
 

 
TI 2025-025/III 
Tinbergen Institute Discussion Paper  
 

 
Forecasting Atmospheric Ethane: 
Application to the Jungfraujoch 
Measurement Station 

 
Marina Friedrich1 

Karim Moussa2 

Yuliya Shapovalova3 

David van der Straten4 

 

 

 

 

 

 

 

 

 

 

 

 

1 Vrije Universiteit Amsterdam, Tinbergen Institute 

2 Vrije Universiteit Amsterdam, Tinbergen Institute 

3 Radboud University Nijmegen 

4 Vrije Universiteit Amsterdam 



 

 

 

 

 

 

 

Tinbergen Institute is the graduate school and research institute in economics of 

Erasmus University Rotterdam, the University of Amsterdam and Vrije Universiteit 

Amsterdam. 
 

Contact: discussionpapers@tinbergen.nl  

 

More TI discussion papers can be downloaded at https://www.tinbergen.nl  
 

Tinbergen Institute has two locations: 

 
Tinbergen Institute Amsterdam 

Gustav Mahlerplein 117 

1082 MS Amsterdam 
The Netherlands 

Tel.: +31(0)20 598 4580 

 

Tinbergen Institute Rotterdam 
Burg. Oudlaan 50 

3062 PA Rotterdam 

The Netherlands 
Tel.: +31(0)10 408 8900 
 

mailto:discussionpapers@tinbergen.nl
https://www.tinbergen.nl/


Forecasting Atmospheric Ethane:

Application to the Jungfraujoch Measurement Station∗

Marina Friedrich†1,2, Karim Moussa1,2, Yuliya Shapovalova3 and David

van der Straten1

1Vrije Universiteit Amsterdam

2Tinbergen Institute

3Radboud University Nijmegen

Wednesday 9th April, 2025

Abstract

Understanding the developments of atmospheric ethane is essential for better iden-
tifying the anthropogenic sources of methane, a major greenhouse gas with high
global warming potential. While previous studies have focused on analyzing past
trends in ethane and modeling the inter-annual variability, this paper aims at fore-
casting the atmospheric ethane burden above the Jungfraujoch (Switzerland). Since
measurements can only be taken under clear sky conditions, a substantial fraction
of the data (around 76%) is missing. The presence of missing data together with a
strong seasonal component complicates the analysis and limits the availability of
appropriate forecasting methods. In this paper, we propose five distinct approaches
which we compare to a simple benchmark – a deterministic trending seasonal model
– which is one of the most commonly used models in the ethane literature. We find
that a structural time series model performs best for one-day ahead forecasts, while
damped exponential smoothing and Gaussian process regression provide the best
results for longer horizons. Additionally, we observe that forecasts are mostly driven
by the seasonal component. This emphasizes the importance of selecting methods
capable of capturing the seasonal variation in ethane measurements.
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1 Introduction

Atmospheric ethane is an indirect greenhouse gas, contributing to global warming. It

belongs to the class of short-lived climate forcers which are broadly divided into methane

and non-methane volatile organic compounds (NMVOC). They affect the climate and are

often air pollutants (Szopa et al., 2021). Ethane is the most abundant NMVOC in the

atmosphere, sharing important emission sources with methane – a major greenhouse gas

with a high global warming potential (Franco et al., 2016). The main sources of ethane

are anthropogenic (62% from leakage during production and transport of natural gas, 20%

from biofuel combustion), while methane has both natural and anthropogenic sources

(Xiao et al., 2008). This makes it hard to measure the fraction of methane released by the

oil and gas sector. An estimate of this fraction can be provided with the help of ethane

measurements (Visschedijk et al., 2018; Schaefer, 2019).

In addition to providing a better understanding of methane emissions from anthro-

pogenic sources, the previous literature has identified two additional key reasons why

it is relevant to study atmospheric ethane. First, ethane is an important precursor of

tropospheric ozone. It contributes to the formation of ground-level ozone which is – unlike

stratospheric ozone – a major pollutant affecting air quality. While ozone in higher levels

of the atmosphere protects us from the sun’s harmful ultraviolet rays, ground-level ozone

damages ecosystems and has adverse effects on the human body (Fischer et al., 2014;
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Franco et al., 2016). Second, since ethane and methane share the same oxidizer in the

atmosphere, ethane influences the lifetime of methane. The oxidizer is the hydroxyl

radical OH (Aikin et al., 1982; Rudolf, 1995). This implies that the more ethane there is

in the atmosphere, the fewer OH radicals will be available for the degradation of methane,

making ethane an indirect greenhouse gas (Collins et al., 2002). Its monitoring is therefore

crucial for the characterization of air quality and the transport of tropospheric pollution.

The main sources of ethane are located in the Northern Hemisphere, and the dominating

emissions are associated with the production and transport of natural gas (Xiao et al.,

2008).

Various time series of atmospheric ethane have been analyzed using econometric and

statistical techniques. Friedrich et al. (2020a) analyze deterministic linear and nonlinear

trends in the ethane burden above four measurement stations. Maddanu and Proietti

(2023) study stochastic seasonality and trends in 15 time series of ethane. More trend

analysis results can be found in Angelbratt et al. (2011), Franco et al. (2015) and Lutsch

et al. (2020). Sun et al. (2021) analyze atmospheric ethane above Hefei in eastern China

using Generalized Additive Models. In a recent study, Ortega et al. (2023) use exponential

smoothing to predict business-as-usual values during the COVID-19 worldwide lockdown

for various atmospheric gases, including ethane.

As this short review of the literature shows, the focus of previous studies has mostly

been on understanding past developments. In this paper, our aim is to forecast the ethane
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burden in the atmosphere. We focus on measurements obtained above the Jungfraujoch

station in the Swiss Alps between February 1986 and July 2024, which is the longest

time series of atmospheric ethane considered in the current literature. The Jungfraujoch

location lies in the Northern Hemisphere where most emission sources are located. It is

characterized by high dryness and low local pollution, leading to favorable measurement

conditions (Franco et al., 2015). Nevertheless, around 76% of daily data is missing because

measurements can only be taken under clear sky conditions. In addition, the data is

characterized by a strong seasonal pattern since ethane degrades faster in summer than

in winter. Together with the substantial amount of missing data, this poses a challenge

for statistical analysis.

To address the above challenges, we select the following forecasting approaches which

perform well in the presence of missing data and can take into account the seasonality of

our data. The first approach is a fully deterministic trending seasonal model, which is

one of the most commonly used models in the literature. It is used in Angelbratt et al.

(2011), Franco et al. (2015), Lutsch et al. (2020) and Friedrich et al. (2020a) among others.

We consider this model as a benchmark for comparison in forecasting. Second, in the

same model framework, we use the method of discounted least squares which assigns

higher weight to recent observations. Third, we employ damped exponential smoothing as

presented in Gardner and McKenzie (1985). Fourth, we use a structural time series model

in a state-space modeling framework as a classical and powerful method for time series
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forecasting (Harvey, 1990). As a fifth approach, we use a local linear kernel regression

which has previously been used in the literature for the analysis of past ethane trends

(Friedrich et al., 2020a,b). The sixth approach is a Gaussian process regression, which can

be seen as a Bayesian nonparametric regression technique. These forecasting methods

have a natural way of dealing with missing data since no, or only minor adaptations are

necessary. In addition, they can explicitly model seasonal variations.

Before we forecast the next three years of the atmospheric ethane burden above the

Jungfraujoch measurement station, we compare the methods in an extensive forecasting

evaluation exercise. We find that a structural time series model performs best for one-day-

ahead forecasts, while damped exponential smoothing and Gaussian process regression

provide the best results for longer horizons. Additionally, we observe that the forecasts are

mostly driven by the seasonal component. This emphasizes the importance of selecting

methods capable of capturing the seasonal variation in ethane measurements.

The remainder of the paper is structured as follows. Section 2 presents the ethane

data and provides background. Section 3 discusses our forecasting methods. Section 4

presents the results of a pseudo out-of-sample forecast evaluation exercise and provides

true out-of-sample forecasts. Section 5 concludes.
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2 Data

We study time a series of atmospheric ethane obtained from a ground-based measurement

station at Jungfraujoch located on the saddle between the Jungfrau and the Mönch,

at 46.55◦N, 7.98◦W, 3580 meters altitude. Measurements are taken with the Fourier

Transform InfraRed (FTIR) remote-sensing technique and contain ethane total columns

as the number of molecules per cm2 integrated between the ground and the top of the

atmosphere. In this paper, we work with dry air mole fraction (DAMF) data in parts per

billion (ppb) obtained from the Network for the Detection of Atmospheric Composition

Change (NDACC). Compared to the non-normalized ethane total columns, the DAMF

quantity includes information on surface pressure and water vapor total columns. The

time series consists of 3257 observations of daily averages, ranging from February 1986 to

July 2024. Although measurements are taken multiple times per day, they can only be

taken under clear sky conditions, leading to a substantial number of missing observations:

approximately 76% of daily observations are missing in our time series. Nevertheless, the

measurement conditions at the Jungfraujoch station are favorable due to high dryness

and low local pollution (Franco et al., 2015). This is the longest and currently most recent

FTIR time series of ethane, with more than three decades of measurements available.

Further details on the ground-based station at Jungfraujoch and on how measurements

are obtained can be found in Franco et al. (2015).
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(a) Full sample (b) Subsample

Figure 1: Ethane dry air mole fraction (DAMF) data in parts per billion (ppb). Panel
(a) displays the full sample from February 1986 to July 2024, collected at the Jungfraujoch
measurement station. The dataset covers 14,025 days, with 3,256 complete (non-missing)
measurements, shown as dots. Panel (b) shows a subsample from December 2015 to July 2024.
The subsample includes 3,135 days, with 652 complete measurements.

The data set is plotted in Figure 1. Panel (a) shows the full sample. To display features

such as missing data more clearly, we additionally plot a subsample from December 2015

to the end of the sample in Panel (b). This will serve as our testing sample in the forecast

evaluation exercise. In addition to missing data, the series displays a strong seasonal

pattern, as ethane degrades faster in summer than in winter. Therefore, the measurements

display local peaks every winter period. In summer, the atmospheric lifetime of ethane

is at its minimum of around two months while it can be as high as ten months in the

winter. On average ethane stays in the atmosphere around three months (Xiao et al., 2008;

Helmig et al., 2016; Li et al., 2022). Previous analysis in Friedrich et al. (2020a) shows

that the overall development of the series until 2019 has been characterized by two major
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trend reversals. First, there has been a downward trend until around 2007, followed by

an upward trend. Second, around 2015, the upward trend turned into a downward trend

until the end of the series. The first trend reversal has been explained in the literature by

increased activity in shale gas extraction in the United States (Vinciguerra et al., 2015;

Franco et al., 2016; Helmig et al., 2016). The second reversal has been associated with

a sharp decline in oil prices at the end of 2014. Lower oil prices affect the oil and gas

industry and make shale gas extraction less profitable (Friedrich et al., 2020a).

3 Forecasting methods

Given the data characteristics described in the previous section and the modeling choices

in the related literature, our forecasting methods are based on the following general model

for the ethane measurements yt

yt = f(t) + εt t = 1, . . . , n, (3.1)

where the function f(t) contains a seasonal and a trend component, and εt is the noise. In

each forecasting method, the noise term is subject to different assumptions and we consider

different specifications for the function f(t). In most methods, it will be decomposed as

f(t) = µt + st, (3.2)

where µt models the long-term trend and st is the seasonal component.
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3.1 A trending seasonal benchmark model

As a benchmark, we consider one of the most commonly used models in the related

empirical literature on atmospheric ethane. It consists of a linear trend and a deterministic

seasonal component. It has been used to analyze past ethane trends in, e.g., Angelbratt

et al. (2011), Franco et al. (2015), Lutsch et al. (2020), and Friedrich et al. (2020a). A

similar trending seasonal model has also been used to study temperature data in Diebold

and Rudebusch (2022). The trend is specified as

µt = α + βt,

and the seasonal component follows

st =
S∑
j=1

aj cos(λjt) + bj sin(λjt), λj =
2πj

365.25
, (3.3)

consisting of a combination of Fourier terms. The model is estimated by ordinary least

squares. The number of Fourier terms is set to S = 3 in this paper whenever such a

specification of the seasonal term is used. This is in accordance with the literature, which

indicates that the seasonal variation in ethane measurements is well-captured by including

three seasonal terms; see, e.g., Franco et al. (2015), Franco et al. (2016) and Friedrich

et al. (2020a). In addition, Friedrich et al. (2020b) perform a frequency domain analysis

to give more insight about the form of the periodic pattern present in the Jungfraujoch

data. They find that including one term is clearly necessary and including up to three
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terms further helps to model periodicity. Increasing S above three showed only minor

effects. Three Fourier terms are also found to be sufficient for many other atmospheric

ethane time series in Maddanu and Proietti (2023) who allow the seasonal component to

vary over time.

3.2 Discounted least squares

By considering the trending seasonal benchmark model and assigning higher weights to

recent observations, it becomes possible to forecast by extrapolating a local rather than a

global trend. This concept lies at the heart of the discounted least squares (DLS) method

for forecasting (Brown, 1963). Let θ = (α, β, a1, b1, . . . , aS, bS)
′ denote the parameter

vector of the trending seasonal model, and consider the forecast function

f(t, h; θ) = α + βh+ st+h,

where h is the forecast horizon, and with the seasonal component st as defined in (3.3).

In DLS, the parameters θ are estimated at each time t by minimizing the weighted sum

of squares

Qt(θ;ω) =
∑
j∈It

ωj
{
yt−j−f(t,−j; θ)

}2
, It =

{
i ∈ {0, . . . , t−1}

∣∣ yt−i is available},
for a given discount factor ω ∈ [0, 1], which controls the rate at which the weights of

observations decrease with the distance in time. For ω = 1 all observations are weighted

equally, and we recover the trending seasonal from the previous section, while for ω < 1 the

9



weights decay exponentially. The forecasting function is thus fitted by looking backwards

from time t, and the objective function can be minimized analytically via weighted least

squares. The resulting h-step ahead forecast at time t is

ŷt+h|t = f(t, h; θ̂t), with θ̂t ∈ argmin
θ

Qt(θ;ω).

The discount factor is a tuning parameter, and it is often recommended to use a value

near one (e.g., Brown, 1963), since lower values of ω effectively reduce the sample size

used in the regressions. This point is particularly relevant in our application, where the

pervasiveness of missing data frequently leads to long periods without observations. To es-

timate the discount factor, we choose the value ω ∈ {0.9999, 0.9995, 0.999, 0.99, 0.97, 0.94}

that minimizes the one-step ahead forecast mean squared error. We focus on the errors

from the second half of the sample, as earlier forecasts, based on smaller samples, may

not be representative of actual forecasting, where the full sample is utilized for prediction.

3.3 Damped exponential smoothing

Exponential smoothing offers another popular approach to forecasting, which is closely

related to the method of DLS. We refer to Chapter 2.2 of Harvey (1990) for further

discussion on their connection. Exponential smoothing, as originally presented in Holt

(1957), has been applied to atmospheric time series in Ortega et al. (2023). The authors

predict business-as-usual values for the COVID-19 period for various gases such as
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atmospheric ozone, carbon monoxide, and ethane. Below, we consider a version of

exponential smoothing with damping as proposed by Gardner and McKenzie (1985).

To present the idea, we start by leaving aside the matter of seasonality and consider

forecasting the deseasonalized data, ydt . The h-step ahead forecast according to the

damped exponential smoothing (DES) method is

ŷdt+h|t = αt +
h∑
j=1

ϕjβt,

where ϕ ∈ [0, 1] is the damping parameter, and the level αt and slope βt are updated

according to the following recursion:

αt = λαy
d
t + (1− λα)ŷ

d
t|t−1,

βt = λβ(αt − αt−1) + (1− λβ)ϕβt−1,

with smoothing constants λα, λβ ∈ [0, 1]. Lower values of λα correspond to a higher

dependence of αt on past observations, while lower values of λβ yield more gradual

updates of βt. For ϕ = 1 we obtain the original smoothing recursion of Holt (1957),

and the forecast ŷdt+h|t increases linearly with h; for values of ϕ < 1, the additional

contribution of the slope diminishes with the horizon, and the forecast converges to

ŷd∞|t = αt + βt · ϕ/(1− ϕ) as h→ ∞.

For the initialization, we proceed by analogy to Harvey (1990, p.27) and account for

the possibility of missing data by starting the recursion at time t2 + 1, with t2 being the
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time index of the second available measurement. The previous level and slope are set to

αt2 = yt2 , βt2 =
yt2 − yt1
t2 − t1

,

with t1 being the index of the first available measurement. To deal with missing data

more generally, the recursion can be rewritten using the one-step ahead forecast error,

edt = ydt − ŷdt|t−1,

αt = αt−1 + βt−1 + λαe
d
t ,

βt = ϕβt−1 + λβλαe
d
t .

This representation suggests setting edt = 0 in the absence of ydt as a natural approach for

dealing with missing data.

The usual way of handling seasonal effects in exponential smoothing is by introducing

a seasonal variable st, which is updated according to st = λs(yt−αt)+ (1−λs)st−k, where

k denotes the period (Hyndman and Athanasopoulos, 2021, Ch.8.3). In our case k = 365,

which would result in very infrequent updates of the seasonal effect for any given day of

the year, an issue that is exacerbated by the large proportion of missing data, making

this approach unsuitable for our application. We therefore proceed by estimating the

seasonal effect separately. In particular, we use the trending seasonal model from Section

3.1 to estimate the seasonal term, ŝt, then define the deseasonalized data as ydt = yt − ŝt,

and apply the DES method to the time series {ydt } as described above. The resulting
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forecasts of the original data are obtained via

ŷt+h|t = ŷdt+h|t + ŝt+h.

To estimate the parameters λα, λβ, and ϕ, we minimize the one-step ahead forecast

mean squared error while imposing the damping parameter constraint ϕ ∈ [0.8, 0.98]

(Hyndman and Athanasopoulos, 2021, Ch.8), focusing on the predictive performance in

the second half of the sample, as in the previous section.

3.4 A structural time series model

Structural time series models explicitly model the trend, seasonal, and noise components

(Harvey, 1990). We will consider a structural time series model that can be expressed

as a linear Gaussian state space model (SSM), which allows using the many established

results in forecasting and parameter estimation based on the Kalman filter (KF; Kalman,

1960). This approach offers a natural solution for modeling and forecasting atmospheric

ethane because the KF has an exact treatment of missing data (Harvey, 1990, Ch.3).

For a time series of daily ethane measurements yt, we specify the observation equation

as in (3.1) and (3.2), where the errors follow εt ∼ N (0, σ2
ε) and are assumed independent

and identically distributed. To ensure that the trend evolves gradually, it is modelled as

an integrated random walk (Young et al., 1991), which is integrated of order two:

µt+1 = µt + δt, δt+1 = δt + ηδt , ηδt ∼ N (0, σ2
δ ).
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The variable δt determines the direction of the trend; its specification as a random walk

allows for the direction to change over time in a non-deterministic manner. To model the

seasonal component, we use the following standard form (Durbin and Koopman, 2012,

Ch.3.2.2),

st =
S∑
j=1

aj,t cos(λjt) + bj,t sin(λjt), λj =
2πj

365.25
, (3.4)

where λj implies S ∈ N different frequencies in a calendar year, and the coefficients follow

autoregressive processes,

aj,t+1 = aj + ϕj(aj,t − aj) + η
aj
t , η

aj
t ∼ N (0, σ2

j ),

bj,t+1 = bj + ϕj(bj,t − bj) + η
bj
t , η

bj
t ∼ N (0, σ2

j ).

This formulation enables the seasonal patterns to change over time, the importance of

which has recently been highlighted by Maddanu and Proietti (2023). The parameters aj

and bj control the unconditional means of aj,t+1 and bj,t+1, respectively. For the purpose

of parsimony, the persistence parameter ϕj and scale parameter σj are shared by the j-th

coefficients. The scale parameters are subject to the restriction σε, σδ, σj ≥ 0, and for the

persistence parameters |ϕj| < 1 is imposed to separate the interpretation of the trend

from the seasonal component. The model parameters are collected in the vector

θ = (σε, σδ, a1, b1, ϕ1, σ1, . . . , aS, bS, ϕS, σS)
′, (3.5)

which consists of 2 + 4S elements.

14



To formulate the structural time series model, consider the general linear Gaussian

SSM with intercepts as in Harvey (1990),

yt = Ztαt + dt + εt, εt ∼ N (0, Ht),

αt+1 = Ttαt + ct +Rtηt, ηt ∼ N (0, Qt),

(3.6)

for t = 1, . . . , n, with yt the measurement at time t, αt the state vector, which is

unobserved, εt and ηt Gaussian noise terms, and possibly time-varying system matrices

Zt, Ht, Tt, Rt, Qt and vectors dt and ct of appropriate dimension. In our case, the state is

αt = (µt, δt, a1,t, b1,t, . . . , aS,t, bS,t)
′,

with Nα = 2 + 2S elements, the state noise vector ηt = (ηδt , η
a1
t , η

b1
t , . . . , η

aS
t , η

bS
t )′

consists of Nα − 1 elements, and yt and εt are scalars. For our structural model, only the

1×Nα row matrix Zt is time-varying,

Zt =

[
1 0 cos(λ1t) sin(λ1t) . . . cos(λSt) sin(λSt)

]
.

The other system matrices, for which the subscript t will be omitted, are given by

d = 0, H = σ2
ε , T =

A O

O B

 , A =

1 1

0 1

 ,
B = diag(ϕ1, ϕ1, . . . , ϕS, ϕS), Q = diag(σ2

δ , σ
2
1, σ

2
1, . . . , σ

2
S, σ

2
S),

c = (0, 0, (1− ϕ1)a1, (1− ϕ1)b1, . . . , (1− ϕS)aS, (1− ϕS)bS)
′, R =

0′Nα−1

INα−1

 ,
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where O denotes the zero matrix of appropriate dimension, diag(x) is a diagonal matrix

having the vector x as its main diagonal, INα−1 is the (Nα− 1)× (Nα− 1) identity matrix,

and 0′Nα−1 is a 1× (Nα − 1) row vector of zeros.

The linear Gaussian SSM is initialized by α1 ∼ N (m1, P1) with initial mean vector m1

and variance matrix P1, the latter of which is usually assumed to be diagonal. For the state

elements related to the seasonal component, a natural choice is to set the corresponding

elements of m1 to the unconditional means, aj and bj , and the respective diagonal elements

of P1 to the unconditional variances, pj = σ2
j/(1−ϕ2

j). For the non-stationary elements µt

and δt, it is standard to use diffuse initialization, which corresponds to letting κ→ ∞ in

var[µ1] = var[δ1] = κ; in this case, the initial mean becomes irrelevant and is therefore set

to zero (Durbin and Koopman, 2012, Ch.5). In practice, this is often approximated by

setting κ to a large number, say, κ = 107 (e.g., Harvey and Phillips, 1979). The resulting

initial means and variances are

µ1 = (0, 0, a1, b1, . . . , aS, bS)
′ and P1 = diag(κ, κ, p1, p1, . . . , pS, pS),

where it is assumed that the initial state α1 is independent from the noise terms εt and

ηt, and the latter are mutually and serially independent, as is standard in state space

modeling (Durbin and Koopman, 2012, Ch.3.1).

The SSM formulation enables forecasting the states via the KF, and the corresponding

measurements can be predicted using the fact that E[yt+h|Yt] = Zt+h E[αt+h|Yt]. The
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relevant formulae are discussed in Appendix A.1. Estimation of the model parameters θ

is done by numerically maximizing the diffuse log likelihood described in Appendix A.2.

3.5 Local linear kernel regression

Former studies demonstrate that a non-parametric trend model estimated with local

linear kernel smoothing is effective at modeling the ethane series (see, e.g., Friedrich et al.,

2020a,b). We follow this approach and let the trend component of equation (3.2) be given

by a smooth function of time µt = g(t/n) : [0, 1] → R. While the seasonal component

has been modelled by a combination of Fourier terms with constant coefficients in the

previous literature, we extend this analysis by directly incorporating them into the model as

regressors with time-varying coefficients. Hence, the seasonal component is given as in (3.4).

This makes the combined model for yt a time-varying coefficient model as considered in

Robinson (1989) with at = (a1,t, . . . , aS,t)
′ and bt = (b1,t, . . . , bS,t)

′. We adopt the common

assumptions that at := a(t/n) and bt := b(t/n) with a(·) = (a1(·), . . . , aS(·))′ : [0, 1] → RS

and b(·) = (b1(·), . . . , bS(·))′ : [0, 1] → RS being smooth functions of time. We collect the

regressors in xt := (1, cos (λ1t) , . . . , cos (λSt) , sin (λ1t) , . . . , sin (λSt))
′ and the parameters

in θ(·) = (g(·), a(·)′, b(·)′)′. We obtain an estimate θ̂(t/n) for t = 1, . . . , n using an adapted

version of the non-parametric local linear kernel estimator as in Cai (2007) and Friedrich

and Lin (2024). The adaptation is necessary to account for missing observations. Details

are given in Appendix A.3.
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The fact that the trend and coefficient functions are expressed in terms of rescaled

time (t/n) is a common assumption needed for consistency of the local linear estimator

(Robinson, 1989). Estimation involves a kernel function and a bandwidth parameter

ρ. Similar to Friedrich and Lin (2024), we employ the Epanechnikov kernel given by

K(x) = 3
4
(1− x2)1{|x|≤1}. Although bandwidth selection is an important aspect of

our modeling approach, we first discuss how, for a given bandwidth ρ, the model can

be used for forecasting. Next to this flexible trending seasonal model, we additionally

consider an extended model which includes lags of the dependent variable. This has

also been considered in the forecasting exercise of Friedrich and Lin (2024). In addition,

Friedrich et al. (2020a) find that the ethane series exhibits strong autocorrelation, further

motivating the use of lags. However, in our case, the inclusion of lags introduces an

additional problem; missing observations in yt now also affect the regressors. We thus add

an additional component to the model, by including the most recent p observed values

prior to time t as regressors in an extended model. To complete the construction of the

regressors, we need to select the number of seasonal terms S and the number of lags p.

As explained above, we set S = 3. Since the ethane data contains multiple periods with

consecutive missing observations, including high-order lags can result in using observations

far back in time. This is undesirable, as ethane measurements have a mean atmospheric

lifetime of approximately 3 months. Thus, in the base model we set p = 0, and in the

extended model we consider p = 5.
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3.5.1 The non-parametric multistep ahead estimator

To forecast with this model, we employ a multistep ahead estimator proposed in Chen et al.

(2018) for time-varying coefficient models. Specifically, the non-parametric multistep ahead

estimate of yt+h is given by the procedure presented in Algorithm 1. The non-parametric

multistep ahead estimator involves iteratively performing one-step ahead forecasts which

is shown in Chen et al. (2004) to perform better than a direct approach. After each

forecast, we update the data by incorporating the forecast as if it were an observed

value. Subsequently, we re-estimate the model and proceed to forecast the next value.

By repeating this procedure h times, we obtain a sequence of forecasts ŷt+1|t, . . . , ŷt+h|t.

Note that for this procedure, we need the one-step ahead regressors xt+1 to be available.

As mentioned in the previous section, the regressors xt consist of deterministic seasonal

terms and, in the extended model, lagged periods of yt. Therefore, one can always obtain

xt+1 when information up to time t is available.

19



Algorithm 1 Non-parametric multistep ahead estimator.

Step 1 Given the data up to time t, select the bandwidth ρ.

Step 2 Estimate the model using bandwidth ρ and obtain the estimated coefficients
θ̂(·), including θ̂(1), the local linear estimate at the right endpoint, using the
observations up to time t.

Step 3 Obtain the one-step ahead forecast at time t,

ŷt+1|t = x′t+1θ̂(1),

where xt+1 are the regressors at time point t+ 1.

Step 4 Update the in-sample observations y1, . . . , yt by including the pseudo observation
ŷt+1|t as an estimate for yt+1. Subsequently, update the corresponding regressors
xt+1. After updating, proceed as if we have observations up to time t+ 1, and
let t := t+ 1.

Step 5 Repeat step 2 until 4 h times. The final one-step ahead forecast in Step 3
corresponds to ŷt+h|t.

In Step 1 of the procedure, we must select the bandwidth ρ using the observed values

up to time t. Selecting a suitable bandwidth is a challenging task that requires careful

consideration. We employ a time series cross-validation approach, outlined in Appendix

A.4. This procedure yields a bandwidth of ρ̂ = 0.41 for the base model, and a bandwidth

of ρ̂ = 0.48 for the extended model. Since we update the data after each forecast, we

could utilize the updated data to re-estimate the bandwidth for each one-step ahead

forecast separately. Although this might increase forecasting accuracy, it imposes a great

computational burden. Therefore, similar to Chen et al. (2018), the bandwidth selected

in Step 1 is used for all the proceeding forecasts to reduce computational demand.
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3.6 Gaussian processes regression

Gaussian process regression (GPR) is a non-parametric Bayesian regression technique

where the function modeling the relationship between input and output values has a

Gaussian process prior. It is given as in equation (3.1) with f(t) ∼ GP (0, k(t, t′)) being a

Gaussian process (GP) and εt ∼ N (0, σ2
ε) being Gaussian noise. Given a set of observed

input-output pairs D = {(t1, y1), (t2, y2), . . . , (tn, yn)}, the goal is to estimate the posterior

distribution of the function f(t). A GP is fully defined by its mean function, which in our

case is assumed to be zero without the loss of generality, and covariance function specified

by the kernel k(t, t′). The kernel function determines how the similarity between two

inputs t and t′ translates into their corresponding output values being correlated. The

choice of the kernel affects properties such as the smoothness, periodicity, and generally

the complexity of the functions the GP can model. Essentially, the kernel controls the

GP’s ability to generalize and capture patterns in the data.

3.6.1 Choosing the kernel function

In this subsection, we briefly describe the kernel functions used in our forecasting exercise

for the ethane data. Various specifications of the kernel lead to different properties of the

underlying function, such as smoothness, (non-)stationarity, and periodicity. Figure 3

illustrates three examples of GP samples with different kernel functions. Figure 3(a)

illustrates samples from a GP with squared exponential function. This kernel depends on
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two hyperparameters θ1 and θ2 through

k1(t, t
′) = θ21 exp

(
−(t− t′)2

2θ22

)
, (3.7)

where θ1 controls the amplitude of the function (variation along y-asix) and θ2 controls

how wiggly the function is (larger values lead to slower changes and smaller values lead

to faster local changes). In the context of time series this kernel is a natural choice for

modeling long-term trends. Figure 3(b), illustrates GP samples with rational quadratic

kernel given by

k2(t, t
′) = θ23 exp

(
1 +

(t− t′)2

2θ4θ25

)−θ4
, (3.8)

with hyperparameters θ3, θ4, θ5 and θ6 (which describe magnitude, diffuseness and

smoothness/variability). This kernel is often useful for describing medium-term trends

and variations in the data.

Finally, periodicity can be accounted for with periodic kernel given by

k3(t, t
′) = θ26 exp

(
−(t− t′)2

2θ7
− 2 sin2(π(t− t′))/θ9

θ28

)
, (3.9)

where θ26 determines the magnitude of the functions, θ7 allows for the decay-time of the

periodic component and θ8 determines the smoothness of the periodic component, θ9

determines the period (and if it is known it can be fixed).
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(a) (b) (c)

Figure 2: Samples from Gaussian process (GP) prior, different colours represent different GP
samples. (a) Samples from a GP with squared exponential kernel; (b) Samples from a GP with
rational quadratic kernel; (c) Samples from a GP with periodic kernel.

One of the properties that allows us to model more complex patterns in the data is

that (certain) combinations of kernels lead to a proper kernel as well. In particular

kf (t, t
′) = k1(t, t

′) + k2(t, t
′) + k3(t, t

′), (3.10)

the sum of squared exponential, rational quadratic and periodic kernel would lead to

behaviour which allows for all corresponding components: long-term trend, medium-range

variations and periodicity. Figure 3(c) illustrates Gaussian processes samples from the

combination kernel in Equation (3.10) with different hyperparameter values.
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(a) (b) (c)

Figure 3: Samples from Gaussian process (GP) prior with combination of three kernels (squared
exponential, rational quadratic and periodic), different colours represent different GP samples.
In different sub-figures hyperparameters of the kernel are set to different values to demonstrate
their effects. (a) The medium term component is irrelevant θ5 = 10. in k2(t, t

′); (b) The medium
term component is relevant θ5 in k2(t, t

′); (c) Samples with longer period compared to (a) and
(b).

3.6.2 Inferring hyperparameters of the kernel

Once we specified the kernel function, we fit the GPR to the data. The parameters of

interest which we need to optimize (or infer using Bayesian inference) are θi, i = 1, . . . , 8

when the kernel is specified according to the composition of 1) long-term, 2) medium-term

and 3) periodic components as in equation (3.10). The hyperparameters are optimized

using gradient-based optimization with the Gaussian log-likelihood as the objective

function:

log p(y|t, θ) = −1

2
yTK−1

y y − 1

2
log |Ky| −

N

2
log 2π, (3.11)

where Ky = Kf + σ2
nI, is the kernel evaluated at training input points plus the variance

of the observation noise.
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3.6.3 Forecasting ethane time series with Gaussian process regression

In GPR, the predictive distribution at new input points is derived by conditioning the

joint Gaussian distribution of observed data and predictions. The joint distribution of

observed outputs y and the latent function values at the new input points f∗ is given by y
f∗

 ∼ N


0
0

 ,
Kf (t, t) + σ2I Kf (t, t∗)

Kf (t∗, t) Kf (t∗, t∗)


 , (3.12)

where Kf(t, t) is the covariance matrix for the training data, Kf(t, t∗) is the covariance

matrix between the training data and test data, and Kf(t∗, t∗) is the covariance matrix

for test data and σ2I is the noise variance.

Conditioning on the observed data (t, y), the predictive distribution for f∗ is Gaussian

f∗ ∼ N (µ∗,Σ∗), (3.13)

with

µ∗ = Kf (t∗, t)
(
Kf (t, t) + σ2I

)−1
y, (3.14)

Σ∗ = Kf (t∗, t∗)−Kf (t∗, t)
(
Kf (t, t) + σ2I

)−1
Kf (t, t∗). (3.15)

When new observations are added, the predictive distribution can be updated efficiently

without re-estimating the entire model by updating relevant terms in equations (3.14)

and (3.15).

25



4 Results

This section first presents a forecasting experiment to evaluate the performance of the

proposed methods across several horizons. Next, the best-performing methods are applied

to perform true out-of-sample forecasting of atmospheric ethane in Section 4.2.

4.1 Forecasting experiment

To investigate the performance of the proposed forecasting methods, the following experi-

ment is conducted for several fixed forecasting horizons h. We start by splitting the data

into a training and a test sample, with the training sample comprising the first 80% of

the complete (i.e., non-missing) measurements. More specifically, the training sample

ranges from February 25th, 1986 until December 19th, 2015. The test sample, shown in

Figure 1, starts the following day and ranges until July 19th, 2024. Based on the original

sample of length n = 14025 with 3256 complete measurements, the resulting training

sample consists of 10890 measurements (2604 complete), and the test sample contains the

remaining 3135 measurements (652 complete). Next, our forecasting methods are fit to

the training sample. For a given horizon h, the fitted methods allow for computing the

h-step ahead forecast at any time t conditional on the available data Yt = {y1, . . . , yt}.

Denote this forecast by ŷt+h|t. We compute these forecasts for all time points in the test
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set and obtain the corresponding errors (if yt+h is not missing)

et+h|t ≡ ŷt+h|t − yt+h

for t = 1, . . . , n− h, such that the final forecast ŷn|n−h is a prediction of the last measure-

ment, yn. The forecast root mean squared error (FRMSE) is then computed by

FRMSEh =

√
1

|Itest|
∑
t∈Itest

(
et|t−h

)2
,

with Itest denoting the set of time indices in the test set for which the measurements yt

are complete, and |Itest| = 652 denoting the size of the test set.

Besides the trending seasonal model of Section 3.1, we consider two simple methods

as naive benchmarks: the running sample mean and the random walk forecast. The

latter sets ŷt+h|t equal to the last observed value at or before time t. For comparison, we

use the DM test statistic of Diebold and Mariano (1995) with the heteroskedastic and

autocorrelation-consistent estimator for the asymptotic variance of the test statistic.
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Table 1: Forecast root mean squared error (FRMSE) of the forecast evaluation exercise.

FRMSE
h 1D 1W 2W 1M 2M 3M 6M 1Y 2Y 3Y
Simple benchmarks
Mean 0.185 0.185 0.186 0.186 0.186 0.186 0.186 0.186 0.186 0.187
RW 0.167 0.183 0.185 0.199 0.219 0.262 0.307 0.193 0.188 0.188
TS 0.143 0.143 0.143 0.144 0.144 0.144 0.144 0.146 0.149 0.155

Proposed methods
DLS 0.139 0.139 0.140 0.141 0.142 0.142 0.142 0.142 0.144 0.149
DES 0.139∗ 0.139∗ 0.139∗ 0.140∗ 0.140 0.140 0.140∗ 0.140∗ 0.140∗ 0.142∗

KR 0.146 0.149 0.150 0.154 0.155− 0.154 0.154 0.156 0.164− 0.176−−

KRext 0.135∗ 0.144 0.147 0.150 0.152 0.151 0.151 0.152 0.158 0.165
SM 0.133∗∗ 0.141 0.144 0.150 0.158−− 0.164−− 0.168−− 0.177−− 0.204−− 0.232−−

GPR 0.137 0.137∗ 0.137∗ 0.138∗ 0.139∗ 0.141 0.140∗ 0.140∗ 0.140∗ 0.140∗∗

FRMSE for various horizons h for the simple benchmarks (sample mean, random walk (RW), trending
seasonal TS)) and the proposed methods: discounted least squares (DLS), damped exponential smoothing
(DES), kernel regression (KR, the extended model (KRext) includes lags of the dependent variable), the
structural model (SM) and Gaussian process regression (GPR). Entries with a (double) asterisk indicate
that a method outperforms all benchmarks at a 10% (5%) significance level. Entries with a (double)
minus sign show that the method is outperformed by one of the benchmarks at a 10% (5%) level. Shaded
entries denote whether a model belongs to the 75% MCS.

Table 1 presents the results of the forecasting experiment. The FRMSE is reported for

horizons of one day (1D), one and two weeks (1W, 2W), one, two, three, and six months

(1M, 2M, 3M, 6M) – where a month is taken as equivalent to 30 days – and one, two, and

three years (1Y, 2Y, 3Y), with a year corresponding to 365 days. The first three rows

present our benchmarks while the rows below the horizontal line show the results for our

proposed methods. In addition, we indicate results of the DM tests in the following way.

Entries with a (double) asterisk indicate that a method outperforms all benchmarks at a

10% (5%) significance level. Entries with a (double) minus sign mean that the method

is outperformed by one of the benchmarks at a 10% (5%) level. Shaded entries denote
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whether a model belongs to the Model Confidence Set (MCS) of Hansen et al. (2011) for a

given horizon at a significance level of 25%, resulting in 75% Model Confidence Sets. For

this procedure, we use the implementation of Bernardi and Catania (2018) and consider

a squared loss function.

We observe that the simple trending seasonal model performs best out of all benchmarks.

The DLS outperforms the trending seasonal for all horizons, but the difference in predictive

accuracy is not significant. The performance of DES is similar to DLS in terms of the

FRMSE at short horizons. At longer horizons, it does slightly better. The DM tests

indicate that it outperforms the benchmarks at the 10% level for most horizons. The kernel

regression performs better in the extended version, which includes lags of the dependent

variable. It significantly outperforms the benchmarks at the 10% level for one-day ahead

forecasts. The kernel regression without lags (base model) gets outperformed by the

trending seasonal model at 2M, 2Y and 3Y horizons. The structural model performs

best in terms of one-day ahead forecasts according to the FRMSE, and it outperforms

the trending seasonal benchmark at the 5% level. For longer horizons the performance

degrades, and starting at 2M it is outperformed by the trending seasonal model. GPR

results are more stable in terms of the FRMSE. It performs particularly well for longer

horizons, where it significantly outperforms the trending seasonal benchmark at the 5%

level.

The 75% Model Confidence Sets closely align with the results above. For horizons
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up to and including 1M, the MCS merely excludes the naive benchmarks and the kernel

regression (base model). For the 2M, 3M, and 6M horizons, the MCS additionally excludes

the structural model and the extended kernel regression. Following that, the 1Y horizon

MCS excludes the trending seasonal model and contains the methods of DLS, DES, and

GPR, while the 2Y horizon MCS consists of DES and GPR. Lastly, the 3Y horizon MCS

only includes the GPR model. These results indicate that, as the horizon increases, the

Model Confidence Sets become progressively smaller, only including models that are

relatively stable in terms of the FRMSE.

(a) Structural model one-day ahead forecasts. (b) GPR three-year ahead forecasts.

Figure 4: Visualization of the forecast experiment. The test data is plotted together with
the h-step ahead forecasts and 95% confidence intervals for the structural model and Gaussian
process regression (GPR).

Figure 4 shows the forecasts alongside the test data for the structural model and

the GPR at the horizons where they perform best: 1D and 3Y, respectively. The test

data (grey crosses) are plotted together with the h-step ahead forecasts (pink line) and
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corresponding 95% confidence intervals (shaded area). The difference in FRMSE observed

in Table 1 is clearly visible when comparing panels (a) and (b). The one-day ahead

structural model forecasts (1D) closely follow the measurements, the vast majority of

which fall within the confidence bands. The forecasts from the GPR, corresponding to the

three-year horizon, are seen to be more stable. This pattern is intuitive: the most recent

measurements typically have greater predictive power for nearby future observations than

for those further ahead, hence it is often appropriate to assign more equal weight to the

available data in long-term forecasts.

This principle also helps explain the results in Table 1. The extended kernel regression

and structural models excel in short-term forecasting, which requires placing greater

emphasis on recent observations. In contrast, models such as the trending seasonal model,

GPR, DLS and DES (based on their estimated parameters) distribute weight more evenly

across the available data, which helps maintain a stable performance across varying

forecasting horizons.

4.2 Out-of-sample forecasts

Figure 5 shows the out-of-sample results for the atmospheric ethane burden above the

Jungfraujoch station based on the structural model from Section 3.4. All forecasts are

made at July 19th, 2024, which is the end date of our sample (t = n). The forecasting

horizon h ranges from one day up to three years, which gives a total of 1095 forecasts,
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the last of which is for July 18th, 2027. Panel (a) plots the observations (black crosses)

as well as as the fit of the structural model (blue line) together with the forecasts (pink

line) and 95% confidence intervals (shaded area). Panel (b) zooms in on the final year of

the in-sample period and the forecast period. The observations (black dots) are shown

together with the signal and the forecasts (pink line) as well as 95% confidence intervals

(shaded area). In addition to a slight upward trend, we observe that the forecasts are

mainly driven by the seasonal component.

(a) Data, fit and forecasts (b) Final fit and forecasts

Figure 5: Out-of-sample forecasts and 95% confidence intervals for the atmospheric ethane
burden above the Jungfraujoch station based on the Gaussian process regression model from
Section 3.6. All forecasts are made at July 19th, 2024, which is the end date of our sample
(t = n). The forecasting horizon h ranges from one day up to three years, which gives a total of
1095 forecasts, the last of which is for July 18th, 2027.
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5 Conclusion

In this paper, we employed multiple approaches to forecast the atmospheric ethane burden

above the Jungfraujoch measurement station in the Swiss Alps. The data is characterized

by a large fraction of missing observations of around 76% and a strong seasonal pattern.

We therefore employed a selection of time series forecasting methods which can handle

these properties. In particular, we used five different approaches given by discounted

least squares, damped exponential smoothing, a structural time series model, local linear

kernel regression and Gaussian process regression.

Out-of-sample forecasts have been provided for the next three years. To investigate

to what extent the different approaches are able to provide reliable ethane forecasts, we

compared the forecasting ability of these approaches against a set of benchmarks in a

forecasting experiment. The best performing benchmark was a deterministic trending

seasonal model that has been used for the analysis of past trends in various time series

of atmospheric ethane. Our main findings are that for the one-day forecasting horizon,

the structural model provides the best forecasting results, while for longer horizons, the

Gaussian process regression and damped exponential smoothing perform best. Overall,

we conclude that the seasonal component remains stable over time and dominates the

developments in atmospheric ethane, enabling reliable forecasting performance, even for

longer horizons. This is reflected in our out-of-sample forecasts, which are mainly driven
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by the seasonal component, in addition to predicting a slow-moving upward trend above

the Jungfraujoch.

Forecasts of atmospheric ethane are important to monitor air quality and tropospheric

pollution. In addition, they can be used to understand developments of methane released

by the oil and gas sector. To the best of our knowledge, the analysis in this paper has

been the first attempt in the literature in understanding potential future developments of

atmospheric ethane. The conducted research therefore lends itself to a wider application

of the proposed tools to other time series of atmospheric ethane, which could provide a

more global view on future ethane developments.
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A Implementation details

A.1 Forecasting with the structural model

The SSM formulation allows for estimating the states via the KF. Let Yt = {y1, . . . , yt}

denote the data available for conditioning at time t. The KF recursively computes for

t = 1, . . . , n the filtering mean and variance

E[αt|Yt] and var[αt|Yt].
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These can be used to perform h-step forecasting for h > 0 as follows. First note that

unfolding h times the recursion for the state in (3.6) yields

αt+h = Tαt+h−1 + c+ ηt+h−1 = T (Tαt+h−2 + c+ ηt+h−2) + c+ ηt+h−1 = . . .

= T hαt +
h−1∑
j=0

T j
(
c+ ηt+h−(j+1)

)
.

From this expression we obtain the h-step forecasts of the states,

E[αt+h|Yt] = E

[
T hαt +

h−1∑
j=0

T j
(
c+ ηt+h−(j+1)

) ∣∣∣∣∣Yt
]
= T h E[αt|Yt] +

h−1∑
j=0

T j
(
c+ E[ηt+h−(j+1)|Yt]

)
= T h E[αt|Yt] +

h−1∑
j=0

T jc,

as E[ηt+h−(j+1)|Yt] = E[ηt+h−(j+1)] = 0 for j = 0, . . . , h − 1 with h > 0, since the state

noise terms ηk are independent of Yt for k ≥ t. The h-step forecast variance is

var[αt+h|Yt] = var

[
T hαt +

h−1∑
j=0

T jηt+h−(j+1)

∣∣∣∣∣Yt
]
= var

[
T hαt

∣∣∣Yt]+ var[
h−1∑
j=0

T jηt+h−(j+1)]

= T h var[αt|Yt]
(
T h
)′
+

h−1∑
j=0

T jQ
(
T j
)′
,

where the second equality follows as ηk is independent of αt and Yt for k ≥ 0, and the

final expression follows from serial independence of the state errors.

Our main focus is forecasting the signal ft ≡ Ztαt and the corresponding noisy

measurements yt = ft + εt. The relevant quantities can be expressed in terms of those

that were obtained for the states. The forecasting means are

E[yt+h|Yt] = E[ft+h + εt+h|Yt] = E[ft+h|Yt] = Zt+h E[αt+h|Yt],
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since εt+h is independent of Yt for h > 0. From similar reasoning, it follows that the

forecasting variances are

var[yt+h|Yt] = var[ft+h+εt+h|Yt] = var[ft+h|Yt]+var[εt+h] = Zt+h var[αt+h|Yt]Z ′
t+h+H.

A.2 SSM estimation based on diffuse log likelihood

In order to apply the structural time series model, the parameter vector θ defined in (3.5)

must be estimated using the available measurements. The standard approach for linear

Gaussian SSMs is to use maximum likelihood estimation (Durbin and Koopman, 2012,

Ch.7). We consider the following decomposition of the likelihood,

L(θ) ≡ p(y1, y2, . . . , yn) = p(y1)
n−1∏
t=1

p(yt+1|Yt),

which follows from Bayes’ formula, with p denoting a probability density function for the

corresponding variables. The measurements y1, y2, . . . , yn are jointly normal because of

the assumed independence between α1, εt, and ηk for k, t = 1, . . . , n. In this case, the

conditional densities p(yt+1|Yt) are also normal (Anderson and Moore, 2005, Example 3.2),

hence they are completely determined by the one-period forecasting means E[yt+1|Yt] and

variances var[yt+1|Yt]. As discussed in the previous section, for any value of θ these means

and variances can be computed by the KF, which allows for computing the likelihood L(θ).

However, since diffuse initialization is used for the elements µ1 and δ1, it is preferable to

use a diffuse analogue of the likelihood (Durbin and Koopman, 2012, Ch.7.2.2), which we
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define by

Ld(θ) =
n−1∏
t=2

p(yt+1|Yt). (A.1)

The above diffuse likelihood omits the first two terms of the likelihood L(θ), which is

because for our model these terms diverge when κ→ ∞. Loosely speaking, we require

two observations, y1 and y2, to learn something about the direction of the trend as

δ1 = µ2 − µ1 = y2 − y1 + (s1 + ε1 − s2 − ε2).

In practice, we therefore perform maximum likelihood estimation by numerically maxi-

mizing the average diffuse log likelihood, log
{
Ld(θ)

}
/n, over feasible values of θ.

A.3 Local linear kernel estimation

The time-varying coefficient model can be considered an extension of the non-parametric

trend model by allowing for the inclusion of exogenous regressors. The model is given by:

yt = θ′txt + εt, t = 1, . . . , n, (A.2)

where θt = θ(t/n) and xt are defined in Section 3.5 and εt denotes the error term. We

define that all functions are in C3[0, 1] which is a common smoothness assumption required

for non-parametric estimation. Then, for t/n in an ρ-neighborhood around τ ∈ (0, 1], each

coefficient curve can be locally approximated using a first-order Taylor approximation.

For the trend function g(·) this would yield g(t/n) ≈ g(τ) + g(1)(τ)(t/n− τ), with g(1)(·)
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denoting the first derivative of g(·). Let us define τt := t/n. Using the local approximation,

we can reformulate model (A.2) as

yt ≈ θ(τ)′xt + θ(1)(τ)′xt(τt − τ) + εt =: x̃t(τ)
′ψ(τ) + εt, (A.3)

where θ(1)(τ) =
(
g(1)(τ), a

(1)
1 (τ), . . . , a

(1)
S (τ), b

(1)
1 (τ), . . . , b

(1)
S (τ)

)′
, ψ(τ) =

(
θ(τ)′, θ(1)(τ)′

)′
,

and x̃t(τ) = (x′t, x
′
t(τt − τ))′. This local approximation ensures that we can estimate

the coefficient curves by the local linear estimator, which is obtained by minimizing the

following weighted sum of squares:

ψ̂(τ) =

 θ̂(τ)

θ̂(1)(τ)

 = argmin
ψ(τ)

n∑
t∈Dt

(yt − x̃t(τ)
′ψ(τ))

2
K

(
τt − τ

ρ

)
, (A.4)

where Dt denotes the set of time indices t for which the measurements yt are complete.

Furthermore, K(·) is a kernel function with bandwidth ρ > 0, which embodies the concept

that model (A.3) is a local approximation. The closed-form expression of the solution to

the minimization problem in (A.4) is given by

ψ̂(τ) =

 θ̂(τ)

θ̂(1)(τ)

 =

Sn,0(τ) S ′
n,1(τ)

Sn,1(τ) Sn,2(τ)


−1Tn,0(τ)

Tn,1(τ)

 =: S−1
n (τ)Tn(τ), (A.5)

where τ ∈ [0, 1], and for k = 0, 1, 2 we have:

Sn,k(τ) =
1

nρ

n∑
t∈Dt

xtx
′
t (τt − τ)kK

(
τt − τ

ρ

)
,

Tn,k(τ) =
1

nρ

n∑
t∈Dt

xt (τt − τ)kK

(
τt − τ

ρ

)
yt.

(A.6)
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A.4 Bandwidth selection

As mentioned in Section 3.5, the local linear estimator θ̂(τ) is obtained by fitting a locally

weighted linear regression to the data in an ρ-neighborhood around τ . The parameter

ρ, called the bandwidth, controls the width of the neighborhood. It is crucial to select

a suitable bandwidth ρ as it controls the model complexity and there is a bias-variance

tradeoff. We consider block cross-validation (BCV) for time series forecasting where

we divide the training sample into k blocks in time, such that each block contains the

same number of complete measurements. Within each block, we divide the complete

measurements into a training and test set based on a 90-10 split. Subsequently, for

bandwidths ranging from 0.1 to 0.7 in increments of 0.03, we fit the model to the training

data of a block and forecast each point in the test set of this block as an h-step ahead

forecast. We then calculate the corresponding h-step ahead forecast errors et+h|t for each

bandwidth and compute the FRMSE.

The objective is to find the optimal bandwidth that minimizes the FRMSE within

a block. This gives us an optimal bandwidth per block, for each forecast horizon. For

our forecasting experiment, we divide the data into k = 5 separate blocks. Moreover,

since the multistep ahead estimator consists of a collection of one-step ahead forecasts, we

obtain the optimal bandwidth for a forecasting horizon of h = 1. The small forecasting

horizon is further motivated by the increased computational burden of the BCV method
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when h is large.

As data-driven methods for bandwidth selection tend to select bandwidths near the

boundaries of the grid, we visually inspect the FRMSE as a function of the bandwidth

to identify local minima. Specifically, for each of the k = 5 blocks, the block optimal

bandwidth is given by the local minimum resulting in the smallest one-step ahead FRMSE.

Subsequently, to combine the results from the different blocks, ρ̂ is obtained by taking

the average of the block optimal bandwidths. In Figure 6 and Figure 7 we visualize

this procedure for the base model consisting of a trend and seasonal terms, and the

extended model including lags of the dependent variable, respectively. As can be observed

from Figure 7, block 4 does not contain local minima for the extended model, such that

we do not identify a block optimal bandwidth. Therefore, for the extended model, ρ̂

is obtained by taking the average block optimal bandwidth over the remaining blocks.

Table 2 complements the figures by presenting the optimal bandwidth per block and the

resulting selected bandwidth ρ̂ for both models.
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Figure 6: one-step ahead FRMSE per block as a function of the bandwidth for the base model
consisting of a trend and seasonal terms. The red dot indicates the selected local minimum,
which corresponds to the optimal block bandwidth.
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Figure 7: one-step ahead FRMSE per block as a function of the bandwidth for the extended
model including lags of the dependent variable. The red dot indicates the selected local minimum,
which corresponds to the optimal block bandwidth.

Block 1 Block 2 Block 3 Block 4 Block 5 ρ̂

Base model 0.43 0.25 0.58 0.52 0.25 0.41

Extended model 0.52 0.55 0.58 - 0.28 0.48

Table 2: Optimal bandwidth per block and the selected bandwidth ρ̂ for the base model
consisting of a trend and seasonal terms, and the extended model including lags of the dependent
variable. Note that ρ̂ is rounded up to two decimal places.
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