

TI 2025-026/III Tinbergen Institute Discussion Paper

Observation-Driven Hierarchical Density Models for Missing Data Imputation

Revision: May 2025

Yonas Khanna¹ Andre Lucas²

1 ING Bank, Vrije Universiteit Amsterdam

2 Vrije Universiteit Amsterdam, Tinbergen Institute

Tinbergen Institute is the graduate school and research institute in economics of Erasmus University Rotterdam, the University of Amsterdam and Vrije Universiteit Amsterdam.

Contact: <u>discussionpapers@tinbergen.nl</u>

More TI discussion papers can be downloaded at https://www.tinbergen.nl

Tinbergen Institute has two locations:

Tinbergen Institute Amsterdam Gustav Mahlerplein 117 1082 MS Amsterdam The Netherlands Tel.: +31(0)20 598 4580

Tinbergen Institute Rotterdam Burg. Oudlaan 50 3062 PA Rotterdam The Netherlands Tel.: +31(0)10 408 8900

Observation-Driven Hierarchical Density Models for Missing Data Imputation^{*}

Yonas Khanna^{1,2}, André Lucas^{2,3}

¹ING Bank, The Netherlands ²Vrije Universiteit Amsterdam, The Netherlands ³Tinbergen Institute, The Netherlands

This version: May 26, 2025

Abstract

We propose an observation-driven dynamic common factor model for missing value imputation in high-dimensional panel data. The model exploits both serial and cross-sectional information in the data and can easily cope with time-variation in conditional means and variances, as well as with either isolated or long patches of missing values. The approach not only provides point forecasts, but also density forecasts for the missing data, thus allowing the researcher to quantify imputation uncertainty. The model's static parameters can be estimated by standard maximum likelihood methods due to the model's observation-driven structure. We apply the model to impute densities and risk quantiles in high-dimensional panels of daily global credit curves with large gaps of missings.

Keywords: missing value imputation, dynamic hierarchical factor models, forecasting, imputation uncertainty, high-dimensional panel data.

JEL classifications: C32, C33, C58, G32, G17.

^{*}Khanna is grateful for the financial support provided by ING Bank. The views expressed in this paper are those of the authors and do not necessarily reflect the views ING Bank.

1 Introduction

The problem of missing data is a widespread challenge in many areas of empirical research. In social sciences, large longitudinal surveys and biological cohort studies often have missing values due to participant attrition, whereas economic panel data can be unbalanced when variables are measured at different frequencies or are not fully available for all spatial groups (see, e.g., Foroni and Marcellino, 2014; Aruoba et al., 2009; Schumacher and Breitung, 2008). Also in finance, typical data like asset returns, bond yields, and credit curves can be incomplete. This can be due to firms not yet or no longer being listed, bankruptcies, illiquidity and stale prices, or asynchronous data releases (Freyberger et al., 2024; van der Merwe et al., 2018). As a result, such datasets often contain a significant number of missing values that need to be imputed for subsequent analysis. For example, a notable imputation problem is found in the financial industry for credit default swap (CDS) term-structures, which are crucial for risk management and regulatory purposes. CDS curves serve as a key input for calculating Credit Value Adjustments (Gregory, 2020; Pallavicini et al., 2011; Green, 2015; Morini and Prampolini, 2011). They are also needed to quantify Basel III capital requirements for OTC transaction profits and losses (see BCBS, 2010). However, since CDS curves are often highly illiquid or completely unavailable for many firms, regulators require financial institutions to construct synthetic curves (proxies) based on spatial factors (e.g., region, sector and rating) extracted from traded CDS instruments (EBA, 2015). In practice, building synthetic curves boils down to a large-scale time-series imputation exercise of significant industrial importance. Since imputation involves the prediction of unknown values without any means of direct verification (as the true data value is not observed), selecting an appropriate imputation method is crucial for ensuring the accuracy and reliability of the imputed data.

One of the common ways used in practice to address missing values in highdimensional time-series panels is that of factor-based imputation methods. These methods exploit the co-movement of observed cross-sectional units to extract common components (factors), which are then used to impute the missing data. Factors are typically estimated using principal components (PCs) and recent studies, including those by Cahan et al. (2023), Xiong and Pelger (2023), Bai and Ng (2021), and Jin et al. (2021), have introduced various PC-based approaches to consistently estimate common components when the factor structure is strong in unbalanced panel data. Although these factorbased methods are computationally efficient and scalable for large data panels, they do not exploit the predictability of the missing values, given lagged values of the observed values, which is particularly relevant for imputation in a time-series setting. This is where dynamic time-series models can prove useful, as they exploit both serial and crosssectional information to impute (or forecast) the missing values. For example, studies by Jin et al. (2021), Stock and Watson (2016), and Jungbacker et al. (2011) explore dynamic factor models to handle missing values, while Chan et al. (2023) propose conditionally Gaussian state-space models for the same purpose. On the other hand, the generalized autoregressive score (GAS) framework by Creal et al. (2013) and Harvey (2013) offers an observation-driven alternative to parameter-driven state-space models for handling missing values. In this framework, the time variation of latent factors is driven by the score of the predictive density of the observed data only, which allows for a straightforward specification of conditional moments under the presence of missing values (Blasques et al., 2021; Lucas et al., 2016). This makes GAS models particularly attractive for capturing the dynamics of missing observations in large time-series datasets, where both the conditional mean and variance, but also common and idiosyncratic factors play a crucial role.

However, when some observations are missing, the score update typically still induces a change in all time-varying parameters, even those linked exclusively to the missing units. Thereby, this approach does not fully exploit the information in the available data to capture for instance the common components, because some information 'leaks' or is transferred to the identification of idiosyncratic factors for which no data is available at that moment. In situations where the common factor is a dominant driver of the timeseries dynamics, this is a sub-optimal outcome. If the common factor is dominant, it is crucial to estimate it as accurately as possible for a good imputation result, even if this comes at the expense of a less good imputation result for the idiosyncratic components that are solely linked to the units that are not observed at that time. Therefore, the treatment of scores in multivariate GAS models with missing values remains an open question. In contrast, the linear Gaussian state-space framework effectively handles missing values using the multivariate Kalman filter (Durbin and Koopman, 2012; Harvey and Pierse, 1984).

This paper provides three key improvements to handle missing values in highdimensional panel data. First, we relax the typical constant variance matrix assumption for panel data by developing a hierarchical multivariate Gaussian model with score-driven conditionally time-varying means and variances. In this model, both moments follow a hierarchical factor structure with a predefined exogenous design matrix that links scoredriven factors to each of the time-series' first two moments. Specifically, the design matrix consists of effect-coded dummy variables and acts as a factor-loading matrix that decomposes cross-sections of means and variances into interpretable location and scale factors. Unlike existing methods that primarily predict missing values based on mean estimates using common factors only, our approach can incorporates multiple common and idiosyncratic mean and variance components, while also accounting for their time variation.¹ The hierarchical density model also accommodates complex hierarchical spatial structures (e.g., region, sector, or rating dummies and their interactions), which may vary over time to capture structural shifts (e.g., changes in firm ratings). The model's static parameters can be estimated by standard maximum likelihood methods due to the model's observation-driven structure. Therefore, this dynamic hierarchical model offers substantial flexibility for extracting moments from sparse multivariate time-series and to impute the full density of missing values.

Second, our modeling approach leverages on the hierarchical structure of the data to improve imputation in sparse multivariate time-series. In particular, we exploit the hierarchical structure in the dataset and introduce a new filtering mechanism that allows the user to enforce mean-reversion on (e.g., idiosyncratic) factors that are deemed less relevant for the overall imputation outcome and that are affected by the missing values. Through an extensive Monte Carlo study using the model as the true data generating process (DGP), we demonstrate that this new filter accurately captures common location and scale signals as long as at least one observation is present in the panel's cross-section. This even holds when data are historically missing in blocks or randomly missing for as much as 75% of the time, thus enabling accurate prediction of missing value densities even with limited data. This paper therefore substantially extends the univariate scoredriven filter for missing values of Blasques et al. (2021) to large-scale multifactor timevarying score-driven location-scale models, including those with non-continuous and non-Gaussian distributions.

As a third contribution, this paper not only focuses on the imputation prediction

¹The so-called factor-based 'residual overlay' algorithm of Cahan et al. (2023) can be used to consistently estimate the covariance matrix of panels with missing units, but only if the respective matrix is assumed to be constant. The multivariate state-space models of Chan et al. (2023) on the other hand do include a single common stochastic volatility factor, but do not cover model specifications with time-varying idiosyncratic volatilities.

itself, but also on the inference or *uncertainty* about the missing values in score-driven models. Although it is rather straightforward to generate in-sample point-forecasts with the score-driven models, generating reliable interval forecasts requires simulation-based techniques. We extend the out-of-sample simulation algorithm of Blasques et al. (2016) to the in-sample data imputation problem. Whenever missing data is encountered during filtering, the algorithm imputes these values by simulation based on the model's distributional assumptions and combined with observed data to form a complete cross-section, which updates the time-varying parameters. This process is repeated multiple times throughout the sample to produce simulation bands for both the missing values and the underlying time-varying parameters and in this way captures the imputation uncertainty. Additionally, following Blasques et al. (2016), the algorithm is further extended to also incorporate parameter uncertainty using the asymptotic covariance of the parameters. Monte Carlo experiments reveal that the simulation bands perform well and capture the imputation uncertainty at nominal levels for both the factors and various risk quantiles of the true DGP. Therefore, the outputs of our imputation framework are likely to be valuable not only to academics, but also to practitioners.

In our empirical analysis, we demonstrate the strong performance of our dynamic hierarchical density model for imputing missing values in time-series of CDS term-structures through two applications: single-name and multi-name curve imputation. For both applications we use daily CDS data of global financial institutions, spanning the period from Jan 2011 to Dec 2022. In the first application, we assess the empirical imputation performance of various score-driven model specifications with and without mean-reversion using CDS time-series of JPMorgan Chase & Co. (JPM). We simulate artificial missing data (either in blocks or randomly missing) into JPM's credit curves and then compare the score-driven density forecasts with those from a state-space model using the Kalman filter. Our results reveal that score-driven models with forced mean-reversion exhibit up to 2-3 higher in-sample forecasting accuracy than models without mean-reverting factors. We also find similar forecasting performance between the mean-reverting scoredriven models and Kalman filter models, which complements the out-of-sample findings of Koopman et al. (2016). In the multi-name application, we build a hierarchical CDS curve model to simultaneously impute six tenors for 24 global financial institutions (a total of 144 CDS time-series over ten years) using a design matrix that incorporates nearly 100 common and idiosyncratic location and scale factors. We find that the GAS model not only scales well to high dimensions, but that hierarchical models with firm-specific factors also produce more accurate risk quantiles of the panel compared to models without such idiosyncratic components.

The remainder of the paper is organized as follows. Section 2 introduces the modeling framework for imputing densities using hierarchical score-driven location-scale models and also describes the simulation algorithm to construct in-sample forecast bands. In Section 3, an extensive Monte Carlo experiment is performed to study the performance of our model across a range of missing data mechanisms. Section 4 presents the empirical applications. Finally, Section 5 concludes.

2 Modeling Framework

2.1 Hierarchical dynamic location-scale factor models

Let $y_t = (y_{1,t}, \ldots, y_{p,t})' \in \mathbb{R}^p$ be a *p*-dimensional time-series process observed for $t = 1, \ldots, n$. Not all elements of y_t are observed at all times. Let $y_t^{\dagger} = S_t^o y_t \in \mathbb{R}^{p_t}$ denote the the observed part of y_t , where S_t^o is a $p_t \times p$ selection matrix of ones and zeros holding the appropriate rows from the unit matrix I_p . The dimension p_t of y_t^{\dagger} can vary between $p_t = p$ for a fully observed y_t with $S_t^o = I_p$, and a completely missing y_t with $p_t = 0$. Components of y_t may be missing at random (MAR), for instance for an i.i.d. selection process S_t^o that is also independent of $\{y_t\}_{t=1}^n$. In many settings, however, data may be missing in a more structured way. For example, time-series may include gaps at the start, because one of the components was not recorded or did not exist at the time. Gaps may also occur at the end of the sample because of attrition effects, or in the middle for components that were temporarily not observed. In our empirical application in Section 4 we indeed have longer stretch of (partially) missing values either at the start, middle, or end of the sample where specific series are unavailable due to a lack of trading.

We assume that the time-series behavior of y_t^{\dagger} can be described by a multivariate location-scale model with a hierarchical structure for both the locations and scales:

$$y_{t} = \mu_{t} + \Sigma_{t}^{1/2} \varepsilon_{t}, \qquad \varepsilon_{t} \stackrel{\text{ind}}{\sim} N(0, I_{p}) \qquad t = 1, \dots, n,$$

$$\mu_{t} = F_{t} f_{t}^{\mu}, \qquad \sigma_{t} = \exp\left(\frac{1}{2} F_{t} f_{t}^{\log \sigma^{2}}\right), \qquad \Sigma_{t} = \operatorname{diag}(\sigma_{t})^{2},$$

$$y_{t}^{\dagger} = S_{t}^{o} y_{t}, \qquad \varepsilon_{t}^{\dagger} = S_{t}^{o} \varepsilon_{t},$$

$$\mu_{t}^{\dagger} = S_{t}^{o} \mu_{t}, \qquad \sigma_{t}^{\dagger} = \operatorname{diag}(S_{t}^{o} \sigma_{t}), \qquad \Sigma_{t}^{\dagger} = S_{t}^{o} \Sigma_{t} S_{t}^{o'}.$$

$$(1)$$

where the exponential for σ_t works element-wise. The matrix $F_t \in \mathbb{R}^{p \times k}$ is a known

design matrix that imposes a hierarchical structure on the means and (log) variances as driven by the time varying parameters $f_t^{\mu} \in \mathbb{R}^k$ and $f_t^{\log \sigma^2} \in \mathbb{R}^k$, respectively. For instance, in Section 4 we observe time-series for a number of financial instruments (level 4), each instrument being characterized by the firm it relates to (level 3), and each firm characterized by its credit quality (rating), its industry, and its region (level 2), which in turn hinge on the global common developments that affect all firms and instruments (level 1). Note that the model can easily be extended to allow for different hierarchical structures F_t^{μ} and F_t^{σ} in the means and volatilities, respectively, as well as for different dimensions of f_t^{μ} and $f_t^{\log \sigma^2}$.

To fix the idea, consider for example an F_t such that

$$\begin{bmatrix}
\mu_{1,t} \\
\mu_{2,t} \\
\vdots \\
\mu_{p,t}
\end{bmatrix} = \begin{bmatrix}
1 & 1 & 0 & 0 \\
1 & 0 & \ddots & 0 \\
\vdots & 0 & 0 & 1 \\
1 & -1 & \dots & -1
\end{bmatrix} \begin{bmatrix}
f_{c,t}^{\mu} \\
f_{1,t}^{\mu} \\
\vdots \\
f_{p-1,t}^{\mu}
\end{bmatrix},$$
(2)

or

$$\mu_{i,t} = f_{c,t}^{\mu} + f_{i,t}^{\mu}, \quad \text{for } i = 1, \dots, p,$$

$$f_{1,t}^{\mu} + \dots + f_{p,t}^{\mu} = 0,$$

which decomposes the means $\mu_{i,t}$ into a common factor $f_{c,t}^{\mu}$ and an idiosyncratic component $f_{i,t}^{\mu}$ for $i = 1, \ldots, p$. The second equation is needed for identification and enforces the idiosyncratic components to always sum to zero to avoid multicollinearity. From this, we easily derive

$$\widetilde{f}_{t}^{\mu} = \left(\begin{array}{c} f_{c,t}^{\mu} \\ f_{1,t}^{\mu} \\ \vdots \\ f_{p-1,t}^{\mu} \\ f_{p,t}^{\mu} \end{array} \right) = \left(\begin{array}{c} 1 & 0 & \dots & 0 \\ 0 & 1 & 0 & \vdots \\ \vdots & 0 & \ddots & 0 \\ 0 & \dots & 0 & 1 \\ 0 & -1 & \dots & -1 \end{array} \right) \underbrace{ \left(\begin{array}{c} f_{c,t}^{\mu} \\ f_{1,t}^{\mu} \\ \vdots \\ f_{p-1,t}^{\mu} \end{array} \right) }_{\widetilde{f}_{t}^{\mu} \ ((p+1)\times 1)} = \widetilde{F}_{t} \ f_{t}^{\mu} \ (p\times 1) \end{array} \right)$$
(3)

with $\widetilde{f}_t^{\mu} \in \mathbb{R}^{k_c}$ denoting the vector containing all constrained and unconstrained factors, and $\widetilde{F}_t \in \mathbb{R}^{k^c \times k}$ the corresponding known design matrix. Unlike plain vanilla dummy encoding where the common mean component $f_{c,t}^{\mu}$ reflects the mean of the *omitted* category to avoid multicollinearity, the effect dummy coding in Eq. (2) specifies $f_{c,t}^{\mu}$ as the overall grand mean of the components in y_t . This overall grand mean component can still be estimated as long as there is at least one observation left in the cross-section, and can subsequently be used to anchor the missing components in y_t . This eases the interpretation in our hierarchical setting compared to plain vanilla dummy encoding. Another advantage of effect coded matrix F_t is that we can now estimate idiosyncratic factors $f_{i,t}^{\mu}$ over and above the grand mean component $f_{c,t}^{\mu}$ for all series in the system. This is a useful feature when interpreting the output of the model. A similar use of effect coded dummies can be found in the structural time-series literature, where it is typically used to model time-varying seasonal components; see for instance Harvey (1990). It is precisely this hierarchical structure that we exploit in our approach when coping with missing data: the structure allows the user to select which component to prioritize when inferring the values of F_t in the face of missing observations.

The hierarchical decomposition of means and log variances can of course be taken a step further. Figure 1 provides an example for 9 financial instruments with a common (Level 1) effect. The 9 instruments can be grouped in 3 clusters, each cluster corresponding to a different firm (Level 2). Finally, for each firm, each instrument has an idiosyncratic mean and log variance component (Level 3). Moreover, in the examples thus far, the design matrices were all time-invariant. However, situations where F_t is time-varying can easily be thought of as well. For instance, in our empirical applications the time-series depend on the credit quality of the underlying firms. As the credit quality changes over time, so may the design matrix F_t .

We describe the time-varying parameters f_t^{μ} and $f_t^{\log \sigma^2}$ using the score-driven dynamics of (Creal et al., 2011, 2013) and Harvey (2013). The score-driven dynamics for f_t^{μ} and $f_t^{\log \sigma^2}$ adjust the time-varying parameters in a steepest ascent direction of the time t predictive density. This has a distinct advantage over a state-space approach in our application. Score-driven dynamics allow more easily for generalizations of the model, such as the time-varying volatility structure in Eq. (1), without unduly increasing the computational burden of the approach. Such additional features are important for the type of data in Section 4. Particularly in high-dimensional settings such as ours, accommodating such features without undue computational costs is a relevant consideration. Also further generalizations such as fat-tailed densities in Eq. (1) are easy to accommodate, as are structural time-series components as the ones introduced by Harvey (2013). Score-driven dynamics for f_t^{μ} and $f_t^{\log \sigma^2}$ also improve the expected Kullback-Leibler divergence between the unknown data generating process and the statistical model as time

Figure 1: An hierarchical design for factor loading matrix F

I	level	1				Lev	el 3			
)	$\begin{bmatrix} 1 \end{bmatrix}$	1	0	1	0				2	$\} y_{1,t}$
Cluster 1 {	1	1	0	0	1					
l	1	1	0	-1	-1					
)	1	0	1			1	0			
$F_{9\times9} = \text{Cluster } 2$	1	0	1			0	1			} y _{5,t}
l	1	0	1			-1	-1			
)	1	-1	-1					1	0	
Cluster 3 {	1	-1	-1					0	1	
l	1		-1					-1	-1_	$} y_{9,t}$
		Lev	el 2	Id	io. F	actor	s Cl	ustei	: 2	

Notes: An illustration of an effect coded multi-level loading matrix for 3 clusters among 9 time-series in the cross-section. The level 1 dummy indicates the common level among all series, level 2 dummies account for dynamic firm effects across the clusters, and level 3 dummies model idiosyncratic (firm, instrument) dynamics within each level 2 cluster.

progresses and provide consistent estimates of the time-varying parameter paths even if the model is mis-specified (Blasques et al., 2015; Beutner et al., 2023). Finally, Koopman et al. (2016) show that (univariate) score-driven models exhibit a similar state prediction accuracy as state space models even if the latter are the data generating process.

The score-driven dynamics for f_t^{μ} and $f_t^{\log \sigma^2}$ are given by the following expressions:

$$f_{t+1}^{\mu} = \kappa^{\mu} + B^{\mu} f_{t}^{\mu} + A^{\mu} s_{t}^{\mu},$$

$$f_{t+1}^{\log \sigma^{2}} = \kappa^{\log \sigma^{2}} + B^{\log \sigma^{2}} f_{t}^{\log \sigma^{2}} + A^{\log \sigma^{2}} s_{t}^{\log \sigma^{2}},$$
(4)

where $\kappa^{\mu}, \kappa^{\log \sigma^2} \in \mathbb{R}^k$ are vector-valued, and $A^{\mu}, A^{\log \sigma^2}, B^{\mu}, B^{\log \sigma^2} \in \mathbb{R}^{k \times k}$ are matrixvalued parameters. We collect all unknown parameters into the vector ψ , which we estimate by maximum likelihood later on. We also collect f_t^{μ} and $f_t^{\log \sigma^2}$ into the vector f_t , and s_t^{μ} and $s_t^{\log \sigma^2}$ into the vector s_t , respectively. The innovations s_t in the transition equation Eq. (4) are given by the score of the log-predictive density $p(y_t^{\dagger} \mid f_t, \mathcal{F}_{t-1}; \psi)$,

$$s_{t}^{\mu} = \left(\mathcal{I}_{t}^{\mu}\right)^{+} \nabla_{t}^{\mu}, \qquad \nabla_{t}^{\mu} = \frac{\partial \log p\left(y_{t}^{\dagger} \mid f_{t}, \mathcal{F}_{t-1}; \psi\right)}{\partial f_{t}^{\mu}},$$

$$\mathcal{I}_{t}^{\mu} = -\mathbb{E}_{t-1}\left[\frac{\partial^{2} \log p\left(y_{t}^{\dagger} \mid f_{t}, \mathcal{F}_{t-1}; \psi\right)}{\partial f_{t}^{\mu} \partial f_{t}^{\mu\prime}}\right] = \mathbb{E}_{t-1}\left[\nabla_{t}^{\mu} \nabla_{t}^{\mu\prime}\right],$$
(5)

see Creal et al. (2013, 2014), where $(A)^+$ denotes the pseudo-inverse of the matrix A and \mathcal{F}_{t-1} is the information set of all past observations. A similar set of equations holds

for $f_t^{\log \sigma^2}$. Note that we take the scores of the predictive densities of the observed data y_t^{\dagger} only, which makes sense, as those data are the only signals we can use to adjust the time-varying parameters. We also filter separately for the time-varying parameters f_t^{μ} and $f_t^{\log \sigma^2}$, which increases in numerical efficiency and stability of the filter. For our model in equation Eq. (1) we have the following result.

Proposition 1. For the observation equation in (1), the scores and information matrices for f_t^{μ} and $f_t^{\log \sigma^2}$ in equation (5) reduce to

$$\begin{aligned} \nabla_t^{\mu} &= F_t' S_t^{o'} \Sigma_t^{\dagger - 1/2} \varepsilon_t^{\dagger} & \nabla_t^{\log \sigma^2} &= \frac{1}{2} F_t' S_t^{o'} \left(\varepsilon_t^{\dagger 2} - \iota_{p_t} \right), \\ \mathcal{I}_t^{\mu} &= F_t' S_t^{o'} \Sigma_t^{\dagger - 1} S_t^{o} F_t, & \mathcal{I}_t^{\log \sigma^2} &= \frac{1}{2} F_t' S_t^{o'} S_t^{o} F_t, \\ s_t^{\mu} &= \left(F_t' S_t^{o'} \Sigma_t^{\dagger - 1} S_t^{o} F_t \right)^+ F_t' S_t^{o'} \Sigma_t^{\dagger - 1/2} \varepsilon_t^{\dagger}, \quad s_t^{\log \sigma^2} &= \left(F_t' S_t^{o'} S_t^{o} F_t \right)^+ F_t' S_t^{o'} \left(\varepsilon_t^{\dagger 2} - \iota_{p_t} \right), \end{aligned}$$

$$\begin{aligned} \text{where the squaring } \varepsilon_t^{\dagger 2} \text{ is done element-wise, and } \varepsilon_t^{\dagger} &= \Sigma_t^{\dagger - 1/2} S_t^{o} (y_t - \mu_t). \end{aligned}$$

See the appendix for all proofs and derivations.

Both scaled-scores take familiar expressions. For instance, s_t^{μ} is a generalized least squares (GLS) improvement using 'regressor matrix' F_t and prediction error $e_t^{\mu} = y_t - \mu_t$. Similarly, $s_t^{\log \sigma^2}$ is an OLS improvement based on the deviations from squared standardized residuals from their expected values, i.e., $\varepsilon_t^2 - \iota_p$, using again the 'regressor matrix' F_t to combine all the information. We assume F_t to have full column rank, i.e., the design matrix must not be perfectly multicollinear.

Interestingly, the model in Eq. (1) can also be written as a VARMA form with vector log GARCH volatility dynamics and possibly time-varying coefficients. To see this, define $\overline{K}_t = (F'_t \Sigma_t^{-1} F_t)^{-1} F'_t \Sigma_t^{-1}$ and $e^{\mu}_t = y_t - \mu_t = \Sigma_t^{1/2} \varepsilon_t$, and note that

$$\overline{K}_t y_t = f_t^{\mu} + \overline{K}_t \Sigma_t^{1/2} \varepsilon_t \quad \Leftrightarrow \quad f_t^{\mu} = \overline{K}_t \left(y_t - e_t^{\mu} \right),$$

such that

$$y_{t} = F_{t}f_{t}^{\mu} + \Sigma_{t}^{1/2}\varepsilon_{t} = F_{t}\left(\kappa^{\mu} + B^{\mu}f_{t-1}^{\mu} + A^{\mu}s_{t-1}^{\mu}\right) + e_{t}^{\mu}$$

$$= F_{t}\kappa^{\mu} + F_{t}B^{\mu}\overline{K}_{t-1}\left(y_{t-1} - e_{t-1}^{\mu}\right) + F_{t}A^{\mu}\overline{K}_{t-1}e_{t-1}^{\mu} + e_{t}^{\mu}$$

$$= \underbrace{F_{t}\kappa^{\mu}}_{m_{t}} + \underbrace{F_{t}B^{\mu}\overline{K}_{t-1}}_{\Phi_{t}}y_{t-1} + e_{t}^{\mu}\underbrace{-F_{t}\left(B^{\mu} - A^{\mu}\right)\overline{K}_{t-1}}_{\Theta_{t}}e_{t-1}^{\mu}.$$
(7)

The latter can be clearly recognized as a VARMA(1,1) process with possibly timevarying intercept $F_t \kappa^{\mu}$, time-varying AR matrix $F_t B^{\mu} \overline{K}_{t-1}$, time-varying MA matrix $-F_t (B^{\mu} - A^{\mu}) \overline{K}_{t-1}$, and time-varying variances as captured by the time-varying conditional covariance matrix Σ_t . The hierarchical model in equation Eq. (1) together with the score-driven dynamics from equation Eq. (4) and Proposition 1 can thus describe a wealth of different dynamic patters in a vector time-series process y_t .

2.2 Exploiting the hierarchical structure for updating f_t

So far, the filter in Proposition 1 accounts for missing values through the presence of the matrix S_t^o . This is particularly important for observation-driven models, where current non-missing observations determine the future value of the parameters. The approach thus far, however, does not yet exploit the hierarchical structure of the model in any way. This hierarchical structure can be used by the researcher to determine which factors should have prioritized access to the available observations when updating the parameters, and which ones should mean-revert given the lack of information at time t.

It is clear from the updating mechanism in Eq. (5) that the score is only determined on the basis of the predictive density of the observed data. Nevertheless, even though not all elements of y_t may be observed at time t, the score steps typically still induce a change in *all* of the time-varying parameters in the model, including the factors that only affect the observations that are currently missing. This may not always be desirable, and it is here that we can use the hierarchical structure to our advantage.

As an example, consider the $p \times p$ design matrix F_t in Eq. (2) for $\Sigma_t = I_p$. In this simple setting, we can easily re-trace the key features of our approach. The updates for a situation without missing values as well as a situation where one series is missing, are both given as a product of a specific matrix with the available elements of e_t . The relevant matrices are given in Figure 2b. The rows of each matrix correspond to the different time-varying factors, as indicated in the figure, while the columns correspond to the elements of $e_{i,t}$.

For the case without missing values (left-hand matrix), the weights of the different prediction errors for updating $f_{c,t}$ clearly sum to one, while those for the idiosyncratic factors $f_{i,t}$ sum to zero. This is in line with the specifications of the factors themselves, where $f_{c,t}$ is common to all series, whereas the $f_{i,t}$ are series-specific and sum to zero. When the first series is missing, however, the weights for $f_{c,t}$ sum to something strictly less than one, while the idiosyncratic factors receive a non-zero weight. This means that relative to the situation without missings, the common factor takes less information from the available observations than before. Instead, part of the information 'leaks' or is transferred to the estimation of the idiosyncratic factors. In such settings it may be

T ¹ 0	a	1.	•	• • •	• • • •	1	• • 1	• •	1
HIGHTO 7	• Score	a_drivon	rorroccion	WOIGHTS	without	and	with	migging	V91110G
riguic 4	• 50010	-univen	regression	weights	withdut	anu	** 1011	mosme	varues
0			0	0					

$\overset{\times e_{1,t}}{\longrightarrow} \overset{\times e_{2,t}}{\longrightarrow} \overset{\times e_{3,t}}{\longrightarrow} \overset{\times e_{p-1,t}}{\longrightarrow} \overset{\times e_{p,t}}{\longrightarrow}$	sum	$\xrightarrow{\times e_2} \underbrace{\times e_3} \underbrace{\times e_{p-1} \times e_p}_{\text{sum}} \underbrace{\times e_{p-1} \times e_p}_{\text{sum}}$
$f_{c,t} \left\{ \begin{bmatrix} p^{-1} & p^{-1} & p^{-1} & \cdots & p^{-1} \end{bmatrix} \right\}$	1	$\begin{bmatrix} p_t^{-1} & p_t^{-1} & \cdots & p_t^{-1} & p^{-1} & \left \frac{p_t(p_t+1)-1}{p_t(p_t+1)} \right \end{bmatrix}$
$f_{1,t}\left\{ \left \begin{array}{ccc} \frac{p-1}{p} & -p^{-1} & -p^{-1} & \cdots & -p^{-1} & -p^{-1} \end{array} \right \right\}$	0	$ \begin{vmatrix} 0 & 0 & \cdots & 0 & -p^{-1} \end{vmatrix} -p^{-1} $
$-p^{-1} \frac{p-1}{p} -p^{-1} \cdots -p^{-1} -p^{-1}$	0	$\frac{p_t - 1}{p_t} - p_t^{-1} \cdots - p_t^{-1} - p^{-1} = \frac{2p_t + 1}{p_t(p_t + 1)}$
$f_{3,t} \left\{ -p^{-1} - p^{-1} \frac{p-1}{p} \cdots \right\}$	÷	$-p_t^{-1} \frac{p_t-1}{p_t} \cdot \dots \vdots \vdots \vdots$
$\vdots \vdots \ddots -p^{-1} - p^{-1}$	0	\vdots \cdots $-p_t^{-1} - p^{-1} \left \frac{2p_t + 1}{p_t(p_t + 1)} \right $
$f_{p-1,t} \left\{ \left -p^{-1} - p^{-1} \cdots -p^{-1} \frac{p-1}{p} - p^{-1} \right \right\}$	0	$ -p_t^{-1} \cdots -p_t^{-1} \frac{p_t - 1}{p_t} - p^{-1} \begin{vmatrix} \frac{2p_t + 1}{p_t(p_t + 1)} \end{vmatrix} $
$(F'_t F_t)^{-1} F'_t (p \times p)$		$(F'_t S^o_t S^o_t F_t)^+ F'_t S^o_t (p \times p_t)$
(a) y_t is complete		(b) $y_{1,t}$ is missing

Notes: An illustration of the score-driven regression weights, given Proposition 1 and the *p*-dimensional effect-coded design matrix in Eq. (2). Figure 2a displays the score-driven OLS weighting matrix when all observations in y_t are complete, whereas Figure 2b displays the weights when only y_{1t} is missing at time t ($p_t = p - 1$). Column values on the right-hand side of the vertical line correspond to the row-wise sum of the weights. The elements e_t 's on top of the matrix correspond to the available prediction errors used to obtain the scaled-score estimates s_t 's for the corresponding factors f_t 's indicated by the curly brackets on the left-hand side of the first matrix. The rows in both matrices correspond to exactly the same factor.

useful to let the common factor first exploit all the empirical information in the available data, while letting the idiosyncratic factor mean-revert for that/those series for which the corresponding observation is missing. In the context of the example in Figure 2, this means letting $f_{1,t}^{\mu}$ mean-revert when $y_{1,t}$ is missing and using the information of the remaining observed series $y_{2:p,t}$ to first update the common level $f_{c,t}^{\mu}$.

Figure 3 demonstrates this setup for a simulated bivariate time-series system from the same example (i.e., p = 2 in Eq. (2)) that features a strong common factor and assumes homoskedastic error variance specification. In this example, $y_{1,t}$ is missing from $t = 100, \ldots, 400$, but $y_{2,t}$ is always observed. When we filter the conditional means of these series using the standard score-driven updates of Creal et al. (2013) from Proposition 1, both $f_{c,t}^{\mu}$ and $f_{1,t}^{\mu}$ (and also $f_{2,t}^{\mu} = -f_{1,t}^{\mu}$) each receive about half of the prediction error $e_{2,t}$ during the period that $y_{1,t}$ is missing. As a result, the filtered (or imputed) mean $\mu_{1,t}$ of $y_{1,t}$ (shown in Subfigure 3a) does not track the missing data very well, even though $\mu_{2,t}$ continues to accurately follow $y_{2,t}$ (see Subfigure 3c). This holds despite the presence of strong common factor in the full system, which one may expect to enable the researcher to obtain a better estimate of the (dominant) level component $f_{c,t}^{\mu}$ present in $y_{1,t}$. However, if we allow $f_{1,t}^{\mu}$ to mean-revert as we do in this paper and if we allow the common factor to first fully absorb the information in the new observation $y_{2,t}$, the imputed mean for $y_{1,t}$

Figure 3: A bivariate example of filtering with missing values

(a) $y_{1,t}$ and $f_{1,t}^{\mu}$ using the standard score-driven (b) $y_{1,t}$ and $f_{1,t}^{\mu}$ using the adjusted score-driven updates of Proposition 1 updates of Proposition 1'

(c) $y_{2,t}$ and $f_{2,t}^{\mu}$ using the standard score-driven (d) $y_{2,t}$ and $f_{2,t}^{\mu}$ using the adjusted score-driven updates of Proposition 1 updates of Proposition 1'

Notes: this figure presents an example of filtering the mean in a bivariate time-series system with missing values, based on the p = 2-dimensional effect-coded (as described in Eq. (2)), using two different score-driven filtering mechanisms. The top panels display the simulated time-series for the first variable $y_{1,t}$, while the bottom panels show those for the second variable $y_{2,t}$. in dots and bottom ones panels display the values for $y_{2,t}$. Observed values are depicted as black dots and missing values as pink dots. In each panels, the solid blue line depicts the filtered mean μ_t of y_t . The time-series in Subfigures 3a and 3c are filtered using the scores from Proposition 1, whereas those in Subfigures 3b and 3d use the scores from Proposition 1'. In the latter case, the idiosyncratic location factor $f_{1,t}^{\mu}$ mean-reverts when $y_{1,t}$ is missing, which also forces the second factor to mean-revert, since $f_{2,t}^{\mu} = -f_{1,t}^{\mu}$. The location model is simulated using the following parameters: $\kappa^{\mu} = [0.25, 0.05]'$, $A^{\mu} = \text{diag}([0.5, 0.25])$, $B^{\mu} = \text{diag}([0.98, 0.95])$, $\Sigma_t = I_2$, and n = 500.

(displayed in Subfigure 3b) again aligns much more closely with the (missing) observations $y_{1,t}$.

It is here that the modeler has a choice. For instance, if the common factor is much larger in size than the idiosyncratic factors, it may be much more important to get the estimate of the common factor correct, possibly at the expense of the idiosyncratic factors. This situation is quite common in many areas of economics and finance. Also in our application later on, the common (level) factor is typically much larger than the subsequent regional, rating, or maturity related factors.

In technical terms, we achieve this objective as follows. Let $K_t \in \mathbb{R}^{r_t \times k^c}$ be a selection matrix of ones and zeros that selects the elements of \tilde{f}_t that the researcher chooses to mean-revert at time t in the light of the missing observations. In the example above where $y_{1,t}$ is missing, we would let $f_{1,t}$ mean-revert, resulting in $K_t = (0, 1, 0, 0, 0)$. To ensure that the factors indicated by K_t mean-revert, we impose that the derivatives of the log predictive density with respect to $K_t f_t$ are zero, i.e., we set

$$K_t \tilde{\nabla}_t^{\mu} = 0, \qquad \tilde{\nabla}_t^{\mu} = \frac{\partial \log p(y_t^{\dagger} \mid f_t, \mathcal{F}_{t-1}; \psi)}{\partial \tilde{f}_t} = \tilde{F}_t \nabla_t^{\mu}.$$
(8)

Now let $K_{\perp t} \in \mathbb{R}^{(k-r_t) \times k}$ be a matrix orthogonal to $K_t \widetilde{F}_t$, such that $K_t \widetilde{F}_t K'_{\perp t} = 0$. Also define the $k \times k$ projection matrices $M_t = K'_{\perp t} (K_{\perp t} K'_{\perp t})^{-1} K_{\perp t} \in \mathbb{R}^{k \times k}$ and $M_{\perp t} = \widetilde{F}'_t K'_t (K_t \widetilde{F}_t \widetilde{F}_t' K'_t)^{-1} K_t \widetilde{F}_t$. Then we rewrite the original score step ∇^{μ}_t under the restriction $K_t \widetilde{\nabla}^{\mu}_t = K_t \widetilde{F}_t \nabla^{\mu}_t = 0$, as

$$\nabla_t^{\mu} = \left(M_{\perp t} + M_t\right) \nabla_t^{\mu} = \widetilde{F}_t' K_t' (K_t \widetilde{F}_t \widetilde{F}_t' K_t')^{-1} \left(K_t \widetilde{F}_t \nabla_t^{\mu}\right) + M_t \nabla_t^{\mu} = M_t \nabla_t^{\mu}.$$
(9)

We directly see that such a step satisfies the restriction $K_t \tilde{F}_t \nabla_t^{\mu} = K_t \tilde{F}_t M_t \nabla_t^{\mu} = 0$ by design. We now obtain the revised Proposition 1'.

Proposition 1'. For the observation equation in (1) and under the restrictions $K_t \tilde{\nabla}_t^{\mu} = K_t \tilde{F}_t \nabla_t^{\mu} = 0$ and $K_t \tilde{\nabla}_t^{\log \sigma^2} = K_t \tilde{F}_t \nabla_t^{\log \sigma^2} = 0$, the scores and information matrices for f_t^{μ} and $f_t^{\log \sigma^2}$ in equation (5) reduce to

$$\begin{aligned} \nabla_t^{\mu} &= M_t F_t' S_t^{o'} \Sigma_t^{\dagger - 1/2} \varepsilon_t^{\dagger} \qquad \nabla_t^{\log \sigma^2} = \frac{1}{2} M_t F_t' S_t^{o'} \left(\varepsilon_t^{\dagger 2} - \iota_{p_t} \right), \\ \mathcal{I}_t^{\mu} &= M_t F_t' S_t^{o'} \Sigma_t^{\dagger - 1} S_t^o F_t M_t, \qquad \mathcal{I}_t^{\log \sigma^2} = \frac{1}{2} M_t F_t' S_t^{o'} S_t^o F_t M_t, \end{aligned} \tag{10} \\ s_t^{\mu} &= \left(M_t F_t' S_t^{o'} \Sigma_t^{\dagger - 1} S_t^o F_t M_t \right)^+ M_t F_t' S_t^{o'} \Sigma_t^{\dagger - 1/2} \varepsilon_t^{\dagger}, \\ s_t^{\log \sigma^2} &= \left(M_t F_t' S_t^{o'} S_t^o F_t M_t \right)^+ M_t F_t' S_t^{o'} \left(\varepsilon_t^{\dagger 2} - \iota_{p_t} \right), \end{aligned}$$

where $K_{\perp t} \in \mathbb{R}^{(k-r_t) \times k}$ is a matrix orthogonal to K_t , such that $K_t \widetilde{F}_t K'_{\perp t} = 0$, and $M_t = K'_{\perp t} (K_{\perp t} K'_{\perp t})^{-1} K_{\perp t} \in \mathbb{R}^{k \times k}$, and where the squaring $\varepsilon_t^{\dagger 2}$ is done element-wise, and $\varepsilon_t^{\dagger} = \Sigma_t^{\dagger - 1/2} S_t^o(y_t - \mu_t)$.

If there are different design matrices F_t^{μ} and $F_t^{\log \sigma^2}$, then also the corresponding projection matrices M_t will be different for μ and σ .

Our approach for filtering with missing observations is inspired by the so-called 'setting-to-zero' method of Blasques et al. (2021) in the context of univariate score-driven models; see also Creal et al. (2014); Delle Monache et al. (2016); Koopman et al. (2018); Buccheri et al. (2020). In a univariate set-up, the 'setting-to-zero' method puts the score innovation of a factor in the transition equation to zero. Lucas et al. (2016) relate this method to the Expectation-Maximization algorithm as used in the missing data literature, and justify why this approach is reasonable in score-driven models. In our

multivariate hierarchical setting, we generalize this approach by allowing the researcher to self-select which derivatives should be set to zero via the matrix K_t . The following examples illustrate how Proposition 1' works out when some of the components of y_t are missing.

Example 1 (No mean-reverting factors). When missing values at some t are encountered, but there is still sufficient cross-sectional information available to estimate all factors, we have r = 0, K_t is empty, and $K_{\perp t}$ is the identity matrix. As a result, $M_t = I_k$ and Proposition 1' collapses to Proposition 1. This can happen for instance in cases where multiple elements of y_t identify the same factor. For instance, in case of a single common factor, this factor can still be filtered from the data as long as at least one element of y_t is observed.

Example 2 (Mean-reverting unrestricted idiosyncratic factors). If we take the example from Figure 2, the first component of y_t is missing. If the common component $f_{c,t}$ is much larger than the idiosyncratic components, it may be preferrable as argued before to let the first idiosyncratic component mean-revert, while using the remaining information to get as accurate an estimate of $f_{c,t}$ as possible. This leads to

$$K'_{t} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \quad \widetilde{F}'_{t}K'_{t} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \quad K'_{\perp t} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad M_{t} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The resulting score step follows from Proposition 1'. For the case $\Sigma_t^{\dagger} = I$, Figure 4a, then gives the new matrix $(M_t F'_t S^{o'}_t S^o_t F_t M_t)^+ M_t F'_t S^{o'}_t$ in front of ε_t^{\dagger} . This matrix can be compared to the one in Figure 2b. We clearly see that the scaled score step s_t for $f_{1,t}$ equals zero, such that that factor mean-reverts. The common component now has equal weights for each of the three remaining elements of y_t that are observed at time t. Also, the weights for $f_{2,t}$ and $f_{3,t}$ again sum to zero, as in the case without missings.

Example 3 (Mean-reverting unrestricted and restricted idiosyncratic factors). Now we consider the case r = 2 in a situation where both $y_{1,t}$ and $y_{4,t}$ are missing. Therefore, we let $f_{1,t}$ and $f_{4,t}$ mean-revert. However, $f_{4,t}$ is effect-coded and therefore a function of the other three (free) idiosyncratic factors. It is therefore not immediate how the information

Figure 4: New score-driven regression weights with missing values

$\underbrace{\times e_{2,t} \times e_{3,t} \times e_{4,t}}_{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!$	sum	$\times e_{2,t} \times e_{3,t}$	$\underbrace{\operatorname{sum}}_{-}$
$f_{c,t} \left\{ \begin{array}{ccc} \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \end{array} \right\}$	1	$f_{c,t} \left\{ \begin{array}{cc} \frac{1}{2} & \frac{1}{2} \end{array} \right $	1
$f_{1,t} \{ \begin{array}{ccc} 0 & 0 & 0 \end{array} \}$	0	$f_{1,t} \{ \begin{vmatrix} 0 & 0 \end{vmatrix}$	0
$f_{2,t}\left\{ \begin{array}{ccc} \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \end{array} \right\}$	0	$f_{2,t} \left\{ \begin{array}{cc} \frac{1}{2} & -\frac{1}{2} \end{array} \right\}$	0
$f_{3,t}\left\{ \begin{vmatrix} -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \end{vmatrix} \right\}$	0	$f_{3,t} \left\{ \begin{vmatrix} -\frac{1}{2} & \frac{1}{2} \end{vmatrix} \right\}$	0
(a) Example 2		(b) Example	3

Notes: An illustration of the application of M_t through Proposition 1', related to the examples given in the main text. It presents the matrix $(M_t F'_t S^o_t S^o_t F_t M_t)^+ M_t F'_t S^o_t$ in front of ε^{\dagger}_t in Proposition 1' for $\Sigma^{\dagger}_t = I$.

in the remaining series should be spread out over the common factor $f_{c,t}$ and the two idiosyncratic factors $f_{2,t}$ and $f_{3,t}$. Using Proposition 1', we obtain

$$S_{t}^{o} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \quad K_{t} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \quad K_{t}\widetilde{F}_{t} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & -1 \end{bmatrix},$$
$$K_{\perp t}' = \begin{bmatrix} \sqrt{\frac{1}{2}} & \sqrt{\frac{1}{2}} \\ 0 & 0 \\ \frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{bmatrix}, \quad M_{t} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{2} & -\frac{1}{2} \\ 0 & 0 & -\frac{1}{2} & \frac{1}{2} \end{bmatrix},$$

and the resulting matrix $(M_t F'_t S^o_t S^o_t F_t M_t)^+ M_t F'_t S^{o'}_t$ is given in Figure 4b. We see that indeed only $f_{c,t}$, $f_{2,t}$ and $f_{3,t}$ possibly make a non-zero step. Moreover, again the weights for the common factor sum to one, while those for the idiosyncratic factors sum to zero. The common factor thus takes all the information from the remaining observations. The rest of the information is used to filter the factors for which some direct information is available, while $f_{1,t}$ and $f_{4,t}$ revert to their long term means.

Example 4 (Mean-reverting common factors). As a final example, we consider the case where the idiosyncratic factors are large, while the common factor is small in magnitude. Consider the same setting as in Example 3, with $y_{1,t}$ and $y_{4,t}$ missing, but where we now choose to let the (in this case smaller) common factor $f_{c,t}$ mean-revert, as well as one of

the idiosyncratic factors, e.g. $f_{1,t}$. We obtain

$$S_{t}^{o} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}, \qquad K_{t} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \qquad K_{t}\widetilde{F}_{t} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & -1 & -1 \end{bmatrix},$$
$$K_{\perp t} = \begin{bmatrix} 0 & 0 \\ \sqrt{\frac{1}{3}} & 0 \\ -\sqrt{\frac{1}{6}} & -\sqrt{\frac{1}{2}} \\ -\sqrt{\frac{1}{6}} & \sqrt{\frac{1}{2}} \end{bmatrix}, \qquad M_{t} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & \frac{2}{3} & -\frac{1}{3} & -\frac{1}{3} \\ 0 & -\frac{1}{3} & \frac{2}{3} & -\frac{1}{3} \\ 0 & -\frac{1}{3} & -\frac{1}{3} & \frac{2}{3} \end{bmatrix}, \qquad [\star] = \begin{bmatrix} 0 & 0 \\ -1 & -1 \\ 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad (11)$$

where the last matrix $[\star] = (M_t F'_t S^o_t S^o_t F_t M_t)^+ M_t F'_t S^o_t$ is comparable to that in Figure 4b. Now the score of the common factor $f_{c,t}$ in Eq. (11) puts the step for the first element of f_t , i.e., $f_{c,t}$, to zero such that it mean reverts. The rest of the entries in the last matrix in Eq. (11) ensure also $f_{4,t}$ mean reverts. This is done by transferring the information in $e_{2,t}^{\mu}$ and $e_{3,t}^{\mu}$ into $f_{2,t}$ and $f_{3,t}$, while $f_{1,t}$ is modified by the mean reversion of $f_{4,t}$ and the identifying restriction that the idiosyncratic factors should always sum to zero. This illustrates how different choices regarding the mean reversion of the time-varying factors in the model lead in a consistent way to the available information in the data at time t to spread out over the non-mean-reverting factors. Later in the paper we illustrate how these choices lead to a useful imputation mechanism in a hierarchical factor model setting and to adequate imputation uncertainty bands.

The above examples illustrate that our methodology from Proposition 1' can thus be used to let either idiosyncratic or common factors mean-revert, depending on their relative importance in the hierarchical set-up. The choice of which factors to prioritize is fully under control of the modeler through the specification of the matrix K_t . The approach accommodates customized versions of the 'setting-to-zero' method in a multivariate, hierarchical set-up. Our approach remains valid for other popular ways to encode dummy variables, such as the plain vanilla dummy encoder,² deviation/difference encoding, repeated effect-coding, and design matrices including exogenous regressors.

²When F_t is a pure dummy coded matrix, the scaled-score of factors without any contributions are put automatically to zero by just using S_t^o (and pseudo-inverses).

2.3 Imputing missing observations

The above treatment of the score through Eq. (10) in Proposition 1' is adequate for obtaining point forecasts of f_t^{μ} and $f_t^{\log \sigma^2}$ and thus of the missing components in y_t . For interval forecasts, however, we resort to simulation-based techniques. A simulation algorithm for pure out-of-sample forecasting for score-driven models without missing value problems was introduced in Blasques et al. (2016). Here, we generalize the approach to the in-sample data imputation problem.

Algorithm 1: In-sample forecast bands
Initialize score-driven filters with some initial values $f_1^{\mu,(s)}, f_1^{\log \sigma^2,(s)} \in \mathbb{R}^k$.
for $s = 1, \ldots, S$ do
Simulate $\widehat{\psi}^{(s)}$ using its asymptotic distribution
for $t = 1, \ldots, n$ do
if y_t is complete then
Compute s_t^{μ} and $s_t^{\log \sigma^2}$ using Eq. (6);
else if y_t is partially observed then
Simulate $S_t^m y_t$ from N $\left(S_t^m \mu_t^{(s)}, S_t^m \Sigma_t^{(s)} S_t^{m'}\right)$ and combine this with the observations y_t^{\dagger} into the vector $y_t^{(s)}$. Use $y_t^{(s)}$ to update to $f_{t+1}^{\mu,(s)}$ and
$f_{t+1}^{\log \sigma^2,(s)}$ using Eq. (10).
else
Simulate $y_t^{(s)}$ from N $\left(\mu_t^{(s)}, \Sigma_t^{(s)}\right)$ and use it to update to $f_{t+1}^{\mu,(s)}$ and
$f_{t+1}^{\log \sigma^2,(s)}$ using Eq. (10).
end
end
end
Use $\left\{f_t^{\mu,(s)}\right\}_{s=1}^S$ and $\left\{f_t^{\log \sigma^2,(s)}\right\}_{s=1}^S$ for $t = 1, \dots, n$ to describe the in-sample
uncertainty of the factors.

Let $S_t^m \in \mathbb{R}^{(p-p_t)\times p}$ denote a selection matrix such that $S_t^m y_t$ contains the *miss*ing elements of y_t at time t, just as $S_t^o y_t$ contains the non-missing or observed elements. For imputing missing data and their uncertainty over the entire sample period, we consider the first time point t where we have missing data. At time t, we have $S_t^m y_t | \mathcal{F}_{t-1} \sim N(S_t^m \mu_t^{(s)}, S_t^m \Sigma_t^{(s)} S_t^{m'})$ with $\mu_t^{(s)} = \mu_t$ and $\Sigma_t^{(s)} = \Sigma_t$, such that we directly obtain imputation values and prediction intervals.³ To propagate the uncertainty due to

³The current conditioning scheme builds on the diagonal structure of $\Sigma_t^{(s)}$ and the fact that

missing values forward, we simulate values for $S_t^m y_t$ from the above normal distribution. These are combined with the observed elements y_t^{\dagger} into a simulated data point $y_t^{(s)}$, which is then used to obtain simulated updates of the time-varying parameters $\mu_{t+1}^{(s)}$ and $\Sigma_{t+1}^{(s)}$. With these simulated updated parameters, we proceed to time t + 1, and so on, until the end of the sample. The process can be repeated many times, and pointwise simulation bands can be constructed for $S_t^m y_t$ and for the underlying time-varying parameters for all t. The algorithm is summarized as Algorithm 1. As in Blasques et al. (2016), we can extend the approach above to also include parameter uncertainty. We do so by embedding the above simulation algorithm into a second loop, where we simulate over the vector of static parameters using its asymptotic distribution. This step is described in the outer loop in Algorithm 1.

2.4 Filtering equations for score-driven updates and smoothing

The score-driven recursion in Eq. (4) lets the parameter vector f_t evolve based on past observations only. The model specification in Eq. (1) is thereby observation-driven model. This implies that all time-varying parameters are one-step-ahead perfectly predictable and that, under correct specification, these time-varying parameters are completely revealed by past observations and the values of the static parameters. A better estimate of the time-varying parameter might be obtainable if we can use a filter based on both past and contemporaneous (and possibly even future) observations, i.e., filtering and smoothing as opposed to prediction could possibly provide a more accurate estimate of the time-varying parameter, particularly in the presence of missing data.

Buccheri et al. (2021) recently proposed a methodology for score-driven transition equations that uses more than just past data to estimate time-varying parameters. The propose both a score-driven filter that uses past and current observations and a scoredriven smoother that uses all past, present, and future observations. Their approach builds on an analogy between the score-driven model and a linear Gaussian state-space model. In particular, a set of score-driven updates and smoothing recursions is derived through a general representation of the Kalman filter and Kalman smoother, respectively. The proposed recursions are approximate, but their numerical results show that their

 $[\]overline{S_t^m \text{ is a selection matrix. In more general cases, we can sample from } S_t^m y_t | \mathcal{F}_{t-1}, y_t^{\dagger} \text{ with conditional mean } S_t^m \mu_t^{(s)} + S_t^m \Sigma_t^{(s)} S_t^{o'} (S_t^o \Sigma_t^{(s)} S_t^{o'})^{-1} (y_t^{\dagger} - S_t^o \mu_t^{(s)}) \text{ and conditional variance } S_t^m \Sigma_t^{(s)} S_t^{m'} - S_t^m \Sigma_t^{(s)} S_t^{o'} (S_t^o \Sigma_t^{(s)} S_t^{m'})^{-1} S_t^o \Sigma_t^{(s)} S_t^{m'}.$

approach can be equally powerful as exact filtering techniques; see Buccheri et al. (2021) for more details.

Filtering with the score-driven update and smoothing equations is straightforward as these recursions do not require additional elements than the ones already derived for the predictive filter. The score-drive contemporaneous filter recursion for f_t is given by

$$f_{t|t} = f_t + B^{-1} A s_t, (12)$$

for $t = 1, \ldots, n$. The score-driven smoother is given by

$$r_{t-1} = s_t (B - A)' r_t$$

$$f_{t|n} = f_t + B^{-1} A r_{t-1},$$
(13)

where $r_n = 0$, and t = n, ..., 1. Just like for the predictive filter in Eq. (4), updated and smoothed estimates of the location and log-variance factors, i.e., $f_{t|t}^{\mu}$, $f_{t|n}^{\mu}$, $f_{t|t}^{\log \sigma^2}$, and $f_{t|n}^{\log \sigma^2}$, are obtained by running the above recursions.

2.5 Estimation

The filtered parameters f_t are a function of the data. This allows us to estimate the score-driven model's static parameter vector ψ by maximum likelihood. In the presence of missing data, however, likelihood evaluations require careful attention. When no observations are available, the log-likelihood collapses to zero; see Blasques et al. (2020). If at least one observation in y_t is not missing, i.e., $p_t \geq 1$, then ℓ_t is computed via the marginal likelihood function $\log p\left(y_t^{\dagger} \mid f_t, \mathcal{F}_{t-1}; \psi\right)$. Formally, the ML criterion function for multivariate score-driven models with missing observations is defined as

$$\widehat{\psi} \coloneqq \arg \max_{\psi} \sum_{t=1}^{n} \ell_t(\psi),$$

$$\ell_t(\psi) = \begin{cases} \log p\left(y_t^{\dagger} \mid f_t, \mathcal{F}_{t-1}; \psi\right), & \text{if } p_t \ge 1, \\ 0, & \text{otherwise,} \end{cases}$$
(14)

where $y_t^{\dagger} = S_t^o y_t$, for t = 1, ..., n. Blasques et al. (2020) refer to the log-likelihood in Eq. (14) as the pseudo log-likelihood function. During ML estimation, the regression weight matrix $M_t F_t' S_t^o S_t^o F_t M_t$ in Eq. (10) for updating the log-variance factors can be pre-computed as they do not depend on any of the unknown parameters. They can therefore be fixed during optimization. This significantly reduces the run-time of the log-variance filter as taking (pseudo)-inverses at each t and across each optimization iteration is avoided. Similar, further increases in numerical efficiency and stability are reached when one opts to filter the location factors using OLS rather than GLS type updates, i.e., by replacing Σ_t^{\dagger} by a unit matrix in the expression for s_t^{μ} in Eq. (10).

To carry out the ML estimation, one requires to first initialize the score-driven filter recursion in Eq. (4) at a fixed point $f_1^{\mu}, f_1^{\log \sigma^2} \in \mathbb{R}^k$. A typical choice for the initialization of observation-driven models is the unconditional mean of the filter itself, namely $f_1 = (I - B)^{-1}\kappa$. Using the unconditional mean of the score-driven recursion as initial values does introduce vulnerability to outliers in the beginning of the filter. To mitigate this issue, one may fix initial values at some estimates inspired by the sample moment of the data. For example, consider the $p \times 1$ vector of sample averages over τ consecutive observations $\overline{y}_{1:\tau} = (\overline{y}_{1,1:\tau}, \dots, \overline{y}_{p,1:\tau})'$, where $\overline{y}_{i,1:\tau} = \tau^{-1} \sum_{t=1}^{\tau} y_{i,t}$, for $i = 1, \dots, p$. This vector of averages can be used to analytically estimate the first values of the location factors, \widehat{f}_1^{μ} , by solving

$$\widehat{f}_1^\mu = F_1^{-1} \overline{y}_{1:\tau},$$

for any (pseudo-)invertable factor loading matrix F_1 . By setting τ to a small number, say $\tau = 10$, one can ensure that the initial values yields a prediction $\hat{\mu}_1 = F_1 \hat{f}_1^{\mu}$ relatively close to y_1 . Similarly, we can define a $p \times 1$ vector of prediction error variances over the first τ observations: $\hat{s}_{1:\tau}^2 = (\hat{s}_{1,1:\tau}^2, \dots, \hat{s}_{p,1:\tau}^2)'$, where $\hat{s}_{i,1:\tau}^2 = \tau^{-1} \sum_{t=1}^{\tau} (y_{i,t} - \hat{\mu}_{i,1})^2$, which we can use to solve for the log-variance factors' initial value $\hat{f}_1^{\log \sigma^2} = F_1^{-1} \log (\hat{s}_{1:\tau}^2)$. Note that the above initialization procedure can also be carried out when there are missing values among the first τ observations. In such cases, one uses the number of available observations only to compute the means $\overline{y}_{i,1:\tau}$ and variances $\hat{s}_{i,1:\tau}^2$. Factors that cannot be estimated in this way due to (a sequence) of missing observations in the beginning of the time-series can be simply initialized with their unconditional mean or by increasing the value of τ .

Sample moments may also be used to reduce the number of static parameters by employing a mean and/or variance targeting approach. A targeting approach for scoredriven models is established by setting the unconditional mean of the filter equal to its corresponding sample moment, which avoids numerical estimation of the conditional intercept κ . This approach can be easily implemented if the score-driven factors are oneto-one related with the time-varying moments. In our multi-factor location-scale model, this relationship includes the dependence on a (potentially) time-varying matrix F_t . For the location factors, the mean-targeting approach therefore takes the following form

$$\kappa^{\mu} \coloneqq (\mathbf{I}_k - B^{\mu}) \,\overline{F}^+ \overline{y},$$

where $\overline{F} = n^{-1} \sum_{t=1}^{n} F_t$ is an (pseudo-)invertible matrix and $\overline{y} = \overline{y}_{1:n}$. A similar expression for $\kappa^{\log \sigma^2}$ can be obtained by replacing \overline{y} with $\log(\widehat{s}_{1:n}^2)$. However, our experience shows that variance-targeting is not recommended as \widehat{s}^2 includes both the variance of the noise ε_t as well the variation of the mean μ_t , where σ_t should only reflect the former, not the latter. Only in cases where the mean μ_t is static, variance targeting seems applicable, e.g., in pure volatility models. In other cases, variance targeting in the way above almost invariably induces inconsistent estimation results.

3 Monte Carlo Evidence

3.1 Design

In our Monte Carlo (MC) experiment we investigate the methodology's performance when forecasting missing values in structured data. We consider a p = 4 dimensional setting and two distinct scenarios for the missing values, namely MAR (missing-at-random) and NMAR (not-MAR). In the NMAR setting, we consider long patches of missing values at the start, middle, and end of the sample. Such patterns resemble the gaps observed empirically in Section 4. The length of the three patches of missings is set to 20% of the sample size each, such that only 40% of the data is observed. We consecutively introduce these missing values in only the first time-series, the first two series, the first three, and finally all four series. In this way, it becomes increasingly challenging to back out any information on the common and series-specific components via the factor structure.

In the MAR experiment, we use a standard i.i.d. Bernoulli indicator to put $y_{i,t}$ to missing with probability $\pi_{i,t}$. We consider $\pi_{i,t} \in \{25\%, 50\%, 75\%\}$ and again introduce the missing values in only the first series (scenario 1) up to all four series (scenario 4). A visual impression of the extent of the missing data problems is given in Figures C.1–C.4 in AppendixC. Out of the 16 scenarios in total, the challenges range from mild (25% missing at random in only one series) to severe (75% missing in all four series, either at random or in patches).

The DGP for each of the 16 scenarios is the score-driven model from Section 2 with one common factor, three free idiosyncratic factors, and one effect-coded idiosyncratic factor. The corresponding factor loading matrix in the DGP is

$$F = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & -1 \end{bmatrix}.$$
 (15)

The static parameters used in the DGP reflect the values found for the empirical data in Section 4 and are given by $\kappa^{\mu} = 0 \times \iota_4$, $A^{\mu} = \text{diag}(0.1, 0.025, 0.025, 0.025)$, $B^{\mu} = \text{diag}(0.98, 0.96, 0.96, 0.96)$, and $\kappa^{\log \sigma^2} \coloneqq \kappa^{\mu}$, $A^{\log \sigma^2} \coloneqq A^{\mu}$, $B^{\log \sigma^2} \coloneqq B^{\mu}$. The data y_t then include a strong location and scale common factor structure, combined with persistent idiosyncratic dynamics of a substantially smaller magnitude.

After simulating from this DGP and introducing the missing values, we fit the meanvariance score-driven model to each of the 16 scenarios for missing values, utilizing the scaled-scores in Proposition 1'. In a all missingness scenarios, M_t is chosen to let first the idiosyncratic factors affected by missing values to mean-revert, as illustrated in Example 2 in Subsection 2.2. We perform 500 Monte Carlo simulations and report the model's mean absolute error (MAE) for the in-sample forecasts of the mean and variance factors. We also compute MAEs for relevant functions thereof, such as tail risk measures like value-at-risk (VaR) and expected shortfall (ES).

To investigate the accuracy of the in-sample forecast error bands for missing values, we use Algorithm 1 including the parameter uncertainty outer loop, using S = 500simulated parameter paths. From these, we construct pointwise forecast error bands for each simulation and for each missing value. We compute the coverage rate of these bands, i.e., how often the band contains the true missing value, where the latter is known in the simulation context. Coverage is computed across 500 Monte Carlo experiments over an (evenly spread) grid of time points and we compare the simulated coverage percentage to its nominal level.

3.2 Results

The MAE results for the mean and variance factors and tail risk measures are provided in Tables 1 and 2, respectively. Supplementary results are provided in Appendix C. Panel A in Table 1 reports the MAE for the mean factors. The left-most column (labeled 0) serves as the benchmark and corresponds to the scenario without missing values. The next panel of four columns $(y_{1,t}$ to $y_{1:4,t})$ present the results for the four scenarios where patches of missings are present in only the first, the first two, the first three, or in all four series. We implemented shading in each of the panels to indicate when one or more of the informative series for that factor are missing.

When all time-series are NMAR, both the common and idiosyncratic factors revet to their mean, revert. In turn, all factors, and consequently, the time-series data, are imputed using their unconditional means. Therefor, in this scenario, the MAE can be interpreted as the expectation of the half-normal distribution. The MAE for $f_{c,t}^{\mu}$ is 0.216, compared to 0.072 for $\{f_{j,t}^{\mu}\}_{j=1}^{p}$, indicating that the common location factor in the DGP is three times stronger than the idiosyncratic location factors. The same relationship applies to the common and idiosyncratic scale components in the DGPs.

The occurrence of the remaining patches of missings also affects the MAE in a systematic and interpretable way. For example, if only the first series has patches of missings $(y_{1,t} \text{ column})$, the forecast quality of the first idiosyncratic factor deteriorates substantially. Also the forecast quality of the common factor $f_{c,t}$ goes down, but to a much lesser extend. Specifically, the filtered of $f_{c,t}$ are about 3.7 times more precise when one out of four time-series is missing, compared to scenario where the entire cross-section is missing and only mean-based forecasts are possible. Note that the forecast accuracy of $f_{1,t}$ does not really deteriorate further if more series start to have the same long patches of missing values. This is due to the fact that the key information to identify this factor, namely $y_{1,t}$, was already missing before. This contrasts with $f_{c,t}$, for which the MAE continues to further increases as more series have (overlapping) patches of missings. Eventually, when only one observation remain in the cross-section, $f_{c,t}$ is about 1.4 times more accurately captured, again compared the case where all observations are missing. We also see that as more series exhibit patches of missings, the MAE of each of the idiosyncratic components $(f_{i,t})$ for that series $(y_{1:i,t})$ goes up in turn as well.

To understand these outcomes, consider the setting where $y_{1,t}$ is not observed for some time, while all the other series are. In that case, the idiosyncratic factor $f_{1,t}$ cannot be estimated at that point in time. Its scaled-score is then zero through our choice of the matrix M_t , such that the filtered factor mean reverts. Given that the other series are available, however, the common component $f_{c,t}$ can still be filtered from the data, albeit with a higher error. As more time-series (e.g., $y_{2,t}$) start having long stretches of missings at the same time as $y_{1,t}$, the MAE of $f_{1,t}$ remains unchanged as it was already mean reverting, while the error of $f_{2,t}$ increases. In addition, the MAE of $f_{c,t}$ also increases as less data is available to filter out the common level component.

Me	chanism:	Missi	ng Patc	hes (NN	AAR)					Rand	omly M	issing (1	MAR)				
M	ssing %:		60	0%			25	5%			50	0%			75	5%	
	0	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$												
						Pane	l A: In-s	sample I	MAE for	r mean	factors						
f_c	0.014	0.059	0.096	0.152	0.216	0.028	0.039	0.049	0.057	0.039	0.056	0.074	0.086	0.049	0.073	0.100	0.118
f_1	0.027	0.072	0.072	0.072	0.072	0.038	0.039	0.039	0.041	0.049	0.050	0.052	0.055	0.061	0.062	0.064	0.069
f_2	0.026	0.035	0.071	0.071	0.071	0.027	0.038	0.040	0.041	0.029	0.050	0.051	0.054	0.032	0.061	0.063	0.068
f_3	0.026	0.035	0.047	0.072	0.072	0.027	0.029	0.040	0.041	0.029	0.033	0.051	0.055	0.031	0.038	0.063	0.068
f_4	0.033	0.038	0.048	0.072	0.073	0.035	0.037	0.039	0.047	0.037	0.040	0.045	0.060	0.037	0.044	0.055	0.074
]	Panel B	: Covera	ige of 95	5% forea	cast erro	or bands	for me	an facto	rs				
f_c	94.384	94.582	93.899	92.291	96.267	93.641	92.843	91.304	90.796	93.545	92.792	91.626	94.591	95.971	96.412	96.116	99.345
f_1	97.541	97.453	97.782	98.054	98.016	97.723	97.864	98.080	98.383	98.225	98.519	98.999	99.467	99.258	99.568	99.702	99.910
f_2	97.428	97.296	97.973	98.244	98.220	98.148	98.026	98.153	98.523	97.882	98.612	98.943	99.493	98.599	99.519	99.699	99.900
f_3	97.414	97.384	96.998	98.090	98.086	97.872	97.961	98.066	98.447	98.007	98.064	98.948	99.438	98.651	98.862	99.665	99.901
f_4	98.234	99.453	99.580	99.421	99.623	98.733	98.932	99.182	99.245	99.284	99.588	99.670	99.738	99.735	99.828	99.859	99.933
					1	Panel C:	In-sam	ple MA	E for lo	g-varian	ce facto	rs					
f_c	0.023	0.083	0.134	0.212	0.301	0.041	0.056	0.069	0.081	0.055	0.080	0.106	0.125	0.069	0.104	0.145	0.174
f_1	0.037	0.101	0.101	0.101	0.102	0.054	0.054	0.056	0.058	0.069	0.070	0.072	0.077	0.086	0.087	0.089	0.095
f_2	0.038	0.050	0.102	0.102	0.103	0.039	0.055	0.056	0.058	0.042	0.070	0.072	0.077	0.045	0.086	0.089	0.094
f_3	0.037	0.049	0.066	0.101	0.102	0.040	0.042	0.056	0.058	0.043	0.048	0.073	0.077	0.045	0.055	0.089	0.095
f_4	0.048	0.055	0.068	0.101	0.103	0.050	0.052	0.055	0.066	0.052	0.057	0.064	0.084	0.054	0.063	0.079	0.104

 Table 1: In-sample forecast performance for mean and log-variance factors

Notes: We explain Panel A, containing the MAE of the mean factors. The other panels are structured similarly. The first column contains MAE results without missing values (row-wise) for the common factor $f_{c,t}$ and the four idiosyncratic factors $f_{i,t}$, i = 1, ..., 4. The first panel contains the results for the NMAR set-up, with 60% of missing values in three patches (20% at the start, 20% in the middle, 20% at the end) in the first series only $(y_{1,t}$ column), the first two series $(y_{1:2,t} \text{ column})$, up to in all four series $(y_{1:4,t} \text{ column})$. The remaining three panels give similar results, but for the MAR case with $\pi = 25\%, 50\%, 75\%$ of missing values in one up to four of the series. Panel B gives the results for the coverage bands for the mean factors' in-sample forecast error bands. Panel C gives the MAE results for the log-variance factors. Results are based on 500 Monte Carlo experiments. The forecast-error bands are based on another S = 500 parameter path simulations with each Monte Carlo simulation. More results are found in Appendix C.

Comparing the MAE for patches of missings (NMAR) versus randomly missing data (MAR), we see that patches result in substantially higher MAEs, except if the probability of missings is extreme (75%). Even then, though, the common component's $(f_{c,t})$ MAE is only about half the size of that of the MAR setting. This is due to the fact that the common factor model averages both in the cross-section and time-series direction, and can therefore exploit any data point to obtain information on the common level $f_{c,t}$ and possibly its variance. The MAR setting profits from this (with high probability), whereas the NMAR setting does not, as the missing patches are in the same locations for all series in our set-up.

Panel B in Table 1 reports the coverage rates of the simulation-based in-sample forecast error bands for the factors. We use a 95% confidence level. The first column shows the performance of the bands in case there are no missing values. We see that the common factor's coverage rate lies close to the nominal level of 95%, while the bands for

Mecha	nism:	Missi	ng Pat	ches (N	MAR)					Rando	mly M	issing (MAR)				
Missir	ng %:		6	0%			25	5%			50	9%			75	5%	
Series	0	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$
				Pa	nel A: N	MAE of	f in-sar	nple fo	recasts	for Va	R with	$\alpha = 5\%$	76				
y_1	0.048	0.196	0.227	0.291	0.353	0.091	0.096	0.103	0.109	0.126	0.137	0.150	0.160	0.162	0.179	0.204	0.217
y_2	0.049	0.075	0.226	0.290	0.353	0.055	0.097	0.103	0.110	0.061	0.137	0.151	0.160	0.067	0.177	0.202	0.216
y_3	0.048	0.074	0.103	0.289	0.353	0.055	0.062	0.103	0.109	0.062	0.075	0.150	0.160	0.068	0.087	0.204	0.218
y_4	0.058	0.078	0.103	0.149	0.350	0.065	0.071	0.078	0.115	0.071	0.083	0.097	0.165	0.073	0.091	0.117	0.222
				Pa	nel B: N	MAE of	f in-sar	nple fo	recasts	for Va	R with	$\alpha = 1$	76				
y_1	0.061	0.246	0.286	0.366	0.443	0.115	0.122	0.130	0.138	0.159	0.172	0.190	0.202	0.205	0.226	0.258	0.274
y_2	0.062	0.095	0.286	0.366	0.444	0.070	0.122	0.130	0.139	0.078	0.173	0.190	0.202	0.085	0.224	0.256	0.273
y_3	0.061	0.093	0.130	0.364	0.445	0.070	0.078	0.130	0.138	0.079	0.095	0.190	0.202	0.086	0.110	0.258	0.276
y_4	0.074	0.099	0.130	0.188	0.440	0.082	0.090	0.099	0.145	0.089	0.105	0.123	0.208	0.093	0.115	0.148	0.281
				Р	anel C:	MAE o	of in-sa	mple fo	orecast	s for E	S with	$\alpha = 1\%$					
y_1	0.068	0.273	0.317	0.406	0.491	0.127	0.135	0.144	0.153	0.177	0.191	0.210	0.224	0.227	0.251	0.286	0.305
y_2	0.069	0.105	0.317	0.407	0.492	0.077	0.136	0.145	0.154	0.086	0.192	0.211	0.225	0.095	0.249	0.284	0.303
y_3	0.068	0.104	0.144	0.404	0.493	0.078	0.087	0.144	0.154	0.087	0.105	0.211	0.224	0.095	0.122	0.286	0.306
y_4	0.082	0.110	0.145	0.209	0.488	0.091	0.100	0.110	0.161	0.099	0.116	0.137	0.231	0.103	0.128	0.165	0.312

 Table 2: In-sample forecast performance for tail risk measures

Notes: We explain Panel A, containing the MAE of the 5% Value-at-Risk (VaR). The other panels are structured similarly. The first column contains MAE results without missing values (row-wise) for each of the series $y_{i,t}$, i = 1, ..., 4. The first panel contains the results for the NMAR set-up, with 60% of missing values in three patches (20% at the start, 20% in the middle, 20% at the end) in the first series only $(y_{1,t}$ column), the first two series $(y_{1:2,t}$ column), up to in all four series $(y_{1:4,t} \text{ column})$. The remaining three panels give similar results, but for the MAR case with $\pi = 25\%$, 50%, 75% of missing values in one up to four of the series. Panels B and C give the results for the 1% VaR and Expected Shortfall (ES), respectively. Results are based on M = 500 Monte-Carlo simulations. More results are found in Appendix C.

the idiosyncratic factors are slightly conservative. The pattern persists if more and more missings are added to the data. For the NMAR case, all idiosyncratic coverage rates are somewhat too high at 97.5%–99.5%. The common factor, by contrast, has too low coverage rates, going down from 93.6% to 90.7% as more and more series have common patches of missings. This makes sense, as it then becomes increasingly difficult to track the $f_{c,t}$ component and its volatility. For MAR missing data patterns, we again find that the bands for the idiosyncratic factors are conservative with too high coverage ratios, while the bands for the common factor have coverage ratios that range between 90%– 99%. This is likely due to the fact that under the MAR assumption, common components can be tracked well over time, even with (potentially) multiple values in the cross-section missing incidentally. The MAE results in Panel C confirm the pattern of Panel A for the log-variance factors. Also the results for coverage rates (not shown) are very much in line with those for the level factor.

Table 2 presents the MAE performance of tail risk measures under increasing missing

value problems. This is particularly relevant for practice, where such risk measures still have to be reported to regulators, even though the data can be highly incomplete, similar to the current simulation set-up. Given we know the DGP as well as the model, we can analytically compute the Value-at-Risk (VaR) and Expected Shortfall (ES) for both the DGP and the model, and thus compute the MAE of these quantities. Note that the rows in the table now relate to the VaR and ES for each series rather than for the factors $f_{c,t}$ and $f_{i,t}$. Unlike Table 1, we see that the MAE keeps increasing for all risk measures as more series contain missing values. This holds for both the MAR and NMAR case, though the MAE in the MAR case is about 40% smaller than in the NMAR case. The reason for this is that more series with missings increase the estimation error of the common factor. As both the common and idiosyncratic location and scale factors play a role in the determination of VaR and ES, the MAE of these keeps increasing across columns. Understandably the biggest jump for each series $y_{i,t}$ is made if that series starts exhibiting missing values itself, so from column $y_{1:i-1,t}$ to $y_{1:i,t}$. However, based on the MAE levels across all risk measures, the imputations are still 1.9 to 1.2 times more precise when at least one value in y_t is observed, respectively, compared to pure mean-based forecasts (NMAR setting with all time-series missing).

4 Empirically forecasting missing values for sparse CDS curves

4.1 Data

In this section, we apply our missing value forecasting methodology for treating missing values in credit default swap (CDS) spread curves. CDS spreads play an important role in the financial industry and in supervision, as they reflect markets perceptions on the credit quality of large financial institutions, and therefore of the financial system itself. CDS spreads can be regarded as the insurance premium one would pay for protection against default of that institution. CDSs are traded on financial markets at different maturities. Typically, CDS spreads are not always observed for every institution and for every maturity at every time point. This poses severe challenges for both supervisors and the institutions under their mandate. We investigate whether our methodology succeeds in capturing the salient features of these data, inclusive of missing data.

Figure 5: CDS term-structures of financial institutions

Notes: each panel of this figure shows 8 historical CDS term-structures belonging to a specific region: Asia (top), Europe (middle), and North America (bottom). CDS maturities range from 6M to 10Y. Spreads are measured in basis points (bps = 0.01%). The subplot for JPMorgan Chase & Co also includes (black dotted) the time-series of the North American CDS index of investment grade with a 5Y tenor (CDX-NAIG-5Y).

We gather daily CDS spread data for different maturities for 24 financial institutions from MarkitTM. The institutions are equally distributed across the regions Asia (8), Europe (8), and North America (8). For each institution, we use six different CDS maturities, ranging from 6 months to 10 years. The sample spans a 10 year period from January 2, 2011 to December 31, 2020. This leads to a total of p = 144 time-series with n = 2609 days of observations. Figure 5 shows the observed CDS data.

The credit curves show a similar pattern over time across all financial institutions, especially during crises. For example, all series peak around the 2012 credit crunch and the more recent Covid-19 crisis. Note that the subplot of JPMorgan Chase & Co (JPM) also includes the North American CDX index for investment-grade companies with a 5Y tenor/maturity (CDX-NAIG-5Y). We use this series later on as a potential proxy for the common factor $f_{c.t.}$

Figure 5 also clearly shows that the data is far from complete. Many missing values occur, and the patterns of missings is generally not random, but rather in patches. Large gaps occur at the beginning and the middle of the sample. Table B.1 reports for each institution the percentage of missing observations per maturity. Missing value percentages range between zero (the empty cells) to high percentages in the eighties. Challenges for missing value forecasting are thus substantial in this application. We note that the lower

		Mis	ssing V	alues	(%)		Rating	(% of	time)
Institution	6M	1Y	3Y	5Y	7Y	10Y	AAA AA	А	BBB	BB
	Р	anel A	A: Asia	L						
Bk of India	0.04				0.08	0.08			95.40	4.60
CTBC Finl Hldg Co Ltd	42.55	36.38	31.430	31.43	31.43	31.43		48.10	51.90	
INDL COML BNK OF CHINA LTD	54.27	54.27	54.27	54.27	54.274	54.27	0.10	99.90		
Kookmin Bk	0.23						0.10	99.90		
MIZUHO Finl Gp INC	81.22	81.22	76.12	67.19	67.19	71.87	0.10	99.90		
Mitsubishi UFJ Morgan Stanley Secs Co Ltd	24.61	12.27	8.82	8.05	14.80	10.31	0.80	99.20		
Nomura Hldgs Inc								38.10	61.90	
Temasek Hldgs	0.65						100			
	Pa	nel B:	Europ	oe						
Allianz SE							0.10 99.90			
BNP Paribas							11.00	89.00		
Barclays PLC	58.07	49.83	48.52	45.34	45.38	45.38	6.40	44.85	48.75	
Deutsche Bk AG							1.40	72.80	25.80	
ING Groep NV	15.10	3.80	0.35	0.08	0.08	0.15		100		
Lloyds Bkg Group plc	60.64	55.42	44.85	37.79	38.87	40.82	22.30	77.70		
Skandinaviska Enskilda Banken AB	0.08	0.08			0.50	0.50	0.10 38.20	61.70		
Swiss Life Ltd	5.79	9.47	0.04	0.04	0.04	0.04	0.10	90.90	9.00	
P	anel (C: No	rth An	nerica						
Amern Express Cr Corp	16.10	3.68	0.61				0.10	99.90		
Boston Pptys Inc	1.04	0.12						15.30	84.70	
Cap One Finl Corp	0.04	0.04	0.04	0.04	0.04	0.15		0.10	99.90	
Goldman Sachs Gp Inc	0.08	0.04						99.90	0.10	
JPMorgan Chase & Co	0.04	0.04					8.10	91.90		
Navient Corp	39.10	39.06	38.90	38.90	39.79	39.76				100
Royal Bk Cda	38.37	21.35	18.67	17.63	22.23	22.42	0.10 99.40	0.50		
Wells Fargo & Co	0.077	0.038					8.70	91.30		

Table 3: Missing observations and rating decomposition per CDS name

Notes: this table reports the percentage of missing values for each CDS curves (over the 10 year period: January 2, 2011 - December 31, 2020) for each of the 24 financial institutions in our data set. The historical rating frequencies for each firm are also reported. Empty table cells indicate that the percentage of missing values is zero.

end of the curves (up to maturities of 3 years) have more missing observations than CDS series for higher tenors. The reason for this is that longer maturity CDSs are more liquid.

Table B.1 also provides an overview of the rating frequencies for each firm over the 10 year sample period. We see that most institutions have an A rating, followed by banks with a BBB and AA rating. Only one bank has an AAA, respectively a B rating in the sample, implying that missing value forecasting will be harder for these series if a rating related factor plays a role.

4.2 Single-name CDS curve imputation

In our first application, we evaluate the quality of our missing value forecasting methodology to CDS curves of one firm only. For this, we select the upper-end of the JPM CDS curve (3Y-10Y), because it has no missing values. We thus have a four-dimensional system, each maturity corresponding to a time series $y_{i,t}$, similar to Section 3. As in our earlier Monte Carlo experiment, we generate artificial missing data by putting specific (isolated or patches of) JPM observations to missing using either a MAR or NMAR scheme. The objective is to assess the performance of both the point and interval forecasts of the missing values.

We add five features to the current empirical analysis compared to the earlier simulation design from Section 3. First, next to the location-scale model set-up with one common-factor $f_{c,t}$ and four idiosyncratic factors $f_{i,t}$ as in Eq. 15, we also consider a linear Gaussian state-space model with the exact same design matrix for location factors. A multi-factor state-space framework, in combination with the Kalman filter, is often used as device for missing value imputation; see for instance Jungbacker et al. (2011), Stock and Watson (2016) and Durbin and Koopman (2012). The state-space model serves as a natural benchmark for our observation-driven approach. We refer to the classical linear Gaussian state-space with independently time-varying location (state) factors as the SS-1 model. Additionally, we consider a sore-driven model with just time-varying mean factors (GAS-1) to study the added value of including dynamic variances in the imputation model (GAS-1-s). Second, we also consider the aforementioned GAS location and location-scale model with a static equicorrelation covariance matrix. CDS tenors display strong comovements across the term-structure in levels, but historically also exhibit a strong correlation structure between their returns (between 85%-95%). The GAS models with an equicorrelation covariance matrix are denoted as GAS-1-eq and $GAS-1-s-eq^4$.

Third, we fit score-driven models with mean-reverting scores as in Proposition 1', as well as model without mean-reversion as outlined in Proposition 1' This enables us compare the density forecasting performance of these two filtering mechanisms across different missingness scenarios using real data. For the score-driven models with meanreverting scores, M_t is chosen in the same way as in the previous simulation study, i.e.,

⁴We still simulate from $S_t^c y_t | \mathcal{F}_{t-1}$ for missing value imputation rather than from $S_t^c y_t | \mathcal{F}_{t-1}, y_t^{\dagger}$, despite the equicorrelation structure. Experiments with the latter way of simulation for imputing missing values did not result in improvements compared to the current simpler approach, see Appendix D.1 for additional results.

the score of idiosyncratic factors $f_{i,t}$ is set to zero when affected by missing values.

Fourth, we also consider a setting where we add the North American CDX index for investment grade companies at a 5 year maturity to the four JPM time-series. The index is liquidly traded and would typically be a prime candidate in practice to anchor the common component of the CDS curves. We never set the index values to missing, such that there is always at least one observation in the cross-section in this setting. We consider this set-up for the GAS location-scale model and refer to this specification as the GAS-1-s-CDX model. As a result, it is always possible to estimate the time-varying common location and scale factors.

Fifth, we cross-validate the result across the order in which missing values are added to the four JPM series. This gives a total of 4! = 24 different orders for adding missing values to the four series. The patterns for generating MAR and NMAR missing data are the same as in in Section 3. For a particular scenario, the data that is (randomly) assigned to be missing is not used for estimating the model parameters. The MAE is then computed between the observed (but unused) value y_t (in basis point (bp) levels) and its point forecast $\hat{\mu}_t$. We only measure the MAE and the accuracy of the 95% forecast-error bands over the observations that were assigned to be missing. The bands for the statespace model are generated based on the sum of the state-covariance matrix as predicted by the Kalman filter and the diagonal measurement covariance matrix. The bands for the missing values in the sore-driven models are simulated while accounting for both parameter and innovation uncertainty based on S = 500 MC paths, similar to Section 3.

Tables 4 and 5 report the MAE and coverage results, respectively, as the average over 4! = 24 cross-validation combinations that introduce the missing values to the four series in different orders. The first column (labeled 0) is the benchmark scenario without any missing values. It shows a low MAE in the order of 1.5bp to 2.5bp. Dynamic multivariate Gaussian models thus fit the data well if there are no missing values, regardless of whether a parameter-driven or an observation-driven framework is used, and regardless of the precise design of the factor loading matrix F and the structure of the covariance matrix Σ_t . The MAE for the SS-1 model in the top rows of Table 4 gradually increases across the columns per missing value design. This is as expected: factors (and thus the data) are less accurately tracked as the number of missing values within a cross-section increases. The effect is particularly pronounced the NMAR design, where patches of missing values lead to an increase in MAEs of about 5bp to 10bp (2 to 5 times larger) as soon as one of the four time-series includes missing values. On the other hand, even when three out

Mecha		Missi	ng Patc	hes (NM	MAR)					Rando	(MAR)	R)						
Missir	1 g % :			60	1%			25	5%			50	1%			75	5%	
						7	# time	series	in syst	em wi	th miss	ing val	lues					
Model	Tenor	0	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
	3Y	1.641	8.067	7.981	9.559	19.341	1.726	1.786	1.714	1.709	1.951	1.847	1.833	1.864	2.259	2.042	2.059	2.344
SS-1	5Y	2.072	6.097	6.395	8.510	23.198	2.113	2.040	2.083	2.099	2.171	2.183	2.168	2.215	2.240	2.214	2.251	2.642
(Kalman filter)	7Y	2.323	4.668	5.370	7.012	22.973	2.336	2.326	2.305	2.337	2.249	2.359	2.352	2.439	2.363	2.404	2.444	2.870
	10Y	2.620	11.143	7.809	9.104	23.693	2.578	2.605	2.569	2.599	2.587	2.613	2.611	2.689	2.670	2.687	2.698	3.127
	3Y	1.652	6.280	6.919	13.520	19.164	1.705	1.685	1.742	1.773	1.758	1.794	1.848	2.000	1.907	1.933	2.181	2.634
GAS-1	5Y	2.052	9.111	9.118	16.076	22.619	2.102	2.075	2.140	2.208	2.152	2.209	2.286	2.449	2.256	2.328	2.613	3.032
$({\rm Proposition}\ 1)$	7Y	2.326	7.126	9.789	16.578	22.262	2.390	2.367	2.427	2.462	2.440	2.454	2.526	2.674	2.576	2.608	2.851	3.259
	10Y	2.546	17.437	22.067	24.896	22.679	2.774	2.681	2.695	2.760	2.906	2.889	2.884	3.019	3.174	3.126	3.268	3.674
	3Y	1.829	7.107	7.907	10.907	19.101	1.796	1.851	1.893	1.905	1.832	1.885	1.989	2.061	2.008	2.056	2.253	2.687
GAS-l-eq	5Y	2.220	4.955	7.638	14.117	22.459	2.256	2.281	2.359	2.338	2.214	2.297	2.427	2.500	2.328	2.395	2.613	3.080
$({\rm Proposition}\ 1)$	7Y	2.471	5.246	7.837	13.264	22.158	2.487	2.501	2.591	2.553	2.526	2.552	2.646	2.735	2.594	2.684	2.862	3.336
	10Y	2.693	10.596	10.754	15.601	22.640	2.766	2.702	2.868	2.876	2.850	2.891	3.028	3.207	2.929	2.981	3.326	3.944
	3Y	1.652	9.525	9.418	10.045	19.165	1.705	1.729	1.714	1.716	1.831	1.825	1.851	1.901	2.092	2.095	2.100	2.456
GAS-1	5Y	2.052	4.726	5.534	7.091	22.618	2.012	2.078	2.066	2.092	2.125	2.118	2.152	2.222	2.189	2.226	2.288	2.678
$({\rm Proposition}~1')$	7Y	2.326	4.350	5.361	6.307	22.262	2.483	2.371	2.305	2.331	2.368	2.337	2.399	2.453	2.395	2.400	2.462	2.879
	10Y	2.546	11.733	9.967	8.972	22.677	2.586	2.551	2.569	2.556	2.649	2.582	2.631	2.694	2.643	2.658	2.687	3.131
	3Y	1.829	10.471	10.334	10.688	19.101	1.870	1.832	1.832	1.825	1.968	1.955	1.938	1.963	2.129	2.122	2.106	2.471
GAS-1-eq	5Y	2.220	5.436	5.821	7.716	22.459	2.208	2.178	2.153	2.170	2.198	2.247	2.232	2.261	2.304	2.280	2.297	2.689
$({\rm Proposition}\ 1')$	7Y	2.471	4.615	5.498	7.628	22.158	2.409	2.451	2.382	2.389	2.465	2.425	2.415	2.472	2.466	2.463	2.475	2.876
	10Y	2.693	7.364	7.954	8.823	22.640	2.670	2.652	2.658	2.624	2.665	2.674	2.684	2.713	2.704	2.713	2.726	3.142
	3Y	1.648	8.438	8.530	8.796	19.038	1.667	1.762	1.719	1.753	1.824	1.831	1.829	1.890	2.064	2.065	2.089	2.426
GAS-1-s	5Y	2.048	5.795	5.847	7.653	22.712	2.143	2.130	2.066	2.124	2.110	2.134	2.124	2.215	2.190	2.206	2.259	2.667
$({\rm Proposition}~1')$	7Y	2.329	4.043	4.722	6.228	22.436	2.345	2.361	2.341	2.372	2.342	2.326	2.363	2.453	2.370	2.407	2.471	2.901
	10Y	2.544	9.072	9.371	8.230	22.782	2.524	2.646	2.529	2.602	2.568	2.610	2.562	2.678	2.593	2.627	2.700	3.137
	3Y	2.013	8.537	8.386	8.474	19.094	2.004	2.037	1.939	1.910	1.978	1.948	1.909	1.931	2.194	2.143	2.111	2.447
GAS-1-s-eq	5Y	2.524	4.493	4.551	6.022	22.648	2.555	2.551	2.401	2.345	2.511	2.436	2.263	2.271	2.568	2.374	2.304	2.683
$({\rm Proposition}~1')$	7Y	2.824	4.582	4.651	5.884	22.382	2.823	2.737	2.602	2.579	2.758	2.555	2.475	2.490	2.711	2.539	2.484	2.884
	10Y	3.063	8.159	7.738	7.977	22.689	3.027	3.090	2.918	2.815	2.959	2.831	2.701	2.729	2.918	2.786	2.727	3.120
	3Y	1.615	7.469	7.562	8.306	13.652	1.675	1.671	1.656	1.649	1.728	1.714	1.735	1.788	1.938	1.942	1.991	2.171
GAS-1-s-CDX	5Y	2.005	6.591	7.139	8.350	12.119	2.033	1.988	2.016	2.025	2.048	2.091	2.080	2.107	2.134	2.175	2.262	2.440
$({\rm Proposition}~1')$	7Y	2.310	5.046	5.606	6.948	10.882	2.308	2.313	2.293	2.314	2.335	2.334	2.357	2.410	2.406	2.463	2.517	2.714
	10Y	2.562	8.361	8.537	9.038	11.202	2.637	2.520	2.575	2.577	2.606	2.628	2.648	2.662	2.709	2.747	2.813	2.982

Table 4: In-sample point forecast accuracy (MAFE) for CDS JPM term structure

Notes: this table reports the empirical cross validation-based Monte Carlo imputation performance results for various forecasting models on JPM's CDS time-series (tenors run from 3Y till 10Y). The performance results are reported for different missing data patterns (i.e., combinations of missing data mechanisms and number of sparse time-series in the system), given three different specifications of the factor loading matrix. For each missigness scenario, the MAE in basis points (bps) between the observed (but unused) value y_t (in basis point (bp) levels) and its point forecast $\hat{\mu}_t$ is computed at sparse entries only. The SS-1 label refers to a linear Gaussian state-space SS model with just time-varying location 1 factors only. Similarly, score-driven models including dynamic location (and scale) factors GAS-1(-s). GAS models including a static equi-correlation include the term '-eq' in their label. The GAS-1-s-CDX model refers to a time-series system in which the 5Y CDX is also included as an additional instrument. The hierarchical design matrix is the same for all models, and always includes one common-factor $f_{c,t}$ and one idiosyncratic factor $f_{i,t}$ for each time-series $y_{i,t}$ in the system, as in Eq. (15). Below the label of each model, the filtering method is reported in parentheses. The idiosyncratic factor affected by missing values always mean-revert first in score-driven models based on Proposition 1'. The estimation period is January 2, 2011 - December 31, 2020 (n = 2609).

of four time-series have long gaps, the MAE increases by no more than 2bp across all CDS tenors, thus remaining within the same order of magnitude. This suggests that

Mecho		Missi	ng Patch	es (NM	(AR)	Randomly Missing (MAR)												
Missi	ng %:			60	%			25	5%			50	0%			75	%	
							#	time-se	ries in s	system v	with mis	sing va	lues					
Model	Tenor	0	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
	3Y	96.646	87.045	92.500	95.669	51.284	96.958	96.357	96.685	96.562	97.035	96.830	96.860	96.530	96.762	96.707	96.827	96.568
SS-1	5Y	95.056	86.968	86.853	91.964	48.256	95.450	95.360	95.373	94.868	95.795	94.817	95.190	95.041	95.688	94.564	95.140	95.288
(Kalman filter)	7Y	93.965	94.097	91.632	92.871	48.754	93.686	93.852	94.300	94.025	94.185	93.520	94.018	94.175	93.788	93.465	94.135	94.572
	10Y	93.219	85.588	92.922	94.187	48.831	93.354	93.188	93.678	93.488	93.916	93.494	93.852	93.881	93.797	93.533	94.055	94.297
	3Y	90.319	86.428	88.545	86.170	88.431	90.056	90.158	90.346	90.293	91.347	91.743	92.583	93.552	93.158	94.048	95.998	97.586
GAS-1	5Y	88.939	89.864	81.685	81.642	78.603	87.091	88.229	88.062	88.190	89.430	90.031	91.181	92.453	92.357	93.563	95.353	97.205
$\left({\rm Proposition} \ 1 \right)$	7Y	92.710	84.205	87.726	87.683	80.470	86.273	86.184	86.120	86.535	88.868	89.142	90.163	91.686	92.152	93.141	94.961	97.069
	10Y	93.765	98.373	94.336	92.647	95.934	85.685	86.299	86.171	86.420	88.369	89.155	90.576	91.779	93.183	94.138	95.802	97.239
	3Y	93.177	90.874	91.922	96.682	84.182	93.865	93.188	93.098	93.021	93.162	93.079	93.051	93.808	92.297	91.607	93.453	97.806
GAS-1	5Y	90.961	93.289	96.166	99.018	82.496	90.619	90.887	90.516	90.523	91.181	90.574	90.836	91.881	91.360	90.529	92.303	97.459
$({\rm Proposition}\ 1)$	7Y	89.262	93.225	96.118	97.564	83.538	89.392	89.622	89.000	89.015	89.788	89.577	89.660	90.769	89.784	89.664	91.934	97.273
	10Y	87.605	92.034	92.512	96.026	88.343	87.807	88.650	88.429	88.491	88.676	88.810	89.519	90.893	87.849	88.953	91.979	97.220
	3Y	90.341	84.354	84.237	86.790	88.351	90.516	90.222	90.423	90.523	91.973	91.309	91.172	91.651	93.899	93.473	93.286	94.621
GAS-1	5Y	89.111	68.209	68.422	61.983	78.470	89.852	87.871	87.764	87.781	90.146	90.184	89.617	90.270	93.448	92.003	91.965	93.328
$({\rm Proposition}\ 1')$	7Y	93.122	74.048	74.319	70.758	80.674	85.097	85.442	86.273	85.941	88.216	88.433	88.037	88.545	92.655	92.293	92.044	93.298
	10Y	94.385	95.948	97.208	88.779	95.950	84.714	84.535	85.003	85.155	87.027	87.685	87.781	88.270	91.658	92.123	92.797	94.035
	3Y	95.477	97.213	97.516	96.114	84.703	93.226	93.903	93.857	93.744	93.954	93.986	93.827	94.015	95.169	94.866	94.569	95.433
GAS-1-eq	5Y	94.059	98.086	98.107	96.937	82.982	91.334	91.846	91.752	91.705	92.472	92.069	92.178	92.769	93.090	93.452	93.848	94.954
$({\rm Proposition}~1')$	7Y	93.369	98.415	98.362	98.018	83.703	89.775	90.031	90.363	90.472	90.849	90.976	91.074	91.715	92.323	92.698	93.200	94.949
	10Y	93.292	98.000	98.224	97.951	88.582	88.548	88.625	88.931	89.360	89.213	89.986	89.924	91.037	92.169	92.757	93.274	94.817
	3Y	95.669	98.022	93.874	87.971	85.601	97.418	97.009	97.367	95.565	98.543	98.000	97.371	99.038	99.455	96.690	99.690	97.171
GAS-1-s	5Y	94.864	97.618	79.270	81.997	78.257	96.677	96.472	96.924	95.412	97.482	97.674	97.912	98.438	97.733	98.999	99.412	96.822
$({\rm Proposition}\ 1')$	7Y	94.941	95.714	83.285	72.850	81.820	94.530	95.437	95.348	94.204	95.987	96.696	95.590	98.153	98.364	96.242	99.321	96.485
	10Y	94.787	97.224	94.740	96.696	95.448	96.754	96.421	97.069	95.942	97.572	97.795	96.685	98.524	99.156	99.676	99.719	96.947
	3Y	93.714	99.936	99.936	99.883	78.965	99.284	99.604	99.855	99.930	99.923	99.987	99.983	99.987	99.974	99.983	99.980	93.024
GAS-1-s-eq	5Y	91.989	100.000	100.000	99.986	78.451	99.080	99.642	99.864	99.917	99.859	99.981	99.987	99.990	99.983	99.983	99.994	93.096
$({\rm Proposition}\ 1')$	7Y	91.376	99.745	99.750	99.649	81.653	98.313	99.463	99.770	99.898	99.796	99.962	99.983	99.997	100.000	100.000	99.997	93.043
	10Y	91.606	99.468	99.553	99.170	88.444	98.569	99.565	99.864	99.904	99.898	99.987	99.983	99.997	100.000	100.000	100.000	93.134
	3Y	95.631	81.164	79.488	78.877	75.731	97.137	97.022	97.231	97.342	98.837	99.054	99.037	98.882	99.625	99.868	94.209	95.199
GAS-1-s-CDX	5Y	95.056	95.607	95.044	88.616	82.746	97.009	96.856	96.788	97.220	98.185	98.760	98.730	98.690	99.327	99.813	94.200	95.005
$({\rm Proposition}\ 1')$	7Y	94.327	95.193	90.491	77.714	67.233	96.472	96.766	96.779	96.766	97.610	98.025	98.100	98.441	99.753	99.663	93.842	94.964
	10Y	94.902	97.883	94.682	91.392	76.143	94.734	95.450	95.569	96.102	95.642	97.003	97.661	98.268	97.751	98.786	99.338	94.545

Table 5: In-sample coverage of forecast bands for CDS JPM term structure

Notes: this table reports the empirical cross validation-based Monte Carlo performance of the forecast error bands for various forecasting models on JPM's CDS time-series (tenors run from 3Y till 10Y). The coverage ratios (%) of the imputed values are reported for the 95% confidence level. The bands for the state-space model are generated based on the sum of the predicted state-covariance by the Kalman filter and diagonal measurement variance matrices. The bands for the sore-driven models are simulated whilst accounting for both parameter and innovation uncertainty based on S = 500 MC paths, as done in Section 3. See caption of Table 4 for more details.

the common can still be accurately captured as long as one series remains observed, regardless of which tenor. Contrarily, when all series are missing at the same moment for long periods, the MAE is about 10 times larger than in the benchmark scenario. For the MAR scenarios, the MAE roughly doubles if 75% of the data are missing. In fact, the MAR MAEs remain highly robust and only increase slowly, if at all. This demonstrates clearly demonstrates the effectiveness of hierarchical dynamic models, which exploit both serial and cross-section information for imputing time-series data with MAR values.

The key findings for the state-space model also hold for the GAS models, which support the results in Koopman et al. (2016) and indicate that parameter-driven and observation-driven models can have similar point forecast accuracies. This is particularly evident for the MAR scenarios, where the MAEs within the same order of magnitude across all models, including both types of score-driven filtering methods. The latter outcome is reasonable since the idiosyncratic factors rarely fully mean-revert, even when 75% of the data is MAR. However, this pattern does not appear to hold for score-driven models without mean-reverting idiosyncratic factors in the presence of long patches of missing data (NMAR). When comparing the NMAR forecasting performance of the GAS-1 under the two different filtering mechanisms, we find that, for most of the tenors, the method based on Proposition 1' yields up 2-3 times more accurate imputations across the number of missing values. In addition, score-driven models with forced mean-reversion perform similarly to state-space model in terms of in-sample point forecasts, regardless of the choice of the covariance matrix Σ_t (e.g., with or without dynamic (co)variances) and missing value design.

Moreover, the last rows of Table 4 reports the MAE based on an imputation set-up that incorporates additional information to help anchor the missing series. For instance, when all four series contain the same missing value patterns, the MAE is roughly half of that observed in other NMAR scenarios without the CDX index. The index thus helps to anchor the common component, but it does so quite imperfectly. As soon as one of the JPM series shows no patches of missings, the performance of the effect coded F with or without the CDX index is about the same. The specific JPM components vis-á-vis the index thus play a non-negligible role.

Finally, the effect on the coverage accuracy of the forecast error-bands differs per imputation model and structure of the missing values (MAR versus NMAR), as shown in Table 5. The SS-1 model's coverage ratios are fairly close to the 95% confidence level when at least 1 observation in the cross-section is present for NMAR scenarios. When all series exhibit NMAR behavior, the bands of the SS-1 model are too tight based on Proposition 1'. On the other hand, when all four series show the same patches of missing, the score-driven density forecasts are much closer to the 95% confidence level, regardless of the choice of the filtering method. This clearly highlights the effectiveness of density forecasts of the proposed simulation algorithm in scenarios with an extreme number of missing values. The density forecasts seem to further improve if (equi)correlations are added to Σ_t , even though the point forecast accuracy remains similar between the mean-reverting GAS-1 and GAS-1-eq models. The simulation bands are generally closer to 95% across all (N)MAR scenarios when both correlations and dynamic volatilities are modeled. At the same, these models have more static to be estimated, which introduces additional parameter uncertainty. This could explain why which might explain why, e.g., the GAS-1-s-equi model produces too conservative density forecasts across all missingness scenarios. On the contrary, the bands of the Kalman filter perform consistently across all MAR scenarios. Note that prediction intervals for MAR scenarios based on just the fitted score-driven means and variances perform at par with the state-space model, but is not shown here. All in all, the point forecasts and simulation bands of the score-driven location-scale models based on Proposition 1' perform well enough to be used in practice for large scale imputation, as we do in the following subsection.

4.3 Global curve modeling and missing value imputation

The previous results for one firm suggest that additional sources of information can significantly boost the imputation accuracy our dynamic factor model, especially when y_t has patches of missing values. In our second application, we therefore extend the previous model to a setting with different firms in different geographical regions. The aim is to show how the model can be applied for imputing large gaps in high-dimensional panels by utilizing cross-sectional and time-series information in a structured way. In particular, we are interested in what hierarchical structure is most suited to construct synthetic CDS series, i.e., a CDS series for a firm-maturity combination for which no data is actively traded. For this analysis, we consider a number of factor specifications of increasing complexity for our full sample of p = 144 CDS time-series. Each density model is estimated on the logarithm of the CDS data to ensure positivity of credit curves when generating the synthetic data later on.

Table 6 summarizes the different specifications we consider. Note that the global panel of CDS curves contains substantial missing data patches; see Figure 5 and Table B.1. To impute these missing values, some common factor structure is needed. In the simplest set-up, we only impose once common factor (Common) for all 144 time-series. We then subsequently augment this specification by adding factors for the different tenors (or maturities), regions, rating classes, underlying firms, and finally tenor-rating combinations. This yields a total of 6 models of increasing complexity. The increase in performance of a one-factor model with an MAE of about 46 basis points, to a model with all factors and and MAE of about 11 basis points, is substantial. Adding further factors did not substantially increase the predictive performance of the models.

	Panel A	A: Dynamic Factors	eters	Panel 1	B: In-Sam	ple Perf	ormance	
Hierarchical	Effect Coded	# Free Factors	# Total Factors	# Param.	Log Lik.	Predictive	Update	Smoother
Density Model	Factors		$(2 \times k;$			(MAE)	(MAE)	(MAE)
Specification			location + scale)					
Common		$2 \times 1 = 2$	2	5	-397,552	46.382	46.358	46.358
Common, Tenor	10Y	2(1+5) = 12	14	22	-258,612	32.942	32.904	32.905
Common, Tenor	10Y, EU	2(1+5+2) = 16	20	30	-235,669	32.029	31.971	31.972
Region								
Common, Tenor	10Y, EU, A	2(1+5+2+2) = 20	26	38	-162,145	28.619	28.541	28.542
Region, Rating								
Common, Tenor	10Y, EU, A,	2(1+5+2+2)	74	103	178,982	11.890	11.562	11.621
Region, Rating	Kookmin,	+21) = 62						
Rating, Firm	JPMorgen,							
	Scandinavian							
Common, Tenor	10Y, EU, A,	2(1+5+2+2)	92	127	195,579	11.195	10.854	10.925
Region, Rating	Kookmin,	+21+9) = 74						
Rating, Firm	JPMorgen,							
Tenor-Rating	Scandinavian,							
	6M-A, 1Y-A,							
	3Y-A							

Table 6: Estimation results for dynamic high-dimensional hierarchical density models

Notes: the table provides an overview of the estimation results of the fitted hierarchical dynamic density models on the high-dimensional panel of p = 144 CDS time-series displayed in Figure 5. Each model is fitted on the logarithm of the CDS data. The first column of the table reports the specification of the factor loading matrices. The first column in Panel A lists the effect-coded factors of the included categorical variables in the corresponding F_t ($p \times k$). Remaining columns in this Panel report, the sum of total free time-varying factors location and log-variance factors, followed by the number of total factors. The numbers in this column are the sum of the number of free factors plus two times the number of effect coded factors in the first column of Panel A. The number of parameters indicates the size of the unknown parameter set ψ . Panel B reports the in-sample performance statics, i.e., the Log Likelihood of the estimated model and the MAE of the fitted values in bps. The MAE accuracy is taken as the average of in-sample prediction errors across all observed values in the CDS panel data. The MAE is reported based on the conditional estimates of three different GAS filters, i.e., for $f_{t|t-1}$ (predictive filter), $f_{t|t}$ (update filter) and $f_{t|n}$ (smoother) of Buccheri et al. (2021). The estimation period is January 2, 2011 - December 31, 2020.

To limit the number of free static parameters that need to be estimated, we proceed as follows. First, we use the approach of Subsection 2.5 to target κ^{μ} . Second, we assign single scalar pooled persistence parameters in B^{μ} and $B^{\log \sigma^2}$, respectively, to each group of explanatory variables within the hierarchy (e.g., common, tenor, region, firm, etc.). Each of the factors can thus move along their own dynamic path, but they do so with the same persistence as other factors within to the same group. Given the high persistence of all factors, this approach does not come at a substantial loss in fit. The parameters A^{μ} and $A^{\log \sigma^2}$ are still different for every factor. After a preliminary analysis, we also reduce the dimension of F_t by restricting the tenor-rating interactions to the interactions between all rating categories and the lowest three tenors in order to better fit the short end of the CDS term-structure. Finally, we pool the rating categories AAA and AA into a single rating class AAA/AA. The categories BBB and BB are also pooled into a single rating class (BBB/BB). This reduces the granularity of the rating categories, but in turn ensures that the rating factors can always be identified. The is achieved by once again allowing M_t to enforce mean reversion of the idiosyncratic factors, i.e., the firm-specific effects. This enabled us to extract all the common spatial effects from each cross-section across the entire panel of global credit curves.

As reported in Table 6, the last two models have a 3 level hierarchy: a common factor (level 1), followed by tenor, region, rating, and possibly tenor-rating factors (level 2), and firm-specific factors (level 3). These two models have a total of 74 (62 free, 12 effect coded) and 92 (74 free, 18 effect coded) factors, respectively. Their corresponding number of parameters is 103 and 127, respectively. Estimating all these parameter is no problem given the size of the sample.

Figure 6 shows an example of eight fitted location and log-variance factors, and their MC forecast error bands, given the largest hierarchical density model. Both the filtered estimate (blue) and the MC median (pink) are shown. The figure also includes the estimates based on a (21-day rolling window) OLS model (black dots). Full results for all factors can be found in Figures D.1 and D.2 in Appendix D. Comparing the filtered estimates with those obtained by OLS regressions, we find a similar historical pattern for the factors. Interestingly, the forecast bands show highly dynamic patterns for the factors that need to be imputed due to missing observations. For example, the factors for Lloyds Bank and Barclays have long patches of missing values (see Figure 5). During these periods, the point forecasts (filtered) of the firm-specific factors converge to their unconditional mean. Once information again arrives that allows for the estimation of these firm-specific factors, the factor itself as well as its forecast error band change substantially to align with the fresh data.

The pointwise median of the simulations that make up the forecast error bands is generally different from the filtered estimate at cross-sections with many missing values. This difference potentially arises from a change in the daily hierarchical structure used in the simulations versus the one used in the MLE procedure based on the available data only. The simulation is run with a complete design matrix F_t , whereas the model is estimated based on the subset S_tF_t . Compared to S_tF_t , the complete matrix F_t also includes ratings dummies at missing entries. The ratings were first forwards and then

Figure 6: Example of estimated and simulated factors by largest hierarchical density model

Notes: left hand-side of this plot shows 4 filtered and simulated location factors by the hierarchical density model with a total of 92 factors (see Table 6). Similarly, the right hand-side depicts an example of 4 log-variance factors. The shaded are highlights the 90% forecast errors bands (including innovation and parameter uncertainty) based on S = 500 MC paths. The fitted filtered factors are plotted in blue and their respective MC median is shown in pink. Each subplot also includes a proxy based on a daily application of the OLS model. The log-variance proxies are obtained by applying a 21-day rolling window simple OLS model on the log of squared residuals, obtained from the daily application of the OLS model for location factors.

backwards filled at the missing entries to obtain a complete design matrix at each time point. As a result, a slightly different hierarchical structure is used for simulation than for estimation, thus yielding a somewhat different weighting scheme for the factors.

Next, we assess the accuracy and quality of synthetic curves generated using the outputs of different models for the panel of global credit curves. We use the conditional filtered factors and residuals of the models to construct synthetic credit curve scenarios. The residuals are used to generate scenarios as empirically realistic as possible. A possible scenario of the *i*th synthetic spread at time point *t*, say $\hat{y}_{i,t}$, can be obtained as follows: $\hat{y}_{i,t} = \exp(\hat{\mu}_{i,t} + \hat{\sigma}_{i,t}\varepsilon_{j,t})$, where $\hat{\mu}_{i,t}$ and $\hat{\sigma}_{i,t}^2$ are the first two filtered moments of $\log \hat{y}_{i,t}$, respectively, and $\varepsilon_{j,t}$ is the *j*th residual at cross-section *t*. The density of the synthetic

Figure 7: Examples of synthetic credit curves

Notes: This figure displays the synthetic CDS term structures for four different companies. Panel A plots the curves that are computed without the use of idiosyncratic, i.e., with common factors only. The conditional filtered location and scale factors are obtained from the largest hierarchical density model specified in Table 6. The solid colored lines correspond to the median of the approximate spread density and the shaded areas represent the 95% empirical confidence intervals, for which the model's residuals were used. The true observed curves for the corresponding firms are plotted in black dots. Panel B displays the synthetic curves for the same firms in Panel A but is computed with the use of idiosyncratic factors.

credit spread is then given by

$$H_t(\widehat{y}_{i,t}) = \Pr\left(\widehat{y}_{i,t} \le x\right) = p_t^{-1} \sum_{j=1}^{p_t} \mathbb{1}\left(\exp(\widehat{\mu}_{i,t} + \widehat{\sigma}_{i,t}\widehat{\varepsilon}_{j,t}) \le x\right),\tag{16}$$

where $H_t(\hat{y}_{i,t})$ is the model-based cumulative density function for the scenarios of $y_{i,t}$ using all the available residuals at time t, for $i = 1, \ldots, p_t$, and $t = 1, \ldots, n = 2609$.

We construct synthetic curves based on Eq. (16) using the outputs of the largest model, i.e., the model including tenor-rating interactions and firm-specific effects, and the model including just the global, tenor, regional and rating-based spatial effects. Thereby, we obtain synthetic curves with and without idiosyncratic components. An example of such curves is provided in Figure 7. This figure depicts the generated synthetic CDS curves for four firms with (right panel) and without (left panel) the firm-specific effects.

	Tenor												
Region	6M	1Y	3Y	5Y	7Y	10Y							
Panel A: C	overage	e withou	ıt firm-s	specific	effects	(%)							
Asia	89.723	89.440	88.818	92.545	96.474	97.710							
North America	97.882	97.403	97.456	97.312	97.456	97.307							
Europe	95.937	93.015	91.764	85.823	82.738	82.474							
Panel B: Co	overage	with wi	ith firm	-specific	c effects	(%)							
Asia	95.415	95.353	92.971	94.136	95.108	92.722							
North America	93.714	93.748	92.914	91.395	95.578	95.348							
Europe	95.027	95.132	91.889	93.628	97.135	95.295							

Table 7: Coverage rates of synthetic curve bands at 95% confidence level

Notes: the table reports the in-sample pointwise coverage rates of the empirical 95% confidence bands for the true CDS panel data present with p = 144 time-series. The first panel reports the coverage rates of the empirical bands for which no idiosyncratic information was used. The coverage accuracy is further divided per region-tenor combination. Similarly, Panel B reports coverage accuracy of empirical bands for which idiosyncratic was used.

The synthetic curves are displayed for the firms: American Express Credit Corporation (AXP), Barclays PLC (BARC), Lloyds Banking Group Plc (LYG) and Nomura Holdings Inc (NMR). For expositional purposes, we only plot the median (solid) and the 95% confidence band for the 6M, 5Y and 10Y tenors. The actual observations for these tenors are also displayed (dotted).

Based on the comparison in Figure 7, we find that by incorporating firm-specific effects, the synthetic curves more closely replicate the actual historical time-series patterns and level of the CDS spreads, while also exhibiting lower uncertainty. This is evidenced by tighter pointwise confidence intervals, compared to models that exclude such components. When modeling the CDS panel data using only common components, the idiosyncratic variations are absorbed by the residuals, potentially increasing the overall cross-sectional variance. As a result, the syntehtic CDS curve scenarios exhibit greater uncertainty, reflected in wider confidence bands.

Although residuals may capture the unmodeled firm-specific effects, a model that omits idiosyncratic components may still fail to accurately represent the distribution of the actual market data. This limitation is evident in Table 7, which reports the empirical coverage rates based on $H_t(\hat{y}_{i,t})$ with and without firm-specific effects. The results show that models without idiosyncratic components perform moderately well across different regions and maturities, but exhibit lower coverage percentages, particularly at the short end of the Asian CDS curve and the long end of the European curves. In contrast, the model incorporating idiosyncratic dynamics yields much more accurate coverage rates, aligning closely with nominal levels. As a result, it is also much more likely that the simulated imputed densities provide a better description of the unobserved values $y_{i,t}$. We conclude that our largest time-varying hierarchical density model can be a useful tool for imputing missing values and their uncertainty in high-dimensional panel data of CDS time-series.

5 Conclusion

We have introduced a hierarchical dynamic factor location-scale model for forecasting missing values and their associated imputation uncertainty for large multivariate timeseries systems. The model exploits both the cross-sectional and time-series properties of the data, while allowing for very general patterns of missing data. Estimation of the model's static parameters can be performed using standard maximum likelihood methods given the observation-driven structure of the model. At the same time, the observationdriven structure poses challenges to design a proper update for all the factors in the hierarchical model in case part of the data are missing. We designed a set-up where the user can specify which factor updates to prioritize in these cases. The key aspect of the approach is mapping the available observations onto a proper orthogonal basis. The basis then follows mechanically as long as the user is willing to specify which score-driven factors should mean-revert first if specific data components are missing. The new method is also applicable to non-continuous and non-Gaussian multifactor score-driven models and can thus be applied to a wide range datasets with missing values.

We also introduced an in-sample forecast simulation-based algorithm to quantify the imputation uncertainty. Monte Carlo evidence based on the true data generating process of the hierarchical density model revealed that both the new filtering method and the simulation algorithm worked well in a controlled simulation environment. Both isolated, independent missing values as well as long stretches of missings could be dealt with by the new method. An empirical simulation study using real data, namely using single-name credit default swap (CDS) term-structures, yielded similar findings. In particular, the in-sample point forecast accuracy of the new method outperformed score-driven without mean-reverting factors, especially for long patches of missing data. It also compared favorably to a well-known state-space benchmark. When applied to empirical data on panels of multiple sparse CDS term-structures, the GAS model demonstrated strong scalability to high dimension. Our empirical results further highlight the significant importance of incorporating firm-specific location-scale factors for imputation. Hierarchical models that include these factors produced more accurate risk quantiles for the panel compared to models that omitted idiosyncratic components.

References

- Abadir, K. (2005). Matrix algebra. Cambridge New York: Cambridge University Press.
- Aruoba, S. B., F. X. Diebold, and C. Scotti (2009). Real-time measurement of business conditions. Journal of Business & Economic Statistics 27(4), 417–427.
- Bai, J. and S. Ng (2021). Matrix completion, counterfactuals, and factor analysis of missing data. Journal of the American Statistical Association, 1–18.
- BCBS (2010). Basel III: A global regulatory framework for more resilient banks and banking systems. *Basel Committee on Banking Supervision*.
- Beutner, E. A., Y. Lin, and A. Lucas (2023). Consistency, distributional convergence, and optimality of score-driven filters. Technical report, Tinbergen Institute Discussion Paper, 23-051/III.
- Blasques, F., C. Francq, and S. Laurent (2020). A new class of robust observation-driven models. WorkingPaper 20-073/III, Tinbergen Instituut.
- Blasques, F., P. Gorgi, and S. Koopman (2021). Missing observations in observationdriven time series models. *Journal of Econometrics* 221(2), 542–568.
- Blasques, F., S. J. Koopman, K. Łasak, and A. Lucas (2016). In-sample confidence bands and out-of-sample forecast bands for time-varying parameters in observation-driven models. *International Journal of Forecasting* 32(3), 875–887.
- Blasques, F., S. J. Koopman, and A. Lucas (2015). Information-theoretic optimality of observation-driven time series models for continuous responses. *Biometrika* 102(2), 325–343.
- Buccheri, G., G. Bormetti, F. Corsi, and F. Lillo (2020). A score-driven conditional correlation model for noisy and asynchronous data: An application to high-frequency covariance dynamics. *Journal of Business & Economic Statistics*, 1–17.
- Buccheri, G., G. Bormetti, F. Corsi, and F. Lillo (2021). Filtering and smoothing with score-driven models.
- Cahan, E., J. Bai, and S. Ng (2023). Factor-based imputation of missing values and covariances in panel data of large dimensions. *Journal of Econometrics* 233(1), 113–131.

- Chan, J. C., A. Poon, and D. Zhu (2023). High-dimensional conditionally gaussian state space models with missing data. *Journal of Econometrics* 236(1), 105468.
- Creal, D., S. J. Koopman, and A. Lucas (2011). A dynamic multivariate heavy-tailed model for time-varying volatilities and correlations. *Journal of Business & Economic Statistics* 29(4), 552–563.
- Creal, D., S. J. Koopman, and A. Lucas (2013). Generalized autoregressive score models with applications. *Journal of Applied Econometrics* 28(5), 777–795.
- Creal, D., B. Schwaab, S. J. Koopman, and A. Lucas (2014). Observation-driven mixedmeasurement dynamic factor models with an application to credit risk. *Review of Economics and Statistics 96*(5), 898–915.
- Delle Monache, D., I. Petrella, and F. Venditti (2016). Adaptive state space models with applications to the business cycle and financial stress. (11599).
- Durbin, J. and S. J. Koopman (2012). Time Series Analysis by State Space Methods. Oxford University Press.
- EBA (2015). EBA Report on CVA under Article 456 (2) of Regulation (EU) No 575/2013.European Banking Authority.
- Foroni, C. and M. Marcellino (2014). A comparison of mixed frequency approaches for nowcasting euro area macroeconomic aggregates. *International Journal of Forecast*ing 30(3), 554–568.
- Freyberger, J., B. Hoeppner, A. Neuhierl, and M. Weber (2024, January). Missing data in asset pricing panels. *The Review of Financial Studies* 38(3), 760–802.
- Green, A. (2015). XVA: Credit, Funding and Capital Valuation Adjustments. Wiley.
- Gregory, J. (2020). The xVA Challenge: Counterparty Risk, Funding, Collateral, Capital and Initial Margin. Wiley.
- Harvey, A. C. (1990). Forecasting, structural time series models and the Kalman filter. Cambridge university press.
- Harvey, A. C. (2013). Dynamic Models for Volatility and Heavy Tails: With Applications to Financial and Economic Time Series. Cambridge University Press.

- Harvey, A. C. and R. G. Pierse (1984). Estimating missing observations in economic time series. Journal of the American Statistical Association 79(385), 125–131.
- Jin, S., K. Miao, and L. Su (2021). On factor models with random missing: Em estimation, inference, and cross validation. *Journal of Econometrics* 222(1), 745–777.
- Jungbacker, B., S. J. Koopman, and M. van der Wel (2011). Maximum likelihood estimation for dynamic factor models with missing data. *Journal of Economic Dynamics* and Control 35(8), 1358–1368.
- Koopman, S. J., R. Lit, A. Lucas, and A. Opschoor (2018). Dynamic discrete copula models for high-frequency stock price changes. *Journal of Applied Econometrics* 33(7), 966–985.
- Koopman, S. J., A. Lucas, and M. Scharth (2016). Predicting time-varying parameters with parameter-driven and observation-driven models. *Review of Economics and Statistics* 98(1), 97–110.
- Lucas, A., A. Opschoor, and J. Schaumburg (2016). Accounting for missing values in score-driven time-varying parameter models. *Economics Letters* 148, 96–98.
- Morini, M. and A. Prampolini (2011). Risky funding: A unified framework for counterparty and liquidity charges. *Risk Magazine*.
- Pallavicini, A., D. Perini, and D. Brigo (2011). Funding valuation adjustment: a consistent framework including CVA, DVA, collateral, netting rules and re-hypothecation.
- Schumacher, C. and J. Breitung (2008). Real-time forecasting of german gdp based on a large factor model with monthly and quarterly data. *International Journal of Forecasting 24*(3), 386–398.
- Stock, J. and M. Watson (2016). Dynamic Factor Models, Factor-Augmented Vector Autoregressions, and Structural Vector Autoregressions in Macroeconomics. In J. B. Taylor and H. Uhlig (Eds.), *Handbook of Macroeconomics*, Handbook of Macroeconomics, pp. 415–525. Elsevier.
- van der Merwe, C., D. Heyman, and T. de Wet (2018). Approximating risk-free curves in sparse data environments. *Finance Research Letters* 26, 112–118.

Xiong, R. and M. Pelger (2023). Large dimensional latent factor modeling with missing observations and applications to causal inference. *Journal of Econometrics* 233(1), 271–301.

Appendix

A Derivation of Scaled-Scores

Assume $S_t^o := I$ at time t, then the log of the conditional density in Eq. (1) is

$$\log p(y_t \mid f_t, \mathcal{F}_{t-1}; \psi) = -\frac{1}{2} \left[p \log 2\pi + \log |\Sigma_t| + (y_t - \mu_t)' \Sigma_t (y_t - \mu_t) \right], \quad (A.1)$$

with *p*-dimensional mean and variance vectors $\mu_t = F_t f_t^{\mu}$ and $\sigma_t^2 = \exp\left(F_t f_t^{\log \sigma^2}\right)$, respectively, and $p \times p$ diagonal variance matrix $\Sigma_t = \operatorname{diag}(\sigma_t^2)$, for $t = 1, \ldots, n$.

Proof of Proposition 1: The score and information matrix of the location factors are straightforward to derive:

$$\nabla_t^{\mu} = \frac{\log p\left(y_t \mid f_t, \mathcal{F}_{t-1}; \psi\right)}{\partial f_t^{\mu}} = F_t' \Sigma_t^{-1} \left(y_t - \mu_t\right)$$

$$\mathcal{I}_t^{\mu} = -\mathbb{E}_{t-1} \left[\frac{\partial^2 \log p\left(y_t \mid f_t, \mathcal{F}_{t-1}; \psi\right)}{\partial f_t^{\mu} \partial f_t^{\mu'}} \right] = F_t' \Sigma_t^{-1} F_t$$
(A.2)

From basic matrix calculus results it follows that for any triangular matrix $\Sigma_t = J_t J'_t$, its log determinant can be written as

$$\log |\Sigma_t| = \log |J_t J_t'| = \log |J_t|^2 = 2 \log \prod_{i=1}^p J_{ii,t} = 2 \sum_{i=1}^p \log J_{ii,t},$$

see for instance Abadir (2005) for this and other useful results. Since Σ_t is diagonal, we can simply define $J_t := \Sigma_t^{\frac{1}{2}} = \text{diag}(\sigma_t)$. Hence, we have

$$\log |\Sigma_t| = 2\sum_{i=1}^p \log \sigma_{i,t} = 2\sum_{i=1}^p \log \exp\left(\frac{1}{2}F_t f_t^{\log \sigma^2}\right)_i = \sum_{i=1}^p \left(F_t f_t^{\log \sigma^2}\right)_i = \operatorname{tr}(\operatorname{diag}(\log \sigma_t)),$$

where $tr(\cdot)$ denotes the trace operator. By using this matrix result, the score and information matrix of the log-variance factors take the following expressions:

$$\nabla_t^{\log \sigma^2} = \frac{1}{2} F_t' \left[\Sigma_t \left(y_t - \mu_t \right) \circ \left(y_t - \mu_t \right) - \iota_p \right],$$

$$= \frac{1}{2} F_t' \left(\varepsilon_t^2 - \iota_p \right),$$

$$\mathcal{I}_t^{\log \sigma^2} = \frac{1}{2} F_t' F_t,$$

(A.3)

where \circ denotes the Hadamard's element wise matrix multiplication operator. Note that we have made use of the fact that squared mean prediction errors divided by their variance are equal to standardized normal innovations, i.e.,

$$\Sigma_t (y_t - \mu_t) \circ (y_t - \mu_t) = \Sigma_t (y_t - \mu_t)^2 = \varepsilon_t^2$$

The expressions in Proposition 1 are based on the marginal density $\log p\left(y_t^{\dagger} \mid f_t, \mathcal{F}_{t-1}; \psi\right)$,

B CDS Data

Institution	Ticker	RED Code	Currency									
Panel A: Asia												
Bk of India	BNKIND	YY6FDD	USD									
CTBC Finl Hldg Co Ltd	CTBCFIN	YZ9A6N	USD									
INDL COML BNK OF CHINA LTD	ICBCHN	Y1CI9B	USD									
Kookmin Bk	CITNAT	5F04DH	USD									
MIZUHO Finl Gp INC	MIZUHO-GR	JN9EIU	JPY									
Mitsubishi UFJ Morgan Stanley Secs Co Ltd	MITSUFJ	JNB77M	JPY									
Nomura Hldgs Inc	NOMURA	6BA88M	JPY									
Temasek Hldgs	TMSK	Y6DDCN	USD									
Panel B: Europe												
Allianz SE	ALZSE	DD359M	EUR									
BNP Paribas	BNP	05ABBF	EUR									
Barclays PLC	BACR	GG8839	EUR									
Deutsche Bk AG	DB	2H6677	EUR									
ING Groep NV	INTNED	49BEBA	EUR									
Lloyds Bkg Group plc	LBGP	GLA86Z	EUR									
Skandinaviska Enskilda Banken AB	SEB	8B3555	EUR									
Swiss Life Ltd	SWSL	HPC53H	EUR									
Panel C: Nor	rth America											
Amern Express Cr Corp	AXP-CreditCorp	027D99	USD									
Boston Pptys Inc	BXP	1B1233	USD									
Cap One Finl Corp	COF	1F444H	USD									
Goldman Sachs Gp Inc	GS	3B955H	USD									
JPMorgan Chase & Co	JPM	4C933G	USD									
Navient Corp	NAVIECO	69CCBK	USD									
Royal Bk Cda	RY	CJGGB6	USD									
Wells Fargo & Co	WFC	9DDGBA	USD									

Table B.1: CDS reference entities

Notes: This table reports the ticker, RED code and currency of the CDS contracts used in the empirical application. The seniority of all CDS contracts is 'Senior Unsecured' (i.e., highest seniority tier) and only the contracts with most liquid possible liquid reference currency are selected (i.e., JPY for Japanese firms, EUR for European firms and USD for all other firms).

C Additional Monte Carlo simulation results

This appendix reports additional results of our Monte Carlo study in Section 3. Each subplot in the Figures C.1-C.4 corresponds to a specific *missingness scenario* of the Monte Carlo study based on a time-series system of p = 4 time-series. The missing

data mechanism is exactly the same for all series in each of the respective figures, but is introduced stages. For example, Figures C.1 displays four unique scenarios in which up to p = 4 time-series are simultaneously subject to the block missing pattern. Subfigure C.1a corresponds to scenario in which only $y_{1,t}$ contain block missing observations, whereas Subfigure C.1b illustrates the scenario in which both $y_{1,t}$ and $y_{2,t}$ have the exact same block missing entries, etc. Similarly, the subplots in the Figures C.2, C.3 and C.4 illustrate the randomly missing scenarios for different values of $\pi_{i,t}$.

Figure C.1: 60% block missing scenarios

Notes: Each subplot in the Figures C.1, C.2, C.3 and C.4 illustrates a potential missingnes scenario among a panel data consisting of p = 4 time-series. A non-missing time-series observation is marked by a vertical blue stripe over time for t = 1, ..., n. Figures C.1 displays four unique scenarios in which up to p = 4 time-series are simultaneously subject to the block missing pattern. For example, Subfigure C.1a corresponds to scenario in which only $y_{1,t}$ contain block missing observations, whereas Subfigure C.1b illustrates the scenario in which both $y_{1,t}$ and $y_{2,t}$ have the exact same block missing entries, etc. Similarly, the subplots in the Figures C.2, C.3 and C.4 illustrate the randomly missing scenarios for different values of $\pi_{i,t}$.

Figure C.2: $\pi_{i,t} = 25\%$ randomly missing scenarios

Figure C.3: $\pi_{i,t} = 50\%$ randomly missing scenarios

Notes: This figure depicts potential missingness scenarios among a panel data consisting of p = 4 time-series with MAR probability $\pi_{i,t} = 50\%$. See caption of Figure C.1 for more details.

Figure C.4: $\pi_{i,t} = 75\%$ randomly missing scenarios

Notes: This figure depicts potential missingness scenarios among a panel data consisting of p = 4 time-series with MAR probability $\pi_{i,t} = 75\%$. See caption of Figure C.1 for more details.

Additional experiments highlight that the forecast performance results obtained on factor level, also hold for functions of the location and log-variance factors. For example, panels A-D in Table C.1 reports these results for all time-varying mean and volatility predictions at sparse locations. The MAFE errors and percentage coverage rates are reported for the exact same missing data mechanism and scenario combinations in Table 1. The last panel in Table C.1 reports the Pearson's correlation between the forecast errors of mean and variance pairs (in percentages), i.e., Corr ($\mu_i - \hat{\mu}_i, \sigma_i^2 - \hat{\sigma}_i^2$), for $i = 1, \ldots, p = 4$.

We also measure the forecast error and accuracy of the bands for the model implied risk measures, given the true and predicted paths of the time-varying means and variances for the four series in our system series. We consider the measures: value-at-risk (VaR) and expected shortfall (ES) at several confidence levels. The MAFE metric for the mode implied VaR and ES at conventional $1 - \alpha$ % confidence levels is reported in Table 2. The coverage rates of the forecast bands for these time-varying risk measures is reported in Table C.2. Furthermore, we have also gathered the precision of these risk measures based on the accuracy of the predicted hit variables. All hit variables take value one if the the time-series variables exceed their VaR/ES threshold over time, and are zero otherwise. The forecast error of the hit-variables is then measured as the MAFE between

Mechanism: Block Missing									R	andoml	y Missii	Missing											
M is singn	es %:	60%					25	5%			50)%			75	5%							
Moments	0	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$																		
				-	Panel A	: MAFI	E of in-s	ample f	orecasts	s for me	an equa	tion											
μ_1	0.030	0.126	0.147	0.187	0.229	0.059	0.062	0.066	0.070	0.082	0.088	0.097	0.102	0.104	0.114	0.130	0.137						
μ_2	0.030	0.047	0.145	0.186	0.226	0.034	0.062	0.066	0.070	0.039	0.088	0.097	0.102	0.043	0.113	0.128	0.136						
μ_3	0.030	0.047	0.066	0.187	0.228	0.034	0.039	0.066	0.070	0.039	0.047	0.096	0.102	0.043	0.055	0.129	0.137						
μ_4	0.036	0.049	0.066	0.093	0.227	0.041	0.045	0.049	0.074	0.045	0.052	0.062	0.105	0.047	0.058	0.074	0.140						
Panel B: MAFE of in-sample forecasts for variance equation																							
σ_1	0.022	0.091	0.106	0.135	0.163	0.043	0.045	0.048	0.051	0.059	0.064	0.070	0.075	0.076	0.084	0.096	0.102						
σ_2	0.023	0.035	0.106	0.136	0.163	0.026	0.045	0.048	0.052	0.029	0.064	0.071	0.075	0.032	0.084	0.096	0.102						
σ_3	0.023	0.035	0.048	0.135	0.164	0.026	0.029	0.048	0.052	0.029	0.035	0.071	0.075	0.032	0.041	0.096	0.102						
σ_4	0.028	0.037	0.049	0.070	0.163	0.030	0.033	0.037	0.054	0.033	0.039	0.046	0.077	0.035	0.043	0.055	0.105						
Panel C: Coverage of mean equation at 95% confidence level (%)																							
μ_1	96.937	95.921	95.723	94.855	97.121	95.972	95.643	94.868	94.485	96.191	96.141	95.708	97.283	97.903	98.371	98.285	99.769						
μ_2	96.783	95.317	95.878	94.917	97.133	96.551	95.734	95.025	94.773	95.525	96.154	95.587	97.283	96.774	98.334	98.309	99.757						
μ_3	96.801	95.322	94.507	94.826	96.985	96.197	95.339	94.811	94.680	95.676	94.294	95.671	97.261	96.775	96.552	98.263	99.722						
μ_4	97.990	98.670	98.408	97.239	98.155	97.723	97.544	97.262	96.883	98.053	98.203	97.925	98.644	99.350	99.471	99.449	99.891						
				Panel	D: Cov	erage o	f varian	ce equa	tion at 9	95% cor	nfidence	level (%	%)										
σ_1	96.932	96.098	95.607	94.121	96.618	95.599	95.068	93.921	93.343	96.143	95.432	94.472	96.306	97.717	97.795	97.369	99.395						
σ_2	96.597	94.787	95.535	94.042	96.582	96.019	95.117	93.899	93.380	95.497	95.387	94.419	96.210	96.575	97.674	97.400	99.369						
σ_3	97.089	95.017	93.613	93.955	96.499	95.776	94.927	93.970	93.444	95.663	93.679	94.356	96.170	96.559	96.065	97.535	99.435						
σ_4	97.621	98.406	98.049	96.378	97.869	97.524	97.404	96.798	96.278	97.976	97.878	97.196	98.140	99.082	99.156	99.063	99.728						
			1	Panel E	: Foreca	st error	correla	tion bet	tween m	iean and	l varian	ce pairs	(%)										
ρ_{μ_1,σ_1^2}	-0.951	0.616	0.891	0.796	1.474	-0.311	-0.162	-0.343	0.298	-0.023	-0.414	0.276	0.321	0.180	0.308	0.899	0.132						
ρ_{μ_2,σ_2^2}	-1.013	-0.504	1.339	0.772	0.948	-0.442	0.350	-0.288	0.100	0.401	-0.572	0.088	-0.336	-1.094	-0.020	0.418	-0.271						
ρ_{μ_3,σ_3^2}	1.415	1.711	1.476	0.385	0.801	1.543	2.012	1.057	0.854	-0.108	-0.330	0.487	0.097	-1.586	-0.883	0.068	-0.804						
ρ_{μ_4,σ_4^2}	-0.396	0.395	0.895	0.366	0.803	0.859	0.833	1.045	0.181	-0.234	-0.641	0.282	-0.431	0.635	0.513	0.441	-0.562						

 Table C.1: In-sample forecast perfomance results on mean-variance level

Notes: The first two panels of this table report the MAFE of the mean and volatility for each time-series. The next two panels report the coverage rates of the forecast bands corresponding to a confidence level of 95% for the mean and volatility. The last panel reports the Pearson's correlation coefficient (in %) between the forecast errors of mean and variance pairs. For more details on the scenarios and missing data mechanisms, see caption of Table 1.

the true and predicted hit-variables. Since the hit-variable is a binary variable, the MAFE quantifies the precision because it is now naturally bounded between 0 and 1. Table C.3 reports the MAFE precision rates for each time-series, among all $1 - \alpha$ confidence levels.

Mechanism: Block Missing									R	andoml	y Missii	ıg					
Missi	ng %:		60	9%			25			50	1%		75%				
Series	0	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$
				Pa	nel A: C	overage	e of VaR	with α	= 5% at	t 95% c	onfidenc	e level	(%)				
y_1	96.749	97.916	97.512	96.679	98.180	95.972	95.599	94.719	94.185	96.561	96.111	95.267	96.851	98.249	98.322	97.982	99.596
y_2	96.705	96.314	97.546	96.586	98.139	96.118	95.531	94.567	94.058	95.792	96.056	95.234	96.858	96.829	98.287	97.986	99.579
y_3	96.749	96.465	95.872	96.499	98.183	96.018	95.214	94.522	94.072	95.765	94.332	95.356	96.938	96.677	96.293	98.049	99.589
y_4	97.735	98.933	98.925	98.210	98.846	97.727	97.666	97.289	96.793	98.163	98.245	97.862	98.519	99.292	99.390	99.329	99.810
Panel B: Coverage of VaR with $\alpha = 1\%$ as											onfidenc	e level	(%)				
y_1	96.765	97.842	97.406	96.509	98.102	95.873	95.487	94.523	93.954	96.471	95.938	95.019	96.666	98.154	98.187	97.800	99.529
y_2	96.657	96.205	97.410	96.424	98.048	96.029	95.381	94.366	93.810	95.735	95.867	95.014	96.675	96.757	98.145	97.820	99.513
y_3	96.836	96.399	95.716	96.359	98.094	95.944	95.101	94.333	93.824	95.690	94.146	95.108	96.725	96.598	96.176	97.909	99.545
y_4	97.665	98.870	98.822	98.016	98.786	97.639	97.582	97.114	96.609	98.121	98.151	97.670	98.387	99.228	99.317	99.249	99.788
				Pa	nel C: C	overage	of ES	with $\alpha =$	= 2.5% at	t 95% c	onfidenc	e level	(%)				
y_1	96.765	97.839	97.404	96.505	98.100	95.871	95.484	94.520	93.949	96.470	95.937	95.014	96.664	98.153	98.184	97.797	99.528
y_2	96.657	96.203	97.408	96.419	98.046	96.026	95.379	94.364	93.805	95.732	95.865	95.010	96.672	96.755	98.142	97.818	99.512
y_3	96.838	96.399	95.715	96.355	98.092	95.944	95.100	94.329	93.821	95.691	94.144	95.104	96.721	96.596	96.174	97.908	99.544
y_4	97.665	98.869	98.820	98.013	98.786	97.640	97.582	97.111	96.605	98.119	98.149	97.666	98.385	99.228	99.316	99.248	99.787
				Pa	nel D: (Coverag	e of ES	with α	= 1% at	95% co	nfidence	e level (%)				
y_1	96.766	97.804	97.350	96.420	98.060	95.827	95.437	94.437	93.870	96.420	95.865	94.919	96.600	98.098	98.131	97.731	99.509
y_2	96.643	96.153	97.348	96.335	98.002	96.009	95.328	94.274	93.707	95.700	95.787	94.913	96.599	96.729	98.080	97.754	99.488
y_3	96.874	96.367	95.650	96.297	98.053	95.916	95.063	94.268	93.738	95.668	94.093	95.003	96.643	96.578	96.146	97.855	99.526
y_4	97.647	98.838	98.773	97.935	98.764	97.616	97.560	97.037	96.530	98.086	98.104	97.591	98.344	99.204	99.291	99.216	99.780

Table C.2: In-sample accuracy of forecast bands for tail risk measures

Notes: The panels of this table report the coverage rates of the forecast bands for the time-varying VaR and ES at several confidence levels for each time-series in the system. For more details on the scenarios and missing data mechanisms, see caption of Table 2.

Mecha	nism:		Block 1	Missing		Randomly Missing											
Missir	ng %:	%: 60 %				25%					50	0%		75%			
Series	0	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$	$y_{1,t}$	$y_{1:2,t}$	$y_{1:3,t}$	$y_{1:4,t}$
Panel A: MAFE of in-sample forecasts for VaR hit-variable with $\alpha = 5\%$ (%)																	
y_1	0.478	4.955	4.955	4.955	4.955	4.998	1.970	2.000	2.043	5.060	3.189	3.277	3.333	5.029	4.209	4.269	4.310
y_2	0.489	0.760	4.938	4.938	4.938	0.542	4.956	2.015	2.030	0.625	5.005	3.264	3.267	0.675	5.026	4.260	4.297
y_3	0.475	0.750	1.044	5.015	5.015	0.551	0.601	4.951	2.039	0.630	0.766	4.979	3.322	0.708	0.910	5.037	4.305
y_4	0.589	0.770	1.026	1.466	4.981	0.672	0.723	0.768	5.027	0.710	0.819	0.975	4.970	0.737	0.915	1.170	4.990
Panel B: MAFE of in-sample forecasts for VaR hit-variable with $\alpha = 1\%$ (%)																	
y_1	0.161	0.985	0.985	0.985	0.985	0.980	0.482	0.491	0.521	1.015	0.721	0.763	0.770	1.030	0.919	0.942	0.945
y_2	0.158	0.233	0.997	0.997	0.997	0.177	0.969	0.484	0.523	0.209	1.003	0.752	0.755	0.224	1.006	0.914	0.930
y_3	0.154	0.239	0.338	1.016	1.016	0.187	0.188	0.989	0.519	0.207	0.261	1.004	0.769	0.221	0.292	1.009	0.930
y_4	0.192	0.265	0.341	0.489	0.997	0.207	0.236	0.241	0.992	0.228	0.276	0.321	1.004	0.238	0.301	0.378	0.986
			Р	anel C:	MAFE	of in-sa	mple fo	orecasts	for ES	hit-var	iable w	ith $\alpha = 1$	2.5% (%))			
y_1	0.158	0.955	0.955	0.955	0.955	0.955	0.468	0.481	0.515	0.985	0.706	0.741	0.749	0.998	0.893	0.915	0.920
y_2	0.155	0.228	0.970	0.970	0.970	0.163	0.944	0.476	0.514	0.205	0.972	0.737	0.735	0.219	0.975	0.887	0.902
y_3	0.149	0.238	0.331	0.986	0.986	0.185	0.191	0.960	0.505	0.203	0.256	0.972	0.749	0.218	0.287	0.977	0.903
y_4	0.189	0.254	0.335	0.480	0.965	0.209	0.236	0.240	0.960	0.225	0.270	0.309	0.975	0.235	0.298	0.375	0.958
			F	Panel D	MAFE	E of in-s	ample f	forecast	s for ES	8 hit-va	riable w	with $\alpha =$	1% (%)				
y_1	0.077	0.373	0.373	0.373	0.373	0.379	0.206	0.226	0.222	0.384	0.295	0.318	0.315	0.399	0.367	0.379	0.383
y_2	0.078	0.119	0.385	0.385	0.385	0.090	0.390	0.217	0.229	0.100	0.390	0.325	0.322	0.105	0.387	0.366	0.375
y_3	0.074	0.121	0.169	0.394	0.394	0.099	0.097	0.386	0.221	0.091	0.110	0.372	0.308	0.105	0.141	0.389	0.383
y_4	0.090	0.120	0.164	0.241	0.375	0.099	0.101	0.120	0.368	0.112	0.137	0.152	0.392	0.117	0.144	0.182	0.382

Table C.3: In-sample forecast precision of tail risk measures

Notes: The panels of this table report the precision of hit-variables for the time-varying VaR and ES at several confidence levels for each time-series in the system. For more details on the scenarios and missing data mechanisms, see caption of Table 2.

D Additional empirical results

D.1 Conditional imputation of single-name CDS curves

Mechanism:			Missi	ng Pate	hes (NI	MAR)			Randomly Missing (MAR)									
Missi	ng % :			60	0%		25% 50%									75	5%	
							# time-series in system with missing values											
Model	Tenor	0	1	2	3	4	1	2	3	4	1	2	3	4	1	2	3	4
					Panel 4	A: In-sa	mple po	oint fore	cast acc	curacy (MAFE)	(bps)						
	3Y	1.666	8.683	8.156	8.217	20.158	1.674	1.717	1.741	1.731	1.858	1.861	1.926	1.984	2.254	2.387	2.672	3.471
GAS-1-eq	5Y	2.069	4.582	4.852	7.966	24.220	2.113	2.113	2.171	2.119	2.083	2.143	2.210	2.299	2.221	2.375	2.702	3.653
$({\rm Proposition}\ 1)$	7Y	2.341	4.278	4.977	7.355	24.799	2.301	2.320	2.403	2.351	2.328	2.355	2.417	2.526	2.414	2.535	2.865	3.834
	10Y	2.542	7.188	7.690	8.875	24.348	2.551	2.500	2.606	2.580	2.595	2.637	2.709	2.800	2.794	3.080	3.453	4.107
	3Y	1.667	9.775	8.723	7.771	20.093	1.741	1.747	1.692	1.710	1.809	1.799	1.809	1.842	2.036	2.029	1.981	2.333
GAS-1-eq	5Y	2.070	5.658	6.434	7.757	24.206	2.094	2.123	2.096	2.085	2.131	2.137	2.140	2.217	2.196	2.201	2.252	2.677
$({\rm Proposition}\ 1')$	7Y	2.342	4.469	5.309	6.948	24.760	2.347	2.301	2.332	2.342	2.348	2.373	2.399	2.457	2.401	2.421	2.475	2.904
	10Y	2.543	7.007	7.754	8.694	24.196	2.544	2.545	2.573	2.552	2.542	2.583	2.623	2.680	2.616	2.661	2.730	3.166
	3Y	1.770	9.401	9.328	11.758	19.437	1.803	1.779	1.806	1.790	1.886	1.838	1.830	1.857	3.634	2.526	2.167	2.342
GAS-1-s-eq	5Y	2.157	5.185	5.784	8.993	23.414	2.225	2.144	2.191	2.193	2.212	2.155	2.187	2.244	2.376	2.991	2.331	2.731
$({\rm Proposition}\ 1')$	7Y	2.421	4.195	5.154	8.081	23.652	2.430	2.400	2.458	2.430	2.400	2.406	2.414	2.495	2.553	2.510	2.536	2.960
	10Y	2.602	8.434	8.978	8.548	23.358	2.551	2.597	2.620	2.622	2.614	2.568	2.623	2.707	2.697	2.708	2.727	3.191
				Panel E	3: In-sai	nple cov	verage o	f foreca	st band	s at 95%	% confid	ence le	vel (%)					
	3Y	93.177	90.874	91.922	96.682	84.182	93.865	93.188	93.098	93.021	93.162	93.079	93.051	93.808	92.297	91.607	93.453	97.806
GAS-1-eq	5Y	90.961	93.289	96.166	99.018	82.496	90.619	90.887	90.516	90.523	91.181	90.574	90.836	91.881	91.360	90.529	92.303	97.459
$\left(\mathrm{Proposition}\ 1 \right)$	7Y	89.262	93.225	96.118	97.564	83.538	89.392	89.622	89.000	89.015	89.788	89.577	89.660	90.769	89.784	89.664	91.934	97.273
	10Y	87.605	92.034	92.512	96.026	88.343	87.807	88.650	88.429	88.491	88.676	88.810	89.519	90.893	87.849	88.953	91.979	97.220
	3Y	93.224	79.983	88.141	94.487	84.556	93.073	93.124	93.652	93.494	93.546	93.667	93.703	94.220	93.839	94.308	95.126	96.253
GAS-1-eq	5Y	90.961	96.788	91.704	95.444	82.828	90.465	90.772	91.070	91.686	91.488	91.571	91.897	92.379	92.417	92.630	93.527	95.375
$({\rm Proposition}\ 1')$	7Y	89.239	95.139	95.724	95.614	83.687	88.829	89.519	89.792	90.037	90.005	90.056	90.180	90.964	91.496	91.437	92.431	94.839
	10Y	87.567	93.852	93.964	94.969	88.526	88.216	87.845	88.199	88.459	88.650	88.714	88.910	90.027	89.358	90.022	91.775	94.583
	3Y	94.145	73.569	77.398	85.297	78.481	95.399	95.437	95.237	95.686	97.520	97.495	97.802	98.495	97.410	99.122	99.523	99.672
GAS-1-s-eq	5Y	92.125	99.830	97.203	97.408	77.999	92.612	93.213	93.413	94.229	94.338	95.392	96.178	97.648	94.359	97.435	99.179	99.789
$({\rm Proposition}\ 1')$	7Y	91.306	98.043	97.181	96.611	81.294	92.025	92.319	92.544	93.277	93.482	94.645	95.186	96.754	94.530	96.660	98.949	99.789
	10Y	91.652	95.278	94.267	97.352	88.476	92.152	92.600	93.039	93.539	93.609	94.459	95.808	97.198	95.842	97.776	98.770	99.864

Table D.1: In-sample accuracy of conditional density forecasts for CDS JPM term-structure

Notes: this table reports the empirical cross validation-based Monte Carlo imputation performance results for various forecasting models on JPM's CDS time-series (tenors run from 3Y till 10Y). The performance results are reported for different missing data patterns (i.e., combinations of missing data mechanisms and number of sparse time-series in the system), given three different specifications of the factor loading matrix. In Panel A, for each missigness scenario, the MAE in basis points (bps) between the observed (but unused) value y_t (in basis point (bp) levels) and its point forecast $\hat{\mu}_t$ is computed at sparse entries only. Similarly, in panel B, the coverage ratios (%) of the imputed values are reported for the 95% confidence level using S = 500 Monte Carlo simulated paths. For this, the forecast error bands are simulated by conditionally imputing the missing values using the equi-correlation structure, i.e., $S_t^c y_t | \mathcal{F}_{t-1}, y_t^{\dagger}$. The score-driven models including dynamic location (and scale) factors are labeled as GAS-1(-s). GAS models including a static equi-correlation include the term '-eq' in their label. The hierarchical design matrix is the same for all models, and always includes one common-factor $f_{c,t}$ and one idiosyncratic factor $f_{i,t}$ for each time-series $y_{i,t}$ in the system, as in Eq. (15). Below the label of each model, the filtering method is reported in parentheses. The idiosyncratic factor affected by missing values always mean-revert first in score-driven models based on Proposition 1'. The estimation period is January 2, 2011 - December 31, 2020 (n = 2609).

Figure D.1: Filtered common location-scale factors

Notes: the first panel of this figure displays the common CDS mean factors, given the parameter estimates of the largest specification of the dynamic density model in Table 6. The filtered estimates (solid) are computed as the median of predictive GAS filter (f_t) paths, given S = 500 simulations. The 95% forecast bands that inherit both innovation and parameter uncertainty are also plotted (shaded areas). Each factor category is highlighted with a different color, e.g., the regional factors are plotted in yellow and the interaction terms in purple. Similarly, the second panel depicts the time-varying common log-variance factors. Rolling-window estimates for the mean factors are displayed in black dots.

Figure D.2: Filtered idiosyncratic location-scale factors

Notes: the first plot if this panel displays the filtered conditional idiosyncratic (fixed-effect) median-based location factors (solid pink). Each panel of the first panel plots 8 factors, namely one for each of the financial firms within the respective region (i.e., for Asia, North America and Europe). The subplots also plot the simulation-based 95% confidence bands. Similarly, the second plot of this figure displays the time-varying idiosyncratic log-variance factors. For more details, see caption of Figure D.1.