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Abstract

We propose an observation-driven dynamic common factor model for missing value impu-

tation in high-dimensional panel data. The model exploits both serial and cross-sectional

information in the data and can easily cope with time-variation in conditional means and

variances, as well as with either isolated or long patches of missing values. The approach not

only provides point forecasts, but also density forecasts for the missing data, thus allowing

the researcher to quantify imputation uncertainty. The model’s static parameters can be

estimated by standard maximum likelihood methods due to the model’s observation-driven

structure. We apply the model to impute densities and risk quantiles in high-dimensional

panels of daily global credit curves with large gaps of missings.
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1 Introduction

The problem of missing data is a widespread challenge in many areas of empirical re-

search. In social sciences, large longitudinal surveys and biological cohort studies often

have missing values due to participant attrition, whereas economic panel data can be un-

balanced when variables are measured at different frequencies or are not fully available for

all spatial groups (see, e.g, Foroni and Marcellino, 2014; Aruoba et al., 2009; Schumacher

and Breitung, 2008). Also in finance, typical data like asset returns, bond yields, and

credit curves can be incomplete. This can be due to firms not yet or no longer being listed,

bankruptcies, illiquidity and stale prices, or asynchronous data releases (Freyberger et al.,

2024; van der Merwe et al., 2018). As a result, such datasets often contain a significant

number of missing values that need to be imputed for subsequent analysis. For example,

a notable imputation problem is found in the financial industry for credit default swap

(CDS) term-structures, which are crucial for risk management and regulatory purposes.

CDS curves serve as a key input for calculating Credit Value Adjustments (Gregory,

2020; Pallavicini et al., 2011; Green, 2015; Morini and Prampolini, 2011). They are also

needed to quantify Basel III capital requirements for OTC transaction profits and losses

(see BCBS, 2010). However, since CDS curves are often highly illiquid or completely un-

available for many firms, regulators require financial institutions to construct synthetic

curves (proxies) based on spatial factors (e.g., region, sector and rating) extracted from

traded CDS instruments (EBA, 2015). In practice, building synthetic curves boils down

to a large-scale time-series imputation exercise of significant industrial importance. Since

imputation involves the prediction of unknown values without any means of direct ver-

ification (as the true data value is not observed), selecting an appropriate imputation

method is crucial for ensuring the accuracy and reliability of the imputed data.

One of the common ways used in practice to address missing values in high-

dimensional time-series panels is that of factor-based imputation methods. These meth-

ods exploit the co-movement of observed cross-sectional units to extract common com-

ponents (factors), which are then used to impute the missing data. Factors are typically

estimated using principal components (PCs) and recent studies, including those by Ca-

han et al. (2023), Xiong and Pelger (2023), Bai and Ng (2021), and Jin et al. (2021), have

introduced various PC-based approaches to consistently estimate common components

when the factor structure is strong in unbalanced panel data. Although these factor-

based methods are computationally efficient and scalable for large data panels, they do

1



not exploit the predictability of the missing values, given lagged values of the observed

values, which is particularly relevant for imputation in a time-series setting. This is

where dynamic time-series models can prove useful, as they exploit both serial and cross-

sectional information to impute (or forecast) the missing values. For example, studies by

Jin et al. (2021), Stock and Watson (2016), and Jungbacker et al. (2011) explore dynamic

factor models to handle missing values, while Chan et al. (2023) propose conditionally

Gaussian state-space models for the same purpose. On the other hand, the generalized

autoregressive score (GAS) framework by Creal et al. (2013) and Harvey (2013) offers

an observation-driven alternative to parameter-driven state-space models for handling

missing values. In this framework, the time variation of latent factors is driven by the

score of the predictive density of the observed data only, which allows for a straightfor-

ward specification of conditional moments under the presence of missing values (Blasques

et al., 2021; Lucas et al., 2016). This makes GAS models particularly attractive for cap-

turing the dynamics of missing observations in large time-series datasets, where both the

conditional mean and variance, but also common and idiosyncratic factors play a crucial

role.

However, when some observations are missing, the score update typically still induces

a change in all time-varying parameters, even those linked exclusively to the missing

units. Thereby, this approach does not fully exploit the information in the available data

to capture for instance the common components, because some information ‘leaks’ or is

transferred to the identification of idiosyncratic factors for which no data is available at

that moment. In situations where the common factor is a dominant driver of the time-

series dynamics, this is a sub-optimal outcome. If the common factor is dominant, it is

crucial to estimate it as accurately as possible for a good imputation result, even if this

comes at the expense of a less good imputation result for the idiosyncratic components

that are solely linked to the units that are not observed at that time. Therefore, the treat-

ment of scores in multivariate GAS models with missing values remains an open question.

In contrast, the linear Gaussian state-space framework effectively handles missing values

using the multivariate Kalman filter (Durbin and Koopman, 2012; Harvey and Pierse,

1984).

This paper provides three key improvements to handle missing values in high-

dimensional panel data. First, we relax the typical constant variance matrix assumption

for panel data by developing a hierarchical multivariate Gaussian model with score-driven

conditionally time-varying means and variances. In this model, both moments follow a
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hierarchical factor structure with a predefined exogenous design matrix that links score-

driven factors to each of the time-series’ first two moments. Specifically, the design

matrix consists of effect-coded dummy variables and acts as a factor-loading matrix that

decomposes cross-sections of means and variances into interpretable location and scale

factors. Unlike existing methods that primarily predict missing values based on mean

estimates using common factors only, our approach can incorporates multiple common

and idiosyncratic mean and variance components, while also accounting for their time

variation.1 The hierarchical density model also accommodates complex hierarchical spa-

tial structures (e.g., region, sector, or rating dummies and their interactions), which may

vary over time to capture structural shifts (e.g., changes in firm ratings). The model’s

static parameters can be estimated by standard maximum likelihood methods due to the

model’s observation-driven structure. Therefore, this dynamic hierarchical model offers

substantial flexibility for extracting moments from sparse multivariate time-series and to

impute the full density of missing values.

Second, our modeling approach leverages on the hierarchical structure of the data

to improve imputation in sparse multivariate time-series. In particular, we exploit the

hierarchical structure in the dataset and introduce a new filtering mechanism that allows

the user to enforce mean-reversion on (e.g., idiosyncratic) factors that are deemed less

relevant for the overall imputation outcome and that are affected by the missing values.

Through an extensive Monte Carlo study using the model as the true data generating

process (DGP), we demonstrate that this new filter accurately captures common location

and scale signals as long as at least one observation is present in the panel’s cross-section.

This even holds when data are historically missing in blocks or randomly missing for as

much as 75% of the time, thus enabling accurate prediction of missing value densities

even with limited data. This paper therefore substantially extends the univariate score-

driven filter for missing values of Blasques et al. (2021) to large-scale multifactor time-

varying score-driven location-scale models, including those with non-continuous and non-

Gaussian distributions.

As a third contribution, this paper not only focuses on the imputation prediction

1The so-called factor-based ‘residual overlay’ algorithm of Cahan et al. (2023) can be used to con-

sistently estimate the covariance matrix of panels with missing units, but only if the respective matrix

is assumed to be constant. The multivariate state-space models of Chan et al. (2023) on the other

hand do include a single common stochastic volatility factor, but do not cover model specifications with

time-varying idiosyncratic volatilities.
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itself, but also on the inference or uncertainty about the missing values in score-driven

models. Although it is rather straightforward to generate in-sample point-forecasts with

the score-driven models, generating reliable interval forecasts requires simulation-based

techniques. We extend the out-of-sample simulation algorithm of Blasques et al. (2016)

to the in-sample data imputation problem. Whenever missing data is encountered during

filtering, the algorithm imputes these values by simulation based on the model’s distribu-

tional assumptions and combined with observed data to form a complete cross-section,

which updates the time-varying parameters. This process is repeated multiple times

throughout the sample to produce simulation bands for both the missing values and the

underlying time-varying parameters and in this way captures the imputation uncertainty.

Additionally, following Blasques et al. (2016), the algorithm is further extended to also

incorporate parameter uncertainty using the asymptotic covariance of the parameters.

Monte Carlo experiments reveal that the simulation bands perform well and capture the

imputation uncertainty at nominal levels for both the factors and various risk quantiles

of the true DGP. Therefore, the outputs of our imputation framework are likely to be

valuable not only to academics, but also to practitioners.

In our empirical analysis, we demonstrate the strong performance of our dynamic hier-

archical density model for imputing missing values in time-series of CDS term-structures

through two applications: single-name and multi-name curve imputation. For both appli-

cations we use daily CDS data of global financial institutions, spanning the period from

Jan 2011 to Dec 2022. In the first application, we assess the empirical imputation per-

formance of various score-driven model specifications with and without mean-reversion

using CDS time-series of JPMorgan Chase & Co. (JPM). We simulate artificial missing

data (either in blocks or randomly missing) into JPM’s credit curves and then compare

the score-driven density forecasts with those from a state-space model using the Kalman

filter. Our results reveal that score-driven models with forced mean-reversion exhibit

up to 2-3 higher in-sample forecasting accuracy than models without mean-reverting

factors. We also find similar forecasting performance between the mean-reverting score-

driven models and Kalman filter models, which complements the out-of-sample findings of

Koopman et al. (2016). In the multi-name application, we build a hierarchical CDS curve

model to simultaneously impute six tenors for 24 global financial institutions (a total of

144 CDS time-series over ten years) using a design matrix that incorporates nearly 100

common and idiosyncratic location and scale factors. We find that the GAS model not

only scales well to high dimensions, but that hierarchical models with firm-specific factors
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also produce more accurate risk quantiles of the panel compared to models without such

idiosyncratic components.

The remainder of the paper is organized as follows. Section 2 introduces the modeling

framework for imputing densities using hierarchical score-driven location-scale models

and also describes the simulation algorithm to construct in-sample forecast bands. In

Section 3, an extensive Monte Carlo experiment is performed to study the performance

of our model across a range of missing data mechanisms. Section 4 presents the empirical

applications. Finally, Section 5 concludes.

2 Modeling Framework

2.1 Hierarchical dynamic location-scale factor models

Let yt = (y1,t, . . . , yp,t)
′ ∈ Rp be a p-dimensional time-series process observed for t =

1, . . . , n. Not all elements of yt are observed at all times. Let y†t = Sot yt ∈ Rpt denote the

the observed part of yt , where Sot is a pt × p selection matrix of ones and zeros holding

the appropriate rows from the unit matrix Ip. The dimension pt of y†t can vary between

pt = p for a fully observed yt with Sot = Ip, and a completely missing yt with pt = 0.

Components of yt may be missing at random (MAR), for instance for an i.i.d. selection

process Sot that is also independent of {yt}nt=1. In many settings, however, data may

be missing in a more structured way. For example, time-series may include gaps at the

start, because one of the components was not recorded or did not exist at the time. Gaps

may also occur at the end of the sample because of attrition effects, or in the middle for

components that were temporarily not observed. In our empirical application in Section 4

we indeed have longer stretch of (partially) missing values either at the start, middle, or

end of the sample where specific series are unavailable due to a lack of trading.

We assume that the time-series behavior of y†t can be described by a multivariate

location-scale model with a hierarchical structure for both the locations and scales:

yt = µt + Σ
1/2
t εt, εt

iid∼ N(0, Ip) t = 1, . . . , n,

µt = Ftf
µ
t , σt = exp

(
1
2
Ftf

log σ2

t

)
, Σt = diag(σt)

2,

y†t = Sot yt, ε†t = Sot εt,

µ†
t = Sot µt, σ†

t = diag(Sot σt), Σ†
t = Sot ΣtS

o
t
′.

(1)

where the exponential for σt works element-wise. The matrix Ft ∈ Rp×k is a known

5



design matrix that imposes a hierarchical structure on the means and (log) variances

as driven by the time varying parameters fµt ∈ Rk and f log σ2

t ∈ Rk, respectively. For

instance, in Section 4 we observe time-series for a number of financial instruments (level

4), each instrument being characterized by the firm it relates to (level 3), and each firm

characterized by its credit quality (rating), its industry, and its region (level 2), which

in turn hinge on the global common developments that affect all firms and instruments

(level 1). Note that the model can easily be extended to allow for different hierarchical

structures F µ
t and F σ

t in the means and volatilities, respectively, as well as for different

dimensions of fµt and f log σ2

t .

To fix the idea, consider for example an Ft such that
µ1,t

µ2,t

...

µp,t


︸ ︷︷ ︸
µt (p×1)

=


1 1 0 0

1 0
. . . 0

... 0 0 1

1 −1 . . . −1


︸ ︷︷ ︸

Ft=F (p×p)


fµc,t

fµ1,t
...

fµp−1,t


︸ ︷︷ ︸
fµt (p×1)

, (2)

or

µi,t = fµc,t + fµi,t, for i = 1, . . . , p,

fµ1,t + . . .+ fµp,t = 0,

which decomposes the means µi,t into a common factor fµc,t and an idiosyncratic compo-

nent fµi,t for i = 1, . . . , p. The second equation is needed for identification and enforces

the idiosyncratic components to always sum to zero to avoid multicollinearity. From this,

we easily derive

f̃µt =



fµc,t

fµ1,t
...

fµp−1,t

fµp,t


︸ ︷︷ ︸
f̃µt ((p+1)×1)

=



1 0 . . . 0

0 1 0
...

... 0
. . . 0

0 . . . 0 1

0 −1 . . . −1


︸ ︷︷ ︸

F̃t ((p+1)×p)


fµc,t

fµ1,t
...

fµp−1,t


︸ ︷︷ ︸
fµt (p×1)

= F̃t f
µ
t , (3)

with f̃µt ∈ Rkc denoting the vector containing all constrained and unconstrained factors,

and F̃t ∈ Rkc×k the corresponding known design matrix. Unlike plain vanilla dummy en-

coding where the common mean component fµc,t reflects the mean of the omitted category

to avoid multicollinearity, the effect dummy coding in Eq. (2) specifies fµc,t as the overall
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grand mean of the components in yt. This overall grand mean component can still be

estimated as long as there is at least one observation left in the cross-section, and can

subsequently be used to anchor the missing components in yt. This eases the interpre-

tation in our hierarchical setting compared to plain vanilla dummy encoding. Another

advantage of effect coded matrix Ft is that we can now estimate idiosyncratic factors

fµi,t over and above the grand mean component fµc,t for all series in the system. This

is a useful feature when interpreting the output of the model. A similar use of effect

coded dummies can be found in the structural time-series literature, where it is typically

used to model time-varying seasonal components; see for instance Harvey (1990). It is

precisely this hierarchical structure that we exploit in our approach when coping with

missing data: the structure allows the user to select which component to prioritize when

inferring the values of Ft in the face of missing observations.

The hierarchical decomposition of means and log variances can of course be taken a

step further. Figure 1 provides an example for 9 financial instruments with a common

(Level 1) effect. The 9 instruments can be grouped in 3 clusters, each cluster corre-

sponding to a different firm (Level 2). Finally, for each firm, each instrument has an

idiosyncratic mean and log variance component (Level 3). Moreover, in the examples

thus far, the design matrices were all time-invariant. However, situations where Ft is

time-varying can easily be thought of as well. For instance, in our empirical applications

the time-series depend on the credit quality of the underlying firms. As the credit quality

changes over time, so may the design matrix Ft.

We describe the time-varying parameters fµt and f log σ2

t using the score-driven dynam-

ics of (Creal et al., 2011, 2013) and Harvey (2013). The score-driven dynamics for fµt

and f log σ2

t adjust the time-varying parameters in a steepest ascent direction of the time

t predictive density. This has a distinct advantage over a state-space approach in our

application. Score-driven dynamics allow more easily for generalizations of the model,

such as the time-varying volatility structure in Eq. (1), without unduly increasing the

computational burden of the approach. Such additional features are important for the

type of data in Section 4. Particularly in high-dimensional settings such as ours, accom-

modating such features without undue computational costs is a relevant consideration.

Also further generalizations such as fat-tailed densities in Eq. (1) are easy to accommo-

date, as are structural time-series components as the ones introduced by Harvey (2013).

Score-driven dynamics for fµt and f log σ2

t also improve the expected Kullback-Leibler di-

vergence between the unknown data generating process and the statistical model as time
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Figure 1: An hierarchical design for factor loading matrix F

F9×9 =

1 1 0 1 0

1 1 0 0 1

1 1 0 −1 −1

1 0 1 1 0

1 0 1 0 1

1 0 1 −1 −1

1 −1 −1 1 0

1 −1 −1 0 1

1 −1 −1 −1 −1





Cluster 1

Cluster 2

Cluster 3

Level 1 Level 3

Level 2 Idio. Factors Cluster 2

y1,t

y5,t

y9,t

Notes: An illustration of an effect coded multi-level loading matrix for 3 clusters among 9 time-series in the cross-section.

The level 1 dummy indicates the common level among all series, level 2 dummies account for dynamic firm effects across

the clusters, and level 3 dummies model idiosyncratic (firm, instrument) dynamics within each level 2 cluster.

progresses and provide consistent estimates of the time-varying parameter paths even if

the model is mis-specified (Blasques et al., 2015; Beutner et al., 2023). Finally, Koopman

et al. (2016) show that (univariate) score-driven models exhibit a similar state prediction

accuracy as state space models even if the latter are the data generating process.

The score-driven dynamics for fµt and f log σ2

t are given by the following expressions:

fµt+1 = κµ +Bµfµt + Aµsµt ,

f log σ2

t+1 = κlog σ
2

+Blog σ2

f log σ2

t + Alog σ2

slog σ
2

t ,
(4)

where κµ, κlog σ
2 ∈ Rk are vector-valued, and Aµ, Alog σ2

, Bµ, Blog σ2 ∈ Rk×k are matrix-

valued parameters. We collect all unknown parameters into the vector ψ, which we

estimate by maximum likelihood later on. We also collect fµt and f log σ2

t into the vector

ft, and sµt and slog σ
2

t into the vector st, respectively. The innovations st in the transition

equation Eq. (4) are given by the score of the log-predictive density p(y†t | ft,Ft−1;ψ),

sµt = (Iµt )+∇µ
t , ∇µ

t =
∂ log p

(
y†t | ft,Ft−1;ψ

)
∂fµt

,

Iµt = −Et−1

∂2 log p
(
y†t | ft,Ft−1;ψ

)
∂fµt ∂f

µ
t
′

 = Et−1 [∇µ
t∇

µ
t
′ ] ,

(5)

see Creal et al. (2013, 2014), where (A)+ denotes the pseudo-inverse of the matrix A

and Ft−1 is the information set of all past observations. A similar set of equations holds
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for f log σ2

t . Note that we take the scores of the predictive densities of the observed data

y†t only, which makes sense, as those data are the only signals we can use to adjust the

time-varying parameters. We also filter separately for the time-varying parameters fµt

and f log σ2

t , which increases in numerical efficiency and stability of the filter. For our

model in equation Eq. (1) we have the following result.

Proposition 1. For the observation equation in (1), the scores and information matrices

for fµt and f log σ2

t in equation (5) reduce to

∇µ
t = F ′

tS
o
t
′Σ†

t
−1/2ε†t ∇log σ2

t = 1
2
F ′
tS

o
t
′
(
ε†t

2 − ιpt

)
,

Iµt = F ′
tS

o
t
′Σ†

t
−1SotFt, I log σ2

t = 1
2
F ′
tS

o
t
′SotFt,

sµt =
(
F ′
tS

o
t
′Σ†

t
−1SotFt

)+

F ′
tS

o
t
′Σ†

t
−1/2ε†t , slog σ

2

t = (F ′
tS

o
t
′SotFt)

+
F ′
tS

o
t
′
(
ε†t

2 − ιpt

)
,

(6)

where the squaring ε†t
2 is done element-wise, and ε†t = Σ†

t
−1/2Sot (yt − µt).

See the appendix for all proofs and derivations.

Both scaled-scores take familiar expressions. For instance, sµt is a generalized least

squares (GLS) improvement using ‘regressor matrix’ Ft and prediction error eµt = yt−µt.
Similarly, slog σ

2

t is an OLS improvement based on the deviations from squared standard-

ized residuals from their expected values, i.e., ε2t − ιp, using again the ‘regressor matrix’

Ft to combine all the information. We assume Ft to have full column rank, i.e., the design

matrix must not be perfectly multicollinear.

Interestingly, the model in Eq. (1) can also be written as a VARMA form with vector

log GARCH volatility dynamics and possibly time-varying coefficients. To see this, define

Kt =
(
F ′
tΣ

−1
t Ft

)−1
F ′
tΣ

−1
t and eµt = yt − µt = Σ

1/2
t εt, and note that

Ktyt = fµt +KtΣ
1/2
t εt ⇔ fµt = Kt (yt − eµt ) ,

such that

yt = Ftf
µ
t + Σ

1/2
t εt = Ft

(
κµ +Bµfµt−1 + Aµsµt−1

)
+ eµt

= Ftκ
µ + FtB

µKt−1

(
yt−1 − eµt−1

)
+ FtA

µKt−1e
µ
t−1 + eµt

= Ftκ
µ︸︷︷︸

mt

+FtB
µKt−1︸ ︷︷ ︸
Φt

yt−1 + eµt −Ft (Bµ − Aµ)Kt−1︸ ︷︷ ︸
Θt

eµt−1.

(7)

The latter can be clearly recognized as a VARMA(1,1) process with possibly time-

varying intercept Ftκ
µ, time-varying AR matrix FtB

µKt−1, time-varying MA matrix

−Ft (Bµ − Aµ)Kt−1, and time-varying variances as captured by the time-varying condi-

tional covariance matrix Σt. The hierarchical model in equation Eq. (1) together with
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the score-driven dynamics from equation Eq. (4) and Proposition 1 can thus describe a

wealth of different dynamic patters in a vector time-series process yt.

2.2 Exploiting the hierarchical structure for updating ft

So far, the filter in Proposition 1 accounts for missing values through the presence of the

matrix Sot . This is particularly important for observation-driven models, where current

non-missing observations determine the future value of the parameters. The approach

thus far, however, does not yet exploit the hierarchical structure of the model in any

way. This hierarchical structure can be used by the researcher to determine which factors

should have prioritized access to the available observations when updating the parameters,

and which ones should mean-revert given the lack of information at time t.

It is clear from the updating mechanism in Eq. (5) that the score is only determined

on the basis of the predictive density of the observed data. Nevertheless, even though

not all elements of yt may be observed at time t, the score steps typically still induce a

change in all of the time-varying parameters in the model, including the factors that only

affect the observations that are currently missing. This may not always be desirable, and

it is here that we can use the hierarchical structure to our advantage.

As an example, consider the p × p design matrix Ft in Eq. (2) for Σt = Ip. In this

simple setting, we can easily re-trace the key features of our approach. The updates

for a situation without missing values as well as a situation where one series is missing,

are both given as a product of a specific matrix with the available elements of et. The

relevant matrices are given in Figure 2b. The rows of each matrix correspond to the

different time-varying factors, as indicated in the figure, while the columns correspond to

the elements of ei,t.

For the case without missing values (left-hand matrix), the weights of the different

prediction errors for updating fc,t clearly sum to one, while those for the idiosyncratic

factors fi,t sum to zero. This is in line with the specifications of the factors themselves,

where fc,t is common to all series, whereas the fi,t are series-specific and sum to zero.

When the first series is missing, however, the weights for fc,t sum to something strictly

less than one, while the idiosyncratic factors receive a non-zero weight. This means

that relative to the situation without missings, the common factor takes less information

from the available observations than before. Instead, part of the information ‘leaks’ or

is transferred to the estimation of the idiosyncratic factors. In such settings it may be
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Figure 2: Score-driven regression weights without and with missing values

p−1 p−1 p−1 . . . p−1 p−1
∣∣∣ 1

p−1
p −p−1 −p−1 . . . −p−1 −p−1
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(b) y1,t is missing

Notes: An illustration of the score-driven regression weights, given Proposition 1 and the p-dimensional effect-coded design

matrix in Eq. (2). Figure 2a displays the score-driven OLS weighting matrix when all observations in yt are complete,

whereas Figure 2b displays the weights when only y1t is missing at time t (pt = p− 1). Column values on the right-hand

side of the vertical line correspond to the row-wise sum of the weights. The elements et’s on top of the matrix correspond

to the available prediction errors used to obtain the scaled-score estimates st’s for the corresponding factors ft’s indicated

by the curly brackets on the left-hand side of the first matrix. The rows in both matrices correspond to exactly the same

factor.

useful to let the common factor first exploit all the empirical information in the available

data, while letting the idiosyncratic factor mean-revert for that/those series for which

the corresponding observation is missing. In the context of the example in Figure 2,

this means letting fµ1,t mean-revert when y1,t is missing and using the information of the

remaining observed series y2:p,t to first update the common level fµc,t.

Figure 3 demonstrates this setup for a simulated bivariate time-series system from

the same example (i.e., p = 2 in Eq. (2)) that features a strong common factor and

assumes homoskedastic error variance specification. In this example, y1,t is missing from

t = 100, . . . , 400, but y2,t is always observed. When we filter the conditional means of these

series using the standard score-driven updates of Creal et al. (2013) from Proposition 1,

both fµc,t and fµ1,t (and also fµ2,t = −fµ1,t) each receive about half of the prediction error e2,t

during the period that y1,t is missing. As a result, the filtered (or imputed) mean µ1,t of

y1,t (shown in Subfigure 3a) does not track the missing data very well, even though µ2,t

continues to accurately follow y2,t (see Subfigure 3c). This holds despite the presence of

strong common factor in the full system, which one may expect to enable the researcher to

obtain a better estimate of the (dominant) level component fµc,t present in y1,t. However,

if we allow fµ1,t to mean-revert as we do in this paper and if we allow the common factor

to first fully absorb the information in the new observation y2,t, the imputed mean for y1,t
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Figure 3: A bivariate example of filtering with missing values
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updates of Proposition 1′
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(d) y2,t and f
µ
2,t using the adjusted score-driven

updates of Proposition 1′

Notes: this figure presents an example of filtering the mean in a bivariate time-series system with missing values, based

on the p = 2-dimensional effect-coded (as described in Eq. (2)), using two different score-driven filtering mechanisms. The

top panels display the simulated time-series for the first variable y1,t, while the bottom panels show those for the second

variable y2,t. in dots and bottom ones panels display the values for y2,t. Observed values are depicted as black dots and

missing values as pink dots. In each panels, the solid blue line depicts the filtered mean µt of yt. The time-series in

Subfigures 3a and 3c are filtered using the scores from Proposition 1, whereas those in Subfigures 3b and 3d use the scores

from Proposition 1′. In the latter case, the idiosyncratic location factor fµ1,t mean-reverts when y1,t is missing, which also

forces the second factor to mean-revert, since fµ2,t = −fµ1,t. The location model is simulated using the following parameters:

κµ = [0.25, 0.05]′, Aµ = diag ([0.5, 0.25]), Bµ = diag ([0.98, 0.95]), Σt = I2, and n = 500.

(displayed in Subfigure 3b) again aligns much more closely with the (missing) observations

y1,t.

It is here that the modeler has a choice. For instance, if the common factor is much

larger in size than the idiosyncratic factors, it may be much more important to get

the estimate of the common factor correct, possibly at the expense of the idiosyncratic

factors. This situation is quite common in many areas of economics and finance. Also

in our application later on, the common (level) factor is typically much larger than the

subsequent regional, rating, or maturity related factors.

In technical terms, we achieve this objective as follows. Let Kt ∈ Rrt×kc be a selection

matrix of ones and zeros that selects the elements of f̃t that the researcher chooses to

mean-revert at time t in the light of the missing observations. In the example above
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where y1,t is missing, we would let f1,t mean-revert, resulting in Kt = (0, 1, 0, 0, 0). To

ensure that the factors indicated by Kt mean-revert, we impose that the derivatives of

the log predictive density with respect to Ktft are zero, i.e., we set

Kt∇̃µ
t = 0, ∇̃µ

t =
∂ log p(y†t | ft,Ft−1;ψ)

∂f̃t
= F̃t∇µ

t . (8)

Now let K⊥ t ∈ R(k−rt)×k be a matrix orthogonal to KtF̃t, such that KtF̃tK
′
⊥ t = 0.

Also define the k× k projection matrices Mt = K ′
⊥ t(K⊥ tK

′
⊥ t)

−1K⊥ t ∈ Rk×k and M⊥ t =

F̃ ′
tK

′
t(KtF̃tF̃

′
tK

′
t)

−1KtF̃t. Then we rewrite the original score step ∇µ
t under the restriction

Kt∇̃µ
t = KtF̃t∇µ

t = 0, as

∇µ
t = (M⊥ t +Mt)∇µ

t = F̃ ′
tK

′
t(KtF̃tF̃

′
tK

′
t)

−1
(
KtF̃t∇µ

t

)
+Mt∇µ

t = Mt∇µ
t . (9)

We directly see that such a step satisfies the restriction KtF̃t∇µ
t = KtF̃tMt∇µ

t = 0 by

design. We now obtain the revised Proposition 1′.

Proposition 1′. For the observation equation in (1) and under the restrictions Kt∇̃µ
t =

KtF̃t∇µ
t = 0 and Kt∇̃log σ2

t = KtF̃t∇log σ2

t = 0, the scores and information matrices for

fµt and f log σ2

t in equation (5) reduce to

∇µ
t = MtF

′
tS

o
t
′Σ†

t
−1/2ε†t ∇log σ2

t = 1
2
MtF

′
tS

o
t
′
(
ε†t

2 − ιpt

)
,

Iµt = MtF
′
tS

o
t
′Σ†

t
−1SotFtMt, I log σ2

t = 1
2
MtF

′
tS

o
t
′SotFtMt, (10)

sµt =
(
MtF

′
tS

o
t
′Σ†

t
−1SotFtMt

)+

MtF
′
tS

o
t
′Σ†

t
−1/2ε†t ,

slog σ
2

t = (MtF
′
tS

o
t
′SotFtMt)

+
MtF

′
tS

o
t
′
(
ε†t

2 − ιpt

)
,

where K⊥ t ∈ R(k−rt)×k is a matrix orthogonal to Kt, such that KtF̃tK
′
⊥ t = 0, and Mt =

K ′
⊥ t(K⊥ tK

′
⊥ t)

−1K⊥ t ∈ Rk×k, and where the squaring ε†t
2 is done element-wise, and ε†t =

Σ†
t
−1/2Sot (yt − µt).

If there are different design matrices F µ
t and F log σ2

t , then also the corresponding projection

matrices Mt will be different for µ and σ.

Our approach for filtering with missing observations is inspired by the so-called

‘setting-to-zero’ method of Blasques et al. (2021) in the context of univariate score-driven

models; see also Creal et al. (2014); Delle Monache et al. (2016); Koopman et al. (2018);

Buccheri et al. (2020). In a univariate set-up, the ‘setting-to-zero’ method puts the

score innovation of a factor in the transition equation to zero. Lucas et al. (2016) re-

late this method to the Expectation-Maximization algorithm as used in the missing data

literature, and justify why this approach is reasonable in score-driven models. In our
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multivariate hierarchical setting, we generalize this approach by allowing the researcher

to self-select which derivatives should be set to zero via the matrix Kt. The following

examples illustrate how Proposition 1′ works out when some of the components of yt are

missing.

Example 1 (No mean-reverting factors). When missing values at some t are encountered,

but there is still sufficient cross-sectional information available to estimate all factors, we

have r = 0, Kt is empty, and K⊥ t is the identity matrix. As a result, Mt = Ik and

Proposition 1′ collapses to Proposition 1. This can happen for instance in cases where

multiple elements of yt identify the same factor. For instance, in case of a single common

factor, this factor can still be filtered from the data as long as at least one element of yt

is observed.

Example 2 (Mean-reverting unrestricted idiosyncratic factors). If we take the example

from Figure 2, the first component of yt is missing. If the common component fc,t is much

larger than the idiosyncratic components, it may be preferrable as argued before to let

the first idiosyncratic component mean-revert, while using the remaining information to

get as accurate an estimate of fc,t as possible. This leads to

K ′
t =



0

1

0

0

0


, F̃ ′

tK
′
t =


0

1

0

0

 , K ′
⊥ t =


1 0 0

0 0 0

0 1 0

0 0 1

 , Mt =


1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 .

The resulting score step follows from Proposition 1′. For the case Σ†
t = I, Figure 4a,

then gives the new matrix (MtF
′
tS

o
t
′SotFtMt)

+MtF
′
tS

o
t
′ in front of ε†t . This matrix can be

compared to the one in Figure 2b. We clearly see that the scaled score step st for f1,t

equals zero, such that that factor mean-reverts. The common component now has equal

weights for each of the three remaining elements of yt that are observed at time t. Also,

the weights for f2,t and f3,t again sum to zero, as in the case without missings.

Example 3 (Mean-reverting unrestricted and restricted idiosyncratic factors). Now we

consider the case r = 2 in a situation where both y1,t and y4,t are missing. Therefore, we

let f1,t and f4,t mean-revert. However, f4,t is effect-coded and therefore a function of the

other three (free) idiosyncratic factors. It is therefore not immediate how the information
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Figure 4: New score-driven regression weights with missing values
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Notes: An illustration of the application of Mt through Proposition 1′, related to the examples given in the main text. It

presents the matrix (MtF ′
tS

o
t
′So

t FtMt)
+MtF ′

tS
o
t
′ in front of ε†t in Proposition 1′ for Σ†

t = I.

in the remaining series should be spread out over the common factor fc,t and the two

idiosyncratic factors f2,t and f3,t. Using Proposition 1′, we obtain

Sot =

0 1 0 0

0 0 1 0

 , Kt =

0 1 0 0 0

0 0 0 0 1

 , KtF̃t =

0 1 0 0

0 −1 −1 −1

 ,

K ′
⊥ t =



√
1
2

√
1
2

0 0

1
2

−1
2

−1
2

1
2

 , Mt =


1 0 0 0

0 0 0 0

0 0 1
2

−1
2

0 0 −1
2

1
2

 ,
and the resulting matrix (MtF

′
tS

o
t
′SotFtMt)

+MtF
′
tS

o
t
′ is given in Figure 4b. We see that

indeed only fc,t, f2,t and f3,t possibly make a non-zero step. Moreover, again the weights

for the common factor sum to one, while those for the idiosyncratic factors sum to zero.

The common factor thus takes all the information from the remaining observations. The

rest of the information is used to filter the factors for which some direct information is

available, while f1,t and f4,t revert to their long term means.

Example 4 (Mean-reverting common factors). As a final example, we consider the case

where the idiosyncratic factors are large, while the common factor is small in magnitude.

Consider the same setting as in Example 3, with y1,t and y4,t missing, but where we now

choose to let the (in this case smaller) common factor fc,t mean-revert, as well as one of
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the idiosyncratic factors, e.g. f1,t. We obtain

Sot =

0 1 0 0

0 0 1 0

 , Kt =

1 0 0 0 0

0 0 0 0 1

 , KtF̃t =

1 0 0 0

0 −1 −1 −1

 ,

K ′
⊥ t =


0 0√
1
3

0

−
√

1
6

−
√

1
2

−
√

1
6

√
1
2

 , Mt =


0 0 0 0

0 2
3

−1
3

−1
3

0 −1
3

2
3

−1
3

0 −1
3

−1
3

2
3

 , [⋆] =


0 0

−1 −1

1 0

0 1

 ,
(11)

where the last matrix [⋆] = (MtF
′
tS

o
t
′SotFtMt)

+MtF
′
tS

o
t
′ is comparable to that in Fig-

ure 4b. Now the score of the common factor fc,t in Eq. (11) puts the step for the first

element of ft, i.e., fc,t, to zero such that it mean reverts. The rest of the entries in the last

matrix in Eq. (11) ensure also f4,t mean reverts. This is done by transferring the infor-

mation in eµ2,t and eµ3,t into f2,t and f3,t, while f1,t is modified by the mean reversion of f4,t

and the identifying restriction that the idiosyncratic factors should always sum to zero.

This illustrates how different choices regarding the mean reversion of the time-varying

factors in the model lead in a consistent way to the available information in the data at

time t to spread out over the non-mean-reverting factors. Later in the paper we illustrate

how these choices lead to a useful imputation mechanism in a hierarchical factor model

setting and to adequate imputation uncertainty bands.

The above examples illustrate that our methodology from Proposition 1′ can thus

be used to let either idiosyncratic or common factors mean-revert, depending on their

relative importance in the hierarchical set-up. The choice of which factors to prioritize

is fully under control of the modeler through the specification of the matrix Kt. The

approach accommodates customized versions of the ‘setting-to-zero’ method in a mul-

tivariate, hierarchical set-up. Our approach remains valid for other popular ways to

encode dummy variables, such as the plain vanilla dummy encoder,2 deviation/difference

encoding, repeated effect-coding, and design matrices including exogenous regressors.

2When Ft is a pure dummy coded matrix, the scaled-score of factors without any contributions are

put automatically to zero by just using So
t (and pseudo-inverses).
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2.3 Imputing missing observations

The above treatment of the score through Eq. (10) in Proposition 1′ is adequate for

obtaining point forecasts of fµt and f log σ2

t and thus of the missing components in yt.

For interval forecasts, however, we resort to simulation-based techniques. A simulation

algorithm for pure out-of-sample forecasting for score-driven models without missing value

problems was introduced in Blasques et al. (2016). Here, we generalize the approach to

the in-sample data imputation problem.

Algorithm 1: In-sample forecast bands

Initialize score-driven filters with some initial values f
µ,(s)
1 , f

log σ2,(s)
1 ∈ Rk.

for s = 1, . . . , S do

Simulate ψ̂(s) using its asymptotic distribution

for t = 1, . . . , n do

if yt is complete then

Compute sµt and slog σ
2

t using Eq. (6);

else if yt is partially observed then

Simulate Smt yt from N
(
Smt µ

(s)
t , Smt Σ

(s)
t Smt

′
)
and combine this with the

observations y†t into the vector y
(s)
t . Use y

(s)
t to update to f

µ,(s)
t+1 and

f
log σ2,(s)
t+1 using Eq. (10).

else

Simulate y
(s)
t from N

(
µ
(s)
t ,Σ

(s)
t

)
and use it to update to f

µ,(s)
t+1 and

f
log σ2,(s)
t+1 using Eq. (10).

end

end

end

Use
{
f
µ,(s)
t

}S
s=1

and
{
f
log σ2,(s)
t

}S
s=1

for t = 1, . . . , n to describe the in-sample

uncertainty of the factors.

Let Smt ∈ R(p−pt)×p denote a selection matrix such that Smt yt contains the miss-

ing elements of yt at time t, just as Sot yt contains the non-missing or observed ele-

ments. For imputing missing data and their uncertainty over the entire sample period,

we consider the first time point t where we have missing data. At time t, we have

Smt yt|Ft−1 ∼ N(Smt µ
(s)
t , Smt Σ

(s)
t Smt

′) with µ
(s)
t = µt and Σ

(s)
t = Σt, such that we directly

obtain imputation values and prediction intervals.3 To propagate the uncertainty due to

3The current conditioning scheme builds on the diagonal structure of Σ
(s)
t and the fact that
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missing values forward, we simulate values for Smt yt from the above normal distribution.

These are combined with the observed elements y†t into a simulated data point y
(s)
t , which

is then used to obtain simulated updates of the time-varying parameters µ
(s)
t+1 and Σ

(s)
t+1.

With these simulated updated parameters, we proceed to time t+ 1, and so on, until the

end of the sample. The process can be repeated many times, and pointwise simulation

bands can be constructed for Smt yt and for the underlying time-varying parameters for all

t. The algorithm is summarized as Algorithm 1. As in Blasques et al. (2016), we can ex-

tend the approach above to also include parameter uncertainty. We do so by embedding

the above simulation algorithm into a second loop, where we simulate over the vector of

static parameters using its asymptotic distribution. This step is described in the outer

loop in Algorithm 1.

2.4 Filtering equations for score-driven updates and smoothing

The score-driven recursion in Eq. (4) lets the parameter vector ft evolve based on past

observations only. The model specification in Eq. (1) is thereby observation-driven model.

This implies that all time-varying parameters are one-step-ahead perfectly predictable and

that, under correct specification, these time-varying parameters are completely revealed

by past observations and the values of the static parameters. A better estimate of the

time-varying parameter might be obtainable if we can use a filter based on both past and

contemporaneous (and possibly even future) observations, i.e., filtering and smoothing as

opposed to prediction could possibly provide a more accurate estimate of the time-varying

parameter, particularly in the presence of missing data.

Buccheri et al. (2021) recently proposed a methodology for score-driven transition

equations that uses more than just past data to estimate time-varying parameters. The

propose both a score-driven filter that uses past and current observations and a score-

driven smoother that uses all past, present, and future observations. Their approach

builds on an analogy between the score-driven model and a linear Gaussian state-space

model. In particular, a set of score-driven updates and smoothing recursions is derived

through a general representation of the Kalman filter and Kalman smoother, respectively.

The proposed recursions are approximate, but their numerical results show that their

Sm
t is a selection matrix. In more general cases, we can sample from Sm

t yt|Ft−1, y
†
t with condi-

tional mean Sm
t µ

(s)
t + Sm

t Σ
(s)
t So

t
′(So

tΣ
(s)
t So

t
′)−1(

y†t − So
t µ

(s)
t

)
and conditional variance Sm

t Σ
(s)
t Sm

t
′ −

Sm
t Σ

(s)
t So

t
′(So

tΣ
(s)
t So

t
′)−1

So
tΣ

(s)
t Sm

t
′.
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approach can be equally powerful as exact filtering techniques; see Buccheri et al. (2021)

for more details.

Filtering with the score-driven update and smoothing equations is straightforward as

these recursions do not require additional elements than the ones already derived for the

predictive filter. The score-drive contemporaneous filter recursion for ft is given by

ft|t = ft +B−1Ast, (12)

for t = 1, . . . , n. The score-driven smoother is given by

rt−1 = st(B − A)′rt

ft|n = ft +B−1Art−1,
(13)

where rn = 0, and t = n, . . . , 1. Just like for the predictive filter in Eq. (4), updated

and smoothed estimates of the location and log-variance factors, i.e., fµt|t, f
µ
t|n, f log σ2

t|t , and

f log σ2

t|n , are obtained by running the above recursions.

2.5 Estimation

The filtered parameters ft are a function of the data. This allows us to estimate the

score-driven model’s static parameter vector ψ by maximum likelihood. In the presence

of missing data, however, likelihood evaluations require careful attention. When no ob-

servations are available, the log-likelihood collapses to zero; see Blasques et al. (2020).

If at least one observation in yt is not missing, i.e., pt ≥ 1, then ℓt is computed via the

marginal likelihood function log p
(
y†t | ft,Ft−1;ψ

)
. Formally, the ML criterion function

for multivariate score-driven models with missing observations is defined as

ψ̂ := arg max
ψ

n∑
t=1

ℓt(ψ),

ℓt(ψ) =

log p
(
y†t | ft,Ft−1;ψ

)
, if pt ≥ 1,

0, otherwise,

(14)

where y†t = Sot yt, for t = 1, . . . , n. Blasques et al. (2020) refer to the log-likelihood in

Eq. (14) as the pseudo log-likelihood function. During ML estimation, the regression

weight matrix MtF
′
tS

o
t
′SotFtMt in Eq. (10) for updating the log-variance factors can be

pre-computed as they do not depend on any of the unknown parameters. They can

therefore be fixed during optimization. This significantly reduces the run-time of the

log-variance filter as taking (pseudo)-inverses at each t and across each optimization

iteration is avoided. Similar, further increases in numerical efficiency and stability are
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reached when one opts to filter the location factors using OLS rather than GLS type

updates, i.e., by replacing Σ†
t by a unit matrix in the expression for sµt in Eq. (10).

To carry out the ML estimation, one requires to first initialize the score-driven filter

recursion in Eq. (4) at a fixed point fµ1 , f
log σ2

1 ∈ Rk. A typical choice for the initialization

of observation-driven models is the unconditional mean of the filter itself, namely f1 =

(I − B)−1κ. Using the unconditional mean of the score-driven recursion as initial values

does introduce vulnerability to outliers in the beginning of the filter. To mitigate this

issue, one may fix initial values at some estimates inspired by the sample moment of

the data. For example, consider the p × 1 vector of sample averages over τ consecutive

observations y1:τ =
(
y1,1:τ , . . . , yp,1:τ

)′
, where yi,1:τ = τ−1

∑τ
t=1 yi,t, for i = 1, . . . , p. This

vector of averages can be used to analytically estimate the first values of the location

factors, f̂µ1 , by solving

f̂µ1 = F−1
1 y1:τ ,

for any (pseudo-)invertable factor loading matrix F1. By setting τ to a small number,

say τ = 10, one can ensure that the initial values yields a prediction µ̂1 = F1f̂
µ
1 relatively

close to y1. Similarly, we can define a p× 1 vector of prediction error variances over the

first τ observations: ŝ21:τ =
(
ŝ21,1:τ , . . . , ŝ

2
p,1:τ

)′
, where ŝ2i,1:τ = τ−1

∑τ
t=1 (yi,t − µ̂i,1)

2, which

we can use to solve for the log-variance factors’ initial value f̂ log σ2

1 = F−1
1 log (ŝ21:τ ). Note

that the above initialization procedure can also be carried out when there are missing

values among the first τ observations. In such cases, one uses the number of available

observations only to compute the means yi,1:τ and variances ŝ2i,1:τ . Factors that cannot

be estimated in this way due to (a sequence) of missing observations in the beginning of

the time-series can be simply initialized with their unconditional mean or by increasing

the value of τ .

Sample moments may also be used to reduce the number of static parameters by

employing a mean and/or variance targeting approach. A targeting approach for score-

driven models is established by setting the unconditional mean of the filter equal to

its corresponding sample moment, which avoids numerical estimation of the conditional

intercept κ. This approach can be easily implemented if the score-driven factors are one-

to-one related with the time-varying moments. In our multi-factor location-scale model,

this relationship includes the dependence on a (potentially) time-varying matrix Ft. For

the location factors, the mean-targeting approach therefore takes the following form

κµ := (Ik −Bµ)F
+
y,
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where F = n−1
∑n

t=1 Ft is an (pseudo-)invertible matrix and y = y1:n. A similar expres-

sion for κlog σ
2

can be obtained by replacing y with log (ŝ21:n). However, our experience

shows that variance-targeting is not recommended as ŝ2 includes both the variance of the

noise εt as well the variation of the mean µt, whereis σt should only reflect the former, not

the latter. Only in cases where the mean µt is static, variance targeting seems applicable,

e.g., in pure volatility models. In other cases, variance targeting in the way above almost

invariably induces inconsistent estimation results.

3 Monte Carlo Evidence

3.1 Design

In our Monte Carlo (MC) experiment we investigate the methodology’s performance when

forecasting missing values in structured data. We consider a p = 4 dimensional setting

and two distinct scenarios for the missing values, namely MAR (missing-at-random) and

NMAR (not-MAR). In the NMAR setting, we consider long patches of missing values

at the start, middle, and end of the sample. Such patterns resemble the gaps observed

empirically in Section 4. The length of the three patches of missings is set to 20% of the

sample size each, such that only 40% of the data is observed. We consecutively introduce

these missing values in only the first time-series, the first two series, the first three, and

finally all four series. In this way, it becomes increasingly challenging to back out any

information on the common and series-specific components via the factor structure.

In the MAR experiment, we use a standard i.i.d. Bernoulli indicator to put yi,t to

missing with probability πi,t. We consider πi,t ∈ {25%, 50%, 75%} and again introduce

the missing values in only the first series (scenario 1) up to all four series (scenario 4). A

visual impression of the extent of the missing data problems is given in Figures C.1–C.4

in AppendixC. Out of the 16 scenarios in total, the challenges range from mild (25%

missing at random in only one series) to severe (75% missing in all four series, either at

random or in patches).

The DGP for each of the 16 scenarios is the score-driven model from Section 2 with

one common factor, three free idiosyncratic factors, and one effect-coded idiosyncratic
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factor. The corresponding factor loading matrix in the DGP is

F =


1 1 0 0

1 0 1 0

1 0 0 1

1 −1 −1 −1

 . (15)

The static parameters used in the DGP reflect the values found for the empirical data

in Section 4 and are given by κµ = 0 × ι4, A
µ = diag (0.1, 0.025, 0.025, 0.025), Bµ =

diag (0.98, 0.96, 0.96, 0.96), and κlog σ
2

:= κµ, Alog σ2
:= Aµ, Blog σ2

:= Bµ. The data

yt then include a strong location and scale common factor structure, combined with

persistent idiosyncratic dynamics of a substantially smaller magnitude.

After simulating from this DGP and introducing the missing values, we fit the mean-

variance score-driven model to each of the 16 scenarios for missing values, utilizing the

scaled-scores in Proposition 1′. In a all missingness scenarios, Mt is chosen to let first the

idiosyncratic factors affected by missing values to mean-revert, as illustrated in Example

2 in Subsection 2.2. We perform 500 Monte Carlo simulations and report the model’s

mean absolute error (MAE) for the in-sample forecasts of the mean and variance factors.

We also compute MAEs for relevant functions thereof, such as tail risk measures like

value-at-risk (VaR) and expected shortfall (ES).

To investigate the accuracy of the in-sample forecast error bands for missing values,

we use Algorithm 1 including the parameter uncertainty outer loop, using S = 500

simulated parameter paths. From these, we construct pointwise forecast error bands for

each simulation and for each missing value. We compute the coverage rate of these bands,

i.e., how often the band contains the true missing value, where the latter is known in the

simulation context. Coverage is computed across 500 Monte Carlo experiments over an

(evenly spread) grid of time points and we compare the simulated coverage percentage

to its nominal level.

3.2 Results

The MAE results for the mean and variance factors and tail risk measures are provided

in Tables 1 and 2, respectively. Supplementary results are provided in Appendix C. Panel

A in Table 1 reports the MAE for the mean factors. The left-most column (labeled 0)

serves as the benchmark and corresponds to the scenario without missing values. The

next panel of four columns (y1,t to y1:4,t) present the results for the four scenarios where
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patches of missings are present in only the first, the first two, the first three, or in all

four series. We implemented shading in each of the panels to indicate when one or more

of the informative series for that factor are missing.

When all time-series are NMAR, both the common and idiosyncratic factors revet

to their mean, revert. In turn, all factors, and consequently, the time-series data, are

imputed using their unconditional means. Therefor, in this scenario, the MAE can be

interpreted as the expectation of the half-normal distribution. The MAE for fµc,t is 0.216,

compared to 0.072 for
{
fµj,t

}p
j=1

, indicating that the common location factor in the DGP

is three times stronger than the idiosyncratic location factors. The same relationship

applies to the common and idiosyncratic scale components in the DGPs.

The occurrence of the remaining patches of missings also affects the MAE in a sys-

tematic and interpretable way. For example, if only the first series has patches of missings

(y1,t column), the forecast quality of the first idiosyncratic factor deteriorates substan-

tially. Also the forecast quality of the common factor fc,t goes down, but to a much lesser

extend. Specifically, the filtered of fc,t are about 3.7 times more precise when one out of

four time-series is missing, compared to scenario where the entire cross-section is missing

and only mean-based forecasts are possible. Note that the forecast accuracy of f1,t does

not really deteriorate further if more series start to have the same long patches of missing

values. This is due to the fact that the key information to identify this factor, namely y1,t

, was already missing before. This contrasts with fc,t, for which the MAE continues to

further increases as more series have (overlapping) patches of missings. Eventually, when

only one observation remain in the cross-section, fc,t is about 1.4 times more accurately

captured, again compared the case where all observations are missing. We also see that as

more series exhibit patches of missings, the MAE of each of the idiosyncratic components

(fi,t) for that series (y1:i,t) goes up in turn as well.

To understand these outcomes, consider the setting where y1,t is not observed for some

time, while all the other series are. In that case, the idiosyncratic factor f1,t cannot be

estimated at that point in time. Its scaled-score is then zero through our choice of the

matrix Mt, such that the filtered factor mean reverts. Given that the other series are

available, however, the common component fc,t can still be filtered from the data, albeit

with a higher error. As more time-series (e.g., y2,t) start having long stretches of missings

at the same time as y1,t, the MAE of f1,t remains unchanged as it was already mean

reverting, while the error of f2,t increases. In addition, the MAE of fc,t also increases as

less data is available to filter out the common level component.
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Table 1: In-sample forecast performance for mean and log-variance factors

Mechanism : Missing Patches (NMAR) Randomly Missing (MAR)

Missing % : 60% 25% 50% 75%

0 y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t

Panel A: In-sample MAE for mean factors

fc 0.014 0.059 0.096 0.152 0.216 0.028 0.039 0.049 0.057 0.039 0.056 0.074 0.086 0.049 0.073 0.100 0.118

f1 0.027 0.072 0.072 0.072 0.072 0.038 0.039 0.039 0.041 0.049 0.050 0.052 0.055 0.061 0.062 0.064 0.069

f2 0.026 0.035 0.071 0.071 0.071 0.027 0.038 0.040 0.041 0.029 0.050 0.051 0.054 0.032 0.061 0.063 0.068

f3 0.026 0.035 0.047 0.072 0.072 0.027 0.029 0.040 0.041 0.029 0.033 0.051 0.055 0.031 0.038 0.063 0.068

f4 0.033 0.038 0.048 0.072 0.073 0.035 0.037 0.039 0.047 0.037 0.040 0.045 0.060 0.037 0.044 0.055 0.074

Panel B: Coverage of 95% forecast error bands for mean factors

fc 94.384 94.582 93.899 92.291 96.267 93.641 92.843 91.304 90.796 93.545 92.792 91.626 94.591 95.971 96.412 96.116 99.345

f1 97.541 97.453 97.782 98.054 98.016 97.723 97.864 98.080 98.383 98.225 98.519 98.999 99.467 99.258 99.568 99.702 99.910

f2 97.428 97.296 97.973 98.244 98.220 98.148 98.026 98.153 98.523 97.882 98.612 98.943 99.493 98.599 99.519 99.699 99.900

f3 97.414 97.384 96.998 98.090 98.086 97.872 97.961 98.066 98.447 98.007 98.064 98.948 99.438 98.651 98.862 99.665 99.901

f4 98.234 99.453 99.580 99.421 99.623 98.733 98.932 99.182 99.245 99.284 99.588 99.670 99.738 99.735 99.828 99.859 99.933

Panel C: In-sample MAE for log-variance factors

fc 0.023 0.083 0.134 0.212 0.301 0.041 0.056 0.069 0.081 0.055 0.080 0.106 0.125 0.069 0.104 0.145 0.174

f1 0.037 0.101 0.101 0.101 0.102 0.054 0.054 0.056 0.058 0.069 0.070 0.072 0.077 0.086 0.087 0.089 0.095

f2 0.038 0.050 0.102 0.102 0.103 0.039 0.055 0.056 0.058 0.042 0.070 0.072 0.077 0.045 0.086 0.089 0.094

f3 0.037 0.049 0.066 0.101 0.102 0.040 0.042 0.056 0.058 0.043 0.048 0.073 0.077 0.045 0.055 0.089 0.095

f4 0.048 0.055 0.068 0.101 0.103 0.050 0.052 0.055 0.066 0.052 0.057 0.064 0.084 0.054 0.063 0.079 0.104

Notes: We explain Panel A, containing the MAE of the mean factors. The other panels are structured similarly. The

first column contains MAE results without missing values (row-wise) for the common factor fc,t and the four idiosyncratic

factors fi,t, i = 1, . . . , 4. The first panel contains the results for the NMAR set-up, with 60% of missing values in three

patches (20% at the start, 20% in the middle, 20% at the end) in the first series only (y1,t column), the first two series

(y1:2,t column), up to in all four series (y1:4,t column). The remaining three panels give similar results, but for the MAR

case with π = 25%, 50%, 75% of missing values in one up to four of the series. Panel B gives the results for the coverage

bands for the mean factors’ in-sample forecast error bands. Panel C gives the MAE results for the log-variance factors.

Results are based on 500 Monte Carlo experiments. The forecast-error bands are based on another S = 500 parameter

path simulations with each Monte Carlo simulation. More results are found in Appendix C.

Comparing the MAE for patches of missings (NMAR) versus randomly missing data

(MAR), we see that patches result in substantially higher MAEs, except if the probability

of missings is extreme (75%). Even then, though, the common component’s (fc,t) MAE

is only about half the size of that of the MAR setting. This is due to the fact that the

common factor model averages both in the cross-section and time-series direction, and

can therefore exploit any data point to obtain information on the common level fc,t and

possibly its variance. The MAR setting profits from this (with high probability), whereas

the NMAR setting does not, as the missing patches are in the same locations for all series

in our set-up.

Panel B in Table 1 reports the coverage rates of the simulation-based in-sample fore-

cast error bands for the factors. We use a 95% confidence level. The first column shows

the performance of the bands in case there are no missing values. We see that the com-

mon factor’s coverage rate lies close to the nominal level of 95%, while the bands for
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Table 2: In-sample forecast performance for tail risk measures

Mechanism : Missing Patches (NMAR) Randomly Missing (MAR)

Missing % : 60% 25% 50% 75%

Series 0 y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t

Panel A: MAE of in-sample forecasts for VaR with α = 5%

y1 0.048 0.196 0.227 0.291 0.353 0.091 0.096 0.103 0.109 0.126 0.137 0.150 0.160 0.162 0.179 0.204 0.217

y2 0.049 0.075 0.226 0.290 0.353 0.055 0.097 0.103 0.110 0.061 0.137 0.151 0.160 0.067 0.177 0.202 0.216

y3 0.048 0.074 0.103 0.289 0.353 0.055 0.062 0.103 0.109 0.062 0.075 0.150 0.160 0.068 0.087 0.204 0.218

y4 0.058 0.078 0.103 0.149 0.350 0.065 0.071 0.078 0.115 0.071 0.083 0.097 0.165 0.073 0.091 0.117 0.222

Panel B: MAE of in-sample forecasts for VaR with α = 1%

y1 0.061 0.246 0.286 0.366 0.443 0.115 0.122 0.130 0.138 0.159 0.172 0.190 0.202 0.205 0.226 0.258 0.274

y2 0.062 0.095 0.286 0.366 0.444 0.070 0.122 0.130 0.139 0.078 0.173 0.190 0.202 0.085 0.224 0.256 0.273

y3 0.061 0.093 0.130 0.364 0.445 0.070 0.078 0.130 0.138 0.079 0.095 0.190 0.202 0.086 0.110 0.258 0.276

y4 0.074 0.099 0.130 0.188 0.440 0.082 0.090 0.099 0.145 0.089 0.105 0.123 0.208 0.093 0.115 0.148 0.281

Panel C: MAE of in-sample forecasts for ES with α = 1%

y1 0.068 0.273 0.317 0.406 0.491 0.127 0.135 0.144 0.153 0.177 0.191 0.210 0.224 0.227 0.251 0.286 0.305

y2 0.069 0.105 0.317 0.407 0.492 0.077 0.136 0.145 0.154 0.086 0.192 0.211 0.225 0.095 0.249 0.284 0.303

y3 0.068 0.104 0.144 0.404 0.493 0.078 0.087 0.144 0.154 0.087 0.105 0.211 0.224 0.095 0.122 0.286 0.306

y4 0.082 0.110 0.145 0.209 0.488 0.091 0.100 0.110 0.161 0.099 0.116 0.137 0.231 0.103 0.128 0.165 0.312

Notes: We explain Panel A, containing the MAE of the 5% Value-at-Risk (VaR). The other panels are structured similarly.

The first column contains MAE results without missing values (row-wise) for each of the series yi,t, i = 1, . . . , 4. The first

panel contains the results for the NMAR set-up, with 60% of missing values in three patches (20% at the start, 20% in

the middle, 20% at the end) in the first series only (y1,t column), the first two series (y1:2,t column), up to in all four

series (y1:4,t column). The remaining three panels give similar results, but for the MAR case with π = 25%, 50%, 75% of

missing values in one up to four of the series. Panels B and C give the results for the 1% VaR and Expected Shortfall (ES),

respectively. Results are based on M = 500 Monte-Carlo simulations. More results are found in Appendix C.

the idiosyncratic factors are slightly conservative. The pattern persists if more and more

missings are added to the data. For the NMAR case, all idiosyncratic coverage rates

are somewhat too high at 97.5%–99.5%. The common factor, by contrast, has too low

coverage rates, going down from 93.6% to 90.7% as more and more series have common

patches of missings. This makes sense, as it then becomes increasingly difficult to track

the fc,t component and its volatility. For MAR missing data patterns, we again find that

the bands for the idiosyncratic factors are conservative with too high coverage ratios,

while the bands for the common factor have coverage ratios that range between 90%–

99%. This is likely due to the fact that under the MAR assumption, common components

can be tracked well over time, even with (potentially) multiple values in the cross-section

missing incidentally. The MAE results in Panel C confirm the pattern of Panel A for the

log-variance factors. Also the results for coverage rates (not shown) are very much in line

with those for the level factor.

Table 2 presents the MAE performance of tail risk measures under increasing missing
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value problems. This is particularly relevant for practice, where such risk measures still

have to be reported to regulators, even though the data can be highly incomplete, similar

to the current simulation set-up. Given we know the DGP as well as the model, we can

analytically compute the Value-at-Risk (VaR) and Expected Shortfall (ES) for both the

DGP and the model, and thus compute the MAE of these quantities. Note that the rows

in the table now relate to the VaR and ES for each series rather than for the factors fc,t

and fi,t. Unlike Table 1, we see that the MAE keeps increasing for all risk measures as

more series contain missing values. This holds for both the MAR and NMAR case, though

the MAE in the MAR case is about 40% smaller than in the NMAR case. The reason

for this is that more series with missings increase the estimation error of the common

factor. As both the common and idiosyncratic location and scale factors play a role in

the determination of VaR and ES, the MAE of these keeps increasing across columns.

Understandably the biggest jump for each series yi,t is made if that series starts exhibiting

missing values itself, so from column y1:i−1,t to y1:i,t. However, based on the MAE levels

across all risk measures, the imputations are still 1.9 to 1.2 times more precise when at

least one value in yt is observed, respectively, compared to pure mean-based forecasts

(NMAR setting with all time-series missing).

4 Empirically forecasting missing values for sparse

CDS curves

4.1 Data

In this section, we apply our missing value forecasting methodology for treating missing

values in credit default swap (CDS) spread curves. CDS spreads play an important role

in the financial industry and in supervision, as they reflect markets perceptions on the

credit quality of large financial institutions, and therefore of the financial system itself.

CDS spreads can be regarded as the insurance premium one would pay for protection

against default of that institution. CDSs are traded on financial markets at different

maturities. Typically, CDS spreads are not always observed for every institution and for

every maturity at every time point. This poses severe challenges for both supervisors and

the institutions under their mandate. We investigate whether our methodology succeeds

in capturing the salient features of these data, inclusive of missing data.
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Figure 5: CDS term-structures of financial institutions
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Notes: each panel of this figure shows 8 historical CDS term-structures belonging to a specific region: Asia (top), Europe

(middle), and North America (bottom). CDS maturities range from 6M to 10Y. Spreads are measured in basis points (bps

= 0.01%). The subplot for JPMorgan Chase & Co also includes (black dotted) the time-series of the North American CDS

index of investment grade with a 5Y tenor (CDX-NAIG-5Y).

We gather daily CDS spread data for different maturities for 24 financial institutions

from MarkitTM. The institutions are equally distributed across the regions Asia (8),

Europe (8), and North America (8). For each institution, we use six different CDS

maturities, ranging from 6 months to 10 years. The sample spans a 10 year period from

January 2, 2011 to December 31, 2020. This leads to a total of p = 144 time-series with

n = 2609 days of observations. Figure 5 shows the observed CDS data.

The credit curves show a similar pattern over time across all financial institutions,

especially during crises. For example, all series peak around the 2012 credit crunch and

the more recent Covid-19 crisis. Note that the subplot of JPMorgan Chase & Co (JPM)

also includes the North American CDX index for investment-grade companies with a 5Y

tenor/maturity (CDX-NAIG-5Y). We use this series later on as a potential proxy for the

common factor fc,t.

Figure 5 also clearly shows that the data is far from complete. Many missing values

occur, and the patterns of missings is generally not random, but rather in patches. Large

gaps occur at the beginning and the middle of the sample. Table B.1 reports for each

institution the percentage of missing observations per maturity. Missing value percentages

range between zero (the empty cells) to high percentages in the eighties. Challenges for

missing value forecasting are thus substantial in this application. We note that the lower
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Table 3: Missing observations and rating decomposition per CDS name

Missing Values (%) Rating (% of time)

Institution 6M 1Y 3Y 5Y 7Y 10Y AAA AA A BBB BB

Panel A: Asia

Bk of India 0.04 0.08 0.08 95.40 4.60

CTBC Finl Hldg Co Ltd 42.55 36.38 31.430 31.43 31.43 31.43 48.10 51.90

INDL COML BNK OF CHINA LTD 54.27 54.27 54.27 54.27 54.274 54.27 0.10 99.90

Kookmin Bk 0.23 0.10 99.90

MIZUHO Finl Gp INC 81.22 81.22 76.12 67.19 67.19 71.87 0.10 99.90

Mitsubishi UFJ Morgan Stanley Secs Co Ltd 24.61 12.27 8.82 8.05 14.80 10.31 0.80 99.20

Nomura Hldgs Inc 38.10 61.90

Temasek Hldgs 0.65 100

Panel B: Europe

Allianz SE 0.10 99.90

BNP Paribas 11.00 89.00

Barclays PLC 58.07 49.83 48.52 45.34 45.38 45.38 6.40 44.85 48.75

Deutsche Bk AG 1.40 72.80 25.80

ING Groep NV 15.10 3.80 0.35 0.08 0.08 0.15 100

Lloyds Bkg Group plc 60.64 55.42 44.85 37.79 38.87 40.82 22.30 77.70

Skandinaviska Enskilda Banken AB 0.08 0.08 0.50 0.50 0.10 38.20 61.70

Swiss Life Ltd 5.79 9.47 0.04 0.04 0.04 0.04 0.10 90.90 9.00

Panel C: North America

Amern Express Cr Corp 16.10 3.68 0.61 0.10 99.90

Boston Pptys Inc 1.04 0.12 15.30 84.70

Cap One Finl Corp 0.04 0.04 0.04 0.04 0.04 0.15 0.10 99.90

Goldman Sachs Gp Inc 0.08 0.04 99.90 0.10

JPMorgan Chase & Co 0.04 0.04 8.10 91.90

Navient Corp 39.10 39.06 38.90 38.90 39.79 39.76 100

Royal Bk Cda 38.37 21.35 18.67 17.63 22.23 22.42 0.10 99.40 0.50

Wells Fargo & Co 0.077 0.038 8.70 91.30

Notes: this table reports the percentage of missing values for each CDS curves (over the 10 year period: January 2, 2011 -

December 31, 2020) for each of the 24 financial institutions in our data set. The historical rating frequencies for each firm

are also reported. Empty table cells indicate that the percentage of missing values is zero.

end of the curves (up to maturities of 3 years) have more missing observations than CDS

series for higher tenors. The reason for this is that longer maturity CDSs are more liquid.

Table B.1 also provides an overview of the rating frequencies for each firm over the 10

year sample period. We see that most institutions have an A rating, followed by banks

with a BBB and AA rating. Only one bank has an AAA, respectively a B rating in the

sample, implying that missing value forecasting will be harder for these series if a rating

related factor plays a role.
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4.2 Single-name CDS curve imputation

In our first application, we evaluate the quality of our missing value forecasting method-

ology to CDS curves of one firm only. For this, we select the upper-end of the JPM

CDS curve (3Y-10Y), because it has no missing values. We thus have a four-dimensional

system, each maturity corresponding to a time series yi,t, similar to Section 3. As in

our earlier Monte Carlo experiment, we generate artificial missing data by putting spe-

cific (isolated or patches of) JPM observations to missing using either a MAR or NMAR

scheme. The objective is to assess the performance of both the point and interval forecasts

of the missing values.

We add five features to the current empirical analysis compared to the earlier sim-

ulation design from Section 3. First, next to the location-scale model set-up with one

common-factor fc,t and four idiosyncratic factors fi,t as in Eq. 15, we also consider a linear

Gaussian state-space model with the exact same design matrix for location factors. A

multi-factor state-space framework, in combination with the Kalman filter, is often used

as device for missing value imputation; see for instance Jungbacker et al. (2011), Stock

and Watson (2016) and Durbin and Koopman (2012). The state-space model serves as

a natural benchmark for our observation-driven approach. We refer to the classical lin-

ear Gaussian state-space with independently time-varying location (state) factors as the

SS-l model. Additionally, we consider a sore-driven model with just time-varying mean

factors (GAS-l) to study the added value of including dynamic variances in the imputa-

tion model (GAS-l-s). Second, we also consider the aforementioned GAS location and

location-scale model with a static equicorrelation covariance matrix. CDS tenors display

strong comovements across the term-structure in levels, but historically also exhibit a

strong correlation structure between their returns (between 85%-95%). The GAS models

with an equicorrelation covariance matrix are denoted as GAS-l-eq and GAS-l-s-eq4.

Third, we fit score-driven models with mean-reverting scores as in Proposition 1′,

as well as model without mean-reversion as outlined in Proposition 1′ This enables us

compare the density forecasting performance of these two filtering mechanisms across

different missingness scenarios using real data. For the score-driven models with mean-

reverting scores, Mt is chosen in the same way as in the previous simulation study, i.e.,

4We still simulate from Sc
t yt|Ft−1 for missing value imputation rather than from Sc

t yt|Ft−1, y
†
t , despite

the equicorrelation structure. Experiments with the latter way of simulation for imputing missing values

did not result in improvements compared to the current simpler approach, see Appendix D.1 for additional

results.
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the score of idiosyncratic factors fi,t is set to zero when affected by missing values.

Fourth, we also consider a setting where we add the North American CDX index

for investment grade companies at a 5 year maturity to the four JPM time-series. The

index is liquidly traded and would typically be a prime candidate in practice to anchor

the common component of the CDS curves. We never set the index values to missing,

such that there is always at least one observation in the cross-section in this setting. We

consider this set-up for the GAS location-scale model and refer to this specification as

the GAS-l-s-CDX model. As a result, it is always possible to estimate the time-varying

common location and scale factors.

Fifth, we cross-validate the result across the order in which missing values are added

to the four JPM series. This gives a total of 4! = 24 different orders for adding missing

values to the four series. The patterns for generating MAR and NMAR missing data

are the same as in in Section 3. For a particular scenario, the data that is (randomly)

assigned to be missing is not used for estimating the model parameters. The MAE is then

computed between the observed (but unused) value yt (in basis point (bp) levels) and its

point forecast µ̂t. We only measure the MAE and the accuracy of the 95% forecast-error

bands over the observations that were assigned to be missing. The bands for the state-

space model are generated based on the sum of the state-covariance matrix as predicted

by the Kalman filter and the diagonal measurement covariance matrix. The bands for

the missing values in the sore-driven models are simulated while accounting for both

parameter and innovation uncertainty based on S = 500 MC paths, similar to Section 3.

Tables 4 and 5 report the MAE and coverage results, respectively, as the average over

4! = 24 cross-validation combinations that introduce the missing values to the four series

in different orders. The first column (labeled 0) is the benchmark scenario without any

missing values. It shows a low MAE in the order of 1.5bp to 2.5bp. Dynamic multivariate

Gaussian models thus fit the data well if there are no missing values, regardless of whether

a parameter-driven or an observation-driven framework is used, and regardless of the

precise design of the factor loading matrix F and the structure of the covariance matrix

Σt. The MAE for the SS-l model in the top rows of Table 4 gradually increases across

the columns per missing value design. This is as expected: factors (and thus the data) are

less accurately tracked as the number of missing values within a cross-section increases.

The effect is particularly pronounced the NMAR design, where patches of missing values

lead to an increase in MAEs of about 5bp to 10bp (2 to 5 times larger) as soon as one

of the four time-series includes missing values. On the other hand, even when three out
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Table 4: In-sample point forecast accuracy (MAFE) for CDS JPM term structure

Mechanism : Missing Patches (NMAR) Randomly Missing (MAR)

Missing % : 60% 25% 50% 75%

# time-series in system with missing values

Model Tenor 0 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

3Y 1.641 8.067 7.981 9.559 19.341 1.726 1.786 1.714 1.709 1.951 1.847 1.833 1.864 2.259 2.042 2.059 2.344

SS-l 5Y 2.072 6.097 6.395 8.510 23.198 2.113 2.040 2.083 2.099 2.171 2.183 2.168 2.215 2.240 2.214 2.251 2.642

(Kalman filter) 7Y 2.323 4.668 5.370 7.012 22.973 2.336 2.326 2.305 2.337 2.249 2.359 2.352 2.439 2.363 2.404 2.444 2.870

10Y 2.620 11.143 7.809 9.104 23.693 2.578 2.605 2.569 2.599 2.587 2.613 2.611 2.689 2.670 2.687 2.698 3.127

3Y 1.652 6.280 6.919 13.520 19.164 1.705 1.685 1.742 1.773 1.758 1.794 1.848 2.000 1.907 1.933 2.181 2.634

GAS-l 5Y 2.052 9.111 9.118 16.076 22.619 2.102 2.075 2.140 2.208 2.152 2.209 2.286 2.449 2.256 2.328 2.613 3.032

(Proposition 1) 7Y 2.326 7.126 9.789 16.578 22.262 2.390 2.367 2.427 2.462 2.440 2.454 2.526 2.674 2.576 2.608 2.851 3.259

10Y 2.546 17.437 22.067 24.896 22.679 2.774 2.681 2.695 2.760 2.906 2.889 2.884 3.019 3.174 3.126 3.268 3.674

3Y 1.829 7.107 7.907 10.907 19.101 1.796 1.851 1.893 1.905 1.832 1.885 1.989 2.061 2.008 2.056 2.253 2.687

GAS-l-eq 5Y 2.220 4.955 7.638 14.117 22.459 2.256 2.281 2.359 2.338 2.214 2.297 2.427 2.500 2.328 2.395 2.613 3.080

(Proposition 1) 7Y 2.471 5.246 7.837 13.264 22.158 2.487 2.501 2.591 2.553 2.526 2.552 2.646 2.735 2.594 2.684 2.862 3.336

10Y 2.693 10.596 10.754 15.601 22.640 2.766 2.702 2.868 2.876 2.850 2.891 3.028 3.207 2.929 2.981 3.326 3.944

3Y 1.652 9.525 9.418 10.045 19.165 1.705 1.729 1.714 1.716 1.831 1.825 1.851 1.901 2.092 2.095 2.100 2.456

GAS-l 5Y 2.052 4.726 5.534 7.091 22.618 2.012 2.078 2.066 2.092 2.125 2.118 2.152 2.222 2.189 2.226 2.288 2.678

(Proposition 1′) 7Y 2.326 4.350 5.361 6.307 22.262 2.483 2.371 2.305 2.331 2.368 2.337 2.399 2.453 2.395 2.400 2.462 2.879

10Y 2.546 11.733 9.967 8.972 22.677 2.586 2.551 2.569 2.556 2.649 2.582 2.631 2.694 2.643 2.658 2.687 3.131

3Y 1.829 10.471 10.334 10.688 19.101 1.870 1.832 1.832 1.825 1.968 1.955 1.938 1.963 2.129 2.122 2.106 2.471

GAS-l-eq 5Y 2.220 5.436 5.821 7.716 22.459 2.208 2.178 2.153 2.170 2.198 2.247 2.232 2.261 2.304 2.280 2.297 2.689

(Proposition 1′) 7Y 2.471 4.615 5.498 7.628 22.158 2.409 2.451 2.382 2.389 2.465 2.425 2.415 2.472 2.466 2.463 2.475 2.876

10Y 2.693 7.364 7.954 8.823 22.640 2.670 2.652 2.658 2.624 2.665 2.674 2.684 2.713 2.704 2.713 2.726 3.142

3Y 1.648 8.438 8.530 8.796 19.038 1.667 1.762 1.719 1.753 1.824 1.831 1.829 1.890 2.064 2.065 2.089 2.426

GAS-l-s 5Y 2.048 5.795 5.847 7.653 22.712 2.143 2.130 2.066 2.124 2.110 2.134 2.124 2.215 2.190 2.206 2.259 2.667

(Proposition 1′) 7Y 2.329 4.043 4.722 6.228 22.436 2.345 2.361 2.341 2.372 2.342 2.326 2.363 2.453 2.370 2.407 2.471 2.901

10Y 2.544 9.072 9.371 8.230 22.782 2.524 2.646 2.529 2.602 2.568 2.610 2.562 2.678 2.593 2.627 2.700 3.137

3Y 2.013 8.537 8.386 8.474 19.094 2.004 2.037 1.939 1.910 1.978 1.948 1.909 1.931 2.194 2.143 2.111 2.447

GAS-l-s-eq 5Y 2.524 4.493 4.551 6.022 22.648 2.555 2.551 2.401 2.345 2.511 2.436 2.263 2.271 2.568 2.374 2.304 2.683

(Proposition 1′) 7Y 2.824 4.582 4.651 5.884 22.382 2.823 2.737 2.602 2.579 2.758 2.555 2.475 2.490 2.711 2.539 2.484 2.884

10Y 3.063 8.159 7.738 7.977 22.689 3.027 3.090 2.918 2.815 2.959 2.831 2.701 2.729 2.918 2.786 2.727 3.120

3Y 1.615 7.469 7.562 8.306 13.652 1.675 1.671 1.656 1.649 1.728 1.714 1.735 1.788 1.938 1.942 1.991 2.171

GAS-l-s-CDX 5Y 2.005 6.591 7.139 8.350 12.119 2.033 1.988 2.016 2.025 2.048 2.091 2.080 2.107 2.134 2.175 2.262 2.440

(Proposition 1′) 7Y 2.310 5.046 5.606 6.948 10.882 2.308 2.313 2.293 2.314 2.335 2.334 2.357 2.410 2.406 2.463 2.517 2.714

10Y 2.562 8.361 8.537 9.038 11.202 2.637 2.520 2.575 2.577 2.606 2.628 2.648 2.662 2.709 2.747 2.813 2.982

Notes: this table reports the empirical cross validation-based Monte Carlo imputation performance results for various

forecasting models on JPM’s CDS time-series (tenors run from 3Y till 10Y). The performance results are reported for

different missing data patterns (i.e., combinations of missing data mechanisms and number of sparse time-series in the

system), given three different specifications of the factor loading matrix. For each missigness scenario, the MAE in basis

points (bps) between the observed (but unused) value yt (in basis point (bp) levels) and its point forecast µ̂t is computed

at sparse entries only. The SS-l label refers to a linear Gaussian state-space SS model with just time-varying location

l factors only. Similarly, score-driven models including dynamic location (and scale) factors GAS-l(-s). GAS models

including a static equi-correlation include the term ‘-eq’ in their label. The GAS-l-s-CDX model refers to a time-series

system in which the 5Y CDX is also included as an additional instrument. The hierarchical design matrix is the same for

all models, and always includes one common-factor fc,t and one idiosyncratic factor fi,t for each time-series yi,t in the

system, as in Eq. (15). Below the label of each model, the filtering method is reported in parentheses. The idiosyncratic

factor affected by missing values always mean-revert first in score-driven models based on Proposition 1′. The estimation

period is January 2, 2011 - December 31, 2020 (n = 2609).

of four time-series have long gaps, the MAE increases by no more than 2bp across all

CDS tenors, thus remaining within the same order of magnitude. This suggests that
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Table 5: In-sample coverage of forecast bands for CDS JPM term structure

Mechanism : Missing Patches (NMAR) Randomly Missing (MAR)

Missing % : 60% 25% 50% 75%

# time-series in system with missing values

Model Tenor 0 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

3Y 96.646 87.045 92.500 95.669 51.284 96.958 96.357 96.685 96.562 97.035 96.830 96.860 96.530 96.762 96.707 96.827 96.568

SS-l 5Y 95.056 86.968 86.853 91.964 48.256 95.450 95.360 95.373 94.868 95.795 94.817 95.190 95.041 95.688 94.564 95.140 95.288

(Kalman filter) 7Y 93.965 94.097 91.632 92.871 48.754 93.686 93.852 94.300 94.025 94.185 93.520 94.018 94.175 93.788 93.465 94.135 94.572

10Y 93.219 85.588 92.922 94.187 48.831 93.354 93.188 93.678 93.488 93.916 93.494 93.852 93.881 93.797 93.533 94.055 94.297

3Y 90.319 86.428 88.545 86.170 88.431 90.056 90.158 90.346 90.293 91.347 91.743 92.583 93.552 93.158 94.048 95.998 97.586

GAS-l 5Y 88.939 89.864 81.685 81.642 78.603 87.091 88.229 88.062 88.190 89.430 90.031 91.181 92.453 92.357 93.563 95.353 97.205

(Proposition 1) 7Y 92.710 84.205 87.726 87.683 80.470 86.273 86.184 86.120 86.535 88.868 89.142 90.163 91.686 92.152 93.141 94.961 97.069

10Y 93.765 98.373 94.336 92.647 95.934 85.685 86.299 86.171 86.420 88.369 89.155 90.576 91.779 93.183 94.138 95.802 97.239

3Y 93.177 90.874 91.922 96.682 84.182 93.865 93.188 93.098 93.021 93.162 93.079 93.051 93.808 92.297 91.607 93.453 97.806

GAS-l 5Y 90.961 93.289 96.166 99.018 82.496 90.619 90.887 90.516 90.523 91.181 90.574 90.836 91.881 91.360 90.529 92.303 97.459

(Proposition 1) 7Y 89.262 93.225 96.118 97.564 83.538 89.392 89.622 89.000 89.015 89.788 89.577 89.660 90.769 89.784 89.664 91.934 97.273

10Y 87.605 92.034 92.512 96.026 88.343 87.807 88.650 88.429 88.491 88.676 88.810 89.519 90.893 87.849 88.953 91.979 97.220

3Y 90.341 84.354 84.237 86.790 88.351 90.516 90.222 90.423 90.523 91.973 91.309 91.172 91.651 93.899 93.473 93.286 94.621

GAS-l 5Y 89.111 68.209 68.422 61.983 78.470 89.852 87.871 87.764 87.781 90.146 90.184 89.617 90.270 93.448 92.003 91.965 93.328

(Proposition 1′) 7Y 93.122 74.048 74.319 70.758 80.674 85.097 85.442 86.273 85.941 88.216 88.433 88.037 88.545 92.655 92.293 92.044 93.298

10Y 94.385 95.948 97.208 88.779 95.950 84.714 84.535 85.003 85.155 87.027 87.685 87.781 88.270 91.658 92.123 92.797 94.035

3Y 95.477 97.213 97.516 96.114 84.703 93.226 93.903 93.857 93.744 93.954 93.986 93.827 94.015 95.169 94.866 94.569 95.433

GAS-l-eq 5Y 94.059 98.086 98.107 96.937 82.982 91.334 91.846 91.752 91.705 92.472 92.069 92.178 92.769 93.090 93.452 93.848 94.954

(Proposition 1′) 7Y 93.369 98.415 98.362 98.018 83.703 89.775 90.031 90.363 90.472 90.849 90.976 91.074 91.715 92.323 92.698 93.200 94.949

10Y 93.292 98.000 98.224 97.951 88.582 88.548 88.625 88.931 89.360 89.213 89.986 89.924 91.037 92.169 92.757 93.274 94.817

3Y 95.669 98.022 93.874 87.971 85.601 97.418 97.009 97.367 95.565 98.543 98.000 97.371 99.038 99.455 96.690 99.690 97.171

GAS-l-s 5Y 94.864 97.618 79.270 81.997 78.257 96.677 96.472 96.924 95.412 97.482 97.674 97.912 98.438 97.733 98.999 99.412 96.822

(Proposition 1′) 7Y 94.941 95.714 83.285 72.850 81.820 94.530 95.437 95.348 94.204 95.987 96.696 95.590 98.153 98.364 96.242 99.321 96.485

10Y 94.787 97.224 94.740 96.696 95.448 96.754 96.421 97.069 95.942 97.572 97.795 96.685 98.524 99.156 99.676 99.719 96.947

3Y 93.714 99.936 99.936 99.883 78.965 99.284 99.604 99.855 99.930 99.923 99.987 99.983 99.987 99.974 99.983 99.980 93.024

GAS-l-s-eq 5Y 91.989 100.000 100.000 99.986 78.451 99.080 99.642 99.864 99.917 99.859 99.981 99.987 99.990 99.983 99.983 99.994 93.096

(Proposition 1′) 7Y 91.376 99.745 99.750 99.649 81.653 98.313 99.463 99.770 99.898 99.796 99.962 99.983 99.997 100.000 100.000 99.997 93.043

10Y 91.606 99.468 99.553 99.170 88.444 98.569 99.565 99.864 99.904 99.898 99.987 99.983 99.997 100.000 100.000 100.000 93.134

3Y 95.631 81.164 79.488 78.877 75.731 97.137 97.022 97.231 97.342 98.837 99.054 99.037 98.882 99.625 99.868 94.209 95.199

GAS-l-s-CDX 5Y 95.056 95.607 95.044 88.616 82.746 97.009 96.856 96.788 97.220 98.185 98.760 98.730 98.690 99.327 99.813 94.200 95.005

(Proposition 1′) 7Y 94.327 95.193 90.491 77.714 67.233 96.472 96.766 96.779 96.766 97.610 98.025 98.100 98.441 99.753 99.663 93.842 94.964

10Y 94.902 97.883 94.682 91.392 76.143 94.734 95.450 95.569 96.102 95.642 97.003 97.661 98.268 97.751 98.786 99.338 94.545

Notes: this table reports the empirical cross validation-based Monte Carlo performance of the forecast error bands for

various forecasting models on JPM’s CDS time-series (tenors run from 3Y till 10Y). The coverage ratios (%) of the

imputed values are reported for the 95% confidence level. The bands for the state-space model are generated based on the

sum of the predicted state-covariance by the Kalman filter and diagonal measurement variance matrices. The bands for

the sore-driven models are simulated whilst accounting for both parameter and innovation uncertainty based on S = 500

MC paths, as done in Section 3. See caption of Table 4 for more details.

the common can still be accurately captured as long as one series remains observed,

regardless of which tenor. Contrarily, when all series are missing at the same moment for

long periods, the MAE is about 10 times larger than in the benchmark scenario. For the

MAR scenarios, the MAE roughly doubles if 75% of the data are missing. In fact, the

MAR MAEs remain highly robust and only increase slowly, if at all. This demonstrates

clearly demonstrates the effectiveness of hierarchical dynamic models, which exploit both

serial and cross-section information for imputing time-series data with MAR values.

The key findings for the state-space model also hold for the GAS models, which

support the results in Koopman et al. (2016) and indicate that parameter-driven and
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observation-driven models can have similar point forecast accuracies. This is particularly

evident for the MAR scenarios, where the MAEs within the same order of magnitude

across all models, including both types of score-driven filtering methods. The latter

outcome is reasonable since the idiosyncratic factors rarely fully mean-revert, even when

75% of the data is MAR. However, this pattern does not appear to hold for score-driven

models without mean-reverting idiosyncratic factors in the presence of long patches of

missing data (NMAR). When comparing the NMAR forecasting performance of the GAS-l

under the two different filtering mechanisms, we find that, for most of the tenors, the

method based on Proposition 1′ yields up 2-3 times more accurate imputations across the

number of missing values. In addition, score-driven models with forced mean-reversion

perform similarly to state-space model in terms of in-sample point forecasts, regardless

of the choice of the covariance matrix Σt (e.g., with or without dynamic (co)variances)

and missing value design.

Moreover, the last rows of Table 4 reports the MAE based on an imputation set-up

that incorporates additional information to help anchor the missing series. For instance,

when all four series contain the same missing value patterns, the MAE is roughly half of

that observed in other NMAR scenarios without the CDX index. The index thus helps

to anchor the common component, but it does so quite imperfectly. As soon as one of

the JPM series shows no patches of missings, the performance of the effect coded F with

or without the CDX index is about the same. The specific JPM components vis-á-vis the

index thus play a non-negligible role.

Finally, the effect on the coverage accuracy of the forecast error-bands differs per

imputation model and structure of the missing values (MAR versus NMAR), as shown

in Table 5. The SS-l model’s coverage ratios are fairly close to the 95% confidence level

when at least 1 observation in the cross-section is present for NMAR scenarios. When

all series exhibit NMAR behavior, the bands of the SS-l model are too tight based on

Proposition 1′. On the other hand, when all four series show the same patches of missing,

the score-driven density forecasts are much closer to the 95% confidence level, regardless

of the choice of the filtering method. This clearly highlights the effectiveness of den-

sity forecasts of the proposed simulation algorithm in scenarios with an extreme number

of missing values. The density forecasts seem to further improve if (equi)correlations

are added to Σt, even though the point forecast accuracy remains similar between the

mean-reverting GAS-l and GAS-l-eq models. The simulation bands are generally closer

to 95% across all (N)MAR scenarios when both correlations and dynamic volatilities
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are modeled. At the same, these models have more static to be estimated, which in-

troduces additional parameter uncertainty. This could explain why which might explain

why, e.g., the GAS-l-s-equi model produces too conservative density forecasts across all

missingness scenarios. On the contrary, the bands of the Kalman filter perform consis-

tently across all MAR scenarios. Note that prediction intervals for MAR scenarios based

on just the fitted score-driven means and variances perform at par with the state-space

model, but is not shown here. All in all, the point forecasts and simulation bands of

the score-driven location-scale models based on Proposition 1′ perform well enough to be

used in practice for large scale imputation, as we do in the following subsection.

4.3 Global curve modeling and missing value imputation

The previous results for one firm suggest that additional sources of information can

significantly boost the imputation accuracy our dynamic factor model, especially when

yt has patches of missing values. In our second application, we therefore extend the

previous model to a setting with different firms in different geographical regions. The

aim is to show how the model can be applied for imputing large gaps in high-dimensional

panels by utilizing cross-sectional and time-series information in a structured way. In

particular, we are interested in what hierarchical structure is most suited to construct

synthetic CDS series, i.e., a CDS series for a firm–maturity combination for which no

data is actively traded. For this analysis, we consider a number of factor specifications

of increasing complexity for our full sample of p = 144 CDS time-series. Each density

model is estimated on the logarithm of the CDS data to ensure positivity of credit curves

when generating the synthetic data later on.

Table 6 summarizes the different specifications we consider. Note that the global panel

of CDS curves contains substantial missing data patches; see Figure 5 and Table B.1. To

impute these missing values, some common factor structure is needed. In the simplest

set-up, we only impose once common factor (Common) for all 144 time-series. We then

subsequently augment this specification by adding factors for the different tenors (or ma-

turities), regions, rating classes, underlying firms, and finally tenor-rating combinations.

This yields a total of 6 models of increasing complexity. The increase in performance of

a one-factor model with an MAE of about 46 basis points, to a model with all factors

and and MAE of about 11 basis points, is substantial. Adding further factors did not

substantially increase the predictive performance of the models.
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Table 6: Estimation results for dynamic high-dimensional hierarchical density models

Panel A: Dynamic Factors & Static Parameters Panel B: In-Sample Performance

Hierarchical Effect Coded # Free Factors # Total Factors # Param. Log Lik. Predictive Update Smoother

Density Model Factors (2 × k; (MAE) (MAE) (MAE)

Specification location + scale)

Common 2 × 1 = 2 2 5 -397,552 46.382 46.358 46.358

Common, Tenor 10Y 2(1 + 5) = 12 14 22 -258,612 32.942 32.904 32.905

Common, Tenor 10Y, EU 2(1 + 5 + 2) = 16 20 30 -235,669 32.029 31.971 31.972

Region

Common, Tenor 10Y, EU, A 2(1 + 5 + 2 + 2) = 20 26 38 -162,145 28.619 28.541 28.542

Region, Rating

Common, Tenor 10Y, EU, A, 2(1 + 5 + 2 + 2 74 103 178,982 11.890 11.562 11.621

Region, Rating Kookmin, +21) = 62

Rating, Firm JPMorgen,

Scandinavian

Common, Tenor 10Y, EU, A, 2(1 + 5 + 2 + 2 92 127 195,579 11.195 10.854 10.925

Region, Rating Kookmin, +21 + 9) = 74

Rating, Firm JPMorgen,

Tenor-Rating Scandinavian,

6M-A, 1Y-A,

3Y-A

Notes: the table provides an overview of the estimation results of the fitted hierarchical dynamic density models on the

high-dimensional panel of p = 144 CDS time-series displayed in Figure 5. Each model is fitted on the logarithm of the

CDS data. The first column of the table reports the specification of the factor loading matrices. The first column in Panel

A lists the effect-coded factors of the included categorical variables in the corresponding Ft (p × k). Remaining columns

in this Panel report, the sum of total free time-varying factors location and log-variance factors, followed by the number

of total factors. The numbers in this column are the sum of the number of free factors plus two times the number of effect

coded factors in the first column of Panel A. The number of parameters indicates the size of the unknown parameter set

ψ. Panel B reports the in-sample performance statics, i.e., the Log Likelihood of the estimated model and the MAE of the

fitted values in bps. The MAE accuracy is taken as the average of in-sample prediction errors across all observed values in

the CDS panel data. The MAE is reported based on the conditional estimates of three different GAS filters, i.e., for ft|t−1

(predictive filter), ft|t (update filter) and ft|n (smoother) of Buccheri et al. (2021). The estimation period is January 2,

2011 - December 31, 2020.

To limit the number of free static parameters that need to be estimated, we proceed

as follows. First, we use the approach of Subsection 2.5 to target κµ. Second, we assign

single scalar pooled persistence parameters in Bµ and Blog σ2
, respectively, to each group

of explanatory variables within the hierarchy (e.g., common, tenor, region, firm, etc.).

Each of the factors can thus move along their own dynamic path, but they do so with the

same persistence as other factors within to the same group. Given the high persistence

of all factors, this approach does not come at a substantial loss in fit. The parameters

Aµ and Alog σ2
are still different for every factor. After a preliminary analysis, we also

reduce the dimension of Ft by restricting the tenor-rating interactions to the interactions

35



between all rating categories and the lowest three tenors in order to better fit the short

end of the CDS term-structure. Finally, we pool the rating categories AAA and AA into

a single rating class AAA/AA. The categories BBB and BB are also pooled into a single

rating class (BBB/BB). This reduces the granularity of the rating categories, but in turn

ensures that the rating factors can always be identified. The is achieved by once again

allowing Mt to enforce mean reversion of the idiosyncratic factors, i.e., the firm-specific

effects. This enabled us to extract all the common spatial effects from each cross-section

across the entire panel of global credit curves.

As reported in Table 6, the last two models have a 3 level hierarchy: a common factor

(level 1), followed by tenor, region, rating, and possibly tenor-rating factors (level 2),

and firm-specific factors (level 3). These two models have a total of 74 (62 free, 12 effect

coded) and 92 (74 free, 18 effect coded) factors, respectively. Their corresponding number

of parameters is 103 and 127, respectively. Estimating all these parameter is no problem

given the size of the sample.

Figure 6 shows an example of eight fitted location and log-variance factors, and their

MC forecast error bands, given the largest hierarchical density model. Both the filtered

estimate (blue) and the MC median (pink) are shown. The figure also includes the

estimates based on a (21-day rolling window) OLS model (black dots). Full results

for all factors can be found in Figures D.1 and D.2 in Appendix D. Comparing the

filtered estimates with those obtained by OLS regressions, we find a similar historical

pattern for the factors. Interestingly, the forecast bands show highly dynamic patterns

for the factors that need to be imputed due to missing observations. For example, the

factors for Lloyds Bank and Barclays have long patches of missing values (see Figure 5).

During these periods, the point forecasts (filtered) of the firm-specific factors converge to

their unconditional mean. Once information again arrives that allows for the estimation

of these firm-specific factors, the factor itself as well as its forecast error band change

substantially to align with the fresh data.

The pointwise median of the simulations that make up the forecast error bands is

generally different from the filtered estimate at cross-sections with many missing values.

This difference potentially arises from a change in the daily hierarchical structure used

in the simulations versus the one used in the MLE procedure based on the available

data only. The simulation is run with a complete design matrix Ft, whereas the model

is estimated based on the subset StFt. Compared to StFt, the complete matrix Ft also

includes ratings dummies at missing entries. The ratings were first forwards and then
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Figure 6: Example of estimated and simulated factors by largest hierarchical density model
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Notes: left hand-side of this plot shows 4 filtered and simulated location factors by the hierarchical density model with a

total of 92 factors (see Table 6). Similarly, the right hand-side depicts an example of 4 log-variance factors. The shaded are

highlights the 90% forecast errors bands (including innovation and parameter uncertainty) based on S = 500 MC paths.

The fitted filtered factors are plotted in blue and their respective MC median is shown in pink. Each subplot also includes

a proxy based on a daily application of the OLS model. The log-variance proxies are obtained by applying a 21-day rolling

window simple OLS model on the log of squared residuals, obtained from the daily application of the OLS model for

location factors.

backwards filled at the missing entries to obtain a complete design matrix at each time

point. As a result, a slightly different hierarchical structure is used for simulation than

for estimation, thus yielding a somewhat different weighting scheme for the factors.

Next, we assess the accuracy and quality of synthetic curves generated using the

outputs of different models for the panel of global credit curves. We use the conditional

filtered factors and residuals of the models to construct synthetic credit curve scenarios.

The residuals are used to generate scenarios as empirically realistic as possible. A possible

scenario of the ith synthetic spread at time point t, say ŷi,t, can be obtained as follows:

ŷi,t = exp (µ̂i,t + σ̂i,tεj,t), where µ̂i,t and σ̂2
i,t are the first two filtered moments of log ŷi,t,

respectively, and εj,t is the jth residual at cross-section t. The density of the synthetic
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Figure 7: Examples of synthetic credit curves
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Panel A: Synthetic CDS curves without firm-specific effects Panel B: Synthetic CDS curves with firm-specific effects

Notes: This figure displays the synthetic CDS term structures for four different companies. Panel A plots the curves that

are computed without the use of idiosyncratic, i.e., with common factors only. The conditional filtered location and scale

factors are obtained from the largest hierarchical density model specified in Table 6. The solid colored lines correspond

to the median of the approximate spread density and the shaded areas represent the 95% empirical confidence intervals,

for which the model’s residuals were used. The true observed curves for the corresponding firms are plotted in black dots.

Panel B displays the synthetic curves for the same firms in Panel A but is computed with the use of idiosyncratic factors.

credit spread is then given by

Ht (ŷi,t) = Pr (ŷi,t ≤ x) = p−1
t

pt∑
j=1

1 (exp(µ̂i,t + σ̂i,tε̂j,t) ≤ x) , (16)

where Ht (ŷi,t) is the model-based cumulative density function for the scenarios of yi,t

using all the available residuals at time t, for i = 1, . . . , pt, and t = 1, . . . , n = 2609.

We construct synthetic curves based on Eq. (16) using the outputs of the largest

model, i.e., the model including tenor-rating interactions and firm-specific effects, and the

model including just the global, tenor, regional and rating-based spatial effects. Thereby,

we obtain synthetic curves with and without idiosyncratic components. An example of

such curves is provided in Figure 7. This figure depicts the generated synthetic CDS

curves for four firms with (right panel) and without (left panel) the firm-specific effects.
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Table 7: Coverage rates of synthetic curve bands at 95% confidence level

Tenor

Region 6M 1Y 3Y 5Y 7Y 10Y

Panel A: Coverage without firm-specific effects (%)

Asia 89.723 89.440 88.818 92.545 96.474 97.710

North America 97.882 97.403 97.456 97.312 97.456 97.307

Europe 95.937 93.015 91.764 85.823 82.738 82.474

Panel B: Coverage with with firm-specific effects (%)

Asia 95.415 95.353 92.971 94.136 95.108 92.722

North America 93.714 93.748 92.914 91.395 95.578 95.348

Europe 95.027 95.132 91.889 93.628 97.135 95.295

Notes: the table reports the in-sample pointwise coverage rates of the empirical 95% confidence bands for the true CDS

panel data present with p = 144 time-series. The first panel reports the coverage rates of the empirical bands for which

no idiosyncratic information was used. The coverage accuracy is further divided per region-tenor combination. Similarly,

Panel B reports coverage accuracy of empirical bands for which idiosyncratic was used.

The synthetic curves are displayed for the firms: American Express Credit Corporation

(AXP), Barclays PLC (BARC), Lloyds Banking Group Plc (LYG) and Nomura Holdings

Inc (NMR). For expositional purposes, we only plot the median (solid) and the 95%

confidence band for the 6M, 5Y and 10Y tenors. The actual observations for these tenors

are also displayed (dotted).

Based on the comparison in Figure 7, we find that by incorporating firm-specific ef-

fects, the synthetic curves more closely replicate the actual historical time-series patterns

and level of the CDS spreads, while also exhibiting lower uncertainty. This is evidenced by

tighter pointwise confidence intervals, compared to models that exclude such components.

When modeling the CDS panel data using only common components, the idiosyncratic

variations are absorbed by the residuals, potentially increasing the overall cross-sectional

variance. As a result, the syntehtic CDS curve scenarios exhibit greater uncertainty,

reflected in wider confidence bands.

Although residuals may capture the unmodeled firm-specific effects, a model that

omits idiosyncratic components may still fail to accurately represent the distribution of

the actual market data. This limitation is evident in Table 7, which reports the empirical

coverage rates based on Ht (ŷi,t) with and without firm-specific effects. The results show

that models without idiosyncratic components perform moderately well across different

regions and maturities, but exhibit lower coverage percentages, particularly at the short

end of the Asian CDS curve and the long end of the European curves. In contrast, the

model incorporating idiosyncratic dynamics yields much more accurate coverage rates,
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aligning closely with nominal levels. As a result, it is also much more likely that the

simulated imputed densities provide a better description of the unobserved values yi,t.

We conclude that our largest time-varying hierarchical density model can be a useful tool

for imputing missing values and their uncertainty in high-dimensional panel data of CDS

time-series.

5 Conclusion

We have introduced a hierarchical dynamic factor location-scale model for forecasting

missing values and their associated imputation uncertainty for large multivariate time-

series systems. The model exploits both the cross-sectional and time-series properties

of the data, while allowing for very general patterns of missing data. Estimation of the

model’s static parameters can be performed using standard maximum likelihood methods

given the observation-driven structure of the model. At the same time, the observation-

driven structure poses challenges to design a proper update for all the factors in the

hierarchical model in case part of the data are missing. We designed a set-up where

the user can specify which factor updates to prioritize in these cases. The key aspect of

the approach is mapping the available observations onto a proper orthogonal basis. The

basis then follows mechanically as long as the user is willing to specify which score-driven

factors should mean-revert first if specific data components are missing. The new method

is also applicable to non-continuous and non-Gaussian multifactor score-driven models

and can thus be applied to a wide range datasets with missing values.

We also introduced an in-sample forecast simulation-based algorithm to quantify the

imputation uncertainty. Monte Carlo evidence based on the true data generating process

of the hierarchical density model revealed that both the new filtering method and the

simulation algorithm worked well in a controlled simulation environment. Both isolated,

independent missing values as well as long stretches of missings could be dealt with by the

new method. An empirical simulation study using real data, namely using single-name

credit default swap (CDS) term-structures, yielded similar findings. In particular, the

in-sample point forecast accuracy of the new method outperformed score-driven without

mean-reverting factors, especially for long patches of missing data. It also compared favor-

ably to a well-known state-space benchmark. When applied to empirical data on panels

of multiple sparse CDS term-structures, the GAS model demonstrated strong scalability

to high dimension. Our empirical results further highlight the significant importance of
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incorporating firm-specific location-scale factors for imputation. Hierarchical models that

include these factors produced more accurate risk quantiles for the panel compared to

models that omitted idiosyncratic components.
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Appendix

A Derivation of Scaled-Scores

Assume Sot := I at time t, then the log of the conditional density in Eq. (1) is

log p (yt | ft,Ft−1;ψ) = −1

2

[
p log 2π + log |Σt| + (yt − µt)

′ Σt (yt − µt)
]
, (A.1)

with p-dimensional mean and variance vectors µt = Ftf
µ
t and σ2

t = exp
(
Ftf

log σ2

t

)
,

respectively, and p× p diagonal variance matrix Σt = diag(σ2
t ), for t = 1, . . . , n.

Proof of Proposition 1: The score and information matrix of the location factors are

straightforward to derive:

∇µ
t =

log p (yt | ft,Ft−1;ψ)

∂fµt
= F ′

tΣ
−1
t (yt − µt)

Iµt = −Et−1

[
∂2 log p (yt | ft,Ft−1;ψ)

∂fµt ∂f
µ
t
′

]
= F ′

tΣ
−1
t Ft

(A.2)

From basic matrix calculus results it follows that for any triangular matrix Σt = JtJ
′
t, its

log determinant can be written as

log |Σt| = log |JtJ ′
t| = log |Jt|2 = 2 log Πp

i=1Jii,t = 2

p∑
i=1

log Jii,t,

see for instance Abadir (2005) for this and other useful results. Since Σt is diagonal, we

can simply define Jt := Σ
1
2
t = diag(σt). Hence, we have

log |Σt| = 2

p∑
i=1

log σi,t = 2

p∑
i=1

log exp

(
1

2
Ftf

log σ2

t

)
i

=

p∑
i=1

(
Ftf

log σ2

t

)
i

= tr(diag(log σt)),

where tr(·) denotes the trace operator. By using this matrix result, the score and infor-

mation matrix of the log-variance factors take the following expressions:

∇log σ2

t =
1

2
F ′
t [Σt (yt − µt) ◦ (yt − µt) − ιp] ,

=
1

2
F ′
t

(
ε2t − ιp

)
,

I log σ2

t =
1

2
F ′
tFt,

(A.3)

where ◦ denotes the Hadamard’s element wise matrix multiplication operator. Note that

we have made use of the fact that squared mean prediction errors divided by their variance

are equal to standardized normal innovations, i.e.,

Σt (yt − µt) ◦ (yt − µt) = Σt (yt − µt)
2 = ε2t

The expressions in Proposition 1 are based on the marginal density log p
(
y†t | ft,Ft−1;ψ

)
,

46



which are obtained by merely replacing Ft with SotFt. This completes the proof.

B CDS Data

Table B.1: CDS reference entities

Institution Ticker RED Code Currency

Panel A: Asia

Bk of India BNKIND YY6FDD USD

CTBC Finl Hldg Co Ltd CTBCFIN YZ9A6N USD

INDL COML BNK OF CHINA LTD ICBCHN Y1CI9B USD

Kookmin Bk CITNAT 5F04DH USD

MIZUHO Finl Gp INC MIZUHO-GR JN9EIU JPY

Mitsubishi UFJ Morgan Stanley Secs Co Ltd MITSUFJ JNB77M JPY

Nomura Hldgs Inc NOMURA 6BA88M JPY

Temasek Hldgs TMSK Y6DDCN USD

Panel B: Europe

Allianz SE ALZSE DD359M EUR

BNP Paribas BNP 05ABBF EUR

Barclays PLC BACR GG8839 EUR

Deutsche Bk AG DB 2H6677 EUR

ING Groep NV INTNED 49BEBA EUR

Lloyds Bkg Group plc LBGP GLA86Z EUR

Skandinaviska Enskilda Banken AB SEB 8B3555 EUR

Swiss Life Ltd SWSL HPC53H EUR

Panel C: North America

Amern Express Cr Corp AXP-CreditCorp 027D99 USD

Boston Pptys Inc BXP 1B1233 USD

Cap One Finl Corp COF 1F444H USD

Goldman Sachs Gp Inc GS 3B955H USD

JPMorgan Chase & Co JPM 4C933G USD

Navient Corp NAVIECO 69CCBK USD

Royal Bk Cda RY CJGGB6 USD

Wells Fargo & Co WFC 9DDGBA USD

Notes: This table reports the ticker, RED code and currency of the CDS contracts used in the empirical application. The

seniority of all CDS contracts is ‘Senior Unsecured’ (i.e., highest seniority tier) and only the contracts with most liquid

possible liquid reference currency are selected (i.e., JPY for Japanese firms, EUR for European firms and USD for all other

firms).

C Additional Monte Carlo simulation results

This appendix reports additional results of our Monte Carlo study in Section 3. Each

subplot in the Figures C.1-C.4 corresponds to a specific missingness scenario of the

Monte Carlo study based on a time-series system of p = 4 time-series. The missing
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data mechanism is exactly the same for all series in each of the respective figures, but is

introduced stages. For example, Figures C.1 displays four unique scenarios in which up to

p = 4 time-series are simultaneously subject to the block missing pattern. Subfigure C.1a

corresponds to scenario in which only y1,t contain block missing observations, whereas

Subfigure C.1b illustrates the scenario in which both y1,t and y2,t have the exact same

block missing entries, etc. Similarly, the subplots in the Figures C.2, C.3 and C.4 illustrate

the randomly missing scenarios for different values of πi,t.

Figure C.1: 60% block missing scenarios

(a) y1,t is NMAR
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(b) y1,t and y2,t are NMAR
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(c) y1,t, y2,t and y3,t are NMAR

t = 1 t = n
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(d) y1,t, y2,t, y3,t and y4,t are NMAR

t = 1 t = n

y1, t

y2, t

y3, t
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Notes: Each subplot in the Figures C.1, C.2, C.3 and C.4 illustrates a potential missingnes scenario among a panel data

consisting of p = 4 time-series. A non-missing time-series observation is marked by a vertical blue stripe over time for

t = 1, . . . , n. Figures C.1 displays four unique scenarios in which up to p = 4 time-series are simultaneously subject to

the block missing pattern. For example, Subfigure C.1a corresponds to scenario in which only y1,t contain block missing

observations, whereas Subfigure C.1b illustrates the scenario in which both y1,t and y2,t have the exact same block missing

entries, etc. Similarly, the subplots in the Figures C.2, C.3 and C.4 illustrate the randomly missing scenarios for different

values of πi,t.
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Figure C.2: πi,t = 25% randomly missing scenarios
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(d) y1,t, y2,t, y3,t and y4,t are MAR
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Notes: This figure depicts potential missingness scenarios among a panel data consisting of p = 4 time-series with MAR

probability πi,t = 25%. See caption of Figure C.1 for more details.

Figure C.3: πi,t = 50% randomly missing scenarios
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Notes: This figure depicts potential missingness scenarios among a panel data consisting of p = 4 time-series with MAR

probability πi,t = 50%. See caption of Figure C.1 for more details.
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Figure C.4: πi,t = 75% randomly missing scenarios
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(d) y1,t, y2,t, y3,t and y4,t are MAR
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Notes: This figure depicts potential missingness scenarios among a panel data consisting of p = 4 time-series with MAR

probability πi,t = 75%. See caption of Figure C.1 for more details.

Additional experiments highlight that the forecast performance results obtained on

factor level, also hold for functions of the location and log-variance factors. For example,

panels A-D in Table C.1 reports these results for all time-varying mean and volatility

predictions at sparse locations. The MAFE errors and percentage coverage rates are

reported for the exact same missing data mechanism and scenario combinations in Table 1.

The last panel in Table C.1 reports the Pearson’s correlation between the forecast errors of

mean and variance pairs (in percentages), i.e., Corr (µi − µ̂i, σ
2
i − σ̂2

i ), for i = 1, . . . , p = 4.

We also measure the forecast error and accuracy of the bands for the model implied

risk measures, given the true and predicted paths of the time-varying means and variances

for the four series in our system series. We consider the measures: value-at-risk (VaR)

and expected shortfall (ES) at several confidence levels. The MAFE metric for the mode

implied VaR and ES at conventional 1 − α% confidence levels is reported in Table 2.

The coverage rates of the forecast bands for these time-varying risk measures is reported

in Table C.2. Furthermore, we have also gathered the precision of these risk measures

based on the accuracy of the predicted hit variables. All hit variables take value one

if the the time-series variables exceed their VaR/ES threshold over time, and are zero

otherwise. The forecast error of the hit-variables is then measured as the MAFE between
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Table C.1: In-sample forecast perfomance results on mean-variance level

Mechanism : Block Missing Randomly Missing

Missingnes % : 60% 25% 50% 75%

Moments 0 y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t

Panel A: MAFE of in-sample forecasts for mean equation

µ1 0.030 0.126 0.147 0.187 0.229 0.059 0.062 0.066 0.070 0.082 0.088 0.097 0.102 0.104 0.114 0.130 0.137

µ2 0.030 0.047 0.145 0.186 0.226 0.034 0.062 0.066 0.070 0.039 0.088 0.097 0.102 0.043 0.113 0.128 0.136

µ3 0.030 0.047 0.066 0.187 0.228 0.034 0.039 0.066 0.070 0.039 0.047 0.096 0.102 0.043 0.055 0.129 0.137

µ4 0.036 0.049 0.066 0.093 0.227 0.041 0.045 0.049 0.074 0.045 0.052 0.062 0.105 0.047 0.058 0.074 0.140

Panel B: MAFE of in-sample forecasts for variance equation

σ1 0.022 0.091 0.106 0.135 0.163 0.043 0.045 0.048 0.051 0.059 0.064 0.070 0.075 0.076 0.084 0.096 0.102

σ2 0.023 0.035 0.106 0.136 0.163 0.026 0.045 0.048 0.052 0.029 0.064 0.071 0.075 0.032 0.084 0.096 0.102

σ3 0.023 0.035 0.048 0.135 0.164 0.026 0.029 0.048 0.052 0.029 0.035 0.071 0.075 0.032 0.041 0.096 0.102

σ4 0.028 0.037 0.049 0.070 0.163 0.030 0.033 0.037 0.054 0.033 0.039 0.046 0.077 0.035 0.043 0.055 0.105

Panel C: Coverage of mean equation at 95% confidence level (%)

µ1 96.937 95.921 95.723 94.855 97.121 95.972 95.643 94.868 94.485 96.191 96.141 95.708 97.283 97.903 98.371 98.285 99.769

µ2 96.783 95.317 95.878 94.917 97.133 96.551 95.734 95.025 94.773 95.525 96.154 95.587 97.283 96.774 98.334 98.309 99.757

µ3 96.801 95.322 94.507 94.826 96.985 96.197 95.339 94.811 94.680 95.676 94.294 95.671 97.261 96.775 96.552 98.263 99.722

µ4 97.990 98.670 98.408 97.239 98.155 97.723 97.544 97.262 96.883 98.053 98.203 97.925 98.644 99.350 99.471 99.449 99.891

Panel D: Coverage of variance equation at 95% confidence level (%)

σ1 96.932 96.098 95.607 94.121 96.618 95.599 95.068 93.921 93.343 96.143 95.432 94.472 96.306 97.717 97.795 97.369 99.395

σ2 96.597 94.787 95.535 94.042 96.582 96.019 95.117 93.899 93.380 95.497 95.387 94.419 96.210 96.575 97.674 97.400 99.369

σ3 97.089 95.017 93.613 93.955 96.499 95.776 94.927 93.970 93.444 95.663 93.679 94.356 96.170 96.559 96.065 97.535 99.435

σ4 97.621 98.406 98.049 96.378 97.869 97.524 97.404 96.798 96.278 97.976 97.878 97.196 98.140 99.082 99.156 99.063 99.728

Panel E: Forecast error correlation between mean and variance pairs (%)

ρµ1,σ2
1

-0.951 0.616 0.891 0.796 1.474 -0.311 -0.162 -0.343 0.298 -0.023 -0.414 0.276 0.321 0.180 0.308 0.899 0.132

ρµ2,σ2
2

-1.013 -0.504 1.339 0.772 0.948 -0.442 0.350 -0.288 0.100 0.401 -0.572 0.088 -0.336 -1.094 -0.020 0.418 -0.271

ρµ3,σ2
3

1.415 1.711 1.476 0.385 0.801 1.543 2.012 1.057 0.854 -0.108 -0.330 0.487 0.097 -1.586 -0.883 0.068 -0.804

ρµ4,σ2
4

-0.396 0.395 0.895 0.366 0.803 0.859 0.833 1.045 0.181 -0.234 -0.641 0.282 -0.431 0.635 0.513 0.441 -0.562

Notes: The first two panels of this table report the MAFE of the mean and volatility for each time-series. The next two

panels report the coverage rates of the forecast bands corresponding to a confidence level of 95% for the mean and volatility.

The last panel reports the Pearson’s correlation coefficient (in %) between the forecast errors of mean and variance pairs.

For more details on the scenarios and missing data mechanisms, see caption of Table 1.

the true and predicted hit-variables. Since the hit-variable is a binary variable, the MAFE

quantifies the precision because it is now naturally bounded between 0 and 1. Table C.3

reports the MAFE precision rates for each time-series, among all 1−α confidence levels.
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Table C.2: In-sample accuracy of forecast bands for tail risk measures

Mechanism : Block Missing Randomly Missing

Missing % : 60% 25% 50% 75%

Series 0 y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t

Panel A: Coverage of VaR with α = 5% at 95% confidence level (%)

y1 96.749 97.916 97.512 96.679 98.180 95.972 95.599 94.719 94.185 96.561 96.111 95.267 96.851 98.249 98.322 97.982 99.596

y2 96.705 96.314 97.546 96.586 98.139 96.118 95.531 94.567 94.058 95.792 96.056 95.234 96.858 96.829 98.287 97.986 99.579

y3 96.749 96.465 95.872 96.499 98.183 96.018 95.214 94.522 94.072 95.765 94.332 95.356 96.938 96.677 96.293 98.049 99.589

y4 97.735 98.933 98.925 98.210 98.846 97.727 97.666 97.289 96.793 98.163 98.245 97.862 98.519 99.292 99.390 99.329 99.810

Panel B: Coverage of VaR with α = 1% at 95% confidence level (%)

y1 96.765 97.842 97.406 96.509 98.102 95.873 95.487 94.523 93.954 96.471 95.938 95.019 96.666 98.154 98.187 97.800 99.529

y2 96.657 96.205 97.410 96.424 98.048 96.029 95.381 94.366 93.810 95.735 95.867 95.014 96.675 96.757 98.145 97.820 99.513

y3 96.836 96.399 95.716 96.359 98.094 95.944 95.101 94.333 93.824 95.690 94.146 95.108 96.725 96.598 96.176 97.909 99.545

y4 97.665 98.870 98.822 98.016 98.786 97.639 97.582 97.114 96.609 98.121 98.151 97.670 98.387 99.228 99.317 99.249 99.788

Panel C: Coverage of ES with α = 2.5% at 95% confidence level (%)

y1 96.765 97.839 97.404 96.505 98.100 95.871 95.484 94.520 93.949 96.470 95.937 95.014 96.664 98.153 98.184 97.797 99.528

y2 96.657 96.203 97.408 96.419 98.046 96.026 95.379 94.364 93.805 95.732 95.865 95.010 96.672 96.755 98.142 97.818 99.512

y3 96.838 96.399 95.715 96.355 98.092 95.944 95.100 94.329 93.821 95.691 94.144 95.104 96.721 96.596 96.174 97.908 99.544

y4 97.665 98.869 98.820 98.013 98.786 97.640 97.582 97.111 96.605 98.119 98.149 97.666 98.385 99.228 99.316 99.248 99.787

Panel D: Coverage of ES with α = 1% at 95% confidence level (%)

y1 96.766 97.804 97.350 96.420 98.060 95.827 95.437 94.437 93.870 96.420 95.865 94.919 96.600 98.098 98.131 97.731 99.509

y2 96.643 96.153 97.348 96.335 98.002 96.009 95.328 94.274 93.707 95.700 95.787 94.913 96.599 96.729 98.080 97.754 99.488

y3 96.874 96.367 95.650 96.297 98.053 95.916 95.063 94.268 93.738 95.668 94.093 95.003 96.643 96.578 96.146 97.855 99.526

y4 97.647 98.838 98.773 97.935 98.764 97.616 97.560 97.037 96.530 98.086 98.104 97.591 98.344 99.204 99.291 99.216 99.780

Notes: The panels of this table report the coverage rates of the forecast bands for the time-varying VaR and ES at several

confidence levels for each time-series in the system. For more details on the scenarios and missing data mechanisms, see

caption of Table 2.
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Table C.3: In-sample forecast precision of tail risk measures

Mechanism : Block Missing Randomly Missing

Missing % : 60% 25% 50% 75%

Series 0 y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t y1,t y1:2,t y1:3,t y1:4,t

Panel A: MAFE of in-sample forecasts for VaR hit-variable with α = 5% (%)

y1 0.478 4.955 4.955 4.955 4.955 4.998 1.970 2.000 2.043 5.060 3.189 3.277 3.333 5.029 4.209 4.269 4.310

y2 0.489 0.760 4.938 4.938 4.938 0.542 4.956 2.015 2.030 0.625 5.005 3.264 3.267 0.675 5.026 4.260 4.297

y3 0.475 0.750 1.044 5.015 5.015 0.551 0.601 4.951 2.039 0.630 0.766 4.979 3.322 0.708 0.910 5.037 4.305

y4 0.589 0.770 1.026 1.466 4.981 0.672 0.723 0.768 5.027 0.710 0.819 0.975 4.970 0.737 0.915 1.170 4.990

Panel B: MAFE of in-sample forecasts for VaR hit-variable with α = 1% (%)

y1 0.161 0.985 0.985 0.985 0.985 0.980 0.482 0.491 0.521 1.015 0.721 0.763 0.770 1.030 0.919 0.942 0.945

y2 0.158 0.233 0.997 0.997 0.997 0.177 0.969 0.484 0.523 0.209 1.003 0.752 0.755 0.224 1.006 0.914 0.930

y3 0.154 0.239 0.338 1.016 1.016 0.187 0.188 0.989 0.519 0.207 0.261 1.004 0.769 0.221 0.292 1.009 0.930

y4 0.192 0.265 0.341 0.489 0.997 0.207 0.236 0.241 0.992 0.228 0.276 0.321 1.004 0.238 0.301 0.378 0.986

Panel C: MAFE of in-sample forecasts for ES hit-variable with α = 2.5% (%)

y1 0.158 0.955 0.955 0.955 0.955 0.955 0.468 0.481 0.515 0.985 0.706 0.741 0.749 0.998 0.893 0.915 0.920

y2 0.155 0.228 0.970 0.970 0.970 0.163 0.944 0.476 0.514 0.205 0.972 0.737 0.735 0.219 0.975 0.887 0.902

y3 0.149 0.238 0.331 0.986 0.986 0.185 0.191 0.960 0.505 0.203 0.256 0.972 0.749 0.218 0.287 0.977 0.903

y4 0.189 0.254 0.335 0.480 0.965 0.209 0.236 0.240 0.960 0.225 0.270 0.309 0.975 0.235 0.298 0.375 0.958

Panel D: MAFE of in-sample forecasts for ES hit-variable with α = 1% (%)

y1 0.077 0.373 0.373 0.373 0.373 0.379 0.206 0.226 0.222 0.384 0.295 0.318 0.315 0.399 0.367 0.379 0.383

y2 0.078 0.119 0.385 0.385 0.385 0.090 0.390 0.217 0.229 0.100 0.390 0.325 0.322 0.105 0.387 0.366 0.375

y3 0.074 0.121 0.169 0.394 0.394 0.099 0.097 0.386 0.221 0.091 0.110 0.372 0.308 0.105 0.141 0.389 0.383

y4 0.090 0.120 0.164 0.241 0.375 0.099 0.101 0.120 0.368 0.112 0.137 0.152 0.392 0.117 0.144 0.182 0.382

Notes: The panels of this table report the precision of hit-variables for the time-varying VaR and ES at several confidence

levels for each time-series in the system. For more details on the scenarios and missing data mechanisms, see caption of

Table 2.
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D Additional empirical results

D.1 Conditional imputation of single-name CDS curves

Table D.1: In-sample accuracy of conditional density forecasts for CDS JPM term-structure

Mechanism : Missing Patches (NMAR) Randomly Missing (MAR)

Missing % : 60% 25% 50% 75%

# time-series in system with missing values

Model Tenor 0 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Panel A: In-sample point forecast accuracy (MAFE) (bps)

3Y 1.666 8.683 8.156 8.217 20.158 1.674 1.717 1.741 1.731 1.858 1.861 1.926 1.984 2.254 2.387 2.672 3.471

GAS-l-eq 5Y 2.069 4.582 4.852 7.966 24.220 2.113 2.113 2.171 2.119 2.083 2.143 2.210 2.299 2.221 2.375 2.702 3.653

(Proposition 1) 7Y 2.341 4.278 4.977 7.355 24.799 2.301 2.320 2.403 2.351 2.328 2.355 2.417 2.526 2.414 2.535 2.865 3.834

10Y 2.542 7.188 7.690 8.875 24.348 2.551 2.500 2.606 2.580 2.595 2.637 2.709 2.800 2.794 3.080 3.453 4.107

3Y 1.667 9.775 8.723 7.771 20.093 1.741 1.747 1.692 1.710 1.809 1.799 1.809 1.842 2.036 2.029 1.981 2.333

GAS-l-eq 5Y 2.070 5.658 6.434 7.757 24.206 2.094 2.123 2.096 2.085 2.131 2.137 2.140 2.217 2.196 2.201 2.252 2.677

(Proposition 1′) 7Y 2.342 4.469 5.309 6.948 24.760 2.347 2.301 2.332 2.342 2.348 2.373 2.399 2.457 2.401 2.421 2.475 2.904

10Y 2.543 7.007 7.754 8.694 24.196 2.544 2.545 2.573 2.552 2.542 2.583 2.623 2.680 2.616 2.661 2.730 3.166

3Y 1.770 9.401 9.328 11.758 19.437 1.803 1.779 1.806 1.790 1.886 1.838 1.830 1.857 3.634 2.526 2.167 2.342

GAS-l-s-eq 5Y 2.157 5.185 5.784 8.993 23.414 2.225 2.144 2.191 2.193 2.212 2.155 2.187 2.244 2.376 2.991 2.331 2.731

(Proposition 1′) 7Y 2.421 4.195 5.154 8.081 23.652 2.430 2.400 2.458 2.430 2.400 2.406 2.414 2.495 2.553 2.510 2.536 2.960

10Y 2.602 8.434 8.978 8.548 23.358 2.551 2.597 2.620 2.622 2.614 2.568 2.623 2.707 2.697 2.708 2.727 3.191

Panel B: In-sample coverage of forecast bands at 95% confidence level (%)

3Y 93.177 90.874 91.922 96.682 84.182 93.865 93.188 93.098 93.021 93.162 93.079 93.051 93.808 92.297 91.607 93.453 97.806

GAS-l-eq 5Y 90.961 93.289 96.166 99.018 82.496 90.619 90.887 90.516 90.523 91.181 90.574 90.836 91.881 91.360 90.529 92.303 97.459

(Proposition 1) 7Y 89.262 93.225 96.118 97.564 83.538 89.392 89.622 89.000 89.015 89.788 89.577 89.660 90.769 89.784 89.664 91.934 97.273

10Y 87.605 92.034 92.512 96.026 88.343 87.807 88.650 88.429 88.491 88.676 88.810 89.519 90.893 87.849 88.953 91.979 97.220

3Y 93.224 79.983 88.141 94.487 84.556 93.073 93.124 93.652 93.494 93.546 93.667 93.703 94.220 93.839 94.308 95.126 96.253

GAS-l-eq 5Y 90.961 96.788 91.704 95.444 82.828 90.465 90.772 91.070 91.686 91.488 91.571 91.897 92.379 92.417 92.630 93.527 95.375

(Proposition 1′) 7Y 89.239 95.139 95.724 95.614 83.687 88.829 89.519 89.792 90.037 90.005 90.056 90.180 90.964 91.496 91.437 92.431 94.839

10Y 87.567 93.852 93.964 94.969 88.526 88.216 87.845 88.199 88.459 88.650 88.714 88.910 90.027 89.358 90.022 91.775 94.583

3Y 94.145 73.569 77.398 85.297 78.481 95.399 95.437 95.237 95.686 97.520 97.495 97.802 98.495 97.410 99.122 99.523 99.672

GAS-l-s-eq 5Y 92.125 99.830 97.203 97.408 77.999 92.612 93.213 93.413 94.229 94.338 95.392 96.178 97.648 94.359 97.435 99.179 99.789

(Proposition 1′) 7Y 91.306 98.043 97.181 96.611 81.294 92.025 92.319 92.544 93.277 93.482 94.645 95.186 96.754 94.530 96.660 98.949 99.789

10Y 91.652 95.278 94.267 97.352 88.476 92.152 92.600 93.039 93.539 93.609 94.459 95.808 97.198 95.842 97.776 98.770 99.864

Notes: this table reports the empirical cross validation-based Monte Carlo imputation performance results for various

forecasting models on JPM’s CDS time-series (tenors run from 3Y till 10Y). The performance results are reported for

different missing data patterns (i.e., combinations of missing data mechanisms and number of sparse time-series in the

system), given three different specifications of the factor loading matrix. In Panel A, for each missigness scenario, the

MAE in basis points (bps) between the observed (but unused) value yt (in basis point (bp) levels) and its point forecast

µ̂t is computed at sparse entries only. Similarly, in panel B, the coverage ratios (%) of the imputed values are reported for

the 95% confidence level using S = 500 Monte Carlo simulated paths. For this, the forecast error bands are simulated by

conditionally imputing the missing values using the equi-correlation structure, i.e., Sc
t yt|Ft−1, y

†
t . The score-driven models

including dynamic location (and scale) factors are labeled as GAS-l(-s). GAS models including a static equi-correlation

include the term ‘-eq’ in their label. The hierarchical design matrix is the same for all models, and always includes one

common-factor fc,t and one idiosyncratic factor fi,t for each time-series yi,t in the system, as in Eq. (15). Below the label

of each model, the filtering method is reported in parentheses. The idiosyncratic factor affected by missing values always

mean-revert first in score-driven models based on Proposition 1′. The estimation period is January 2, 2011 - December 31,

2020 (n = 2609).
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Figure D.1: Filtered common location-scale factors

(a) Mean factors
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(b) Log-variance factors
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Notes: the first panel of this figure displays the common CDS mean factors, given the parameter estimates of the largest

specification of the dynamic density model in Table 6. The filtered estimates (solid) are computed as the median of

predictive GAS filter (ft) paths, given S = 500 simulations. The 95% forecast bands that inherit both innovation and

parameter uncertainty are also plotted (shaded areas). Each factor category is highlighted with a different color, e.g.,

the regional factors are plotted in yellow and the interaction terms in purple. Similarly, the second panel depicts the

time-varying common log-variance factors. Rolling-window estimates for the mean factors are displayed in black dots.
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Figure D.2: Filtered idiosyncratic location-scale factors

(a) Mean factors
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(b) Log-variance factors
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Notes: the first plot if this panel displays the filtered conditional idiosyncratic (fixed-effect) median-based location factors

(solid pink). Each panel of the first panel plots 8 factors, namely one for each of the financial firms within the respective

region (i.e., for Asia, North America and Europe). The subplots also plot the simulation-based 95% confidence bands.

Similarly, the second plot of this figure displays the time-varying idiosyncratic log-variance factors. For more details, see

caption of Figure D.1.
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