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Abstract

We introduce a new class of location-scale models for dynamic functional data in arbitrary

but fixed dimensions, where the location and scale functional parameters can evolve over time.

A key feature of the parameter dynamics in these models is its observation-driven nature,

where the one-step-ahead evolution is fully determined conditional on past observations, yet

remains stochastic unconditionally. We estimate the model using a likelihood-based approach

designed for sparsely observed data and establish the consistency and asymptotic normality

of the underlying static parameters that govern the location-scale dynamics. The choice of

objective function and the construction of the dynamics together shield the time-varying

location and scale parameters from the potentially distorting effects of influential observations.

Simulations reveal that our method can recover the unobserved location-scale dynamics from

sparse data, even in the presence of model mis-specification and substantial outliers. We

apply our framework to examine the intraday volatility dynamics of Pfizer stock returns

during the COVID-19 pandemic, and PM2.5 concentrations measured by low-cost sensors

across Europe. The proposed model exhibits robust performance in capturing dynamics for

both datasets despite the presence of many large shocks.

Keywords: time variation, location-scale, functional score-driven dynamics, sparse data,

outlier robustness.
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1 Introduction

Functional data analysis deals with observations that are (in principle) infinite-dimensional, such

as curves and surfaces defined over a continuum; see, among many others, Hörmann and Kokoszka

(2010), Hörmann et al. (2015). With longer recorded datasets being increasingly available for such

objects, modeling the time-series dynamics of functional data has become a central topic in the

field. As the number of time series observations grows, questions naturally arise regarding the

stability versus the possible time-variation of the (functional) parameters that characterize the

observed functional data, such as their location and scale properties.

The challenge of time-varying parameters has been extensively studied in conventional time

series analysis of finite-dimensional objects. Popular approaches include nonparametric kernel

smoothing techniques (Cai, 2007), parameter-driven (or state-space) models (Durbin and Koopman,

2012), and observation-driven models (Creal et al., 2013; Harvey, 2013). In contrast, time series

models for functional observations are much less developed. Often, the functional parameters are

assumed to be constant over time. An important exception is the class of functional GARCH

(fGARCH) models (e.g., Hörmann et al., 2013; Aue et al., 2017; Cerovecki et al., 2019). The

class of fGARCH models, however, is particular to volatility curves in one dimension and leaves

untouched how to generalize the method to higher dimensions and other (or more) time-varying

parameters. This lack of attention to the dynamics of functional parameters is the more surprising

given the many reports of either structural or gradual changes in such parameters across a range

of applications (Horváth et al., 2014; Bardsley et al., 2017; Boniece et al., 2023; Li et al., 2024;

Bastian and Dette, 2025).

In this paper we therefore introduce a new class of functional time series models where both

the functional location and scale parameters can vary over time simultaneously. Specifically, we

consider functional objects Yi(t), with i = 1, . . . , T denoting the time-series index, and t ∈ Rd the

functional index for a fixed but arbitrary dimension d ≥ 1. Building on fundamental results for
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stochastic recurrence equations, we provide a full study of the new models’ asymptotic properties,

including stationarity and ergodicity and filter invertibility for the functional location and scale

parameter processes. We establish theoretically that the time-varying location and scale dynamics

can be recovered from sparsely observed data and provide a strong consistency and asymptotic

normality result for the static parameters that govern these dynamics.

The proposed framework enjoys two key features. First, our approach is observation-driven in

the terminology of Cox (1981): the dynamics of the mean and scale parameters are stochastic

unconditionally, but fully determined one-step-ahead conditional on past observations. Observation-

driven dynamics are also used in a functional context in, for example, Hörmann et al. (2013),

Aue et al. (2017), and Cerovecki et al. (2019) to capture functional conditional heteroskedasticity

(fGARCH) for d = 1. We explain the intrinsic connection between our new approach and the special

case of the fGARCH, but also show how our new framework is much more general and allows for

joint functional location and scale dynamics in arbitrary dimensions d. A distinct advantage of the

observation-driven approach is that it facilitates a simple estimation methodology, especially when

extending the models to incorporate nonlinearities and heavy-tailed features. Observation-driven

models can also easily be applied for forecasting due to their predictive structure (see, e.g., Aue

et al., 2015; Shang and Hyndman, 2017; Paparoditis and Shang, 2023).

The dynamics of the new model are inspired by the extensive literature on score-driven models,

which are a sub-class of observation-driven models; see Creal et al. (2013) and Harvey (2013) for a

general introduction, and Harvey and Luati (2014) and Gasperoni et al. (2023) for univariate and

multivariate score-driven location and scale models for finite-dimensional objects.1 Score-driven

updates are optimal in a Kullback-Leibler sense for finite-dimensional observations (Blasques et al.,

2015) and provide consistent estimates of the time-varying parameter paths even if the model is

severely mis-specified (Beutner et al., 2023). This paper is the first to extend this approach to

functional data.

1One can also consult the overview of more than 300 papers on score-driven dynamics on https://www.gasmodel.

com.
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As a second key feature, our framework is set in the context of sparsely observed data, subject

to possibly considerable noise: the number of observations per functional object at each time

point in our context is finite, and we explicitly address the common encounter in sparse designs of

incidental outlying observations. Some of the challenges when working with sparse designs have

been discussed in Yao et al. (2005), Wang et al. (2016), Zhang and Wang (2016), and Zhu and

Wang (2023). In most practical settings, functional data are only recorded discretely and are often

contaminated by measurement errors. Many earlier studies, however, typically assume dense and

regularly-spaced observations, allowing one to pre-smooth the data to reconstruct the underlying

functions; see Ramsay and Silverman (2005) for a textbook treatment. Pre-smoothing helps to

mitigate the effect of outliers arising from phenomena such as market crashes in economics and

finance, or weather anomalies and sensor malfunctioning in environmental studies. Pre-smoothing,

however, is generally not feasible under sparse designs. Accounting for potential incidental outliers

is therefore a crucial step in our framework.

To obtain outlier-robust time-varying dynamics, we incorporate heavy-tailed features by using

Student’s t processes for the measurement errors (Heyde and Leonenko, 2005; Shah et al., 2014).

This differs from the common practice in the literature, where Gaussianity is often assumed, either

explicitly or implicitly. When combined with the score-driven dynamics of Creal et al. (2013)

and Harvey (2013) mentioned above, outlying functional observations are now automatically

downweighted in the functional parameter updates, thus ensuring their robustness. Similar

robustness features have been observed in finite-dimensional settings (Harvey and Luati, 2014;

Gasperoni et al., 2023), and this paper extends them to the functional time series context. Our

finite sample results clearly show that the new approach is indeed robust to incidental shocks, in

contrast to competing methods, which turn out to be more sensitive and numerically less stable.

The score-driven updates proposed in this paper take an intuitive form and follow by projecting

the function-valued parameters onto a finite set of basis functions with time-varying coefficients.

The (robust) functional parameter updates follow naturally from the fat-tailed Student’s t process
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based objective function used for estimation. More specifically, our parameter updates depend

on a projection of the most recent functional observation onto the above set of basis functions

across all d dimensions. The resulting step then adjusts the basis function loading coefficients

in a steepest ascent direction given the criterion function. Also the functional GARCH model

of Cerovecki et al. (2019) and the functional factor models of Hays et al. (2012) make use of

projections on a finite basis. We differ substantially from either set-up, however. In particular,

our model considers integrated location and scale dynamics, includes non-Gaussian features,

introduces a robust updating mechanism for both location and scale, uses non-linear score-driven

dynamics rather than the parameter-driven dynamics of Hays et al. (2012) or the more linear

observation-driven dynamics of Cerovecki et al. (2019), and finally, provides a solution to the

challenges faced when studying the asymptotic properties of the non-linear dynamics in the new

model.

The new model performs well in both simulated and empirical settings. In a controlled setting,

the model recovers complex time variation in both means and variances in both d = 1 and d = 2

dimensional settings. This holds despite the time-series dynamics being severely mis-specified and

the data being plagued by fat-tailed measurement errors. The new model also performs well in

two empirical applications. In the first application, we analyze intraday volatility patterns (d = 1).

Here the new model outperforms the existing benchmark of Cerovecki et al. (2019). Part of this

outperformance can be attributed to the robust dynamics, especially during periods of market

stress. In the second example we study a d = 2 dimensional setting. Here, we show that the model

is able to capture the temporal developments in spatial PM2.5 levels across Europe, using sparse

and rather noisy ‘citizen science’ sensor measurements. We conclude that the new model offers a

valuable addition to the functional time series modeling toolkit and can be further extended in

many interesting directions.

The rest of this paper is set up as follows. In Section 2 we introduce the modeling framework,

including the use of score-driven dynamics for functional data and the estimation of the model’s
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static parameters. Section 3 formulates the conditions for stationarity and ergodicity, filter

invertibility, consistency, and asymptotic normality. Section 4 shows the model’s performance in a

variety of controlled settings. Section 5 illustrates the model in two empirical contexts. Section 6

concludes. Proofs and additional simulation results are provided in the Online Appendix.

We adopt the following notational conventions. Vectors and matrices are in bold, whereas

scalars are non-bold. For a vector x = (xj) ∈ Rn, its p-norm is denoted by ∥x∥p = (
∑n

j=1 |xj|p)1/p.

The matrix norm ∥A∥p,q of a matrix A is defined as ∥A∥p,q = supx̸=0 ∥Ax∥q/∥x∥p. When p = q,

we denote it as ∥ · ∥p. The subscripts are omitted whenever p = q = 2. A block-diagonal matrix

with, for instance, two blocks A and B is written as diag (A,B). All random elements are assumed

to be defined on some common probability space. A vector-valued sequence {xi, i ∈ Z} is said to

converge to zero exponentially fast almost surely (e.a.s.) as i→ ∞, denoted by xi
e.a.s.−→ 0, if there

exists some γ > 1 such that γi∥xi∥
a.s.−→ 0, where

a.s.−→ denotes almost sure (a.s.) convergence.

2 Observation-driven dynamics for functional time-series

We begin by introducing our location-scale model with time-varying functional parameters in

Section 2.1, followed by a motivating example in Section 2.2 that leads to our formulation of

updating schemes in Section 2.3. Section 2.4 then presents an estimation procedure based on this

updating formulation.

2.1 General location-scale set-up

For a univariate random element Yi(t), consider the functional location-scale model

Yi(t) = µi(t) + σi(t)εi(t), i ∈ JT K, t ∈ T , (2.1)

where JT K denotes {1, . . . , T} with T ∈ Z+. In our current context, the quantity T typically

denotes the length of the time-series. Model (2.1) has been previously used by, for instance,
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Hyndman and Shahid Ullah (2007) and Hyndman and Booth (2008). We assume that both

the location µi(t) and scale σi(t) can be defined using link functions of an underlying variable

fi(t) ∈ Rnf for nf ≥ 1, where the measurable link functions are gµ(·) and gσ(·) are such that

µi(t) = gµ(fi(t)) and σi(t) = gσ(fi(t)) > 0, for every t ∈ T . We focus on the case of a compact

T ⊂ Rd. This allows us to not only model univariate functional data (d = 1), but also time-varying

surfaces (d = 2) and time-varying three-dimensional shapes (d = 3).

We assume the error terms εi(·) are zero-mean Student processes in the terminology of Shah

et al. (2014), independent across i. This allows for functional data that are characterized by

incidental outliers and influential observations and endows the model with desirable robustness

features later on when we describe the dynamics of µi(·) and σi(·) (for similar properties in the

context of non-functional data, see, for instance, Harvey and Luati, 2014; Gasperoni et al., 2023).

Note that this automatically embeds the case of a Gaussian process innovation εi(·).

2.2 A motivating example: functional GARCH

To motivate our approach for modeling the time-variation in location and scale, we first briefly

review the functional GARCH(1,1) framework proposed by Cerovecki et al. (2019). A number of

aspects of the new modeling approach can be anchored to this simpler setting, which helps the

intuition for the new approach.

Consider a setting with t ∈ T = [0, 1], i.e., d = 1, and let i ∈ JT K with Yi(t) = σi(t)εi(t). We

assume the volatility process σi(·) satisfies the functional GARCH specification

σ2
i+1(t) = ω(t) +

∫
α(t, s)Y 2

i (s) ds+

∫
β(t, s)σ2

i (s) ds, (2.2)

with {εi(·)} a sequence of i.i.d. random elements, ω(t) > 0, and α(t, s), β(t, s) ≥ 0 for all

t, s ∈ T (Cerovecki et al., 2019, Section 3.1). Assume there exists a finite set of linearly

independent basis functions in L2(T ) (the Hilbert space of all real, square-integrable functions on
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T ),
{
ϕ1(·), . . . , ϕK(·)

}
, such that

ω(t) =
K∑
k=1

wk ϕk(t), α(t, s) =
K∑

k1,k2=1

ak1,k2ϕk1(t)ϕk2(s), β(t, s) =
K∑

k1,k2=1

bk1,k2ϕk1(t)ϕk2(s),

where wk, ak1,k2 , and bk1,k2 for k, k1, k2 ∈ JK K are unknown static parameters that need to

be estimated. Define ϕK(·) =
(
ϕ1(·), . . . , ϕK(·)

)⊤
. We then write ω(t) = ϕK(t)⊤ω, α(t, s) =

ϕK(t)⊤AϕK(s), β(t, s) = ϕK(t)⊤BϕK(s), where ω =
(
ω1, . . . , ωK

)⊤
, A =

(
ak1,k2 , k1, k2 ∈

JK K
)
∈ RK×K , and B =

(
bk1,k2 , k1, k2 ∈ JK K

)
∈ RK×K . Using these definitions, we rewrite (2.2)

as

σ2
i+1(t) = ϕK(t)⊤ω + ϕK(t)⊤A

∫
ϕK(s)Y 2

i (s) ds+ ϕK(t)⊤B

∫
ϕK(s)σ2

i (s) ds. (2.3)

Multiplying (2.3) on both sides by ϕK(t) and integrating over T w.r.t. t, we obtain

∫
ϕK(t)σ2

i+1(t) dt =

∫
ϕK(t)ϕK(t)⊤ dtω

+

∫
ϕK(t)ϕK(t)⊤ dtA

∫
ϕK(s)Y 2

i (s) ds+

∫
ϕK(t)ϕK(t)⊤ dtB

∫
ϕK(s)σ2

i (s) ds, (2.4)

where
∫
ϕK(t)ϕK(t)⊤ dt ∈ RK×K is invertible. Define γi =

( ∫
ϕK(t)ϕK(t)⊤ dt

)−1 ∫
ϕK(t)σ2

i (t) dt.

Multiplying both sides of (2.4) by the inverse of
∫
ϕK(t)ϕK(t)⊤ dt, we obtain

γi+1 = ω + B̄γi +A

∫
ϕK(s)Y 2

i (s) ds, B̄ = B

∫
ϕK(t)ϕK(t)⊤ dt. (2.5)

Note that σ2
i (·) and γi are related by σ2

i (·) = ϕK(·)⊤γi, which is a function-on-function projection,

with γi ∈ Rnγ being the projection coefficient for nγ = K. The functional GARCH model (2.2) can

thus be re-cast into specification (2.5), where its nγ = K projections in γi allow for the estimation

of the static parameters ω, A, and B̄ that define the functional parameters ω(·), α(·, ·), and β(·, ·)

of the original functional GARCH dynamics in (2.2). If in practical settings a finite small K <∞

8



provides a good approximation to the original volatility function and the parameters describing

its dynamics, this provides a considerable dimension reduction. It is this intuition that we exploit

as well for our more general specification of observation-driven functional location-scale dynamics

in general dimensions.

2.3 Functional dynamics for the general setting

For an arbitrary dimension d ∈ Z+ with t = (t1, . . . , td)
⊤ ∈ Rd, we follow the same intuition for

the time-varying parameter fi(·) ∈ Rnf in the general location-scale model (2.1) as we have seen

for the functional GARCH model of Cerovecki et al. (2019) in Section 2.2 for d = 1, and which we

also encounter in for instance Li et al. (2021) and Zhang and Li (2022) for d = 2 and Berild and

Fuglstad (2023) for d = 3. In particular, for the jth element of fi(·), we project it onto a finite set

of product basis functions {ϕ1(·), . . . , ϕKj
(·)}, with Kj ∈ N for j = 1, . . . , d:

fi(t) =

K1∑
k1=1

· · ·
Kd∑

kd=1

γ̄i,k1,...,kd × ϕk1(t1) × ϕkd(td) =
∑

1≤k≤K

γ̄i,k ϕk(t) = ΓiϕK(t), (2.6)

where we use the short-hand multi-index notation ϕk(t) =
∏d

i=1 ϕki(ti) ∈ R for vectors of indices

k = (k1, . . . , kd)
⊤,K = (K1, . . . , Kd)

⊤ ∈ Nd, as well as the multi-index notation γ̄i,k = γ̄i,k1,...,kd ∈

Rnf , and the multi-index summation
∑

1≤k≤K =
∑K1

k1=1 · · ·
∑Kd

kd=1 with 1 a vector of ones of

appropriate dimension. Here, “≤” denotes coordinatewise ordering in the space Nd. Specifically,

form = (m1, . . . ,md) and n = (n1, . . . , nd), we havem ≤ n if and only if mi ≤ ni for all 1 ≤ i ≤ d.

Moreover, the matrix Γi = (γ̄i,1, . . . , γ̄i,K) ∈ Rnf×(K1·K2···Kd) gathers the basis coefficients, while

the vector ϕK(t) =
(
ϕ1(t), . . . , ϕK(t)

)⊤ ∈ R(K1·K2···Kd)×1 all the possible cross-products of basis

functions related to the d different dimensions of t.
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Multiplying (2.6) from the right by ϕK(t)⊤, and integrating over t, we obtain

∫
fi(t)ϕK(t)⊤dt = Γi

∫
ϕK(t)ϕK(t)⊤dt ⇐⇒

γi = vec
(
Γ⊤
i

)
= vec

((∫
ϕK(t)ϕK(t)⊤dt

)−1 ∫
ϕK(t)fi(t)

⊤dt

)
, (2.7)

where γi ∈ Rnγ for nγ = nf ·
∏d

i=1Ki. This specification of γi is completely analogous to the

specification of γi in the functional GARCH settings above (2.5), but now for general dimensions

d and for a general location-scale model. Note that we immediately obtain the dynamics over i for

the location and scale from the identities

µi(t) = gµ
(
ΓiϕK(t)

)
, σi(t) = gσ

(
ΓiϕK(t)

)
, (2.8)

for link functions gµ( · ) and gσ( · ).

The current set-up covers a large number of different models; see for instance Peng and Paul

(2009), Aue et al. (2017), Cerovecki et al. (2019), Berild and Fuglstad (2023). If nf = 2 and

f = (f1, f2)
⊤ ∈ R2 only contains a single location-related and a single scale-related element,

examples of typical choices for the link functions include the identity function gµ(f) = f1 for the

mean and an exponential link function gσ(f) = exp(f2) for the standard deviation or variance.

The latter ensures positivity of the scale by construction for all indices i ∈ Z and t ∈ T . Other

choices are of course also possible and covered by the same specification in (2.7)–(2.8). Such

choices can even include a structural time-series decomposition of the location and scale dynamics

in, for example, level, trend, seasonal and cyclical components; see Harvey (1990) for examples in

the finite dimensional, non-functional data setting.

10



To construct an updating equation for γi, we assume

γi+1 = ω +A s (Yi,γi) +B γi, (2.9)

where s(·, ·) is a function(al) of the previous observation Yi(·) and the previous value of γi,

respectively. We define s(·, ·) in more detail in the next section. Note that if d = 1 and

s(Yi,γi) =
∫
ϕK(s)Y 2

i (s) ds, we recover the functional GARCH model from Eq. (2.5). The

updating framework in (2.9) is, however, much more general and makes the specification observation-

driven in the terminology of Cox (1981). As a result, the model is easily estimated using standard

methods, as we show in the next subsection. Note that (2.9) also embeds a functional generalization

of the score-driven framework of Creal et al. (2013) and Harvey (2013). In the finite dimensional,

non-functional data setting, such steps in the time-varying parameter result in expected (local)

improvements in the Kulback-Leibler information; see Blasques et al. (2015), Creal et al. (2024),

and De Punder et al. (2024). In addition, such steps result in a consistent estimate of the

time-varying parameter paths, even if the model is misspecified; see Beutner et al. (2023). Such

score-driven steps are defined with respect to the estimation criterion for the static parameters of

the model: ω, A and B. Therefore, we first discuss how to formulate an appropriate estimation

criterion for the model’s static parameters in order to explicitly define the update function s(·, ·).

2.4 Parameter estimation and score-driven dynamics

In this section, we discuss how to estimate the static parameters of the model, including the

parameters ω, A, and B that govern the dynamics of γi in (2.9). This also gives rise to our

specific choice of s(·, ·) in (2.9) that drives the functional dynamics.

Assume that for each i ∈ JT K we observe Yi(·) over a finite grid T = {t1, . . . , tN}; see Yao et al.

(2005) and Zhang and Li (2022). For simplicity, we assume the number N of observation points

is the same for all i; these can be allowed vary across dimensions at the expense of additional
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notational complexity. We particularly focus on settings with sparsely observed data (N <∞); see

also Paul and Peng (2009) and Zhang and Wang (2016). In such settings with sparsely recorded

data, we do not perform any pre-smoothing steps to remove measurement errors, but instead

explicitly introduce potentially heavy-tailed measurement errors into our modeling framework. By

allowing the errors to have fat tails, we can accommodate situations where they can be incidentally

large, a phenomenon common in real-world applications but often overlooked in the existing

literature. The location and scale functional dynamics we introduce later on will be robust to

such challenges.

In case of no confusion, we omit the explicit dependence on N in our notation. We gather the

observed data in {Yi(t), t ∈ T}. Given our assumed Student t process for εi(·) in (2.1), we can

write

Yi = µ(γi) +Σ(γi) εi, Yi =
(
Yi(t1), . . . , Yi(tN)

)⊤
, εi =

(
εi(t1), . . . , εi(tN)

)⊤
,

µ(γi) =
(
gµ
(
ΓiϕK(t1)

)
, . . . , gµ

(
ΓiϕK(tN)

))⊤
,

Σ(γi) = diag
(
gσ
(
ΓiϕK(t1)

)
, . . . , gσ

(
ΓiϕK(tN)

))
,

(2.10)

with εi
i.i.d.∼ tν1

(
0,Λ(ν2)

)
for ν1 > 0, and where Λ(ν2) =

(
Cν2(tk, tℓ), k, ℓ ∈ JN K

)
is a square

matrix of order N that possibly depends on a vector of static parameters ν2 = (ν2 . . . , νnν )⊤ ∈ Rnν−1

for some nν ≥ 1. Here, Cν2(s, t) = cov(εi(s), εi(t)) is some distance measure that describes the

covariance structure of the Student t process. Without loss of generality, we assume Cν2(t, t) = 1.

This immediately implies E(εiε
⊤
i ) = ν1(ν1 − 2)−1Λ(ν2) for ν1 > 2.

Various examples of covariance kernels for d = 1 are available in Rasmussen and Williams

(2006, Chapter 4). For instance, Cν2(s, t) = exp
(
− ν−1

2 |s − t|
)
, ν2 > 0, leads to a Student t

Ornstein-Uhlenbeck process (Heyde and Leonenko, 2005, Theorem 3.2). For d ≥ 2, the following
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Matérn covariance is commonly used in the spatial modeling literature, namely

Cν2(s, t) =
ν22

Γ(ν3)2ν3−1

(√
2ν3

∥s− t∥
ν4

)ν3

Kν3

(√
2ν3

∥s− t∥
ν4

)
, ν2 =

(
ν2, ν3, ν4

)⊤
, (2.11)

where ν22 denotes the spatial variance parameter, ν3 the spatial smoothness parameter, and ν4

the spatial range parameter, and where Kν3 is the modified Bessel function of the second kind.

Further examples can be found in, e.g., Cressie (1993, Section 2.5).

Given the observation-driven nature of the dynamics for γi as explicated in Eq. (2.9), the

conditional joint density function p(Yi | F i−1;ν) of Yi given the past filtration F i−1 = {Yj}i−1
j=−∞

can directly be written as p(Yi | γi;ν), with

p
(
Yi

∣∣γi;ν) =
Γ
(
(ν1 +N)/2

)
Γ
(
ν1/2

)
(ν1π)N/2

∣∣Σ(γi)
∣∣−1∣∣Λ(ν2)

∣∣−1/2

×
(

1 + ν−1
1

(
Yi − µ(γi)

)⊤
Σ(γi)

−1Λ(ν2)
−1Σ(γi)

−1
(
Yi − µ(γi)

))−(ν1+N)/2

, (2.12)

where ν = (ν1,ν
⊤
2 )⊤ ∈ Θν ⊂ R+ ×Rnν−1 for a parameter space Θν . Based on this, we now define

the scaled score function s(·, ·) driving the dynamics of γi in line with the score-driven framework

of Creal et al. (2013) and Harvey (2013) as

s(Yi,γi,ν) = S(γi,ν) · ∇(Yi,γi,ν), ∇(Yi,γi,ν) =
∂ log p(Yi | γ;ν)

∂γ

∣∣∣∣
γ=γi

, (2.13)

where ∇(Yi,γi,ν) is called the score, and S(γi,ν) a scaling matrix for the score. By inserting

this expression into (2.9), we adjust the coefficients γi of the product basis ϕK(·) in a scaled

steepest-ascent direction to improve the model fit as measured by (2.12); see Blasques et al.

(2015), Creal et al. (2024), De Punder et al. (2024). The steps mimic local Gauss-Newton type of

improvements in γi with step-size given in A, and mean-reversion described by B. The dynamics

defined by (2.13) yield consistent estimates of the path of the time-varying parameter γi, even in

the presence of model misspecification; see Beutner et al. (2023).
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To write down the proper expression for the score in (2.13), define the derivatives ġµ(f) =

∂gµ(f)/∂f ∈ Rnf and ġσ(f) = ∂gσ(f)/∂f ∈ Rnf of the link functions gµ(·) and gσ(·), respectively.

We now get the following result.

Proposition 1 (Score-driven dynamics). Using the score driven dynamics in (2.13) based on the

Student’s t process implied density (2.12), we have

∂ log p
(
Yi | γi;ν

)
∂γi

= ∇(Yi,γi,ν) = ∇µ(Yi,γi,ν) + ∇σ(Yi,γi,ν), (2.14)

∇µ(Yi,γi,ν) = wi(γi,ν) Ġµ(γi)
⊤Σ(γi)

−1Λ(ν2)
−1ei(γi),

∇σ(Yi,γi,ν) = Ġσ(γi)
⊤Σ(γi)

−1
(
wi(γi,ν)

(
(Λ(ν2)

−1ei(γi)) ⊙ ei(γi)
)
− ιN

)
ei(γi) = Σ(γi)

−1 (Yi − µ(γi)) , wi(γi,ν) =
1 + ν−1

1 N

1 + ν−1
1 ei(γi)⊤Λ(ν2)−1 ei(γi)

,

for an N × 1 vector ιN filled with ones, ⊙ denoting the (element-wise) Hadamard product of two

vectors, and where Ġµ(γi) = Ġµ(T,γi) ∈ RN×nγ and Ġσ(γi) = Ġσ(T,γi) ∈ RN×nγ given by

Ġµ(γi) =


ġµ(fi(t1))

⊤ ⊗ ϕK(t1)
⊤

...

ġµ(fi(tN))⊤ ⊗ ϕK(tN)⊤

 , Ġσ(γi) =


ġσ(fi(t1))

⊤ ⊗ ϕK(t1)
⊤

...

ġσ(fi(tN))⊤ ⊗ ϕK(tN)⊤

 .

The result in Proposition 1 has an intuitive form. The proposed discretized stochastic recurrence

equation (SRE) mirrors well-known t-GAS models and their robustness properties to outliers

(Gasperoni et al., 2023; D’Innocenzo et al., 2023). The time-varying coefficients γi of the functional

basis as summarized in all the cross-products in ϕK(·) react to two sources of information, namely

regarding the mean (the first term in (2.14)) and regarding the scale (the second term in (2.14)).

The core of the first term is given by the weighted (scaled) error term wi(γi,ν) ei(γi). If the error

term is positive, Yi lies higher for some values of ti ∈ T, while the converse is true for negative

values. The adjustment to γi then tries to reduce the sizes of these (positive and negative) error

terms. It does so by a projection of the error terms on the functional basis via the pre-multiplication
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by Ġµ(γi)
⊤. The step for each observation is weighted by wi(γi,ν), which takes the value 1 if

ν1 → ∞. So in the case of a Gaussian process for εi(·), all steps receive an equal weight. In case

of a Student’s t process with ν1 < ∞, however, the time-varying parameter γi reacts less to an

‘outlying’ value of Yi due the denominator of wi(γi,ν) in (2.14). This gives the model a robustness

property compared to the Gaussian case; compare Creal et al. (2013) for the univariate case or

Gasperoni et al. (2023) for the finite-dimensional setting. In particular, this robustness thus not

only comes via the objective function in (2.12), but also via the location (and scale) dynamics in

(2.14).

The second term in (2.14) gives the reaction for the variance related part of γi. In this case,

the standardized quadratic error terms play a dominant role. If these are higher than their

conditionally expected value, i.e., higher than one, the scales need to be adjusted upwards. The

converse holds if the squared errors are below their conditional expectation. As before, the γis

are adjusted to reduce these discrepancies by projection the errors on the functional basis by the

pre-multiplication by Ġσ(γi)
⊤. We also again see that outlying observations are downweighted by

the presence of the weight wi(γi,ν) in the second term in (2.14). Only for the Gaussian process

(ν1 → ∞) this weight is always equal to one. Finally note that in the special case where γi can be

split into γµ
i and γσ

i , such that µ(γi) only depends on γµ
i and Σ(γi) only depends on γσ

i , then

the first term in (2.14) only affects the mean dynamics, whereas the second term only affects the

scale dynamics.

We gather the static parameters of the model in the vector θ⊤ =
(
ν⊤,ω⊤, vec(A)⊤, vec(B)⊤

)
.

We also slightly change the notation and explicitly write γi(θ) to stress that the time-varying

parameters are a function of θ via the recursion in (2.13). For estimation purposes in a finite

sample, we also have to initialize the recursion by some nonrandom initial value γ̂0 ∈ G. This

initialized sequence is denoted by γ̂i(θ) = γ̂i(θ, γ̂0). For N ∈ Z+, we have the time i average
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likelihood function

ℓi
(
γi(θ),ν

)
= N−1 log p

(
Yi

∣∣γi(θ);ν
)

=
1

N
log

(
Γ
(
(ν1 +N)/2

)
Γ
(
ν1/2

)
(ν1π)N/2

)
− 1

N
log det

(
Σ
(
γi(θ)

))
(2.15)

− 1

2N
log det

(
Λ(ν2)

)
− ν1 +N

2N
log
(

1 + ν−1
1 ei

(
γi(θ)

)⊤
Λ(ν2)

−1ei
(
γi(θ)

))
.

We now define our estimator for θ as

θ̂T = θ̂T
(
γ̂0
)

:= arg max
θ∈Θ

L̂T (θ) = arg max
θ∈Θ

T−1

T∑
i=1

ℓi
(
γ̂i(θ),ν

)
, (2.16)

where Θ ⊂ Rnθ denotes the parameter space of dimension nθ. The next section establishes the

asymptotic properties of the estimator.

3 Asymptotic theory

To derive the asymptotic properties of the new estimator, let θ⊤0 = (ν⊤
0 ,ω

⊤
0 , vec(A0)

⊤, vec(B0)
⊤)

denote the vector of true parameters. We assume a convex, separable Banach filter space G ⊂ Rnγ

equipped with the norm ∥ · ∥ = ∥ · ∥2, such that γi(θ) ∈ G for every i ∈ Z and θ ∈ Θ. Throughout,

we require that
∑d

j=1Kj <∞. Finally, for convenience, let X be an open subset of RnX , and let Y

be a subset of Rnr
Y×nc

Y , where nX , n
r
Y , n

c
Y ∈ Z+. For k ≥ 0, we write F ∈ Ck(X ,Y) if F : X → Y

is a possibly matrix-valued mapping, and each of its components has continuous derivatives on X

up to order k.

3.1 Stationarity and invertibility

We start by considering the model as a data generating process and proving the properties of

stationarity and ergodicity, as well as filter invertibility. We make the following mild assumptions.
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Assumptions: A1 Let F, the parameter space of fi, be some open subset of Rnf . Assume that

the link functions satisfy gµ ∈ C1(F,R) and gσ ∈ C1(F,R+) and that for N ∈ Z+ fixed,

sup
γ∈G

∥∥∥Ġµ(γ)⊤Σ(γ)−1
∥∥∥ <∞, sup

γ∈G

∥∥∥Ġσ(γ)⊤Σ(γ)−1
∥∥∥ <∞. (3.1)

A2 supν∈Θν

∥∥Λ(ν2)
∥∥ <∞, supν∈Θν

∥∥Λ(ν2)
−1
∥∥ <∞.

An example illustrating these assumptions will be provided below the following proposition.

When considering the model as a DGP, we replace Yi in (2.14) by its value in the DGP, i.e., by

µ(γi) +Σ(γi)εi. To distinguish this from the original recursion in (2.14), we substitute γi by γε
i .

Let γ̂ε
i = γ̂ε

i (θ, γ̂ε
0) denote its initialized counterpart, initialized at i = 0 by a nonrandom γ̂ε

0. We

now obtain the following result.

Proposition 2 (Existence of a DGP). Consider the stochastic recurrence equation (SRE) of

Proposition 1, evaluated at γ̂ε
i and at Yi = µ(γ̂ε

i ) +Σ(γ̂ε
i )εi, i.e., the SRE:

γ̂ε
i+1 = ω +B γ̂ε

i +AS(γ̂ε
i ,ν)∇ε

(
εi, γ̂

ε
i ,ν
)
, ∇ε

(
εi, γ̂

ε
i ,ν
)

= ∇
(
µ(γ̂ε

i ) +Σ(γ̂ε
i )εi, γ̂

ε
i ,ν
)
.

(3.2)

Suppose Assumptions A1 - A2 hold and that for N ∈ Z+ and θ ∈ Θ,

SE1
∥∥S(γ̂ε

0,ν)
∥∥ <∞ for some constant vector γ̂ε

0 ∈ G;

SE2 E
(

log supγ∈G

∥∥∥∥B +A
∂

∂γ⊤

(
S(γ,ν)∇ε(εi,γ,ν)

)∥∥∥∥) < 0.

Then, for a fixed N ∈ Z+, there exists a unique strictly stationary and ergodic (SE) solution{
γε
i (θ), i ∈ Z

}
to (3.2) for all θ ∈ Θ, as i→ ∞.

Since Yi is a measurable function of
(
γi(θ0), εi

)
for i ∈ Z, the existence of a unique SE solution to

(3.2) also implies that {Yi, i ∈ Z} is an SE sequence (White, 2001, Theorem 3.35). The conditions

in Proposition 2 are mild and only require that the SRE for γi is contracting and that its derivative

with respect to γi has a log moment.
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The following example illustrates how the assumptions of Proposition 2, and in particular

Assumption SE2, can be verified.

Example (Volatility curves). We consider an exponential version of the functional volatility

curve model (2.5) from Section 2.2 by setting gµ(f) ≡ 0 and gσ(f) = exp(f/2). We use so-called

unit score scaling in the sense of Creal et al. (2013) and obtain S(·, ·) ≡ Inγ and

γi+1 = ω +Bγi +
1

2
A
(
ϕK(t1) · · ·ϕK(tN)

) ((1 + ν−1
1 N

)(
(Λ(ν2)

−1ei(γi)) ⊙ ei(γi)
)

1 + ν−1
1 ei(γi)

⊤Λ(ν2)−1ei(γi)
− ιN

)
.

(3.3)

As a result, supγ∈G
∥∥Ġµ(γ)Σ(γ)−1

∥∥ = 0. Also, using the fact that ġσ(f)/gσ(f) = 1/2, we

have supγ∈G
∥∥Ġσ(γ)Σ(γ)−1

∥∥ = 1
2

(∑N
j=1ϕK(tj)ϕK(tj)

⊤
)1/2

<∞, given square-integrable basis

functions ϕ1, . . . , ϕK ∈ L2[0, 1]. Assumption A1 is thus easily fulfilled. For A2, we have to restrict

the covariance structure of the process. In case of the autoregressive structure above (2.11), it

suffices to assume 0 < ν2 < ∞. Also for more general cases like banded Toeplitz covariance

structures, there are easy-to-check sufficient ensuring the eigenvalues to be bounded from below

and above (see Lemma 4.1 Gray, 2006). Assumption SE1 is trivially satisfied as we have unit

scaling. Finally, to check SE2, note that

∇ε
i (ε,γ,ν) =

1

2

(
ϕK(t1) · · ·ϕK(tN)

) ((1 + ν−1
1 N

)(
(Λ(ν2)

−1εi) ⊙ εi
)

1 + ν−1
1 ε

⊤
i Λ(ν2)−1εi

− ιN

)
,

which does not depend on γi, such that Assumption SE2 reduces to ∥B∥ < 1.

Next, we establish conditions for filter invertibility. Filter invertibility is an essential property

for establishing the consistency and asymptotic normality of θ̂T . It requires that the effect of

the filter initialization by an arbitrary nonrandom γ̂0 vanishes sufficiently fast. To formulate the

result, we express the SRE in (2.9) as γ̂i+1(θ) = ψi

(
γ̂i(θ),θ

)
, where

ψi

(
γ,θ

)
= ω +Bγ +AS

(
γ,ν

)
∇
(
Yi,γ,ν

)
. (3.4)
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Furthermore, we define the r-fold convolution ψ
(r)
i ( · ,θ) of the function ψi( · ,θ) as ψ

(r)
i ( · ,θ) =

ψi( · ,θ) ◦ψi−1( · ,θ) ◦ . . . ◦ψi−r+1( · ,θ) for r ∈ Z+. Let log+(x) = max{log(x), 0} for x > 0. We

now have the following result.

Proposition 3 (Invertibility). Suppose Assumptions A1 - A2 hold. Let {Yi, i ∈ Z} be an SE

sequence and Θ the compact parameter space. In addition, assume

IV1 supν∈Θν

∥∥S(γ̂0,ν)
∥∥ <∞ for some γ̂0 ∈ G;

IV2 E
(

log+ supθ∈Θ supγ∈G

∥∥∥∥B +A
∂

∂γ⊤

(
S(γ,ν)∇

(
Yi,γ,ν

))∥∥∥∥) <∞;

IV3 E
(

log supθ∈Θ supγ∈G

∥∥∥∥ ∂

∂γ⊤ψ
(r)
i

(
γ,θ

)∥∥∥∥) < 0 for some integer r ≥ 1.

Then, for a fixed N ∈ Z+, the sequence
{
γ̂i(θ), i ∈ Z+

}
initialized at any starting value γ̂0

converges exponentially fast almost surely (e.a.s.) to a unique SE solution
{
γi(θ), i ∈ Z

}
of

γ̂i+1(θ) = ψi

(
γ̂i(θ),θ

)
as i → ∞, uniformly in θ ∈ Θ; i.e., there exists some ρ > 1 such that

ρi supθ∈Θ
∥∥γ̂i(θ) − γi(θ)

∥∥ a.s.−→ 0 as i→ ∞.

The assumptions in Proposition 3 are similar to those in Proposition 2 in terms of the existence

of a log moment and the contraction of the SRE. The main difference lies in the fact that the SRE

for stationarity and ergodicity (in terms of εi) is generally substantially different from the SRE

for invertibility (in terms of Yi). Note that the invertibility of the filter immediately implies the

invertibility of the process
{
f̂i(·), i ∈ Z+

}
, where f̂i(·) = Γ̂i(θ)ϕK(·), with γ̂i(θ) = vec

(
Γ̂i(θ)⊤

)
,

provided that the basis functions are uniformly bounded over T .

With the existence of a DGP and filter invertibility being established, we can now prove

the strong consistency and asymptotic normality of θ̂T . We first make the following additional

assumptions.

Assumptions: SC1 ∀f ∈ Rnf , there exists some constants Cσ > 0 and η ≥ 0 such that

∣∣ log gσ(f)
∣∣ ≤ Cσ∥f∥η,

∣∣ log gσ(f 0) − log gσ(f)
∣∣ ≤ Cσ

∥∥f 0 − f
∥∥η. (3.5)

19



If (3.5) holds only for some η > 0, and not for η = 0, we additionally require: (1)

supγ∈G supν∈Θν

∥∥S(γ,ν)
∥∥ < ∞; (2) supθ∈Θ ∥B∥ < 1; (3)

∑N
j=1

∥∥ϕK(tj)
∥∥η < ∞ for N ∈

Z+. Similarly, ∀f ∈ Rnf , there exists some constants Cµ > 0 and ζ ≥ 0 such that

∣∣gµ(f 0) − gµ(f)
∣∣ ≤ Cµ∥f 0 − f∥ζ . (3.6)

If (3.6) only holds for some ζ > 0, and not for ζ = 0, then we also require
∑N

j=1

∥∥ϕK(tj)
∥∥ζ <

∞ for N ∈ Z+.

SC2 p
(
y
∣∣γ,ν) = p

(
y
∣∣ γ̃, ν̃ ) for almost every y ∈ RN with respect to the Lebesgue measure if

and only if γ = γ̃ and ν = ν̃.

SC3 ∥B0∥ < 1 and det(A0) ̸= 0.

Assumption SC1 imposes that the link functions for the location and scale parameters are

sufficiently regular in fi(·). Assumptions SC2 and SC3 ensure identification by assuming the

density p of Yi changes noticeably with changing values of γi and/or ν1, and by requiring the data

to have a non-negligible influence on γi. We now have the following strong consistency result.

Theorem 1 (Strong consistency). Suppose the discretely observed data is a subset of the realized

path of an SE stochastic process
{
Yi, i ∈ Z

}
generated by (2.9) and (2.10) with θ0 ∈ Θ. Let the

assumptions of Proposition 3 and Assumptions SC1 - SC3 hold. Then, for any filter initialization

γ̂0 ∈ G, we have θ̂T
a.s.−→ θ0 as T → ∞.

The following assumptions are required to analyze the asymptotic properties of derivative

processes, which are subsequently used to derive the asymptotic distribution of θ̂T .

Assumptions: AN1 Let supθ∈Θ ∥B∥ < 1. Assume S(·, ·) ∈ C3
(
G×Rnν ,Rnγ×nγ

)
with derivatives

up to order 3 uniformly bounded on G ×Θν.
2 Similarly, assume Λ(·)−1 ∈ C2

(
Rnν−1,RN×N

)
with derivatives up to order 2 uniformly bounded on Θν.

2For instance, sup(γ,ν)∈G×Θν

∣∣∂kSi,j(γ,ν)/(∂γ
kl

l ∂νkm
m ∂νkn

n )
∣∣ < ∞ for kl + km + kn ≤ 3, where Si,j(·, ·) is the

(i, j)th element of S(·, ·), γl is the lth element of γ, while νm and νn are the mth and nth elements of ν, respectively.
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AN2 Suppose the link functions gµ ∈ C4(F,R) and gσ ∈ C4(F,R+). We assume that each

component of Ġµ(γ)⊤Σ(γ)−1 and Ġσ(γ)⊤Σ(γ)−1 has derivatives with respect to γ up to

order 3, which are uniformly bounded in γ ∈ G.

AN3 For i ∈ Z, there exists a constant κ > 0 and a positive real sequence
{
ϱκ(j), j ≥ 1

}
such

that

E

(
sup
θ∈Θ

sup
γ∈G

∥∥∥∥ ∂

∂γ⊤ψ
(j)
i

(
γ,θ

)∥∥∥∥κ
)

≤ ϱκ(j), j ≥ 1, (3.7)

with
∑∞

j=1

[
ϱκ(j)

]1/κ
<∞, where ψ

(j)
i ( · ,θ) is the j-fold convolution as defined below (3.4),

and j ∈ Z+.

AN4 The compact parameter space Θ coincides with the closure of its (open) interior.

We see that Assumption AN3 is stronger than Assumptions IV2 and IV3 by Jensen’s inequality.

It not only ensures the stationarity and ergodicity of the derivative processes of
{
γi(·)

}
, but

Assumption AN3 also guarantees the existence of their moments. These are needed to apply

Theorem 2.10 of Straumann and Mikosch (2006) to perturbed processes. Note that Assumption AN1

is also stronger than IV1. Therefore, under the assumptions of Proposition 4 below, Proposition 3

continues to hold. Finally, Assumption AN4 excludes compact parameter spaces that have an

empty interior or isolated points in the standard topology of Rnθ , as these would complicate the

existence of derivatives.

Before proceeding, we define the following derivative processes for the time-varying parameter

γi(·). For k ∈ Z+, let γ
(k)
i (θ) = vec

(
∂γ

(k−1)
i (θ)

/
∂θ⊤

)
, where γ

(0)
i (θ) = γi(θ). Similarly,

γ̂
(k)
i (θ) = vec

(
∂γ̂

(k−1)
i (θ)

/
∂θ⊤

)
, with γ̂

(0)
i (θ) = γ̂i(θ). For k = 1, 2, the explicit expressions of

γ
(k)
i (θ) are provided in Lemma F.7.

Proposition 4 (Derivative processes). Let Assumptions A1 - A2 and AN1 - AN4 hold. Let

{Yi, i ∈ Z} be an SE sequence. For k = 1, 2, there exist unique SE sequences
{
γ
(k)
i (θ), i ∈ Z

}
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such that supθ∈Θ

∥∥∥γ̂(k)
i (θ) − γ(k)

i (θ)
∥∥∥ e.a.s.−→ 0, as i→ ∞.

Proposition 4 establishes that the first- and second-order derivative processes enjoy the same

invertibility property as the filter itself. This is crucial for deriving an asymptotic approximation

of θ̂T , which depends on the uniform convergence of the Hessian matrix of the objective function

(2.16).

Remark 1. It is well established in the literature on M-estimators that a local dominance

condition on the Hessian matrix ∂2LT (θ)/∂θ∂θ⊤ enables the application of a uniform law of

large numbers and is sufficient for establishing asymptotic normality; see, for instance, Newey

and McFadden (1994, Section 3). This, in turn, allows us to impose a weaker condition to

guarantee the existence of certain finite moments for the first- and second-order derivative

processes only within a local compact neighborhood V(θ0) ⊂ Θ of θ0, rather than across Θ.

Specifically, we can replace (3.7) with E
(

supθ∈V(θ0) supγ∈G0

∥∥∂ψ(j)
i (γ,θ)/∂γ⊤

∥∥κ) ≤ ϱκ(j), j ≥ 1,

where
{
γi(θ), i ∈ Z, θ ∈ V(θ0)

}
⊂ G0 ⊂ G. However, it remains unclear whether this relaxation

provides enough empirical benefits to off-set the additional notational complexity. We therefore

adhere to the stronger condition in AN3.

Theorem 2 (Asymptotic normality). Assume the discretely observed data is a subset of the

realized path of an SE stochastic process
{
Yi, i ∈ Z

}
generated by (2.9) and (2.10), where θ0 lies

in the interior of Θ. Moreover, let Assumptions A1 - A2, SC1 - SC3, and AN1 - AN4 hold,

with Assumption AN3 satisfied for κ ≥ 3. If I0 = E
(
∂2ℓi(γi(θ0),ν0)/∂θ∂θ

⊤
)
is invertible, then

√
T
(
θ̂T − θ0

) d→ N
(
0,I−1

0

)
as T → ∞.

Theorem 2 derives an asymptotic approximation of the static parameter estimator. To establish

the theorem, we rely on the condition that the total number of basis functions,
∑d

j=1Kj, is finite.

Allowing this quantity to diverge to infinity presents significant challenges, as also discussed in

Cerovecki et al. (2019), making it nontrivial to extend our asymptotic framework to accommodate

an infinite number of basis functions. In our context, it would require (i) establishing the
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invertibility property of an infinite-dimensional time-varying parameter filter process along with

its derivative processes, and (ii) proving weak convergence results in infinite-dimensional spaces to

obtain a limiting approximation of the static parameter estimator. Both challenges remain open.

4 Simulations

In this section, we evaluate the performance of the proposed method in a controlled setting.

Section 4.1 examines an example of time-varying volatility curves (d = 1). Section 4.2 explores

an example of time-varying surfaces (d = 2), mimicking real-life scenarios such as air pollution

surfaces. In both examples, we focus on cases of model misspecification, i.e., settings where the

true dynamics of the DGP do not correspond to the observation-driven dynamics of the new

method. The results show that despite such possible misspecification, the new method performs

well in recovering the true underlying location and scale dynamics.

4.1 Time-varying volatility curves

Let the process
{
Yi(t), i ∈ JT K, t ∈ [0, 1]

}
be generated by Yi(t) = σi(t)εi(t), where εi(t) ∼ tν1

is independent across i ∈ Z+, with the Ornstein-Uhlenbeck covariance kernel cov(εi(t), εi(s)) =

exp
(
− |s− t|/ν2

)
, and where

σ2
i (t) = 4 + 4

(
2t− 1 − sin

(
4π i

2000
− u1

))2

+ 2 sin

(
2π i

2000
− u2

)
, (4.1)

for u1, u2 that are uniform on [0, 2π] and drawn independently for each Monte Carlo replication.

The DGP in (4.1) produces quadratic shapes in t for each i, where the height and the location of

the minimum of this quadratic shape slowly over i. The shapes are also randomized in terms of

phase shifts across simulations via the random variables u1 and u2, which do not depend on i or t.

An example of the complex volatility pattern for u1 = u2 = 0 is presented in Figure 1. Note that

the fGAS model is misspecified for the current DGP. However, it is still able to recover the paths
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of σi(t) across both i and t. We assume the process Yi(t) is observed on an equally-spaced grid

T =
{
tj = j/N, j ∈ JN K

}
.

We adopt a functional version of the E-GARCH model of Nelson (1990) or the E-GAS model

of Harvey (2013) by setting gµ(·) ≡ 0 and gσ(f) = exp(f/2) in (2.1), i.e., we model the log

variances or standard deviations. The updating equation for γi is given by (3.3) from Section

3. To improve computational efficiency in the simulations, we avoid brute-force inversions of

large-dimensional matrices like Λ(ν2). Instead, we use the modified Cholesky decomposition

from Pourahmadi (1999), which provides a straightforward expression for the inverse of Λ(ν2), as

discussed in Beutner et al. (2023). We obtain Λ(ν2)
−1 = F (ν2)

⊤D(ν2)F (ν2), where F (ν2) is a

lower triangular matrix with 1 on the main diagonal and −ρν2 = − exp(−1/[(N − 1)ν2]) on the

first subdiagonal, and zero elsewhere, and D(ν2) = (1 − ρ2ν2)
−1 · diag

(
1 − ρ2ν2 , 1, . . . , 1

)
. It directly

follows that log
∣∣Λ(ν2)

∣∣ = (N − 1) log
(
1 − ρ2ν2

)
. Since we observe in preliminary experiments that

the estimates of the degrees of freedom parameter ν1 may be downward biased in small samples,

particularly when the true value of ν1 is large, we consider two estimators for θ: one with ν1

is estimated, denoted as fGAS(ν̂1), and another where ν1 is (infeasibly) fixed at its true value,

denoted as fGAS(ν1).

As our benchmark we use the functional GARCH model (denoted as fGARCH) of Cerovecki

et al. (2019); see also Section 2.2. Their objective function differs from ours as presented in

Section 2.4 as we adhere to the original construction outlined in Cerovecki et al. (2019, Eq. (3.5)).

We also follow the standard convention of approximating Riemann integrals using a Riemann

sum (see, e.g., Rice et al., 2020), for instance,
∫
ϕK(s)Y 2

i (s) ds ≈ N−1
∑N

j=1ϕK(sj)Y
2
i (sj), where

ϕK(·) =
(
ϕ1(·), . . . , ϕK(·)

)⊤
is defined earlier in Section 2.2.

All methods use K = 7 B-spline basis functions of order 4, resulting in a piecewise polynomial,

positive function of degree 3, with three equidistant interior control knots at t = 0.25, 0.5, 0.75

(Ramsay et al., 2009, Chapter 3.3.4). To further reduce the computational cost of the simulation

experiment, we let A and B be diagonal.
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We evaluate the out-of-sample (rather than the in-sample) simulated mean absolute errors

(MAEs) to avoid differences in performance due to overfitting. For this, we generate T + Tout

discrete paths of {Yi(·)} for some Tout ∈ Z+. The first T of these, {Y1(·), . . . , YT (·)}, are used

to estimate the static parameters. The remaining Tout paths, {YT+1(·), . . . , YT+Tout(·)}, serve

as the out-of-sample set for computing the fitted curves
{
σ̂T+1(·), . . . , σ̂T+Tout(·)

}
obtained via

either our proposed method (fGAS) or the benchmark approach (fGARCH). For fGAS, we define

σ̂i = gσ(f̂i), where f̂i(·) = ϕK(·)⊤γ̂i(θ̂T ), with θ̂T obtained from (2.16) based on the first T

observed paths. For fGARCH, which requires E[εi(t)] = 1 for t ∈ [0, 1], we adjust the estimated

curves as σ̂i = (1 − 2ν−1
1 )1/2σ̃i, where σ̃2

i (·) = ϕK(·)⊤γ̃i(θ̃T ) and γ̃i follows the recursion in (2.5),

and where θ̃T is obtained from Cerovecki et al. (2019, Eq. (3.5)). This ensures that the estimated

paths of the dynamic scales for both the fGAS and the fGARCH are comparable. For each Monte

Carlo replication, we compute the full MAE as (NTout)
−1
∑N

j=1

∑Tout

i=1

∣∣σ̂T+i(tj) − σT+i(tj)
∣∣. We

also compute the MAE separately across dimensions i and t as N−1
∑N

j=1

∣∣σ̂T+i(tj) − σT+i(tj)
∣∣,

for i ∈ JTout K, and T−1
out

∑Tout

i=1

∣∣σ̂T+i(tj) − σT+i(tj)
∣∣, for j ∈ JN K. The MAEs are then averaged

over the Monte Carlo simulations.

We consider parameters that cover both sparse and relatively dense grids T on which Yi(t)

is observed by using N ∈ {25, 100}. We also consider different sample sizes T ∈ {500, 1500},

fat-tailed ν1 = 3 and relatively light-tailed ν1 = 10 distributions, and weak ν2 = 0.01 and strong

ν2 = 0.1 dependence. We set the number of out-of-sample observations to Tout = 1000. Table 1

presents the results.

Table 1 clearly shows that the fGAS model outperforms the fGARCH benchmark. This holds

particularly strongly if the DGP is fat-tailed (ν1 = 3). Also for the thinner-tailed DGP (ν1 = 10),

the fGAS performs better than the fGARCH for smaller sample sizes (T = 500). Even when the

sample size is large (T = 1500) and ν1 = 10, the fGAS still performs better if there is a somewhat

stronger correlation structure (ν2 = 0.1). Only when the DGP is thinner-tailed (ν1 = 10), the

sample size is large (T = 1500), and there is hardly any cross-sectional correlation (ν2 = 0.01),
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Table 1: Simulated out-of-sample MAE (NTout)
−1
∑N

j=1

∑Tout
i=1

∣∣σ̂T+i(tj)− σT+i(tj)
∣∣ with Tout = 1000

for time-varying volatility curves

N = 25 N = 100

T ν1 ν2 fGAS(ν̂1) fGAS(ν1) fGARCH fGAS(ν̂1) fGAS(ν1) fGARCH

500

3 0.1 0.525 0.519 1.040 0.542 0.521 0.997
3 0.01 0.528 0.522 1.035 0.571 0.559 1.062

10 0.1 0.384 0.381 0.698 0.336 0.316 0.695
10 0.01 0.370 0.364 0.622 0.332 0.307 0.518

1500

3 0.1 0.237 0.235 0.534 0.310 0.298 0.545
3 0.01 0.241 0.239 0.488 0.315 0.305 0.493

10 0.1 0.162 0.159 0.207 0.167 0.162 0.207
10 0.01 0.157 0.158 0.177 0.168 0.163 0.160

then fGARCH behaves at par with the new fGAS model for a sparse grid size (N = 25), or slightly

better for a dense grid (N = 100). For all other cases, the fGAS does better in terms of MAE,

and often by a factor close to 2.

We also see that the fGAS as proposed in Section 2.4 recovers the underlying functional

volatility dynamics better when T increases, even when the dynamics are misspecified: the MAEs

decrease consistently in T . As N increases, we sometimes see a slight improvement in MAE, but

overall the MAEs remain quite similar for sparse versus dense grids. It is also interesting to see

that the estimation of ν1 has little impact on the consistency of the paths: the MAEs are not

affected substantially by whether ν1 is estimated (fGAS(ν̂1) column) or fixed at its true value

(fGAS(ν1) column).

Figure 1 confirms these findings. The left panels show the true volatility pattern for u1 = u2 = 0

and its fGAS(ν̂1) fit for one specific situation. We see that the fitted volatility pattern reflects

the true dynamics very well. The middle panels show the average MAE for a fat-tailed DGP

with stronger correlation structure as a function of the day i (top-middle) or time t within the

day (bottom-middle). The curves clearly show that the fGAS(ν̂1) consistently outperforms the

fGARCH benchmark across either i or t. If the DPG is thinner tailed (ν1 = 10) with relatively

weak dependence (ν2 = 0.01), the right-hand panels in the figure shows that the performance

ranking of the two models continues, but that the differences are much less pronounced.
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Figure 1: The top-left figure illustrates the shape of
{
σi(t), t ∈ [0, 1]

}
for i = T +1, . . . , T + Tout, where

its square is defined in Eq. (4.1) with u1 = u2 = 0, for the example of time-varying volatility curves in
Section 4.1. The bottom-left figure presents an example of an out-of-sample prediction using fGAS(ν̂1)
given (N,T, Tout, , ν1, ν2) = (25, 1500, 1000, 3, 0.1), where N is the grid size, T the in-sample period,
and Tout the out-of-sample period. The middle and right panels plot the out-of-sample MAE across
separate dimensions i (top panel) and t (bottom panel), computed as N−1

∑N
j=1

∣∣σ̂T+i(tj)− σT+i(tj)
∣∣

with i ∈ JTout K and T−1
out

∑Tout
i=1

∣∣σ̂T+i(tj)− σT+i(tj)
∣∣ with j ∈ JN K, for (N,T, Tout) = (25, 1500, 1000).

Concluding, we see that the new fGAS approach works well in capturing the true volatility

curves for the d = 1 dimensional case, even if the model is misspecified. This holds in particular

for fat-tailed processes, where the robustness property of the fGAS plays out most. The estimated

paths also become more accurate if the number of observed curves (T ) increases, whereas the size

of the observation grid (N) for each curve has less of an effect and the accuracy of the estimated

paths.

4.2 Time-varying two-dimensional levels and irregular spacing

In this section, we examine the performance of the new fGAS model for d = 2, where we

also add the complication of irregularly spaced observations, similar to one of our empirical

illustrations in Section 5. We let t = (t1, t2)
⊤ ∈ [0, 1]2 and consider a time-varying location model
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Yi(t) = µi(t) + σεi(t). We assume that the εi(t) ∼ tν1 are independent across i ∈ Z+, with the

covariance kernel cov(εi(t), εi(s)) = exp
(
− ∥s− t∥/ν2

)
. We set σ = 1 and

µi(t) = 2

[
cos

(
i

200
−u1

)
+sin

(
i · t1
200

−u2
)

+cos(t2−u3)+sin(4t1−u4) cos(4t2−u5)

]
, (4.2)

where the uj for j = 1, . . . , 5 are independent uniform on [0, 2π] and fixed in each Monte Carlo

replication, inducing random phase shifts in the surface in the i and t directions across simulations.

The fGAS model is again clearly misspecified, but it turns out that it is still able to recover the

dynamic surfaces µi(t) both across i and t. In each Monte Carlo iteration, the process Yi(·) is

observed at randomly generated locations tj ∼ U[0, 1]2, for j ∈ JN K. The observations are thus

irregularly spaced, introducing a further complication for the model.

We set gµ(f) = f and gσ(·) ≡ σ and use S( · , · ) ≡ Inγ . This yields the updating equation

γi+1 = ω +Bγi +A

{
ν1 +N

ν1
σ−2
(

1 + ν−1
1 σ−2

(
Yi − µi(γi)

)⊤
Λ(ν2)

−1
(
Yi − µ(γi)

))−1

×
(
ϕK(t1), . . . ,ϕK(tN)

)
Λ(ν2)

−1
(
Yi − µ(γi)

)}
, (4.3)

where ϕK(t) = ϕK(t1)⊗ϕK(t2) contains all the products and cross-products of the basis functions

for K = 7 as in Section 4.1. To limit the number of parameters in the simulation, we assume A

and B are diagonal. We again investigate the empirical MAE of the new fGAS(ν̂1) model. To the

best of our knowledge, there is currently no directly comparable method available in the literature.

We can nevertheless compare the results to the infeasible benchmark model fGAS(ν1), where ν1 is

fixed at the true value.

All simulation settings remain the same as in Section 4.1, except that we slightly increase

N using N ∈ {100, 200}. Table 2 presents the results. We again see that the estimation of ν1

has little effect on the performance of the method compared to the infeasible benchmark where

ν1 is fixed at its true value. As the sample size T increases, the MSEs go down, illustrating
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Table 2: Full empirical out-of-sample MAE, computed as (NTout)
−1
∑N

j=1

∑Tout
i=1

∣∣µ̂T+i(tj)− µT+i(tj)
∣∣

with Tout = 1000, for the example of time-varying surfaces (4.2) of Section 4.2.

N = 100 N = 200

T ν1 ν2 fGAS(ν̂1) fGAS(ν1) fGAS(ν̂1) fGAS(ν1)

500

3 0.1 0.605 0.582 0.612 0.598
3 0.01 0.383 0.380 0.377 0.326

10 0.1 0.621 0.539 0.637 0.590
10 0.01 0.419 0.348 0.371 0.304

1500

3 0.1 0.364 0.352 0.405 0.378
3 0.01 0.380 0.380 0.370 0.362

10 0.1 0.432 0.374 0.472 0.353
10 0.01 0.381 0.359 0.369 0.324

that the time-varying surfaces are estimated with increasing accuracy, even though the model is

misspecified. Increasing the number N of irregularly placed grid points again has a much smaller

effect than increasing the number of curves T .

To further visualize the out-of-sample fit, we present the surface
{
µi(t), t ∈ [0, 1]2

}
and its

estimated counterpart for i = T, T + 300, T + 600, T + 900 in three-dimensional space, with the

DGP parameters (T,N, ν1, ν2) = (1500, 200, 3, 0.1); see Figure 2. The true surfaces provide a

visualization of the DGP in Eq. (4.2).

To construct the estimated surfaces, we first obtain θ̂T using the first T = 1500 observed data

points of Yi(·) at N = 200 irregularly spaced locations. We subsequently obtain the estimated

path
{
γ̂i(θ̂T )

}
using θ̂T . Next, we randomly sample Nplot = 12000 discrete points (so many more

than the N = 200 observed for estimation) from sj ∼ U[0, 1]2, j ∈ JNplot K, and construct the

estimated surface as µ̂i(sj) = ϕ⊤
K(sj)γ̂i(θ̂T ), following Eq. (2.9). The estimated surfaces, shown

as blue dots in Figure 2, exhibit strong out-of-sample predictive performance in both level and

shape dynamics. Even near the boundaries, the fit appears quite good. This is encouraging, as a

good fit near the edges is typically challenging if data are sparse and is a well-documented issue in

the nonparametric literature.
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Figure 2: An example of (an out-of-sample) prediction using fGAS(ν̂1) for the surface
{
µi(t), t ∈ [0, 1]2

}
,

as defined in (4.2), in three-dimensional space, where i = T, T + 300, T + 600, T + 900, with parameters
(T,N, ν1, ν2) = (1500, 200, 3, 0.1).

5 Empirical applications

We also illustrate the new fGAS method in two real-world examples. The first example examines

stock volatility paths (d = 1), while the second explores air quality across the European continent

(d = 2), measured by PM2.5.

5.1 Volatility curves of stock returns

We collect minute-by-minute data from the TAQ database for a liquid stock, Pfizer (PFE). The

dataset spans the period from 2 January 2015 to 29 December 2023, covering the volatile COVID-19

period, which is particularly relevant for a pharmaceutical company like Pfizer given its involvement

in the development of one of the COVID-19 vaccines. We use the trading hours from 10 AM to 4

PM, resulting in 360 observations per day. We exclude days with more than 10 missing values,

resulting in T = 2247. We impute the remaining missing values by averaging the two prices closest

in time on both sides of the missing data point.
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Figure 3: Fitted intraday volatility curves by fGAS(ν̂1) from 2 January 2015 up to 29 December
2023: The fitted volatility levels are annualized using 6 · 6 ·

√
252 for 10-minute intraday log returns and

6 · 3 ·
√
252 for 20-minute intraday log returns, ensuring they are displayed on a comparable scale. The

left figure shows the fitted curves for 10-minute log returns, while the right figure represents the curves
for 20-minute log returns. The blue dashed lines in the background represent the respective intraday log
returns, scaled by a factor of 36 for the 10-minute returns and 18 for the 20-minute returns to convert
them into daily returns for visualization. Each curve corresponds to the intraday log returns for a specific
trading time.

Let Pi(t) denote the price at time t on day i. We define the ∆-minute resolution intraday

log returns as Yi(t) = logPi(t) − logPi(t− ∆). Due to the presence of microstructure noise, it is

common practice to set ∆ ≥ 10 (see, e.g., Cerovecki et al., 2019). For illustration, we consider

∆ ∈ {10, 20} minutes, resulting in N ∈ {35, 17}, respectively. Note that our method also performs

well for higher resolutions such as ∆ = 5 minutes. As in Section 4.1, we again use unit scaling

(S( · , · ) ≡ Inγ ), leading to the update equation in (3.3).

The fitted curves σ̂i(·) for i ∈ JT K obtained using the new fGAS(ν̂1) model are displayed in

Figure 3. We normalized time such that 10 AM corresponds to t = 0 and 4 PM to t = 1. The

estimated volatilities exhibit a smile-like pattern, being higher at the beginning and end of the

trading days compared to the middle. There is also clear evidence of time variation: both the

levels and shapes of σ̂i(·) change across i. Volatilities are generally highest during the outbreak of

the COVID-19 pandemic. Finally, we observe mildly heavy-tailed behavior, with ν̂1 ≈ 6.460 for

10-minute log returns and ν̂1 ≈ 6.905 for 20-minute log returns.

Since the data exhibit moderately heavy tails, the existing fGARCH approach by Cerovecki et al.
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Figure 4: Fitted (nonannualized) volatility paths at 12 noon and 14:00 using fGAS (blue solid curves)
and fGARCH (red dotted curves) from January 2, 2015 to December 29, 2023, based on 20-minute
intraday log returns. Gray solid lines represent the absolute values of 20-minute intraday log returns.

(2019) can be substantially influenced by large shocks, making it less stable both numerically and

theoretically. Figure 4 plots the filtered volatilities σ̂i(t) for both the fGAS(ν̂1) and the fGARCH

models across days i for two fixed moments of the day, namely 12 noon and 14:00. The figure is

based on 20-minute intraday log returns. Both models produce similar secular patterns for the

volatility dynamics, with particularly higher volatilities during the initial phase of the COVID-19

period in 2020 with its lockdowns and race for vaccine development. However, we also clearly see

that the fGARCH estimated volatilities exhibit many more incidental sharp increases followed by

rapid gradual declines than its fGAS counterpart, not only around the COVID-19 lockdowns of

March 2020, but also in 2017, 2023, and elsewhere. By contrast, the filtered volatility pattern

of our fGAS approach behaves much more gradually over time. Online Appendix G presents

the fGARCH volatilities across all times of the day and further illustrates that the fGARCH

volatilities are much more erratic and unstable, both at 10-minute and 20-minute frequencies,

quite unlike the pattern in Figure 3.

5.2 PM2.5 concentration

Fine particulate matter with an aerodynamic diameter of 2.5 µm or less, i.e., PM2.5, has been

widely associated with increased premature mortality (Zhang et al., 2017) and is therefore used

by governments as a key air quality indicator. This example showcases how our method can be

applied to estimate emission levels. We collect daily average PM2.5 data from N = 109 sensors
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Figure 5: The locations of 109 sensors across Europe: The blue dots represent the specific sensor
locations, while the red dots, located at different longitudes and latitudes, correspond to Brussels
(Belgium), Prague (Czech Republic), Milan (Italy), Sarajevo (Bosnia and Herzegovina).

distributed across Europe, spanning from western Europe (France) to eastern Europe (Romania),

over a period of T = 700 days, from 29 March 2023 to 25 February 2025. The data is obtained from

PurpleAir (https://www2.purpleair.com/), a widely used citizen science network for real-time

air quality monitoring that has been adopted in many recent atmospheric studies; see Bonas and

Castruccio (2025) and references therein. The dots in Figure 5 represent the locations of these

sensors, with their specific indices provided in Table G.1 in the Online Appendix. For missing

data during the selected period, we again use imputation by averaging the two closest observations

in the time dimension on both sides of the missing data point. For more advanced imputation

methods, one may refer to, for instance, Cahan et al. (2023).

The sensors are sometimes subject to significant measurement errors, depending on their

locations (e.g., indoors or outdoors), as observed in the time series plot in Figure G3 in the

Online Appendix. It is therefore important to employ an outlier-robust method for analyzing

this dataset. We apply our proposed method (fGAS(ν̂1)) using the updating scheme outlined in

Section 4.2, which automatically downweights incidental large observations. For simplicity, we

set Λ(·) ≡ IN , though one can of course further extend the model with an appropriate spatial

correlation structure.
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Figure 6: A filmstrip plot of the predicted PM2.5 concentration levels, ranging from (4◦E, 42◦N) in
the bottom-left to (24◦E, 52◦N) in the top-right, over the most recent 350 days, specifically at times
i = T − 300, T − 250, . . . , T − 50, T , where T corresponds to Feb 25, 2025.

The fitted concentration levels are shown in Figure 6, where we use a time series of heatmaps

(referred to as a filmstrip plot) for easy visualization.3 Since nonparametric methods are typically

subject to approximation bias near the boundaries of the map, as mentioned earlier in Section 4.2,

we consider the fitted levels only within the region from (4◦E, 42◦N) to (24◦E, 52◦N); see Figure 5.

Figure 6 reveals that there is clear variation across different days of the year and different

regions. PM2.5 emissions are higher in central and eastern Europe compared to northwestern

Europe, particularly during the winter months.

Next, we zoom in and focus on four specific sensors over time. These sensors represent locations

with different longitudes and latitudes, as indicated by the red dots in Figure 5, and are located

near Brussels (Belgium), Prague (Czech Republic), Milan (Italy), and Sarajevo (Bosnia and

Herzegovina), respectively. Figure 7 displays the results. The first thing to notice is that the data

are very noisy, such that it is non-trivial to filter out the mean surface dynamics across continental

Europe. Second, the problem is even more complicated due to the spatial dimension: the fGAS

need not only fit the time series dynamics per sensor, but also the pollution surface across space.

It may therefore be that the model needs to sacrifice some of the temporal fit accuracy to have a

better spatial fit given the chosen basis structure. Still, we observe that the predicted values ŶfGAS

capture the overall trend movements well. The model slightly underfits the spikes around January

2024 in Milan and Sarajevo. This is understandable given the second challenge above: the fGAS

does not only need to fit the time-series dynamics, but it also needs to fit the surrounding sensors,

3The filmstrip plot is generated in a similar manner to Figure 2. Specifically, after estimating the static
parameters, we randomly sample a dense set of locations (Nplot = 15, 000, so much larger than the number of
N = 109 sensors used for estimation), resulting in a predicted surface µ̂i(·) for i ∈ JT K at these sampled points. To
construct the final filmstrip, we use linear interpolation to approximate the surface at unsampled locations.
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Figure 7: Predicted PM2.5 concentration levels for Athens (Greece), Milan (Italy), Prague (Czech
Republic), and Utrecht (the Netherlands), using the proposed functional approach (denoted as ŶfGAS,
shown as blue solid curves). The real data is denoted as Y and shown in gray.

making it possibly less reactive to fluctuations in a few nearby sensors.

6 Conclusion

In this paper we proposed a new class of location-scale models for sparsely observed functional data

where the functions are defined on spaces of fixed, arbitrary dimension, and where we allow the

location and scale functional parameters to exhibit latent time-varying dynamics. We showed that

this new model performs well in both simulations and empirical applications, even in challenging

situations where the functional observations are only observed on a limited set of grid points with

considerable measurement noise.

The key of the new method was to project the functional location and scale onto a finite set of

arbitrary basis functions and to let the projection coefficients vary over time using score-driven

dynamics. The combination of an objective function based on fat-tailed Student’s t processes and

the functional score-driven updates yielded less impact of incidental outliers on both parameter

estimation and the functional dynamics themselves: outlying functional observations automatically
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received less weight in the updating mechanism in a data-driven way.

We also derived the asymptotic properties of the resulting estimator, establishing strong

consistency as well as asymptotic normality of the static parameters governing the functional

dynamics, thereby showing that the new approach allows us to recover the latent parameter

variation from the observed data. The current method therefore provides a substantial step

forward in modeling location-scale dynamics for functional objects Yi(t), with t ∈ Rd for general

d ∈ Z+, and can serve as a new benchmark model for further developments.
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Hörmann, S. and P. Kokoszka (2010). Weakly dependent functional data. Annals of Statistics 38 (3),

1845–1884.
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A Proof of Proposition 1 (score-driven dynamics)

Recall that γi = vec(Γ⊤
i ). Note that

∂ΓiϕK(t)

∂γ⊤
i

= Inf
⊗ ϕK(t)⊤,

∂µi(t)

∂γi
=
∂gµ
(
ΓiϕK(t)

)
∂γi

=

(
∂ΓiϕK(t)

∂γ⊤
i

)⊤

ġµ
(
fi(t)

)
= ġµ

(
fi(t)

)
⊗ ϕK(t),

∂σi(t)

∂γi
=
∂gσ
(
ΓiϕK(t)

)
∂γi

=

(
∂ΓiϕK(t)

∂γ⊤
i

)⊤

ġσ
(
fi(t)

)
= ġσ

(
fi(t)

)
⊗ ϕK(t).

We then have

∂ log p
(
Yi | γi;ν

)
∂γi

=
∂µ(γi)

⊤

∂γi

∂ log p
(
Yi | γi;ν

)
∂µ(γi)

+
∂ diag

(
Σ(γi)

)⊤
∂γi

∂ log p
(
Yi | γi;ν

)
∂ diag

(
Σ(γi)

)
= Ġµ(γi)

⊤∂ log p
(
Yi | γi;ν

)
∂µ(γi)

+ Ġσ(γi)
⊤∂ log p

(
Yi | γi;ν

)
∂ diag

(
Σ(γi)

) ,

where diag
(
Σ(γi)

)
is a column vector that stacks the diagonal elements of Σ(γi). Define

V (γi) = Σ(γi)Λ(ν2)Σ(γi). We then also have

∂ log p
(
Yi | γi;ν

)
∂µ(γi)

= wi(γi,ν) V (γi)
−1
(
Yi − µ(γi)

)
= wi(γi,ν) Σ(γi)

−1Λ(ν2)
−1ei(γi),

∂ log p
(
Yi | γi;ν

)
∂ diag

(
Σ(γi)

) = −
∂ log

∣∣Σ(γi)
∣∣

∂ diag
(
Σ(γi)

) − 1

2
wi(γi,ν)

∂ei(γi)
⊤Λ(ν2)ei(γi)

∂ diag
(
Σ(γi)

)
= −Σ(γi)

−1ιN − wi(γi,ν)
∂ei(γi)

⊤

∂ diag
(
Σ(γi)

)Λ(ν2)
−1ei(γi)

= wi(γi,ν) diag
(
Σ(γi)

−1ei(γi)
)
Λ(ν2)

−1ei(γi) −Σ(γi)
−1ιN

= Σ(γi)
−1
(
wi(γi,ν)

(
(Λ(ν2)

−1ei(γi)) ⊙ ei(γi)
)
− ιN

)
.

This completes the proof.
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B Proofs of Proposition 2 and Proposition 3

For f = ΓϕK(t) and γ = vec(Γ⊤), define

Φµ(t;γ) =
1

gσ(f)

(
ġµ
(
f
)
⊗ ϕK(t)

)
=

1

gσ(f)

(
Inf

⊗ ϕK(t)
)
ġµ
(
f
)
,

Φσ(t;γ) =
1

gσ(f)

(
ġσ
(
f
)
⊗ ϕK(t)

)
=

1

gσ(f)

(
Inf

⊗ ϕK(t)
)
ġσ
(
f
)
.

Following Bougerol (1993, Section 3), let (E, dE) denote a complete separable metric space and

define the Lipschitz coefficient ρ for a random map λ : E → E as follows:

ρ(λ) = sup
x,y∈E, x ̸=y

{
dE
(
λ(x), λ(y)

)
dE(x, y)

}
. (B.1)

Note that if λ is measurable, then ρ(λ) is measurable (Bougerol, 1993, p. 955). In the subsequent

proofs, we will frequently refer to the definition above, specifying the relevant space in each context.

Finally, we use C throughout the proofs to denote a generic positive constant that may vary from

line to line.

Proof of Proposition 2. We apply Theorem 3.1 from Bougerol (1993), considering the sequence

{γ̂ε
i , i ∈ Z} as a random process taking values in the separable Banach space (E, dE) =

(
G, ∥ · ∥

)
;

see Eq. (B.1). The SRE (3.2) can be equivalently written as γ̂ε
i+1 = hε

i

(
γ̂ε
i

)
, where

hε
i (γ) = ω +Bγ +AS(γ,ν)

(
∇µ,ε

i (γ,ν) + ∇σ,ε
i (γ,ν)

)
, θ ∈ Θ, (B.2)

∇µ,ε
i (γ,ν) = wε

i (ν)
(
Φµ(t1;γ), . . . ,Φµ(tN ;γ)

)
Λ(ν2)

−1εi,

∇σ,ε
i (γ,ν) = wε

i (ν)
(
Φσ(t1;γ), . . . ,Φσ(tN ;γ)

)
diag(εi)Λ(ν2)

−1εi −
N∑
j=1

Φσ(tj;γ),

with wε
i (ν) =

1+ν−1
1 N

1+ν−1
1 ε⊤i Λ(ν2)−1εi

. Since {εi, i ∈ Z} is i.i.d. and thus SE, {hε
i , i ∈ Z} is measurable

and SE for any given θ ∈ Θ, see Krengel (1985, Proposition 4.3) or White (2001, Theorem 3.35).

Following an approach similar to the proof of Proposition TA.1 in Blasques et al. (2022), the

following (high-level, abbreviated as HL) conditions suffice to invoke Bougerol (1993, Theorem

3.1): For θ ∈ Θ,

HL1 E
(

log+
∥∥hε

1(γ̂
ε
0) − γ̂ε

0

∥∥) <∞ for some γ̂ε
0 ∈ G;

HL2 E log ρ
(
hε

i

)
< 0.
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Verification of Condition HL1: Note that for any matrices Xi, i ∈ JK K, where K ∈ Z+,

with compatible dimensions, we have

log+

∥∥∥∥∥
K∏
i=1

Xi

∥∥∥∥∥ ≤ log+

(
K∏
i=1

∥Xi∥

)
≤

K∑
i=1

log+ ∥Xi∥, (B.3)

log+

∥∥∥∥∥
K∑
i=1

Xi

∥∥∥∥∥ ≤ log+

(
K∑
i=1

∥Xi∥

)
≤ log(K) +

K∑
i=1

log+ ∥Xi∥. (B.4)

By applying the inequalities (B.3) - (B.4) repeatedly, we obtain: for N ∈ Z+ and θ ∈ Θ,

E
(

log+
∥∥hε

1(γ̂
ε
0) − γ̂ε

0

∥∥) ≤ log(6) + log+ ∥ω∥ + log+
∥∥(B − Inγ )γ̂ε

0

∥∥+ log+ ∥A∥

+ log+
∥∥S(γ̂ε

0,ν)
∥∥ + E

(
log+

∥∥∇µ,ε
i (γ̂ε

0,ν)
∥∥) + E

(
log+

∥∥∇σ,ε
i (γ̂ε

0,ν)
∥∥). (B.5)

Then, by Assumption SE1, it suffices to prove that the last two moments in (B.5) exist for the

verification of Condition HL1. Note that for any random matrix Z, if there exists an r > 0 such

that E∥Z∥r <∞, then E
(

log+ ∥Z∥
)
<∞. It thus suffices to show that (1) E

∥∥∇µ,ε
i (γ̂ε

0,ν)
∥∥ <∞

and (2) E
∥∥∇σ,ε

i (γ̂ε
0,ν)

∥∥ < ∞. Recall that εi ∼ tν1
(
0,Λ(ν2)

)
. For any ν ∈ Θν , Λ(ν2) can be

decomposed as Λ(ν2) = Λ(ν2)
1/2Λ(ν2)

1/2, where Λ(ν2)
1/2 is positive definite and symmetric.

Then, we obtain ui := Λ(ν2)
−1/2εi ∼ tν1(0, IN). For the term ∇µ,ε

i (γ̂ε
0,ν), we thus have

E
∥∥∇µ,ε

i (γ̂ε
0,ν)

∥∥ = E

∥∥∥∥∥wε
i (ν)

N∑
j=1

Φµ(tj; γ̂
ε
0) rowj

(
Λ(ν2)

−1/2
)
ui

∥∥∥∥∥
≤

N∑
j=1

∥∥∥Φµ(tj; γ̂
ε
0)
∥∥∥E∣∣∣ rowj

(
Λ(ν2)

−1/2
)
wε

i (ν)ui

∣∣∣. (B.6)

Note that the term wε
i (ν)ui can be written as

ν1 +N

ν1

(
1 + ν−1

1 ε
⊤
i Λ(ν2)

−1εi
)−1
ui =

ν1 +N
√
ν1

(
1 +

u⊤
i ui

ν1

)−1
ui√
ν1
. (B.7)

Furthermore, E|Z| ≤
[
E(Z2)

]1/2
for any random variable Z. For N ∈ Z+, we obtain

E
∣∣∣ rowj

(
Λ(ν2)

−1/2
)
wε

i (ν)ui

∣∣∣ ≤ ν1 +N√
(ν1 +N)(ν1 +N + 2)

∥∥ rowj

(
Λ(ν2)

−1/2
)∥∥, (B.8)

using (F.2) in Appendix F. Applying Lemma F.5 and using Eqs. (B.6) and (B.8), we obtain

E
∥∥∇µ,ε

i (γ̂ε
0,ν)

∥∥ <∞.

Now, we consider the term ∇σ,ε
i (γ̂ε

0,ν). Note that the jth element of εi can be expressed as

rowj

(
Λ(ν2)

1/2
)
ui. This leads to diag(εi)Λ(ν2)

−1εi = diag(εi)Λ(ν2)
−1/2ui = (e1, . . . , eN )⊤, where
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ej =
[
(rowj

(
Λ(ν2)

1/2
)
ui

][
rowj

(
Λ(ν2)

−1/2
)
ui

]
for j ∈ JN K. As a result, one can write:

∇σ,ε
i (γ̂ε

0,ν) =
N∑
j=1

Φσ(tj; γ̂
ε
0)
(

rowj

(
Λ(ν2)

1/2
)
wε

i (ν)uiu
⊤
i rowj

(
Λ(ν2)

−1/2
)⊤ − 1

)
.

This leads to

E
∥∥∇σ,ε

i (γ̂ε
0,ν)

∥∥ ≤
N∑
j=1

∥∥∥Φσ(tj; γ̂
ε
0)
∥∥∥{E∣∣∣ rowj

(
Λ(ν2)

1/2
)
wε

i (ν)uiu
⊤
i

[
rowj

(
Λ(ν2)

−1/2
)]⊤∣∣∣+ 1

}
.

(B.9)

Note that wε
i (ν)uiu

⊤
i = (ν1 +N)

(
1 + u⊤

i ui/ν1
)−1
uiu

⊤
i /ν1. By (F.3) and Lemma F.5, we have

E
∣∣∣ rowj

(
Λ(ν2)

1/2
)
wε

i (ν)uiu
⊤
i rowj

(
Λ(ν2)

−1/2
)⊤∣∣∣ ≤ ∥Λ(ν2)

1/2∥1/22,∞ ∥Λ(ν2)
−1/2∥1/22,∞. (B.10)

Combining (B.9) - (B.10), and by applying Assumptions A1, A2, and Lemma F.5, we arrive at

E
∥∥∇σ,ε

i (γ̂ε
0,ν)

∥∥ ≤
(
∥Λ(ν2)

1/2∥1/22,∞ ∥Λ(ν2)
−1/2∥1/22,∞ + 1

)( N∑
j=1

∥∥∥Φσ(tj; γ̂
ε
0)
∥∥∥) <∞. (B.11)

Now we can conclude that for a fixed N ∈ Z+ and any θ ∈ Θ, Condition HL1 holds.

Verification of Condition HL2: By applying a version of the mean value theorem for vector-

valued functions (see, e.g., Rudin, 1976, Theorem 9.19), we have

∥∥hε
i (γ1) − hε

i (γ2)
∥∥ ≤ sup

γ∈G

∥∥∥∥ ∂

∂γ⊤h
ε
i (γ)

∥∥∥∥ ∥γ1 − γ2∥. (B.12)

By the definition of ρ(·) in (B.1), we have ρ
(
hε

i

)
≤ supγ∈G

∥∥∥ ∂

∂γ⊤h
ε
i (γ)

∥∥∥, where
∂

∂γ⊤h
ε
i (γ) =

B + A
∂

∂γ⊤

[
S(γ,ν)

(
∇µ,ε

i (γ,ν) + ∇σ,ε
i (γ,ν)

)]
. By Assumption SE2, Condition HL2 is thus

fulfilled.

The existence of a unique SE solution to (3.2) now follows from Bougerol (1993, Theorem 3.1).

Further notation is required. As in Straumann and Mikosch (2006, Section 2.3), let C0
(
Θ,G

)
be the space of continuous G-valued functions equipped with the supremum norm ∥ · ∥Θ defined

as ∥γ∥Θ = supθ∈Θ ∥γ(θ)∥ for γ ∈ C0
(
Θ,G

)
. Note that

(
C0
(
Θ,G

)
, ∥ · ∥Θ

)
is a separable Banach

(or Polish) space provided that Θ is compact.
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Proof of Proposition 3. Recall ρ from Eq. (B.1), along with the explicit expressions for

∇µ
i (γ,ν) and ∇σ

i (γ,ν) given in (F.24) and (F.25), respectively. Unlike Proposition 2, this

proposition requires the convergence to be uniform in θ ∈ Θ. To employ Bougerol (1993, Theorem

3.1), we view
{
γ̂i(·), i ∈ Z+

}
, initialized at some γ̂0 ∈ G, as a sequence of random functions

residing in the separable Banach space (E, dE) =
(
C0
(
Θ,G

)
, ∥ · ∥Θ

)
. Note that γ̂i+1 can be

expressed as γ̂i+1 = λi(γ̂i), where the random maps λi : C0
(
Θ,G

)
→ C0

(
Θ,G

)
are given by[

λi(γ)
]
(θ) := ψi

(
γ(θ),θ

)
with ψi defined in Eq. (3.4). Since {Yi, i ∈ Z} is SE by assumption, it

follows that
{
λi, i ∈ Z

}
is also SE. Similar to the proof of Proposition TA.3 in Blasques et al.

(2022), the following (high-level, abbreviated as H̃L) conditions are sufficient to apply Bougerol

(1993, Theorem 3.1) and Straumann and Mikosch (2006, Theorem 2.8):

H̃L1 E
(

log+
∥∥λ1(γ̂0) − γ̂0

∥∥
Θ

)
<∞, where γ̂0(θ) = γ̂0 ∈ G for all θ ∈ Θ;

H̃L2 E
(

log+ ρ(λ1)
)
<∞;

H̃L3 E
(

log ρ
(
λ

(r)
i

))
< 0 for some integer r ≥ 1, where λ

(r)
i = λi ◦ λi−1 ◦ · · · ◦ λi−r+1 is referred

to as the r-fold convolution of the function λi.

Verification of Condition H̃L1: Note that, by applying the inequalities (B.3) - (B.4), we have

E
(

log+
∥∥λ1(γ̂0) − γ̂0

∥∥
Θ

)
≤ log(6) + log+ sup

θ∈Θ
∥ω∥ + log+ sup

θ∈Θ

∥∥B − Inγ

∥∥
+ log+

∥∥γ̂0∥∥+ log+ sup
θ∈Θ

∥A∥ + log+ sup
θ∈Θ

∥∥S(γ̂0,ν)
∥∥

+ E
(

log+ sup
θ∈Θ

∥∥∇µ
i (γ̂0,ν)

∥∥)+ E
(

log+ sup
θ∈Θ

∥∥∇σ
i (γ̂0,ν)

∥∥), (B.13)

where log+ supθ∈Θ ∥ω∥+ log+ supθ∈Θ
∥∥B− Inγ

∥∥+ log+ supθ∈Θ ∥A∥ <∞ as Θ is compact. More-

over, log+ supθ∈Θ
∥∥S(γ̂0,ν)

∥∥ is a direct result of Assumption IV1 in Proposition 3. It thus suffices

to show that the final two quantities in (B.13) are finite.

Recall ui(ν2,γ) = Λ(ν2)
−1/2Σ(γ)−1

(
Yi − µ(γ)

)
from (F.7). For a fixed N ∈ Z+, we obtain

sup
θ∈Θ

sup
γ∈G

∥∥∇µ
i (γ,ν)

∥∥
= sup

θ∈Θ
sup
γ∈G

∥∥∥∥∥ν1 +N
√
ν1

N∑
j=1

Φµ(tj;γ) rowj

(
Λ(ν2)

−1/2
) ui(ν2,γ)/

√
ν1

1 + ν−1
1 ui(ν2,γ)⊤ui(ν2,γ)

∥∥∥∥∥
≤ C

(
sup
ν∈Θν

∥Λ(ν2)
−1/2∥2,∞ sup

γ∈G

N∑
j=1

∥∥∥Φµ(tj;γ)
∥∥∥) ≤ C, (B.14)

following from Assumption A1 and Lemma F.5. Therefore, E
(

log+ supθ∈Θ
∥∥∇µ

i (γ̂0,ν)
∥∥) < ∞.
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Similarly, one obtains

sup
θ∈Θ

sup
γ∈G

∥∥∇σ
i (γ,ν)

∥∥ = sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥(ν1 +N)
N∑
j=1

Φσ(tj;γ)

(
rowj

(
Λ(ν2)

1/2
)

× ui(ν2,γ)ui(ν2,γ)⊤/ν1

1 + ν−1
1 ui(ν2,γ)⊤ui(ν2,γ)

[
rowj

(
Λ(ν2)

−1/2
)]⊤ − 1

)∥∥∥∥∥
≤ C

(
sup
ν∈Θν

∥Λ(ν2)
1/2∥2,∞ sup

ν∈Θν

∥Λ(ν2)
−1/2∥2,∞ + 1

)(
sup
γ∈G

N−1

N∑
j=1

∥∥∥Φσ(tj;γ)
∥∥∥) ≤ C, (B.15)

using Assumption A1 and Lemma F.5. We thus conclude that E
(

log+ supθ∈Θ
∥∥∇σ

i (γ̂0,ν)
∥∥) <∞.

This establishes Condition H̃L1.

Verification of Condition H̃L2: Note that

ρ(λ1) = sup
∥γ1−γ2∥Θ>0

∥λ1(γ1) − λ1(γ2)∥Θ
∥γ1 − γ2∥Θ

= sup
∥γ1−γ2∥Θ>0

sup
θ∈Θ

{∥∥ψ1

(
γ1(θ),θ

)
−ψ1

(
γ2(θ),θ

)∥∥
∥γ1(θ) − γ2(θ)∥

∥γ1(θ) − γ2(θ)∥
∥γ1 − γ2∥Θ

}

≤ sup
∥γ1−γ2∥Θ>0

sup
θ∈Θ

{∥∥ψ1

(
γ1(θ),θ

)
−ψ1

(
γ2(θ),θ

)∥∥
∥γ1(θ) − γ2(θ)∥

}

≤ sup
θ∈Θ

sup
γ̄1,γ̄2∈G,

∥γ̄1−γ̄2∥>0

{∥∥ψ1

(
γ̄1,θ

)
−ψ1

(
γ̄2,θ

)∥∥
∥γ̄1 − γ̄2∥

}

≤ sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥B +A
∂

∂γ⊤

(
S(γ,ν)∇1(γ,ν)

)∥∥∥∥∥, (B.16)

where the final step follows from the mean value theorem given in Rudin (1976, Theorem 9.19)

applied to the vector-valued function ψ1

(
· ,θ
)
. By Assumption IV2, E

(
log+ ρ(λ1)

)
<∞.

Verification of Condition H̃L3: Analogous to (B.16), we can derive

E
(

log ρ
(
λ

(r)
i

))
≤ E

(
log sup

θ∈Θ
sup
γ∈G

∥∥∥∥ ∂

∂γ⊤ψ
(r)
i

(
γ,θ

)∥∥∥∥
)
. (B.17)

By Assumption IV3, Condition H̃L3 immediately follows.

Proposition 3 now follows by applying Bougerol (1993, Theorem 3.1) or Straumann and Mikosch

(2006, Theorem 2.8).
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C Proof of Theorem 1 (consistency)

The following lemma plays a key role in establishing the strong consistency of static parameter

estimators.

Lemma C.1. Recall L̂T (θ) = T−1
∑T

i=1 ℓi
(
γ̂i(θ),ν

)
from (2.16). Let LT (θ) = T−1

∑T
i=1 ℓi

(
γi(θ),ν

)
and L(θ) = E

(
ℓi
(
γi(θ),ν

))
. Under the assumptions of Proposition 3 and Assumption SC1, we

have

sup
θ∈Θ

∣∣L̂T (θ) − L(θ)
∣∣ a.s.−→ 0, as T → ∞. (C.1)

Moreover, L(·) is continuous on Θ.

Proof of Lemma C.1. Recall the notation ∇i(γ,ν) = ∇µ
i (γ,ν) + ∇σ

i (γ,ν), see also (F.24)

and (F.25). Note that supθ∈Θ
∣∣L̂T (θ)−L(θ)

∣∣ ≤ supθ∈Θ
∣∣L̂T (θ)−LT (θ)

∣∣+ supθ∈Θ
∣∣LT (θ)−L(θ)

∣∣.
We deal with each term separately.

First term supθ∈Θ
∣∣L̂T (θ) − LT (θ)

∣∣ a.s.−→ 0: By a mean value theorem of ℓi
(
γ̂i(θ),ν

)
around

ℓi
(
γi(θ),ν

)
, we obtain

sup
θ∈Θ

∣∣L̂T (θ) − LT (θ)
∣∣ ≤ T−1

T∑
i=1

sup
θ∈Θ

∣∣ℓi(γ̂i(θ),ν
)
− ℓi

(
γi(θ),ν

)∣∣
≤ T−1

T∑
i=1

sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥∂ℓi
(
γ,ν

)
∂γ

∥∥∥∥∥ sup
θ∈Θ

∥∥γ̂i(θ) − γi(θ)
∥∥, (C.2)

where ∂ℓi
(
γ,ν

)/
∂γ = N−1∇i(γ,ν). By Assumptions A1 - A2, it follows from (B.14) and

(B.15) that supθ∈Θ supγ∈G

∥∥∥∂ℓi(γ,ν)
∂γ

∥∥∥ ≤ C. Since supθ∈Θ
∥∥γ̂i(θ) − γi(θ)

∥∥ e.a.s.−→ 0 (Proposition 3),

there exists ρ > 1 such that supθ∈Θ
∥∥γ̂i(θ) − γi(θ)

∥∥ ≤ Cρ−i a.s. for all i ∈ Z+. Therefore,

supθ∈Θ
∣∣L̂T (θ) − LT (θ)

∣∣ ≤ CT−1
∑∞

i=1 ρ
−i = C(ρ− 1)−1T−1 → 0 almost surely as T → ∞.

Second term supθ∈Θ
∣∣LT (θ) − L(θ)

∣∣ a.s.−→ 0: We can apply the uniform law of large numbers

provided in White (1996, Theorem A.2.2) to the SE sequence
{
ℓi
(
γi(θ),ν

)
, i ∈ Z

}
for θ ∈ Θ

provided that

E
(

sup
θ∈Θ

∣∣∣ℓi(γi(θ),ν
)∣∣∣) <∞ (C.3)

is met. Note that the limit criterion L(θ) depends on the unique limiting SE process {γi(θ), i ∈ Z}

instead of the initialized process
{
γ̂i(θ, γ̂0), i ∈ Z+

}
, and is therefore independent of the initial
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value γ̂0. Furthermore, recall ui(ν2,γ) = Λ(ν2)
−1/2Σ(γ)−1

(
Yi − µ(γ)

)
from (F.7), as well as the

representation fi(·) = ΓiϕK(·) = vec
(
ϕK(·)⊤Γ⊤

i

)
=
(
Inf

⊗ ϕK(·)⊤
)
γi. Given the compactness

of Θ and Assumption A2, for a fixed N ∈ Z+, it suffices for establishing (C.3) to show that the

following moment conditions hold:

M1 E
(

supθ∈Θ

∣∣∣N−1
∑N

j=1 log
(
gσ
[(
Inf

⊗ ϕK(tj)
⊤)γi(θ)

])∣∣∣) <∞;

M2 E
(

supθ∈Θ

∣∣∣ log
(

1 + ν−1
1 ui

(
ν2,γi(θ)

)⊤
ui

(
ν2,γi(θ)

))∣∣∣) <∞.

First consider M1. If (3.5) holds for η = 0, M1 trivially follows. Consider (3.5) holds for some

η > 0. Note that ∥A⊗B∥ = ∥A∥ ∥B∥ for any matrices A and B. By applying Assumption SC1,

we have

sup
θ∈Θ

∣∣∣∣∣N−1

N∑
j=1

log
(
gσ
[(
Inf

⊗ϕK(tj)
⊤)γi(θ)

])∣∣∣∣∣ ≤ CσN
−1

N∑
j=1

∥∥ϕK(tj)
∥∥η ( sup

θ∈Θ

∥∥γi(θ)
∥∥η). (C.4)

By (B.14) - (B.15), and supγ∈G supν∈Θν

∥∥S(γ,ν)
∥∥ < ∞ (Assumption SC1), it follows that

supi∈Z supγ∈G supθ∈Θ
∥∥ω +Asi(γ,ν)

∥∥ ≤ C. From (2.9), we iterate backward m ∈ Z+ times to

obtain

sup
i∈Z

sup
θ∈Θ

∥∥γi+1(θ)
∥∥ = sup

i∈Z
sup
θ∈Θ

∥∥∥∥Bmγi−m+1(θ) +
m−1∑
k=0

Bk
(
ω +Asi−k

(
γi−k(θ),ν

))∥∥∥∥
≤
(

sup
θ∈Θ

∥B∥m
)

sup
i∈Z

sup
θ∈Θ

∥∥γi−m+1(θ)
∥∥+ C

m−1∑
k=0

(
sup
θ∈Θ

∥B∥k
)
.

Then, supi∈Z supθ∈Θ
∥∥γi+1(θ)

∥∥ is bounded if supθ∈Θ ∥B∥ < 1, as required in Assumption SC1.

Consequently, there exists a constant Cγ ∈ R+ such that

sup
i∈Z

sup
θ∈Θ

∥∥γi(θ)
∥∥ϱ ≤ Cγ, ∀ϱ ≥ 0. (C.5)

By (C.4), (C.5), and Assumption SC1, the condition M1 is satisfied for η > 0 as well.

We move on to establish Condition M2. First, observe that, similar to (B.4), we have the

following:
∣∣∣ log

(∑K
i=1Xi

)∣∣∣ ≤ log(K)+
∑K

i=1

∣∣ log(Xi)
∣∣, where Xi > 0 for i ∈ JK K, where K ∈ Z+.

Second, for a symmetric matrix A, the inequality |x⊤Ax| ≤ ∥A∥ ∥x∥2 holds for any compatible

vector x. Third, we have supθ∈Θ
∣∣ log

(
2ν−1

1

∥∥Λ(ν2)
−1
∥∥)∣∣ <∞ because ν1 is bounded below away

from 0 (owing to the compactness of Θ), and given Assumption A2. By applying these results
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and the cr-inequality, we obtain

∣∣∣ log
(

1 + ν−1
1 ui

(
ν2,γi(θ)

)⊤
ui

(
ν2,γi(θ)

))∣∣∣
≤

∣∣∣∣∣ log

[
1 + 2ν−1

1

∥∥Λ(ν2)
−1
∥∥(∥∥∥Σ(γi(θ)

)−1
∥∥∥2∥∥∥µ(γi(θ0))− µ(γi(θ)

)∥∥∥2
+
∥∥∥Σ(γi(θ)

)−1
Σ
(
γi(θ0)

)
εi

∥∥∥2)]∣∣∣∣∣
≤

∣∣∣∣∣ log

[
1 + 2ν−1

1

∥∥Λ(ν2)
−1
∥∥(∥∥∥Σ(γi(θ)

)−1
∥∥∥2C̃2

µ +
∥∥∥Σ(γi(θ)

)−1
Σ
(
γi(θ0)

)∥∥∥2(1 +
∥∥εi∥∥2))]

∣∣∣∣∣
≤ C + 2

∣∣∣ log
∥∥Σ(γi(θ)

)−1∥∥∣∣∣+ 2

∣∣∣∣ log
∥∥∥Σ(γi(θ)

)−1
Σ
(
γi(θ0)

)∥∥∥∣∣∣∣+
∣∣∣ log

(
1 +

∥∥εi∥∥2)∣∣∣,
where C̃µ > 0 in the second inequality is a constant independent of θ. This result follows from

∥ · ∥ ≤ ∥ · ∥1, Assumption SC1, and (C.5):

sup
θ∈Θ

∥∥∥µ(γi(θ0))− µ(γi(θ)
)∥∥∥

= sup
θ∈Θ

N∑
j=1

∣∣∣gµ[(Inf
⊗ ϕK(tj)

⊤)γi(θ0)]− gµ
[(
Inf

⊗ ϕK(tj)
⊤)γi(θ)

]∣∣∣
≤ Cµ

N∑
j=1

∥∥ϕK(tj)
∥∥ζ sup

θ∈Θ

∥∥γi(θ0) − γi(θ)
∥∥ζ ≤ C̃µ. (C.6)

Given N is fixed, observe that E
∣∣ log

(
1 +

∥∥εi∥∥2)∣∣ < ∞ follows from the existence of a power

moment E∥εi∥2q <∞ for some q ∈ (0, ν10/2), where ν10 is the true degree of freedom of εi. Thus,

to verify condition M2, it remains to be shown that E
(

supθ∈Θ

∣∣∣ log
∥∥Σ(γi(θ)

)−1∥∥∣∣∣) < ∞ and

E
(

supθ∈Θ

∣∣∣ log
∥∥Σ(γi(θ)

)−1
Σ
(
γi(θ0)

)∥∥∣∣∣) <∞. However, under Assumption SC1, these results

follow directly from the arguments used for M1 above. This completes the proof for (C.3).

Finally, note that the continuity of the limit criterion function L(θ) in θ ∈ Θ also follows from

Theorem A.2.2 of White (1996).

Proof of Theorem 1. We follow the standard consistency arguments outlined in Blasques et al.

(2022, Theorem 4.6), which rely on results such as Theorem 3.4 of White (1996) or Theorem 3.3

of Gallant and White (1988). Recall L(θ) = E
(
ℓi
(
γi(θ),ν

))
from Lemma C.1. First, Lemma C.1

establishes the uniform convergence of the empirical criterion function L̂T (θ) to the limiting

criterion function L(θ) over the compact parameter space Θ.

To establish the identifiable uniqueness of θ0 ∈ Θ, we need to check (see White, 1996, Definition

3.3): (i) L(θ0) > L(θ) for every θ ̸= θ0 where θ ∈ Θ (as shown below); (ii) the continuity of
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θ 7→ L(θ) (as established in Lemma C.1); and (iii) the compactness of Θ (as directly assumed).

To show Part (i), note that L(θ) depends on the unique limiting SE process {γi(θ), i ∈ Z} instead

of the initialized process
{
γ̂i(θ, γ̂0), i ∈ Z+

}
, and is therefore independent of the initial value

γ̂0. Let Fi = σ
(
Ys, s ≤ i

)
be a natural filtration and Ei(·) = E( · | Fi). In a manner similar to

Blasques et al. (2022, Lemma TA.7), we have the following:

L(θ0) − L(θ) = N−1E

(
log

p
(
Yi

∣∣γi(θ0),ν0)
p
(
Yi

∣∣γi(θ),ν
) )

= N−1E

[
Ei−1

(
log

p
(
Yi

∣∣γi(θ0),ν0)
p
(
Yi

∣∣γi(θ),ν
) )]

= N−1E

[∫
p
(
y
∣∣γi(θ0),ν0) log

p
(
y
∣∣γi(θ0),ν0)

p
(
y
∣∣γi(θ),ν

) dy

]
≥ 0,

using Gibbs’ inequality for the Kullback-Leibler divergence (White, 1996, Theorem 2.3). Equality

holds if and only if p
(
y
∣∣γi(θ0),ν0) = p

(
y
∣∣γi(θ),ν

)
for almost every y ∈ RN , with respect to

the density p
(
·
∣∣γi(θ0),ν0) (whose support is RN ). Therefore, by Assumption SC2, L(θ0) = L(θ)

implies that ν = ν0 and γi(θ)
a.s.
= γi(θ0) for arbitrary i. Next, we argue that if these two conditions

hold, then it follows that θ = θ0 (uniqueness). Substituting these conditions into the recurrence

equations for both γi(θ0) and γi(θ) and subtracting one from the other, we obtain:

0
a.s.
= ω − ω0 + (B −B0)γi(θ0) + (A−A0)si

(
γi(θ0),ν0

)
. (C.7)

Since si
(
γi(θ0),ν0

)
depends on the innovation εi, it is stochastic conditional on Fi−1. As a result,

we must have A = A0. Moreover, given ∥B0∥ < 1 (Assumption SC3), by iterating backward into

the infinite past (see, e.g., Straumann and Mikosch, 2006, Eq. (2.5)), we may write

γi(θ0) =
∞∑
k=1

Bk
0

(
ω0 +A0si−k

(
γi−k(θ0),ν0

))
= (Inγ −B0)

−1ω0 +A0

∞∑
k=1

Bk
0si−k

(
γi−k(θ0),ν0

)
.

Note that
∑∞

k=1B
k
0si−k

(
γi−k(θ0),ν0

)
is almost surely nonzero. Given A = A0 and ν = ν0, to

ensure (C.7), one must have (B −B0)A0 = O. Since det(A0) ̸= 0 (Assumption SC3), it follows

that A0 has a trivial null space, which implies B = B0. Consequently, from (C.7), we also

conclude that ω = ω0 and thus θ = θ0. This completes the proof.
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D Proof of Proposition 4 (derivative processes)

We now establish the convergence of the first- and second-order derivative processes, which forms

the foundation for proving Lemma E.1 - Lemma E.3 and, ultimately, the asymptotic normality of

θ̂T .

Proof of Proposition 4. We derive the results for k = 1 and k = 2 separately. The proof

follows a similar approach used in Proposition 3.4 of Blasques et al. (2022) and Proposition 6.1

of Straumann and Mikosch (2006). For each k, we begin by deriving the general expression of

the SRE for the derivative process and then establish the existence of an SE approximation to

the perturbed system by verifying the conditions outlined in Straumann and Mikosch (2006,

Theorem 2.10), similar to those applied in Proposition 3. Specifically, suppose the perturbed

SRE for the process
{
γ̂
(k)
i (·), i ∈ Z+

}
, initialized at some

(
γ̂0, γ̂

(1)
0 , . . . , γ̂

(k)
0

)
, can be expressed as

γ̂
(k)
i+1 = λ̂(k),i

(
γ̂
(k)
i

)
, where the random maps λ̂(k),i : C0

(
Θ,Rnγnk

θ

)
→ C0

(
Θ,Rnγnk

θ

)
are defined on

the Polish space (E, dE) =
(
C0
(
Θ,Rnγnk

θ

)
, ∥ · ∥Θ

)
, and are given by:

[
λ̂(k),i

(
γ(k)

)]
(θ) = ψ̂(k),i

(
γ(k)(θ),θ

)
:= Q(k),i

(
γ̂i(θ),θ

)
γ(k)(θ) + q(k),i

(
γ̂i(θ), γ̂

(1)
i (θ), , . . . , γ̂

(k−1)
i (θ),θ

)
, (D.1)

where Q(k),i(·) is a matrix independent of the derivatives of γ̂i(·), and q(k),i(·) is a vector that de-

pends only on derivatives up to order γ̂
(k−1)
i (·). Note that the perturbed sequence

{
γ̂
(k)
i (·), i ∈ Z+

}
depends on the nonstationary initialized sequence

{(
γ̂i(·), γ̂(1)

i (·), . . . , γ̂(k−1)
i (·)

)
, i ∈ Z+

}
and is

therefore only stationary in the limit. Moreover, let
{
d̂
(k)
i (·), i ∈ Z+

}
be the unperturbed sequence,

initialized at zero, and depending solely on the limit sequence
{(
γi(·),γ(1)

i (·), . . . ,γ(k−1)
i (·)

)
, i ∈ Z

}
,

which is associated with the random maps λ(k),i defined by

[
λ(k),i

(
d(k)

)]
(θ) = ψ(k),i

(
d(k)(θ),θ

)
:= Q(k),i

(
γi(θ),θ

)
d(k)(θ) + q(k),i

(
γi(θ),γ

(1)
i (θ), . . . ,γ

(k−1)
i (θ),θ

)
. (D.2)

The following high-level conditions (abbreviated as ĤL) are sufficient to apply Straumann and

Mikosch (2006, Theorem 2.10): For k ∈ Z+,
{
λ(k),i, i ∈ Z

}
is SE. Moreover,

ĤL1 E
(

log+
∥∥λ(k),1(0)

∥∥
Θ

)
<∞;

ĤL2 E
(

log+ ρ(λ(k),1)
)
<∞;

ĤL3 E
(

log ρ
(
λ

(r)
(k),i

))
< 0 for some integer r ≥ 1, where λ

(r)
(k),i = λ(k),i ◦λ(k),i−1 ◦ . . . ◦λ(k),i−r+1 is

the r-fold convolution of λ(k),i;
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ĤL4 E
(

log+
∥∥d(k)

0

∥∥
Θ

)
<∞, where

{
d
(k)
i (·), i ∈ Z

}
is the unique SE solution of the unperturbed

system (D.2) (with the existence guaranteed by Conditions ĤL1 - ĤL3);

ĤL5
∥∥∥λ̂(k),i(0) − λ(k),i(0)

∥∥∥
Θ

e.a.s.−→ 0 and ρ
(
λ̂(k),i − λ(k),i

)
e.a.s.−→ 0 as i→ ∞.

Under these conditions, Theorem 2.10 in Straumann and Mikosch (2006) implies that
{
d
(k)
i (·), i ∈

Z+
}

is an SE approximation of
{
γ̂
(k)
i (·), i ∈ Z+

}
. Then, following the reasoning for Part (3) on

p. 2483 of Straumann and Mikosch (2006), it follows that the kth-order derivative γ
(k)
i of γi on

Θ coincide with d
(k)
i almost surely for every i, and thus the proposition is established. In the

subsequent discussion, we repeatedly use the property ∥A⊗B∥ = ∥A∥ ∥B∥ for any matrices A

and B without explicitly mentioning it.

I. Proof of supθ∈Θ
∥∥γ̂(1)

i (θ) − γ(1)
i (θ)

∥∥ e.a.s.−→ 0: The general SRE for the first-order derivative

process (i.e., k = 1) is given in (F.33) of Lemma F.7. By directly matching the construction in

(D.2) with (F.33) and Proposition 3, we conclude that
{
λ(1),i, i ∈ Z

}
is SE. This follows from

Theorem 3.35 of White (2001) and the fact that the sequence
{

(Yi,γi), i ∈ Z
}

is SE, as γi is

Fi−1-measurable.

Verification of Condition ĤL1: Recall the definition of q(1),i
(
γ,θ

)
in (F.34). Note that

E
(

log+
∥∥λ(1),1(0)

∥∥
Θ

)
= E

(
log+ sup

θ∈Θ

∥∥∥q(1),1(γ1(θ),θ
)∥∥∥)

≤ E

{
log+C

(
1 + sup

θ∈Θ

∥∥γ1(θ)
∥∥+ sup

θ∈Θ

∥∥∥s1(γ1(θ),ν
)∥∥∥+ sup

θ∈Θ

∥∥∥∥∥∂s1
(
γ1(θ),ν

)
∂θ⊤

∥∥∥∥∥
)}

.

Using (B.3), (B.4), (C.5), and supν∈Θν
supγ∈G

∥∥s1(γ,ν)
∥∥ ≤ C, we obtain ĤL1 provided that

E
(

supθ∈Θ

∥∥∥∂s1(γ1(θ),ν)
∂θ⊤

∥∥∥) < ∞. Note that (C.5) is guaranteed by Assumption AN1. Under

Assumptions A1, A2, and AN1, along with the compactness of Θ, by Lemma F.7, one has

sup
i∈Z

sup
γ∈G

sup
ν∈Θν

∥∥∥∥∂∇i(γ,ν)

∂θ⊤

∥∥∥∥ ≤ C. (D.3)

Utilizing this result, along with the upper bounds in (B.14) and (B.15), as well as Assumption

AN1, we arrive at

sup
i∈Z

sup
γ∈G

sup
ν∈Θν

∥∥∥∥∂si(γ,ν)

∂θ⊤

∥∥∥∥ ≤ sup
i∈Z

sup
γ∈G

sup
ν∈Θν

{∥∥∇i(γ,ν)
∥∥∥∥∥∥∂ vec

(
S(γ,ν)

)
∂θ⊤

∥∥∥∥
+
∥∥S(γ,ν)∥∥∥∥∥∥∂∇i(γ,ν)

∂θ⊤

∥∥∥∥
}

≤ C. (D.4)

Appendix p. 13



Condition ĤL1 follows immediately.

Verification of Condition ĤL2: By definition, we have

E
(

log+ ρ(λ(1),1)
)
≤ E

(
log+ sup

θ∈Θ

∥∥Q(1),1

(
γ1(θ),θ

)∥∥) ≤ E

(
log+ sup

θ∈Θ
sup
γ∈G

∥∥∥∥∥B+A
∂s1(γ,ν)

∂γ⊤

∥∥∥∥∥
)
,

which is finite as shown below (B.16).

Verification of Condition ĤL3: Similarly, we have

E
(

log ρ
(
λ

(r)
(1),i

))
≤ E

(
log sup

θ∈Θ

∥∥∥∥∥
r∏

j=1

Q(1),i−j+1

(
γi−j+1(θ),θ

)∥∥∥∥∥
)

= E

(
log sup

θ∈Θ

∥∥∥∥∥
r∏

j=1

(
B +A

∂si−j+1

(
γi−j+1(θ),ν

)
∂γ⊤

)∥∥∥∥∥
)

≤ E

(
log sup

θ∈Θ
sup
γ∈G

∥∥∥∥ ∂

∂γ⊤ψ
(r)
i (γ,θ)

∥∥∥∥
)
< 0, (D.5)

for some r ≥ 1, where the last step follows from Assumption IV3 as in Proposition 3.

Verification of Condition ĤL4: Conditions ĤL1 - ĤL3 ensure that the SE solution
{
d
(1)
i

}
of

the unperturbed system admits an almost sure representation Straumann and Mikosch (2006,

Theorem 2.8, Eq. (2.5)):

d
(1)
i (θ) =

∞∑
j=0

( j∏
ℓ=1

Q(1),i−ℓ

(
γi−ℓ(θ),θ

))
q(1),i−j−1

(
γi−j−1(θ),θ

)
, (D.6)

with
∏0

ℓ=1 · ≡ 1. From the proof of ĤL1, one has supθ∈Θ
∥∥q(1),i−j−1

(
γi−j−1(θ),θ

)∥∥ ≤ C. For some

κ > 0, by an application of the Minkowski inequality, we obtain

E
(∥∥d(1)

i

∥∥κ
Θ

)
≤ C

(
∞∑
j=0

[
E
(

sup
θ∈Θ

∥∥∥∥ j∏
ℓ=1

Q(1),i−ℓ

(
γi−ℓ(θ),θ

)∥∥∥∥)κ]1/κ)κ

. (D.7)

As in the proof of ĤL3, it follows that

E

(
sup
θ∈Θ

∥∥∥∥ j∏
ℓ=1

Q(1),i−ℓ

(
γi−ℓ(θ),θ

)∥∥∥∥
)κ

= E

(
sup
θ∈Θ

∥∥∥∥∥
j∏

ℓ=1

(
B +A

∂si−ℓ

(
γi−ℓ(θ),ν

)
∂γ⊤

)∥∥∥∥∥
)κ

≤ E

(
sup
θ∈Θ

sup
γ∈G

∥∥∥∥ ∂

∂γ⊤ψ
(j)
i−1(γ,θ)

∥∥∥∥κ
)
. (D.8)
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By Assumption AN3, we have

E
(∥∥d(1)

i

∥∥κ
Θ

)
<∞. (D.9)

ĤL4 then follows from (D.9).

Verification of Condition ĤL5: Note that
∥∥λ̂(1),i(0) − λ(1),i(0)

∥∥
Θ

= supθ∈Θ
∥∥q(1),i(γ̂i(θ),θ

)
−

q(1),i
(
γi(θ),θ

)∥∥ ≤ C
∑3

j=1Rj,i, where R1,i = supθ∈Θ
∥∥γ̂i(θ) − γi(θ)

∥∥,

R2,i = sup
θ∈Θ

∥∥∥si(γ̂i(θ),ν
)
− si

(
γi(θ),ν

)∥∥∥, R3,i = sup
θ∈Θ

∥∥∥∥∥∂si
(
γ̂i(θ),ν

)
∂θ⊤

−
∂si
(
γi(θ),ν

)
∂θ⊤

∥∥∥∥∥.
By Proposition 3, R1,i

e.a.s.−→ 0 as i → ∞. As in (B.12), by applying a mean value theorem for

vector-valued functions (Rudin, 1976, Theorem 9.19), we obtain

R2,i ≤ sup
θ∈Θ

sup
γ∈G

∥∥∥∥∂si(γ,ν)

∂γ⊤

∥∥∥∥ sup
θ∈Θ

∥∥γ̂i(θ) − γi(θ)
∥∥. (D.10)

Given (F.45) in Lemma F.7, applying Assumptions A1, A2, and AN2, leads to

sup
i∈Z

sup
γ∈G

sup
ν∈Θν

∥∥∥∥∂∇i(γ,ν)

∂γ⊤

∥∥∥∥ ≤ C. (D.11)

Given the construction of ∂si(γ,ν)
∂γ⊤ in (F.44), using the upper bounds in (B.14) and (B.15), along

with Assumption AN1, we obtain supθ∈Θ supγ∈G

∥∥∥∂si(γ,ν)
∂γ⊤

∥∥∥ ≤ C. Therefore, R2,i
e.a.s.−→ 0 as i→ ∞

as well. Finally, note that

R3,i ≤ sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂si(γ,ν)

∂θ⊤

)∥∥∥∥∥ sup
θ∈Θ

∥∥γ̂i(θ) − γi(θ)
∥∥. (D.12)

By (F.48) - (F.49) in Lemma F.7 and under Assumptions A1, A2, and AN1, we can deduce that

sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂∇i(γ,ν)

∂θ⊤

)∥∥∥∥∥ ≤ C. (D.13)

Combining (D.13) with (D.3) and (D.11), we obtain supθ∈Θ supγ∈G

∥∥∥ ∂
∂γ⊤ vec

(
∂si(γ,ν)

∂θ⊤

)∥∥∥ ≤ C,

leading toR3,i
e.a.s.−→ 0 as i→ ∞ by Proposition 3. It is now evident that

∥∥λ̂(1),i(0)−λ(1),i(0)
∥∥
Θ

e.a.s.−→ 0

as i→ ∞.
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Furthermore, based on the discussion above and the compactness of Θ, we have, as i→ ∞,

ρ
(
λ̂(1),i − λ(1),i

)
≤ sup

θ∈Θ

∥∥∥Q(1),i

(
γ̂i(θ),θ

)
−Q(1),i

(
γi(θ),θ

)∥∥∥
= sup

θ∈Θ

∥∥∥∥∥A
(
∂si
(
γ̂i(θ),ν

)
∂θ⊤

−
∂si
(
γi(θ),ν

)
∂θ⊤

)∥∥∥∥∥ ≤
(

sup
θ∈Θ

∥A∥
)
R3,i

e.a.s.−→ 0,

which justifies the second part of ĤL5.

Under ĤL1 - ĤL5, Theorem 2.10 of Straumann and Mikosch (2006) implies that
∥∥γ̂(1)

i −

d
(1)
i

∥∥
Θ

e.a.s.−→ 0 as i → ∞. Finally, as noted, following the reasoning in Part (3) on p. 2483 of

Straumann and Mikosch (2006), it follows that γ
(1)
i ≡ d(1)

i .

II. Proof of supθ∈Θ
∥∥γ̂(2)

i (θ)−γ(2)
i (θ)

∥∥ e.a.s.−→ 0: The general SRE for the second-order derivative

process is presented in (F.38) of Lemma F.7. By directly matching the construction in (D.2) with

(F.38), invoking Proposition 3, and noting that
{
γ
(1)
i , i ∈ Z

}
is Fi−1-measurable, it becomes clear

that
{
λ(2),i, i ∈ Z

}
is SE.

Verification of Condition ĤL1: Recall the definition of q(2),i in (F.39). Moreover, note that

E
(

log+
∥∥λ(2),1(0)

∥∥
Θ

)
= E

(
log+ supθ∈Θ

∥∥q(2),1(γ(1)
1 (θ),γ1(θ),θ

)∥∥). Since ∥ vec(·)∥ = ∥ · ∥F ≤√
rank(·) ∥ · ∥, for every i ∈ Z, one has

sup
θ∈Θ

∥∥∥q(2),i(γ(1)
i (θ),γi(θ),θ

)∥∥∥ ≤ C sup
θ∈Θ

∥∥∥γ(1)
i (θ)

∥∥∥ sup
θ∈Θ

∥∥∥∥∥∂ vec
(
Q(1),i

(
γi(θ),θ

))
∂θ⊤

∥∥∥∥∥
+ sup

θ∈Θ
sup
γ∈G

∥∥∥∥∥∂q(1),i(γ,θ)

∂θ⊤

∥∥∥∥∥ + sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥∂q(1),i(γ,θ)

∂γ⊤

∥∥∥∥∥ sup
θ∈Θ

∥∥∥γ(1)
i (θ)

∥∥∥. (D.14)

We claim that:

(IIa) supθ∈Θ

∥∥∥∂ vec(Q(1),i(γi(θ),θ))

∂θ⊤

∥∥∥ ≤ C + C supθ∈Θ

∥∥∥γ(1)
i (θ)

∥∥∥;

(IIb) supθ∈Θ supγ∈G

∥∥∥∂q(1),i(γ,θ)

∂θ⊤

∥∥∥ ≤ C;

(IIc) supθ∈Θ supγ∈G

∥∥∥∂q(1),i(γ,θ)

∂γ⊤

∥∥∥ ≤ C.

If (IIa) - (IIc) hold, we immediately obtain ĤL1 using the inequalities (B.3) - (B.4) and the

moment bound (D.9). Next, we show the claims in (IIa) - (IIc).

Given the norm equivalence in finite dimensional spaces, establishing the claim in (IIa) reduces

to considering one of its blocks: supθ∈Θ

∥∥∥ ∂
∂θ⊤ vec

(
B +A ∂si(γi(θ),ν)

∂γ⊤

)∥∥∥. By the compactness of Θ
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and using the chain rule, we arrive at

sup
θ∈Θ

∥∥∥∥∥ ∂

∂θ⊤
vec

(
B +A

∂si(γi(θ),ν)

∂γ⊤

)∥∥∥∥∥
≤ sup

θ∈Θ

{∥∥∥∥∂ vec(B)

∂θ⊤

∥∥∥∥+

∥∥∥∥∂si(γi(θ),ν)

∂γ⊤

∥∥∥∥∥∥∥∥∂ vec(A)

∂θ⊤

∥∥∥∥+ ∥A∥
∥∥∥∥ ∂

∂θ⊤
vec

(
∂si(γi(θ),ν)

∂γ⊤

)∥∥∥∥
}

≤ C + C sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂si(γ,ν)

∂γ⊤

)∥∥∥∥∥ sup
θ∈Θ

∥∥∥γ(1)
i (θ)

∥∥∥+ C sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂θ⊤
vec

(
∂si(γ,ν)

∂γ⊤

)∥∥∥∥∥.
By (D.11), Assumptions A1, AN2, and the results in Parts (iii) and (viii) of Lemma F.7, we have

sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂∇i(γ,ν)

∂γ⊤

)∥∥∥∥∥ ≤ C. (D.15)

As a result, we have supθ∈Θ supγ∈G

∥∥∥ ∂
∂γ⊤ vec

(
∂si(γ,ν)
∂γ⊤

)∥∥∥ ≤ C. Moreover, it has been shown above

that supθ∈Θ supγ∈G

∥∥∥ ∂
∂θ⊤ vec

(
∂si(γ,ν)
∂γ⊤

)∥∥∥ ≤ C. Combining these results gives the claim in (IIa).

For the claim in (IIb), we utilize Assumptions A1 and AN1, along with Eq. (D.3), the results

in (F.36), and Parts (iii-1) and (vii) of Lemma F.7, obtaining

sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂θ⊤
vec

(
∂∇i(γ,ν)

∂θ⊤

)∥∥∥∥∥ ≤ C. (D.16)

Consequently, supθ∈Θ supγ∈G

∥∥∥ ∂
∂θ⊤ vec

(
∂si(γ,ν)

∂θ⊤

)∥∥∥ ≤ C and supθ∈Θ supγ∈G

∥∥∥∂q(1),i(γ,θ)

∂θ⊤

∥∥∥ ≤ C in

conjunction with (D.4).

Finally, the claim in (IIc) immediately follows from supθ∈Θ supγ∈G

∥∥∥ ∂
∂γ⊤ vec

(
∂si(γ,ν)

∂θ⊤

)∥∥∥ ≤ C.

Verification of Conditions ĤL2 - ĤL4: The steps for verifying ĤL2 - ĤL4 are similar to those

in the proof for the first-order derivative processes. We only provide some details for ĤL4. Recall

that for κ > 0 defined in Assumption AN3, we have E
(∥∥d(1)

i

∥∥κ
Θ

)
< ∞ as established in (D.9).

Using (D.9), (D.14) implies that E
(

supθ∈Θ
∥∥q(2),i(γ(1)

i (θ),γi(θ),θ
)∥∥)κ/2 ≤ C. Similar to (D.7),

for κ̃ = κ/3 > 0, by employing the Minkowski inequality and subsequently Hölder’s inequality,

[
E
(∥∥d(2)

i

∥∥κ̃
Θ

)]1/κ̃
≤

∞∑
j=0

{[
E
(

sup
θ∈Θ

∥∥∥∥ j∏
ℓ=1

Q(2),i−ℓ

(
γi−ℓ(θ),θ

)∥∥∥∥)3κ̃
]1/(3κ̃)

×

[
E
(

sup
θ∈Θ

∥∥∥q(2),i(γ(1)
i (θ),γi(θ),θ

)∥∥∥)3κ̃/2
]2/(3κ̃)}

≤ C

∞∑
j=0

[
E
(

sup
θ∈Θ

∥∥∥∥ j∏
ℓ=1

Q(2),i−ℓ

(
γi−ℓ(θ),θ

)∥∥∥∥)κ
]1/κ

<∞, (D.17)
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where the final step follows from Assumption AN3 as in (D.8). Therefore, we obtain E
(∥∥d(2)

i

∥∥κ/3
Θ

)
<

∞ and thus ĤL4.

Verification of Condition ĤL5: Note that, by ∥ vec(·)∥ ≤
√

rank(·) ∥ · ∥,

∥∥λ̂(2),i(0)−λ(2),i(0)
∥∥
Θ

= sup
θ∈Θ

∥∥∥q(2),i(γ̂(1)
i (θ), γ̂i(θ),θ

)
−q(2),i

(
γ
(1)
i (θ),γi(θ),θ

)∥∥∥ ≤ C

3∑
j=1

R̃j,i,

where

R̃1,i = sup
θ∈Θ

∥∥∥∥∥(γ̂(1)
i (θ)⊤ ⊗ Inγnθ

)∂ vec
(
Q(1),i

(
γ̂i(θ),θ

))
∂θ⊤

−
(
γ
(1)
i (θ)⊤ ⊗ Inγnθ

)∂ vec
(
Q(1),i

(
γi(θ),θ

))
∂θ⊤

∥∥∥∥∥
≤ sup

θ∈Θ

∥∥∥γ̂(1)
i (θ)

∥∥∥ sup
θ∈Θ

∥∥∥∥∥∂ vec
(
Q(1),i

(
γ̂i(θ),θ

))
∂θ⊤

−
∂ vec

(
Q(1),i

(
γi(θ),θ

))
∂θ⊤

∥∥∥∥∥
+ sup

θ∈Θ

∥∥∥γ̂(1)
i (θ) − γ(1)

i (θ)
∥∥∥ sup

θ∈Θ

∥∥∥∥∥∂ vec
(
Q(1),i

(
γi(θ),θ

))
∂θ⊤

∥∥∥∥∥, (D.18)

and

R̃2,i = sup
θ∈Θ

∥∥∥∥∥ vec

(
∂q(1),i(γ,θ)

∂θ⊤

∣∣∣∣∣
γ=γ̂i(θ)

)
− vec

(
∂q(1),i(γ,θ)

∂θ⊤

∣∣∣∣∣
γ=γi(θ)

)∥∥∥∥∥
≤ sup

θ∈Θ
sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂q(1),i(γ,θ)

∂θ⊤

)∥∥∥∥∥ sup
θ∈Θ

∥∥∥γ̂i(θ) − γi(θ)
∥∥∥, (D.19)

R̃3,i =

∥∥∥∥∥
(
Inθ

⊗
∂q(1),i(γ,θ)

∂γ⊤

∣∣∣∣∣
γ=γ̂i(θ)

)
γ̂
(1)
i (θ) −

(
Inθ

⊗
∂q(1),i(γ,θ)

∂γ⊤

∣∣∣∣∣
γ=γi(θ)

)
γ
(1)
i (θ)

∥∥∥∥∥
≤ sup

θ∈Θ
sup
γ∈G

∥∥∥∥∥∂q(1),i(γ,θ)

∂γ⊤

∥∥∥∥∥ sup
θ∈Θ

∥∥∥γ̂(1)
i (θ) − γ(1)

i (θ)
∥∥∥

+ sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂q(1),i(γ,θ)

∂γ⊤

)∥∥∥∥∥ sup
θ∈Θ

∥∥∥γ̂i(θ) − γi(θ)
∥∥∥ sup

θ∈Θ

∥∥∥γ(1)
i (θ)

∥∥∥. (D.20)

Note that supθ∈Θ
∥∥γ(1)

i (θ)
∥∥ is measurable, owing to the continuity of γ

(1)
i (·) on Θ and the

compactness of Θ. Moreover,
{

supθ∈Θ
∥∥γ(1)

i (θ)
∥∥, i ∈ Z

}
is SE with E

(
log+ supθ∈Θ

∥∥γ(1)
0 (θ)

∥∥) <
∞ as shown in Eq. (D.9). Since supθ∈Θ

∥∥γ̂(1)
i (θ)−γ(1)

i (θ)
∥∥ e.a.s.−→ 0 as i→ ∞, it follows from Lemma

2.1 of Straumann and Mikosch (2006) that supθ∈Θ
∥∥γ̂(1)

i (θ) − γ(1)
i (θ)

∥∥ supθ∈Θ
∥∥γ(1)

i (θ)
∥∥ e.a.s.−→ 0

as i→ ∞. Note further that supθ∈Θ
∥∥γ̂(1)

i (θ)
∥∥ ≤ supθ∈Θ

∥∥γ(1)
i (θ)

∥∥+ supθ∈Θ
∥∥γ̂(1)

i (θ) − γ(1)
i (θ)

∥∥.

With the results in Parts (IIa) and (IIc) on Appendix p. 16, to establish that
∥∥λ̂(2),i(0) −

λ(2),i(0)
∥∥
Θ

e.a.s.−→ 0 as i→ ∞, it suffices to prove that

(IId) supθ∈Θ

∥∥∥∂ vec(Q(1),i(γ̂i(θ),θ))

∂θ⊤ − ∂ vec(Q(1),i(γi(θ),θ))

∂θ⊤

∥∥∥ e.a.s.−→ 0 as i→ ∞;
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(IIe) supθ∈Θ supγ∈G

∥∥∥ ∂
∂γ⊤ vec

(
∂q(1),i(γ,θ)

∂θ⊤

)∥∥∥ ≤ C;

(IIf) supθ∈Θ supγ∈G

∥∥∥ ∂
∂γ⊤ vec

(
∂q(1),i(γ,θ)

∂γ⊤

)∥∥∥ ≤ C.

For (IId), the proof reduces to showing that supθ∈Θ

∥∥∥ ∂
∂θ⊤ vec

(
A
(

∂si(γ̂i(θ),ν)
∂γ⊤ − ∂si(γi(θ),ν)

∂γ⊤

))∥∥∥ e.a.s.−→

0 as i → ∞ because of the norm equivalence. By the chain rule (Lütkepohl, 2005, Proposition

A.1), we have

sup
θ∈Θ

∥∥∥∥∥ ∂

∂θ⊤
vec

(
A

(
∂si
(
γ̂i(θ),ν

)
∂γ⊤ − ∂si(γi(θ),ν)

∂γ⊤

))∥∥∥∥∥
≤ C sup

θ∈Θ
sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂si(γ,ν)

∂γ⊤

)∥∥∥∥∥ sup
θ∈Θ

∥∥γ̂i(θ) − γi(θ)
∥∥

+ C sup
θ∈Θ

∥∥∥∥∥ ∂

∂θ⊤
vec

(
∂si
(
γ̂i(θ),ν

)
∂γ⊤ − ∂si(γi(θ),ν)

∂γ⊤

)∥∥∥∥∥
≤ C sup

θ∈Θ

∥∥γ̂i(θ) − γi(θ)
∥∥+ C sup

θ∈Θ

∥∥∥∥∥ ∂

∂θ⊤
vec

(
∂si
(
γ̂i(θ),ν

)
∂γ⊤ − ∂si(γi(θ),ν)

∂γ⊤

)∥∥∥∥∥. (D.21)

Recall that supθ∈Θ supγ∈G

∥∥∥ ∂
∂γ⊤ vec

(
∂si(γ,ν)
∂γ⊤

)∥∥∥ ≤ C. It remains to show the second term in (D.21)

coverages to zero e.a.s. Using the chain rule again, we obtain

sup
θ∈Θ

∥∥∥∥∥ ∂

∂θ⊤
vec

(
∂si
(
γ̂i(θ),ν

)
∂γ⊤ − ∂si(γi(θ),ν)

∂γ⊤

)∥∥∥∥∥
≤ sup

θ∈Θ

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂si(γ,ν)

∂γ⊤

)∣∣∣∣∣
γ=γ̂i(θ)

∂γ̂i(θ)

∂θ⊤
− ∂

∂γ⊤ vec

(
∂si(γ,ν)

∂γ⊤

)∣∣∣∣∣
γ=γi(θ)

∂γi(θ)

∂θ⊤

∥∥∥∥∥
+ sup

θ∈Θ

∥∥∥∥∥ ∂

∂θ⊤
vec

(
∂si(γ,ν)

∂γ⊤

)∣∣∣∣∣
γ=γ̂i(θ)

− ∂

∂θ⊤
vec

(
∂si(γ,ν)

∂γ⊤

)∣∣∣∣∣
γ=γi(θ)

∥∥∥∥∥ =: ∆γθ
Υ,1 + ∆γθ

Υ,2. (D.22)

Note that ∥C1D1 − C2D2∥ ≤ ∥C1 − C2∥ ∥D2∥ + ∥D1 − D2∥ ∥C2∥ + ∥C1 − C2∥ ∥D1 − D2∥.

Together with a mean value theorem for vector-valued functions (see, e.g., Rudin, 1976, Theorem

9.19), this implies

∆γθ
Υ,1 ≤ sup

θ∈Θ

∥∥∥γ̂(1)
i (θ) − γ(1)

i (θ)
∥∥∥ sup

θ∈Θ
sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂si(γ,ν)

∂γ⊤

)∥∥∥∥∥+ sup
θ∈Θ

∥∥γ̂i(θ) − γi(θ)
∥∥

× sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂

∂γ⊤ vec

(
∂si(γ,ν)

∂γ⊤

))∥∥∥∥∥
(

sup
θ∈Θ

∥∥∥γ(1)
i (θ)

∥∥∥+ sup
θ∈Θ

∥∥∥γ̂(1)
i (θ) − γ(1)

i (θ)
∥∥∥),

∆γθ
Υ,2 ≤ sup

θ∈Θ
sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂

∂θ⊤
vec

(
∂si(γ,ν)

∂γ⊤

))∥∥∥∥∥ sup
θ∈Θ

∥∥γ̂i(θ) − γi(θ)
∥∥.

We see that (D.22) converges to zero e.a.s. if supθ∈Θ supγ∈G

∥∥∥ ∂
∂γ⊤ vec

(
∂

∂γ⊤ vec
(

∂si(γ,ν)
∂γ⊤

))∥∥∥ ≤ C
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and supθ∈Θ supγ∈G

∥∥∥ ∂
∂γ⊤ vec

(
∂

∂θ⊤ vec
(

∂si(γ,ν)
∂γ⊤

))∥∥∥ ≤ C.

Although these two conditions hold, the proof involves third-order derivatives and is exceedingly

tedious. As the steps do not provide additional insights, we omit the full details and instead

outline the key steps below. Given (F.52) and Assumptions AN1, AN2, by applying (F.12) and

(F.22) repeatedly, we have

sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂

∂γ⊤ vec

(
∂si(γ,ν)

∂γ⊤

))∥∥∥∥∥ ≤ C sup
θ∈Θ

sup
γ∈G

∥∥∇i(γ,ν)
∥∥+ C sup

θ∈Θ
sup
γ∈G

∥∥∥∥∂∇i(γ,ν)

∂γ⊤

∥∥∥∥
+ C sup

θ∈Θ
sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂∇i(γ,ν)

∂γ⊤

)∥∥∥∥∥+ C sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂

∂γ⊤ vec

(
∂∇i(γ,ν)

∂γ⊤

))∥∥∥∥∥.
Note that the first three terms are bounded as shown in (B.14), (B.15), (D.11), (D.15). By applying

the results from Parts (iii-5), (v), and (viii) of Lemma F.7, we conclude that the final term above is

bounded as well. Therefore, one has supθ∈Θ supγ∈G

∥∥∥ ∂
∂γ⊤ vec

(
∂

∂γ⊤ vec
(

∂si(γ,ν)
∂γ⊤

))∥∥∥ ≤ C. The proof

of supθ∈Θ supγ∈G

∥∥∥ ∂
∂γ⊤ vec

(
∂

∂θ⊤ vec
(

∂si(γ,ν)
∂γ⊤

))∥∥∥ ≤ C follows similar steps as above. Combining

these results gives (IId).

For (IIe) - (IIf), from (F.36) and (F.37), we have

sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂q(1),i(γ,θ)

∂θ⊤

)∥∥∥∥∥ ≤ C sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂si(γ,ν)

∂θ⊤

)∥∥∥∥∥
+ C sup

θ∈Θ
sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂

∂θ⊤
vec

(
∂si(γ,ν)

∂θ⊤

))∥∥∥∥∥ ≤ C,

and

sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂q(1),i(γ,θ)

∂γ⊤

)∥∥∥∥∥ ≤ C sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂si(γ,ν)

∂γ⊤

)∥∥∥∥∥
+ C sup

θ∈Θ
sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂

∂γ⊤ vec

(
∂si(γ,ν)

∂θ⊤

))∥∥∥∥∥ ≤ C.

It follows that
∥∥λ̂(2),i(0) − λ(2),i(0)

∥∥
Θ

e.a.s.−→ 0 as i→ ∞.

Furthermore, as i→ ∞, ρ
(
λ̂(2),i − λ(2),i

)
≤ supθ∈Θ

∥∥Q(2),i

(
γ̂i(θ),θ

)
−Q(2),i

(
γi(θ),θ

)∥∥ e.a.s.−→ 0

follows directly from the same argument used for ρ
(
λ̂(1),i − λ(1),i

)
earlier.

Finally, using the reasoning in Part (3) on p. 2483 of Straumann and Mikosch (2006) again,

one has γ
(2)
i = d

(2)
i on Θ a.s. This completes the proof.
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E Proof of Theorem 2 (asymptotic normality)

The following lemmas (Lemma E.1 - Lemma E.3) establish the asymptotic normality of θ̂T .

Lemma E.1. Suppose
{
Yi, i ∈ Z

}
is generated by (2.9) and (2.10) with θ0 ∈ Θ. Under the

assumptions of Proposition 4, if E
(∥∥γ(1)

i (θ0)
∥∥2) <∞, then

√
T ∂LT (θ0)

∂θ

d→ N
(
0,I0

)
as T → ∞,

where I0 = E
(

∂ℓi(γi(θ0),ν0)
∂θ

∂ℓi(γi(θ0),ν0)
∂θ⊤

)
is defined in Theorem 2.

Proof of Lemma E.1. We use the Cramér-Wold device to establish the asymptotic distribution
√
T ∂LT (θ0)

∂θ
. Let a ∈ Rnθ be any unit vector. Then, we consider the limiting distribution of

√
T

(
a⊤∂LT (θ0)

∂θ

)
=

T∑
i=1

XT,i, XT,i =
1√
T
a⊤∂ℓi

(
γi(θ),ν

)
∂θ

∣∣∣∣∣
θ=θ0

, (E.1)

as T → ∞. We shall apply the CLT for a martingale difference array, as provided in Theorem

24.3 of Davidson (1994). We verify the following conditions, enabling us to apply the theorem:

CLT1
{
XT,i,FT,i

}
is a martingale difference array, where FT,i = Fi = σ

(
Ys, s ≤ i

)
for all

i ≤ T ;

CLT2
∑T

i=1X
2
T,i

p→ a⊤I0a;

CLT3 max1≤i≤T |XT,i|
p→ 0.

Verification of Condition CLT1: Without confusion, define Ei(·) = E( · | FT,i). Note that

CLT1 follows immediately if it holds a.s. that

Ei−1

(
∂ℓi
(
γi(θ),ν

)
∂θ

∣∣∣∣∣
θ=θ0

)
= N−1

∫
∂ log p

(
y
∣∣γi(θ),ν

)
∂θ

∣∣∣∣∣
θ=θ0

p
(
y
∣∣γi(θ0),ν0) dy

= N−1

∫
∂ p
(
y
∣∣γi(θ),ν

)
∂θ

∣∣∣∣∣
θ=θ0

dy = 0. (E.2)

Note that
∫
p
(
y
∣∣γi(θ),ν

)
dy = 1. Then (E.2) holds trivially if differentiation with respect

to θ and integration can be interchanged; see, for example, the conditions in Schilling (2017,

Theorem 12.5) or Klenke (2020, Theorem 6.28). Using results from Lemma F.7 to verify the

interchangeability is possible but cumbersome, and thus omitted here. On the other hand, one can

also directly compute (E.2). Recall θ =
(
ν1,ν

⊤
2 ,ω

⊤, vec(A)⊤, vec(B)⊤
)⊤

with true value θ0 =(
ν1,ν

⊤
20,ω

⊤
0 , vec(A0)

⊤, vec(B0)
⊤)⊤. Adopt the notation ui(ν2,γ) = Λ(ν2)

−1/2Σ(γ)−1
(
Yi−µ(γ)

)
from (F.7). Note that ui

(
ν20,γi(θ0)

)
= Λ(ν20)

−1/2εi
i.i.d.∼ tν10

(
0, IN

)
, where εi is given in Eq.
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(2.10). By the chain rule, we have

∂ℓi
(
γi(θ),ν

)
∂θ

∣∣∣∣∣
θ=θ0

=
∂ℓi(γ,ν)

∂θ

∣∣∣∣∣
γ=γi(θ0),θ=θ0

+

(
∂ℓi(γ,ν)

∂γ⊤

∣∣∣∣∣
γ=γi(θ0),θ=θ0

∂γi(θ)

∂θ⊤

∣∣∣∣∣
θ=θ0

)⊤

. (E.3)

Note that ∂γi(θ)
∂θ⊤

∣∣∣
θ=θ0

is FT,i−1-measurable. Therefore, to prove (E.2), it suffices to show that

Ei−1

(
∂ℓi(γ,ν)

∂θ

∣∣∣∣∣
γ=γi(θ0),θ=θ0

)
= 0, Ei−1

(
∂ℓi(γ,ν)

∂γ

∣∣∣∣∣
γ=γi(θ0),θ=θ0

)
= 0, a.s. (E.4)

i. For the first part in (E.4), note that ∂ℓi(γ,ν)
∂θ

=
(

∂ℓi(γ,ν)
∂ν1

, ∂ℓi(γ,ν)
∂ν⊤

2
, ∂ℓi(γ,ν)

∂ω⊤ , ∂ℓi(γ,ν)
∂ vec(A)⊤

, ∂ℓi(γ,ν)
∂ vec(B)⊤

)⊤
,

where the last three terms are 0. For the first term, we have

∂ℓi(γ,ν)

∂ν1

∣∣∣∣∣
γ=γi(θ0),θ=θ0

=
1

2N

[
ψ

(
ν10 +N

2

)
− ψ

(
ν10
2

)
+ κ01,i + log(κ02,i) −

N

ν10
κ02,i

]
,

where ψ(x) = d log Γ(x)/dx is the digamma function, and

κ01,i =
ν−1
10 ui

(
ν20,γi(θ0)

)⊤
ui

(
ν20,γi(θ0)

)
1 + ν−1

10 ui

(
ν20,γi(θ0)

)⊤
ui

(
ν20,γi(θ0)

) , κ02,i = 1 − κ01,i. (E.5)

By (F.1) in Lemma F.4 and the moment properties of beta distribution, we know Ei−1(κ
0
1,i) =

E(κ01,i) = N
ν10+N

and Ei−1 log(κ02,i) = E log(1 − κ01,i) = ψ
(
ν10
2

)
− ψ

(
ν10+N

2

)
. Therefore, we obtain

Ei−1

(
∂ℓi
(
γ,ν

)
∂ν1

∣∣∣∣∣
γ=γi(θ0),θ=θ0

)
= 0. (E.6)

We now address the second term in ∂ℓi(γ,ν)
∂θ

. Note that, for a differentiable map A(·) : R → RN×N ,

one has the well-known Jacobi’s formula:

d

dx
det
(
A(x)

)
= det

(
A(x)

)
tr

(
A(x)−1 d

dx
A(x)

)
, (E.7)

provided A(x) is invertible (see, e.g., Horn and Johnson, 2012, Eq. (0.8.10.1)). Let ν2,j be the

jth element of ν2. Using Eq. (E.7), we can obtain

∂ℓi
(
γ,ν

)
∂ν2,j

∣∣∣∣∣
γ=γi(θ0),θ=θ0

=
1

2N
tr

(
Λ(ν20)

∂

∂ν2,j

(
Λ(ν20)

−1
))

− 1

2N

ν10 +N

ν10
κ02,i ε

⊤
i

∂

∂ν2,j

(
Λ(ν20)

−1
)
εi.
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By the identity (F.6), we have

Ei−1

(
ν10 +N

ν10
κ02,i ε

⊤
i

∂

∂ν2,j

(
Λ(ν20)

−1
)
εi

)
= (ν10 +N) tr

{
Λ(ν20)

1/2 ∂

∂ν2,j

(
Λ(ν20)

−1
)
Λ(ν20)

1/2E

(
ν−1
10 ui

(
ν20,γi(θ0)

)
ui

(
ν20,γi(θ0)

)⊤
1 + ν−1

10 ui

(
ν20,γi(θ0)

)⊤
ui

(
ν20,γi(θ0)

))}

= (ν10 +N) tr

{
Λ(ν20)

1/2 ∂

∂ν2,j

(
Λ(ν20)

−1
)
Λ(ν20)

1/2 E(κ01,i)E
(
Ũ iŨ

⊤
i

)}

= tr

(
Λ(ν20)

∂

∂ν2,j

(
Λ(ν20)

−1
))
,

where Ũ i ∈ RN is uniformly distributed on the unit sphere in RN with E
(
Ũ iŨ

⊤
i

)
= N−1IN (Fang

et al., 2018, Eq. (2.17)). As a result, we have

E

(
∂ℓi
(
γ,ν

)
∂ν2,j

∣∣∣∣∣
γ=γi(θ0),θ=θ0

)
= 0, j ∈ Jnν − 1 K. (E.8)

Combining these results gives the first part in (E.4).

ii. For the second part in (E.4), we have

∂ℓi(γ,ν)

∂γ

∣∣∣∣∣
γ=γi(θ0),θ=θ0

= ∇µ,ε
i (γi(θ0),ν0) + ∇σ,ε

i (γi(θ0),ν0), (E.9)

where ∇µ,ε
i (·) and ∇σ,ε

i (·) are shown in (B.2). Note that Ei−1

(
∇µ,ε

i (γi(θ0),ν0)
)

= 0 by (F.5), and

Ei−1

(
∇σ,ε

i (γi(θ0),ν0)
)

= 0 is a result of the identity rowj

(
Λ(ν20)

1/2
)[

rowj

(
Λ(ν20)

−1/2
)]⊤

= 1

for j ∈ JN K and (F.6). The second part in (E.4) is thus obtained.

Verification of Conditions CLT2 – CLT3: If
{
a⊤ ∂ℓi(γi(θ),ν)

∂θ

∣∣∣
θ=θ0

, i ∈ Z
}

is additionally

SE with finite variance, then Condition CLT2 follows from Theorem 13.12, and Condition CLT3

follows from Theorem 23.16 of Davidson (1994), as it implies that the Lindeberg condition holds

for {XT,i}; also see, e.g., Theorem 18.3 of Billingsley (1999) and the discussion in Chapter 24.3

of Davidson (1994, p. 385). From (E.3), we see that ∂ℓi(γi(θ),ν)
∂θ

∣∣∣
θ=θ0

is a continuous function of(
εi,γi(θ0),γ

(1)
i (θ0)

)
. As the tuple

(
εi,γi(θ0),γ

(1)
i (θ0)

)
can be expressed in terms of (εi, εi−1, . . .)

under the assumptions of Proposition 4, it follows that it is (jointly) SE. Consequently, we conclude

that the sequence
{
a⊤ ∂ℓi(γi(θ),ν)

∂θ

∣∣∣
θ=θ0

, i ∈ Z
}

is also SE (Krengel, 1985, Proposition 4.3). Next,

we show that the second-order moment of a⊤ ∂ℓi(γi(θ),ν)
∂θ

∣∣∣
θ=θ0

is finite. By the identity (E.3), we
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obtain

E

∥∥∥∥∥a⊤∂ℓi
(
γi(θ),ν

)
∂θ

∣∣∣∣∣
θ=θ0

∥∥∥∥∥
2

≤ C

{
E

∥∥∥∥∥∂ℓi(γ,ν)

∂θ

∣∣∣∣∣
γ=γi(θ0),θ=θ0

∥∥∥∥∥
2

+ E

(∥∥∥∥∥∂ℓi(γ,ν)

∂γ

∣∣∣∣∣
γ=γi(θ0),θ=θ0

∥∥∥∥∥
2 ∥∥∥γ(1)

i (θ0)
∥∥∥2)}. (E.10)

Note that the first term inside the curly brackets above is bounded by applying Lemma F.4.

Furthermore, from (E.9), ∂ℓi(γ,ν)
∂γ

∣∣∣
γ=γi(θ0),θ=θ0

depends only on the present innovation εi, whereas

γ
(1)
i (θ0) depends on the past (εi−1, εi−2, . . .); thus, they are independent. Therefore, using

Lemma F.4, the second term can be bounded by

E

(∥∥∥∥∥∂ℓi(γ,ν)

∂γ

∣∣∣∣∣
γ=γi(θ0),θ=θ0

∥∥∥∥∥
2)

E
(∥∥∥γ(1)

i (θ0)
∥∥∥2) ≤ C E

(∥∥∥γ(1)
i (θ0)

∥∥∥2) <∞, (E.11)

where the final step is due to the assumption E
(∥∥γ(1)

i (θ0)
∥∥2) <∞. This completes the proof.

Lemma E.2. Under the assumptions of Proposition 4, if E
(

supθ∈Θ
∥∥γ(1)

i (θ)
∥∥2) < ∞ and

E
(

supθ∈Θ
∥∥γ(2)

i (θ)
∥∥) <∞, we have

sup
θ∈Θ

∥∥∥∥∂2L̂T (θ)

∂θ∂θ⊤
−J (θ)

∥∥∥∥ a.s.−→ 0, as T → ∞, (E.12)

where J (θ) = E
(

∂2ℓi(γi(θ),ν)
∂θ∂θ⊤

)
.

Proof of Lemma E.2. Similar to the proof of Lemma C.1, we have

sup
θ∈Θ

∥∥∥∥∥∂2L̂T (θ)

∂θ∂θ⊤
− ∂2L(θ)

∂θ∂θ⊤

∥∥∥∥∥ ≤ sup
θ∈Θ

∥∥∥∥∥∂2L̂T (θ)

∂θ∂θ⊤
− ∂2LT (θ)

∂θ∂θ⊤

∥∥∥∥∥+ sup
θ∈Θ

∥∥∥∥∥∂2LT (θ)

∂θ∂θ⊤
−J (θ)

∥∥∥∥∥.
Thus, it is enough to show that each term on the right-hand side converges to zero almost surely.

First term supθ∈Θ

∥∥∥∂2L̂T (θ)
∂θ∂θ⊤ − ∂2LT (θ)

∂θ∂θ⊤

∥∥∥ a.s.−→ 0: Note that

sup
θ∈Θ

∥∥∥∥∥∂2L̂T (θ)

∂θ∂θ⊤
− ∂2LT (θ)

∂θ∂θ⊤

∥∥∥∥∥ ≤ T−1

T∑
i=1

sup
θ∈Θ

∥∥∥∥∥∂2ℓi
(
γ̂i(θ),ν

)
∂θ∂θ⊤

−
∂2ℓi

(
γi(θ),ν

)
∂θ∂θ⊤

∥∥∥∥∥. (E.13)
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Using the argument below (C.2), it suffices to show that

sup
θ∈Θ

∥∥∥∥∥∂2ℓi
(
γ̂i(θ),ν

)
∂θ∂θ⊤

−
∂2ℓi

(
γi(θ),ν

)
∂θ∂θ⊤

∥∥∥∥∥ e.a.s.−→ 0, (E.14)

as i→ ∞. From (E.3), applying the chain rule and (F.18), we obtain

∂2ℓi
(
γi(θ),ν

)
∂θ∂θ⊤

=
∂2ℓi(γ,ν)

∂θ∂θ⊤

∣∣∣∣∣
γ=γi(θ)

+
∂γi(θ)⊤

∂θ

∂2ℓi(γ,ν)

∂γ∂θ⊤

∣∣∣∣∣
γ=γi(θ)

+
∂2ℓi(γ,ν)

∂θ∂γ⊤

∣∣∣∣∣
γ=γi(θ)

∂γi(θ)

∂θ⊤

+
∂γi(θ)⊤

∂θ

∂2ℓi(γ,ν)

∂γ∂γ⊤

∣∣∣∣∣
γ=γi(θ)

∂γi(θ)

∂θ⊤
+

(
∂ℓi(γ,ν)

∂γ⊤

∣∣∣∣∣
γ=γi(θ)

⊗ Inθ

)
Γi(θ), (E.15)

with
∂2ℓi(γ,ν)

∂θ∂θ⊤
=

 ∂2ℓi(γ,ν)

∂ν21

∂2ℓi(γ,ν)

∂ν1∂ν
⊤
2

∂2ℓi(γ,ν)

∂ν2∂ν1

∂2ℓi(γ,ν)

∂ν2∂ν
⊤
2

O

,
∂2ℓi(γ,ν)

∂γ∂γ⊤

∣∣∣∣
γ=γi(θ)

=
∂∇i(γ,ν)⊤

∂γ

∣∣∣∣
γ=γi(θ)

,
∂2ℓi(γ,ν)

∂θ∂γ⊤

∣∣∣∣
γ=γi(θ)

=
∂∇i(γ,ν)⊤

∂θ

∣∣∣∣
γ=γi(θ)

+
∂γi(θ)⊤

∂θ

∂∇i(γ,ν)⊤

∂γ

∣∣∣∣
γ=γi(θ)

, Γi(θ) =


∂2γi,1(θ)

∂θ∂θ⊤

...
∂2γi,nγ (θ)

∂θ∂θ⊤

 and γi,j(·) is the jth

element of γi(·) for j ∈ Jnγ K.

Therefore, to establish (E.14), we shall prove

sup
θ∈Θ

∥∥∥∥∥∂2ℓi(γ,ν)

∂θ∂θ⊤

∣∣∣∣∣
γ=γ̂i(θ)

− ∂2ℓi(γ,ν)

∂θ∂θ⊤

∣∣∣∣∣
γ=γi(θ)

∥∥∥∥∥ e.a.s.−→ 0, (E.16)

sup
θ∈Θ

∥∥∥∥∥∂2ℓi(γ,ν)

∂θ∂γ⊤

∣∣∣∣∣
γ=γ̂i(θ)

∂γ̂i(θ)

∂θ⊤
− ∂2ℓi(γ,ν)

∂θ∂γ⊤

∣∣∣∣∣
γ=γi(θ)

∂γi(θ)

∂θ⊤

∥∥∥∥∥ e.a.s.−→ 0, (E.17)

sup
θ∈Θ

∥∥∥∥∥∂γ̂i(θ)⊤

∂θ

∂2ℓi(γ,ν)

∂γ∂γ⊤

∣∣∣∣∣
γ=γ̂i(θ)

∂γ̂i(θ)

∂θ⊤
− ∂γi(θ)⊤

∂θ

∂2ℓi(γ,ν)

∂γ∂γ⊤

∣∣∣∣∣
γ=γi(θ)

∂γi(θ)

∂θ⊤

∥∥∥∥∥ e.a.s.−→ 0, (E.18)

sup
θ∈Θ

∥∥∥∥∥
(
∂ℓi(γ,ν)

∂γ⊤

∣∣∣∣∣
γ=γ̂i(θ)

⊗ Inθ

)
Γ̂i(θ) −

(
∂ℓi(γ,ν)

∂γ⊤

∣∣∣∣∣
γ=γi(θ)

⊗ Inθ

)
Γi(θ)

∥∥∥∥∥ e.a.s.−→ 0, (E.19)

where Γ̂i(θ) corresponds to Γi(θ) with γi(·) replaced by γ̂i(·). Consider (E.16) first. By ex-

amining the elements of the matrix, we obtain supθ∈Θ

∥∥∥∂2ℓi(γ,ν)
∂θ∂θ⊤

∣∣∣
γ=γ̂i(θ)

− ∂2ℓi(γ,ν)
∂θ∂θ⊤

∣∣∣
γ=γi(θ)

∥∥∥ ≤

C supθ∈Θ
∥∥γ̂i(θ)−γi(θ)

∥∥ e.a.s.−→ 0 as i→ ∞. Moreover, by applying the inequality ∥C1D1−C2D2∥ ≤

∥C1 − C2∥ ∥D2∥ + ∥D1 −D2∥ ∥C2∥ + ∥C1 − C2∥ ∥D1 −D2∥ and the reasoning below (D.20),

we can obtain (E.17), if (i) supθ∈Θ
∥∥γ̂(1)

i (θ) − γ
(1)
i (θ)

∥∥ e.a.s.−→ 0, (ii) supθ∈Θ

∥∥∥∂2ℓi(γ,ν)
∂θ∂γ⊤

∣∣∣
γ=γ̂i(θ)

−
∂2ℓi(γ,ν)
∂θ∂γ⊤

∣∣∣
γ=γi(θ)

∥∥∥ e.a.s.−→ 0, and (iii) E
(

supθ∈Θ

∥∥∥∂2ℓi(γ,ν)
∂θ∂γ⊤

∣∣∣
γ=γi(θ)

∥∥∥κ) < ∞ for some κ > 0. The first

point is guaranteed by Proposition 4. For the second point, using a mean value theorem for
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vector-valued functions (see, e.g., Rudin, 1976, Theorem 9.19), we obtain

sup
θ∈Θ

∥∥∥∥∥∂2ℓi(γ,ν)

∂θ∂γ⊤

∣∣∣∣∣
γ=γ̂i(θ)

− ∂2ℓi(γ,ν)

∂θ∂γ⊤

∣∣∣∣∣
γ=γi(θ)

∥∥∥∥∥
≤ sup

θ∈Θ
sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂∇i(γ,ν)

∂θ⊤

)∥∥∥∥∥ sup
θ∈Θ

∥∥∥γ̂i(θ) − γi(θ)
∥∥∥

+ sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥∂∇i(γ,ν)

∂γ⊤

∥∥∥∥∥ sup
θ∈Θ

∥∥∥γ̂(1)
i (θ) − γ(1)

i (θ)
∥∥∥

+ sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂∇i(γ,ν)

∂γ⊤

)∥∥∥∥∥ sup
θ∈Θ

∥∥∥γ(1)
i (θ)

∥∥∥ sup
θ∈Θ

∥∥∥γ̂(1)
i (θ) − γ(1)

i (θ)
∥∥∥.

By (D.11), (D.13), and (D.15), it is clear that the terms on the right-hand side above converge

to zero e.a.s. Finally, E
(

supθ∈Θ

∥∥∥∂2ℓi(γ,ν)
∂θ∂γ⊤

∣∣∣
γ=γi(θ)

∥∥∥κ) < ∞ follows from (D.3) (D.9), and (D.11).

Therefore, (E.17) holds true. One can similarly obtain (E.18) using (D.9) and (D.15). Note that

(E.19) is bounded by

C

{
sup
θ∈Θ

sup
γ∈G

∥∥∥∥∥∂ℓi(γ,ν)

∂γ⊤

∥∥∥∥∥ sup
θ∈Θ

∥∥∥γ̂(2)
i (θ) − γ(2)

i (θ)
∥∥∥+ sup

θ∈Θ
sup
γ∈G

∥∥∥∥∥∂2ℓi(γ,ν)

∂γ∂γ⊤

∥∥∥∥∥ sup
θ∈Θ

∥∥∥γ̂i(θ) − γi(θ)
∥∥∥

× sup
θ∈Θ

∥∥∥γ(2)
i (θ)

∥∥∥} ≤ C sup
θ∈Θ

∥∥∥γ̂(2)
i (θ) − γ(2)

i (θ)
∥∥∥+ C sup

θ∈Θ

∥∥∥γ̂i(θ) − γi(θ)
∥∥∥ sup

θ∈Θ

∥∥∥γ(2)
i (θ)

∥∥∥.
Since supθ∈Θ

∥∥γ̂(2)
i (θ) − γ(2)

i (θ)
∥∥ e.a.s.−→ 0, supθ∈Θ

∥∥γ̂i(θ) − γi(θ)
∥∥ e.a.s.−→ 0, and the existence of a

finite moment for supθ∈Θ
∥∥γ(2)

i (θ)
∥∥ (i.e., Eq. (D.17)), one has Eq. (E.19).

Second term supθ∈Θ

∥∥∥∂2LT (θ)
∂θ∂θ⊤ −J (θ)

∥∥∥ a.s.−→ 0: We use the same approach as in Lemma C.1.

Specifically, we apply the uniform law of large numbers provided in White (1996, Theorem A.2.2)

to the SE sequence
{

∂2ℓi(γi(θ),ν)
∂θ∂θ⊤ , i ∈ Z

}
for θ ∈ Θ. This requires E

(
supθ∈Θ

∥∥∥∂2ℓi(γi(θ),ν)
∂θ∂θ⊤

∥∥∥) <∞.

Since E
(

supθ∈Θ supγ∈G

∥∥∥∂2ℓi(γ,ν)
∂θ∂θ⊤

∥∥∥) < ∞, supθ∈Θ supγ∈G

∥∥∥∂2ℓi(γ,ν)
∂θ∂γ⊤

∥∥∥ ≤ C + C supθ∈Θ
∥∥γ(1)

i (θ)
∥∥,

supθ∈Θ supγ∈G

∥∥∥∂2ℓi(γ,ν)
∂γ∂γ⊤

∥∥∥ ≤ C, and

E

(
sup
θ∈Θ

∥∥∥∥∥
(
∂ℓi
(
γ,ν

)
∂γ⊤

∣∣∣∣∣
γ=γi(θ)

⊗ Inθ

)
Γi(θ)

∥∥∥∥∥
)

≤ C E
(

sup
θ∈Θ

∥∥γ(2)
i (θ)

∥∥).
From (E.15), we obtain E

(
supθ∈Θ

∥∥∥∂2ℓi(γi(θ),ν)
∂θ∂θ⊤

∥∥∥) < ∞ given E
(

supθ∈Θ
∥∥γ(1)

i (θ)
∥∥2) < ∞ and

E
(

supθ∈Θ
∥∥γ(2)

i (θ)
∥∥) <∞ hold.
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Lemma E.3. Under the assumptions of Proposition 4, we have

√
T

∥∥∥∥∂L̂T (θ0)

∂θ
− ∂LT (θ0)

∂θ

∥∥∥∥ a.s.−→ 0, as T → ∞. (E.20)

Proof of Lemma E.3. Similar to (E.13), by applying the argument below (C.2), it is sufficient to

show that
∥∥∥∂ℓi(γ̂i(θ),ν)

∂θ

∣∣∣
θ=θ0

− ∂ℓi(γi(θ),ν)
∂θ

∣∣∣
θ=θ0

∥∥∥ e.a.s.−→ 0, as i→ ∞. By (E.3), we have
∥∥∥∂ℓi(γ̂i(θ),ν)

∂θ

∣∣∣
θ=θ0

−
∂ℓi(γi(θ),ν)

∂θ

∣∣∣
θ=θ0

∥∥∥ ≤ ∆θ
ℓ,1 + ∆θ

ℓ,2, where

∆θ
ℓ,1 =

∥∥∥∥∥∂ℓi(γ,ν)

∂θ

∣∣∣∣∣
γ=γ̂i(θ0),θ=θ0

− ∂ℓi(γ,ν)

∂θ

∣∣∣∣∣
γ=γi(θ0),θ=θ0

∥∥∥∥∥,
∆θ

ℓ,2 =

∥∥∥∥∥∂ℓi(γ,ν)

∂γ⊤

∣∣∣∣∣
γ=γ̂i(θ0),θ=θ0

∂γ̂i(θ)

∂θ⊤

∣∣∣∣∣
θ=θ0

− ∂ℓi(γ,ν)

∂γ⊤

∣∣∣∣∣
γ=γi(θ0),θ=θ0

∂γi(θ)

∂θ⊤

∣∣∣∣∣
θ=θ0

∥∥∥∥∥.
Using similar arguments as in the proof of Lemma E.2, along with Proposition 3 (which holds

under the assumptions of Proposition 4), Proposition 4, and the fact that E
(∥∥γ(1)

i (θ0)
∥∥κ) <∞ for

some κ > 0 (see Eq. (D.9)), it follows immediately that ∆θ
ℓ,1

e.a.s.−→ 0 and ∆θ
ℓ,2

e.a.s.−→ 0, as i→ ∞.

Proof of Theorem 2. As in Blasques et al. (2022, Theorem 4.15), our proof builds on standard

arguments for establishing the asymptotic normality of M-estimators; see, e.g., White (1996,

Theorem 6.2) and Hayashi (2000, Proposition 7.8). Specifically, the asymptotic normality result

in Theorem 2 holds if the following conditions are met:

AN1 the strong consistency of θ̂T
a.s.−→ θ0 ∈ int(Θ) ̸= ∅, as T → ∞, where int(Θ) denotes the

interior of Θ;

AN2 the a.s. twice continuous differentiability of L̂T on Θ;

AN3 the asymptotic normality of the score, i.e.,
√
T ∂L̂T (θ0)

∂θ

d→ N
(
0,I0

)
, as T → ∞;

AN4 the uniform convergence of the Hessian matrix supθ∈Θ

∥∥∥∂2L̂T (θ)
∂θ∂θ⊤ −J (θ)

∥∥∥ e.a.s.−→ 0, as T → ∞,

where J (θ) = E
(

∂2ℓi(γi(θ),ν)
∂θ∂θ⊤

)
is defined in Lemma E.2;

AN5 the information matrix equality I0 = −J (θ0) and the nonsingularity of I0.

Condition AN1 follows from Theorem 1 and the assumption that θ0 ∈ int(Θ), where int(Θ) ̸= ∅ by

Assumption AN4. AN2 holds under Assumptions AN1 and AN2, along with the expression in (E.15).

Note that E
(

supθ∈Θ
∥∥γ(1)

i (θ)
∥∥2) < ∞ and E

(
supθ∈Θ

∥∥γ(2)
i (θ)

∥∥) < ∞ follow from (D.9) and

(D.17), respectively, provided that Assumption AN3 holds for κ ≥ 3. Then, AN3 follows directly
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from Lemma E.1 and Lemma E.3, and AN4 is ensured by Lemma E.2. Furthermore, the information

matrix equality in AN5 follows from standard textbook arguments. Specifically, one first establishes

that the order of differentiation and integration for p( · |γi(θ),ν) and ∂p( · |γi(θ),ν)/∂θ can be

interchanged, and then shows that∫
p
(
y
∣∣γi(θ),ν

)∂ℓi(γi(θ),ν)

∂θ

∂ℓi(γi(θ),ν)

∂θ⊤
dy = −

∫
p
(
y
∣∣γi(θ),ν

)∂2ℓi(γi(θ),ν)

∂θ∂θ⊤
dy.

Evaluating the expression above at θ = θ0 and applying the law of iterated expectations yields the

information matrix equality. Finally, the nonsingularity of I0 follows by assumption, completing

the proof.

Appendix p. 28



F Auxiliary lemmas

We establish some lemmas that are useful for the main proofs.

Lemma F.4. Suppose ui ∼ tν
(
0, IN

)
, where N ∈ Z+ and ν > 0. We have

u⊤
i ui/ν

1 + u⊤
i ui/ν

∼ Beta

(
N

2
,
ν

2

)
,

1

1 + u⊤
i ui/ν

∼ Beta

(
ν

2
,
N

2

)
. (F.1)

Moreover, for any non-random vectors a,a1,a2 ∈ RN , we have the following moment inequalities:

E
[
a⊤
(

1 +
u⊤

i ui

ν

)−1
ui√
ν

]2
=

ν

(ν +N)(ν +N + 2)
∥a∥2, (F.2)

E

∣∣∣∣∣a⊤
1

(
1 +

u⊤
i ui

ν

)−1
uiu

⊤
i

ν
a2

∣∣∣∣∣ ≤ 1

ν +N
∥a1∥1/2 ∥a2∥1/2, (F.3)

E

[
a⊤
1

(
1 +

u⊤
i ui

ν

)−1
uiu

⊤
i

ν
a2

]2
=

1

(ν +N)(ν +N + 2)

[
2
(
a⊤
1 a2

)2
+ ∥a1∥2∥a2∥2

]
. (F.4)

Proof of Lemma F.4. For (F.1), see Harvey (2013, Proposition 39, p. 211).

Consider (F.2). Given that ui/
√
ν has a spherical distribution, we know

(
1+u⊤

i ui/ν
)−1
ui/

√
ν

also follows a spherical distribution. Theorem 2.3 of Fang et al. (2018) implies that

(
1 +

u⊤
i ui

ν

)−1
ui√
ν

d
=

(
u⊤

i ui/ν

1 + u⊤
i ui/ν

1

1 + u⊤
i ui/ν

)1/2

U i, (F.5)

where the notation “
d
=” denotes equality in distribution, and U i is uniformly distributed on the

unit sphere in RN , i.e., ∥U i∥ = 1. Furthermore, U i is independent of the term inside curly brackets

in (F.5). Since
(
1 + u⊤

i ui/ν
)−1
u⊤

i ui/ν ∼ Beta(N/2, ν/2) by (F.1), we obtain

E
(

u⊤
i ui/ν

1 + u⊤
i ui/ν

1

1 + u⊤
i ui/ν

)
= E

[
u⊤

i ui/ν

1 + u⊤
i ui/ν

(
1− u⊤

i ui/ν

1 + u⊤
i ui/ν

)]
=

Nν

(ν +N)(ν +N + 2)
.

Therefore, by Eq. (2.17) of Fang et al. (2018), we further obtain

E
[
a⊤
(

1 +
u⊤

i ui

ν

)−1
ui√
ν

]2
= E

(
u⊤

i ui/ν

1 + u⊤
i ui/ν

1

1 + u⊤
i ui/ν

)
E
(
a⊤U iU⊤

i a
)

=
ν

(ν +N)(ν +N + 2)
∥a∥2.

Next, consider (F.3). Similar to (F.5), the spherical property of
(
1 + u⊤

i ui/ν
)−1/2

ui/
√
ν
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implies that

(
1+
u⊤

i ui

ν

)−1
uiu

⊤
i

ν
=

[(
1+
u⊤

i ui

ν

)−1/2
ui√
ν

][(
1+
u⊤

i ui

ν

)−1/2
ui√
ν

]⊤
d
=

(
u⊤

i ui/ν

1 + u⊤
i ui/ν

)
Ũ iŨ

⊤
i ,

(F.6)

where Ũ i ∈ RN is uniformly distributed with ∥Ũ i∥ = 1, and is independent of
(
1 + u⊤

i ui/ν
)−1
u⊤

i ui/ν.

Using (F.6) and the Cauchy-Schwarz inequality, we obtain

E

∣∣∣∣∣a⊤
1

(
1 +

u⊤
i ui

ν

)−1
uiu

⊤
i

ν
a2

∣∣∣∣∣ = E
(

u⊤
i ui/ν

1 + u⊤
i ui/ν

)
E
∣∣∣a⊤

1 Ũ iŨ
⊤
i a2

∣∣∣
≤ E

(
u⊤

i ui/ν

1 + u⊤
i ui/ν

)[
E
(
a⊤
1 Ũ i

)2]1/2[E(a⊤
2 Ũ i

)2]1/2
≤ N

ν +N

(
N−1∥a1∥

)1/2(
N−1∥a2∥

)1/2
=

1

ν +N
∥a1∥1/2 ∥a2∥1/2,

where the second-to-last step is due to E
(
Ũ iŨ

⊤
i

)
= N−1IN (see Fang et al., 2018, Eq. (2.17)).

Finally, consider (F.4). Let a1,k, a2,k, and Ũi,k represent the kth elements of a1,a2, and Ũ i,

respectively, for k ∈ JN K. By (F.6), we then have

E

[(
a⊤
1

(
1 +

u⊤
i ui

ν

)−1
uiu

⊤
i

ν
a2

)2
]

= E
(

u⊤
i ui/ν

1 + u⊤
i ui/ν

)2

E
(
a⊤
1 Ũ iŨ

⊤
i a2

)2
=

N(N + 2)

(ν +N)(ν +N + 2)

N∑
j,k,ℓ,m=1

a1,ja1,ℓa2,ka2,mE
(
Ũi,j Ũi,k Ũi,ℓ Ũi,m

)
. (F.7)

By Song and Gupta (1997, Theorem 2.1), is it not hard to drive: E
(
Ũ4
i,j

)
= 3

[
N(N + 2)

]−1
,

E
(
Ũ2
i,jŨ2

i,k

)
=
[
N(N + 2)

]−1
, E
(
Ũi,jŨ3

i,k

)
= E

(
Ũi,j Ũi,k Ũi,ℓ Ũi,m

)
= 0, for j ̸= k ̸= ℓ ̸= m. That is,

E
(
Ũi,j Ũi,k Ũi,ℓ Ũi,m

)
=

1

N(N + 2)

(
δjkδℓm + δjℓδkm + δjmδkℓ

)
, j, k, ℓ,m ∈ JN K, (F.8)

where δpq is the Kronecker delta, i.e., for any p, q ∈ Z+, δpq = 1 if p = q and 0 otherwise. Therefore,

E

[
a⊤
1

(
1 +

u⊤
i ui

ν

)−1
uiu

⊤
i

ν
a2

]2

=
N(N + 2)

(ν +N)(ν +N + 2)

1

N(N + 2)

N∑
j,k,ℓ,m=1

a1,ja1,ℓa2,ka2,m
(
δjkδℓm + δjℓδkm + δjmδkℓ

)
=

1

(ν +N)(ν +N + 2)

[
2

(
N∑
j=1

a1,ja2,j

)2

+
N∑
j=1

a21,j

N∑
j=1

a22,j

]
. (F.9)
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Observe that the expression within the square brackets simplifies to 2
(
a⊤
1 a2

)2
+ ∥a1∥2∥a2∥2. This

completes the proof.

Lemma F.5. For any matrix A, let rowj(A) denote its jth row. Under Assumption A2, for

N ∈ Z+ and j ∈ JN K, we have

sup
ν∈Θν

∥∥ rowj

(
Λ(ν2)

1/2
)∥∥ ≤ sup

ν∈Θν

∥∥Λ(ν2)
1/2
∥∥
2,∞ <∞, (F.10)

sup
ν∈Θν

∥∥ rowj

(
Λ(ν2)

−1/2
)∥∥ ≤ sup

ν∈Θν

∥∥Λ(ν2)
−1/2

∥∥
2,∞ <∞. (F.11)

Proof of Lemma F.5. Note that ∥A∥2,∞ = max1≤j≤N ∥ rowj(A)∥ for any matrix A with N

rows. Moreover, ∥B∥2,∞ ≤ ∥B∥ for any matrix B. Utilizing the identity
∥∥Λ(ν2)

1/2
∥∥ =

∥∥Λ(ν2)
∥∥1/2

for any ν2 and Assumption A2, one can immediately obtain Lemma F.5.

Next, we summarize crucial rules of the vectorization operator and matrix derivatives, which

will be repeatedly used in the subsequent proofs.

Lemma F.6. Let k, l,m, n, p ∈ Z+. Moreover, ∥ · ∥F denotes the Frobenius norm.

(i) For any A ∈ Rl×m, B ∈ Rm×n, and b ∈ Rn×1,

vec(AB) = (In ⊗A) vec(B) = (B⊤ ⊗ Il) vec(A), (F.12)

vec(b⊤ ⊗A) = b⊗ vec(A). (F.13)

Moreover, if C =
(
C1,C2, . . . ,Cm

)
, where Cj ∈ Rl×kj with kj ∈ Z+ for any j ∈ Jm K, then

vec(C) =
(

vec(C1)
⊤, vec(C2)

⊤, . . . , vec(Cm)⊤
)⊤

. (F.14)

(ii-1) Consider A(x) =
(
a1(x), . . . ,al(x)

)⊤ ∈ Rl×m, b(x) ∈ Rm×1, a(x) ∈ Rl×1, where x ∈ Rn×1.

Let Λ ∈ Rm×m be symmetric. Then,

∂
(
A(x)b(x)

)
∂x⊤ =

(
b(x)⊤ ⊗ Il

)∂ vec
(
A(x)

)
∂x⊤ +A(x)

∂b(x)

∂x⊤ , (F.15)

∂

∂x⊤

(
b(x) ⊗ a(x)

)
=
(
Im ⊗ a(x)

)∂b(x)

∂x⊤ +
(
b(x) ⊗ Il

)∂a(x)

∂x⊤ , (F.16)

∂
(
b(x)⊤Λb(x)

)
∂x⊤ = 2b(x)⊤Λ

∂b(x)

∂x⊤ . (F.17)

∂a(x)⊤A(x)

∂x
=

(
∂a(x)⊤

∂x

)
A(x) +

(
a(x)⊤ ⊗ In

)
A(x), (F.18)
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where A(x) =


∂a1(x)⊤

∂x
...

∂al(x)
⊤

∂x

 with
∥∥A(x)

∥∥ ≤
∥∥∥∥∂ vec(A(x))

∂x⊤

∥∥∥∥
F

.

(ii-2) For C(x) =
(
C1(x)⊤, . . . ,Cm(x)⊤

)⊤
, where Cj(x) ∈ Rl×k with j ∈ Jm K, we have

∂

∂x⊤ vec
((
b(x)⊤ ⊗ Il

)
C(x)

)
=
(
b(x)⊤ ⊗ Ilk

)
C1(x) + C2(x)

∂b(x)

∂x⊤ , (F.19)

with
∥∥C1(x)

∥∥ ≤
∥∥∥∂ vec(C(x))

∂x⊤

∥∥∥
F
and

∥∥C2(x)
∥∥ ≤ ∥C(x)∥F , where

C1(x) =



∂ vec(C1(x))
∂x⊤

∂ vec(C2(x))
∂x⊤

...

∂ vec(Cm(x))
∂x⊤

 , C2(x) =
(

vec
(
C1(x)

)
, vec

(
C2(x)

)
, . . . , vec

(
Cm(x)

))
. (F.20)

We see that C1(x) ∈ Rlkm×n and C2(x) ∈ Rlk×m. Due to the identity ∥X1 ⊗X2∥ = ∥X1∥ ∥X2∥

for any matrices X1,X2 and the property ∥ · ∥F ≤
√

rank(·) ∥ · ∥, (F.19) further implies

∥∥∥∥ ∂

∂x⊤ vec
((
b(x)⊤ ⊗ Il

)
C(x)

)∥∥∥∥ ≤ C

(∥∥b(x)
∥∥∥∥∥∥∂ vec(C(x))

∂x⊤

∥∥∥∥+

∥∥∥∥∂b(x)

∂x⊤

∥∥∥∥ ∥C(x)∥

)
. (F.21)

Similarly, for B(x) ∈ Rp×m, one can obtain

∥∥∥∥ ∂

∂x⊤ vec
((
B(x) ⊗ Il

)
C(x)

)∥∥∥∥
≤ C

(
∥B(x)∥

∥∥∥∥∂ vec(C(x))

∂x⊤

∥∥∥∥ +

∥∥∥∥∂ vec
(
B(x)

)
∂x⊤

∥∥∥∥ ∥C(x)∥

)
. (F.22)

Proof of Lemma F.6. Note that (F.12), (F.15), and (F.17) are provided in Lütkepohl (2005,

on pp. 662, 666, and 667, respectively). Furthermore, (F.22) follows directly from the identity

∂

∂x⊤ vec
((
B(x) ⊗ Il

)
C(x)

)
=
(
Ik ⊗B(x) ⊗ Il

)∂ vec(C(x))

∂x⊤ +
(
C(x)⊤ ⊗ Ilp

)(
Im ⊗G

)∂ vec
(
B(x)

)
∂x⊤ , (F.23)

where G =
(
Kl,p⊗ Il

)(
Ip⊗ vec(Il)

)
and Kl,p is some lp× lp commutation matrix. The remaining

steps of the proof rely on straightforward linear algebra and are therefore omitted.

The following lemma compiles key derivative results that are critical for examining the
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asymptotic behavior of first- and second-order derivative processes in Appendix D.

Lemma F.7. Recall ei(γ) = Σ(γ)−1
(
Yi − µ(γ)

)
from (2.14), and further define ui(ν2,γ) =

Λ(ν2)
−1/2Σ(γ)−1

(
Yi − µ(γ)

)
. Then we can write

wi(γ,ν) =
1 + ν−1

1 N

1 + ν−1
1 ei(γ)⊤Λ(ν2)−1ei(γ)

=
1 + ν−1

1 N

1 + ν−1
1 ui(ν2,γ)⊤ui(ν2,γ)

.

For convenience, we introduce the following notation for the subsequent proofs:

(a) For i ∈ Z, let si(γ,ν) = S(γ,ν)∇i(γ,ν), where ∇i(γ,ν) = ∇µ
i (γ,ν) + ∇σ

i (γ,ν), with

∇µ
i (γ,ν) = ∇µ(Yi,γ,ν) and ∇σ

i (γ,ν) = ∇σ(Yi,γ,ν).

(b) Moreover, let κ1,i(γ,ν) =
ν−1
1 ui(ν2,γ)⊤ui(ν2,γ)

1 + ν−1
1 ui(ν2,γ)⊤ui(ν2,γ)

and κ2,i(γ,ν) = 1 − κ1,i(γ,ν) =

ν1
ν1 +N

wi(γi,ν).

Before proceeding, we express ∇µ
i (γ,ν) and ∇σ

i (γ,ν) from their compact forms in (2.14) by the

following expressions in the proofs below:

∇µ
i (γ,ν) = wi(γ,ν)

(
Φµ(t1;γ), . . . ,Φµ(tN ;γ)

)
Λ(ν2)

−1ei(γ), (F.24)

∇σ
i (γ,ν) = wi(γ,ν)

(
Φσ(t1;γ), . . . ,Φσ(tN ;γ)

)
diag(ei(γ))Λ(ν2)

−1ei(γ) −
N∑
j=1

Φσ(tj;γ), (F.25)

where

Φµ(t;γ) =
1

gσ(f)

(
ġµ
(
f
)
⊗ ϕK(t)

)
=

1

gσ(f)

(
Inf

⊗ ϕK(t)
)
ġµ
(
f
)
, (F.26)

Φσ(t;γ) =
1

gσ(f)

(
ġσ
(
f
)
⊗ ϕK(t)

)
=

1

gσ(f)

(
Inf

⊗ ϕK(t)
)
ġσ
(
f
)
, (F.27)

as previously defined in Appendix B, with f denoting ΓϕK(t), and γ = vec(Γ⊤). This implies

∂Φµ(t;γ)

∂γ⊤ =
[
gσ(f)−1

(
Inf

⊗ ϕK(t)
)
M(f)

(
Inf

⊗ ϕK(t)⊤
)]

f=(Inf
⊗ϕK(t)⊤)γ

, (F.28)

∂Φσ(t;γ)

∂γ⊤ =
[
gσ(f)−1

(
Inf

⊗ ϕK(t)
)
S(f)

(
Inf

⊗ ϕK(t)⊤
)]

f=(Inf
⊗ϕK(t)⊤)γ

, (F.29)

where M(f) =
∂2gµ(f)

∂f∂f⊤ − gσ(f)−1∂gµ(f)

∂f

∂gσ(f)

∂f⊤ and S(f) =
∂2gσ(f)

∂f∂f⊤ − gσ(f)−1∂gσ(f)

∂f

∂gσ(f)

∂f⊤ .
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Furthermore, let
(
Inf

⊗ ϕK(t)
)⊗2

=
(
Inf

⊗ ϕK(t)
)
⊗
(
Inf

⊗ ϕK(t)
)
. Then, we have

∂

∂γ⊤ vec

(
∂Φµ(t;γ)

∂γ⊤

)
=

[
gσ(f)−1

(
Inf

⊗ ϕ⊗d(t)
)⊗2
(
∂ vec(M(f))

∂f⊤

(
Inf

⊗ ϕ⊗d(t)
⊤)

− vec
(
M(f)

)
Φσ(t;γ)⊤

)]
f=(Inf

⊗ϕ⊗d(t)⊤)γ

, (F.30)

and

∂

∂γ⊤ vec

(
∂Φσ(t;γ)

∂γ⊤

)
=

[
gσ(f)−1

(
Inf

⊗ ϕK(t)
)⊗2
(
∂ vec(S(f))

∂f⊤

(
Inf

⊗ ϕK(t)⊤
)

− vec
(
S(f)

)
Φσ(t;γ)⊤

)]
f=(Inf

⊗ϕK(t)⊤)γ

. (F.31)

These identities will be repeatedly used later.

(i) Applying (F.15) twice and using the chain rule (see, e.g., Lütkepohl, 2005, Proposition A.1)

on (2.9), we obtain

∂γi+1(θ)

∂θ⊤
=

∂ω

∂θ⊤
+
(
γi(θ)⊤ ⊗ Inγ

)∂ vec(B)

∂θ⊤
+
(
si
(
γi(θ),ν

)⊤ ⊗ Inγ

)∂ vec(A)

∂θ⊤

+A
∂si(γ,ν)

∂θ⊤

∣∣∣∣∣
γ=γi(θ)

+

(
B +A

∂si(γ,ν)

∂γ⊤

∣∣∣∣∣
γ=γi(θ)

)
∂γi(θ)

∂θ⊤
, (F.32)

Applying vec(·) to both sides of Eq. (F.32), and subsequently using (F.12), we arrive at

γ
(1)
i+1(θ) = Q(1),i

(
γi(θ),θ

)
γ
(1)
i (θ) + q(1),i

(
γi(θ),θ

)
, (F.33)

where Q(1),i

(
γ,θ

)
= Inθ

⊗
(
B +A

∂si(γ,ν)

∂γ⊤

)
and

q(1),i
(
γ,θ

)
= vec

(
∂ω

∂θ⊤
+
(
γ⊤ ⊗ Inγ

)∂ vec(B)

∂θ⊤
+
(
si(γ,ν)⊤ ⊗ Inγ

)∂ vec(A)

∂θ⊤
+A

∂si(γ,ν)

∂θ⊤

)

= vec

(
∂ω

∂θ⊤

)
+

(
∂ vec(B)⊤

∂θ
⊗ Inγ

)(
γ ⊗ vec(Inγ )

)
+

(
∂ vec(A)⊤

∂θ
⊗ Inγ

)(
si(γ,ν) ⊗ vec(Inγ )

)
+ vec

(
A
∂si(γ,ν)

∂θ⊤

)
. (F.34)

The second equality above follows from the linearity of vec(·) and the identity (F.13).
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(ii) Using Eqs. (F.15) and (F.33), along with the chain rule, we obtain

∂γ
(1)
i+1(θ)

∂θ⊤
=
(
γ
(1)
i (θ)⊤ ⊗ Inγnθ

)∂ vec
(
Q(1),i

(
γi(θ),θ

))
∂θ⊤

+Q(1),i

(
γi(θ),θ

)∂γ(1)
i (θ)

∂θ⊤

+
∂q(1),i

(
γ,θ

)
∂θ⊤

∣∣∣∣∣
γ=γi(θ)

+
∂q(1),i

(
γ,θ

)
∂γ⊤

∣∣∣∣∣
γ=γi(θ)

∂γi(θ)

∂θ⊤
, (F.35)

where, by the identities (F.15), (F.16), and (F.34),

∂q(1),i
(
γ,θ

)
∂θ⊤

=

(
∂ vec(A)⊤

∂θ
⊗ Inγ

)(
Inγ ⊗ vec(Inγ )

)∂si(γ,ν)

∂θ⊤

+
(
Inθ

⊗A
) ∂

∂θ⊤
vec

(
∂si(γ,ν)

∂θ⊤

)
+

(
∂si(γ,ν)⊤

∂θ
⊗ Inγ

)
∂ vec(A)

∂θ⊤
, (F.36)

∂q(1),i
(
γ,θ

)
∂γ⊤ =

(
∂ vec(B)⊤

∂θ
⊗ Inγ

)(
Inγ ⊗ vec(Inγ )

)
+
(
Inθ

⊗A
) ∂

∂γ⊤ vec

(
∂si(γ,ν)

∂θ⊤

)
+

(
∂ vec(A)⊤

∂θ
⊗ Inγ

)(
Inγ ⊗ vec(Inγ )

)∂si(γ,ν)

∂γ⊤ . (F.37)

Applying vec(·) to both sides of Eq. (F.35), and subsequently using (F.12), implies

γ
(2)
i+1(θ) = Q(2),i

(
γi(θ),θ

)
γ
(2)
i (θ) + q(2),i

(
γ
(1)
i (θ),γi(θ),θ

)
, (F.38)

where Q(2),i

(
γ,θ

)
= In2

θ
⊗
(
B +A

∂si(γ,ν)

∂γ⊤

)
and

q(2),i
(
γ
(1)
i (θ),γi(θ),θ

)
= vec

((
γ
(1)
i (θ)⊤ ⊗ Inγnθ

)∂ vec
(
Q(1),i

(
γi(θ),θ

))
∂θ⊤

)

+ vec

(
∂q(1),i

(
γ,θ

)
∂θ⊤

∣∣∣∣∣
γ=γi(θ)

)
+

(
Inθ

⊗
∂q(1),i

(
γ,θ

)
∂γ⊤

∣∣∣∣∣
γ=γi(θ)

)
γ
(1)
i (θ). (F.39)

(iii-1)
∂wi(γi,ν)

∂θ⊤
=

(
∂wi(γi,ν)

∂ν1
,
∂wi(γi,ν)

∂ν⊤
2

,0⊤
(2nγ+1)nγ

)
, where

∂wi(γi,ν)

∂ν1
= ν−1

1 κ2,i(γ,ν)
(
κ1,i(γ,ν) − ν−1

1 Nκ2,i(γ,ν)
)
,

∂wi(γi,ν)

∂ν⊤
2

= −κ2,i(γ,ν)wi(γi,ν)
(
ν
−1/2
1 ei(γ)⊤ ⊗ ν

−1/2
1 ei(γ)⊤

)∂ vec
(
Λ(ν2)

−1
)

∂ν⊤
2

.

(iii-2) Furthermore,
∂2wi(γi,ν)

∂θ∂θ⊤
= diag

(
W

(2)
νν ,O

)
, where W

(2)
νν =

(
W

(2)
ν1ν1

W
(2)
ν1ν2

W
(2)
ν2ν1

W
(2)
ν2ν2

)
, with

W (2)
ν1ν1

=
∂2wi(γi,ν)

∂ν21
= −2ν−2

1 κ1,i(γ,ν)κ2,i(γ,ν)2 + 2ν−3
1 Nκ2,i(γ,ν)

(
1−κ1,i(γ,ν)κ2,i(γ,ν)

)
,
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W
(2)
ν2ν1 =

(
W

(2)
ν1ν2

)⊤
, and

W (2)
ν1ν2

=
∂2wi(γi,ν)

∂ν1∂ν⊤
2

= ν−1
1 κ2,i(γ,ν)2

(
2ν−1

1 Nκ2,i(γ,ν) + 2κ2,i(γ,ν) − 1
)

×
(
ν
−1/2
1 ei(γ)⊤ ⊗ ν

−1/2
1 ei(γ)⊤

)∂ vec
(
Λ(ν2)

−1
)

∂ν⊤
2

,

W (2)
ν2ν2

=
∂2wi(γi,ν)

∂ν2∂ν⊤
2

= 2κ2,i(γ,ν)2wi(γi,ν)
∂ vec

(
Λ(ν2)

−1
)⊤

∂ν2

×
(
ν−1
1 ei(γ)ei(γ)⊤ ⊗ ν−1

1 ei(γ)ei(γ)⊤
)∂ vec

(
Λ(ν2)

−1
)

∂ν⊤
2

− κ2,i(γ,ν)wi(γi,ν)
(
ν
−1/2
1 ei(γ)⊤ ⊗ ν

−1/2
1 ei(γ)⊤ ⊗ Inδ

)
X θθ(ν2).

The expression of W
(2)
ν2ν2 is obtained using (F.18). Here, we omit the details of the construction of

X θθ(ν2); however, with the norm equivalence in finite dimensional spaces and Assumption AN1,

it follows that
∣∣X θθ(ν2)

∣∣ ≤ C.

(iii-3) Next, by employing (F.17), we have

∂wi(γi,ν)

∂γ⊤ = −2ν−1
1 κ2,i(γ,ν)wi(γi,ν)ui(ν2,γ)⊤Λ(ν2)

−1/2∂ei(γ)

∂γ⊤

= 2ν−1
1 κ2,i(γ,ν)wi(γi,ν)ui(ν2,γ)⊤Λ(ν2)

−1/2Φµ,σ
i (γ)⊤, (F.40)

where Φµ,σ
i (γ) = Ġµ(γ)⊤Σ(γ)−1 + Ġσ(γ)⊤Σ(γ)−1 diag

(
ei(γ)

)
.

(iii-4) Furthermore,
∂2wi(γi,ν)

∂γ⊤∂θ
=


∂2wi(γi,ν)

∂γ⊤∂ν1
∂2wi(γi,ν)

∂γ⊤∂ν2

O(2nγ+1)nγ×nγ

 , with
∂2wi(γi,ν)

∂γ⊤∂ν1
= 2ν−2

1

(
κ1,i(γ,ν) −

κ2,i(γ,ν) − 2ν−1
1 Nκ2,i(γ,ν)

)
κ2,i(γ,ν)2ui(ν2,γ)⊤Λ(ν2)

−1/2Φµ,σ
i (γ)⊤,

∂2wi(γi,ν)

∂γ⊤∂ν2
= −

∂ vec
(
Λ(ν2)

−1
)⊤

∂ν2

{(
ν
−1/2
1 ei(γ) ⊗ ν

−1/2
1 ei(γ)

)∂(κ2,i(γ,ν)wi(γi,ν)
)

∂γ⊤

+ κ2,i(γ,ν)wi(γi,ν)ν−1
1

∂

∂γ⊤

(
ei(γ) ⊗ ei(γ)

)}

= −
∂ vec

(
Λ(ν2)

−1
)⊤

∂ν2

{(
ν
−1/2
1 ei(γ) ⊗ ν

−1/2
1 ei(γ)

)
×
(

4ν−1
1 κ2,i(γ,ν)2wi(γi,ν)ui(ν2,γ)⊤Λ(ν2)

−1/2Φµ,σ
i (γ)⊤

)
− κ2,i(γ,ν)wi(γi,ν)ν−1

1

((
IN ⊗ ei(γ)

)
+
(
ei(γ) ⊗ IN

))
Φµ,σ

i (γ)⊤

}
,
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following from (F.16), (F.17), and the identity
∂ei(γ)

∂γ⊤ = −Φµ,σ
i (γ)⊤.

(iii-5) Finally, by applying (F.18) to (F.40), we obtain

∂2wi(γi,ν)

∂γ∂γ⊤ = 8ν−2
1 κ2,i(γ,ν)2wi(γi,ν)Φµ,σ

i (γ)Λ(ν2)
−1/2ui(ν2,γ)ui(ν2,γ)⊤Λ(ν2)

−1/2Φµ,σ
i (γ)⊤

− 2ν−1
1 κ2,i(γ,ν)wi(γi,ν)Φµ,σ

i (γ)Λ(ν2)
−1Φµ,σ

i (γ)⊤

+ 2ν−1
1 κ2,i(γ,ν)wi(γi,ν)

(
ui(ν2,γ)⊤Λ(ν2)

−1/2 ⊗ Inγ

)
X γγ(γ). (F.41)

The construction of X γγ(γ) is omitted. It nevertheless holds that
∥∥X γγ(γ)

∥∥ ≤
∥∥∥∥∂ vec(Φµ,σ

i (γ)⊤)

∂γ⊤

∥∥∥∥.
(iv) By employing (F.15), one has

∂si(γ,ν)

∂θ⊤
=
(
∇i(γ,ν)⊤ ⊗ Inγ

)∂ vec
(
S(γ,ν)

)
∂θ⊤

+ S(γ,ν)
∂∇i(γ,ν)

∂θ⊤
, (F.42)

where

∂∇i(γ,ν)

∂θ⊤
= wi(γi,ν)

(
ei(γ)⊤⊗Φµ,σ

i (γ)
)∂ vec

(
Λ(ν2)

−1
)

∂θ⊤
+Φµ,σ

i (γ)Λ(ν2)
−1/2ui(ν2,γ)

∂wi(γi,ν)

∂θ⊤
,

(F.43)

with Φµ,σ
i (γ) defined above in Part (iii-3).

(v) Recall
∂Φµ(t;γ)

∂γ⊤ and
∂Φσ(t;γ)

∂γ⊤ from (F.28) and (F.29), respectively. Similar to (F.42), one

has

∂si(γ,ν)

∂γ⊤ =
(
∇i(γ,ν)⊤ ⊗ Inγ

)∂ vec
(
S(γ,ν)

)
∂γ⊤ + S(γ,ν)

∂∇i(γ,ν)

∂γ⊤ , (F.44)

where

∂∇i(γ,ν)

∂γ⊤ = wi(γi,ν)

[(
ui(ν2,γ)⊤Λ(ν2)

−1/2 ⊗ Inγ

)∂ vec
(
Φµ,σ

i (γ)
)

∂γ⊤ −Φµ,σ
i (γ)Λ(ν2)

−1Φµ,σ
i (γ)⊤

]

+Φµ,σ
i (γ)Λ(ν2)

−1/2ui(ν2,γ)
∂wi(γi,ν)

∂γ⊤ −
N∑
j=1

∂Φσ(tj;γ)

∂γ⊤ , (F.45)

with
∂ vec

(
Φµ,σ

i (γ)
)

∂γ⊤ = Φ̇µ(γ) +
(

diag
(
ei(γ)

)
⊗ Inγ

)
Φ̇σ(γ) −Φσ

diag(γ)Φµ,σ
i (γ)⊤, and
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Φ̇µ(γ) =



∂Φµ(t1;γ)
∂γ⊤

∂Φµ(t2;γ)
∂γ⊤

...

∂Φµ(tN ;γ)
∂γ⊤

 , Φ̇σ(γ) =



∂Φσ(t1;γ)
∂γ⊤

∂Φσ(t2;γ)
∂γ⊤

...

∂Φσ(tN ;γ)
∂γ⊤

 , Φσ
diag(γ) = diag

(
Φσ(t1;γ), . . . ,Φσ(tN ;γ)

)
.

(vi) By applying (F.19), we obtain the following identity from (F.42):

∂

∂γ⊤ vec

(
∂si(γ,ν)

∂θ⊤

)
=
(
∇i(γ,ν)⊤ ⊗ Inγnθ

)
Sθγ

1 (γ,ν) + Sθ
2(γ,ν)

∂∇i(γ,ν)

∂γ⊤

+
(
Inθ

⊗ S(γ,ν)
) ∂

∂γ⊤ vec

(
∂∇i(γ,ν)

∂θ⊤

)
+

((
∂∇i(γ,ν)

∂θ⊤

)⊤

⊗ Inγ

)
∂ vec

(
S(γ,ν)

)
∂γ⊤ , (F.46)

where
∥∥Sθγ

1 (γ,ν)
∥∥ ≤ C and

∥∥Sθ
2(γ,ν)

∥∥ ≤ C provided that Assumption AN1 holds, using the equiv-

alence of norms in finite dimensional spaces. The specific details of Sθγ
1 (·) and Sθ

2(·) are omitted

for brevity. Note that, by (F.14), one has vec
(
ei(γ)⊤ ⊗Φµ,σ

i (γ)
)

=
[
IN ⊗ vec

(
Φµ,σ

i (γ)
)]
ei(γ) =(

ei(γ) ⊗ InγN

)
vec
(
Φµ,σ

i (γ)
)
. Then, using this identity together with (F.12) and (F.43), we have

∂

∂γ⊤ vec

(
∂∇i(γ,ν)

∂θ⊤

)
=

∂

∂γ⊤

{
wi(γi,ν)

(
∂ vec

(
Λ(ν2)

−1
)⊤

∂θ
⊗ Inγ

)
vec
(
ei(γ)⊤ ⊗Φµ,σ

i (γ)
)

+ vec

(
Φµ,σ

i (γ)Λ(ν2)
−1ei(γ)

∂wi(γi,ν)

∂θ⊤

)}

=

(
∂ vec

(
Λ(ν2)

−1
)⊤

∂θ
⊗ Inγ

)
Pθγ

1,i(γ,ν) + Pθγ
2,i(γ,ν), (F.47)

where, using
∂ei(γ)

∂γ⊤ = −Φµ,σ
i (γ)⊤,

Pθγ
1,i(γ,ν) = wi(γi,ν)

(
−
(
IN ⊗ vec

(
Φµ,σ

i (γ)
))
Φµ,σ

i (γ)⊤ +
(
ei(γ) ⊗ InγN

)∂ vec
(
Φµ,σ

i (γ)
)

∂γ⊤

)

+ vec
(
ei(γ)⊤ ⊗Φµ,σ

i (γ)
)∂wi(γi,ν)

∂γ⊤ , (F.48)

Pθγ
2,i(γ,ν) =

((
∂wi(γi,ν)

∂θ
ei(γ)⊤Λ(ν2)

−1

)
⊗ Inγ

)
∂ vec

(
Φµ,σ

i (γ)
)

∂γ⊤ +
(
Inθ

⊗Φµ,σ
i (γ)Λ(ν2)

−1
)

×

((
Inθ

⊗ ei(γ)
)∂2wi(γi,ν)

∂γ⊤∂θ
−
(
∂wi(γi,ν)

∂θ
⊗ IN

)
Φµ,σ

i (γ)⊤

)
. (F.49)

All relevant partial derivatives from (F.46) to (F.49) are presented in the preceding results.
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(vii) Similarly, we have

∂

∂θ⊤
vec

(
∂si(γ,ν)

∂θ⊤

)
=
(
∇i(γ,ν)⊤ ⊗ Inγnθ

)
Sθθ

1 (γ,ν) + Sθ
2(γ,ν)

∂∇i(γ,ν)

∂θ⊤

+
(
Inθ

⊗ S(γ,ν)
) ∂

∂θ⊤
vec

(
∂∇i(γ,ν)

∂θ⊤

)
+

((
∂∇i(γ,ν)

∂θ⊤

)⊤

⊗ Inγ

)
∂ vec

(
S(γ,ν)

)
∂θ⊤

, (F.50)

where
∥∥Sθθ

1 (γ,ν)
∥∥ ≤ C and

∥∥Sθ
2(γ,ν)

∥∥ ≤ C (as defined in (F.46)), provided that Assumption

AN1 is satisfied and given the equivalence of norms in finite dimensional spaces. Furthermore,

∂

∂θ⊤
vec

(
∂∇i(γ,ν)

∂θ⊤

)
=
(
Inθ

⊗ ei(γ)⊤ ⊗Φµ,σ
i (γ)

)
Pθθ

1,i(γ,ν) + Pθθ
2,i(γ,ν), (F.51)

where

Pθθ
1,i(γ,ν) = wi(γi,ν)

∂

∂θ⊤
vec

(
∂ vec

(
Λ(ν2)

−1
)

∂θ⊤

)
+ vec

(
∂ vec

(
Λ(ν2)

−1
)

∂θ⊤

)
∂wi(γi,ν)

∂θ⊤
,

Pθθ
2,i(γ,ν) =

(
Inθ

⊗Φµ,σ
i (γ)Λ(ν2)

−1/2ui(ν2,γ)
)(∂2wi(γi,ν)

∂θ∂θ⊤

)⊤

+

(
∂wi(γi,ν)

∂θ
ei(γ)⊤ ⊗Φµ,σ

i (γ)

)
∂ vec

(
Λ(ν2)

−1
)

∂θ⊤
.

All relevant partial derivatives have been provided in the preceding results.

(viii) By applying (F.19) to (F.44), we have

∂

∂γ⊤ vec

(
∂si(γ,ν)

∂γ⊤

)
=
(
∇i(γ,ν)⊤ ⊗ In2

γ

)
Sγγ

1 (γ,ν) + Sγ
2(γ,ν)

∂∇i(γ,ν)

∂γ⊤

+
(
Inγ ⊗ S(γ,ν)

) ∂

∂γ⊤ vec

(
∂∇i(γ,ν)

∂γ⊤

)
+

((
∂∇i(γ,ν)

∂γ⊤

)⊤

⊗ Inγ

)
∂ vec

(
S(γ,ν)

)
∂γ⊤ , (F.52)

where
∥∥Sγγ

1 (γ,ν)
∥∥ ≤ C and

∥∥Sγ
2(γ,ν)

∥∥ ≤ C under Assumption AN1 and norm equivalence in

finite dimensional spaces. We omit the details. The construction of
∂∇i(γ,ν)

∂γ⊤ is derived in (F.45).
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It remains to consider:

∂

∂γ⊤ vec

(
∂∇i(γ,ν)

∂γ⊤

)
=

∂

∂γ⊤

{
wi(γi,ν) vec

((
ei(γ)⊤Λ(ν2)

−1 ⊗ Inγ

)∂ vec
(
Φµ,σ

i (γ)
)

∂γ⊤

)}

− ∂

∂γ⊤

{
wi(γi,ν) vec

(
Φµ,σ

i (γ)Λ(ν2)
−1Φµ,σ

i (γ)⊤
)}

+
∂

∂γ⊤ vec

(
Φµ,σ

i (γ)Λ(ν2)
−1ei(γ)

∂wi(γi,ν)

∂γ⊤

)
−

N∑
j=1

∂

∂γ⊤ vec

(
∂Φσ(tj;γ)

∂γ⊤

)
=: Pγγ

1,i(γ,ν) −Pγγ
2,i(γ,ν) + Pγγ

3,i(γ,ν) −Pγγ
4,i(γ), (F.53)

following from (F.45). By (F.19) and
∂ei(γ)

∂γ⊤ = −Φµ,σ
i (γ)⊤, Pγγ

1,i(γ,ν) can be written as

Pγγ
1,i(γ,ν) = vec

((
ei(γ)⊤Λ(ν2)

−1 ⊗ Inγ

)∂ vec
(
Φµ,σ

i (γ)
)

∂γ⊤

)
∂wi(γi,ν)

∂γ⊤

+ wi(γi,ν)
((
ei(γ)⊤Λ(ν2)

−1 ⊗ In2
γ

)
R1,i(γ) −R2,i(γ)Λ(ν2)

−1Φµ,σ
i (γ)⊤

)
,

where
∂wi(γi,ν)

∂γ⊤ and
∂ vec(Φµ,σ

i (γ))

∂γ⊤ are provided in Part (iii-3) and below (F.45), respectively.

Moreover,

∥∥R1,i(γ)
∥∥ ≤

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂ vec(Φµ,σ

i (γ))

∂γ⊤

)∥∥∥∥∥
F

≤ C + C
∥∥ei(γ)

∥∥, (F.54)

provided that Assumptions A1 and AN2 hold, and
∥∥R2,i(γ)

∥∥ ≤
∥∥∥∥∂ vec(Φµ,σ

i (γ))

∂γ⊤

∥∥∥∥
F

. The second

term Pγγ
2,i(γ,ν) in (F.53) can be written as

Pγγ
2,i(γ,ν) = vec

(
Φµ,σ

i (γ)Λ(ν2)
−1Φµ,σ

i (γ)⊤
)∂wi(γi,ν)

∂γ⊤ + wi(γi,ν)

×

((
Inγ ⊗Φ

µ,σ
i (γ)Λ(ν2)

−1
)∂ vec

(
Φµ,σ

i (γ)⊤
)

∂γ⊤ +
(
Φµ,σ

i (γ)Λ(ν2)
−1 ⊗ Inγ

)∂ vec
(
Φµ,σ

i (γ)
)

∂γ⊤

)
.

Finally, by
∂ei(γ)

∂γ⊤ = −Φµ,σ
i (γ)⊤, we have

Pγγ
3,i(γ,ν) =

(
∂wi(γi,ν)

∂γ
ei(γ)⊤Λ(ν2)

−1 ⊗ Inγ

)
∂ vec

(
Φµ,σ

i (γ)
)

∂γ⊤ −
(
∂wi(γi,ν)

∂γ

⊗Φµ,σ
i (γ)Λ(ν2)

−1

)
Φµ,σ

i (γ)⊤ +

(
Inγ ⊗Φ

µ,σ
i (γ)Λ(ν2)

−1ei(γ)

)(
∂2wi(γi,ν)

∂γ∂γ⊤

)⊤

,
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where
∂2wi(γi,ν)

∂γ∂γ⊤ is provided in (F.41), and finally,
∥∥Pγγ

4,i(γ)
∥∥ ≤ C if Assumption AN2 holds.

Proof of Lemma F.7. The results are derived by repeatedly applying Lemma F.6 and basic

linear algebra. The key steps are outlined in the lemma, and the remaining minor (but cumbersome)

details are omitted. Here, we only provide further details on the second inequality in (F.54). Let

ei,j(γ) be the jth element of ei(γ). We have

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂ vec(Φµ,σ

i (γ))

∂γ⊤

)∥∥∥∥∥
F

≤
N∑
j=1

{∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂Φµ(tj;γ)

∂γ⊤

)∥∥∥∥∥
F

+

∥∥∥∥∥ ∂

∂γ⊤ vec

(
∂Φσ(tj;γ)

∂γ⊤ ei,j(γ)

)∥∥∥∥∥
F

+

∥∥∥∥∥ ∂

∂γ⊤ vec
(
Φσ(tj;γ)Φµ(tj;γ)⊤

)∥∥∥∥∥
F

+

∥∥∥∥∥ ∂

∂γ⊤ vec
(
Φσ(tj;γ)Φσ(tj;γ)⊤ei,j(γ)

)∥∥∥∥∥
F

}
,

where
∑N

j=1

(∥∥∥ ∂
∂γ⊤ vec

(
∂Φµ(tj ;γ)

∂γ⊤

)∥∥∥
F

+
∥∥∥ ∂
∂γ⊤ vec

(
∂Φσ(tj ;γ)

∂γ⊤ ei,j(γ)
)∥∥∥

F

)
≤ C + C

∥∥ei(γ)
∥∥ by the

norm equivalence, and Assumptions A1 and AN2. Note that
∂

∂γ⊤ vec
(
Φσ(t;γ)Φµ(t;γ)⊤

)
=(

Φµ(t;γ) ⊗ Inγ

)∂Φσ(t;γ)

∂γ⊤ +
(
Inγ ⊗Φσ(t;γ)

)∂Φµ(t;γ)

∂γ⊤ and

∂

∂γ⊤ vec
(
Φσ(t;γ)Φσ(t;γ)⊤ei,j(γ)

)
= vec

(
Φσ(t;γ)Φσ(t;γ)⊤

)∂ei,j(γ)

∂γ⊤

+ ei,j(γ)
((
Inγ ⊗Φσ(t;γ)

)
+
(
Φσ(t;γ) ⊗ Inγ

))∂Φσ(t;γ)

∂γ⊤ .

Following the same argument, we obtain
∑N

j=1

∥∥∥ ∂
∂γ⊤ vec

(
Φσ(tj;γ)Φµ(tj;γ)⊤

)∥∥∥
F

≤ C and∑N
j=1

∥∥∥ ∂
∂γ⊤ vec

(
Φσ(tj;γ)Φσ(tj;γ)⊤ei,j(γ)

)∥∥∥
F

≤ C
∥∥ei(γ)

∥∥ if Assumptions A1 and AN2 hold.

To sum up, under Assumptions A1 and AN2 hold, we have
∥∥R1,i(γ)

∥∥ ≤ C + C
∥∥ei(γ)

∥∥.
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G More empirical results

G.1 Volatility curves of stock returns using fGARCH

Figure G1: Fitted intraday volatility curves for PFE by fGARCH from 2 January 2015 up to 29
December 2023: The fitted volatility levels are annualized using 6 · 6 ·

√
252 for 10-minute intraday log

returns and 6 · 3 ·
√
252 for 20-minute intraday log returns, ensuring they are displayed on a comparable

scale. The left figure shows the fitted curves for 10-minute log returns, while the right figure represents
the curves for 20-minute log returns.

Figure G2: Fitted (nonannualized) volatility paths for PFE at 13:00 and 15:00 using fGAS (blue solid
curves) and fGARCH (red dotted curves) from January 2, 2015 to December 29, 2023, based on 20-minute
intraday log returns. Gray solid lines represent the absolute values of 20-minute intraday log returns.
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G.2 Further details on PM2.5 concentration

Table G.1: Indices of the selected sensors

2542 5942 16237 16999 38805 56229 89581 101209 126489 162877
2546 6540 16445 17017 42095 56507 90479 101481 129823 165897
2556 6694 16789 17615 43753 57949 92593 101597 130345 166359

3064 7302 16833 21947 43891 60929 93379 101603 133001 168033
4033 9942 16849 23335 44187 77083 94351 103240 134054 169575
4127 10116 16929 23809 47165 77429 95689 104076 134192 169749

4331 13027 16959 23837 48039 83339 95847 118937 138380 171777
4406 13029 16961 23999 49233 83983 96479 120429 138412 172203
4454 14319 16971 32277 49607 86175 98487 120785 138454 173569

5428 14371 16973 37173 52367 87233 99633 121331 150828 174847
5892 14857 16993 37599 55513 87351 99663 126107 156537

Figure G3: Time series plots of daily average PM2.5 emissions, with each curve representing the data
recorded by a sensor over time.

Figure G4: Predicted PM2.5 levels for four selected sensors
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