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Abstract

We empirically investigate the economic impact of natural disasters on food prices and production.

We address the key issues of data aggregation and counterfactual biases. Our data set consists of

regional information on prices and production for fourteen food products in Peru. This granularity

level of the data allows us to disentangle nominal from real effects, while we still can account

for within-country differences. On the other hand, the random nature of intense rainfalls and

droughts allows us to establish a natural counterfactual for each event by comparing between and

within-regions. Our empirical results show that prices increase in the aftermath of disasters, while

production strongly declines, which mask the price increases at the macroeconomic level. This

is particularly apparent during extreme events. The supply channel turns out to be the main

mechanism through which disasters affect prices. These effects are mostly heterogeneous. When

conditioning on storage life-duration of the products, we find that prices of perishable products

are affected by rainfalls only while those of semi-durable products by both rainfalls and droughts.
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1 Introduction

The economic implications of natural disasters have mostly been studied at the country

level, with information being collected at a yearly frequency and on a nominal basis. To

establish causal effects by means of country and nominal variables, much focus has been

given to the use and construction of synthetic counterfactuals which have been hardly

satisfactory (Cavallo et al., 2013; Barrios et al., 2010; Fomby et al., 2013). We contribute

to the literature by (i) documenting a data set of natural disasters, prices and production

for fourteen food products in Peru, and (ii) by presenting the effects of intense rainfalls and

droughts on prices and production for food products in Peru. The prices and production

of 14 food products are recorded at a monthly frequency between the years 2003 and 2018,

for 24 regions. The time series dimension of the data set allows us to disentangle real

from nominal effects. Given that climate events do not materialize simultaneously in every

region, and neither take place every month, natural counterfactuals emerge from the data

to measure the causal effects of intense rainfalls and droughts, simply by comparing events

between and within regions.

The cross-country evidence reveals that the occurrence of natural disasters is associated

with a decline in economic growth (Felbermayr and Gröschl, 2014; Klomp and Valckx, 2014;

Botzen et al., 2019), with large disaster events having a significant economic impact (Fomby

et al., 2013). However, these studies suffer from two key empirical shortcomings: (i) data

aggregation, and (ii) counterfactual biases. First, macroeconomic variables are reported in

nominal basis, which prevents the policy maker to disentangle price from quantity effects.

Aggregate price indexes are estimated to increase during natural disasters (Klomp, 2020),

which could partially offset the decline on real production. This is particularly relevant

when analyzing moderate events that may not cause a major production disruption. As an

illustration, El Niño Southern Oscillations (ENSO) is estimated to explain 20 percent of the

world commodity prices movements (Brenner, 2002). In addition, the aggregate country
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information could mask important geographic asymmetric effects and, as a result, could bias

down the macroeconomic impacts (Damania et al., 2020). Second, in the absent of a natural

counterfactual, the cross-country regressions are unable to capture the unbiased effect of

disasters. Ideally, we should aim at calculating the differences between the hypothetical

and observed trends before and after the disaster, respectively. However, to construct a

counterfactual, we need to select countries (or regions) with the same conditions as those

for the country of interest. Such selections are difficult and can be criticized easily. A recent

attempt based on using synthetic controls is presented in Cavallo et al. (2013).

We address these two empirical problems by exploiting a detailed price and production

panel data set for fourteen products, with price and supply information at a subnational

(region) level. In addition, we consider the two climate events of intense rainfalls and

droughts which both materialize randomly and independently in each region. As an exam-

ple, in March 2003, severe rainfalls occurred in the Amazon, while no event was registered

in the Northern regions of Peru. In this case it is appropriate to make comparison be-

tween regions. As another example, intense rainfalls only occur in the Northern regions of

Peru every four to six years. In this case we can consider within-region comparisons. For

these purposes, we analyse the data simultaneously in a panel model setting where region-,

product- and time-specific fixed effects are included.

A related study of Cavallo et al. (2014) considers supermarket prices and product avail-

ability information at the national level. It finds that prices remained relatively stable in

the aftermath of the 2010 earthquake in Chile and the 2011 earthquake in Japan, despite

the fact that product availability dropped significantly. This price stability result is then

attributed to the consumer anger hypothesis of Rotemberg (2002): consumer anger refers

to the situation where consumers care about the fairness of prices and, consequently, they

react negatively to “unfair” price increases. The higher granularity level of our data set

allows us to measure the intensity of events at a continuous scale, from moderate to ex-

treme events. In addition, the data set provides price and production (supply) information
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at the subnational (region) level, from which an accurate picture emerges of the economic

dynamics across the regions of Peru.

We formulate a panel data model for this data set and estimate its parameters using

standard fixed effect estimation methods. Our main finding is that price increases in the

aftermath of natural disasters, while the size of price increases depend on the storage life

(duration) of the products. More specifically, we find that perishable products are affected

only by heavy rainfall events and their prices are affected after four to six months. Further,

semi-durable products are affected by both rainfall and drought events. The price increases

due to rainfall are short-lived while these effects due to droughts take a longer time. The

significant price increases are accompanied by a strong and significant decline in production.

The decreases in the supply of products will most likely mask the price increases when data

is studied at the aggregate level. When the model controls for changes in production, there

is no longer a significant effect of disasters on prices. This result points out that the supply

channel provides the main mechanism through which disasters affect prices. Our findings

are robust against different model specifications that (i) allow for regional and product

heterogeneous effects, (ii) consider correlated unobservable factors explaining both prices

and production, and (iii) include individual monthly effects of disasters over time. Finally,

we provide empirical evidence that extreme rainfall events lead to a stronger decline in

production but also to substantial increase in prices.

The remainder of the paper is organized as follows. Section 2 briefly discusses the eco-

nomic implications of rainfalls and droughts. Section 3 describes our price and production

data set of Peru. The main empirical results are discussed in Section 4. Section 5 concludes.

2 Rainfalls and droughts

According to the World Bank Peru development report, the cost associated with intense

rainfalls, droughts, earthquakes, landslides, and frost have amounted, on average to USD
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40 million per year between 2003 and 2019.1 Peru is particularly vulnerable to intense

rainfall events, mainly due to El Niño Southern Oscillations. The geographical location

of Peru is on the tropical west coast of South America where many regions are exposed

to El Niño oscillations, which are characterized by prolonged, torrential rains. The World

Bank documents that the El Niño event in 2017 has resulted in losses of USD3.1 billion,

equivalent to 1.6 percent of the Peruvian gross domestic product (GDP). On the other hand,

climate change and increasing temperature levels have intensified the occurrence of drought

events in Peru, mostly in the southeast regions. In particular, droughts have become more

frequent and lasting for longer periods in the southern area of the Andes, compromising

the hydropower energy generation in the country. The absence of rain in this part of the

country is mainly due to the La Niña phenomenon, also related to El Niño.

In Peru, the National Institute of Defense against Disasters (INDECI) plays a critical

role in the systematic collection and analysis of data concerning natural disasters, along with

their associated economic and social impacts. INDECI classifies rainfalls as disasters when a

meteorological phenomenon results in more than 60 millimeters of precipitation within one

hour. In contrast, droughts are characterized by a significant absence of precipitation over

an extended period and can be further classified into two categories: absolute and partial.

An absolute drought occurs when no rainfall exceeding 1 millimeter is recorded over a period

of 15 consecutive days, while a partial drought is defined as a period of 29 consecutive days

during which the average daily rainfall does not surpass 0.5 millimeters. Notably, INDECI

does not differentiate between these types of droughts, instead categorizing them under a

single classification.

Data on these phenomena is collected on a monthly basis, reflecting the dynamic and

often unpredictable nature of natural disasters. INDECI provides comprehensive statis-

tics regarding the number of individuals directly or indirectly affected by various disaster

occurrences. In addition to these figures, the institute monitors other critical indicators, in-

1World Bank Group. 2022. Peru Country Climate and Development Report. CCDR Series.
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cluding damage to households, agricultural land, and infrastructure. While these indicators

are essential for understanding the intensity of disaster events, their informative capacity

is constrained by the absence of associated monetary costs. This lack of financial context

limits the ability to fully comprehend the economic implications of disasters. Furthermore,

there is limited information on the stock of households and agricultural land at the sub-

national level, hindering a thorough assessment of the magnitude and scale of the shocks

inflicted by natural disasters. Nevertheless, information regarding the total population re-

siding in each region allows for the approximation of disaster intensity by comparing the

number of affected individuals to the total population of that region.

The categorization of affected individuals is nuanced and multifaceted. It includes those

who experience material or health disruptions as a result of disaster events, as assessed by

INDECI during emergency response operations. Notably, the institute distinguishes be-

tween individuals who lack the financial resources to recover from such disruptions, thereby

necessitating government assistance, and those who possess the means to navigate the af-

termath independently. This differentiation is crucial for understanding the socio-economic

ramifications of disasters, as it aids in identifying particularly vulnerable populations. Addi-

tionally, the data collected encompasses fatalities and individuals reported as missing, which

serve as critical indicators of disaster severity, especially in the context of extreme weather

phenomena such as El Niño. The availability of this information across all subnational

regions enables a comprehensive view of climate intensity, facilitating easy comparison with

the total population.

Since 2003, INDECI has systematically collected this information at the subnational

level, allowing for a granular understanding of the impacts of disasters across different

regions of Peru. In this paper, we employ the ratio of affected individuals to the total

population in a given region as a metric for approximating disaster intensity.
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2.1 A measure of climate disasters

The proxy climate disaster variable (in percentage) is defined as

x
(s)
j,t = 100×

D
(s)
j,t

Nj,t

, (1)

where D
(s)
j,t is the number of affected people due to the natural disaster s occurred in region

j at time t, while Nj,t is the total population in region j at time t.

Tables 1 and 2 summarize the main statistics for rainfalls and droughts events during the

2003-2018 period. Droughts have affected, on average, a larger proportion of people when

compared to intense rainfalls, despite that intense rainfalls occur more often than droughts.

The occurrence of rainfalls is not directly associated with its impact. For instance, rainfalls

in the Amazonas region have occurred two times more than in any other region, but the

average percentage of people affected by each event in the Amazonas is less than half

compared to the rest of the country.

The occurrences of rainfalls and droughts do not necessarily overlap during the year.

While rainfalls mostly occur between January and April, droughts mainly take place be-

tween October and January. If anything, rainfalls are preceded by droughts. In addition,

there is hardly any overlap between regions affected by the same event. Notice that the

regions in Peru are as large as many European countries. For example, the Loreto region

is as large as Germany and the historical region of Cusco has the size of Ireland. Peru is

the 19th largest country in the world, and the third largest in South America. Hence, it is

unlikely that a single disaster has an impact on multiple regions.

2.2 Measuring the intensity of climate events

Ideally, analyses of climate disasters should incorporate variables that directly reflect the

intensity of climatic events. For instance, precipitation data, particularly deviations from

historical averages, serves as a more precise indicator of rainfall events. Similarly, deviations
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in average temperatures are more effective for capturing episodes of drought. However,

detailed subnational data for these variables is only publicly available on an annual basis,

which limits our ability to analyze the monthly impact of climate variations on prices and

other economic factors.

In this paper, we utilize the number of people affected by disasters as a proxy variable;

however, this approach presents certain challenges. For example, densely populated urban

areas may report a higher number of affected individuals even during moderate climate

events, simply due to population concentration. Moreover, limited access to healthcare

services can exacerbate the reported number of affected individuals, thereby skewing the

data.

To address these challenges, we estimate the conditional correlation between our proxy

variable, the number of people affected by disasters relative to the total population in each

region, and relevant climate variables (specifically, the average deviations from historical

averages for precipitation and temperature) through simple regression analysis. We employ

both ordinary least squares (OLS) and fixed effects panel regression models. This analysis

is conducted on an annual basis, which inherently limits the number of observations. The

results of this regression are summarized in Table 8 in the Appendix.

The relationship between our proxy variable and climate-related variables is estimated

to be positive and significant, even when controlling for population density and access to

healthcare services. Furthermore, the regression results indicate an R-squared value of

nearly 30 percent for rainfall events and approximately 60 percent for droughts. These

values suggest that a substantial portion of the variability in the number of individuals

affected by disasters can be attributed to changes in climate conditions, thereby validating

the use of our proxy variable for analyzing the impacts of climate events on prices.
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Table 1: Descriptive statistics for the disaster events of rainfalls and droughts across the 24
regions in Peru, using the months from 2003 to 2018.

Rainfall (s = 1) Droughts (s = 2)

Region j Count Average x
(1)
j,t St.Dev. Count Average x

(2)
j,t St.Dev.

Amazonas 172 0.06 0.131
Ancash 88 0.15 1.059 4 7.42 13.425
Apurimac 158 0.51 1.915 21 4.25 7.882
Arequipa 68 0.41 0.740 7 0.05 0.016
Ayacucho 117 0.20 0.662 9 1.69 2.131
Cajamarca 152 0.09 0.687 1 0.00 0.000
Cusco 116 0.08 0.370 5 0.32 0.299
Huancavelica 140 0.33 1.113 22 1.53 4.492
Huanuco 123 0.18 0.746 7 0.55 1.278
Ica 31 0.70 1.237 4 0.99 1.768
Junin 97 0.03 0.057 2 2.89 4.077
La Libertad 74 0.33 2.209 1 0.00 0.000
Lambayeque 46 0.47 1.341 5 1.09 1.349
Lima 32 0.01 0.029 3 0.01 0.009
Loreto 18 0.04 0.082
Madre de Dios 19 0.42 1.473 2 3.74 0.087
Moquegua 43 1.66 4.508
Pasco 123 0.04 0.088 1 1.03 0.000
Piura 91 0.53 1.705 8 1.66 2.458
Puno 80 0.09 0.221 2 2.90 2.920
San Martin 78 0.08 0.226 5 0.16 0.238
Tacna 25 0.52 0.720 3 1.44 1.101
Tumbes 57 2.14 5.503 3 35.89 23.639
Ucayali 37 0.07 0.306 1 0.05 0.000
Average 83 0.38 6 3.22

For the 24 regions in Peru in the first column, we report the number of events from 2003 to 2018 (Count),

the sample average of the disaster variable x
(s)
j,t , defined in (1) and measured as a percentage, over the 192

months in the period from 2003 to 2018 (Average), for region j and disaster s = 1, 2, and the corresponding
sample standard deviation (St.Dev.).

3 Data: prices and production

The database consists of unitary prices and production information for fourteen food items

at regional level collected by the Peruvian national statistical agency (INEI).2 Information

is reported in the domestic currency, Peruvian nuevos soles (≈ USD 0.25), and at a monthly

2Peru’s National Institute of Statistics and Information
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Table 2: Descriptive statistics for the disaster events of rainfalls and droughts for each
month, using all 24 regions in Peru and all years from 2003 to 2018.

Rainfall (s = 1) Droughts (s = 2)

Month Count Average x
(1)
j,t St.Dev. Count Average x

(2)
j,t St.Dev.

January 264 0.427 1.939 36 4.300 9.797
February 269 0.769 2.621 7 6.232 13.173
March 267 0.689 2.365 9 5.455 14.973
April 225 0.239 1.123 3 0.171 0.125
May 142 0.073 0.346 4 0.090 0.080
June 98 0.034 0.119 3 0.320 0.272
July 100 0.042 0.150 3 0.086 0.051
August 90 0.027 0.101 9 0.520 1.244
September 107 0.053 0.197 7 1.668 2.233
October 133 0.041 0.107 10 0.191 0.361
November 138 0.040 0.102 12 1.615 2.654
December 152 0.040 0.098 13 3.230 5.717

For each month, we report the number of events from 2003 to 2018 (Count), the sample average of the

disaster variable x
(s)
j,t , defined in (1) and measured as a percentage, over all 24 regions and the 16 years from

2003 to 2018 (Average), for disaster s = 1, 2, and the corresponding sample standard deviation (St.Dev.).

basis for the period between 2003 and 2018. The food items are grouped into perishable and

semi-durable products, which are determined by storage life duration under recommended

conditions.3 We consider perishable products those that can be stored up to six months,

while semi-durable above that threshold.

Table 3 summarizes the prices and production statistics for the fourteen food items in

the analysis. To facilitate the comparison between products, we calculate the standard

deviation-to-average ratio, which is a broad representation of volatility within a product.

The perishable products are more volatile than semi-durable products, but these volatility

differences are non-significant. This may indicate that perishable products are more flexible

than semi-durable products, and can therefore adjust to external shocks more quickly. Also,

price volatility is correlated with production volatility (the correlation coefficient is 0.35).

Important to notice that the fourteen products considered in the analysis represent,

nearly, fifty percent of the food consumer price index (CPI). The chicken, milk and rice

3Storage life information is obtained from the Food and Agriculture Organization (FAO) of the United
Nations website.
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items, already account by one third of the food price index. Therefore, the analysis stands

relevant for understanding food inflation.

We consider food CPI, and product yearly crop yield as relevant control variables into

the analysis. While there is not an individual CPI for all the food items in the sample,

we consider 8 CPI group index that are further assigned to each individual food item.

The groups (with the corresponding assigned items) are as follows: Fruit (Banana, Lemon,

Orange, and Papaya), Sugar, Oil, Meat (Chicken), Milk & Eggs (Milk, and Egg), Tubers

(Potato), Vegetables (Carrot, Garlic, and Onion), and Rice. On the other hand, the product

crop yield variable is available at yearly basis for each food item in the sample, thus is

matched to each month in a year. Both variables are collected by the Peruvian national

statistical agency (INEI).

4 Empirical study

We discuss the design of our empirical study which focusses on the estimation of the impacts

of natural disasters on food prices and production. The empirical estimation results are

obtained from the two-way linear fixed effects panel regression framework which accommo-

dates unobserved confounder factors within products and regions, and time-varying trends.

Given that the disaster variable does not vary across products but only across regions, the

standard errors can only be clustered at the regional level.

4.1 Empirical design

Our empirical study adopts the two-way linear fixed effects panel model, which can be

represented in least squares dummy variable (LSDV) form as given by

log pi,j,t = µi,j + γi,t + θt +
3∑

τ=0

(
β1,τx

(1)
j,t,τ + β2,τx

(2)
j,t,τ

)
+ ϕ log ci,j,t+12 + ϵi,j,t (2)
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Table 3: Descriptive statistics for food prices and production from 2003 to 2018.

Prices (in sol, per kg.) Production (per tn.)
Type Average St.Dev. Ratio Average St.Dev. Ratio

Banana Perishable 1.31 0.50 0.38 7528 9650 1.28
Carrot Perishable 1.51 0.66 0.44 966 1916 1.98
Chicken Perishable 7.75 1.77 0.23 3715 10648 2.87
Egg Perishable 4.65 0.87 0.19 1069 2419 2.26
Lemon Perishable 3.02 1.69 0.56 1031 2756 2.67
Milk Perishable 2.49 0.34 0.14 5715 8124 1.42
Orange Perishable 1.27 0.51 0.40 1824 4411 2.42
Papaya Perishable 2.25 1.01 0.45 711 1304 1.83
Garlic Semi-durable 7.10 3.20 0.45 657 2306 3.51
Oil Semi-durable 6.11 1.02 0.17 2435 5599 2.30
Onion Semi-durable 1.69 0.64 0.38 3500 8923 2.55
Potato Semi-durable 1.13 0.40 0.36 18631 32886 1.77
Rice Semi-durable 2.20 0.44 0.20 17365 31706 1.83
Sugar Semi-durable 2.28 0.50 0.22 158715 140420 0.88

Average Perishable 3.03 0.92 0.35 2820 5154 2.09
Average Semi-durable 3.42 1.03 0.29 33551 36937 2.14

For each month, we report the sample average (Average), sample standard deviation (St.Dev) and the
ratio of sample standard deviation against sample average (Ratio = St.Dev. / Average) for the prices (in
Peruvian nuevos soles ≈ USD0.25) and production (in tonnes kilogram, tn.) for 14 products which can be
classified as Perishable or Semi-durable. The averags of these statistics are also provided for the product
groups of Perishable (8 products) and Semi-durable (6 products). We notice that the unitary price for Oil
is determined in litters and for Milk in grains (410 gram).

where pi,j,t is the price (in levels or relative to overall food prices) of product i = 1, . . . , 14,

in region j = 1, . . . , 24, and for monthly time index t = 1, . . . , 192, with product/region

effect µi,j (consisting of 14× 24 = 336 coefficients), overall time effects θt (consisting of 168

coefficients due to the 24 periods absorbed by lags and forwards in the model specification),

and product/time effect γi,t (consisting of 14 × 192 coefficients), variable x
(s)
j,t,0 is a proxy

for damages associated to rainfalls (s = 1) and droughts (s = 2) in region j at time t,

x
(s)
j,t,1 = (x

(s)
j,t−1,0 + x

(s)
j,t−2,0 + x

(s)
j,t−3,0)/3 is the average of the past three months, representing

the previous quarter (Q1), x
(s)
j,t,2 = (x

(s)
j,t−4,0 + x

(s)
j,t−5,0 + x

(s)
j,t−6,0)/3 is the average representing

the quarter before last (Q2), x
(s)
j,t,3 = (x

(s)
j,t−7,0 + . . .+ x

(s)
j,t−12,0)/6 is the average representing
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the half-year before last half-year (H2), the regression coefficients βs,τ , for s = 1, 2 and

τ = 0, 1, 2, 3, correspond to x
(s)
j,t,τ and are pooled over all 24 regions, ci,j,t+12 is the forward-

looking variable of the consumer price index (CPI), consisting of 8 groups assigned to each

individual food item as described in Section 3.1, with regression coefficient ϕ and is fully

pooled, and ϵi,j,t is the noise term with mean zero, variance σ2
ϵ and independently distributed

across all product i, region j and time t.

The panel data model in (2) can be estimated using standard fixed effect estimation

methods. The key explanatory variable x
(s)
j,t,0 takes the value of zero in the absence of

disasters in the month associated with time t and in region j. The panel data analysis can

therefore be interpreted as a difference-in-differences implementation where β
(s)
s,0 captures

the average effect of disasters on prices by comparing the differences between affected and

unaffected regions, while accounting for the differences within regions. We further take

into account events that took place in previous months as we can expect effects to endure

over a longer time period. For example, rainfalls can damage the local infrastructure which

need some time to get repaired. A malfunctioning infrastructure can have much effect

on the economy, for consumers and businesses, and therefore on local prices of food. We

pool these past events into totals of events of the last three months (Q1), of the three

months before Q1 (Q2) and of the last six months before Q1 and Q2 (H2). We also control

for demand expectations which are captured in the consumer price index (CPI), denoted

by ci,j,t+12. The modern monetary theory suggests that prices are set in advance (GalÃ,

2010), given that producers attempt to predict future demand fluctuations. As discussed in

Section 3.1, we have eight CPI groups that are assigned to each individual food item: Fruit

(Banana, Lemon, Orange and Papaya), Sugar, Oil, Meat (Chicken), Milk & Eggs (Milk and

Egg), Tubers (Potato), Vegetables (Carrot, Garlic and Onion) and Rice. Finally, ϵi,j,t the

disturbance term is assumed to be homoskedastic, it has zero mean and constant variance

σ2
ϵ > 0.
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4.2 Disentangling demand versus supply effects

We introduce production information in equation (2) to account for supply shocks; see

Kilian (2009). For this purpose, we formulate a system of equations in order to disentangle

the demand and supply effects. Similar strategies based on systems of demand and supply

equations have been widely utilized in microeconometrics; see, for example, Zoutman et al.

(2018). When estimation results show significant effects on prices after controlling for

production, while significant effects related to production also appear, we infer that disasters

affect prices through the supply channel. Otherwise, there are demand-specific shocks that

play an important role to understand the effects of disasters on prices. Specifically, the

system of equations is determined as follows:

log pi,j,t = µ
(p)
i,j + γ

(p)
i,t + θ

(p)
t +

3∑
τ=0

ω(p)
τ log qi,j,t,τ +

2∑
s=1

3∑
τ=0

β(p,s)
τ x

(s)
j,t,τ + ϕ(p) log ci,j,t+12 + ϵ

(p)
i,j,t,

log qi,j,t = µ
(q)
i,j + γ

(q)
i,t + θ

(q)
t +

3∑
τ=1

ω(q)
τ log pi,j,t,τ +

2∑
s=1

3∑
τ=0

β(q,s)
τ x

(s)
j,t,τ + ϕ(q) log Yi,j,t + ϵ

(q)
i,j,t,(3)

where the same notation is adopted as for the LSDV model in equation (2), with product

i = 1, . . . , 14, region j = 1, . . . , 24, and monthly time index t = 1, . . . , 192, index τ refers

to the periods current (τ = 0), Q1 (τ = 1), Q2 (τ = 2) and H2 (τ = 3), where pi,j,t and

qi,j,t represent prices and production levels, respectively, and Yi,j,t is the product’s yearly

crop yield, and ci,j,t+12 is the forward-looking consumer price index (CPI). The crop yield

is subject to weather and disaster conditions since changes in crop yield can lead to either

over or under-production during the season. Also, the instantaneous effect of log-price at

time t on log-production at time t is excluded in the model, hence, we start at τ = 1 rather

than τ = 0. Finally, the baseline model equations in (3) assume that the residual series ϵ
(q)
i,j,t

and ϵ
(p)
i,j,t are mutually uncorrelated at all exclusive combinations of i, j, t. This assumption

implies that both equations in (3) can be estimated via fixed effects regression methods

separately. At a later stage, we relax this assumption for robustness considerations.
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Table 4: The rainfall and droughts effects on prices

Prices, in log Relative prices, in log
All Semi-durables Perishables All Semi-durables Perishables

Rainfall 0.0981* 0.158** 0.0546 0.101* 0.163** 0.0554
(0.0505) (0.0610) (0.0761) (0.0524) (0.0614) (0.0780)

Rainfall Q1 0.129 0.150 0.111 0.130 0.154 0.109
(0.105) (0.163) (0.157) (0.108) (0.167) (0.162)

Rainfall Q2 0.288** 0.106 0.409** 0.291** 0.108 0.411**
(0.137) (0.143) (0.174) (0.139) (0.151) (0.176)

Rainfall H2 -0.0201 -0.355 0.208 -0.0241 -0.370 0.210
(0.184) (0.275) (0.222) (0.189) (0.280) (0.228)

Droughts 0.0470 0.107*** 0.000926 0.0496 0.111*** 0.00220
(0.0790) (0.0294) (0.121) (0.0820) (0.0315) (0.124)

Droughts Q1 0.179* 0.276** 0.0964 0.184* 0.283** 0.0995
(0.0908) (0.110) (0.201) (0.0965) (0.110) (0.207)

Droughts Q2 0.126 0.215** 0.0509 0.131 0.221** 0.0537
(0.132) (0.0849) (0.190) (0.137) (0.0888) (0.197)

Droughts H2 0.453** 0.475* 0.433 0.463** 0.491* 0.438
(0.189) (0.259) (0.409) (0.204) (0.258) (0.425)

log CPIt+12 0.289*** 0.255*** 0.319*** 0.266*** 0.229*** 0.299***
(0.0444) (0.0354) (0.0695) (0.0539) (0.0393) (0.0773)

Observations 53,322 21,536 31,786 53,322 21,536 31,786
N 336 144 192 336 144 192
Overall R-sq. 0.978 0.984 0.973 0.855 0.902 0.815
Within R-sq. 0.0423 0.0510 0.0396 0.0377 0.0438 0.0364
Hausman test 60.00 80.38 50.61 36.88 32.63 50.33

Robust standard errors in parentheses, with *** p<0.01, ** p<0.05, * p<0.1, and N represents the number
of region/product combinations included in the regression. The table includes the regression results for the
14 food items (All column), as well as considering only Semi-durable items (6 products), and Perishable
items (8 products). The panel regressions include 168 monthly time effects, while the number of product
time-varying effects varies by grouping, 2,352 for the all items regression, while 1,344 and 1,008 fixed effects
for the Semi-durable and Perishable items regression respectively unless missing information. Standard
errors are clustered at regional level. The Chi2 statistic is reported for the Hausman test.

4.3 Empirical results

The main results are reported in Table 4. The first three columns report the effects on prices,

while the last three columns report the effects on relative prices. In both specifications,

the Hausman-Wu-Durbin test statistic is presented at the bottom of this Table. This χ2

statistic shows that model parameters are adequately captured by a fixed effects regression,
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see Davidson and MacKinnon (1990) for further details on the test implementation. The

overall and within coefficients of determination (R2) are also reported for both specifications

and they show rather different values. The overall R2 is measured for all fitted values of the

dependent variable based on the fixed effect regression estimates using the original predictor

variables. Hence, this R2 is based on many (noisy) data points. The within R2 is based

on mean variations (to allow for the presence of fixed effects) which are less noisy relative

to the original data. Hence we observe major differences between the two R2 values. To

verify the stationary behaviour of the data in the time dimension, we have computed the

augmented Dickey-Fuller (ADF) test statistic for panel data as described in Choi (2001).

The ADF test statistic strongly rejects the null hypothesis of unit root (non-stationarity) for

all residual terms; see Table 5. The individual ADF (Dickey and Fuller, 1979) and Phillips-

Perron (Phillips and Perron, 1988) tests for each city/product time series also reject the

null hypothesis of the presence of a unit root in the time series; see Figure 1 for a graphical

display of all city/product time series. We can conclude from these unit root test statistics

that the regression results presented below are not spurious.

Table 5: Augmented Dickey-Fuller test for panel data, statistics

log price, residual log rel. price, residual
w.o/ trend w/ trend w.o/ trend w/ trend

Inverse chi-squared (668) 6107.4 5680.3 6067.4 5644.3
Inverse normal -60.8 -58.3 -60.6 -58.1
Inverse logit t (1674) -91.5 -85.0 -90.8 -84.4
Modified inv. chi-squared 148.8 137.1 147.7 136.1

The table reports the statistic associated to the Augmented Dickey-Fuller test, the inverse chi-squared test
has 2*N degree of freedom, where N is the number of product/region combinations, equal to 334 due that
one product has insufficient observations for the test, and the inverse logit t has 5*N +4 degree of freedom,
equal to 1,674. The null hypothesis is given by All panels contain unit root, while the alternative hypothesis
by At least one panel is stationary.

The regression results show that both rainfalls and droughts significantly affect prices.

While rainfalls are estimated to contemporaneously and after four to six months (Q2) affect
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prices, droughts are estimated to affect prices after one to three months (Q1) and after half

year (H2). These effects vary depending on whether the events affect semi-durable or

perishable products. Prices of perishable products are only affected by rainfalls during Q2,

while those of semi-durable products are affected by both rainfalls and droughts, with the

latter affecting prices from more than a year ago. Rainfalls increase prices of semi-durable

product instantaneously. The results imply the predictions that a one standard deviation

increase in the number of people being affected by rainfalls, increases the price of perishable

products by 0.46 percent during Q2, and 0.18 percent at once for semi-durable products.

Meanwhile, such an increase in the number of affected people due to droughts, is expected

to increase the price of semi-durable products at once by 0.12 percent, and 1.52 percent in

H2. These findings are robust to the use of relative prices instead of actual price levels. The

advantage of using relative prices is that they implicitly account for unobserved seasonal

factors and possibly for cost variables, such as fuel and energy prices, which are arguably

similar across regions.

The regression results in Table 4 do not confirm the customer anger hypothesis of Cavallo

et al. (2014) in the short-run (though we do not analyze the price equilibrium effects in

the long-run). The impact of price increases due to rainfalls is short-lived, given that all

estimates associated with lagged variables beyond six months are not significant. However,

the impact of price increases due to drought events has a longer duration. This finding is

consistent with the recent evidence provided by Klomp (2020); Heinen et al. (2019); Parker

(2018) where they use aggregated consumer price indexes across developed and developing

countries.

In Table 6 we present the results for the system of equations in (3). The first three

columns report the result for the price equation, while the latest three column are for pro-

duction. We also report the Durbin-Wu-Hausman test statistics (Davidson and MacKinnon,

1990) at the bottom of Table 6. The χ2-statistic for the Durbin-Wu-Hausman test shows

that the model parameters are adequately captured by fixed effects regressions except for
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Figure 1: Individual unit-root tests

(a) Augmented Dickey-Fuller

(b) Phillip-Perron

The figure summarizes the associated t-statistic to the Augmented Dickey-Fuller and Phillip-Perron test
for each regional/product combination (336 series), respectively. The null hypothesis is given by The series
follows a random walk process without drift, and the critical values are determined at -3.49, -2.89 and -2.58
for the 1, 5, and 10 percent significant levels. The red line divides perishable from semi-durable products.

the price equation for semi-durable products. The price equation controls for production

variables, and vice-versa. The relationship between prices and production is negative as it

clearly should be. Higher production leads to lower prices. Noticeably, there is no longer

significant effects of either droughts or rainfalls on prices when production controls are

present in the model. Meanwhile, both rainfall and drought events have estimated coeffi-

cients which imply the reduction of production quantities. While rainfalls show a reduction
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in the production of semi-durable and perishable products, droughts only show a reduction

in the production of perishable products. These results are confirmed by using relative

prices and production, see Table 9 in the Appendix. From these findings we can conclude

that disasters affect prices via the supply channel.

Our results contribute to a growing literature aimed at quantifying the economic effects

of climate change. El Niño Southern oscillations (ENSO) reduce the global production of

maize, rice, and wheat (Iizumi et al., 2014), as well as the overall production of cereal

(Dorosh et al., 2016). Likewise, droughts and extreme heat often reduce cereal production

through both harvested area and yields (Lesk et al., 2016). Meanwhile, recent evidence

suggests that the inter-temporal demand preferences for consuming tomorrow instead of

today remained unaffected after the occurrence of natural disasters (Akesaka, 2019). Indeed,

the affected individuals are expected to become more patient after such events (Hanaoka

et al., 2018), which makes less likely to attribute a price increases to impatient consumers.

To the best of our knowledge, this paper is the first documenting the effects of natural

disasters on both prices and production within the controlled institutional environment of

a single country. Therefore, allowing to properly disentangle the mechanism through which

a disaster increases prices.

Finally, our results show that the reduction in production dominates over the increase

in prices. For instance, one standard deviation increase in the percentage of people affected

by rainfalls leads to an average price increase of 0.46 percent for perishable products, while

it leads to a 3.11 percent decline on the production of those products. Therefore, the

associated gross income (production times prices) declines, which mask the increase on

prices. The gross income decline due to disasters is consistent with the discussions in the

macroeconomic literature; see, for example, Tol (2009) for a comprehensive review. In our

analysis based on a data set with a high granularity level, we can confirm that more rainfalls

will lead to income declines but will also attribute to production declines which are much

stronger than associated price increases.
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Table 6: The rainfall and droughts effects on prices and production

Y = log Prices, X= log Production Y = log Production, X = log Prices
All Semi-durables Perishables All Semi-durables Perishables

X -0.00813** -0.00447** -0.0110*
(0.00324) (0.00206) (0.00636)

X-3 -0.0145*** -0.00715 -0.0186*** -0.109 -0.184 -0.0825
(0.00376) (0.00526) (0.00502) (0.156) (0.287) (0.173)

X-6 0.00331 0.00888* 0.00391 0.800*** 1.488*** 0.584**
(0.00508) (0.00500) (0.00752) (0.209) (0.452) (0.214)

X-12 0.00409 0.0103 0.00740 -0.937*** -1.421*** -0.783***
(0.00651) (0.0114) (0.00745) (0.217) (0.458) (0.227)

Rainfall 0.0613 0.240 0.0350 -0.133 -6.275** 1.289
(0.0826) (0.204) (0.0834) (1.082) (2.945) (1.039)

Rainfall Q1 -0.0286 -0.0419 -0.0221 0.163 1.418 -0.219
(0.160) (0.583) (0.148) (1.646) (3.674) (1.469)

Rainfall Q2 0.343* 0.674 0.266 -2.140** -0.214 -2.749***
(0.192) (0.681) (0.183) (0.778) (2.737) (0.755)

Rainfall H2 -0.106 -0.642 -0.0601 -1.919 -7.974 -0.231
(0.304) (1.276) (0.286) (1.620) (5.004) (2.385)

Droughts -0.0342 -0.0371 -0.0335 0.177 -1.254 0.403
(0.0751) (0.184) (0.0864) (0.569) (1.457) (0.888)

Droughts Q1 -0.126 -0.651 -0.0968 -0.422 -2.837 0.0589
(0.165) (0.826) (0.202) (1.908) (2.514) (2.136)

Droughts Q2 -0.185 0.0107 -0.209 -2.265** 0.278 -2.852***
(0.137) (0.524) (0.132) (0.977) (1.773) (0.859)

Droughts H2 -0.120 0.0775 -0.141 -1.974 -2.515 -1.819
(0.286) (1.165) (0.289) (1.367) (7.702) (1.745)

log Z 0.319*** 0.291*** 0.327*** 0.824*** 0.936*** 0.810***
(0.0639) (0.0782) (0.0719) (0.0792) (0.130) (0.0842)

Number of obs 29,389 5,401 23,988 36,731 9,578 27,153
N 214 55 159 274 88 186
Overall R-sq. 0.978 0.975 0.978 0.908 0.849 0.936
Within R-sq. 0.0569 0.0941 0.0526 0.0631 0.0294 0.114
Hausman test 116.87 44.7 97.5 341.91 462.95 215.03

Robust standard errors in parentheses, with ∗∗∗ p <0.01, ∗∗ p <0.05, ∗ p <0.1, andN represents the number
of region/product combinations included in the regression. The table includes the regression results for the
14 food items (All column), as well as considering only Semi-durable items (6 products), and Perishable
items (8 products). The panel regressions include 168 monthly time effects, while the number of product
time-varying effects varies by grouping, 2,352 for the all items regression, while 1,344 and 1,008 fixed effects
for the semi-durable and perishable items regression respectively unless missing information. Standard
errors are clustered at regional level. The Hausman test is a χ2 distributed, with the number of degree
of freedom determined by the matrix rank of the variance of the difference between the coefficients of the
fixed and random effects estimators. The variable Z stands for CPIt+12 in the price regressions and for
crop yield in the production regressions.
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4.4 Robustness to regional and product heterogeneity

A potential shortcoming of the model in equation (2) is its implied homogeneous response

of disasters on prices. Hence, the model ignores the regional and product differences which

could emerge due to preparedness capacity. We therefore enable a more general formulation

of the model that allows for variability across regions and products in the average response

β. Specifically, we consider the more general model specification given by the equations

log pi,j,t = τi,j + γi + θt +
2∑

s=1

3∑
τ=0

α
(s)
i,j,τx

(s)
j,t,τ + ϕ log ci,j,t+12 + ϵi,j,t,

τi,j = µi,j + υi,j,

α
(s)
i,j,τ = β(s)

τ + u
(s)
i,j,τ ,

(4)

where the same notation is used as in model equation (2), and additionally, where υi,j and

u
(s)
i,j,τ are random variables with zero mean and constant standard deviation, συ and σu

respectively. These two random variables are assumed to be uncorrelated with ϵi,j,t, for all

i, j, t, while there is also no correlation between regions and across events. In this setting,

µi,j and β
(s)
τ are still regarded as fixed, while υi,j+u

(s)
i,j,τx

(s)
j,t,τ are time-varying random effects

to allow for heterogenous effects of disasters on prices. Hence, for this model specification,

the effects of disasters can vary across products. We notice that for the model extension

above, we only consider product fixed effects instead of the time-varying version in the model

of the previous section, in order to avoid parameter identification issues. This extension of

the model is not new and is known in the literature as multilevel and/or hierarchical linear

models; see, for example, Mcculloch and Neuhaus (2014) for a review of the necessary

modifications for parameter estimation.

The estimation results are summarized in Table 7. There are significant effects on prices

from both rainfalls and droughts. The price of perishable products is affected by rainfalls,

while the semi-durable price is affected by both rainfalls and droughts. Similar from Table

4, we find that rainfalls affect perishable prices after four to six months (Q2), while droughts
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affect prices of semi-durable products only after one to six months (Q1 and Q2). Also, the

estimates show that rainfalls also affect the prices of semi-durable products in Q1 and Q2.

Table 7: The rainfall and droughts effects on prices via multilevel mixed-effects linear
regression using the method of maximum likelihood estimation.

Prices, in log
All Semi-durables Perishables

Rainfall 0.0297 -0.0758 0.0986
(0.0986) (0.132) (0.135)

Rainfall Q1 0.359 0.662* 0.151
(0.266) (0.370) (0.366)

Rainfall Q2 0.732*** 0.775** 0.701*
(0.280) (0.327) (0.416)

Rainfall H2 -0.0285 -1.066 0.681
(0.401) (0.683) (0.474)

Droughts 0.0600 0.0536 0.0505
(0.0537) (0.0693) (0.0789)

Droughts Q1 0.318* 0.391* 0.251
(0.179) (0.230) (0.252)

Droughts Q2 0.320** 0.563*** 0.123
(0.158) (0.190) (0.221)

Droughts H2 0.412 0.277 0.492
(0.293) (0.414) (0.407)

log CPIt+12 0.446*** 0.409*** 0.480***
(0.0276) (0.0372) (0.0416)

Number of obs 53,324 21,538 31,786
N 336 144 192
LogLik 11,368.7 2,421.9 9,473.3

Robust standard errors are presented in parentheses, with ∗ ∗ ∗ p <0.01, ∗∗ p <0.05, ∗ p <0.1, and N
represents the number of region/product combinations included in the regression. The regression results
are presented for all 14 product items (“All”), as well as considering only semi-durables (6 products) and
perishables (8 products). The panel regressions include 168 monthly time effects, while the number of
item fixed effects varies by grouping, 14 for the All items regression, while 6 and 8 fixed effects for the
semi-durables and perishables items regressions, respectively. The (pseudo) maximized Log-Likelihood
(“LogLik”) value is reported for each regression.
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4.5 Robustness to correlated residuals

The estimation of the parameters in the demand and supply equations in (3) assumes that

both residual terms, ϵ
(p)
i,j,t and ϵ

(q)
i,j,t, are uncorrelated. However, unobservable factors such as

product or land quality as well as market structure variables, could affect both equations

simultaneously, thus leading to inefficient estimates of model parameters in (3).

To overcome the potential efficiency issue, we consider a simplistic approach that allows

for a simultaneous correlation between ϵ
(p)
i,j,t and ϵ

(q)
i,j,t. Such model is typically know as the

Seemingly Unrelated Regression (SUR) method (Zellner, 1962). Specifically, we consider

the following error covariance matrix

Ωj = Var(ϵ
(q)
i,j,t, ϵ

(p)
i,j,t), for all i, t, in a given j (5)

where Ωj is an unknown non-singular matrix that needs to be estimated. Therefore, we

proceed to estimate the parameters in the system of equations (3), together with Ωj, via

the feasible generalized least squares (FGLS) method. The FGLS method is a two-step

approach, where the residuals of the independent regressions in (3) are used to compute

the elements of Ωj. In a second step, we consider a generalized least squares regression to

compute the parameters of the model, see for instances Srivastava and Dwivedi (1979) for

a summary of SUR methods.

The estimation results are presented in Table 10 of the appendix section. The Breusch-

Pagan test statistic is presented at the bottom of the table. The χ2 statistic shows that

we can reject the hypothesis that the correlation between residual terms is zero but for

semi-durable products. The first three columns report the results for the price equations,

while the last three columns report those for production. The reported estimation results in

Table 10 confirm the results reported in Tables 6 and 9, and indicate a negative relationship

between prices and production. Likewise, after controlling for production, we do not find

significant effects of either rainfalls or droughts on the price of semi-durable products, while
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still one positive effect of Rainfalls Q2 on the price of perishable. Meanwhile, rainfalls

negatively affect the production of both semi-durable and perishable products.

Overall, the results confirm the existence of a supply channel mechanism that is able to

explain the price increases in Table 4, and in particular for semi-durable products.

Figure 2: The impact of rainfalls events across different intensity

(a) Prices

(b) Production and value-added

The figure plots the significant βl coefficients associated to rainfall events as estimated from the 10th to the
90th percentile, with the standard errors clustered at regional level. The percentiles are estimated based
on the severity of the rainfall events in each region.
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4.6 The role of extreme events

The macroeconomic literature highlights the importance of extreme events to uncover the

negative impacts of disasters on economic growth. Indeed, most empirical evidence only

analyze major events such as earthquakes or storms; see, for example, Cavallo et al. (2013);

Fomby et al. (2013). So far we have extensively given evidence of a decline in production

and an increase in price after a disaster event has taken place. Overall, the decline in

Peruvian gross domestic product could mask these two opposite forces. To verify the role

of extreme events in our analysis, we analyze the distributional impacts of disasters by

grouping them into percentiles. In effect, we estimate the basic regressions as implied by

model equation (2) for prices and production by considering the set of rainfall events that

are above the q-percentile. We only consider only rainfall events due to data availability

as we need sufficient observations to classify observations events into percentiles. Rainfall

events occur much more frequently than drought events in Peru overall. Furthermore, we

do not group lagged rainfall events (contemporaneous, Q1, Q2 and H2) because each event

needs to be classified according to its magnitude (imposed by a specific quantile). When we

then average the events after such classifications over time, the associated severity of the

impact can be either overestimated or underestimated. We therefore consider the regression

equation (2) but with monthly lags up to a year (L1, L2, . . ., L12).

The results are summarized in Figure 2. We only plot the estimated coefficients with

corresponding p-values below 0.10. Panel (a) presents the results for prices and panel (b)

for production. A key finding is that as we increase the percentile, the impact of rainfalls

become more severe. The contemporaneous impact of rainfalls on prices decline with the

severity of the disaster, while the opposite for the delayed effects (Rainfall L3, L5, L6, and

L7). Hence we find that higher price increases occur after more extreme events. Similarly,

we observe a stronger decline on production associated to the severity of the events (Rainfall

L6 and L7), although the opposite happens after nine months (Rainfall L9).

We can conclude that the negative macroeconomic effect during extreme events can
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be explained by the decline of production. Nevertheless, the contemporaneous increase

on prices could easily, partially, offset the decline in production during moderate or less

severe events. In the extreme case of no delayed effects on either prices or production,

the simple contemporaneous increase on prices could misguidedly lead to conclude that

the gross domestic product in Peru increases during the occurrence of moderate disasters

events.

5 Conclusions

In this study we have considered the effects of two natural disasters, intense rainfalls and

droughts, on prices and production for fourteen food products in twentyfour regions in Peru.

By analyzing the data at this high granularity level, we have been able to address two key

empirical shortcomings in similar macroeconomic studies: (i) data aggregation, and (ii)

counterfactual biases. First, our detailed sub-national price and production information in

the data set allows us to disentangle real from nominal effects, while accounting for within-

country differences. Second, the large variety of regions in Peru, coupled with the random

nature of climate events, allows us to establish a natural counterfactual for each event by

comparing prices and production between unaffected and affected regions in Peru, and even

within regions.

Our empirical results strongly indicate that the disaster events of rainfalls and droughts

increase prices and reduce production levels at the same time. The disaster effects vary

conditional on the storage life duration of the products. Perishable products are affected

only by rainfalls, while both disasters affect semi-durable products. The price increases

due to rainfall is short-lived, while droughts effects have a longer duration. The price

increase can mainly be explained by the decline in production which indicate that the

supply channel is the main mechanism through which disasters affect prices. Notably,

the decline in production is stronger during extreme events, albeit the increase in prices.
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These empirical findings and conclusion remain when we allow for regional and product

heterogeneity, when we consider correlated unobservable factors that explain both prices

and production, and when we recursively estimate the individual monthly effects of disasters

over time.
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A Additional Tables

Table 8: Relationship between climate factors and disaster-affected populations, yearly
frequency

Precipitation, ratio Temperature, ratio
OLS FE OLS FE

People aff. by rainfalls 4.764*** 5.756***
(1.795) (1.993)

People aff. By droughts 0.0475 0.168**
(0.0656) (0.0750)

Population ratio 0.0245 0.303 0.00195 0.0443
(0.0239) (0.285) (0.00283) (0.0665)

N. of habitans x doctor 4.28e-05 0.000218*** 1.07e-05* 2.55e-05*
(3.56e-05) (6.11e-05) (5.37e-06) (1.35e-05)

Observations 343 343 70 63
N 24 21
Overall R-sq 0.3183 0.3601 0.4251 0.6469
Within R-sq 0.1854 0.2916

Robust standard errors in parentheses, with ∗ ∗ ∗ p <0.01, ∗∗ p <0.05, ∗ p <0.1, and N represents the
number of regions included in the regression. The regression analysis uses annual data on climate-related
factors such as precipitation (in millimeters) and average temperature (in degrees Celsius), with the number
of people affected by disasters aggregated yearly from monthly data, climate variables expressed as ratios
relative to historical averages per region, and the number of individuals impacted by rainfall and droughts
presented as a percentage of the total population, while the population ratio indicates the percentage of the
population per region and the number of habitants per doctor reflects the average number of individuals
served by each doctor. Finally, OLS stands for Ordinary Least Square, and FE for Fixed Effects Panel
Data regressions.
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Table 9: The rainfall and droughts effects on prices and production, in relative terms

Y = log rel. Prices, X= log rel. Production Y = log rel. Production, X = log rel. Prices
All Semi-durables Perishables All Semi-durables Perishables

X -0.00842** -0.00514** -0.0114*
(0.00323) (0.00240) (0.00621)

X-3 -0.0141*** -0.00952 -0.0175*** -0.123 -0.172 -0.107
(0.00374) (0.00562) (0.00498) (0.158) (0.280) (0.180)

X-6 0.00358 0.00634 0.00482 0.823*** 1.431*** 0.630**
(0.00490) (0.00551) (0.00717) (0.215) (0.427) (0.235)

X-12 0.00332 0.00541 0.00671 -0.936*** -1.395*** -0.788***
(0.00631) (0.0127) (0.00713) (0.228) (0.444) (0.247)

Rainfall 0.0644 0.227 0.0390 -0.186 -6.433** 1.263
(0.0849) (0.211) (0.0862) (1.080) (2.958) (1.041)

Rainfall Q1 -0.0361 -0.117 -0.0232 -0.00680 0.722 -0.249
(0.163) (0.582) (0.151) (1.669) (3.882) (1.479)

Rainfall Q2 0.343* 0.634 0.269 -2.329** -0.829 -2.809***
(0.194) (0.675) (0.188) (0.871) (3.079) (0.828)

Rainfall H2 -0.113 -0.760 -0.0518 -1.986 -7.920 -0.329
(0.313) (1.265) (0.292) (1.629) (5.229) (2.411)

Droughts -0.0307 0.00344 -0.0326 0.154 -1.250 0.379
(0.0807) (0.182) (0.0895) (0.564) (1.475) (0.879)

Droughts Q1 -0.116 -0.600 -0.0938 -0.429 -2.918 0.0780
(0.175) (0.858) (0.207) (1.909) (2.555) (2.145)

Droughts Q2 -0.178 0.0550 -0.206 -2.264** 0.222 -2.830***
(0.148) (0.581) (0.137) (0.987) (1.840) (0.883)

Droughts H2 -0.103 0.316 -0.135 -2.038 -2.747 -1.865
(0.316) (1.297) (0.302) (1.410) (7.929) (1.768)

log Z 0.290*** 0.240** 0.308*** 0.819*** 0.914*** 0.805***
(0.0779) (0.103) (0.0795) (0.0761) (0.136) (0.0832)

Number of obs 29,389 5,401 23,988 36,731 9,578 27,153
N 214 55 159 274 88 186
Overall R-sq. 0.863 0.937 0.822 0.893 0.747 0.938
Within R-sq. 0.0508 0.0718 0.0488 0.0607 0.0278 0.112
Hausman test 146.94 39.91 94.85 277.96 427.06 56.97

Robust standard errors in parentheses, with ∗ ∗ ∗ p <0.01, ∗∗ p <0.05, ∗ p <0.1, and N represents the
number of region/product combinations included in the regression. The regression results are presented
for all 14 product items (“All”), as well as considering only semi-durables (6 products) and perishables (8
products). The panel regressions include 168 monthly time effects, while the number of item fixed effects
varies by grouping, 14 for the All items regression, while 6 and 8 fixed effects for the semi-durables and
perishables items regressions, respectively. The variable Z stands for CPIt+12 in the price regressions and
for crop yield in the production regressions.
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Table 10: The rainfall and droughts effects on prices and production using the Seemingly
Unrelated Regression (SUR) method.

Y = log Prices, X= log Production Y = log Production, X = log Prices
All Semi-durables Perishables All Semi-durables Perishables

X -0.00143 -0.00512 0.00223
(0.00391) (0.00312) (0.00875)

X-3 -0.00515 -0.00714 -0.00278 -0.310** -0.482* -0.337**
(0.00602) (0.00808) (0.0104) (0.128) (0.256) (0.148)

X-6 -0.00334 0.00676 -0.00711 0.765*** 1.166*** 0.684***
(0.00511) (0.00804) (0.00855) (0.141) (0.278) (0.175)

X-12 -0.00321 0.0117 -0.0107 -0.652*** -0.851*** -0.675***
(0.00822) (0.0163) (0.0104) (0.116) (0.200) (0.181)

Rainfall -0.113 -0.120 -0.0999 -0.514 -3.788*** 0.227
(0.0847) (0.310) (0.0800) (0.531) (1.318) (0.639)

Rainfall Q1 -0.270 -0.476 -0.207 0.0350 6.092 -1.284
(0.170) (0.641) (0.165) (2.085) (4.552) (1.487)

Rainfall Q2 0.645*** 1.078 0.617*** 0.121 7.311* -1.173*
(0.229) (0.671) (0.223) (1.178) (3.790) (0.609)

Rainfall H2 -0.240 -0.314 -0.164 -2.319 -17.85*** -0.0236
(0.397) (1.844) (0.298) (1.805) (6.555) (1.792)

Droughts -0.0226 0.350 -0.0594 -0.132 -2.382 -0.0470
(0.0945) (0.385) (0.0899) (0.391) (1.878) (0.548)

Droughts Q1 -0.157 -0.367 -0.154 -0.276 2.785 -0.361
(0.170) (1.330) (0.174) (1.741) (3.068) (1.744)

Droughts Q2 -0.210 -0.484 -0.194 -0.226 18.63*** -1.221
(0.136) (0.789) (0.125) (1.892) (3.798) (1.152)

Droughts H2 -0.00393 0.774 -0.0669 -1.999* -15.74** -1.538
(0.334) (1.921) (0.295) (1.209) (7.638) (1.452)

Z 0.261*** 0.198*** 0.329*** 0.515*** 1.233*** 0.501***
(0.0378) (0.0428) (0.0597) (0.0626) (0.159) (0.0613)

Observations 27,644 5,097 22,547 27,644 5,097 22,547
Breusch-Pagan test 5.484 0.514 16.976 5.484 0.514 16.976

Robust standard errors in parentheses, with ∗ ∗ ∗ p <0.01, ∗∗ p <0.05, ∗ p <0.1. The regression results
are presented for all 14 product items (“All”), as well as considering only semi-durables (6 products) and
perishables (8 products). The panel regressions include 168 monthly time effects, while the number of
item fixed effects varies by grouping, 14 for the All items regression, while 6 and 8 fixed effects for the
semi-durables and perishables items regressions, respectively. The χ2 statistic for the Breusch-Pagan test
is reported for each regression. The variable Z stands for CPIt+12 in the price regressions and for crop
yield in the production regressions.
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