

of soil subsidence. 10.2% of properties will subside more than 10 cm, which corresponds to the

threshold applied in the baseline analysis. Finally, 6.7% of properties will experience extensive

subsidence of more than 20 cm until 2050. As the correlation between current and future

subsidence at a property level is only 0.12 there seems to be sufficient variation to measure

both effects on property prices. A correlation matrix with flood risk, pole rot vulnerability, and

differential settlement vulnerability is available in Appendix Table C.1.

3.2.3 Flood Risk

The flood risk maps show the inundation depth in case of a failure of the primary flood defenses.

The probability of this failure depends on the local state of the flood defenses and varies across
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the country. Therefore, there are four versions of the map with different flood probabilities.

Depending on the probability, a flood is expected once in 10 years, 100 years, 1,000 years, or

100,000 years, respectively. The maps are based on simulations of complex hydrological models

conducted by the research company Deltares. As it is extremely unlikely that all flood defenses

would fail simultaneously, not all areas indicated as being at risk of flooding in the map would

inundate at the same time. Notably, the flood risk maps do not give a forward-looking account

of flood risk, but instead reflect the current state. Therefore, information on future subsidence

is not factored in, while current and realized subsidence is reflected in new versions of the maps.

Figure 3: Inundation depth, floods 1/100,000 years

Note: The map shows the inundation debt at 100 m × 100 m grid cells in case of a failure of the
primary flood defenses, which is projected to occur once in 100,000 years. Data is obtained from the
Climate Impact Atlas (klimaateffectatlas).

A map showing the inundation depths under the scenario with extremely small probability

is shown in Figure 3. Maps for all four scenarios are shown in Appendix Figure B.2. For the

main analysis, we create an indicator variable that is equal to one if the property is inundated in

the event of a breach in the flood defenses that occurs once in 100,000 years. This corresponds
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to the measure that is used in the main analysis of Bosker et al. (2019) and compares properties

that are exposed to some degree of flood risk to properties that are flood safe. Choosing one of

the three other levels of flood risk compares properties at risk of flooding to properties that have

a lower (or zero) probability of flooding. As buyers seem to overestimate very low probabilities

of flooding (Bosker et al., 2019), a comparison between flood-prone and flood safe houses seems

more clear-cut.

The descriptive statistics of different degrees of flood risk and the corresponding inundation

depths are shown in Table 2. Only 0.1% of properties face a high flood risk, which corresponds

to a flood being predicted roughly once every 10 years. These properties are located outside

the dike rings, as those investigated by Niu et al. (2025). 12.7% of properties are expected to

flood roughly once every 100 years. Around 33.8% of properties face a small flood risk, which

predicts a flood once every 1,000 years. Considering the lowest level of flood risk under which

a flood is expected only once in 100,000 years, 51.3% of properties in the sample are at risk

of flooding. The maximum inundation depth under a high likelihood of flooding is 4.9 metres.

When looking at the lowest chance of flooding, the maximum inundation depth increases to

12.6 metres.

3.3 Attention to Subsidence

Following Da et al. (2011) and Choi et al. (2020) we measure salience using the search volume

intensity (SVI) of Google queries related to land subsidence. In addition to yielding information

on potential mechanisms, temporal variation in SVI provides a potential source of exogenous

variation that can be exploited for causal identification (Giglio et al., 2021a). Specifically, we

construct a time series with monthly observations of SVI for the search term (in Dutch) ‘land

subsidence’. Google Trends reports observations relative to the time period with the highest

SVI. Thus, a value of 1 corresponds to the month with the maximum number of searches. For

ease of interpretation of the empirical results, we transform the variable so that a value of 0

corresponds to the mean level of SVI and 1 corresponds to one standard deviation above the

mean.

The time series variation in SVI is shown in Figure 4. The time series exhibits significant

month-to-month variation. In the early years of the sample, observations with a relative SVI of

zero are frequent. Starting around 2013, most observations in the sample remain relatively close

to the mean of 0.13. SVI is the largest in months when new information on subsidence became
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available. The first version of the current land subsidence map was released in November 2018

and version two was published in September 2020. SVI clearly spikes around the availability

of new subsidence maps, which indicates that market participants seem to take note of the

information, at least momentarily.

Figure 4: Search volume intensity

Note:The figure is based on Google trends data of households looking for land subsidence (in Dutch:
‘bodemdaling’). The current subsidence map and its update were introduced in November 2018 and
September 2020, respectively.

In addition to the time-series variation, Google Trends provides spatial variation of SVI.

For the Netherlands, this variation is provided at the province level. Appendix Figure B.3

shows relative SVI at the province level. Unsurprisingly, SVI is the highest in the province of

Groningen, where the extraction of natural gas caused large subsidence rates and even earth-

quakes. Groningen is followed by the neighbouring provinces of Drenthe and Friesland, which

are also partially affected by earthquakes and subsidence resulting from the gas extraction.

Other provinces with larger salience are Utrecht, South Holland, and Flevoland, where sub-

sidence related to agriculture is relatively important. Overall, there seems to be substantial

temporal and spatial variation in the amount of attention individuals in the Netherlands pay

to land subsidence.

4 Empirical Design

To estimate the effect of subsidence on property prices, we use a hedonic pricing model. Several

studies (Bosker et al., 2019; Murfin and Spiegel, 2020; Giglio et al., 2021b) have applied hedonic

pricing to estimate the impact of climate risks on property prices. A potential concern when
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estimating the impact of soil subsidence on property prices is omitted variable bias due to

unobserved local characteristics that affect both the occurrence of subsidence and property

prices. One of these characteristics could, for instance, be related to the local importance of

agriculture. As dehydration of soft soils for agriculture is the main driver of subsidence in

the Netherlands (Bucx et al., 2015), subsidence might be more likely to occur in rural areas

that face lower property prices than urban centers. Groundwater levels themselves are another

example. Groundwater levels directly drive subsidence and there is local variation among the

levels that are adopted (Bootsma et al., 2020). Another possible characteristic could be the type

of soil. Subsidence is more likely to occur on peat and clay grounds, which frequently occur in

the provinces of North and South Holland. As the most populous cities of the Netherlands are

located within these provinces, it is likely that properties in these areas obtain higher prices.

To address this challenge, we apply a border discontinuity design (BD), see Black (1999).

To illustrate the idea behind the identification strategy, consider the equation for (log) property

prices p from Gibbons et al. (2013):

p = s(c)β + x(c)γ + g(c) + ε (2)

where x(c) denotes characteristics of a property at location c. Furthermore, s(c) denotes the

variable of interest, g(c) captures unobserved local determinants of market prices, and ε refers

to the error term. Under the assumption that the unobserved local characteristics g(c) are

continuous in location c, they can be eliminated by taking differences between two properties i

and j that are located in close proximity:

(pi − pj) = (s(ci)− s(cj))β + (x(ci)− x(cj))γ + g(ci)− g(cj) + (εi − εj) (3)

To consistently estimate effects, g(ci) − g(cj) needs to be effectively random and uncorrelated

to s(ci) − s(cj). These conditions hold approximately when s(c) is discontinuous between two

close locations, while the function g(c) remains continuous. The BD approach exploits this by

comparing properties on two sides of a boundary, which marks a discontinuity in s(c). Following

this approach, we compare properties that are significantly affected (subsidence > 3.3 mm per

year) by subsidence to nearby properties that are less affected. To test the sensitivity of the

results to this cutoff, we present additional estimates using cutoffs of 0 mm per year and 6.7

mm per year, respectively.
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In the original work by Black (1999) and subsequent studies, applying BD only observations

within a close distance to the border are included in the regression. That is, observations

falling within the distance threshold are weighted with factor one, while observations further

away are weighted with factor zero. Therefore, defining the distance threshold is an important

decision made by the researchers. However, there is no clear guidance on which threshold to

choose. Gibbons et al. (2013) refine BD by weighting each observation by the inverse distance

to the boundary. This implies that properties close to the boundary receive the highest weight,

and that weights gradually diminish with increasing distance. The distribution of distances

to the border is shown in Appendix Figure B.4. The majority of observed transactions are

located within 100 m of a property with a different exposure to land subsidence. Consequently,

properties in close proximity to properties with a differing exposure to subsidence have the

largest impact on the estimation of effects.4 In Appendix Table C.2, we demonstrate that the

results are not sensitive to weighting observations by the inverse distance to the boundary by

repeating the main analysis only for properties within a specific distance of properties with a

different degree of soil subsidence.

Formally, we estimate the following equation:

pit = csiα1 + fsiα2 + floodiα3 + csi × b1980iα4 + fsi × b1980iα5

+ csi × floodiα6 + fsi × floodiα7 +X ′
iβ + λj + λt + f(distancei) + εit (4)

where pit denotes the log transaction price of property i sold at time t, current subsidence is

denoted cs, future subsidence is denoted fs, flood captures if the property would flood if the

primary flood defenses would fail, b1980 is an indicator variable that equals one if the property

was constructed before (or at) 1980, X is a vector of hedonic property characteristics (i.e., the

size of the property, the number of rooms and bathrooms, the type of the property, whether

the property has a garden, garage and central heating, the state of maintenance, whether the

property is listed as a monument, and six construction period dummies), λj captures 4-digit zip-

code fixed effects, and λt refers to month and year fixed effects. Finally, f(distancei) denotes a

function of the distance of property i to the boundary. We include up to third order polynomials

4It is relatively straightforward to think of current subsidence in a BD framework as the variable is measured
at the property level. However, other variables such as future subsidence and flood risk only vary at a grid of 100
m × 100 m. As the boundary is unlikely to correspond with the edge of the grid cell, there is a distance band of
100 m around the boundary for which these variables are identical. Identifying variation for these variables will,
therefore, come from properties located in the next grid cell. This might lead to an underestimation of effects as
observations further away from the boundary receive lower weights.
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of the distance to the border.5 With the inclusion of these distance polynomials, we control for

spatial trends in amenities that differ across the border (Gibbons et al., 2013).6

There are several identification challenges in estimating Eq. (4). As mentioned, until the

mid 1970s, properties were built on foundations that were susceptible to damage. Properties

constructed later are likely to have a concrete foundation that is not prone to damage. As the

change in the use of foundation type falls within the construction period 1971-1980, we define

properties built up to this period as most at risk for our main analysis (the variable b1980).

This might lead to a conservative estimate of the effect of current and future land subsidence

as some properties might already have had a concrete foundation during the 1971-1980 period.

Therefore, we also estimate the regression using 1970 as an alternative threshold. As there

might be some properties built before the 1970s that use concrete foundations, we might still

conservatively estimate the effect of land subsidence, but we would expect the impact of this

selection to be small as concrete foundations were more of the exception than the rule. Similarly,

after the 1980s, it is still possible yet very unlikely that properties do not have a concrete

foundation. If this would be the case, however, it could potentially lead to an overestimation.

Also, although it is possible to change the foundation from shallow or wooden pole to modern

concrete, it is a complex, expensive, and invasive process. It is usually only done when there is

actual foundation damage (and particularly after the 1980s). However, if changes or repairs are

made to the foundation, some of the properties at risk might no longer be at risk, again leading

to a conservative estimate.

The regression in Eq. (4) aims to identify the direct and indirect effects of land subsidence on

properties. The inclusion of current and future subsidence captures their effect that is common

to all properties irrespective of risk exposure. The interaction terms between subsidence and

the 1980 dummy aim to capture the direct foundation damages caused by subsidence. These

damages mainly affect properties with pole and shallow foundations but not properties with

concrete foundations. Most properties constructed after the 1970s possess concrete foundations.

Finding a significant interaction term would, therefore, indicate that properties that are more

prone to foundation damage are affected differently by subsidence. Interacting subsidence with

5For properties affected by subsidence we include first, second and third order polynomials of the distance to
the nearest property, which is less affected by subsidence. For properties not subsiding or subsiding at a low rate,
we include the corresponding polynomials of the distance to the nearest property, which is significantly affected
by subsidence.

6This could for example be the case in the gas fields in Groningen, where the extraction of natural gas causes
subsidence. If households experience disamenities from living near extraction facilities, prices would be expected
to fall with increasing distance to the nearest property that is unaffected.
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the flood risk status of a property identifies the indirect effects of subsidence due to increased

vulnerability to flooding. Finding a significantly negative interaction term indicates that market

participants anticipate increases in potential flood damages due to the impact of subsidence.

5 Results

5.1 Baseline Results

The estimation results of Eq. (4) are shown in Table 3. In Column 1, we only include indicator

variables of current subsidence above 3.3 mm per year and future subsidence of more than

10 cm between 2020 and 2050, along with year, month, and four-digit postcode fixed effects.

The coefficient for current subsidence is statistically significant at the 5% confidence level and

suggests that properties currently affected by subsidence trade at a discount of around 0.5%.

The coefficient of future subsidence is statistically indistinguishable from zero.

In Column 2, we add property characteristics. The coefficient of current subsidence slightly

increases now, suggesting a 0.35% discount. The coefficient of future subsidence becomes neg-

ative and statistically significant at the 1% level. Properties projected to significantly subside

until 2050 trade at a discount of 1.3%. This large shift indicates that properties located in ar-

eas affected by future subsidence possess desirable observable characteristics so that a negative

effect only appears after controlling for these characteristics.

The coefficients of property characteristics (not shown in Table 3) offer few surprises. Larger

properties and properties with more rooms are more expensive. So are properties with a garden,

garage, central heating, a good maintenance state, and monument status. The prices of detached

and semi-detached houses are higher than the prices of terraced houses and apartments. Finally,

houses built after 1990 are more expensive than houses built before.

Column 3 adds distance polynomials. For properties exposed to subsidence levels of more

than 3.3 mm per year, we include a linear, quadratic, and cubic term of the distance to the

nearest property facing subsidence of less than 3.3 mm per year. Similarly, we include the three

polynomials of distance to the nearest property facing subsidence levels of more than 3.3 mm,

if the property is exposed to lower levels of subsidence. Compared to Column 2, the estimates

remain virtually unchanged.

In Column 4, we differentiate the effect of subsidence between properties constructed before

and after 1980. Properties constructed after 1980 are built on concrete foundations, which are
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not prone to foundation damage. Properties constructed before 1980 are likely to have a pole or

shallow foundation, which can sustain damages when exposed to soil subsidence. Therefore, we

expect direct effects of soil subsidence to be concentrated among properties constructed before

1980. This is exactly what we observe for current soil subsidence. The coefficient on subsidence

becomes statistically insignificant. Instead, the coefficient on the interaction term is significant

at the 1% level and suggests that older properties exposed to soil subsidence obtain 0.8% lower

prices than comparable properties not exposed to soil subsidence. This is not the case for future

soil subsidence. The coefficient for this variable increases slightly. The point estimate of the

interaction term is not statistically significant.

The model in Column 5 additionally controls for flood risk. The point estimate is negative

but not statistically significant. The remaining coefficients are almost identical to the ones

obtained under the previous specification.

Finally, Column 6 shows estimation results for the full model specification. This specifica-

tion includes interaction terms between subsidence and flood risk to identify indirect effects of

subsidence that affect property prices through a change in flood risk exposure. The interaction

term between flood risk and current subsidence is positive, small and statistically insignificant.

If flood risk maps are updated frequently, they should account for information on historic and

current subsidence. Therefore, the effect of subsidence is already included in the flood risk

measure, which explains the statistically insignificant interaction effect. For future subsidence,

however, the interaction term is negative and statistically significant. A property that is af-

fected by both future land subsidence and flood risk trades at a discount of 1.5%. The coefficient

of future subsidence is no longer statistically significant and less negative. This suggests that

the significant estimate in the previous specifications was driven by houses exposed to future

subsidence and at risk of flooding.

In our main specification we use the log transaction price as the dependent variable. In

Appendix Table C.3, we present additional results using the log asking price and log time on

market as dependent variables. For the asking price, the point estimate of the interaction

between current subsidence and exposure to foundation risk is smaller in magnitude, while the

interaction between future subsidence and flood risk is slightly larger. However, both point

estimates are within the 95% confidence intervals from our baseline estimation. When looking

at time on market, we find that properties exposed to flood risk sell more quickly. In contrast,

subsidence does not affect the time on market.
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Table 3: Baseline results

Log price
(1) (2) (3) (4) (5) (6)

Current subsidence > 3.3mm -0.0049∗∗ -0.0034∗∗∗ -0.0031∗∗ 0.0016 0.0017 0.0005
(0.0019) (0.0012) (0.0013) (0.0018) (0.0018) (0.0024)

Future subsidence > 10cm 0.0002 -0.0127∗∗∗ -0.0128∗∗∗ -0.0162∗∗∗ -0.0158∗∗∗ -0.0047
(0.0127) (0.0046) (0.0046) (0.0046) (0.0046) (0.0068)

Current subsidence > 3.3mm × Built before 1980 -0.0080∗∗∗ -0.0080∗∗∗ -0.0080∗∗∗

(0.0022) (0.0022) (0.0022)
Future subsidence > 10cm × Built before 1980 0.0062 0.0059 0.0053

(0.0075) (0.0075) (0.0074)
Floods 1/100,000 years -0.0087 -0.0077

(0.0058) (0.0062)
Current subsidence > 3.3mm × Floods 1/100,000 years 0.0019

(0.0024)
Future subsidence > 10cm × Floods 1/100,000 years -0.0152∗∗

(0.0074)

Observations 1,441,248 1,440,339 1,440,339 1,440,339 1,437,985 1,437,985
R2 0.51842 0.85451 0.85461 0.85463 0.85435 0.85437
Within R2 0.00004 0.69751 0.69773 0.69776 0.69764 0.69767

Year, Month and 4PPC fixed effects ✓ ✓ ✓ ✓ ✓ ✓
Property characteristics ✓ ✓ ✓ ✓ ✓
Distance polynomials ✓ ✓ ✓ ✓

Note: Standard errors are clustered at the 3PPC level. Observations are weighted by the inverse distance to the boundary between properties exposed
to current subsidence and unaffected properties. The regression in Column 1 estimates the effect of current and future subsidence including year, month,
and four-digit zip-code fixed effects. In Column 2 we add hedonic characteristics. Column 3 adds first, second, and third order polynomials of the
distance to the nearest property with a differing exposure to current subsidence. In Column 4 we allow the effects of subsidence to differ for properties
that are more likely to have a weak foundation (constructed before 1980). In Column 5 we add exposure to flood risk. Our full specification in Column
6 allows the effect of flood risk to differ between flood-safe and flood-prone properties. ***p <0.01, **p <0.05, *p <0.1
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We perform several robustness checks. A detailed exposition is given in Appendix A. In par-

ticular, we use a property at risk cut-off year of 1970, investigate whether the effect of subsidence

differs by inundation depth, and change the weighting and distance cut-offs to the boundary

of the borders. We further show results approximating repeat sales and regressions controlling

for local trends, and use alternative definitions of the subsidence variables (thresholds and dif-

ferential subsidence). Finally, we explore the definition of flood risk (i.e., expected occurrence

every 100 or 1000 years) and show some subsample analyses (e.g., excluding earthquake areas,

the 2021 major flood event, rising land areas in Limburg). Our results are particularly robust

to these changes and additions.

5.2 Salience of Subsidence

To understand the mechanism behind the price effects identified in the previous section, we

test how the salience of land subsidence among the Dutch population affects our estimates. To

measure salience, we rely on search volume intensity (SVI) for the term land subsidence (in

Dutch) provided by Google Trends. Several studies (Choi et al., 2020; Giglio et al., 2021b;

Ling et al., 2024) explore how the pricing of climate risks changes with the salience of the risk.

Climate risk is usually slow-moving and the salience of the risk provides a convenient source of

exogenous variation (Giglio et al., 2021a).

The use of Google Trends data to measure attention is well established in the literature.

Da et al. (2011) use the SVI of stock tickers to measure investor attention. Choi et al. (2020)

show that searches related to climate change increase in times with abnormally warm weather

and that stocks of carbon-intensive firms trade at a discount during these times. Commonly,

there are two potential challenges to the use of Google Trends data. First, for some terms

(e.g. “Apple”), the intent behind the search is ambiguous (Da et al., 2011). Second, different

terms can refer to the same concept. In these cases, it might be difficult to decide which term

should be used (Choi et al., 2020). Both of these problems seem to be less of a concern in our

application. Land subsidence as a term clearly refers to the sinking of the land surface and is

the most frequently used term in communication about the topic (Klimaateffectatlas, 2021).

To analyse the impact of salience, we consider the temporal and spatial variation in SVI

outlined in Section 3.3. Specifically, we multiply the indicator variables for current and future

subsidence by SVI in a property’s transaction months.7 We add these variables and all their

7We also use average SVI in the months prior to the transaction. The results remain unchanged.
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Table 4: Search volume intensity

Log price
(1) (2) (3)

Current subsidence > 3.3mm 0.0005 0.0015 -0.0000004
(0.0024) (0.0025) (0.0025)

Future subsidence > 10cm -0.0047 -0.0037 -0.0045
(0.0068) (0.0070) (0.0068)

Floods 1/100,000 years -0.0077 -0.0076 -0.0073
(0.0062) (0.0062) (0.0062)

Current subsidence > 3.3mm × Built before 1980 -0.0080∗∗∗ -0.0086∗∗∗ -0.0079∗∗∗

(0.0022) (0.0022) (0.0022)
Future subsidence > 10cm × Built before 1980 0.0053 0.0048 0.0052

(0.0074) (0.0078) (0.0072)
Current subsidence > 3.3mm × Floods 1/100,000 years 0.0019 0.0008 0.0026

(0.0024) (0.0025) (0.0024)
Future subsidence > 10cm × Floods 1/100,000 years -0.0152∗∗ -0.0165∗∗ -0.0150∗∗

(0.0074) (0.0075) (0.0072)
Current subsidence > 3.3mm (SVI adjusted) -0.0081∗∗∗ -0.0106∗∗∗

(0.0019) (0.0025)
Future subsidence > 10cm (SVI adjusted) -0.0063 -0.0094

(0.0051) (0.0057)
Current subsidence > 3.3mm (SVI adjusted) × Built before 1980 0.0059∗∗∗ 0.0007

(0.0015) (0.0030)
Future subsidence > 10cm (SVI adjusted) × Built before 1980 0.0033 -0.0011

(0.0061) (0.0077)
Current subsidence > 3.3mm (SVI adjusted) × Floods 1/100,000 years 0.0096∗∗∗ 0.0140∗∗∗

(0.0023) (0.0025)
Future subsidence > 10cm (SVI adjusted) × Floods 1/100,000 years 0.0098∗∗ 0.0133∗∗

(0.0043) (0.0059)

Observations 1,437,985 1,437,985 1,437,985
R2 0.85437 0.85445 0.85444
Within R2 0.69767 0.69784 0.69781

Year, Month and 4PPC fixed effects ✓ ✓ ✓
Property characteristics ✓ ✓ ✓
Distance polynomials ✓ ✓ ✓
SVI province adjusted ✓

Note: Standard errors are clustered at the 3PPC level. Column 1 shows the results of our preferred
specification from Column 6 of Table 3. In Column 2, we add subsidence variables that are adjusted for
temporal variation in search volume intensity (SVI) of the term land subsidence. In Column 3, we account
for temporal and spatial variation in SVI. ***p <0.01, **p <0.05, *p <0.1

relevant interaction terms to the regression specified in Eq. (4). A unit increase in SVI corre-

sponds to an increase by one standard deviation. In the first specification, we only consider

temporal variation. Subsequently, we also account for spatial variation in the SVI measure by

including the relative SVI of the province in which the property is located.

Table 4 reports the results of estimations including SVI. Column 1 reports baseline estimates

from Column 6 of Table 3 for reference. In Column 2, we add measures of current and future

subsidence, which are adjusted with SVI. Compared to the baseline specification, coefficients
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of the direct and indirect effect of subsidence increase slightly. The effect of SVI adjusted

current subsidence is negative and statistically significant. The coefficient suggests that a one

standard deviation increase in the relative search frequency decreases the transaction price of

all properties, which subside more than 3.3 mm per year by about 0.8%. This decrease is

comparable in magnitude to the baseline effect of current subsidence for properties constructed

before 1980, which underlines the importance of salience. Interestingly, this effect seems to be

smaller for properties exposed to current subsidence, which were constructed before 1980 or

that are at risk of flooding. Similarly, the effect is smaller for properties predicted to subside

in the future, which are located in current flood zones. The respective interaction terms for

these groups are positive and in the case of flood-prone properties large enough to outweigh

the negative effect of salience. The estimates suggest that increased attention to subsidence

decreases the price of properties that are currently subsiding. This effect, however, seems to

be weakened or even reversed for the properties most at risk - those with a potentially weak

foundation or an exposure to flood risk.

Column 3 shows how the estimates change when we account for spatial variation in SVI,

next to the temporal variation. We do so by multiplying the relative SVI in each month by

the relative SVI of the province in which the property is located. Relative SVI at the province

level is shown in Figure B.3. Coefficients of direct and indirect effects are the same as in

the baseline specification. Compared to the estimates from Column 2, the effect size of SVI

adjusted current subsidence increases. A one standard deviation increase in SVI reduces the

price of properties affected by current subsidence by slightly more than 1%. The interaction

effect between current and future subsidence and flood risk remains positive and significant and

increases slightly compared to the previous specification. The interaction term between current

subsidence and a damage prone foundation is now close to zero and no longer significant, which

indicates that the previous positive effect was driven by properties in provinces with lower SVI.

This suggests that buyers who purchase a property in a province, where subsidence is not very

salient do not consider foundation risk, even if they purchase a property, which is likely to have

a damage-prone foundation and that is currently exposed to significant land subsidence.

The estimates in Table 4 reveal three key findings. First, salience as proxied by the frequency

of Google searches clearly matters for the pricing of subsidence. During months with high

degrees of salience, properties exposed to subsidence trade at a large discount. A one standard

deviation increase in the volume of Google searches is associated with a price decrease of 0.8% to
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1%. Second, spatial variation in salience impacts price effects. In provinces where subsidence is

less salient, properties at risk of foundation damage seem to not trade at a discount when salience

increases. A possible explanation is that buyers are simply less aware due to lower salience.

Alternatively, buyers could generally be aware of the risk salience poses but wrongly assume that

it does not pose a threat in their province, as coverage of subsidence might focus on the most

affected areas such as Groningen. Third, an increase in salience implies a larger discount for

properties that are affected by the direct effects of subsidence but not for properties impacted

by the indirect effects. This could indicate that there are two groups of market participants who

price subsidence risks. One group prices associated risks irrespective of the degree of salience,

and another group is only aware of the risk when salience is high. Furthermore, the latter

group only seems to consider the impact of subsidence on the foundation of a property while

not connecting subsidence and flood risk.

6 Implications

6.1 Total Loss in Housing Values

To quantify the total reduction in property values caused by subsidence, we compute counterfac-

tual prices without the impact of subsidence and multiply these by effect sizes, if the property is

affected by subsidence. The figures are adjusted to 2021 prices, using the consumer price index

figures of Statistics Netherlands (Centraal Bureau voor de Statistiek, CBS ).

The results of this rough estimation suggest that between 2010 and 2021 around e545 million

of housing wealth was lost due to direct foundation effects of subsidence. A further e518 million

was lost to indirect effects, which lower the value of a house through increased vulnerability to

flood risk. In total, subsidence caused price reductions of about e1.06 billion.

The sample contains about 1,4 million property transactions, which is about 18% of the total

Dutch housing stock of 8 million properties (Dröes and Koster, 2023). Hans et al. (2024) show

that, in terms of flood risk exposure, transactions are representative for the stock of properties

as covered in the land registry. Assuming that subsidence is comparable between transactions

and stock as well, the estimates suggest that subsidence causes an overall reduction of property

prices of e5.89 billion (against a GDP of e856 billion in 2021 and a total transaction volume

of e419 billion between 2010 and 2021).

The loss in housing wealth is comparable to the external costs of renewable energy produc-
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tion: the value lost due to the installation of wind turbines is e5 billion and the total loss related

to solar farms is another e800 million (Dröes and Koster, 2021). Although wind turbines and

solar farms have a larger effect on the individual property (1.8% and 2.6% respectively), the

total costs are comparable. This suggests that subsidence affects a larger share of properties

than the placement of wind turbines and solar farms. The estimated value reductions are larger

than the non-monetary costs of earthquakes in Groningen, which are estimated to be e169

million (Koster and van Ommeren, 2015). They are also larger than the e1.2 billion of public

investments for the compensation of inhabitants of the region affected by earthquakes (Koster

and van Ommeren, 2015).

6.2 Perception of Climate Risks

To investigate whether the effects estimated in Section 5.1 reflect a rational capitalisation of

foundation risk, we identify the expected probability of foundation damage that is consistent

with the price effects. Under the assumption that the foundation damage occurs immediately

after the purchase of the property, the effect size α should equal the expected probability of

foundation damages p multiplied by expected damages E[d]:

α = p× E[d] (5)

The coefficient of current subsidence for older properties at risk of foundation damages

from Table 3 is −0.008, which suggests a price discount of around 0.8%. The mean house

price in the sample is e290,000, which implies that being affected by subsidence and having a

foundation that is prone to foundation risk, would lower the transaction price of the average

property by e2,320. This price reduction is comparable to the cost of an additional area of

1.6 m2, which corresponds to 1.5% of the area of the average house, or to 25% of the cost of

an additional room. In many cases of foundation damage repair costs will be below e10,000

(Kok and Angelova, 2020). In more severe cases repairing a damaged foundation costs between

e50,000 and e100,000 (Hommes et al., 2023). This implies that market participants expect

a severely damaged foundation with a probability between 2.32% and 4.64% if the property

is exposed to subsidence and built before 1980. Minor damages are expected with probability

23.2%. Results of this rough calculation are shown in Table 5.

These estimates seem to underestimate the actual risk of foundation damages. There are
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Table 5: Inferred expected probabilities, land subsidence

Expected damage e10,000 e50,000 e100,000

Expected probability 23.20% 4.64% 2.32%

Years to damage
Discount rate
2.5% 57 126 153
5% 28 62 76
7.5% 18 41 50

Note: This table shows the individual expectation that are implied by the result of our preferred
specification from Column 6 of Table 3. For different values of expected (foundation) damage, we
consider the case of an uncertain foundation damage immediately after the purchase as well as a
certain foundation damage in the future under varying discount rates.

about 8 million homes in the Netherlands (Dröes and Koster, 2023) and about one million

of them might be affected by foundation damage (Hommes et al., 2023). This would suggest

a probability of being affected by foundation damage of roughly 17%, which coincidentally

corresponds to the sample share of properties with a construction date before 1980 exposed to

current subsidence of more than 3.3 mm per year (shown in Table 2). This price discount only

applies to the properties most at risk (i.e. those affected by subsidence and constructed before

concrete foundations were used). As it could very well be the case that the majority of exposed

properties sustains foundation damages, even the implied probability of 23.2% for expecting

minor damage to the foundation seems very optimistic. Furthermore, market participants seem

to expect severe foundation damages only in 2.32%-4.64% of the cases. As full restoration might

be necessary for up to 9% of properties (Kok et al., 2021), these expectations provide a further

indication that the risk of foundation damages is underestimated.

A potential explanation for this underestimation is that market participants might expect

financial support from the government. Currently, the homeowner has to pay for repairing a

broken foundation and these costs are not insurable (Hommes et al., 2023). There is an ongoing

policy discussion about the extent to which water management authorities should be liable

for foundation damages and how government support can be extended to homeowners.8 As

the extent to which the government provides financial support in case of foundation damage

remains unclear, it seems unlikely that market participants in the period from 2010 to 2021

were expecting government support. Instead, it seems more plausible that the underestimation

8See for instance the communications of the Union of Water Boards (https://unievanwaterschappen.nl/tweede-
kamer-spreekt-met-waterschappen-over-funderingsschade/ and https://unievanwaterschappen.nl/sturende-rol-
water-moet-verdere-funderingsschade-beperken/.
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is caused by a lack of awareness. This is consistent with estimates suggesting that 85% of

buyers are not aware of potential foundation risk (Bani et al., 2024). Thus, the results highlight

that standardised disclosure of climate risks can help market participants to make informed

decisions. As suggested by Bani et al. (2024), this disclosure could take the form of a climate

label that highlights the risk exposure of a property.

Alternatively, one could think of a certain foundation damage occurring t years in the future.9

Because the damage only occurs in the future it has to be discounted at discount rate β:

α = (1− β)t × E[d] (6)

Giglio et al. (2015) estimate that the appropriate discount rate to choose for real estate cash

flows 100 years or more in the future is 2.6%. We perform calculations using a discount rate

of 2.5%. We also apply two larger discount rates, 5% and 7.5% respectively. The results are

shown in Table 5. Depending on the discount rate and expected damages, foundation damages

are expected to occur within 18 years for minor damages or within 41 to 153 years for severe

damages.

Similarly, it is possible to investigate the magnitude of the effects found for the indirect

effects of subsidence. In the main specification, we investigate the impact of future subsidence

on properties already exposed to flood risk today. Thus, the risk of flooding will be unchanged.

What will change in response to future subsidence is the expected damage in the event of

flooding. This is due to the fact that subsidence leads to higher inundation levels, which are

commonly associated with higher flood damages (Endendijk et al., 2023). Therefore, the effect

should reflect the probability of a flood event multiplied by the expected change in damages

due to subsidence:

α = p×∆E[d] (7)

The effect is expressed as a percentage discount on the transaction. Accordingly, expected

damages can be expressed in terms of damage to value. In this case, both p and ∆E[d] are

bounded by one, as a flood cannot destroy more than the entire value of the property. The lowest

expected probability that is consistent with these findings is a flood probability of 1.5%, which

9In reality, foundation damages will neither occur immediately after the purchase nor with certainty at a
specific date in the future. Instead, there is a probability for the damage to occur in every year after the purchase.
The results of these estimations can, therefore, be thought of as upper bounds for the expected probability of a
foundation damage and the expected duration for damage to occur.
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is significantly higher than the objective probability of 0.001%. A subjective flood probability

of 1.5% would require that subsidence increases expected flood damages from 0% to 100%.

Furthermore, these 1.5% are a lower bound as the calculation assumes a discount rate of 0.

Therefore, the real expected probability will likely be significantly higher than 1.5%.

7 Conclusion

Combining detailed transaction data and granular data on current and future subsidence as

well as flood risk, we show that there are significant direct and indirect price effects of land

subsidence in the Dutch residential real estate market. Properties that rest on damage-prone

foundations and are exposed to current subsidence trade at a price discount of 0.8%. Flood-

prone properties that are predicted to experience subsidence in the future obtain prices that are

lower by 1.5%. Our results complement earlier work by Murfin and Spiegel (2020) who study

historical trends in relative sea level rise (RSLR), which largely reflect differences in vertical

land motion. While Murfin and Spiegel (2020) find that RSLR is not priced, we investigate

subsidence using direct satellite data and in a different country which is particularly prone to

both flooding and subsidence. We find that the interaction between subsidence, foundation risk,

and flood risk is particularly important to understand the impact on property prices.

Imputed expectations suggest that buyers underestimate the risk of foundation damages.

Although the effect sizes are conditional on the property belonging to the most vulnerable group,

buyers expect minor foundation damages with a probability of 23.2% and major damages with

a probability between 2.3% and 4.6%. At the same time, it is estimated that 17% of all

private properties will be affected by some form of foundation damage in the future (Hommes

et al., 2023). This is consistent with recent evidence showing that 85% of buyers are not

aware of potential foundation risks (Bani et al., 2024). Using Google Trends data, we further

find that information on subsidence is not correctly priced when it is particularly salient, which

supplements the salience argument in case of flood risk given by Giglio et al. (2021b). Moreover,

the estimates indicate that buyers overestimate the risk of flooding. This is consistent with the

findings of Bosker et al. (2019) that households expect a flood at least once every hundred years,

which is significantly higher than the officially proclaimed state of the flood defenses.

An interesting avenue for future research would be to investigate how flood risk effects

relate to the experience of actual flood events such as the flooding of Noord-Brabant and
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Limburg in the Netherlands in 2021. Moreover, one of the main drivers of subsidence is local

water management (Kok and Angelova, 2020). Therefore, losses in housing wealth should be

considered by local authorities when setting optimal groundwater levels. Although this study

does not explicitly include groundwater levels, it is unlikely to pose a threat to the empirical

design as groundwater levels vary at a larger scale (Bootsma et al., 2020). Precisely this type of

unobserved local variables is filtered out by the border discontinuity design. Further research

should also quantify the effect on other sectors such as commercial real estate or infrastructure.

Moreover, it would be useful to utilize structural hedonic models along the lines of Ekeland

et al. (2004); Bajari and Benkard (2005); Bajari and Kahn (2005) that incorporate household

characteristics to examine how the results vary across individuals. Finally, the mispricing of

flood and subsidence risks found in this study supports the case for standardized disclosure of

climate risks, for example, in the form of a climate label for real estate (Bani et al., 2024).
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A Robustness Checks

A.1 Inundation Depth

We investigate whether the effect of subsidence differs by inundation depth, the projected water

levels a property is exposed to in the event of flooding. Appendix Figure B.5 shows the coefficient

estimates for the interaction effect between future subsidence and five different categories of

inundation depth. The estimates show that price effects of subsidence are concentrated among

properties facing potential inundation depths between 20 cm and 80 cm. Those properties trade

at a discount of approximately 3.5%. Properties that would be inundated by more than 80 cm do

not trade at a discount. This is consistent with the hydrology literature, which typically models

the relation between inundation depth and flood damage using a root function (Endendijk et al.,

2023; Sieg and Thieken, 2022).

For properties with relatively low inundation depths, an increase in inundation depth caused

by subsidence leads to a large increase in projected flood damages, while for properties that

already face substantial projected inundation levels, the marginal increase in projected damage

is much smaller. The corresponding estimates are shown in Column 1 of Appendix Table C.4.

The other two columns repeat the same regression using different levels of flood risk (i.e.,

flooding every 1,000 and every 100 years, respectively). For the higher risk levels, the pattern

is less clear, potentially due to the fact that fewer properties are affected by this degree of flood

risk, which could make estimates more noisy. Furthermore, the baseline coefficient of future

subsidence, which was insignificant in Column 1, becomes negative.

A.2 Distance to the Boundary

To identify the effect of subsidence on property prices, we apply a border discontinuity design.

This approach compares affected properties along an imaginary boundary with properties on one

side and unaffected properties on the other side. By comparing properties on both sides of the

boundary, it is possible to reduce the bias arising from unobserved local amenities. Traditionally,

studies applying this approach, such as Black (1999), define a distance cutoff and only include

observations that fall within this distance to the border. Instead of arbitrarily defining a cutoff,

we follow Gibbons et al. (2013) and weight each observation by the inverse distance to the

boundary. To demonstrate that the results are not sensitive to this choice, Appendix Table C.2

shows estimates for a range of distance cutoffs.
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Column 1 of Appendix Table C.2 shows the same estimates as Column 6 of Table 3, where

observations are weighted with the inverse distance to the boundary. In Columns 2 to 6, we apply

different distance cutoffs ranging from 50 to 1000 metres. Column 7 shows results of a naive OLS

regression estimated on the full sample without sample restrictions or weights. The estimates

of the interaction term between future subsidence and flood risk are relatively stable across all

specifications. The effect size of current subsidence for properties built before 1980 substantially

varies across specifications. For the most narrow threshold of 50 metres the coefficient is −0.0059

and it decreases to −0.0193 for the naive OLS estimation. While the interaction term with

the construction period decreases in magnitude, the baseline effect of current subsidence is

increasing across specifications. In the OLS specification in Column 7, the baseline effect of

0.0127 is significant at the 1% confidence level. The difference between the baseline effect and

the interaction term is comparable to the effect from our preferred specification. The results

suggest that current subsidence is correlated with unobserved amenities, i.e. current subsidence

is more prevalent in desirable locations, where house prices are higher. This underlines the

importance of applying BD to identify causal effects.

A.3 Alternative Fixed Effects

A common strategy to control for unobserved property level characteristics is to apply a repeat

sales approach (Hino and Burke, 2021). Repeat sales identify effects from the sales of properties

that sell more than once during the sample period, which allows for the inclusion of property

fixed effects. In this application, however, we are unable to estimate a repeated sales regression,

as there is no temporal variation in the explanatory variables of interest, current and future

subsidence. Dröes and Koster (2021) show that the results of a repeat sales regression are very

close to regressions that include very detailed location fixed effects. Therefore, we approximate

a repeated sales regression by adding fixed effects at a more granular five- and six-digit zip

code level. We further estimate a specification with 4PPC-by-year fixed effects to check for

time-varying spatial trends.

The results of these robustness checks are reported in Appendix Table C.5. Column 1 reports

the baseline results from Column 6 of Table 3 using 4PPC fixed effects. Column 2 shows the

same estimates using 5PPC fixed effects. The magnitude of the coefficients decreases somewhat,

but the significance levels remain unchanged. The specification in Column 3 estimates the model

with 6PPC fixed effects instead. This further reduces the effect of subsidence on the price of
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buildings constructed before 1980 and reduces the significance level to 5%. The interaction effect

between future subsidence and flood risk becomes positive and is no longer significant. A likely

explanation of this finding is the spatial scale at which information is available. The median

6PPC covers an area of 60m × 60m, while the median 5PPC covers an area of 294m × 294m

(Bosker et al., 2019). In contrast, maps on future subsidence and flood risk have a resolution

of 100m× 100m, which would imply very little variance in these variables within a 6PPC area.

Thus, 6PPC fixed effects likely remove most of the identifying variation in these variables,

even with the quality granular data we use in this study. Finding an insignificant indirect

effect is, therefore, not surprising. For properties constructed before 1980, the effect of current

subsidence, for which we have data at the property level, remains statistically significant. That

this is the case, although properties in the same 6PPC area are exposed to the same environment,

seems reassuring for the baseline estimates.

Column 4 reports estimates using 4PPC-by-year fixed effects. The coefficient on the direct

effect slightly increases, while the interaction between future subsidence and flood risk remains

virtually unchanged. This suggests that the effects obtained are not driven by local time trends.

A.4 Definition of Variables

For the baseline analysis, we define an indicator variable for current subsidence that equals one

if the property experiences subsidence of 3.3 mm per year or more. Accordingly, for future

subsidence the indicator captures whether the property is predicted to subside 10 cm or more

between 2020 and 2050. These values are chosen because predicted subsidence of below 10 cm

between 2020 and 2050 is classified as “limited subsidence” in the Climate Impact Atlas. A

yearly subsidence rate of 3.3 mm corresponds to 10 cm over a time horizon of 30 years. Further-

more, construction experts state that subsidence has negative effects on a building beginning

at a yearly rate of 3 mm (Willemsen et al., 2020). To assess the sensitivity of the results to

this choice, Appendix Table C.7 shows results using alternative definitions of the subsidence

variables.

In Column 1, we define the relevant cutoff as a yearly subsidence rate of 0 mm in which case

the direct effect becomes positive and statistically insignificant. This might indicate that very

low subsidence rates are associated with negligible effects. This is consistent with the estimation

that negative effects of subsidence materialise once the yearly subsidence rate exceeds 3 mm

(Willemsen et al., 2020). The interaction term between future subsidence and flood risk increases
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slightly. The relevant cutoff in Column 3 is a yearly subsidence rate of 6.7 mm. This corresponds

to the classification of “extensive subsidence” in the prediction map. Current subsidence has a

positive baseline effect of 0.021, which is significant at the 5% significance level. This indicates

that locations with extensive rates of subsidence have positive unobserved amenities. The

interaction between current subsidence and a property being built before 1980 is significant at

the 1% significance level and relatively large at -0.335. After accounting for the positive baseline

effect, the estimate suggests that properties built before 1980 that are exposed to more than 6.7

mm of subsidence per year trade at a discount of 1.2%. The interaction term between future

subsidence and flood risk decreases slightly but becomes statistically insignificant. This is likely

caused by the lower precision of the estimates, as subsidence rates of more than 6.7 mm per

year are relatively rare, which implies that most of the identification comes from relatively few

observations close to the boundary.

In our main specification we use a measure of uniform subsidence, which measures the

weighted average of subsidence at the five closest measurement points surrounding a property.

Kok and Angelova (2020) and Kok et al. (2021) suggest that not uniform but instead differential

subsidence across the foundation of the property causes damages, specifically for buildings on

shallow foundations. To test this hypothesis, we include differential subsidence measured by

the maximum difference between the closest measurement points. The results are shown in

Appendix Table C.6. First, we consider a property as exposed to differential subsidence if

the maximum difference between measurement points is larger than 1 mm per year. This

corresponds to the threshold determined by construction experts in Willemsen et al. (2020). We

also test thresholds of 2 mm per year and 3.3 mm per year. The results show that the coefficients

on the differential subsidence variables are not statistically significant. The remaining estimates

are virtually unchanged compared to our baseline specification.

In addition, we test the sensitivity of the results to the choice of the level of flood risk.

The results are shown in Appendix Table C.8. When considering the small (floods once in

1,000 years) and medium (floods once in 100 years) probabilities of flood risk, the effect of

current subsidence on properties constructed before 1980 remains unchanged. The interaction

effect between flood risk and future subsidence decreases and becomes statistically insignificant.

However, the uninteracted effect of future subsidence increases and becomes statistically signif-

icant and comparable in size to the indirect effect from the baseline specification. This suggests

that future subsidence has a significant negative price effect on properties that are exposed to
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flood risk but are expected to flood less than once per 1,000 years. A possible explanation could

be that buyers consider flood risk a binary variable and do not distinguish between different

degrees of flood risk.

In our preferred specification, property prices are regressed on both current and future

subsidence and their respective interaction effects. In Appendix Table C.9 we show results only

using current or future subsidence. The results for current subsidence are almost identical to

the baseline estimates. When only future subsidence is included, the interaction effect between

subsidence and flood risk increases, but the base effect of future subsidence becomes positive

and statistically significant at the 10% significance level.

A.5 Other Sensitivity Analyses

To show that our results are not sensitive to our choice of variables and sample, we perform

additional tests. The corresponding results are shown in Appendix Table C.10. In Column 2, we

change the construction year cutoff from 1980 to 1970, see Section 4. The point estimate of the

interaction between current subsidence and construction year increases somewhat in magnitude

(from 0.008, see Column 1, to 0.0099). However, both coefficients are not statistically different

from each other at a 5% significance level.

In addition, we impose a range of sample restrictions. First, we consider whether the esti-

mates on flood risk are driven by the Western European Flood of 2021, which caused casualties

and major damages across Eastern Belgium and Western Germany. Despite not causing any

casualties in the Netherlands, the flood caused e350 - 600 million in damages, mainly in the

province of Limburg (Kok et al., 2023). Thus, the flood might have had an impact on flood

risk perceptions in the Netherlands. Second, the measure of current subsidence is based on

measurements between 2017 and 2021. Therefore, it might not be an appropriate proxy for

years predating the measurements. To test this, we restrict the sample to the years from 2017

to 2021, for which the trend of subsidence is a valid approximation by definition. Third, we

exclude the province of Groningen as subsidence caused by the extraction of natural gas can

cause earthquakes (Koster and van Ommeren, 2015), which might be more damaging than

subsidence caused by dehydration of soft soils. In the fourth specification, we adopt a more

granular definition of areas affected by earthquakes by following the CBS classification of af-

fected neighbourhoods (CBS, 2020). Finally, we remove the province of Limburg, which seems

to be an outlier as the ground appears to rise in certain locations. The results of these tests are
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presented in Appendix Table C.10. Most of the sample restrictions do not significantly affect

the main results. The most notable exception is that in the specification for the years from 2017

to 2021, the interaction term between future subsidence and flood risk decreases somewhat and

loses its statistical significance. However, the main concern of this test is to show that the trend

in current subsidence between 2017 and 2021 is a valid approximation for the whole sample pe-

riod. This seems to be the case as estimates of coefficients involving current subsidence remain

almost unchanged.
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B Additional Figures

Figure B.1: Share of foundations at risk

(a) Pole foundations (b) Shallow foundations

Note: The maps show the share of pole and shallow foundations among properties, which were
constructed before the mid 1970s, at the neighbourhood level. The data is based on estimations from
construction experts and obtained from the Climate Impact Atlas.
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Figure B.2: Inundation depth, different risk levels

(a) Floods 1/10 years (b) Floods 1/100 years

(c) Floods 1/1,000 years (d) Floods 1/100,000 years

Note: The maps show the inundation depths in case of a failure of the primary flood defenses for four
different levels of flood risk. According to the official safety standards, the flood defenses would fail
once in 10 years, 100 years, 1,000 years, and 100,000 years respectively. The data is obtained from
the Climate Impact Atlas.
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Figure B.3: Search volume intensity, spatial variation
Note: The map shows spatial variation in google search frequency of the term land subsidence (in
Dutch ’bodemdaling’) at the province level. A value of 1 denotes the maximum search frequency.
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Figure B.4: Distance to border

Note: The figure plots the share of properties with a certain distance to the boundary that falls within
50 meter bins. For properties that are subsiding by a significant amount of more than 3.3 mm per
year the distance to the boundary is the distance to the nearest property that is subsiding by less
than 3.3 mm per year. Conversely, for properties that are not exposed to significant subsidence we
measure the distance to the nearest property that is affected by significant subsidence.
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Figure B.5: Inundation depth and future subsidence

Note: The Figure shows the coefficient of the interaction term between the future subsidence dummy
and different values of inundation depth. Standard errors are clustered at the 3PPC level. Coefficients
correspond to the last five rows in Column 1 of Table C.4.
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C Additional Tables

Table C.1: Correlation matrix

Cur. subs. Fut. subs. Before 1980 Inundation Pole rot vuln. Differential settlement vuln.

Cur. subs. 0.122 0.015 0.135 0.165 0.182
Fut. subs. -0.085 0.177 0.088 0.384

Before 1980 -0.064 0.084 -0.044
Inundation 0.136 0.266

Pole rot vuln. 0.211
Differential settlement vuln.
Note: The table shows the correlation between current soil subsidence, future soil subsidence, a property being exposed to foundation risk, inundation
depth under an extremely small probability of flooding (1/100,000 years), vulnerability to pole rot (affects properties on pole foundations) and vulner-
ability to differential settlement (affects properties on shallow foundations).
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Table C.2: Different distance thresholds

Log price
(1) (2) (3) (4) (5) (6) (7)

Current subsidence > 3.3mm 0.0005 -0.0013 0.0042 0.0097∗∗∗ 0.0076∗∗ 0.0028 0.0127∗∗∗

(0.0024) (0.0041) (0.0033) (0.0034) (0.0035) (0.0033) (0.0034)
Future subsidence > 10cm -0.0047 -0.0051 -0.0023 -0.0007 -0.0004 -0.0001 0.0009

(0.0068) (0.0061) (0.0054) (0.0050) (0.0050) (0.0051) (0.0051)
Floods 1/100,000 years -0.0077 -0.0083∗ -0.0055 -0.0065 -0.0057 -0.0057 -0.0059

(0.0062) (0.0049) (0.0043) (0.0042) (0.0040) (0.0040) (0.0039)
Current subsidence > 3.3mm × Built before 1980 -0.0080∗∗∗ -0.0059∗∗ -0.0097∗∗∗ -0.0129∗∗∗ -0.0156∗∗∗ -0.0175∗∗∗ -0.0193∗∗∗

(0.0022) (0.0023) (0.0027) (0.0032) (0.0034) (0.0035) (0.0036)
Future subsidence > 10cm × Built before 1980 0.0053 0.0022 0.0036 0.0025 0.0023 0.0021 0.0023

(0.0074) (0.0065) (0.0062) (0.0059) (0.0058) (0.0058) (0.0059)
Current subsidence > 3.3mm × Floods 1/100,000 years 0.0019 -0.0012 -0.0025 -0.0037 -0.0030 -0.0028 -0.0045

(0.0024) (0.0021) (0.0024) (0.0027) (0.0027) (0.0027) (0.0028)
Future subsidence > 10cm × Floods 1/100,000 years -0.0152∗∗ -0.0139∗∗ -0.0155∗∗ -0.0149∗∗ -0.0144∗∗ -0.0143∗∗ -0.0156∗∗

(0.0074) (0.0067) (0.0064) (0.0062) (0.0062) (0.0062) (0.0063)

Observations 1,437,985 601,231 945,278 1,271,650 1,365,265 1,399,245 1,437,985
R2 0.85437 0.85803 0.85297 0.84685 0.84431 0.84243 0.84157
Within R2 0.69767 0.70611 0.70956 0.70951 0.70886 0.70715 0.70467

Year, Month and 4PPC fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓
Property characteristics ✓ ✓ ✓ ✓ ✓ ✓ ✓
Distance polynomials ✓ ✓ ✓ ✓ ✓ ✓ ✓
Distance to border IDW < 50m < 100m < 250m < 500m < 1000m full sample

Note: Standard errors are clustered at the 3PPC level. Column 1 shows our preferred specification from Column 6 of Table 3, which weights each
observation by the inverse distance to the boundary. For subsiding properties this is defined as the distance to the nearest property that is not subsiding.
For properties that are not subsiding, this is the distance to the nearest subsiding property. Instead of weighting each observation by the inverse distance,
in Columns 2 to 6, we use a fixed distance band ranging from 50 metres to 1000 metres. In these regressions, we only include observations that fall
within this specific distance band. Column 7 shows results of a fixed effects regression on the full sample without a border discontinuity strategy.
***p <0.01, **p <0.05, *p <0.1
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Table C.3: Dependent variables

Log price Log askprice Log time on market
(1) (2) (3)

Current subsidence > 3.3mm 0.0005 0.0005 -0.0045
(0.0024) (0.0025) (0.0114)

Future subsidence > 10cm -0.0047 -0.0037 0.0083
(0.0068) (0.0071) (0.0254)

Floods 1/100,000 years -0.0077 -0.0110∗ -0.0353∗∗

(0.0062) (0.0063) (0.0155)
Current subsidence > 3.3mm × Built before 1980 -0.0080∗∗∗ -0.0065∗∗∗ 0.0164

(0.0022) (0.0023) (0.0114)
Future subsidence > 10cm × Built before 1980 0.0053 0.0041 -0.0075

(0.0074) (0.0076) (0.0274)
Current subsidence > 3.3mm × Floods 1/100,000 years 0.0019 0.0013 0.0031

(0.0024) (0.0024) (0.0104)
Future subsidence > 10cm × Floods 1/100,000 years -0.0152∗∗ -0.0164∗∗ -0.0175

(0.0074) (0.0077) (0.0226)

Observations 1,437,985 1,437,985 1,437,985
R2 0.85437 0.84395 0.23434
Within R2 0.69767 0.70608 0.04619

Year, Month and 4PPC fixed effects ✓ ✓ ✓
Property characteristics ✓ ✓ ✓
Distance polynomials ✓ ✓ ✓

Note: Standard errors are clustered at the 3PPC level. Observations are weighted by the inverse
distance to the boundary. Column 1 shows our baseline results using log transaction price as dependent
variable. Column 2 estimates the equation using the log askprice as dependent variable. In Column 3,
we change the dependent variable to (log) time on market. ***p <0.01, **p <0.05, *p <0.1
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Table C.4: Inundation depth

Log price
(1) (2) (3)

Current subsidence > 3.3mm 0.0005 0.0014 0.0019
(0.0024) (0.0022) (0.0019)

Future subsidence > 10cm -0.0069 -0.0134∗∗ -0.0161∗∗∗

(0.0066) (0.0064) (0.0050)
Inundation 0-20cm -0.0037 -0.0071 0.0099

(0.0057) (0.0085) (0.0090)
Inundation 20-50cm -0.0032 -0.0008 0.0021

(0.0057) (0.0080) (0.0073)
Inundation 50-80cm -0.0016 0.0022 0.0093

(0.0074) (0.0080) (0.0097)
Inundation 80cm-2m -0.0129 -0.0052 0.0155

(0.0081) (0.0081) (0.0104)
Inundation > 2m -0.0281∗∗ -0.0151 0.0126

(0.0131) (0.0108) (0.0137)
Current subsidence > 3.3mm × Built before 1980 -0.0082∗∗∗ -0.0079∗∗∗ -0.0082∗∗∗

(0.0021) (0.0022) (0.0022)
Future subsidence > 10cm × Built before 1980 0.0070 0.0049 0.0063

(0.0066) (0.0072) (0.0074)
Current subsidence > 3.3mm × Inundation 0-20cm 0.0038 -0.0021 -0.0002

(0.0042) (0.0047) (0.0039)
Current subsidence > 3.3mm × Inundation 20-50cm 0.0089∗ 0.0049 0.0024

(0.0050) (0.0046) (0.0041)
Current subsidence > 3.3mm × Inundation 50-80cm 0.0025 0.0019 0.0051

(0.0033) (0.0031) (0.0041)
Current subsidence > 3.3mm × Inundation 80cm-2m -0.0009 0.0005 -0.0056

(0.0027) (0.0027) (0.0045)
Current subsidence > 3.3mm × Inundation > 2m 0.0017 -0.0001 -0.0017

(0.0027) (0.0032) (0.0037)
Future subsidence > 10cm × Inundation 0-20cm -0.0127 0.0103 -0.0004

(0.0132) (0.0110) (0.0090)
Future subsidence > 10cm × Inundation 20-50cm -0.0384∗∗∗ -0.0134 -0.0013

(0.0111) (0.0092) (0.0088)
Future subsidence > 10cm × Inundation 50-80cm -0.0350∗∗∗ -0.0246∗∗ -0.0058

(0.0105) (0.0112) (0.0114)
Future subsidence > 10cm × Inundation 80cm-2m -0.0086 -0.0129 -0.0083

(0.0082) (0.0108) (0.0151)
Future subsidence > 10cm × Inundation > 2m 0.0006 0.0166∗ 0.0145

(0.0087) (0.0100) (0.0158)

Observations 1,437,985 1,437,985 1,437,985
R2 0.85447 0.85438 0.85435
Within R2 0.69789 0.69770 0.69764

Year, Month and 4PPC fixed effects ✓ ✓ ✓
Property characteristics ✓ ✓ ✓
Distance polynomials ✓ ✓ ✓
Flood risk 1/100,000 years 1/1,000 years 1/100 years

Note: Standard errors are clustered at the 3PPC level. Observations are weighted by the inverse
distance to the boundary. The regressions in the table replace the indicator variable for flood risk
with five categories of inundation depth. The regression is conducted for three different levels of flood
risk 1/100,000 years, 1/1,000 years, and 1/100 years respectively. ***p <0.01, **p <0.05, *p <0.1
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Table C.5: Robustness checks

Log price
(1) (2) (3) (4)

Current subsidence > 3.3mm 0.0005 -0.0005 0.0006 0.0019
(0.0024) (0.0017) (0.0017) (0.0023)

Future subsidence > 10cm -0.0047 0.0033 -0.0041 -0.0052
(0.0068) (0.0052) (0.0053) (0.0066)

Floods 1/100,000 years -0.0077 0.0015 0.0013 -0.0061
(0.0062) (0.0037) (0.0027) (0.0061)

Current subsidence > 3.3mm × Built before 1980 -0.0080∗∗∗ -0.0053∗∗∗ -0.0033∗∗ -0.0093∗∗∗

(0.0022) (0.0016) (0.0015) (0.0021)
Future subsidence > 10cm × Built before 1980 0.0053 -0.0015 0.0021 0.0055

(0.0074) (0.0051) (0.0057) (0.0074)
Current subsidence > 3.3mm × Floods 1/100,000 years 0.0019 0.0029∗ 0.0022 0.0006

(0.0024) (0.0018) (0.0016) (0.0022)
Future subsidence > 10cm × Floods 1/100,000 years -0.0152∗∗ -0.0106∗∗ 0.0046 -0.0151∗∗

(0.0074) (0.0053) (0.0051) (0.0071)

Observations 1,437,985 1,437,985 1,437,985 1,437,985
R2 0.85437 0.88980 0.93334 0.87528
Within R2 0.69767 0.63494 0.48512 0.71910

Year and Month fixed effects ✓ ✓ ✓
4PPC fixed effects ✓
5PPC fixed effects ✓
6PPC fixed effects ✓
Year-4PPC fixed effects ✓
Property characteristics ✓ ✓ ✓ ✓
Distance polynomials ✓ ✓ ✓ ✓
Fixed Effects 4PPC 5PPC 6PPC 4PPC by year

Note: Standard errors are clustered at the 3PPC level. Observations are weighted by the inverse
distance to the boundary. Column 1 shows the results from our preferred specification from Column
6 of Table 3 using four-digit zip-code fixed effects. Columns 2 and 3 replace the fixed effects with
five-digit and six-digit zip-code fixed effects respectively. Column 4 applies four-digit × year fixed
effects. ***p <0.01, **p <0.05, *p <0.1
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Table C.6: Differential subsidence

Log price
(1) (2) (3)

Current subsidence > 3.3mm 0.0006 0.0013 0.0004
(0.0024) (0.0024) (0.0024)

Differential subsidence -0.0017 -0.0091 -0.0005
(0.0035) (0.0056) (0.0102)

Future subsidence > 10cm -0.0047 -0.0043 -0.0048
(0.0069) (0.0069) (0.0068)

Floods 1/100,000 years -0.0064 -0.0085 -0.0078
(0.0067) (0.0063) (0.0063)

Current subsidence > 3.3mm × Built before 1980 -0.0081∗∗∗ -0.0083∗∗∗ -0.0076∗∗∗

(0.0022) (0.0023) (0.0022)
Differential subsidence × Built before 1980 0.0004 0.0020 -0.0080

(0.0034) (0.0044) (0.0076)
Future subsidence > 10cm × Built before 1980 0.0053 0.0052 0.0057

(0.0075) (0.0075) (0.0074)
Current subsidence > 3.3mm × Floods 1/100,000 years 0.0021 0.0016 0.0019

(0.0024) (0.0024) (0.0024)
Differential subsidence × Floods 1/100,000 years -0.0021 0.0042 0.0017

(0.0028) (0.0051) (0.0095)
Future subsidence > 10cm × Floods 1/100,000 years -0.0152∗∗ -0.0154∗∗ -0.0152∗∗

(0.0074) (0.0074) (0.0074)

Observations 1,437,985 1,437,985 1,437,985
R2 0.85437 0.85438 0.85437
Within R2 0.69768 0.69770 0.69768

Year, Month and 4PPC fixed effects ✓ ✓ ✓
Property characteristics ✓ ✓ ✓
Distance polynomials ✓ ✓ ✓
Differential subsidence > 1 mm/year > 2 mm/year > 3.3 mm/year

Note: Standard errors are clustered at the 3PPC level. Observations are weighted by the inverse
distance to the boundary. In the Table, we include differential subsidence. The indicator variable takes
the value one if the maximum difference in yearly subsidence rates of a property’s five closest
measurement points is above a certain threshold. In Column 1, this threshold is a difference of 1
mm/year. Columns 2 and 3 change the threshold to 2 mm/year and 3.3 mm/year respectively.
***p <0.01, **p <0.05, *p <0.1
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Table C.7: Current subsidence variables

Log price
(1) (2) (3) (4)

Current subsidence 2.196 0.0018 0.0005 0.0210∗∗

(1.994) (0.0025) (0.0024) (0.0092)
Future subsidence -0.0020 0.0053 -0.0047 -0.0037

(0.0219) (0.0101) (0.0068) (0.0151)
Floods 1/100,000 years -0.0064 0.0039 -0.0077 -0.0157

(0.0065) (0.0064) (0.0062) (0.0102)
Current subsidence × Built before 1980 -7.724∗∗∗ 0.0034 -0.0080∗∗∗ -0.0335∗∗∗

(2.091) (0.0023) (0.0022) (0.0097)
Future subsidence × Built before 1980 0.0092 -0.0047 0.0053 0.0218∗

(0.0220) (0.0087) (0.0074) (0.0121)
Current subsidence × Floods 1/100,000 years 0.8607 -0.0037∗ 0.0019 -0.0060

(1.957) (0.0021) (0.0024) (0.0078)
Future subsidence × Floods 1/100,000 years -0.0615∗∗∗ -0.0198∗∗ -0.0152∗∗ -0.0212

(0.0214) (0.0087) (0.0074) (0.0155)

Observations 1,437,985 1,437,985 1,437,985 1,437,985
R2 0.85438 0.84946 0.85437 0.86310
Within R2 0.69769 0.70062 0.69767 0.69694

Year, Month and 4PPC fixed effects ✓ ✓ ✓ ✓
Property characteristics ✓ ✓ ✓ ✓
Distance polynomials ✓ ✓ ✓ ✓
Subsidence variable Continuous > 0mm > 3.3mm > 6.7mm
Boundary > 3.3mm > 0mm > 3.3mm > 6.7mm

Note: Standard errors are clustered at 3PPC level. In Column 1 we treat land subsidence in metres
as a continuous variable. In Column 2 we define a property as exposed if it is subsiding at a positive
rate. Column 2 shows our baseline estimates from Column 6 of Table 3 where a property is affected
if it subsides by more than 3.3 mm per year. Column 4 uses a yearly subsidence rate of 6.7 mm as
cutoff. Observations are weighted by the inverse distance to the boundary between properties exposed
to current subsidence and unaffected properties, which are defined according to the cutoff used in the
regression. ***p <0.01, **p <0.05, *p <0.1
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Table C.8: Different levels of flood risk

Log price
(1) (2) (3)

Current subsidence > 3.3mm 0.0005 0.0014 0.0018
(0.0024) (0.0022) (0.0019)

Future subsidence > 10cm -0.0047 -0.0136∗∗ -0.0161∗∗∗

(0.0068) (0.0064) (0.0050)
Flood risk -0.0077 -0.0044 0.0089

(0.0062) (0.0068) (0.0070)
Current subsidence > 3.3mm × Built before 1980 -0.0080∗∗∗ -0.0080∗∗∗ -0.0081∗∗∗

(0.0022) (0.0022) (0.0022)
Future subsidence > 10cm × Built before 1980 0.0053 0.0053 0.0064

(0.0074) (0.0072) (0.0074)
Current subsidence > 3.3mm × Flood risk 0.0019 0.0007 -0.0004

(0.0024) (0.0022) (0.0022)
Future subsidence > 10cm × Flood risk -0.0152∗∗ -0.0039 -0.0015

(0.0074) (0.0082) (0.0070)

Observations 1,437,985 1,437,985 1,437,985
R2 0.85437 0.85434 0.85434
Within R2 0.69767 0.69761 0.69762

Year, Month and 4PPC fixed effects ✓ ✓ ✓
Property characteristics ✓ ✓ ✓
Distance polynomials ✓ ✓ ✓
Flood Risk 1/100,000 years 1/1,000 years 1/100 years

Note: Standard errors are clustered at the 3PPC level. Observations are weighted by the inverse
distance to the boundary between properties exposed to current subsidence and unaffected properties.
Column 1 shows the estimates from our preferred specification from Column 6 of Table 3. Columns
2 and 3 repeat the regression for properties that are exposed to a higher degree of flood risk and
expected to flood once every 1,000 or once every 100 years. ***p <0.01, **p <0.05, *p <0.1
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Table C.9: Current and future subsidence

Log price
(1) (2) (3)

Current subsidence > 3.3mm 0.0005 0.0004
(0.0024) (0.0024)

Future subsidence > 10cm -0.0047 0.0084∗

(0.0068) (0.0044)
Floods 1/100,000 years -0.0077 -0.0097 -0.0057

(0.0062) (0.0059) (0.0060)
Current subsidence > 3.3mm × Built before 1980 -0.0080∗∗∗ -0.0077∗∗∗

(0.0022) (0.0022)
Future subsidence > 10cm × Built before 1980 0.0053 0.0024

(0.0074) (0.0041)
Current subsidence > 3.3mm × Floods 1/100,000 years 0.0019 0.0017

(0.0024) (0.0024)
Future subsidence > 10cm × Floods 1/100,000 years -0.0152∗∗ -0.0189∗∗∗

(0.0074) (0.0049)

Observations 1,437,985 1,438,093 1,437,985
R2 0.85437 0.85430 0.86135
Within R2 0.69767 0.69762 0.70632

Year, Month and 4PPC fixed effects ✓ ✓ ✓
Property characteristics ✓ ✓ ✓
Distance polynomials ✓ ✓ ✓
Note: Standard errors are clustered at the 3PPC level. Observations are weighted by the inverse
distance to the boundary. Column 1 shows results from our preferred specification shown in Column
6 of Table 3. In Columns 2 and 3 we investigate the effects of current and future subsidence separately.
***p <0.01, **p <0.05, *p <0.1
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Table C.10: Other sensitivity analyses

Log price
(1) (2) (3) (4) (5) (6) (7)

Current subsidence > 3.3mm 0.0005 0.0002 0.0004 0.0019 -0.0010 -0.0005 0.0004
(0.0024) (0.0022) (0.0024) (0.0029) (0.0025) (0.0024) (0.0025)

Future subsidence > 10cm -0.0047 0.0026 -0.0046 -0.0044 -0.0057 -0.0045 -0.0049
(0.0068) (0.0063) (0.0068) (0.0072) (0.0068) (0.0069) (0.0069)

Floods 1/100,000 years -0.0077 -0.0077 -0.0080 -0.0074 -0.0083 -0.0081 -0.0088
(0.0062) (0.0062) (0.0062) (0.0070) (0.0062) (0.0062) (0.0062)

Current subsidence > 3.3mm × Built before cutoff -0.0080∗∗∗ -0.0099∗∗∗ -0.0079∗∗∗ -0.0086∗∗∗ -0.0072∗∗∗ -0.0074∗∗∗ -0.0078∗∗∗

(0.0022) (0.0023) (0.0022) (0.0023) (0.0022) (0.0022) (0.0022)
Future subsidence > 10cm × Built before cutoff 0.0053 -0.0103 0.0055 0.0042 0.0063 0.0049 0.0049

(0.0074) (0.0086) (0.0076) (0.0074) (0.0075) (0.0074) (0.0074)
Current subsidence > 3.3mm × Floods 1/100,000 years 0.0019 0.0018 0.0016 0.0013 0.0016 0.0018 0.0017

(0.0024) (0.0025) (0.0024) (0.0026) (0.0025) (0.0024) (0.0025)
Future subsidence > 10cm × Floods 1/100,000 years -0.0152∗∗ -0.0160∗∗ -0.0159∗∗ -0.0128∗ -0.0145∗ -0.0150∗∗ -0.0145∗∗

(0.0074) (0.0073) (0.0075) (0.0072) (0.0074) (0.0074) (0.0074)

Observations 1,437,985 1,437,985 1,393,017 691,753 1,386,834 1,417,803 1,380,596
R2 0.85437 0.85438 0.85101 0.86521 0.85461 0.85462 0.85619
Within R2 0.69767 0.69770 0.69891 0.71695 0.69874 0.69832 0.70000

Year, Month and 4PPC fixed effects ✓ ✓ ✓ ✓ ✓ ✓ ✓
Property characteristics ✓ ✓ ✓ ✓ ✓ ✓ ✓
Distance polynomials ✓ ✓ ✓ ✓ ✓ ✓ ✓
Construction year cutoff 1980 1970 1980 1980 1980 1980 1980
Sample Restriction - - Pre-Flood 2017-2021 Groningen Earthquakes Limburg

Note: Standard errors are clustered at the 3PPC level. Observations are weighted by the inverse distance to the boundary. Column 1 presents baseline
estimates. Column 2 changes the construction year cutoff to 1970. Column 3 restricts the sample to properties that were sold before the Wester European
Flood of 2021, i.e. properties sold before July 2021. Column 4 uses the shorter sample period 2017-2021. Column 5 excludes all transactions in the province of
Groningen. Column 6 excludes neighbourhoods affected by earthquakes realted to gas extraction in the northeastern part of the Netherlands based on the CBS
classification. Column 7 excludes all transactions in the province of Limburg. ***p <0.01, **p <0.05, *p <0.1
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