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Abstract

We analyze a large panel of units grouped by shared extreme value indices (EVIs) and

aim to identify these unknown groups. To achieve this, we order the Hill estimates of

individual EVIs and segment them by minimizing the total squared distance between each

estimate and its corresponding group average. We show that our method consistently

recovers group memberships, and we establish the asymptotic normality of the proposed

group estimator. The group estimator attains a faster convergence rate than the individual

Hill estimator, leading to improved estimation accuracy. Simulation results reveal that

our method achieves high empirical segmentation accuracy, and the resulting group EVI

estimates substantially reduce mean absolute errors compared to individual estimates. We

apply the proposed method to analyze a rainfall dataset collected from 4,735 stations

across Europe, covering the winter seasons from January 1, 1950, to December 31, 2020,

and find statistically significant evidence of an increase in the highest and a decrease in the

lowest group EVI estimates, suggesting growing variability and intensification of extreme

rainfall events across Europe.
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1 Introduction

Estimation of the extreme value index (EVI) is fundamental to tail inference and has been a

central focus in extreme value analysis. Traditionally, analyses focus on random variables with

identical distribution and therefore a common EVI; see, e.g., Beirlant et al. (2004) and de Haan

and Ferreira (2006) for textbook treatments. However, the assumption of tail index homogeneity

across all individuals is often too restrictive. Recent advances have been made to accommodate

heterogeneous EVIs. For instance, de Haan and Zhou (2021) allow for smooth variations in the

indices of neighboring independent variables and introduce a local nonparametric estimator.

Einmahl and He (2022, 2023) further permit fully heterogeneous indices without imposing

a smoothness condition and study the EVI of the average distribution for independent but

non-identically distributed variables.

In this paper, we consider a large panel setting in which both the number of cross-sectional

units and time series observations diverge, under an unobserved group structure where members

within each group share a common EVI. A simple method for identifying the groups based on

their EVIs is proposed. Furthermore, we provide a group EVI estimator and show that it is

asymptotically more efficient than individual-specific estimators. Like de Haan and Zhou (2021)

and Einmahl and He (2022, 2023), we focus on heavy-tailed data, i.e., positive EVIs. Yet, we

neither assume a smooth variation across EVIs nor account for full EVI heterogeneity.

Our proposed clustering framework draws inspiration from the extensive literature on

estimating structural breaks in time series models (see, among many others, Bai, 1997a,b; Bai

and Perron, 1998; Perron, 2006; Qu and Perron, 2007; Aue and Horváth, 2013; Li et al., 2024),

which, nevertheless, has received little attention in extreme value theory. The idea is as follows.

Assuming each unit within a group shares a common EVI, the corresponding individual estimates

should center around this shared value. If the group indices are well separated, ordering all

individual estimates from smallest to largest should reveal a gradual increase in levels, with
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larger shifts marking the boundaries between different groups. The EVI estimates between

consecutive level changes then form a group. Thus, our proposed procedure consists of three key

steps. First, we estimate the EVIs for cross-sectional units using the Hill estimator and arrange

them in order. Second, we segment the ordered estimates by their magnitude, determining

the segmentation locations by minimizing the total squared deviation of individual estimates

from their respective group averages. Finally, we compute the group EVI estimators using

within-group averages in a similar manner to the distributed Hill estimator by Chen et al. (2022),

which is derived from a divide-and-conquer algorithm.

Although our approach is reminiscent of regression models with structural breaks in the time

series literature, there are some key differences. Most importantly, whereas the data modeled in

structural break studies are directly observable, EVIs are not and have to be estimated first. As

a result, the estimation errors of the EVIs, which are degenerate, must be carefully addressed in

theory. This invalidates several key steps in existing proofs and calls for a different asymptotic

treatment. We address these issues using fundamental results from extreme value theory and

establish that our segmentation procedure is able to consistently identify the unknown groups

under mild conditions. Specifically, we prove that the estimated shift locations converge in

probability to the true locations. This is a stronger result than what is typically found in

the structural break literature, where the break fraction estimator, defined as the estimated

change point divided by the total number of observations, is consistent, but the estimated break

locations themselves are generally not (Bai and Perron, 1998).

Building on the consistency results, we further establish the asymptotic normality of our

estimator for the group-specific EVIs. As expected, the group estimators exhibit faster conver-

gence than their individual-specific counterparts since they utilize information from both the

cross-sectional and time dimensions. Notably, our theory allows for the independent selection of

threshold sequences for segmentation and group estimator construction. Such flexibility proves
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highly beneficial in our simulation study, where we observe that the mean absolute errors of

the group estimators can be reduced by up to approximately 90% compared to the individual

Hill estimators. Finally, we illustrate our proposed framework using rainfall data collected from

4,735 stations across Europe. We find statistically significant evidence of increased variability

and intensification of extreme rainfall events across the region over time.

In addition to the structural break literature, our work also relates to several articles in

extreme value theory that warrant discussion. de Carvalho et al. (2023) propose a similarity-

based clustering algorithm to group time series based on the EVIs and scedasis functions;

however, their approach lacks theoretical foundations. More closely related to our work, Dupuis

et al. (2023) consider a panel generalized extreme value (GEV) regression model with a fixed

number of individuals (i.e., N < ∞), where GEV parameters are modeled with covariates

through link functions. They define groups based on the homogeneity of slope coefficients for

explanatory variables. Two key aspects distinguish our method. First, since their approach relies

on covariate information, the grouping results depend on the selection of covariates. Therefore,

different model specifications can lead to substantially different group memberships, potentially

undermining their practical interpretability. In contrast, our framework allows the EVIs to

manifest their group identities. Second, we work in a large N setting (N → ∞), which requires

some uniform results that are not necessary in a finite N setting. Finally, Hou et al. (2024)

define groups based on multiple tests for equality of EVIs between individuals. This approach

could result in an individual belonging to two different groups, making it unclear what a group

truly represents. Our approach, on the other hand, ensures unique memberships.

The remainder of the paper is organized as follows. Section 2 introduces the setup and the

proposed clustering framework and establishes the asymptotic theory. In Section 3, we present

a simulation study, where we also discuss a fast segmentation method. Section 4 illustrates

our methods using a rainfall dataset. Section 5 concludes. The main proofs are presented in
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Appendix A. Additional proofs, along with simulation and empirical results, are provided in

the Online Appendix.

2 The clustering framework and asymptotic theory

Consider a row-wise i.i.d. triangular array
{
Zi,t, t = 1, . . . , Ti, i = 1, . . . , N

}
, where N represents

the total number of cross-sectional units and Ti is the total number of time series observations

for the ith unit. We adopt a framework where N → ∞ and Ti → ∞ for all i = 1, . . . , N . As

mentioned, we focus on heavy-tailed data.

Assumption 1 (Independent and heavy-tailed data). For i = 1, . . . , N , {Zi,t, t = 1, . . . , Ti} is

independently and identically distributed (i.i.d.) with a continuous marginal distribution Fi, and

there exists a γi > 0 such that

lim
s→∞

1− Fi(sx)

1− Fi(s)
= x−1/γi , x > 0. (2.1)

Note that the condition in (2.1), known as the first-order regular variation condition, can

also be equivalently expressed in terms of tail quantile functions Ui as follows:

lim
s→∞

Ui(sx)

Ui(s)
= xγi , x > 0, (2.2)

where Ui(x) = F−1
i (1− x−1) for x > 1, and F−1

i denotes the left-continuous inverse of Fi.

The set of extreme value indices (EVIs) {γi, i = 1, . . . , N} characterizes the extreme behavior

of the cross-sectional units. Even small changes in γi can have a substantial impact on tail

probabilities due to its exponential influence. We assume that {γi, i = 1, . . . , N} can be grouped

into G ∈ Z+ distinct groups. That is, for each i, there exists some γgj such that γi = γgj for

some j = 1, . . . , G. Without loss of generality, we assume that γg1 < γg2 < · · · < γgG .
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Apart from the group structure in the EVIs, we do not impose any additional constraints on

the distributions of the panel data. Within groups, the convergence speed of (2.2) may vary

(see the second-order condition in Assumption 4). No smoothness conditions are required for

the distributions of neighboring panel units, and the data can be on different scales.

2.1 Clustering EVIs

Our clustering framework consists of three key steps: ordering, segmenting, and estimating

group EVIs. Throughout, we denote the integer part of a ∈ R+ by [a]. Let 1{·} be an indicator

function. For a vector x ∈ Rn, its p-norm is denoted by ∥x∥p = (
∑n

i=1 |xi|p)1/p.

Step 1 (Ordering). Since the true EVIs are not observable, we begin by considering the

Hill (1975) estimator of the individual extreme value index. The Hill estimator is given by

γ̂H
i (ki) :=

1

ki

ki−1∑
j=0

logZi,(Ti−j) − logZi,(Ti−ki), i = 1, . . . , N, (2.3)

where Zi,(1,Ti) ≤ Zi,(2,Ti) ≤ . . . ≤ Zi,(Ti,Ti) denote the order statistics of
{
Zi,t, t = 1, . . . , Ti

}
, and

ki = ki(Ti) < Ti is an intermediate sequence of integers. When the context is clear, we simplify

the notation by writing γ̂H
i instead of γ̂H

i (ki).

In what follows, let the Hill estimates be pre-ordered, i.e., γ̂H
1 ≤ γ̂H

2 ≤ . . . ≤ γ̂H
N . We assume

that the Hill estimator recovers the underlying ordering γ1 ≤ γ2 ≤ . . . ≤ γN . This assumption

is not restrictive if Ti is reasonably large. More discussion is provided in Section 2.2. In the

ordering step, any alternatives to the Hill estimator can be used. For example, bias-corrected

estimators (Ivette Gomes et al., 2008), or more computationally intensive threshold selection

methods (Danielsson et al., 2001; Bader et al., 2018; Drees et al., 2020) may be applied. The

key objective is to recover the underlying ordering accurately. In the subsequent steps of

segmentation and group EVI estimation, we rely solely on the Hill estimator in (2.3) for its
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computational efficiency and well-established asymptotic properties.

Step 2 (Segmenting). Recall that there are G distinct values of γi’s, and let m = G− 1

be the number of segmentation points. Now, we discuss how to identify group memberships

provided G is known. A data-driven method for determining G will be explored in Section 3.3.

We denote the true group segmentation with ℓ0 = (l10, . . . , lm0)
⊤ such that

γ1 = γ2 = . . . = γl10 < γl10+1 = γl10+2 = . . . = γl20

< γl20+1 = . . . < . . . = . . . γlm0 < γlm0+1 = . . . = γN . (2.4)

Clearly, γlj0 = γgj for j = 1, . . . , G, where lG0 = N . In practice, ℓ0 is unknown and has to be

estimated. We use
{
γ̂H
i , 1 ≤ i ≤ N

}
to estimate ℓ0. This task can be viewed as identifying

break locations in change-in-mean models. To illustrate this, for i = 1, . . . , N , it is clear that

γ̂H
i can be equivalently represented as

γ̂H
i = γg1 +∆11{i > l10}+∆21{i > l20}+ . . .+∆m1{i > lm0}+ ε̂i, (2.5)

where ∆j = γgj+1
− γgj , j = 1, . . . ,m. Note that ε̂i = γ̂H

i − γi represents estimation errors from

the individual Hill estimator and depends on the data.

We are now ready to estimate ℓ0, along with (γg1 , . . . , γgG)
⊤. Specifically, we rewrite Model

(2.5) in compact form, replacing the true segmentation ℓ0 with a candidate break location vector

ℓ = (l1, . . . , lm)
⊤ ∈ L ⊂ {1, 2, . . . , T}m. Define Γ̂ = (γ̂1, . . . , γ̂N)

⊤, ε̂ = (ε̂1, . . . , ε̂N)
⊤, and let

Xℓ =
(
xij, i = 1, . . . , N, j = 1, . . . , G

)
be an N ×G matrix with the entries xij = 1{i > lj−1},

where l0 = 0. We arrive at

Γ̂ = Xℓβℓ + ε̂, (2.6)
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where βℓ is a G-dimensional coefficient vector. Note that the true βℓ0 is given by βℓ0 =

(γg1 ,∆1, · · · ,∆m)
⊤. We estimate the parameters by minimizing the sum of squared residuals

(SSR) as follows:

ℓ̂ = argmin
ℓ∈L

SSR(ℓ) = argmin
ℓ∈L

∥∥Γ̂ −Xℓβ̂ℓ

∥∥2
2
, β̂ℓ =

(
X⊤

ℓ Xℓ

)−1
X⊤

ℓ Γ̂ . (2.7)

Minimizing SSR(·) jointly for all elements in ℓ requires searching through all possible combi-

nations of break locations, making the construction of ℓ̂ computationally intensive when G is

large, with an operational complexity of order O(Nm). To address this, we employ an efficient

algorithm proposed by Bai and Perron (2003) based on dynamic programming, which reduces

the complexity to order O(N2).

Given ℓ̂, we then obtain the coefficient estimator:

β̂ℓ̂ =
(
β̂ℓ̂,1, β̂ℓ̂,2, , . . . , β̂ℓ̂,G

)⊤
=
(
X⊤

ℓ̂
X

ℓ̂

)−1
X⊤

ℓ̂
Γ̂ .

It is worth highlighting that both ℓ̂ = ℓ̂(k) and β̂ℓ̂ = β̂ℓ̂(k), where k = (k1, . . . , kN ), depend on

the intermediate threshold sequence {ki, i = 1, . . . , N} through Γ̂ .

Step 3 (Estimating group EVIs). Given the estimated break locations ℓ̂, we proceed by

estimating the extreme value index γgj for each group. At this stage, intermediate thresholds may

be selected that are different from those used in the segmentation step. Let k̃ = (k̃1, . . . , k̃N),

where each k̃i is not necessarily equal to ki used in (2.3). We propose the following group Hill

estimator based on a simple average:

γ̂gj
(
ℓ̂, k̃
)
=

1

l̂j − l̂j−1

l̂j∑
i=l̂j−1+1

γ̂H
i (k̃i), j = 1, . . . , G, (2.8)
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where γ̂H
i (k̃i) is defined in (2.3). In practice, variants of averages may also be considered.

Weighted averages, which assign greater weight to individuals in the middle of a group, may be

preferable, especially when Ti is small. In such cases, individual Hill estimates are less accurate,

which can affect the accuracy of pre-ordering.

Although our group Hill estimator is conceptually similar to the distributed Hill estimator

introduced in Chen et al. (2022), their estimator is derived from a divide-and-conquer algorithm

in which the groups are predetermined. In contrast, our framework aims to recover the unknown

group identities. Furthermore, we accommodate heterogeneous distributions by allowing different

intermediate thresholds for each individual, making our estimator more general than the one

considered in their work.

2.2 Asymptotic theory

In this section, we establish the asymptotic properties of ℓ̂ and the asymptotic normality of the

group estimator γ̂gj
(
ℓ̂, k̃
)
. The proofs can be found in Appendix A. We begin by establishing a

crucial uniform bound for the partial sum processes of {ϵ̂i}, which will be referenced throughout

the proofs concerning the asymptotic properties of ℓ̂.

As noted earlier, our approach offers a flexible strategy that allows for the independent

selection of intermediate thresholds at each stage. The choice of thresholds is a critical and

challenging aspect in the extreme value theory literature, as it involves a trade-off between bias

and variance in the estimator. To ensure the validity of our approach, we first impose some mild

assumptions on the intermediate sequences {ki, i = 1, . . . , N} used in the segmentation step.

Assumption 2 (Conditions on ki). For each i = 1, . . . , N , ki/Ti → 0 as Ti → ∞ and

N max1≤i≤N exp(−ki) → 0 as N → ∞.

Assumption 2 is easy to satisfy and allows for a wide range of choices for k. The condition

ki/Ti → 0 is a standard requirement in extreme value statistics, ensuring that the threshold
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Zi,(Ti−ki) for each panel lies in the tail of the underlying distribution. Define kmin = mini=1,...,N ki.

The condition on N and kmin accounts for the heterogeneous tail convergence rates across

different units. It is satisfied, for example, by kmin = O(Nα) or kmin = O
(
(logN)1+α

)
, for any

α > 0.

The following key lemma establishes the uniform asymptotic property on the partial sum

of ε̂i = γ̂H
i (ki)− γi, highlighting a fundamental difference from conventional structural break

literature.

Lemma 1. Under Assumptions 1 and 2, we have as N → ∞, for any 1 ≤ l1 < l2 ≤ N ,

sup
l1≤l≤l2

1

(l − l1 + 1)

∣∣∣∣∣
l∑

i=l1

ε̂i

∣∣∣∣∣ = oP (1). (2.9)

The proof of Lemma 1 relies on an application of the well-known Hájek-Rényi inequality and

several key inequalities for regularly varying functions from extreme value theory. Note that

the scaled partial sum in (2.9) converges to zero in probability uniformly, even when the lower

bound l1 ≥ 1 does not diverge. This distinction sets our framework apart from the structural

break literature, where, for instance, the quantity supl1≤l≤l2
1

(l−l1+1)

∣∣∣∑l
i=l1

ε̂i

∣∣∣ is typically OP (1),

but not oP (1) if l1 is fixed (see, e.g., Bai, 1997b, Lemma A.3). This difference arises because the

ε̂i’s, for i = 1, . . . , N , shrink to zero in probability, resulting in a stronger signal compared to

OP (1) errors typically encountered in regression models with structural breaks.

Assumption 3 (Group size). There exist 0 < λ10 < . . . < λm0 < 1 such that lj0 = [Nλj0] for

j = 1, . . . ,m.

Assumption 3 ensures that the difference between two consecutive segmentation locations is

sufficiently large to identify the group memberships. This assumption is commonly adopted in

the structural break literature, see, for example, Bai and Perron (1998, Assumption A.5) and

Qu and Perron (2007, Assumption A8).
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We are now ready to provide a justification for the consistency of our segmentation procedure.

To this end, let λ0 = (λ10, . . . , λm0) and λ̂ = (λ̂1, . . . , λ̂m) = ℓ̂/N be an estimator of λ0. The

next theorem establishes the consistency of λ̂ and (even) ℓ̂.

Theorem 1 (Consistency and rate of convergence). Suppose Assumptions 1, 2 and 3 hold.

Then, we have
∥∥λ̂− λ0

∥∥
1

p→ 0 and
∥∥ℓ̂− ℓ0

∥∥
1

p−→ 0 as N → ∞.

Theorem 1 establishes that the proportion of group memberships for each group, relative to

the total number of individuals, can be consistently estimated. Building on the consistency of

λ̂, it further shows that the segmentation location ℓ̂ is consistent. This result is stronger than

that in the structural break literature, such as Bai (1997b, Proposition 1) and Bai and Perron

(1998, Proposition 2), where λ̂ is N -consistent, but ℓ̂ is typically not consistent for ℓ0. The key

intuition here is that the “error” term ϵ̂i = oP (1) for i = 1, . . . , N , as discussed earlier, allowing

us to derive a sharper uniform bound for the partial sum of {ϵ̂i}, as provided in Lemma 1.

Admittedly, this result relies on the assumption that the underlying block structure (2.4) is

recovered by the pre-ordered individual Hill estimates (2.3). Although this requirement may not

hold for small Ti, our simulation results indicate that our procedure maintains high empirical

segmentation accuracy and efficient group estimates, even with some degree of incorrect pre-

ordering. Aside from this, the conditions required in Theorem 1 are rather mild. Assumptions 1

and 2 merely ensure the consistency of the individual Hill estimators. Notably, the result reveals

that with a correct ordering, the identification of clusters offers considerable flexibility in the

choice of ki. This is a key advantage of our framework, which views segmentation as identifying

break locations.

We now establish the asymptotic normality of the group Hill estimators, requiring a second-

order condition to characterize the convergence rate of the first-order condition in Eq. (2.2).

Assumption 4 (Second-order regular variation condition). For each i = 1, . . . , N , there exist a
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ρi < 0 and a positive or negative function Ai with lims→∞Ai(s) = 0 such that for all x > 0,

lim
s→∞

Ui(sx)
Ui(s)

− xγi

Ai(s)
= xγi

xρi − 1

ρi
. (2.10)

A similar assumption to Assumption 4 can be found in, for example, Chen et al. (2022,

Condition 4). However, it is important to note that we allow the second-order auxiliary functions

Ai to vary across individuals, whereas Chen et al. (2022) impose homogeneity, i.e., Ai ≡ A

for all i. This added flexibility complicates the proofs for asymptotic normality, as we require

uniform convergence results (such as Lemma S.1.1), which are not needed in Chen et al. (2022).

The following assumption imposes restrictions on the choice of k̃i for i = 1, . . . , N , which

is essential for constructing our group Hill estimator in (2.8) and for deriving its limiting

distribution.

Assumption 5 (Conditions on k̃i). For each i = 1, . . . , N , k̃i/Ti → 0 as Ti → ∞, and

N max1≤i≤N exp
(
−k̃i/ log(k̃i)

)
→ 0 as N → ∞. Moreover,

max
1≤i≤N

∣∣∣∣Ai

(
Ti

k̃i

)∣∣∣∣→ 0, (2.11) lj0∑
i=l(j−1)0+1

k̃−1
i

−1/2
lj0∑

i=l(j−1)0+1

Ai

(
Ti

k̃i

)
= O(1), (2.12)

 lj0∑
i=l(j−1)0+1

k̃−1
i

−1/2
lj0∑

i=l(j−1)0+1

Ai

(
Ti

k̃i

)
1− ρi

→ Bj, (2.13)

as N → ∞, where |Bj| < ∞ for j = 1, . . . , G.

Assumption 5 is required to control the asymptotic bias of the group Hill estimator.

The condition N max1≤i≤N exp
(
−k̃i/ log(k̃i)

)
→ 0 is slightly stronger than the condition

N max1≤i≤N exp(−ki) → 0 required in Assumption 2. The conditions (2.11)-(2.13) serve as the

analogs for clustering of the standard assumptions for the asymptotic normality of the individual

Hill estimator (de Haan and Ferreira, 2006, Theorem 3.2.5), which, for instance, necessitates
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that the limit of
√

k̃iAi

(
Ti

k̃i

)
exists and is finite.

Theorem 2 (Asymptotic normality of group Hill estimator). Assume that the conditions in

Theorem 1, Assumptions 4 and 5 hold. As N → ∞,

lj0 − l(j−1)0√∑lj0
i=l(j−1)0+1 k̃

−1
i

(
γ̂gj
(
ℓ̂, k̃
)
− γgj

)
d−→ N

(
Bj, γ

2
gj

)
, j = 1, . . . G. (2.14)

In addition, γ̂gj
(
ℓ̂, k̃
)
are independent for different j = 1, . . . , G.

Theorem 2 provides a limiting approximation for our group Hill estimator. Compared to

the asymptotic result of the distributed Hill estimator in Chen et al. (2022, Theorem 4), our

estimation framework differs in two key aspects: first, it accounts for the estimation uncertainty

of ℓ̂; second, it allows for heterogeneous second-order parameters ρi.

Moreover, from Theorem 2, we also see the benefits of independently selecting threshold

sequences for segmentation and group EVI estimation. Specifically, choosing k̃i much smaller

than ki can reduce the bias of γ̂gj while still achieving a faster convergence rate than the individual

Hill estimator by exploiting cross-sectional information. To understand the theoretical gain

of our group Hill estimator, we consider a special case where group 1 is fully homogeneous.

Specifically, for i = 1, . . . , l10, we assume Fi = F1, Ti = T1, and k̃i = k̃1. By Theorem 2, the

asymptotic bias and variance of our group estimator are given by
A1

(
T1
k̃1

)
1−ρ1

and
γ2
g1

k̃1l10
, respectively.

As a result, the optimal asymptotic mean squared error (MSE) is O
(
(T1l10)

− 2ρ1
2ρ1−1

)
, with the

corresponding choice of k̃1 satisfying k̃1 = O

(
T

2ρ1
2ρ1−1

1 l
1

2ρ1−1

10

)
. For the individual Hill estimator

γ̂H
1 (k1), the optimal asymptotic MSE is O

(
T

− 2ρ1
2ρ1−1

1

)
(see de Haan and Ferreira, 2006, Theorem

3.2.5), with the optimal choice of k1 satisfying k1 = O

(
T

2ρ1
2ρ1−1

1

)
. Obviously, the optimal MSE

of our estimator is of a lower order than that of the individual Hill estimator. Moreover, it

suggests that one needs to choose a smaller k̃i for the group estimator, compared to the optimal

choice of the individual Hill estimator.
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3 Simulation study

We examine the empirical accuracy of our segmentation method and then evaluate the per-

formance of the resulting group Hill estimator, assuming the number of groups G is known.

Subsequently, a data-driven procedure is investigated to select G.

We consider data generating processes based on two families of heavy-tailed distributions:

(i) Burr distribution, with CDF given by F (x) = 1− (1 + xc)−1, for x > 0, where c > 0. This

corresponds to an extreme value index γ = 1/c and the second order index ρ = −1.

(ii) Student’s t distribution with degrees of freedom ν > 0, where γ = 1/ν and ρ = −2/ν.

For each group, half of the panel units are generated from the Burr distribution and the other

half from the Student’s t distribution, with a common extreme value index achieved by setting

ν = c. We set the time dimension Ti = T ∈ {1000, 3000} for all panel units. The number of

groups is G ∈ {3, 5}, with each group containing a balanced number of units SG ∈ {100, 300},

yielding a total of N = G · SG cross-sectional units. For simplicity, the EVIs are evenly spaced

within the interval [0.2, 1.5]. For example, when G = 3, we set (γg1 , γg2 , γg3) = (0.5, 0.85, 1.5).

All results are reported based on M = 104 Monte Carlo replicates.

Before presenting the simulation results, we first highlight a key implementation aspect,

namely, the joint minimization problem in (2.7). Since our model fits within a structural

break framework, existing computational methods can be readily applied to our segmentation

procedure. We advocate using the fast dynamic programming approach proposed by Bai and

Perron (2003), which globally minimizes the SSR in (2.7) and has an operational complexity

of order O(N2) rather than O(Nm). The sequential estimation procedure proposed by Bai

(1997a) offers a computationally efficient alternative to the joint estimation.1 However, joint

minimization is crucial in our context for the following reason. In finite samples, due to the

1Specifically, one begins by assuming a single segmentation point and obtains an estimate by minimizing the
SSR in (2.7) for m = 1. Once the first location is estimated, the sample is split into two sub-samples, and a
one-location model is applied to each. The second location is then selected as the one that results in the largest
reduction in SSR. This process continues iteratively until the predetermined number of segmentation locations is
reached.
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Table 1: Group-wise empirical accuracy (in percent).

T = 1000 T = 3000

G SG Rk g1 g2 g3 g4 g5 g1 g2 g3 g4 g5

3
100

9% 100 99.92 98.39 100 100 100
12% 99.98 99.97 99.33 100 100 100

300
9% 100 99.94 98.21 100 100 100

12% 99.99 99.99 99.19 100 100 100

5
100

9% 97.05 98.53 92.38 79.24 74.66 99.02 99.92 99.74 97.17 94.97
12% 79.03 98.26 96.49 85.35 80.80 83.62 99.59 99.90 98.46 96.42

300
9% 97.42 98.58 92.41 79.40 75.01 99.62 99.96 99.78 97.08 94.89

12% 81.31 98.58 96.53 85.36 80.88 89.51 99.86 99.95 98.42 96.27

estimation uncertainty, the ordered individual Hill estimates γ̂H
1 ≤ γ̂H

2 ≤ · · · ≤ γ̂H
N often resemble

models with trend breaks (Perron and Zhu, 2005; Beutner et al., 2023) rather than level shifts.

In the context of trend breaks, Yang (2017) shows that consistent estimation of break locations

can only be guaranteed if the number of breaks is correctly specified. In other words, a sequential

estimation procedure proposed by Bai (1997a) may yield less accurate estimates of ℓ0 in finite

samples.

3.1 Empirical accuracy of segmentation

Recall that the asymptotic properties derived in Section 2.2 rely on the assumption that the

Hill estimates preserve the true group ordering, that is, the estimates for group 1 are always

smaller than those for group 2, for example. However, this is not guaranteed in finite samples.

In this subsection, we assess the segmentation accuracy based on the Hill estimates, allowing

for potential misordering.

As also discussed in Section 2.2, the condition on ki is fairly general. For finite samples, we

recommend choosing ki = [Rk Ti], with Rk ∈ {9%, 12%}, a rather common choice in extreme

value studies. We assess grouping performance using group-wise empirical accuracy, defined

as M−1
∑M

m=1 S
−1
G C

(m)
j , where C

(m)
j is the number of correctly classified individuals in group

j = 1, . . . , G in the mth repetition. Table 1 presents the results.
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(i) We observe generally satisfactory performance across settings. When G = 3, the empirical

accuracy exceeds 98% for all settings. As the number of groups increases to five, the problem

becomes more challenging. Nevertheless, for sufficiently large sample size (T = 3000), the

accuracy remains above 95% in most cases.

(ii) When (G, T ) = (5, 1000), the segmentation accuracy becomes more sensitive to the choice

of Rk (or, equivalently, ki). Notably, group 1 exhibits higher accuracy when a smaller

ki (corresponding to Rk = 9%) is used, whereas groups 4 and 5 benefit from a larger ki

(corresponding to Rk = 12%) . This pattern aligns with theoretical expectations: the

optimal choice of ki for the Hill estimator depends on the second-order parameter ρi (see

the discussion below Theorem 2). In group 1, where ρi ∈ (−1,−0.4), the smaller absolute

value of ρi suggests that a smaller ki is preferable. In contrast, groups 4 and 5, which have

larger |ρi|, require larger ki for more accurate estimation.

Based on the observations above, empirical segmentation accuracy could potentially be improved

by using different ki values for different individuals. For example, one might consider data-driven

approach of threshold selection. We leave this possibility for future research.

3.2 Finite sample performance of group Hill estimator

We assess the improvement of our group EVI estimator given by (2.8) over the individual

Hill estimator defined in (2.3). We focus on the setting Ti = 1000 and G ∈ {3, 5} and fix

ki = [12%Ti] = 120. Motivated by Theorem 2 and the subsequent discussion, a smaller choice

of k̃i is preferable when constructing the group Hill estimator. We choose k̃i = [R̃kTi], where

R̃k ∈ {2%, 3%, 4%}. To ensure a fair comparison for individual Hill estimator γ̂H
i (kH

i ), we set

kH
i = [RHTi], with RH ∈ {5%, 7%}. Finally, we use mean absolute errors (MAE) to evaluate
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Table 2: Empirical MAE (in percent) of group and individual Hill estimators for T = 1000.

R̃k RH R̃k RH

(G,SG) Group 2% 3% 4% 5% 7% (G,SG) Group 2% 3% 4% 5% 7%

(3, 100)
1 3.64 4.54 5.36 7.05 9.70

(3, 300)
1 3.64 4.54 5.37 7.04 9.69

2 1.66 1.55 1.67 17.09 8.32 2 1.12 1.24 1.51 17.08 8.32
3 2.84 2.48 2.42 8.40 14.68 3 1.80 1.79 1.99 8.39 14.67

(5, 100)

1 2.39 3.00 3.56 7.05 8.32

(5, 300)

1 2.57 3.23 3.84 7.04 8.32
2 3.38 2.86 2.47 6.39 6.09 2 2.75 2.15 1.72 6.40 6.10
3 2.19 2.25 2.46 9.71 8.40 3 1.86 2.12 2.45 9.70 8.39
4 4.11 4.23 4.48 13.40 11.51 4 3.85 4.15 4.46 13.38 11.50
5 4.90 5.05 5.41 17.07 14.68 5 4.42 4.82 5.27 17.10 14.69

performance:

MAEgrp.
j =

1

M

M∑
m=1

∣∣γ̂m
gj
− γgj

∣∣, MAEind.
j =

1

M

M∑
m=1

1

SG

SG∑
i=1

∣∣γ̂H,m
i − γgj

∣∣, j = 1, . . . , G,

where γ̂m
gj
= γ̂m

gj

(
ℓ̂, k̃
)
represents the group Hill estimates in the mth Monte Carlo simulation,

and similarly for the individual Hill estimates, γ̂H,m
i = γ̂H,m

i (kH
i ). Table 2 present the results for

T = 1000, with all values expressed as percentages. Similar observations hold for T = 3000, see

Online Appendix S.2.

(iii) For all simulation settings, the MAE of our proposed group estimator γ̂gj consistently

outperforms the individual Hill estimator, with MAE ratios (group divided by individual)

ranging from approximately 10% to 70%. The boxplots in Figure 1 clearly illustrate that

our group estimator significantly improves empirical efficiency in terms of MAE, with the

group estimates consistently exhibiting lower MAEs compared to the individual estimates.

(iv) When G = 3, Table 2 indicates that the MAE decreases as the number of group units

SG increases from 100 to 300. This aligns with the theoretical rate of convergence in

Theorem 2, which becomes
√

SGk̃i in the setting here. However, this pattern does not

hold when G = 5. One contributing factor is the potential inaccuracy in the ordering

and segmentation stages, which can adversely affect the performance of the group Hill

estimator.
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Figure 1: Group-wise MAEs (in percent) for the group Hill estimates constructed in (2.8) (solid red
lines) and boxplots of individual Hill estimates (2.3). The left figure corresponds to G = 3 groups,
while the right one represents G = 5 groups. Here, (T, SG, R̃k) = (1000, 100, 3%).

3.3 Determining the number of groups

Thus far, we have assumed that the number of groups G is known. When G is unknown, we

adapt the elbow method, a widely used technique in machine learning. This method relies

on the objective function value, SSR, in (2.7). Specifically, we focus on the reduction in SSR

when an additional group is added, which decreases in absolute value and eventually approaches

zero. The optimal number of groups, denoted as Ĝ, is determined based on the fraction of SSR

reductions from adding an additional segment and a predefined threshold T :

Ĝ = argmin
m∈{1,...,mmax}

{
SSR(ℓ̂m)− SSR(ℓ̂m+1)

SSR(ℓ̂m)− SSR0

≤ T

}
+ 1, mmax ∈ Z+, (3.1)

where SSR0 represents the SSR without any segmentation, T ∈
{
0.015, 0.02, 0.025, 0.03, 0.035

}
and mmax = 7. The DGP remains the same as before. We continue to use k = [12%T ] as the

first-stage threshold. The results are reported in Table 3, where we reduce the number of Monte

Carlo replications to M = 2000 to reduce computational cost.

The table shows the strong performance of the elbow method in accurately selecting the

number of groups, achieving at least 80% accuracy and often 100% for a threshold T ∈ [0.02, 0.03].

However, this selection method lacks a formal theoretical foundation. Developing a theoretically

justified approach remains an open question for future research.
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Table 3: Empirical accuracy (in percent) of the elbow method for determining G.

T
G T SG 0.015 0.02 0.025 0.03 0.035

3
1000

100 21.25 89.10 99.80 100 100
300 8.90 97.60 100 100 100

3000
100 100 100 100 100 100
300 100 100 100 100 100

5
1000

100 99.45 100 100 99.60 71.50
300 100 100 100 100 96.55

3000
100 100 100 100 100 100
300 100 100 100 100 100

4 Empirical analysis of rainfall data

We illustrate our proposed clustering framework using daily precipitation data in Europe,

collected from the European Climate Assessment & Dataset, see Klein Tank et al. (2002).2 In

particular, we are interested in the change of the tail behavior of precipitation volume over time

to assess whether observed shifts toward heavier extreme rainfall align with the IPCC’s recent

findings of increasing intensity and frequency of extreme precipitation events across Europe due

to climate change (Bednar-Friedl et al., 2022).

We analyze daily precipitation records, measured in 0.1 mm, from 1950 to 2020, and we split

the dataset into two distinct periods accordingly: 1950-1985 (Period 1) and 1986-2020 (Period

2). An initial dataset comprising 17,128 meteorological stations was collected, after which the

scope of analysis was narrowed to stations that met the following criteria. First, stations are

required to maintain consecutive records spanning both periods. Second, they are located in

Europe, further defined by a longitude range of -10◦ to 21◦ and a latitude range of 35◦ to 72◦.

Given the climatic importance of winter precipitation (Kundzewicz et al., 2006) and to avoid

addressing seasonal patterns, we focus exclusively on winter observations (December, January,

and February). To ensure a sufficient number of extreme observations, stations are further

2https://www.ecad.eu/dailydata/predefinedseries.php, blended ECA Daily precipitation amount RR,
accessed on January 27, 2025.
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(a) Period 1 (1950–1985) (b) Period 2 (1986–2020)

Figure 2: Maps depicting the weather stations in our sample for both periods. The dots represent
grouped estimates (G = 6) for the EVI of precipitation volume, with darker shades indicating higher
values.

required to have recorded a minimum of 3,000 winter days in each period (approximately 35

years). This filtering step reduces the dataset to 4,769 stations. For each period, the moment

estimator for extreme value indices (Dekkers et al., 1989) is applied using 12% of each individual

station’s sample size as a threshold to detect negative EVIs. The final dataset includes only the

intersection of stations meeting all criteria, resulting in a total of 4,735 stations with positive

EVIs for further analysis.

We estimate the EVIs of the precipitation volume for all weather stations separately in the

two time periods using the Hill estimator. Building on the recommendations from the simulation

results, the first-stage threshold ki is set as [12%Ti], and the group EVI estimates are obtained

with k̃i = [3%Ti]. Moreover, to determine the number of groups within each period, we set

mmax = 14 in (3.1), allowing for a maximum of 15 groups in each period. The elbow method

with a threshold of 0.025 yields optimal G = 6 for both periods. As a robustness check, we also

include the results for G = 4 and G = 5 in the Online Appendix S.3.
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Table 4: Transition matrix for G = 6 between period 1 (rows) and period 2 (columns).

p1 \ p2 1 2 3 4 5 6

1 766 468 68 0 0 0
2 379 1067 506 0 0 0
3 41 386 693 44 0 0
4 2 4 30 100 55 4
5 5 0 0 15 72 11
6 0 4 0 2 0 12

Figure 2 shows the resulting estimates on a map of the selected area. We observe that

for the first period, EVI estimates range from 0.342 (group 1) to 0.547 (group 6), while in

the second period, the range expands from 0.324 to 0.619. Spatially, clusters of high EVI

values are consistently identified in the Alpine region (Northern Italy, Austria) and along the

Mediterranean coast in France and Spain during both periods. Notably, in the first period, some

high EVI estimates in the Netherlands may reflect the influence of the exceptional storm in

1953. For Germany, the initial period displays relatively homogeneous EVI values predominantly

within groups 2 and 3. In contrast, the second period reveals clearer spatial differentiation

between the eastern and western parts and the rest of the country, with eastern and western

regions experiencing reduced rainfall extremes. A comparable trend is observed in Scandinavia:

while period 1 shows relatively low spatial heterogeneity, period 2 exhibits increased variability,

characterized by drier conditions along coastal regions.

The transition matrix between period 1 and period 2 is shown in Table 4. It illustrates the

persistence in rainfall intensity group assignments, indicated by large diagonal entries. However,

notable shifts also occur, with many stations transitioning upward to groups characterized by

more intense rainfall (e.g., from group 2 to group 3 and from group 4 to group 5). Conversely,

some downward transitions are also present (e.g., from group 2 to group 1), but comparably

less frequent. These shifts not only indicate an overall increase in extreme rainfall intensities

across Europe, but also provide evidence for spatial shifts in rainfall patterns.

We further conduct a sequence of t-tests for H0 : γp1
gj

= γp2
gj

against H1 : γp1
gj

̸= γp2
gj

based
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Table 5: Test statistics (4.1) with significance levels: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

group 1 group 2 group 3 group 4 group 5 group 6

13.68∗∗∗ 3.59∗∗∗ 0.53 0.98 0.64 3.97∗∗∗

on Theorem 2, where γp1
gj

represents the jth group’s EVI in period 1 and γp2
gj

in period 2, with

j = 1, . . . , G. Assuming the observations are independent across the two periods, under the null

hypothesis, we have

γ̂p1
gj

− γ̂p2
gj√√√√(γ̂p1

gj

)2(∑l̂
p1
j

i=l̂
p1
j−1

+1
k̃−1
i

)
(
l̂
p1
j −l̂

p1
j−1

)2 +
(γ̂p2

gj )
2

(∑l̂
p2
j

i=l̂
p2
j−1

+1
k̃−1
i

)
(
l̂
p2
j −l̂

p2
j−1

)2
d−→ N (0, 1), (4.1)

where l̂p1j is the estimate of lj0 in period 1, and similarly, l̂p2j is the estimate for period 2. At the

1% significance level, our analysis rejects the null hypothesis for groups 1, 2, and 6, revealing a

distinct pattern in the EVI estimates: a notable increase in group 6 and a significant decrease in

groups 1 and 2; see Table 5. These results further substantiate our evidence for an underlying

trend toward increasing variability and intensification of extreme rainfall events across Europe.

5 Conclusion

We analyzed a large panel (i.e., (N, Ti) → ∞) of individuals sharing a common set of extreme

value indices (EVIs) and proposed an easy-to-implement clustering framework to identify

unknown group memberships. Specifically, we ranked individual Hill estimates and segmented

the groups by minimizing the quadratic distance between individual estimates and their respective

group averages. Our approach is inspired by the estimation of break locations in the structural

break literature; however, establishing our asymptotic framework requires multiple key results

from extreme value theory. We theoretically proved that our method consistently estimates

segmentation locations and thereby recovers the underlying group identities, which is a stronger
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result than those typically found in the structural break literature. After successfully forming

the groups, we introduced a group estimator and proved its asymptotic normality. Our

approach offers considerable flexibility by enabling independent selection of thresholds for both

segmentation and group EVI estimation. This flexibility enables our group estimator to achieve

faster convergence rates without increasing bias. The simulation results reveal that the group

estimator substantially outperforms individual Hill estimators in terms of accuracy and efficiency.

We applied our method to analyze a rainfall dataset collected from 4,735 stations across

Europe. Our findings suggest an increase in heterogeneity, regional differentiation, and variability

in extreme precipitation patterns, consistent with assessments by the IPCC and the European

Environmental Agency (European Environmental Agency, 2021). This analysis highlights the

importance of accounting for regional heterogeneity when modeling extreme precipitation risks

and provides a framework for tracking changes in the context of ongoing climate change.

Looking ahead, developing a theoretically justified procedure for selecting the number of

groups in our framework remains an interesting avenue for future research.
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A Proofs of main results

We provide the proofs for Theorem 1 and Theorem 2. Additional proofs, including that of

Lemma 1, are collected in Online Appendix S.1.

Proof of Theorem 1. We first establish the consistency of λ̂, upon which we then derive its

rate of convergence. For convenience, we write argminℓ = argminℓ∈L without ambiguity. Recall

that l0 = 0 and lG = N . For any candidate segmenting location ℓ = (l1, . . . , lm)
⊤, define

γ̂(lj−1, lj) =
1

lj − lj−1

lj∑
i=lj−1+1

γ̂H
i , j = 1, . . . , G. (A.1)

A straightforward algebraic calculation shows that γ̂(lj−1, lj) = γ̂gj(ℓ) and the sum of squared

residuals can be expressed as

SSR(ℓ) =
1

N

G∑
j=1

lj∑
i=lj−1+1

(
γ̂(lj−1, lj)− γ̂H

i

)2
=

1

N

G∑
j=1

(lj − lj−1)γ̂(lj−1, lj)
2 − 2γ̂(lj−1, lj)

lj∑
i=lj−1+1

γ̂H
i +

lj∑
i=lj−1+1

(
γ̂H
i

)2
=− 1

N

G∑
j=1

(lj − lj−1)γ̂(lj−1, lj)
2 +

1

N

N∑
i=1

(
γ̂H
i

)2
.

This implies that ℓ̂ = argminℓ SSR(ℓ) = argmaxℓ N
−1
∑G

j=1(lj − lj−1)γ̂(lj−1, lj)
2. Since γ̂H

i =

γi + ε̂i, we can write N−1
∑G

j=1(lj − lj−1)γ̂(lj−1, lj)
2 = S1N(ℓ) + S2N(ℓ) + S3N(ℓ), where

S1N(ℓ) =
G∑

j=1

1

N(lj − lj−1)

 lj∑
i=lj−1+1

γi

2

, S2N(ℓ) =
G∑

j=1

2

N(lj − lj−1)

lj∑
i=lj−1+1

γi

lj∑
i=lj−1+1

ε̂i,

S3N(ℓ) =
G∑

j=1

1

N(lj − lj−1)

 lj∑
i=lj−1+1

ε̂i

2

.

Part I. Consistency of λ̂: Recall λ̂ = ℓ̂/N . Viewing λ̂ as an M-estimator, that is

λ̂ = argmax
λ

(
S1N(Nλ) + S2N(Nλ) + S3N(Nλ)

)
, (A.2)

we shall apply Theorem 5.7 from van der Vaart (2000) to obtain its consistency. Note that,

without loss of generality, we omit taking integer parts in (A.2), assuming that Nλ is already
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a vector of integers. We show that the deterministic term S1N(Nλ) dominates the objective

function (A.2) asymptotically. Let λ0 = λ00 = 0 and λG = λG0 = 1 and define a piecewise

constant function g given by

g (x) =
G∑

j=1

γgj1
{
λ(j−1)0 < x ≤ λj0

}
, x ∈ (0, 1). (A.3)

Using (A.3), one has

lj∑
i=lj−1+1

γi =

lj∑
i=lj−1+1

G∑
k=1

γgk1
{
Nλ(k−1)0 < i ≤ Nλk0

}
=

G∑
k=1

γgk

∫ lj

lj−1+1

1
{
Nλ(k−1)0 < x ≤ Nλk0

}
dx = N

∫ λj

λj−1

g(x) dx.

Then, S1N can be equivalently written as

S1N (Nλ) =
G∑

j=1

1

λj − λj−1

(∫ λj

λj−1

g(x) dx

)2

=: S(λ).

By applying Cauchy-Schwarz inequality, we obtain

S(λ) ≤
G∑

j=1

1

λj − λj−1

∫ λj

λj−1

1 dx

∫ λj

λj−1

g2(x) dx =

∫ 1

0

g2(x) dx = S (λ0) ,

where the equality holds if and only if λ = λ0. Thus it holds that for any ϵ > 0,

sup
λ: ∥λ̂−λ0∥1>ϵ

S1N (Nλ) < S (λ0) .

In viewing of Theorem 5.7 from van der Vaart (2000), it suffices to prove that supλ

∣∣S2N (Nλ) +

S3N(Nλ)
∣∣ = oP (1). However, this is immediate using Lemma 1. Specifically, due to the

ascending order of γgi , we have

sup
λ

|S2N(Nλ)| = sup
ℓ

|S2N(ℓ)| ≤ 2γgG sup
ℓ

G∑
j=1

1

N

∣∣∣∣∣∣
lj∑

i=lj−1+1

ε̂i

∣∣∣∣∣∣ = oP (1).

The oP (1) above holds because suplj−1+1≤l≤lj
N−1

∣∣∣∑lj
i=lj−1+1 ε̂i

∣∣∣ = oP (1) by Lemma 1 and

G < ∞ fixed. Similarly, Lemma 1 implies that supλ

∣∣S3N(Nλ)
∣∣ = oP (1).
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Part II. Consistency of ℓ̂: Given the consistency result on λ̂, it is sufficient to show that

for some ϵ > 0 and M ≥ 1,

P
(
M ≤

∥∥ℓ̂− ℓ0
∥∥
1
≤ ϵN

)
→ 0, (A.4)

as Ti → ∞ (for i = 1, . . . , N) and N → ∞. Denote VM,Nϵ = {ℓ : M ≤ ∥ℓ− ℓ0∥1 ≤ Nϵ}, for

ϵ =
1

4
min

1≤j≤G

(
λj0 − λ(j−1)0

)
min

(
1,

min2≤j≤G(γgj − γgj−1
)

max2≤j≤G(γgj − γgj−1
)

)
. (A.5)

We have

P
(
ℓ̂ ∈ VM,Nϵ

)
≤ P

(
inf

ℓ∈VM,Nε

SSR(ℓ) ≤ SSR(ℓ0)

)
=P

(
inf

ℓ∈VM,Nε

(−S1N (ℓ)− S2N (ℓ)− S3N (ℓ)) ≤ −S1N (ℓ0)− S2N (ℓ0)− S3N (ℓ0)

)
=P

(
inf

ℓ∈VM,Nε

3∑
i=1

(SiN (ℓ0)− SiN (ℓ)) ≤ 0

)
=: pN .

We obtain pN → 0 by showing that,

inf
ℓ∈VM,Nε

N (S1N (ℓ0)− S1N (ℓ))

∥ℓ− ℓ0∥1
≥ 3

5
min

1≤j≤m

(
γgj+1

− γgj
)2
, (A.6)

sup
ℓ∈VM,Nε

N |SiN (ℓ0)− SiN (ℓ)|
∥ℓ− ℓ0∥1

= oP (1), i = 2, 3. (A.7)

We first establish (A.6). For convenience, let ℓ̃(i) :=
(
l1, . . . , li, l(i+1)0, . . . , lm0

)⊤
for i =

1, . . . ,m, where the first i entries are taken from ℓ, and the remaining ones come from the true

location parameter ℓ0. Moreover, let ℓ̃(0) = ℓ0. By construction, for any ℓ ∈ VM,Nε, we have

lj < l(j+1)0, ensuring that the entries in ℓ̃(i) remain in ascending order. Then, by repeatedly

adding and subtracting, we can write

S1N (ℓ0)− S1N (ℓ) =
m∑
j=1

(
S1N

(
ℓ̃(j − 1)

)
− S1N

(
ℓ̃(j)

))
. (A.8)

Then, Eq. (A.6) follows from the next inequality:

N
(
S1N

(
ℓ̃(j − 1)

)
− S1N

(
ℓ̃(j)

))
≥ 3

5
|lj − lj0|

(
γgj+1

− γgj
)2

, j = 1, . . . ,m. (A.9)

We present the proof for j = 2, as the argument is simpler for j = 1 and extends analogously to
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other values of j. Note that

N
(
S1N

(
ℓ̃(1)

)
− S1N

(
ℓ̃(2)

))
=

[
1

l20 − l1

(
l20∑

i=l1+1

γi

)2

+
1

l30 − l20

(
l30∑

i=l20+1

γi

)2 ]

−

[
1

l2 − l1

(
l2∑

i=l1+1

γi

)2

+
1

l30 − l2

(
l30∑

i=l2+1

γi

)2 ]
. (A.10)

Now, we divide the proof into two main cases: i. l2 > l20 and ii. l2 < l20.

i. If l2 > l20, using (A.10), we have

N
(
S1N

(
ℓ̃(1)

)
− S1N

(
ℓ̃(2)

))
=

1

l20 − l1

(
l20∑

i=l1+1

γi

)2

+ (l30 − l20) γ
2
g3
− 1

l2 − l1

(
l20∑

i=l1+1

γi + (l2 − l20) γg3

)2

− (l30 − l2) γ
2
g3

=(l2 − l20)

 1

(l20 − l1)(l2 − l1)

(
l20∑

i=l1+1

γi

)2

− 2γg3
l2 − l1

l20∑
i=l1+1

γi +
l20 − l1
l2 − l1

γ2
g3


=

l2 − l20
(l20 − l1)(l2 − l1)

((
l20∑

i=l1+1

γi

)
− (l20 − l1)γg3

)2

. (A.11)

If l1 ≥ l10, the right-hand side of (A.11) simplifies to l2−l20
(l20−l1)(l2−l1)

(γg3 − γg2)
2. Similarly, if

l1 < l10, we have

N
(
S1N

(
ℓ̃(1)

)
− S1N

(
ℓ̃(2)

))
l2 − l20

=
1

(l20 − l1)(l2 − l1)

(
(l10 − l1)γg1 + (l20 − l10)γg2 − (l20 − l1)γg3

)2
=

1

(l20 − l1)(l2 − l1)

(
(l10 − l1)(γg2 − γg1) + (l20 − l1)(γg3 − γg2)

)2
≥ l20 − l1

l2 − l1
(γg3 − γg2)

2.

Therefore, for any ϵ ≤ (λ20 − λ10)/4 as constructed in (A.5), it always holds that

N
(
S1N

(
ℓ̃(1)

)
− S1N

(
ℓ̃(2)

))
l2 − l20

≥ l20 − l1
l2 − l1

(γg3 − γg2)
2

=
l20 − l10 + l10 − l1

l20 − l10 + l2 − l20 + l10 − l1
(γg3 − γg2)

2

≥ λ20 − λ10 − ϵ

λ20 − λ10 + ϵ
(γg3 − γg2)

2 ≥ 3

5
(γg3 − γg2)

2,

Clearly, (A.9) holds for the case l2 > l20.

29



ii. If l2 < l20, by (A.10) again, we can write

N
(
S1N

(
ℓ̃(1)

)
− S1N

(
ℓ̃(2)

))
(A.12)

=
1

l20 − l1

(
l20∑

i=l1+1

γi

)2

+ (l30 − l20) γ
2
g3
− 1

l2 − l1

(
l20∑

i=l1+1

γi − (l20 − l2) γg2

)2

− 1

l30 − l2

[
(l20 − l2) γg2 + (l30 − l20)γg3

]2
=

1

l20 − l1

(
l20∑

i=l1+1

γi

)2

− 1

l2 − l1

(
l20∑

i=l1+1

γi

)2

+
2 (l20 − l2) γg2

l2 − l1

(
l20∑

i=l1+1

γi

)
− (l20 − l2)

2

l2 − l1
γ2
g2

− (l20 − l2) γ
2
g3
+ 2 (l20 − l2) γg3(γg3 − γg2)−

(l20 − l2)
2

l30 − l2
(γg3 − γg2)

2

=
l20 − l2
l2 − l1

[
− 1

l20 − l1

(
l20∑

i=l1+1

γi

)2

+ 2γg2

(
l20∑

i=l1+1

γi

)
− (l20 − l2)γ

2
g2

]

− (l20 − l2)

[
γ2
g3
− 2γg3(γg3 − γg2) + (γg3 − γg2)

2 − l30 − l20
l30 − l2

(γg3 − γg2)
2

]
= − l20 − l2

(l2 − l1)(l20 − l1)

[(
l20∑

i=l1+1

γi

)
− (l20 − l1)γg2

]2
+

(l20 − l2) (l30 − l20)

l30 − l2
(γg3 − γg2)

2. (A.13)

If l1 ≥ l10, (A.13) leads to

N
(
S1N

(
ℓ̃(1)

)
− S1N

(
ℓ̃(2)

))
l20 − l2

=
l30 − l20
l30 − l2

(γg3−γg2)
2 =

l30 − l20
l30 − l20 + l20 − l2

(γg3−γg2)
2 ≥ 4

5
(γg3−γg2)

2,

provided that ϵ ≤ (λ30 − λ20)/4. If l1 < l10, from (A.13), we have

N
(
S1N

(
ℓ̃(1)

)
− S1N

(
ℓ̃(2)

))
l20 − l2

= − (l10 − l1)
2

(l2 − l1)(l20 − l1)
(γg2 − γg1)

2 +
l30 − l20
l30 − l2

(γg3 − γg2)
2

≥ −
(

ϵ

λ20 − λ10 + ϵ

)2

(γg2 − γg1)
2 +

4

5
(γg3 − γg2)

2.

Note that x 7→ x

λ20 − λ10 + x
is strictly increasing for x > 0. By the construction of ϵ in (A.5),

we have ϵ ≤ 1

4
(λ20 − λ10)

γg3 − γg2
γg2 − γg1

, and therefore,

N
(
S1N

(
ℓ̃(1)

)
− S1N

(
ℓ̃(2)

))
l20 − l2

≥ − 1

16

(
γg3 − γg2
γg2 − γg1

)2

(γg2 −γg1)
2+

4

5
(γg3 −γg2)

2 ≥ 3

5
(γg3 −γg2)

2.

To sum up, we see that (A.9) holds for the case l2 < l20 as well.

It remains to establish (A.7). For any random sequence {Xi}, we adopt the convention that
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∑i1
i=i2

Xi = −
∑i2

i=i1
Xi for i1 < i2. We can write

NS2N(ℓ)

2
=

G∑
j=1

1

(lj − lj−1)

 lj0∑
i=l(j−1)0+1

γi

 lj0∑
i=l(j−1)0+1

ε̂i


+

G∑
j=1

1

(lj − lj−1)

 l(j−1)0∑
i=lj−1+1

γi +

lj∑
i=lj0+1

γi

 lj∑
i=lj−1+1

ε̂i


+

G∑
j=1

1

(lj − lj−1)

 lj0∑
i=l(j−1)0+1

γi

 l(j−1)0∑
i=lj−1+1

ε̂i +

lj∑
i=lj0+1

ε̂i

 .

Note that
∑lj0

i=l(j−1)0+1 γi =
(
lj0 − l(j−1)0

)
γgj and NS2N(ℓ0)/2 =

∑G
j=1 γgj

∑lj0
i=l(j−1)0+1 ε̂i. We

have

N |S2N(ℓ0)− S2N(ℓ)|
2∥ℓ− ℓ0∥1

≤ ∥ℓ− ℓ0∥−1
1

{
G∑

j=1

∣∣∣∣∣γgj
(
lj0 − l(j−1)0

lj − lj−1

− 1

) ∣∣∣∣∣
∣∣∣∣∣

lj0∑
i=l(j−1)0+1

ε̂i

∣∣∣∣∣
+ γG

G∑
j=1

(
|lj−1 − l(j−1)0|+ |lj − lj0|

)∣∣∣∣∣ 1

(lj − lj−1)

lj∑
i=lj−1+1

ε̂i

∣∣∣∣∣
+

G∑
j=1

γgj
lj0 − l(j−1)0

(lj − lj−1)

(∣∣∣∣∣
l(j−1)0∑

i=lj−1+1

ε̂i

∣∣∣∣∣+
∣∣∣∣∣

lj∑
i=lj0+1

ε̂i

∣∣∣∣∣
)}

.

By applying (2.9), (A.5), and using the bounds |lj − lj0| ≤ ∥ℓ− ℓ0∥1, and

lj0 − l(j−1)0

lj − lj−1

≤
λj0 − λ(j−1)0

λj0 − λ(j−1)0 − 2ϵ
≤ 2, ∀j = 1, . . . ,m,

we establish (A.7) for i = 2. The result for S3N(·) term follows from the same reasoning. The

details are omitted.

In the proof below, equations and lemmas provided in the online supplement are referenced

using numbers that begin with the prefix “S”.

Proof of Theorem 2. Because
∥∥ℓ̂ − ℓ0

∥∥
1

p−→ 0, it is sufficient to establish the asymptotic

normality for γ̂gj
(
ℓ0, k̃

)
= 1

lj0−l(j−1)0

∑lj0
i=l(j−1)0

γ̂H
i . We give the proof for j = 1. Write rn =

1√∑l10
i=1

1
ki

. Applying the decomposition in (S.1.1), we have

l10√∑l10
i=1

1
ki

(γ̂g1 − γg1) = rnS1,l10 + rnS2,l10 ,
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where S1,l and S2,l are defined in (S.1.1). It is straightforward to see that rnS1,l10
d→ N(0, γ2

g1
).

It remains to prove rnS2,l10 → B1.

Note that (2.10) is equivalent to

lim
s→∞

logUi(sx)− logUi(s)− γi log x

Ai(s)
=

xρi − 1

ρi
.

Moreover, it implies that for any ϵ > 0, there exists an si such that for any s > si and x > 1,∣∣∣∣ logUi(sx)− logUi(s)− γi log x

Ãi(s)
− xρi − 1

ρi

∣∣∣∣ ≤ ϵxρi+ϵ, i = 1, . . . , N

where Ãi(s)/Ai(s) → 1 as s → ∞; (see, e.g., de Haan and Ferreira, 2006, p. 60). By Lemma S.1.1

and Ti/k̃i → ∞, P
(⋂N

i=1

{
Yi,(Ti−k̃i)

> si

})
→ 1. We have uniformly for all i = 1, . . . , N and

j = 0, . . . , k̃i − 1,

log

(
Ui(Yi,(Ti−j))

Ui(Yi,(Ti−k̃i)
)

(
Yi,(Ti−j)

Yi,(Ti−k̃i)

)−γi)

=Ãi

(
Yi,(Ti−k̃i)

) ( Yi,(Ti−j)

Yi,(Ti−k̃i)

)ρi
− 1

ρi
+ oP (1)Ãi

(
Yi,(Ti−k̃i)

)( Yi,(Ti−j)

Yi,(Ti−k̃i)

)ρi+ϵ

. (A.14)

By de Haan and Ferreira (2006, Theorem 2.3.3), Assumption 4 implies that Ai(sx)/Ai(s) → xρi

for x > 0. Further, applying Lemma S.1.1, we have uniformly for all i = 1, . . . , N ,

Ãi

(
Yi,(Ti−k̃i)

)
Ai

(
Ti

k̃i

) =
Ãi

(
Yi,(Ti−k̃i)

)
Ai

(
Yi,(Ti−k̃i)

)Ai

(
Yi,(Ti−k̃i)

)
Ai

(
Ti

k̃i

) = 1 + oP (1). (A.15)

Finally combining (A.14) and (A.15), we obtain

rnS2,l10 =rn

l10∑
i=1

1

k̃i

k̃i−1∑
j=0

log

(
Ui(Yi,(Ti−j))

Ui(Yi,(Ti−k̃i)
)

(
Yi,(Ti−j)

Yi,(Ti−k̃i)

)−γi)

=rn

l10∑
i=1

Ãi

(
Yi,(Ti−k̃i)

) 1

k̃i

k̃i−1∑
j=0

(
Yi,(Ti−j)

Yi,(Ti−k̃i)

)ρi
− 1

ρi

+ oP (1)rn

l10∑
i=1

Ãi

(
Yi,(Ti−k̃i)

) 1

k̃i

k̃i−1∑
j=0

(
Yi,(Ti−j)

Yi,(Ti−k̃i)

)ρi+ϵ

=rn(1 + oP (1))

l10∑
i=1

Ai

(
Ti

k̃i

)
1

k̃i

k̃i−1∑
j=0

(
Yi,(Ti−j)

Yi,(Ti−k̃i)

)ρi
− 1

ρi
+ oP (1)rn

l10∑
i=1

Ai

(
Ti

k̃i

)
,
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where the second term is oP (1), because rn
∑l10

i=1Ai

(
Ti

k̃i

)
is bounded. For the first term, using

(S.1.2), we obtain

k̃i−1∑
j=0

(
Yi,(Ti−j)

Yi,(Ti−k̃i)

)ρi
− 1

ρi

d
=

k̃i∑
j=1

eρiEi,j − 1

ρi
.

Observe that E
(

eρiEi,j−1
ρi

)
= 1

1−ρi
. Thus,

P


∣∣∣∣∣∣∣rn

l10∑
i=1

Ai

(
Ti

k̃i

)
1

k̃i

k̃i−1∑
j=0

(
Yi,(Ti−j)

Yi,(Ti−k̃i)

)ρi
− 1

ρi
− rn

l10∑
i=1

Ai

(
Ti

k̃i

)
1− ρi

∣∣∣∣∣∣∣ ≥ ϵ


≤ 1

ϵ2
Var

rn

l10∑
i=1

Ai

(
Ti

k̃i

)
1

k̃i

k̃i∑
j=1

eEi,jρi − 1

ρi

 =
C

ϵ2

∑l10
i=1A

2
i

(
Ti

k̃i

)
1
k̃i∑l10

i=1
1
k̃i

→ 0,

because max1≤i≤N

∣∣∣Ai

(
Ti

k̃i

)∣∣∣→ 0. Now Theorem 2 follows from rn
∑l10

i=1

Ai

(
Ti
k̃i

)
1−ρi

→ B1 as required

in Assumption 5.
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S.1 Proofs of auxiliary lemmas

In the subsequent proofs, we use C,C1, C2, . . . to denote constants whose values vary depending

on the context.

Proof of Lemma 1. We will prove the case for l1 = 1 and l2 = N . The proof follows in the

same manner for other values.

Let {Yi,t : i = 1, . . . , N, t = 1, . . . , Ti} be i.i.d. with a common distribution given by

x 7→ 1 − 1/x, x ≥ 1. Then we have {Zi,t : t = 1, . . . , Ti, i = 1, . . . , N} =d {Ui(Yi,t) : t =

1, . . . , Ti, i = 1, . . . , N}. For any 1 ≤ l ≤ N , the partial sum in (2.9) can be written as

l∑
i=1

ε̂i =
l∑

i=1

(
γ̂H
i − γi

)
=

l∑
i=1

(
1

ki

ki−1∑
j=0

logZi,(Ti−j) − logZi,(Ti−ki) − γi

)

=d

l∑
i=1

(
1

ki

ki−1∑
j=0

log
Ui(Yi,(Ti−j))

Ui(Yi,(Ti−ki))
− γi

)

=
l∑

i=1

(
1

ki

ki−1∑
j=0

(
γi log

Yi,(Ti−j)

Yi,(Ti−ki)

+ log

(
Ui(Yi,(Ti−j))

Ui(Yi,(Ti−ki))

(
Yi,(Ti−j)

Yi,(Ti−ki)

)−γi
))

− γi

)

=
l∑

i=1

γi

(
1

ki

ki−1∑
j=0

log
Yi,(Ti−j)

Yi,(Ti−ki)

− 1

)
+

l∑
i=1

1

ki

ki−1∑
j=0

log

(
Ui(Yi,(Ti−j))

Ui(Yi,(Ti−ki))

(
Yi,(Ti−j)

Yi,(Ti−ki)

)−γi
)

=: S1,l + S2,l. (S.1.1)

We shall show that sup1≤l≤N(Nl)−1/2|S1,l| = oP (1) and sup1≤l≤N(Nl)−1/2|S2,l| = oP (1). Let’s

deal with S1,l and S2,l separately. Denote X1,i = k−1
i

∑ki−1
j=0 log

Yi,(Ti−j)

Yi,(Ti−ki)
− 1. Let {Ei,j, i =

1, . . . , N, j = 1, . . . , ki} be i.i.d standard exponential r.v.s. And Ei,(j) denotes the j-th order

statistics in row i, that is Ei,(1) ≤ · · · ≤ Ei,(ki). By applying the Rényi’s representation for the

exponential order statistics (Rényi, 1953), one has

{
log

Yi,(Ti−j)

Yi,(Ti−ki)

}ki−1

j=0

=d
{
Ei,(ki−j+1)

}ki
j=1

, (S.1.2)

where the left-hand side does not depend on Ti. Thus, E(X1,i) = E
(
k−1
i

∑ki
j=1Ei,j − 1

)
= 0

and E (X1,i)
2 = Var

(
k−1
i

∑ki
j=1Ei,j − 1

)
= k−1

i . For any ϵ > 0, by Hájek and Rényi (1955)’s
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inequality for independent r.v.s, as N → ∞,

P

(
sup

1≤l≤N

1

l
|S1,l| ≥ ϵ

)
≤ C

1

ϵ2

N∑
i=1

1

i2
1

ki
= O

(
max
1≤i≤N

1

ki

)
= o(1), (S.1.3)

where max1≤i≤N k−1
i = o(1) is implied by N max1≤i≤N e−ki = o(1) in Assumption 2.

We move on to S2,l. For convenience, define

Wi,j :=
Ui(Yi,(Ti−j))

Ui(Yi,(Ti−ki))
(

Yi,(Ti−j)

Yi,(Ti−ki)

)γi − 1.

We apply two inequalities for regularly varying functions, namely, Proposition B.1.9 (5) (Potter

inequality) and Proposition B.1.10 in de Haan and Ferreira (2006) to obtain the lower and upper

bounds of Wi,j. For any δ ∈ (0, 1/4], there exists ti,0 such that for any ti ≥ ti,0 and x > 1,

max
((
(1− δ)x−δ − 1

)
,−δxδ

)
≤ Ui(tix)

Ui(ti)xγi
− 1 ≤ δxδ, i = 1, . . . , N. (S.1.4)

By Lemma S.1.1 and Ti/ki → ∞, P
(⋂N

i=1

{
Yi,(Ti−ki) > ti,0

})
→ 1. Thus, by replacing ti =

Yi,(Ti−ki) and x =
Yi,(Ti−j)

Yi,(Ti−ki)
in (S.1.4), we have with probability tending to one,

max

((
(1− δ)

(
Yi,(Ti−j)

Yi,(Ti−ki)

)−δ

− 1

)
,−δ

(
Yi,(Ti−j)

Yi,(Ti−ki)

)δ
)

≤ Wi,j ≤ δ

(
Yi,(Ti−j)

Yi,(Ti−ki)

)δ

,

for all i = 1, . . . , N , j = 0, 1, . . . , ki − 1. Since Wi,j > −1 always holds, it follows almost surely

that

|log(1 +Wi,j)| ≤
|Wi,j|√
1 +Wi,j

≤
δ
(

Yi,(Ti−j)

Yi,(Ti−ki)

)δ
√

(1− δ)
(

Yi,(Ti−j)

Yi,(Ti−ki)

)−δ
=

δ√
1− δ

(
Yi,(Ti−j)

Yi,(Ti−ki)

)3δ/2

.

It leads to

|S2,l| ≤
l∑

i=1

1

ki

ki−1∑
j=0

|log(1 +Wi,j)| ≤
l∑

i=1

1

ki

ki−1∑
j=0

δ√
1− δ

(
Yi,(Ti−j)

Yi,(Ti−ki)

)3δ/2

=:
l∑

i=1

X2,i.

Applying (S.1.2), we obtain E(X2,i) =
δ√
1− δ

E
(
exp

(
3δ
2
E1,1

) )
=

δ√
1− δ (1− 3δ

2
)
≤ C1δ and

Var (X2,i) =
δ2

ki(1− δ)
Var

(
exp

(
3δ

2
E1,1

))
=

δ2

ki(1− δ)

(
1

1− 3δ
− 1

(1− 3δ
2
)2

)
≤ C2

ki
δ.
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Note that the constants C1 and C2 above are independent of δ for any δ ∈ (0, 1/4]. For any

ϵ > 0, choose δ ∈ (0, 1/4] such that ϵ− C1δ > 0. Then, we have

P

(
sup

1≤l≤N

1

l

l∑
i=1

X2,i ≥ ϵ

)

≤P

(
sup

1≤l≤N

1

l

l∑
i=1

(X2,i − E(X2,i)) + sup
1≤l≤N

E(X2,i) ≥ ϵ

)

≤P

(
sup

1≤l≤N

1

l

l∑
i=1

(X2,i − E(X2,i)) ≥ ϵ− C1δ

)

≤ 1

(ϵ− C1δ)2

N∑
i=1

1

i2
C2δ

ki
= o(1), (S.1.5)

where we apply again Hájek-Rényi inequality to obtain the second-to-last inequality. Thus (2.9)

is proved by combining (S.1.3) and (S.1.5).

Lemma S.1.1. Let {Yi,t : i = 1, . . . , N, t = 1, . . . , Ti} be i.i.d. with a common distribution given

by x 7→ 1− 1/x, x ≥ 1.

(a) If the sequence
{
ki, i = 1, . . . , N

}
fulfills Assumption 2, then

P

(
N⋂
i=1

{
Yi,(Ti−ki) ≥

√
Ti

ki

})
→ 1. (S.1.6)

(b) If the sequence
{
k̃i, i = 1, . . . , N

}
fulfills Assumption 5, then

sup
1≤i≤N

∣∣∣∣∣Ai

(
Yi,(Ti−k̃i)

)
Ai

(
Ti

k̃i

) − 1

∣∣∣∣∣ = oP (1), (S.1.7)

where Ai is defined in (2.10).

Proof of Lemma S.1.1. We first prove (S.1.6). For each i, by Hoeffding’s inequality,

P

(
Yi,(Ti−ki) ≥

√
Ti

ki

)
= P

(
Ti∑
t=1

1

{
Yi,t ≥

√
Ti

ki

}
> ki

)

= 1− P

(
Ti∑
t=1

(
1

{
Yi,t ≥

√
Ti

ki

}
− ki√

Ti

)
≤ ki −

√
kiTi

)

≥ 1− 2 exp

(
− 2

Ti

(
ki −

√
kiTi

)2)
≥ 1− 2 exp(−ki).
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Using independence, we have

P

(
N⋂
i=1

{
Yi,(Ti−ki) ≥

√
Ti

ki

})
=

N∏
i=1

P

(
Yi,(Ti−ki) ≥

√
Ti

ki

)
≥

N∏
i=1

(1− 2 exp(−ki)) .

It suffices to prove that log
(∏N

i=1 (1− 2 exp(−ki))
)
→ 0, which follows from that

N∑
i=1

|log (1− 2 exp(−ki))| ≤
N∑
i=1

2 exp(−ki)

1− 2 exp(−ki)
≤ 4

N∑
i=1

exp(−ki),

and the assumption that N max1≤i≤N e−ki → 0 as N → ∞.

Next, we prove (S.1.7). By de Haan and Ferreira (2006, Theorem 2.3.3), Assumption 4

implies that Ai(sx)/Ai(s) → xρi for x > 0. If ρi = −∞, which implies that Fi is the standard

Pareto distribution, then (S.1.7) trivially holds. Thus, in the following, we assume that |ρi| < ∞

for all i. Applying Proposition B.1.10 in de Haan and Ferreira (2006), for any ϵ1 > 0, there

exists ti,0 such that for any ti ≥ ti,0 and x > 0,∣∣∣∣Ai(tix)

Ai(ti)
− xρi

∣∣∣∣ ≤ ϵ1x
ρi max

(
xϵ1 , x−ϵ1

)
, i = 1, . . . , N.

Denote IN =
⋂N

i=1

{
Yi,(Ti−k̃i)

> ti,0

}
. By the law of total probability, one has

P

(
sup

1≤i≤N

∣∣∣∣∣Ai

(
Yi,(Ti−k̃i)

)
Ai

(
Ti

k̃i

) − 1

∣∣∣∣∣ ≥ ϵ

)

≤P

(
sup

1≤i≤N

∣∣∣∣∣Ai

(
Yi,(Ti−k̃i)

)
Ai

(
Ti

k̃i

) − 1

∣∣∣∣∣ ≥ ϵ

∣∣∣∣∣ IN
)
P (IN) + P (I∁N).

Note that P (IN) → 1 due to (S.1.6). It suffices to show that conditioning on IN ,

sup
1≤i≤N

∣∣∣∣∣Ai

(
Yi,(Ti−k̃i)

)
Ai

(
Ti

k̃i

) − 1

∣∣∣∣∣ = oP (1).

Conditioning on IN , we have for i = 1, . . . , N ,

∣∣∣∣∣∣
Ai

(
Yi,(Ti−k̃i)

)
Ai

(
Ti

k̃i

) −

(
k̃i
Ti

Yi,(Ti−k̃i)

)ρi
∣∣∣∣∣∣ ≤ ϵ1

(
k̃i
Ti

Yi,(Ti−k̃i)

)ρi

max

((
k̃i
Ti

Yi,(Ti−k̃i)

)ϵ1

,

(
k̃i
Ti

Yi,(Ti−k̃i)

)−ϵ1 )
.

S5



Then we only need to prove

sup
1≤i≤N

∣∣∣∣( k̃i
Ti

Yi,(Ti−k̃i)

)ρi

− 1

∣∣∣∣ = oP (1) and sup
1≤i≤N

∣∣∣∣( k̃i
Ti

Yi,(Ti−k̃i)

)
− 1

∣∣∣∣ = oP (1).

We only prove the first statement, as the second follows with a more straightforward argument.

Note that

P

(
sup

1≤i≤N

∣∣∣∣( k̃i
Ti

Yi,(Ti−k̃i)

)ρi

− 1

∣∣∣∣ ≥ ϵ

)

≤
N∑
i=1

P

(∣∣∣∣( k̃i
Ti

Yi,(Ti−k̃i)

)ρi

− 1

∣∣∣∣ ≥ ϵ

)

=
N∑
i=1

P

(
Ti∑
t=1

1

{
Yi,t ≥

Ti

k̃i
(1− ϵ)1/ρi

}
≥ k̃i + 1

)
+

N∑
i=1

P

(
Ti∑
t=1

1

{
Yi,t ≥

Ti

k̃i
(1 + ϵ)1/ρi

}
≤ k̃i + 1

)

=
N∑
i=1

P
(
B̃i,1 ≥ k̃i + 1

)
+

N∑
i=1

P
(
B̃i,2 ≤ k̃i + 1

)
, (S.1.8)

where B̃i,1 ∼ Bin
(
Ti,

k̃i
Ti
(1 − ϵ)−1/ρi

)
and B̃i,2 ∼ Bin

(
Ti,

k̃i
Ti
(1 + ϵ)−1/ρi

)
. We shall apply the

Chernoff bound for binomial random variables; see, e.g., Mohri et al. (2018, Appendix D).

Specifically, suppose B ∼ Bin(n, p) with n ≥ 0 and p ∈ (0, 1), then, one has

P
(
B ≤ (1− ϵ)np

)
≤ exp

(
− ϵ2

2
np

)
and P

(
B ≥ (1 + ϵ)np

)
≤ exp

(
− ϵ2

3
np

)
.

Thus,

P
(
B̃i,1 ≥ k̃i + 1

)
≤ exp

(
− k̃i

3
(1− ϵ)−1/ρi

(
(1 + k̃−1

i )(1− ϵ)1/ρi − 1
)2)

< exp

(
− k̃i

3
(1− ϵ)−1/ρi

(
(1− ϵ)1/ρi − 1

)2)

= exp

(
− k̃i

3

([
(1− ϵ)1/ρi − 1

]
+
[
(1− ϵ)−1/ρi − 1

]))

≤ exp

(
− k̃iϵ

2

3ρ2i

)
, (S.1.9)

where the last inequality follows from the Taylor expansion for (1 − x)1/ρi and (1 − x)−1/ρi .

Similarly, we can obtain,

P
(
B̃i,2 ≤ k̃i + 1

)
≤ exp

(
− k̃iϵ

2

2ρ2i
+

3

2

)
. (S.1.10)
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Substituting (S.1.9) and (S.1.10) into (S.1.8), we obtain

P

(
sup

1≤i≤N

∣∣∣∣( k̃i
Ti

Yi,(Ti−k̃i)

)ρi

− 1

∣∣∣∣ ≥ ϵ

)
≤6N max

1≤i≤N
exp

(
− k̃iϵ

2

3ρ2i

)
≤6N max

1≤i≤N
exp

(
−k̃i/ log(k̃i)

)
→ 0.

This completes the proof.

S.2 Additional simulation results

We collect additional simulation outputs in this section.

S.2.1 Additional outputs of group estimator

Table S.2.1: Empirical MAE (in percent) of group and individual Hill estimators for T = 3000.

R̃k RH R̃k RH

(G,SG) Group 2% 3% 4% 5% 7% (G,SG) Group 2% 3% 4% 5% 7%

(3, 100)
1 3.58 4.49 5.32 6.54 5.71

(3, 300)
1 3.58 4.49 5.32 6.54 5.71

2 0.98 1.03 1.27 10.03 7.90 2 0.69 0.90 1.24 10.03 7.90
3 1.69 1.60 1.74 5.13 8.85 3 1.09 1.25 1.58 5.13 8.85

(5, 100)

1 2.53 3.16 3.75 6.54 7.90

(5, 300)

1 2.90 3.64 4.33 6.54 7.90
2 2.89 2.84 2.94 4.14 4.51 2 1.92 2.14 2.43 4.14 4.51
3 0.98 1.02 1.25 5.72 5.14 3 0.74 0.97 1.32 5.72 5.14
4 1.59 1.64 1.86 7.86 6.94 4 1.27 1.52 1.85 7.86 6.94
5 1.85 1.88 2.11 10.04 8.87 5 1.40 1.68 2.07 10.04 8.85

Figure S.2.1: Boxplots of group-wise MAEs (in percent) for the group Hill estimates constructed in
(2.8) (solid red lines) and individual Hill estimates (2.3) The left figure corresponds to G = 3 groups,
while the right one represents G = 5 groups. Here, (T, SG, R̃k) = (3000, 100, 3%).
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S.2.2 Silhouette metric for selecting the number of segments

Another commonly used method for determining the number of clusters is the Silhouette index

framework from the machine learning literature, originally introduced by Rousseeuw (1987) The

Silhouette metric provides a comprehensive approach to assessing cluster validity. It takes into

account within-cluster cohesion and its dissimilarity with other clusters. The Silhouette value

for an observation i is:

S(i) =
b(i)− a(i)

max{a(i), b(i)}
,

where a(i) = 1
|CI |−1

∑
j∈CI ,i ̸=j d(i, j) is the average dissimilarity of i to all other points within the

same cluster CI , and b(i) = minJ ̸=I
1

|CJ |
∑

j∈CJ
d(i, j) is the lowest average dissimilarity of i to

points in any other cluster. The Silhouette value S(i) ranges from −1 to 1, where a value close

to 1 indicates that the observation is well clustered, a value near 0 suggests that the observation

lies on the boundary between two clusters, and a negative value implies that the observation

may have been misclassified.

The average Silhouette value for all observations provides an overall measure of clustering

quality, S̄ = N−1
∑N

i=1 S(i), where N is the total number of observations. A higher average

Silhouette value indicates a more appropriate clustering solution.

Table S.2.2: Empirical accuracy (in percent) of the elbow method and Silhouette metric for determining
G.

γS

G T SG 0.4 0.45 0.5 0.55 0.6

3
1000

100 99.12 100 100 100 100
300 99.98 100 100 100 100

3000
100 15.57 100 100 100 100
300 2.14 100 100 100 100

5
1000

100 70.13 87.05 84.75 82.15 50.61
300 89.55 98.50 97.90 97.60 58.99

3000
100 0.34 100 100 100 93.22
300 0 100 100 100 99.36

For applying the Silhouette method, we suggest a modification to the choice of ki after the

grouping process. When the estimated EVIs fall below a threshold γS ∈ {0.45, 0.5, 0.55}, a

small threshold ki of 1% of observations is chosen. The intuition behind this approach is to

reduce bias for smaller EVI estimates, given their already small asymptotic variance. We assess

S8



its performance through M = 2000 simulations, the results can be found in Table S.2.2. The

modification performs well across different settings around γS = 0.45.

S.2.3 Empirical rejection rates of two-sample t-tests

Rejection probability is plotted against ∆γ, representing the change in EVI within a given

group while keeping others fixed. The DGP remains the same as in Section 3. We provide the

results for k = [12%T ], SG = 100, k̃ = [3%T ]. All three plots show empirical rejection rates

that are close to 5% when group EVI remains unchanged (∆γ = 0), indicating that the test

is correctly sized. As |∆γ| increases, the empirical rejection probability (i.e., empirical power)

rises. Group 1 shows the highest sensitivity to changes in ∆γ, while group 3 exhibits the lowest.

This suggests that small changes in ∆γ have a diminished impact on the empirical rejection

probability for group 3, which could be indicative of progressively heavier tails as we move from

group 1 to group 3.

Figure S.2.2: Empirical rejection rates of two-sample t-tests for Group 1-3 (from left to right), with
significance level 5%(dashed line).

S.3 Additional empirical results

Table S.3.3: Transition matrix for G = 4 between period 1 (rows) and period 2 (columns).

period 1 \ period 2 1 2 3 4

1 1998 516 0 0
2 589 1330 8 0
3 1 83 161 12
4 6 5 5 20
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Table S.3.4: Transition matrix for G = 5 between period 1 (rows) and period 2 (columns).

period 1 \ period 2 1 2 3 4 5

1 1329 300 0 0 0
2 783 1202 14 0 0
3 95 655 129 6 1
4 0 8 50 124 7
5 6 3 2 1 19

Table S.3.5: Test statistics with significance levels: ∗∗∗p < 0.01, ∗∗p < 0.05, ∗p < 0.1.

group 1 group 2 group 3 group 4 group 5

G = 4 10.451∗∗∗ 5.050∗∗∗ 2.419∗∗ 3.943∗∗∗ –
G = 5 7.728∗∗∗ 10.827∗∗∗ 11.821∗∗∗ 3.071∗∗ 4.425∗∗∗

(a) Period 1 (1950–1985) (b) Period 2 (1986–2020)

Figure S.3.3: Maps showing the weather stations in our European sample for both periods. Dots
depict grouped estimates (G = 4) for the extreme value index of precipitation volume. Darker shades
refer to higher values.
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(a) Period 1 (1950–1985) (b) Period 2 (1986–2020)

Figure S.3.4: Maps depicting the weather stations in our sample for both periods. Dots depict
grouped estimates (G = 5) for the extreme value index of precipitation volume. Darker shades refer to
higher values.
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