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Abstract

This paper develops a semiparametric estimation method that jointly identifies the prob-

ability weighting and utility functions implicit in option prices. Our econometric method

avoids direct specification of the objective conditional return distributions, which are in-

stead obtained by transforming the options’ implied risk-neutral distributions according to

the posited rank-dependent utility model. We nonparametrically estimate the probability

weighting function using the kernel density of suitable utility-adjusted probability integral

transforms. The parameters of the utility function are estimated by maximizing the resulting

profile likelihood. We establish the asymptotic properties of our estimation procedure, and

demonstrate its good finite sample performance in Monte Carlo simulations. Empirical re-

sults based on S&P 500 index option prices and returns over the period 1996–2023 reveal the

relevance of probability weighting, in particular at the monthly horizon where the weighting

function is inverse-S shaped, which is robust to various specifications of the utility function.
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1 Introduction

Probability weighting is at the heart of the leading non-expected utility models for describing

and understanding risky choices. By distinguishing attitudes toward wealth, as captured by the

utility function, and attitudes toward probabilities, as represented by the probability weighting

function, the decision-theoretic models developed by Quiggin (1982) and Tversky and Kahneman

(1992) can explain a wide variety of traits in economics and finance. Key examples include

consumption-savings decisions, portfolio choice, gambling and insurance (Eeckhoudt et al., 2005;

Barberis, 2013).

Existing evidence of probability weighting comes primarily from experimental studies, in which

subjects choose from, predominantly fictitious, sets of lotteries designed and controlled by the

researcher. Meanwhile, the scarcer real-world evidence of probability weighting is often based on

market prices of contingent claims, such as betting odds (Jullien and Salanié, 2000) or financial

option prices (Kliger and Levy, 2009; Polkovnichenko and Zhao, 2013). Option markets, in

particular, provide detailed information on investors’ attitudes toward risk by trading large

numbers of contracts for a wide range of payoff thresholds. However, unlike in the laboratory,

their objective, or physical, payoff probabilities at any point in time are not known by the

researcher. Market-based measures of probability weighting therefore depend on the correct

specification of conditional distributions. Their estimation based on historical returns requires

imposing a distributional form and/or listing the set of conditioning variables. The latter is

particularly challenging, as forward-looking investors may gather relevant information beyond

the historical data available to the econometrician.1

This paper develops an estimation procedure that does not require direct specification of ob-

jective conditional distributions. Instead, we obtain physical distributions from option-implied

risk-neutral distributions by transformations that follow from the asserted rank-dependent util-

ity model. Our estimator only requires extracting cumulative risk-neutral distributions, which

can be estimated more accurately than risk-neutral densities due to the curse of differentiation.

The marginal utility and probability weighting functions are then estimated by maximizing the

conditional likelihood of returns. Since economic theory puts few restrictions on the shape of

the probability weighting function, we consider its nonparametric estimation. We do so based

on the probability integral transforms (PITs) of marginal-utility adjusted risk-neutral distribu-

tions. Since these PITs are observed for a given utility function, their density can be directly

estimated using nonparametric methods, for which we use a kernel density estimator. By con-

sidering parametric models for the utility function, we obtain a tractable semiparametric profile

likelihood estimator that only requires low-dimensional optimization.2

Econometric theory to disentangle attitudes toward wealth and probabilities using option prices

is limited. This paper fills this gap by formally establishing the identification and asymp-

1In models without probability weighting, missing out on conditioning variables has been attributed to cause
the so-called ‘pricing kernel puzzle’ (Chabi-Yo et al., 2008; Song and Xiu, 2016; Linn et al., 2018).

2As we are primarily interested in the shape of the probability weighting function, we treat the probability
weighting component nonparametrically. Our empirical analysis studies its sensitivity to the parametric form of
the utility function.
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totic properties of our profile likelihood estimator. First, we show that the utility function

parameters are separately identified from the probability weighting function by considering the

utility-adjusted PITs. At the true parameter vector, the latter ought to be independent of condi-

tioning information, which includes the risk-neutral densities themselves. However, for any other

parameter value, the conditional quantiles of the PITs are time-varying under mild regularity

conditions. Since the weighting component for a given probability is fixed, this time variation

can be attributed to an incorrect utility parameter vector, which strictly lowers the profile like-

lihood criterion. The probability weighting function is then identified from the distribution of

the PITs evaluated at the identified utility parameters.

Second, we provide conditions under which the nonparametric estimation of the probability

weighting function does not affect the asymptotic distribution of the utility parameter estimator.

We verify these conditions for the kernel estimator of the probability weighting density based on

the utility-adjusted PITs. A key challenge is that the densities of popular probability weighting

functions diverge for probabilities near zero and one, which jeopardizes the required stochastic

equicontinuity condition. We ensure the latter using a trimming rule that can be implemented

prior to estimation, and by using a censored variant of the likelihood criterion.

Monte Carlo simulations demonstrate the good finite sample performance of our semiparamet-

ric estimator in realistic settings. When inverse-S shaped probability weighting of the form

proposed by Tversky and Kahneman (1992) is present, our profile likelihood estimator of the

risk aversion parameter of the utility function yields more than five times lower mean squared

error (MSE) than the (then incorrectly specified) expected utility-based maximum likelihood

estimator. Meanwhile, in the absence of probability weighting, the profile likelihood estimator

typically has less than double the MSE of the (then correctly specified) maximum likelihood

estimator. Furthermore, a nonparametric bootstrap procedure corresponding to our semipara-

metric estimator yields confidence intervals with accurate coverage rates. Finally, we propose

a test for probability weighting based on the test for correct distributional specification by Bai

(2003), and show that it has good size and power properties.

An empirical analysis of a panel of S&P 500 index option prices and returns spanning the

period 1996–2023 reveals the importance of probability weighting, especially at the monthly

horizon, where the Bai (2003) test rejects the expected utility model. At the monthly frequency,

the probability weighting function takes an inverse S-shape, with larger concave (i.e., locally

risk averse) than convex (i.e., locally risk seeking) regions. In a shorter sample at the weekly

frequency, we find a globally concave probability weighting function. Furthermore, allowing for

probability weighting leads to lower estimates of the constant relative risk aversion parameter

than when probability weighting is ignored. The corresponding bootstrap confidence intervals

suggest that linear utility cannot be rejected. Moreover, the shape of the probability weighting

function is robust to the specification of the utility function. Using a flexible exponential-

polynomial model, the estimated pricing kernel without probability weighting is U-shaped at

the monthly horizon and non-decreasing in the right tail at the weekly horizon. However, when

probability weighting is allowed, the estimated marginal utility functions decrease monotonically.
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1.1 Related literature

A large number of experimental studies report evidence of probability weighting. Gonzalez

and Wu (1999), Abdellaoui (2000), and Bruhin et al. (2010), to name a few, find inverse S-

shaped probability weighting functions that display diminishing sensitivity when probabilities

move away from zero and one. Other experimental papers find a globally concave weighting

function, consistent with probability-driven risk aversion (Van de Kuilen and Wakker, 2011; Qiu

and Steiger, 2011).

Our paper contributes to a growing literature on measuring probability weighting in real-world

settings. Several studies have used individual-level field data, such as insurance choices (Cicchetti

and Dubin, 1994; Barseghyan et al., 2013), to estimate rank-dependent utility models using

micro-econometric methods. Like Barseghyan et al. (2013), we avoid parametric restrictions on

the probability weighting function. However, our method only requires observing the market

prices of risky payoffs, rather than individual holdings. The reliance on market prices is also

common in studies that use betting odds (Jullien and Salanié, 2000; Snowberg and Wolfers, 2010)

and transform them into predicted payoff probabilities by modeling risk preferences. However,

betting odds are for discrete payoffs, whereas we consider financial assets with continuous payoffs.

Option prices are particularly informative about risk preferences, as their variation across strike

prices reveals entire risk-neutral probability densities for the underlying return. Upon dividing

these densities by estimated objective densities, Rosenberg and Engle (2002) and Aı̈t-Sahalia

and Lo (2000) estimate the pricing kernel, or the marginal utility as a function of the aggregate

wealth return. Other pricing kernel estimators avoid modeling the objective distribution by

using maximum likelihood (Bliss and Panigirtzoglou, 2004; Liu et al., 2007; Schreindorfer and

Sichert, 2023), conditional density integration (Linn et al., 2018), or inverse density weighting

(Dalderop and Linton, 2024). However, none of the above studies allow for a probability weight-

ing component in the pricing kernel. Conversely, studies that measure probability weighting

using option prices, such as Kliger and Levy (2009), Polkovnichenko and Zhao (2013), Dierkes

(2013), and Chen et al. (2024), all rely on ‘plug-in’ methods for the objective return distribu-

tions. An exception is the GMM estimator of Baele et al. (2019), who specify a fully parametric

model. To our best knowledge, our econometric method yields the first nonparametric estimator

of the probability weighting function that is robust against misspecification of the conditional

objective distributions.

The asymptotic analysis of our profile likelihood estimator builds on the general semiparamet-

ric estimation theory developed by Andrews (1994) and Newey (1994). Their key stochastic

equicontinuity property has been established for other kernel-based profile likelihood estima-

tors, such as for the single-index model in Ai (1997), the transformation model of Linton et al.

(2008), and the independent component analysis in Hafner et al. (2024). Relative to these

studies, our theoretical results are obtained under primitive conditions on structural objects,

namely utility and probability weighting functions, that can be verified for specific economic

models. Moreover, our theory allows for general time-series dependence, subject to stationarity

and mixing conditions.
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1.2 Outline

This paper is organized as follows. Section 2 introduces the model framework. Section 3 de-

velops our semiparametric estimation theory. Section 4 describes the Monte Carlo simulations.

Empirical results are in Section 5. Conclusions are in Section 6. Appendices provide the proofs,

uniform convergence of the employed kernel estimator, and additional simulation results.

2 Model Framework

This section introduces the rank-dependent utility model and studies its asset pricing implica-

tions.

2.1 Rank-dependent utility and the risk-neutral density

Probability weighting is a pivotal ingredient of the rank-dependent utility (RDU) model of

Quiggin (1982). The RDU model encompasses the expected utility (EU) model and the dual

theory of Yaari (1987) as special cases and is the main building block in (cumulative) prospect

theory of Tversky and Kahneman (1992). These extensions of EU have been developed to

address its descriptive failures for decision under risk, notably Allais (1953)-type behavior.3

Consider the one-period stochastic (gross) return on wealth, R1, defined on a probability space

(Ω,F ,P). Denote by F (r) := P(R1 ≤ r) its cumulative distribution function and by f(r) :=

F ′(r) its probability density, assumed to exist. Consider a representative investor with utility

function u(·; γ) for some parameter vector γ, henceforth assumed to be strictly increasing and

twice differentiable, with initial wealth w0 > 0 and next-period wealth W1 = R1w0. Under

RDU, the investor maximizes

V :=

∫ ∞

0
u (rw0; γ) dZ(F (r)), (2.1)

with Z : [0, 1] → [0, 1] a non-decreasing function satisfying Z(0) = 0 and Z(1) = 1, referred

to as the probability weighting function, and henceforth assumed to be strictly increasing and

differentiable.4 Also define the decumulative probability weighting function Z(P ) := 1−Z(1−P )
for 0 ≤ P ≤ 1, which is itself a probability weighting function with density Z ′(P ) = Z ′(1−P ).5

Any nonlinearity in Z implies that outcomes are no longer weighted linearly in probabilities.

Effectively, this transforms objective probabilities into subjective decision weights, which helps

describe empirical and experimental behavior at odds with the EU model. Experimental studies

into the shape of the probability weighting function indeed find evidence of non-linear weighting,

often with an inverse S-shaped function that is concave in the lower part of the domain and

3Based on experimental evidence, Harrison and Swarthout (2023) argue that RDU emerges as the most
promising non-EU model for descriptive purposes.

4Non-decreasing utility and probability weighting functions ensure that RDU is compatible with first-order
stochastic dominance (Quiggin, 1982; Yaari, 1987).

5In the microeconomic literature following Yaari (1987), the convention is often to distort decumulative
probabilities instead of cumulative probabilities. Clearly, convexity of Z is equivalent to concavity of Z, and Z is
inverse S-shaped if and only if Z is.
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convex in the upper part of the domain (Gonzalez and Wu, 1999; Abdellaoui, 2000; Bruhin

et al., 2010)6 or a globally concave function corresponding to probability-driven risk aversion

(Van de Kuilen and Wakker (2011); Bruggen et al. (2024)). Prelec (1998) has axiomatized a

popular functional form of the probability weighting function that is capable of rationalizing

inverse S-shaped probability attitudes.

Suppose the investor allocates a fraction α0 of initial wealth to a risk-free asset with return R0,

and a fraction αi to each of n risky assets with returns Ri, for i = 1, . . . , n. Hence, under full

allocation, R1 =
∑n

i=0 αiR
i with α0 = 1 −

∑n
i=1 αi. We assume that the Ri have absolutely

continuous distributions. Provided both the utility and probability weighting functions are

differentiable, the first-order conditions (FOCs) for optimal allocation are (e.g., Ai, 2005)

∂

∂αi
V = E

(
u′ (W1; γ)Z

′(F (R1))(R
i −R0)

)
= 0, i = 1, . . . , n. (2.2)

The FOCs can be represented as E
(
m(Ri −R0)

)
= 0 in terms of the pricing kernel, or stochastic

discount factor, m := u′(W1; γ)Z
′(F (R1)). The pricing kernel is positive and induces a linear

pricing rule, and hence is arbitrage-free. It defines an equivalent risk-neutral probability measure

Q with probability density q given by

q(r) = c−1u′(w; γ)Z ′(F (r))f(r), (2.3)

where c = E (u′(W1; γ)Z
′(F (R1))). For example, CRRA utility, i.e., u(w; γ) = w1−γ

1−γ for γ ̸= 1,

implies q(r) ∝ r−γZ ′(F (r))f(r).

2.2 From risk-neutral to physical distributions and densities

The physical distribution has a closed-form expression in terms of the risk-neutral density.

Specifically, re-arranging (2.3) yields

Z ′(F (r))f(r) = c
q(r)

u′(w; γ)
. (2.4)

This relation establishes the following string of identities:

Z(F (r)) =

∫ F (r)

0
Z ′(F ) dF =

∫ r

0
Z ′(F (s))f(s) ds = c

∫ r

0

q(s)

u′(sw0; γ)
ds =: U(r; q, γ). (2.5)

The function U(r; q, γ) is itself a (utility-adjusted) distribution function, so that the normaliza-

tion constant equals c =
(∫∞

0
q(r)

u′(rw0;γ)
dr
)−1

. Inverting (2.5) represents the physical distribution

function as

F (r) = Z−1(U(r; q, γ)). (2.6)

6The inverse S-shape does not conform to second-order stochastic dominance: the RDU maximizer is (globally
strongly) risk averse if and only if the utility and probability weighting functions are concave (Chew et al., 1987;
Roëll, 1987; Eeckhoudt and Laeven, 2022).
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Differentiating with respect to r then yields the physical density:

f(r) = c
q(r)

u′(rw0; γ)
Z−1′(U(r; q, γ)). (2.7)

3 Estimation Theory

Observing financial markets over time results in a sample {Rt+1, qt}Tt=1 of stock return realiza-

tions and risk-neutral densities from option prices. Using a dynamic version of the model-based

physical density of Rt+1 given qt derived in Section 2, this section develops a profile likelihood

estimator to identify the utility parameters and the probability weighting function. First, we

propose a nonparametric estimator of the probability weighting density based on the PITs of

the utility-adjusted risk-neutral distributions (Sections 3.1–3.3). Next, we construct the profile

likelihood function by substituting the density estimator for each utility parameter value into the

semiparametric likelihood (Section 3.4). We then establish the joint identification of the utility

and probability weighting functions (Sections 3.5–3.6), and derive relevant asymptotic properties

(Sections 3.7–3.8). Throughout we allow for general time-series dependence in the observations,

subject to stationarity. Before each result, we specify the required assumptions. All proofs are

in Appendix A. Useful convergence results for the kernel estimator are in Appendix B.

3.1 Dynamic conditional density specification

The static version of the RDU model (2.1) naturally extends to a dynamic setting, in which

investors re-balance their positions each period based on currently available information. Let

Ft(r) := P(Rt+1 ≤ r|Ft) and ft(r) be the conditional cumulative distribution function (CDF)

and probability density function (PDF), respectively, of the return on wealth given the natural

filtration {Ft}. Similarly, denote the risk-neutral conditional CDF by Qt and the corresponding

PDF by qt. Moreover, we re-define the utility u for the dynamic investor to be a function of the

return on wealth, to avoid relying on the non-stationary wealth level. This holds automatically

under CRRA utility, and can more generally be motivated by the multiplicative habit formation

model of Abel (1990), with habit equal to current wealth. Additionally, it is consistent with the

general pricing kernel specifications in Rosenberg and Engle (2002).

For any value of γ, define the utility-adjusted conditional risk-neutral CDF as follows:

Ut(r; γ) := ct(γ)

∫ r

0

qt(s)

u′(s; γ)
ds, (3.1)

where ct(γ) =
(∫∞

0
qt(r)
u′(r;γ) dr

)−1
. The conditional physical CDF and PDF of the return are then

modeled as counterparts of (2.6) and (2.7) by

Ft(r; γ, Z) = Z−1(Ut(r; γ)), (3.2)

ft(r; γ, Z) = ct(γ)
qt(r)

u′(r; γ)
Z−1′(Ut(r; γ)). (3.3)
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3.2 Estimating the probability weighting function via PITs

Define the utility-adjusted probability integral transform (PIT) as a function of γ

Ut+1(γ) := Ut(Rt+1; γ) ∈ (0, 1). (3.4)

These PITs play a key role in measuring probability weighting. At γ0, the true parameter value,

Ut+1(γ0) = Z(Ft(Rt+1)) by (3.2). Since Ft(Rt+1) are i.i.d. standard uniform, Ut+1(γ0) are i.i.d.

with distribution function equal to the inverse probability weighting function Z−1.7

For given γ, define the CDF of Ut+1(γ) as G(v; γ) := P(Ut+1(γ) ≤ v), or Gγ for short. At the

true parameter value, G(v; γ0) = Z−1(v). A natural estimator for Gγ(v) is the empirical CDF

Ĝ(v; γ) =
1

T

T∑
t=1

1(Ut+1(γ) ≤ v). (3.5)

Define the probability density g(v; γ) := ∂
∂vG(v; γ) and its shorthand gγ . A similarly natural

estimator for gγ(v) is the kernel estimator

ĝ(v; γ) =
1

T

T∑
t=1

Kh(Ut+1(γ)− v), (3.6)

where Kh(·) = 1
hK

( ·
h

)
for some kernel K and bandwidth h. Since this estimator is generally

consistent for any γ when T → ∞ and h→ 0, the remaining challenge is estimating γ itself.8

3.3 Computing the PITs

The utility-adjusted PITs can be computed by applying integration by parts to (3.1)∫ Rt+1

0

qt(r)

u′(r; γ)
dr =

Qt(Rt+1)

u′(Rt+1; γ)
+

∫ Rt+1

0
Qt(r)

u′′(r; γ)

u′(r; γ)2
dr, (3.7)

provided limr→0
Qt(r)
u′(r;γ) = 0. The latter expression relies on the risk-neutral CDF, which can be

estimated more efficiently from cross-sections of option prices than its density, as also exploited

by the insightful approach of Polkovnichenko and Zhao (2013).

The normalization constants ct(γ) cannot be directly computed using the integration-by-parts

formula (3.7) in the realistic case that limr→∞
1

u′(r;γ) = ∞. However, we can split the domain

into two parts for some threshold κ:∫ ∞

0

qt(r)

u′(r; γ)
dr =

∫ κ

0

qt(r)

u′(r; γ)
dr +

∫ ∞

κ

qt(r)

u′(r; γ)
dr. (3.8)

7Henceforth, we often use the abbreviation “PITs” to refer to utility-adjusted probability integral transforms,
recognizing that these are not standard uniform in the presence of probability weighting.

8In Appendix B, we establish the consistency of ĝγ , uniformly over γ and v, allowing for general time-series
dependence.
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The first term can be computed using (3.7), and, provided limr→∞
1−Qt(r)
u′(r;γ) = 0, the second as

∫ ∞

κ

qt(r)

u′(r; γ)
dr =

1−Qt(κ)

u′(κ; γ)
−
∫ ∞

κ
(1−Qt(r))

u′′(r; γ)

(u′(r; γ))2
dr. (3.9)

3.4 Profile likelihood estimator

Given the conditional density (3.3), the conditional log likelihood of the sample {Rt+1 | qt}Tt=1

for any γ in some parameter space Θ ⊆ Rk and density function g on (0, 1) equals

ℓT (γ, g) :=
1

T

T∑
t=1

log ft(Rt+1; γ, g)− log qt(Rt+1)

=
1

T

T∑
t=1

log ct(γ)− log u′(Rt+1; γ) + log g(Ut+1(γ)),

subtracting the parameter-independent log qt(Rt+1) for convenience. Rather than optimizing

this criterion over the infinite-dimensional joint parameter space, we propose the estimator

γ̂ := argmaxγ∈Θ ℓT (γ), maximizing the profile likelihood (PL) defined by substituting in the

kernel density estimator (3.6):9

ℓT (γ) := ℓT (γ, ĝγ). (3.10)

In a general semiparametric estimation framework, Newey (1994) shows that the asymptotic

variance of γ̂ does not depend on the estimation error in ĝγ provided its probability limit

maximizes the expected log-likelihood ℓ(γ, g) := EℓT (γ, g) for any γ. The following result

confirms that the density function gγ has the latter property.

Lemma E. For any γ, gγ uniquely maximizes ℓ(γ, g) in the space of positive probability density

functions on (0, 1).

As a result, the infeasible PL estimator based on gγ attains the semiparametric efficiency bound.

Section 3.8 establishes that our feasible PL estimator γ̂ asymptotically behaves as if gγ is known,

confirming its asymptotic efficiency.

3.5 Identification of utility parameters

The identification of the parameter vector γ depends on whether the profiled log-likelihood

population criterion ℓ(γ) := ℓ(γ, gγ) is uniquely maximized at the true parameter γ0. Jensen’s

inequality implies that ℓ(γ) ≤ ℓ(γ0) for any γ, with equality holding if and only if

ft(Rt+1; γ, gγ) = ft(Rt+1; γ0, gγ0) a.s. (3.11)

9While we focus on the kernel estimator, our estimation theory allows for other consistent nonparametric
estimators for gγ .
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Thus, identification requires that no parameter value γ ̸= γ0 always yields the true conditional

density ft(r) = ft(r; γ0, gγ0). Let ARA(r; γ) := −u′′(r;γ)
u′(r;γ) denote the absolute risk aversion

function. The following assumption assures that (3.11) cannot hold for any γ ̸= γ0.

Assumption I.

(i) Z ′(P ) is positive on (0, 1), u′(r; γ) is positive and differentiable in r on R++ × Θ, and

ct(γ) is finite a.s. for all γ ∈ Θ;

(ii) For any γ ∈ Θ \ {γ0}, there exists some r̄ > 0 such that ARA(r̄; γ) ̸= ARA(r̄; γ0) and

u′′(r; γ) is continuous at r̄;

(iii) ft : R++ → R++ is continuous a.s., and for some pair (v1, v2) ∈ supp(Ft(r̄)) the condi-

tional quantiles F−1
t (v1) and F

−1
t (v2) are not one-to-one.

Lemma I. Under Assumption I, ℓ(γ) is uniquely maximized at γ0.

The intuition behind Lemma I is as follows. Condition I(i) ensures that the pricing kernel is pos-

itive and finite under model (3.3), and hence satisfies the fundamental theorem of asset pricing.

This ensures that Gγ is strictly increasing for all γ ∈ Θ. Therefore, (3.11) becomes equivalent to

Ut+1(γ) = Ut+1(γ0) a.s., which implies that Ut+1(γ) must be independent of any information in

Ft, and thus of the risk-neutral density qt by (3.3). However, we prove that for some (v1, v2), the

conditional quantiles of Ut+1(γ) vary over time unless either ARA(r; γ) ≡ ARA(r; γ0) or there is

a particular one-factor structure among the corresponding physical quantiles. The former case

is directly ruled out by condition I(ii). The latter case is ruled out by condition I(iii), which

ensures that the physical densities are positive, continuous, and non-deterministic in a way that

is satisfied for dynamic models with at least two state variables. Thus, Ut+1(γ) must depend on

time-t information for any γ ̸= γ0, so that resulting differences in the conditional densities of

Rt+1 given qt result in a strictly lower value of the profile likelihood.

3.6 Trimming

The presence of probability weighting results in terms ∂
∂γ log gγ (Ut+1(γ)) in the scores of the

likelihood function. For several popular probability weighting functions (see Section 3.10), the

density Z ′(P ) diverges to infinity for probabilities near zero and one. As a result, the density

gγ converges to zero at the boundaries, causing a small denominator issue.10 Furthermore,
∂
∂γ gγ may diverge at the boundaries for common utility functions, which prohibits the uniform

convergence of its kernel estimator.

To overcome these issues, we propose the following trimming rule that bounds Ut+1(γ) away

from zero and one, uniformly over Θ. Let R∗
l (q, v) := maxγ∈Θ U

−1(v; q, γ) and R∗
u(q, v) :=

minγ∈Θ U
−1(v; q, γ), and for some small v∗ > 0 let R∗

t,l = R∗
l (qt, v

∗) and R∗
t,u = R∗

u(qt, 1 − v∗).

By design, R∗
t,l ≤ Rt+1 ≤ R∗

t,u ensures that v∗ ≤ Ut+1(γ) ≤ 1 − v∗ for all γ ∈ Θ. We assume

that v∗ is chosen small enough to guarantee that R∗
t,l < R∗

t,u, or else the time-t observation is

10A similar issue occurs in semiparametric copula-based models (Chen and Fan, 2006), due to asymptotes in
the copula densities.
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removed. Since the thresholds (R∗
t,l, R

∗
t,u) do not depend on the parameter, they only need to

be computed once prior to estimation.

Define the censored profile log-likelihood function ℓ∗T (γ) := ℓ∗T (γ, ĝγ), where

ℓ∗T (γ, g) :=
1

T

T∑
t=1

[
1lt+1 logG(U

l
t(γ)) + 1mt+1 log

(
ct(γ)g(Ut+1(γ))

u′(Rt+1; γ)

)
+ 1ut+1 log (1−G(Uut (γ)))

]
,

(3.12)

with U it (γ) := Ut(R
∗
t,i; γ) for i ∈ {l, u} and 1lt+1 := 1(Rt+1 ≤ R∗

t,l), 1
m
t+1 := 1(R∗

t,l < Rt+1 ≤ R∗
t,u),

and 1ut+1 := 1(R∗
t,u < Rt+1) indicators for the lower, middle, and upper parts of the distribution,

respectively. This method does not exclude the trimmed returns, but reduces them to binary

tail event variables when estimating γ. The density estimator ĝγ still uses all observations.

The following lemma confirms that the censored profile likelihood population criterion ℓ∗(γ) :=

Eℓ∗T (γ, gγ) still identifies γ0, as long as the non-censored intervals are ‘wide’ enough.

Lemma I∗. Under Assumption I, with P(R∗
t,l ≤ r̄ ≤ R∗

t,u) > 0 and (v1, v2) ∈ supp(Ft(r̄) | R∗
t,l ≤

r̄ ≤ R∗
t,u), ℓ

∗(γ) is uniquely maximized at γ0.

3.7 Consistency

Besides identification, consistency of γ̂ requires the uniform convergence of ℓ∗T (γ) to ℓ
∗(γ) over

the parameter space Θ. If the profile density gγ were known, this would follow from the uniform

convergence of ℓ∗T (γ, gγ) to ℓ∗(γ, gγ). As we estimate gγ nonparametrically, we additionally

require the uniform convergence of ĝγ . Let ∥g∥∞,v∗ = supv∗≤v≤1−v∗ |g(v)| be the sup-norm over

the trimmed support. We then establish the consistency of the profile-likelihood estimator under

the following assumptions.

Assumption C.

(i) Z ′(P ) and u′(r; γ) are continuous on (0, 1) and R++ ×Θ, respectively, with Θ compact;

(ii) E
(
supγ∈Θ | log u′(Rt+1; γ)|

)
<∞ and E

(
supγ∈Θ | log ct(γ)|

)
<∞;

(iii) supγ∈Θ ∥ĝγ − gγ∥∞,v∗
p−→ 0 and supγ∈Θ |Ĝγ(v∗)−Gγ(v

∗)| p−→ 0;

(iv) ft(r) = f(r|Xt) is a positive, measurable function of the stationary ergodic process (Rt+1, Xt),

where Xt is some state vector.

Proposition C. Suppose that Assumptions I and C hold. Then γ̂ := argmaxγ∈Θ ℓ
∗
T (γ)

p−→ γ0

when T → ∞.

Assumption C contains sufficient conditions for those in Newey (1994, Lemma 5.2). Continuity

of the probability weighting density and marginal utility function in C(i) is required for the

continuity of the criterion function. Crucially, Z ′(P ) only needs to be continuous on the open

interval (0, 1), as under inverse S-shaped probability weighting Z ′(P ) has asymptotes at the

boundaries, as shown in Section 3.10. The moment conditions in C(ii) ensure the criterion
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function is dominated by an integrable function. The first moment is readily verified for common

utility functions. For example, for power utility it amounts to the existence of E| logRt+1|.

The uniform convergence conditions C(iii) allow for a general nonparametric estimator, not

necessarily a kernel estimator. This condition can in turn be implied from primitive conditions

on specific estimators. Lemma K-1 in Appendix B provides sufficient conditions for the kernel

density estimator (3.6), based on results in Kristensen (2009). Similarly, Lemma K-1* provides

sufficient conditions for the kernel CDF estimator

Ĝh(v; γ) =
1

T

T∑
t=1

FK

(
v − Ut+1(γ)

h

)
=

∫ v

−∞
ĝ(u; γ) du, (3.13)

with FK(x) =
∫ x
−∞K(z) dz, where the second equality presumes K is symmetric around zero.

Importantly, the uniform convergence of the density estimator is only required on the compact

subset [v∗, 1 − v∗], as the kernel estimator may not be consistent on [0, 1] when g or g′ have

asymptotes near the boundaries. For the CDF estimator this is not problematic, as its summands

are uniformly bounded. Finally, condition C(iv) is used to establish a pointwise LLN for the

criterion function, while the compact parameter space is used to extend this to a uniform law.

3.8 Asymptotic normality

The score of the profile likelihood function for each non-trimmed observation is given by

s(Rt+1, qt, γ, g) :=
∂

∂γ
log ft(Rt+1; γ, gγ) =

c′t(γ)

ct(γ)
− ∂u′(Rt+1; γ)/∂γ

u′(Rt+1; γ)
+

d
dγ gγ(Ut+1(γ))

gγ (Ut+1(γ))
,

for any family of density functions g(v; γ). The scores for left and right censored observations

equal ∂
∂γ logGγ(Ut(R

∗
t,l; γ)) and

∂
∂γ log

(
1−Gγ(Ut(R

∗
t,u; γ))

)
, respectively. The first order condi-

tion (FOC) for maximizing (3.10) then equals

∂

∂γ
ℓ∗T (γ) =

1

T

T∑
t=1

s(Rt+1, qt, γ, ĝ) = 0,

where ĝ is given in (3.6).11 Hereafter we denote the true probability density and cumulative

distribution functions of Ut+1(γ) as g0,γ and G0,γ when distinguishing them from arbitrary

families of distributions. The results in this section establish that when ĝ converges uniformly

to its population counterpart g0, the nonparametric estimation error is asymptotically irrelevant

for the parameter estimator γ̂.

First, note that g(v; γ) only enters the profile likelihood score at γ0 via the functional

S(r, q, g) :=

d
dγ gγ(U(r; q, γ))

∣∣
γ=γ0

gγ0(U0(r, q))
=
ġγ0(U0(r, q)) + g′γ0(U0(r, q))U̇0(r, q)

gγ0(U0(r, q))
,

11Trimming requires adding Ĝ as an argument to s, unless the CDF estimator equals the integrated PDF
estimator. The latter holds for the kernel CDF estimator in (3.13).
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where ḟγ(v) :=
∂
∂γ fγ(v) and f

′
γ(v) :=

∂
∂vfγ(v) for any function f , and U0(r, q) := U(r; q, γ0). The

functional S only depends on the (k + 1)-dimensional function g(u; γ) through the univariate

functions gγ0 , g
′
γ0 , and ġγ0 . Therefore, define the following norm for functions g(v; γ):

∥g∥ := max{∥gγ0∥∞,v∗ , ∥g′γ0∥∞,v∗ , ∥ġγ0∥∞,v∗}.

The following conditions, based on Newey (1994, Assumptions 5.1–5.3), ensure that the non-

parametric estimation of g does not affect the limiting distribution of ∂
∂γ ℓ

∗
T (γ0).

Assumption A.

(i) Z ′(P ), u′(r; γ), and ct(γ) are positive and continuously differentiable on (0, 1), R++ at γ0,

and at γ0 a.s., respectively, and E∥U̇0∥ <∞;

(ii) ∥ĝ − g0∥ = op(T
− 1

4 ), and (Ĝγ0 ,
̂̇Gγ0)(v∗) = (Gγ0 , Ġγ0)(v

∗) + op(T
− 1

4 );

(iii) 1√
T

∑T
t=1D0(Rt+1, qt, ĝ − g0)

p−→ 0, where D0(r, q, ḡ) is the pathwise derivative of S at g0

in direction ḡ.

Lemma A. Under Assumptions A and C(iv), when T → ∞,

√
T
∂

∂γ
ℓ∗T (γ0) =

1√
T

T∑
t=1

s(Rt+1, qt, γ0, g0) + op(1).

Condition A(i) ensures that the score functional is asymptotically linear in the unknown density

g at the true value. The differentiability of u′(r; γ0) and ct(γ) ensures that U̇0 exists. The

trimming avoids the small denominator problem, as the continuous and positive density gγ0 is

bounded away from zero on [v∗, 1− v∗].

A(ii) requires that the estimators ĝγ , ̂̇gγ and ĝ′γ converge uniformly at at least a T− 1
4 rate. For

our suggested kernel estimator (3.6), Lemma K-2 provides sufficient conditions for this rate,

based on results in Andrews (1995). In particular, it requires at least fourth order kernels

to ensure that the kernel density derivative estimator converges fast enough. Similarly, K-2*

provides conditions for the sufficiently fast convergence of the kernel CDF estimator (3.13) at

the trimming point v∗.

For kernel estimators, the following lemma establishes the stochastic equicontinuity condition

A(iii) using a result for dependent U-statistics.

Lemma SE. Suppose A(i), C(iv), and the following conditions hold for some δ′ > 0 and δ > δ′:

(i) (Rt+1, Xt) is β-mixing with β(τ) = O

(
τ−

2+δ′
δ′

)
when τ → ∞;

(ii) E(∥U̇0∥2+δ | U0 = v) is continuous for v ∈ (0, 1), E
(
∥U̇0,s − U̇0,t∥2+δ | U0,s = u, U0,t = v

)
is continuously differentiable at u = v ∈ (0, 1) for all s ̸= t;

(iii)
∫
K(z) dz = 1,

∫
K(z)z dz = 0, K(0) <∞,

∫
|K(z)|2+δ dz +

∫
|zK ′(z)|2+δ dz <∞;
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(iv) T
δ−δ′
δ′ h1+δ → ∞ and Th2 → ∞.

Then Assumption A(iii) holds for the kernel density (3.6).

Assumption SE(i) stipulates that the mixing coefficients vanish at least as fast as 1/τ when the

time between observations τ becomes large. A larger value of δ′ allows for a slower rate within

this class, though by SE(ii)-(iii) requires higher moments of the PIT-derivative U̇0 and kernel

function K to exist. Meanwhile, Assumption SE(iv) ensures that the bandwidth does not vanish

too quickly when the sample period increases.

The asymptotic distribution of γ̂ follows from the mean-value expansion of the FOC around γ0,

√
T (γ̂ − γ0) =

(
∂2

∂γ∂γ⊤
ℓ∗T (γ̃)

)−1√
T
∂

∂γ
ℓ∗T (γ0), (3.14)

for some γ̃ in between γ̂ and γ0. The following additional assumptions therefore yield the
√
T -convergence rate and asymptotic normality of our profile ML estimator.

Assumption N.

(i) E∥ ∂
∂γ log ct(γ)

∣∣
γ=γ0

∥2 and E∥ ∂
∂γ log u

′(Rt+1; γ)
∣∣
γ=γ0

∥2 are finite;

(ii) Z ′(P ), u′(r, γ), ct(γ), and Ft(r) are twice continuously differentiable a.s. on (0, 1), R+ ×
N0, N0, and R+, respectively, where N0 is a neighborhood of γ0, γ0 is interior to Θ, and

M := ∂E (s(Rt+1, qt, γ, g0)) /∂γ
∣∣
γ=γ0

is non-singular;

(iii) supγ∈N0
∥ ∂i+|j|

∂vi∂γj
(ĝγ − gγ)∥∞,v∗

p−→ 0 for any non-negative integer i and multi-index j with

i+ |j| ≤ 2, supγ∈N0

∣∣ ∂|j|
∂γj

(Ĝγ(v
∗)−Gγ(v

∗))
∣∣ p−→ 0 for |j| ≤ 2;

(iv) E
(
supγ∈N0

∥Wt(γ)∥
)
<∞ for Wt ∈ { ∂2

∂γ∂γ⊤
log ct(γ),

∂2

∂γ∂γ⊤
log u′(Rt+1; γ), U̇t+1, Üt+1}.

Proposition N. Under Assumptions I, C, A, and N, when T → ∞,

√
T (γ̂ − γ0)

d−→ N(0,M−1VM−1), (3.15)

where V := Var (s(Rt+1, qt, γ0, g0)).

Assumption N(i) is required for the covariance matrix V of the score of the observations to

exist. Meanwhile, the conditions on continuity in N(ii), uniform convergence in N(iii), and

integrability in N(iv), ensure the convergence in probability of the Hessian term in (3.14) to a

non-singular matrix uniformly in a neighborhood of γ0. Lemmas K-3 and K-3* in Appendix B

provide sufficient conditions for the uniform convergence of the derivatives in N(iii) for the kernel

density and CDF estimators (3.6) and (3.13), respectively.

3.9 Bootstrap estimation of PL confidence interval

Inference requires estimators of the variance. However, estimation of V andM in (3.15) via plug-

in methods necessitates nonparametric estimation of higher order derivatives, which is unstable

in small samples. We propose instead to conduct inference via a simple bootstrap algorithm: we
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draw, with replacement, T pairs (R̃t+1, q̃t) from {Rt+1, qt}Tt=1, and repeat the estimation with

this bootstrap sample to find some γ̃. Doing so K times, for K ∈ N large, results in a sample

{γ̃k − γ̂}Kk=1, of which the distribution approximates that of γ̂ − γ0. These bootstrap estimates

can be used to construct quantile- or standard deviation-based confidence intervals.

The algorithm described above is a standard (nonparametric) percentile bootstrap, see e.g.,

Efron and Tibshirani (1993), developed for independent and identically distributed data. The

independence assumption is violated here for {Rt+1, qt}Tt=1. However, because the transformation

s(Rt+1, qt, γ0, g0) is free of serial correlation, the dependence in the original data does not affect

the limiting distribution in Proposition N. This implies that a dependent bootstrap method

(such as the block bootstrap) is not needed here: the proposed bootstrap algorithm replicates

the dependence structure in the original data insofar as it appears in the asymptotic distribution

of γ̂, and hence is valid. A similar result for autoregressive models was obtained by Gonçalves

and Kilian (2004), who refer to this as the pairwise bootstrap.

3.10 Verification of conditions for common models

Our assumptions impose certain regularity and smoothness conditions on the probability weight-

ing function, such as positivity of the weighting density by Assumption I(i), and continuity and

differentiability by Assumptions C(i), A(i) and N(ii). Due to our trimming procedure, these

conditions only need to hold on the open interval (0, 1), which is easily verified for popular

parametrizations of the probability weighting function. In particular, consider the one-parameter

model by Tversky and Kahneman (1992), and the two-parameter model by Prelec (1998), which

are defined by their decumulative probability weighting functions

ZTK(P ) =
P δ

(P δ + (1− P )δ)1/δ
, ZP (P ) = exp(−(−β log(P ))α),

respectively, for some positive scalars δ, α, and β. Both specifications allow for the typical

inverse-S shape observed in experiments, yet reduce to linear probability weighting for δ ≡ 1

and (α, β) ≡ (1, 1), respectively. For the probability weighting function (PWF) of Tversky and

Kahneman (1992),

Z
′
TK(P ) =

[
δ − 1

P 1−δ + δ
(1− P )δ

P
+

1

(1− P )1−δ

]
ZTK(P )

P δ + (1− P )δ
,

which diverges to infinity at the boundary points for δ < 1 and to zero when δ > 1. Meanwhile,

for the PWF of Prelec (1998),

Z
′
P (P ) =

αβ

P
(−β log(P ))α−1ZP (P ).

When α < 1, Z
′
P (P ) is O

(
1
P

)
when P → 0 and O

(
(log(P ))α−1

)
when P → 1, and thus diverges

to infinity at both boundary points. On the other hand, when α > 1, Z
′
P (P ) vanishes to zero

at the boundary points. The same is true for the associated cumulative probability weighting

functions. As we trim at the boundary, our conditions allow for such divergence to infinity
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and/or zero at the boundary points P = 0 and P = 1. In particular, A(i) merely requires the

probability weighting density Z ′(P ) to be positive and continuously differentiable on the open

interval (0, 1), which both models satisfy. Moreover, our conditions allow for linear probability

weighting Z0(P ) = P , which corresponds to the standard expected utility model.

Since gγ0(v) =
1

Z′(Z−1(v))
by the inverse function theorem, the density of Ut+1(γ0) goes to zero

when v goes to zero and one when either PWF specification takes the inverse S-shape. Our

Assumptions C(iii), A(ii), and N(iii) on the uniform convergence of ĝ allow for this as gγ(v)

remains bounded away from zero on the trimmed domain [v∗, 1− v∗], uniformly over γ, due to

the positivity and continuity of g(v; γ) on (0, 1)×Θ established in Lemma D in the Appendix.

Similarly, our trimming procedure allows for asymptotes in the derivatives of gγ(v) near bound-

ary points, which arise under common models. In particular, differentiating expression (A.2) for

Gγ(v) w.r.t. γ yields

Ġγ0(v) = −E
(
v
c′t(γ0)

ct(γ0)
−
∫ v

0

u̇′(U−1
t (u; γ0); γ0)

u′(U−1
t (u; γ0); γ0)

du

)
gγ0(v).

Under power utility, u̇
′(r;γ)
u′(r;γ) = − log r. Since E logU−1

t (v; γ0) diverges when v → 0 or v → 1 for

any strictly increasing PWF, ġγ0(u) = ∂
∂v Ġγ0(v) diverges at the boundaries. Still, ġγ remains

positive and continuous on the trimmed domain, which enables stochastic equicontinuity for our

kernel estimator by Lemma SE and the uniform convergence of its derivatives in Appendix B.

4 Monte Carlo Simulations

In this section, we describe the results of a Monte Carlo simulation study that analyzes the fi-

nite sample properties of our estimation procedure. We consider three economic data generating

processes (DGPs), which differ in the shape of the probability weighting function. Additional

simulation results, under a different data frequency, a larger risk aversion parameter, and differ-

ent P-dynamics, can be found in Appendix C.

4.1 Set-up

We simulate N = 1000 replications of 25 years of monthly data (T = 300). We model the price

process of a futures contract, Ft, under the physical measure P by the following dynamics:

d logFt =
(
−1

2Vt − µJλt
)
dt+

√
Vt dW1,t +

√
Ht dW2,t + Jt dNt,

dVt = 12(0.015− Vt) dt+ 0.5
√
Vt

(
−0.9 dW1,t +

√
1− 0.92 dW3,t

)
+ JVt 1{Jt<0} dNt,

dHt = (0.01−Ht) dt+ 0.125
√
Ht

(
−0.5 dW2,t +

√
1− 0.52 dW4,t

)
,

(4.1)

whereWt is a four-dimensional standard Brownian motion, andNt is a Poisson jump process with

intensity λt = 60Vt + 30Ht. The presence of at least two volatility factors, which together drive

the time-varying jump intensity under the measure P, is consistent with findings in Andersen

et al. (2015). The jumps Jt in the price process follow a double-exponential distribution: at
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a jump event, there is a probability p− = 0.7 of a negative exponential jump with a mean of

η− = 0.05, and a probability 1−p− of a positive exponential jump with a mean of η+ = 0.02. In

case of a negative jump in the price process, volatility co-jumps: JVt is exponentially distributed

with an average jump size of 0.01. The parameter µJ ensures the jumps are compensated, and

equals the expected relative jump size in returns:

µJ := EP (eJt − 1
)
=

1− p−

1− η+
+

p−

1 + η−
− 1, (4.2)

see also Boswijk et al. (2024). We compute sample paths using an Euler discretization, with

initial volatility values drawn from its stationary distribution.12 Given the volatility level at the

start of each month, we compute the conditional characteristic function of the physical return

distribution following Duffie et al. (2000). The physical density follows by Fourier inversion.

Constructing the risk-neutral densities requires modeling the conditional pricing kernel (cf. (2.2))

mt(r) = u′(r; γ0)Z
′(Ft(r)). (4.3)

We specify the utility function u as CRRA with γ0 = 2. For the probability weighting function

Z, we consider an inverse-S shape using Tversky and Kahneman (1992) with δ = 0.75, a nearly

globally concave weighting using Prelec (1998) with (α, β) = (0.9, 1.1), and linear weighting,

as described in Section 3.10. We denote their PWFs by ZTK , ZP and Z0, respectively. The

resulting weighting functions are displayed in Figure 1.

Figure 1: The probability weighting functions

Note: This figure displays the probability weighting functions ZTK

(blue, dashed), ZP (orange, dash-dotted), Z0 (black, solid).

The weighting densities Z ′
TK and Z ′

P diverge at 0 and 1. For numerical stability we therefore

truncate the physical CDF Ft at 0.0001 and 0.9999 when calculating the pricing kernel (4.3). As

this occurs far in the tail, minimal bias is introduced. We calculate the risk-neutral density qt

by multiplying the conditional physical density and pricing kernel, and normalizing to integrate

12In practice, we simulate a single path of 100 + (T + 5)N years using an Euler discretization, of which the
first 100 years serve as a burn-in period. The remainder is then cut into N blocks of T + 5 years, of which we
drop the last 5 to reduce the dependence between the replications.
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to one. Our simulations thus yield N draws of the sample path {Rt+1, qt}Tt=1.

We simulate the profile likelihood estimator developed in Section 3 using the kernel density

(3.6) to estimate the unknown weighting function gγ . We use a fourth-order Gaussian kernel

K(u) = 1
2(3−u

2)ϕ(u), with ϕ the standard normal density, and consider a variety of bandwidths.

We consider the untrimmed (v∗ = 0), and the trimmed estimator for the parameter space Θ =

[−5, 10] and a range of v∗. The trimmed estimators depend on the kernel CDF estimator (3.13),

for which we consider a smaller bandwidth h∗ = h/2 than used for the density estimation.13

4.2 Simulation results

Table 1 summarizes the properties of the profile likelihood estimator (PLE) based on the N =

1000 replications. The bottom row of each panel also shows results for the parametric maximum

likelihood estimator (MLE), which fixes the weighting function as the identity map.

This MLE performs well under the expected utility model Z0, in which case it is correctly

specified. However, its misspecification under the probability weighting models ZTK and ZP

results in a positively biased risk aversion estimator, which is used to partially offset the effect of

probabilistic risk aversion. Under either form of probability weighting, the PLE outperforms the

misspecified MLE for all considered bandwidths and trimming levels. The upward bias in the

MLE can lift its MSE to five times that of the PLE, while without probability weighting, the PLE

has less than double the MSE of the MLE for reasonably large bandwidths and trimming values.

The PLE performs particularly well under the inverse-S shape weighting function of Tversky and

Kahneman (1992): its MSE values are the lowest under this DGP, and even lower than those of

the MLE under Z0. In contrast, under the nearly globally concave Prelec (1998) parametrization,

the weighting function and the utility function have a similar effect on the pricing kernel, which

complicates their separate identification. This leads to a higher PL bias and variance under ZP

than under ZTK . The integrated mean squared error (IMSE) of the nonparametric probability

weighting function estimator, estimated as the inverse of (3.5), is fairly stable across tuning

parameters and positively correlated with the MSE. This is not surprising as the nonparametric

estimator directly depends on the parametric risk aversion estimator.

Our asymptotic theory establishes the consistency of the PLE assuming a trimming level v∗ > 0.

Indeed, without trimming, the simulated PLE under Z0 displays a clear downward bias. This can

be explained by the downward boundary bias of the kernel density estimator, which incentivizes

a lower γ to increase values of Ut+1(γ) that are close to zero. Trimming effectively counters this

bias, as the trimmed likelihood only evaluates the kernel density away from the boundaries.14

Still, under ZTK and ZP , the PLE actually performs best without trimming. Both forms of

probability weighting imply that g(v) vanishes at the boundaries, which removes the leading

13The factor half is motivated by the faster convergence of the kernel CDF estimator. With fourth-order kernels,
the optimal bandwidth rates for the kernel PDF and CDF estimator are O(T−1/9) and O(T−1/6), respectively.
For T = 300 and equal constants, the CDF bandwidth should scale by T 1/9−1/6 = 0.43.

14Alternatively, a simple first-order boundary bias correction can be applied to the kernel density estimator.
We found that this correction reduces the bias under Z0, but also substantially increases the estimation variance
for all three DGPs. As this results in higher MSE levels, we do not consider the boundary correction further.
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Table 1: Profile likelihood performance.

v∗ = 0 v∗ = 0.001 v∗ = 0.01 v∗ = 0.05
h Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE

0.15 -0.24 1.22 1.55 0.88 0.01 1.28 1.65 0.96 0.20 1.47 2.21 1.20 0.74 1.40 2.50 1.41
0.20 -0.09 0.97 0.95 0.55 0.14 1.02 1.06 0.62 0.39 1.18 1.55 0.84 0.86 1.24 2.28 1.23
0.25 0.09 0.85 0.74 0.41 0.31 0.89 0.88 0.51 0.63 1.03 1.46 0.77 1.13 1.16 2.63 1.35
0.30 0.30 0.82 0.76 0.40 0.52 0.84 0.97 0.52 0.90 0.96 1.73 0.88 1.48 1.07 3.34 1.65

MLE 1.92 0.76 4.26 1.88 1.92 0.76 4.26 1.88 1.90 0.77 4.21 1.85 1.81 0.80 3.93 1.71

(a) ZTK

v∗ = 0 v∗ = 0.001 v∗ = 0.01 v∗ = 0.05
h Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE

0.15 -0.13 1.47 2.18 0.72 0.52 1.54 2.63 0.85 0.85 1.76 3.82 1.13 1.13 1.45 3.38 1.18
0.20 0.02 1.33 1.76 0.54 0.61 1.37 2.24 0.68 1.05 1.55 3.50 0.99 1.23 1.47 3.68 1.13
0.25 0.14 1.22 1.51 0.42 0.68 1.25 2.02 0.57 1.18 1.40 3.36 0.91 1.39 1.54 4.29 1.20
0.30 0.26 1.19 1.48 0.37 0.77 1.20 2.05 0.54 1.31 1.35 3.52 0.93 1.62 1.55 5.02 1.34

MLE 2.04 1.12 5.41 1.26 2.05 1.11 5.44 1.26 2.06 1.12 5.52 1.27 2.08 1.15 5.68 1.28

(b) ZP

v∗ = 0 v∗ = 0.001 v∗ = 0.01 v∗ = 0.05
h Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE

0.15 -1.91 1.54 6.02 1.52 -0.97 1.60 3.52 1.00 -0.44 1.83 3.53 0.99 0.68 1.41 2.44 0.89
0.20 -1.90 1.40 5.58 1.36 -1.04 1.45 3.20 0.87 -0.32 1.64 2.79 0.77 0.41 1.48 2.35 0.77
0.25 -1.89 1.29 5.22 1.22 -1.09 1.32 2.94 0.76 -0.27 1.48 2.25 0.62 0.34 1.57 2.59 0.74
0.30 -1.85 1.24 4.99 1.13 -1.10 1.27 2.82 0.69 -0.21 1.41 2.04 0.56 0.47 1.63 2.86 0.75

MLE 0.07 1.18 1.40 0.28 0.08 1.18 1.39 0.28 0.07 1.19 1.42 0.28 0.06 1.22 1.48 0.26

(c) Z0

Note: Subtables display the bias, standard deviation, and mean squared error (MSE) of the profile likelihood
estimator γ̂ over N = 1000 replications of samples of length T = 300 for various levels of trimming v∗, with
bandwidth h∗ = h/2 for the CDF estimator. Each subpanel represents a different true probability weighting
function. Columns labeled IMSE display the integrated mean squared error of the nonparametric estimator
Ẑ, multiplied by 1,000. The bottom rows represent the maximum likelihood estimator of the expected utility
model, which fixes the weighting function as the identity map.

boundary bias in the kernel density estimator. Meanwhile, trimming slightly increases the

variance of the PLE as it does not use all information in the data. Overall, since not trimming

is more harmful under Z0 than it is beneficial under ZTK and ZP , a small amount of trimming

appears prudent when it is unknown whether probability weighting is present.

Figure 2 displays histograms of the PLE γ̂ at h = 0.2 and v∗ = 0.001 for the three models

considered. The histograms confirm that the PLE is approximately Gaussian for all three models

at the realistic sample size of T = 300. The choice of tuning mainly affects the location and

scale of the sampling distributions. The simulated nonparametric estimates of Ẑ are displayed

in Figure 3 for the same bandwidth and trimming level. When either form of probability

weighting is present, the estimated functions follow the shape of the true weighting function,

and their pointwise means almost completely overlap with the true functions. In the expected

utility model, the PL estimate is biased under the chosen tuning, which carries over to the

nonparametric probability weighting function estimator. Nonetheless, the simulated pointwise

quantiles uniformly contain the true weighting function.
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Figure 2: Simulation estimates of the utility parameter.

(a) ZTK (b) ZP (c) Z0

Note: The subpanels display histograms of the Monte Carlo estimates γ̂ for h = 0.2 and v∗ = 0.001, for
three different true probability weighting functions and γ0 = 2. The dotted red curve is a normal density
with mean and standard deviation equal to that of γ̂ over the N = 1000 replications.

Figure 3: Simulation estimates of the probability weighting function.

(a) ZTK (b) ZP (c) Z0

Note: The subpanels display the nonparametric estimates Ẑ of the probability weighting function, for three
different true probability weighting functions. Each of the N = 1000 lines represents a single simulation.
The mean (blue, solid), lower and upper 2.5% percentiles (blue, dash-dotted), and the true PW function
(red, solid), are also displayed, along with the 45-degree line (orange, dashed).

4.2.1 Bootstrap confidence intervals

To compute confidence intervals for the PL estimation error γ̂ − γ0, we consider the bootstrap

described in Section 3.9. We consider confidence intervals based on the bootstrap quantiles as

well as one exploiting the asymptotic normal distribution using the bootstrap standard deviation.

Table 2 reports the associated coverage rates based on K = 500 bootstrap repetitions for each

of the N = 1000 simulations. Both types of the bootstrapped intervals achieve coverage rates

that are close to the nominal rates of 90% and 95%, with some slight under-coverage that can

be explained by the parameter estimation biases. The similar performance of the quantile- and

standard deviation-based intervals confirms the approximate normality of the PLE.

4.2.2 Testing for the presence of nonlinear probability weighting

If the probability weighting function is truly linear, then the PITs Ut+1(γ0) have a standard

uniform distribution. Moreover, the MLE is correctly specified and has good finite-sample

properties (see Table 1). Therefore, in this subsection, we consider testing the null of linear

probability weighting, leveraging the method of Bai (2003). This test uses a Kolmogorov-

Smirnov test for the uniformity of the PITs, while using a martingale transformation to correct

for the estimation error of the unknown parameter. The correction relies on the score function,
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Table 2: Bootstrap results.

ZTK ZP Z0

CI (%) 90 95 90 95 90 95

Quantile-based
Coverage (%) 88.3 92.7 88.8 93.7 85.7 92.4
Width 3.23 3.84 4.39 5.22 5.59 6.65

St.d.-based
Coverage (%) 89.8 93.9 89.6 94.8 89.0 94.9
Width 3.25 3.87 4.41 5.26 5.62 6.70

Note: This table displays the result of the nonparametric bootstrap, see Section 3.9. The columns are based
on different DGPs, in the form of a different true probability weighting function. The bandwidth is set at
h = 0.2, while the trimming level is set at v∗ = 0.01 for Z0 and v∗ = 0 for ZTK and ZP . We consider
K = 500 bootstrap replications for each of the N = 1000 simulations.

which is straightforward to compute under the expected utility model.15

As we consider the correct utility function in the Monte Carlo simulations, the only asymptotic

cause of rejection is the presence of nonlinear probability weighting. The rejection rates of

the Bai (2003) test are displayed in Table 3 below, based on the MLE using various levels of

trimming. The empirical size of the test corresponds to the rejection rates under Z0. They are

close to, and generally below, their nominal value for all choices of α and v∗. Meanwhile, the

power of the test against the inverse-S shaped alternative ZTK is excellent, but less so for the

nearly globally concave alternative ZP , which is harder to distinguish from the marginal utility

function, as discussed above. For a confidence level of α = 0.05, the power of the test is slightly

increasing with v∗, whereas its size is slightly decreasing.

Table 3: Testing the probability weighting function.

ZTK ZP Z0

α (%) 10 5 1 10 5 1 10 5 1

Rejection rate (%)

v∗ = 0 100 100 100 23.9 14.6 4.1 9.8 5.4 0.8
v∗ = 0.001 100 100 100 24.1 14.9 4.1 9.9 5.2 0.8
v∗ = 0.01 100 100 100 26.0 15.5 4.2 9.5 4.4 0.7
v∗ = 0.05 100 100 99.9 24.5 15.6 3.9 9.0 4.1 0.7

Note: This table displays the rejection rate of the Bai (2003) test at level α. The first two sets of three
columns consider the power under two different alternatives, the last set considers a DGP where the null is
true and display the size of the test. The rejection rates are based on N = 1000 simulations. Critical values
are constructed by simulation.

5 Empirical Results

In this section, we illustrate our econometric method using European-style option prices on the

S&P 500 index (SPX) obtained from OptionMetrics. We consider both monthly option data

from January 1996 to January 2023 and weekly data from January 2011 to August 2023.

15Estimating the correction term requires reducing the domain in the Kolmogorov-Smirnov statistic from [0, 1]
to [0, 1− ε] for some ε > 0. Though Bai (2003) suggests taking ε small, we find that this leads to near-singularity
of a matrix that needs to be inverted to compute the correction term. However, the simple choice of ε = 1

2
results

in nearly nominal size, whereas lower values lead to poor size, and higher values to low power. The resulting
test focuses on the left half of the distribution, so we apply it to both the primal and dual probability weighting
functions separately.
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In particular, we consider monthly option contracts expiring on the third Friday of each month,

and record their mid-quote prices on the last trading day with at least τ = 29 days to maturity.

The shorter weekly dataset contains the latest recorded mid prices for options expiring the next

Friday with at least τ = 7 days to maturity. The relevance of weekly options is discussed in

detail in, e.g., Andersen et al. (2017). We remove options that violate static arbitrage bounds,

have negative bid-ask spreads, or whose implied volatility is unavailable. We then apply the

constrained least squares method of Aı̈t-Sahalia and Duarte (2003) to ensure each period’s cross

section of option prices is monotone and convex in the strike price. Finally, the risk-neutral

distributions Qt of the futures return are estimated from the resulting option price cross-sections

using the local cubic kernel estimator of Dalderop (2020), with a plug-in pilot bandwidth based

on fitting the single-factor stochastic volatility jump-diffusion model in Bates (1996).16 Figure 4

shows that our estimation method produces valid and smooth distributions throughout the

sample. We complete the data set with futures returns computed from the SPX forward prices

for matching expiry dates in OptionMetrics.

Figure 4: Nonparametrically estimated risk-neutral cumulative distributions for S&P 500 index returns.

(a) Monthly risk-neutral CDFs. (b) Weekly risk-neutral CDFs.

Note: These figures display nonparametric kernel estimators of the risk-neutral CDFs estimated from
monthly and weekly option prices.

With the sample {Rt+1, Qt}Tt=1 of returns and risk-neutral CDFs at hand, we start the empir-

ical analysis by estimating an expected utility model. In particular, we define the maximum

likelihood (ML) estimator by maximizing (3.12) as a function of the utility parameter γ, while

fixing the probability weighting function as the identity map. We use a trimming level v∗ = 0.05

for the ML estimator, for which the Bai (2003) test has the highest power and lowest size in

simulations for confidence level α = 0.05. The normalization constants are computed using the

integration-by-parts formulae (3.8) and (3.9). The resulting parameter estimates γ̂ML for both

frequencies are displayed in the bottom row of Table 4. We test for the null of expected utility

against the general alternative of non-expected utility, by computing the test statistic of Bai

(2003) for the estimated utility-adjusted PITs Ut+1(γ̂
ML). For the monthly data this results in

16Since nonparametric methods become unstable in the tails of the density due to sparse trading of deep OTM
options, we ‘paste’ the tails of the Bates (1996) model to match at the lower and upper moneyness thresholds
that leave 10 observed option prices in either tail. On average, this leaves about 1% of the risk-neutral probability
mass in either tail, with the highest fractions in the early years of the sample.
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p-values of 0.031 and 0.089 for the primal (left half) and dual (right half), respectively. For

the weekly data the corresponding p-values are 0.170 and 0.581. This can be interpreted as

significant evidence of non-expected utility in the monthly data, observable in the left-tail of the

distribution. We further interpret these test results after discussing the estimated probability

weighting functions in Figure 5.

Next, we estimate the rank-dependent utility model using our profile likelihood estimation pro-

cedure. Thus, we maximize the likelihood (3.11) as a function of the utility parameter γ by

profiling out the probability weighting function based on the kernel density estimator (3.6) of

the utility-adjusted PITs computed using (3.7). We report our estimates in the top row of

Table 4. The probability weighting function is then estimated based on the PITs at the profile

likelihood maximizer γ̂PL, see Figure 5.

The bootstrap confidence intervals of the PL estimates contain zero at both frequencies, so

that we cannot reject linear utility. This contrasts with the significantly positive risk aversion

parameter estimate in the expected utility model. The lower risk aversion level is partially picked

up by the probability weighting function, which leads to the estimated weighting functions in

Figure 5 that are visibly distinct from the 45-degree line. The magnitude of the respective

divergences from linearity are in line with the p-values found in the Bai (2003) test. For monthly

data, the probability weighting function exhibits the typical inverse-S shape, although with larger

concave than convex regions. The probability weighting function based on weekly data is closer

to being linear, but appears to be globally concave. The latter shape may contribute to the

higher p-values of the Bai (2003) test for weekly data, according to Table 3.

Table 4: Estimates for γ.

Monthly Weekly

PL 0.59 (-1.24, 2.43) 2.87 (-0.26, 6.00)
ML 2.34 (0.62, 4.06) 4.39 (1.49, 7.28)

Note: The top row displays the profile likelihood estimates γ̂, using a fourth-order Gaussian kernel, band-
width h = 0.2, and trimming level v∗ = 0.001. The bottom row displays the maximum likelihood estimates,
which correspond to linear weighting, and uses a trimming level of v∗ = 0.05. The associated 95% bootstrap
confidence intervals, based on a bootstrap estimate of the standard deviation and the Gaussian limit, are
displayed in brackets.

The deviations from the 45-degrees line in Figure 5 suggest pronounced probability weighting

particularly at the monthly frequency. However, these estimates are subject to the assumption

of CRRA utility over return outcomes. An alternative explanation for the findings is that the

marginal utility function is misspecified. For robustness, we therefore consider the wider class

of marginal utility specifications of the exponential-polynomial form

u′(r; γ) = exp

(
−

L∑
l=1

γl(log r)
l

)
,

which nests power utility as the special case L = 1. Rosenberg and Engle (2002) also fit flexible

pricing kernel specifications of this form.
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Figure 5: Nonparametric estimates of the probability weighting function under CRRA.

(a) Using monthly data. (b) Using weekly data.

Note: Plots display the estimates of the probability weighting function as the inverse of the empirical CDF
(3.5) at γ̂PL. The dashed, blue curve is the 45-degrees line.

Figure 6 shows the estimated marginal utility functions with and without probability weighting,

for varying order L. The parameter space is chosen such that marginal utilities at returns ±50%

are within a range of reasonable CRRA utility values. Without probability weighting, estimated

marginal utility displays clear non-monotonic U-shapes for monthly data when L ≥ 2; for L = 1,

marginal utility is monotone by construction. The increasing marginal utility for positive returns

is in line with the literature on the ‘pricing kernel puzzle’ (see Cuesdeanu and Jackwerth (2018)

for a survey). For weekly data, the higher order marginal utility estimates are not strictly

monotonically decreasing either, as they flatten for positive returns, but to a much lesser extent

than for monthly data. However, when probability weighting is allowed for, the marginal utility

estimates decrease monotonically on the range (0.8, 1.2) for all orders of L and both frequencies

considered. Thus, the presence of probability weighting allows replacing puzzling U-shaped

marginal utilities by more plausible monotonically decreasing functions that closely resemble

CRRA utility. Moreover, probability weighting substantially reduces the amount of curvature

in the marginal utility functions required to match option prices and returns.

Figure 7 shows the resulting estimates of the probability weighting function as the inverse of the

empirical CDF (3.5). The weighting functions are nearly indistinguishable for different orders L

of the exponential-polynomial utility model. Using monthly data yields particularly pronounced

inverse-S shapes, while using weekly data yields weighting functions that are closer to linear.

The plots also reveal a slight asymmetry, with the nonlinear weighting being stronger for the left

than the right tail, implying the probabilities of large negative returns are most overweighted.

6 Conclusion

The intertwined nature of attitudes toward wealth and toward probabilities challenges their joint

identification based on financial market data. Using the time series of risk-neutral distributions

implicit in option contracts and the realized returns, this paper develops a semiparametric profile

likelihood estimator of the rank-dependent utility model that jointly identifies the probability
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Figure 6: Estimated exponential-polynomial marginal utility functions for varying order L.
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(a) Without probability weighting, monthly data.
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(b) With probability weighting, monthly data.
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(c) Without probability weighting, weekly data.
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(d) With probability weighting, weekly data.

Note: Plots display (profile) maximum likelihood-estimated exponential-polynomial marginal utility func-
tions for order L = 1, 2, 3, based on the local linear risk-neutral CDF estimator, and a Gaussian fourth-
order kernel with bandwidth h = 0.25 for monthly and h = 0.20 for weekly data and trimming constant
v∗ = 0.001 for the probability weighting density estimator. For L ≥ 2, trimming is based on the parameter set
ΘL = {θ ∈ RL : Rγu

l ≤ u′
L(Rl; θ) ≤ R

−γl
l and R

γl
u ≤ u′

L(Ru; θ) ≤ R−γu
u for (Rl, Ru) = (0.5, 1.5), (γl, γu) =

(−5, 10)}.

weighting and utility functions, without restrictive assumptions on the physical return dynamics.

We establish the asymptotic properties of our estimation procedure. Monte Carlo simulations

demonstrate the favorable performance of our approach in finite samples. Our empirical analysis

of two large samples of monthly and weekly S&P 500 index option prices and returns unveils the

importance of probability weighting. Probability weighting is particularly pronounced at the

monthly horizon, where the weighting function implicit in option prices is found to be inverse

S-shaped. These findings appear robust to the parametric specification of the utility function.

Our results, and the nonlinearities in probabilities of investors’ risk evaluation that they entail,

contribute to our understanding of risk preferences, and have practical implications for option

pricing, hedging, and risk management.
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Figure 7: Nonparametric estimates of the probability weighting function under exponential-polynomial
utility.
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(a) Using monthly data.
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(b) Using weekly data.

Note: Plots display the estimates of the probability weighting function as the inverse of the empirical CDF
(3.5) at the profile ML estimates γ̂PL for varying order L of exponential-polynomial utility models from
Figure 6. The weighting functions are nearly indistinguishable for different orders L. The dashed, blue
curve is the 45-degrees line.
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Appendix

A Proofs

The following lemma is used in several of the proofs that follow.

Lemma D. Suppose the following conditions hold for some non-negative integer i and multi-

index j:

(i) u′(r; γ) is positive and (i, j)-times (continuously) differentiable on R++ × Θ̄, with Θ̄ ⊆ Θ;

(ii) Z ′(P ) is positive and i+ |j| times (continuously) differentiable on (0, 1);

(iii) ft(r) is positive and max{i+ |j| − 1, 0} times (continuously) differentiable a.s. on R++;

(iv) ct(γ) is finite and j times (continuously) differentiable a.s. on Θ̄.

Then g(v; γ) is positive and (continuously) differentiable up to order (i, j) on (0, 1)× Θ̄.

Proof. The function Ut(r; γ) is differentiable w.r.t. r a.s., with derivative

U ′
t(r; γ) =

∂

∂r

[
ct(γ)

∫ r

0

qt(s)

u′(s; γ)
ds

]
= ct(γ)

qt(r)

u′(r; γ)
=

ct(γ)

ct(γ0)

u′(r; γ0)

u′(r; γ)
Z ′(Ft(r))ft(r). (A.1)

This derivative is P-a.s. positive since all components on the RHS of (A.1) are. Moreover, it is

(continuously) differentiable w.r.t. (v, γ) up to order (i, j). Therefore, r 7→ Ut(r; γ) has a strictly

monotonic inverse function v 7→ U−1
t (v; γ), whose derivative ∂

∂vU
−1
t (v; γ) = 1/U ′

t(U
−1
t (v; γ); γ) >

0 is (i, j) times (continuously) differentiable.

Using the law of iterated expectations, the CDF of the utility-adjusted PITs equals

Gγ(v) = P(Ut+1(γ) ≤ v) = P(Rt+1 ≤ U−1
t (v; γ)) = E(Ft(U−1

t (v; γ))). (A.2)

Its density gγ(v) =
∂
∂vGγ(v) equals

gγ(v) = E(ft(U−1
t (v; γ))

∂

∂v
U−1
t (v; γ)) = E

(
ct(γ0)

ct(γ)

u′(U−1
t (v; γ); γ)

u′(U−1
t (v; γ); γ0)

1

Z ′(Ft(U
−1
t (v; γ)))

)
,

(A.3)

inheriting positivity and order of (continuous) differentiability from ct, u
′, Z ′, Ft, and

∂
∂vU

−1
t .

Proof of Lemma E. Let g̃γ be a family of densities on (0, 1) indexed by γ. Jensen’s inequality

yields that

ℓ(γ, g̃γ)− ℓ(γ, gγ) = E
(
log

g̃γ(Ut+1(γ))

gγ(Ut+1(γ))

)
≤ logE

(
g̃γ(Ut+1(γ))

gγ(Ut+1(γ))

)
= log

∫ 1

0

g̃γ(u)

gγ(u)
gγ(u) du = 0,

with equality if and only if g̃γ(Ut+1(γ)) = gγ(Ut+1(γ)) a.s. This requires that the densities are

identical on any set in the support of Ut+1(γ), and equal zero outside this support in order to
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integrate to one. Hence, g̃γ and gγ are identical everywhere, so that gγ is the unique maximizing

function.

Proof of Lemma I. Denote Et(·) := E(·|Ft). For any γ, the law of iterated expectations and

Jensen’s inequality yield

ℓ(γ)− ℓ(γ0) = E
(
log

ft(Rt+1; γ, gγ)

ft(Rt+1; γ0, gγ0)

)
= E

(
Et
(
log

ft(Rt+1; γ, gγ)

ft(Rt+1; γ0, gγ0)

))
≤ E

(
logEt

(
ft(Rt+1; γ, gγ)

ft(Rt+1; γ0, gγ0)

))
= 0,

where the inequality holds with equality if and only if (3.11) holds.

By Lemma D, the density gγ(v) is positive so that Gγ(u) is strictly monotonic for all γ ∈ Θ.

Equation (3.11) is therefore equivalent to any of the following statements:

ft(r; γ, gγ) = ft(r; γ0, gγ0) a.s. ∀r ⇔ Ft(r; γ, gγ) = Ft(r; γ0, gγ0) a.s. ∀r

⇔ Ft(F
−1
t (v); γ, gγ) = v a.s. ∀v ∈ (0, 1)

⇔ Gγ
(
Ut(F

−1
t (v); γ)

)
= v a.s. ∀v ∈ (0, 1)

⇔ Ut(F
−1
t (v); γ) = G−1

γ (v) a.s. ∀v ∈ (0, 1).

The LHS of the final equation describes the conditional quantile function of Ut+1(γ). For the

final statement to hold, it should be constant over time for any u. However, the quantile density

function equals

∂

∂v
Ut(F

−1
t (v); γ) = ct(γ)

∂

∂v

∫ F−1
t (v)

0

qt(r)

u′(r; γ)
dr =

ct(γ)

ct(γ0)

u′(F−1
t (v); γ0)

u′(F−1
t (v); γ)

Z ′(v),

using (2.4) in the second equation, and its log-derivative equals

∂

∂v
log

(
∂

∂v
Ut(F

−1
t (v); γ)

)
=

1

ft(F
−1
t (v))

(
u′′(F−1

t (v); γ0)

u′(F−1
t (v); γ0)

− u′′(F−1
t (v); γ)

u′(F−1
t (v); γ)

)
+
Z ′′(v)

Z ′(v)
. (A.4)

The RHS of (A.4) can only be constant over time for a given v ∈ (0, 1) if (i)
u′′(F−1

t (v);γ0)

u′(F−1
t (v);γ0)

=

u′′(F−1
t (v);γ)

u′(F−1
t (v);γ)

a.s. or if (ii) ft(F
−1
t (v)) = a(v)

(
u′′(F−1

t (v);γ0)

u′(F−1
t (v);γ0)

− u′′(F−1
t (v);γ)

u′(F−1
t (v);γ)

)
a.s. for some non-zero

function a(v).

Let V(r̄) be the support of Ft(r̄). Then case (i) cannot hold for any v ∈ V(r̄) since I(ii) implies

that ARA(r; γ) ̸= ARA(r; γ0) in a neighborhood of r̄. Case (ii) implies for any (vl, vh) ∈ V(r̄)
with vl < vh that

log
∂
∂vUt(F

−1
t (vh); γ)

∂
∂vUt(F

−1
t (vl); γ)

=

∫ vh

vl

(
1

a(v)
+
Z ′′(v)

Z ′(v)

)
dv. (A.5)

The constant RHS term implies a one-to-one relation between F−1
t (vl) and F−1

t (vh), which is

ruled out by I(iii). Therefore, for some v ∈ V(r̄) neither (i) nor (ii) holds, so that (A.4) is non-
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deterministic. As a result, none of the statements equivalent to (3.11) hold, and ℓ(γ) < ℓ(γ0)

for γ ̸= γ0.

Proof of Lemma I∗. The censored log-likelihood population criterion is given by

ℓ∗(γ) := E
(
log
(
Gγ(U

l
t(γ))

)1lt+1 (
ct(γ)/u

′(Rt+1; γ)gγ (Ut+1(γ))
)1mt+1 (1−Gγ(U

u
t (γ)))

1ut+1

)
.

It holds that

ℓ∗(γ)− ℓ∗(γ0)

≤ E

logEt

( Ft(R
∗
t,l; γ)

Ft(R∗
t,l; γ0)

)1lt+1 (
ft(Rt+1; γ, gγ)

ft(Rt+1; γ0, gγ0)

)1mt+1

(
1− Ft(R

∗
t,u; γ)

1− Ft(R∗
t,u; γ0)

)1ut+1


= E

(
log

(
Ft(R

∗
t,l; γ) +

∫ R∗
t,u

R∗
t,l

ft(r; γ, gγ) dr + (1− Ft(R
∗
t,u; γ))

))
= 0,

where the Jensen’s inequality holds with equality if and only if

Ft(R
∗
t,i; γ) = Ft(R

∗
t,i; γ0) for i ∈ {l, u} and 1mt+1 (ft(Rt+1; γ, gγ)− ft(Rt+1; γ0, gγ0)) = 0 a.s.

(A.6)

By the equivalence statements in the proof of Lemma I, this requires that Ft(F
−1
t (u); γ, gγ) =

u for all u ∈ (Ft(R
∗
t,l), Ft(R

∗
t,u)) a.s. Since (R∗

t,l, R
∗
t,u) contains r̄ with positive probability, case

(ii) in the proof of Lemma I then implies that (A.5) holds for any pair (vl, vh) ∈ supp(Ft(r̄) |
R∗
t,l ≤ r̄ ≤ R∗

t,u). However, the resulting one-to-one relation between F−1
t (vl) and F−1

t (vh)

cannot hold for the pair (v1, v2) in the statement of Lemma I∗. As a result, (A.6) cannot hold,

and ℓ∗(γ) < ℓ∗(γ0) for γ ̸= γ0.

Proof of Proposition C. If (i) for every neighborhood Θ0 of γ0, maxγ∈Θ\Θ0
ℓ∗(γ) < ℓ∗(γ0) and

(ii) supγ∈Θ
∣∣ℓ∗T (γ) − ℓ∗(γ)

∣∣ p−→ 0, then γ̂
p−→ γ0 (e.g., Andrews, 1994, Lemma A-1). The iden-

tification condition (i) follows from Lemma I∗ given Assumption I. To establish the uniform

convergence condition (ii), write

sup
γ∈Θ

∣∣ℓ∗T (γ)− ℓ∗(γ)
∣∣ ≤ sup

γ∈Θ

∣∣ℓ∗T (γ)− ℓ∗T (γ, gγ)
∣∣+ sup

γ∈Θ

∣∣ℓ∗T (γ, gγ)− ℓ∗(γ)
∣∣. (A.7)

The first term in (A.7) is bounded by

|ℓ∗T (γ)− ℓ∗T (γ, gγ)|

≤ 1

T

T∑
t=1

1lt+1

∣∣∣∣∣log Ĝγ(U lt(γ))Gγ(U lt(γ))

∣∣∣∣∣+ 1mt+1

∣∣∣∣log ĝγ(Ut+1(γ))

gγ(Ut+1(γ))

∣∣∣∣+ 1ut+1

∣∣∣∣∣log 1− Ĝγ(U
u
t (γ))

1−Gγ(Uut (γ))

∣∣∣∣∣ .
Since gγ is positive and continuous by Lemma D, the constant cg := minγ∈Θminv∈[v∗,1−v∗] gγ(v)

is positive. Using
∣∣ log x

y

∣∣ ≤ 1
x∧y |y − x| for any x, y > 0, uniform convergence of ĝ therefore
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implies that for any constant 0 < δ < 1, with probability approaching (w.p.a.) 1

sup
γ∈Θ

1

T

T∑
t=1

1mt+1

∣∣∣∣log ĝγ(Ut+1(γ))

gγ(Ut+1(γ))

∣∣∣∣ ≤ 1

δcg
sup
γ∈Θ

∥ĝγ − gγ∥∞,v∗
p−→ 0.

Similarly, consider the positive constant clG := minγ∈ΘGγ(v
∗). Then w.p.a. 1

sup
γ∈Θ

1

T

T∑
t=1

1lt+1

∣∣∣∣∣log Ĝγ(U lt(γ))Gγ(U lt(γ))

∣∣∣∣∣ ≤ 1

δclG
sup
γ∈Θ

∥∥∥Ĝγ −Gγ

∥∥∥
∞,v∗

p−→ 0,

where the final step follows from the uniform convergence of ĝ and the uniform in γ consistency

of Ĝ at v∗. The same result holds for the third term for the positive constant cuG := 1 −
maxγ∈ΘGγ(1− v∗).

For the second term in (A.7), pointwise convergence ℓ∗T (γ, gγ)
p−→ ℓ∗(γ) follows from the ergodic

theorem (Davidson, 1994, Theorem 13.12), as the summands of ℓ∗T (γ, gγ) are measurable in

the stationary and ergodic sequence {Rt+1, Xt} and integrable for all γ ∈ Θ. Moreover, the

summands are continuous in γ a.s. by Lemma D and dominated by an integrable function, since

1mt+1

∣∣log ct(γ)− log u′(Rt+1; γ) + log gγ(Ut+1(γ))
∣∣

≤ sup
γ∈Θ

(
|log ct(γ)|+

∣∣log u′(Rt+1; γ)
∣∣+ 1mt+1 |log gγ(Ut+1(γ))|

)
.

The first two of these terms are integrable by assumption, while continuity of gγ implies that the

third term is bounded on [v∗, 1− v∗], uniformly over γ. Since Θ is compact, ℓ∗T (γ) thus satisfies

a uniform weak law of large numbers, e.g. Andrews (1992, Theorem 4).

Proof of Lemma A. The remainder term equals

ξT :=
1√
T

T∑
t=1

(s(Rt+1, qt, γ0, ĝ)− s(Rt+1, qt, γ0, g0))

=
1√
T

T∑
t=1

[
1mt+1 (S(Rt+1, qt, ĝ)− S(Rt+1, qt, g0))

+ 1lt+1

(
S(R∗

t,l, qt, Ĝ)− S(R∗
t,l, qt, G0)

)
+ 1ut+1

(
S(R∗

t,u, qt, 1− Ĝ)− S(R∗
t,u, qt, 1−G0)

)]
.

First, we show that for all g with ∥gγ0 − g0,γ0∥∞,v∗ small enough and (r, q) such that R∗
l (q, v

∗) ≤
r ≤ R∗

u(q, v
∗),

∥S(r, q, g)− S(r, q, g0)−Dm
0 (r, q, g − g0)∥ ≤ b(r, q)∥g − g0∥2, (A.8)

where E
(
1mt+1bj(Rt+1, qt)

)
< ∞ for j = 1, . . . , k. Here Dm

0 (r, q, g) := DS(r, q, g0)[g], with DS

30



the pathwise derivative of S in g, defined for any direction ḡ as

DS(r, q, g)[ḡ] := lim
τ→0

1

τ
(S(r, q, g + τ ḡ)− S(r, q, g))

=
∂

∂τ

ġγ0(U0) + τ ˙̄gγ0(U0) +
(
g′γ0(U0) + τ ḡ′γ0(U0)

)
U̇0

gγ0(U0) + τ ḡγ0(U0)

∣∣∣
τ=0

=
1

gγ0(U)
˙̄gγ0(U) +

U̇

gγ0(U)
ḡ′γ0(U)−

ġγ0(U) + g′γ0(U)U̇

gγ0(U)2
ḡγ0(U),

which is linear in ḡ.

Using the relation ã
b̃
−a
b = 1

b

(
1− 1

b̃
(b̃− b)

)(
ã− a− a

b (b̃− b)
)
, the remainder of the linearization

of ã
b̃
around a

b takes the form 1
bb̃

(
b̃− b

)(
ã− a− a

b (b̃− b)
)
. Therefore,

∥S(r, q, g)− S(r, q, g0)−D0(r, q, g − g0)∥

=
∥∥∥∥gγ0(U0)− g0,γ0(U0)

gγ0(U0)g0,γ0(U0)

(
ġγ0(U0)− ġ0,γ0(U0) + (g′γ0

(U0)− g′0,γ0
(U0))U̇0 − S(R, q, g0) (gγ0(U0)− g0,γ0(U0))

)∥∥∥∥
≤ 2 + ∥S(R, q, g0)∥+ ∥U̇0∥

gγ0(U0)g0,γ0(U0)

(
(gγ0(U0)− g0,γ0(U0))

2 + ∥ġγ0(U0)− ġ0,γ0(U0)∥2 +
(
g′γ0

(U0)− g′0,γ0
(U0)

)2).
As a result, (A.8) holds with b(r, q) := 2+∥S(r,q,g0)∥+∥U̇0∥

δcgg0,γ0 (U0)
≤

2+∥ġ0,γ0 (U0)+g′0,γ0
(U0)U̇0∥/cg+∥U̇0∥

δc2g
, with

δ and cg as in the proof of Proposition C. The conditions in A(i) imply that gγ0 , g
′
γ0 , and ġγ0

are continuous and gγ0 is positive on (0, 1) by Lemma D. Therefore ġ0,γ0 and g′0,γ0 are bounded

on [v∗, 1− v∗], so that the integrability of b(r, q) follows from that of U̇0.

Similar bounds on the scores of the trimming terms can be obtained by replacing g by G in the

above linearization. In particular, for all G with ∥G−G0∥ small enough,

∥S(R∗
l (q, v

∗), q, G)− S(R∗
l (q, v

∗), q, G0)−Dl
0(q,G−G0)∥ ≤ Bl(q)∥G−G0∥2, (A.9)

whereDl
0(q, Ḡ) := DS(R

∗
l (q, v

∗), q, G0)[Ḡ], B
l(q) := 1

δclG

(
2 + ∥Ġ0,γ0(U

l
0)∥+ |1 + g0,γ0(U

l
0)|∥U̇ l0∥

)
,

with U i0 := U i(γ0) where U i(γ) := U(R∗
i (q, v

∗); q, γ) and U̇ i0 defined analogously for i ∈ {l, u}.
The bound for the right tail follows symmetrically by replacing G with 1 − G and superscript

l with u. Since U l0 and Uu0 are in [v∗, 1− v∗] a.s., the integrability of Bl(qt) and B
u(qt) follows

from that of U̇0.

Define the linear score approximator

D0(Rt+1, qt, ḡ) = 1mt+1D
m
0 (Rt+1, qt, ḡ) + 1lt+1D

l
0(qt, Ḡ) + 1ut+1D

u
0 (qt, Ḡ).

Then, for j = 1, . . . , k w.p.a. 1

∥ξTj∥ ≤

∥∥∥∥∥ 1√
T

T∑
t=1

D0,j(Rt+1, qt, ĝ − g0)

∥∥∥∥∥+
∣∣∣∣∣ 1T

T∑
t=1

1mt+1bj(Rt+1, qt)

∣∣∣∣∣√T∥ĝ − g0∥2

+

∣∣∣∣∣ 1T
T∑
t=1

(
1lt+1B

l
j(qt) + 1ut+1B

u
j (qt)

)∣∣∣∣∣√T∥Ĝ−G0∥2.
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By Assumption A(ii), ∥ĝ − g0∥ and ∥Ĝ − G0∥ ≤ ∥ĝγ0 − g0,γ0∥∞,v∗ + |Ĝγ0(v∗) − G0,γ0(v
∗)| +

∥ ̂̇Gγ0(v∗)− Ġ0,γ0(v
∗)∥ are op(T

− 1
4 ). By Assumption C(iv) and the continuity of u′(·; γ0) and gγ0 ,

qt(r) is a measurable function of (R,S). The ergodic theorem and Assumption A(iii) therefore

imply that ξT = op(1).

Proof of Proposition SE. First, we conjecture and verify that
∫
D0(r, q, ĝ − g0) dF (r, q) = 0,

where F is the joint physical distribution of (Rt+1, qt). The score approximator is equal to

D0(r, q, ḡ) =



˙̄Gγ0 (U
l
0)

G0,γ0 (U
l
0)

+ ∂
∂γ

Ḡγ0 (U
l(γ))

G0,γ(U l(γ))

∣∣∣
γ=γ0

for r < R∗
l (q, v

∗);

˙̄gγ0 (U0)

g0,γ0 (U0)
+ ∂

∂γ
ḡγ0 (U(γ))

g0,γ(U(γ))

∣∣∣
γ=γ0

for R∗
l (q, v

∗) ≤ r ≤ R∗
u(q, v

∗);

− ˙̄Gγ0 (U
u
0 )

1−G0,γ0 (U
u
0 ) +

∂
∂γ

1−Ḡγ0 (U
u(γ))

1−G0,γ(Uu(γ))

∣∣∣
γ=γ0

for r > R∗
u(q, v

∗),

where U(γ) := U(r; q, γ). For ḡ = ĝ − g0, integrating the lower, middle, and upper parts with

respect to the probability distribution cancels out the terms 1
G0

, 1
g0

and 1
1−G0

, respectively, to

yield

∫
D0(r, q, ĝ − g0) dF (r, q) =

1

T

T∑
t=1

U̇0,t+1

∫ (
K ′
h(U0,t+1 − v)− ġ0(v)

)
dv

+
1

T

T∑
t=1

∂

∂γ

∫
(Kh(Ut+1(γ)− v)− g0(v; γ)) dv

∣∣∣
γ=γ0

=
1

Th

T∑
t=1

U̇0,t+1

∫
K ′(z) dz − ∂

∂γ

∫
g0(v; γ) dv

∣∣∣∣∣
γ=γ0

− 0 = 0,

using that K and g0 integrate to one.

SinceD0 is linear in ḡ, decomposeD0(Rt+1, qt, ĝ−g0) = D0(Rt+1, qt, ĝ−ḡh)+D0(Rt+1, qt, ḡh−g0),
where ḡh(v; γ) := E (ĝ(v; γ)). The second component is a small bias term whose scaled and

centered time average

√
T

(
1

T

T∑
t=1

D0(Rt+1, qt, ḡh − g0)−
∫
D0(r, q, ḡh − g0) dF (r, q)

)
= op(1)

by Chebyshev’s inequality, as Var (D0(Rt+1, qt, ḡh − g0)) = O
(
∥ḡh − g0∥2

)
= O(h2) for sec-

ond or higher order kernels. For the first component, define Kh,s+1(u, γ) := Kh(Us+1(γ) −
u), dT (Rt+1, qt, Rs+1, qs) := D0(Rt+1, qt,Kh,s+1), and the related marginals dT1(Rt+1, qt) :=∫
dT (Rt+1, qt, r, q) dF (r, q) and dT2,s(Rs+1, qs) :=

∫
dT (r, q, Rs+1, qs) dF (r, q). Define also the

shorthand dT,ts := dT (Rt+1, qt, Rs+1, qs), dT1,t := dT1(Rt+1, qt), and dT2,s := dT2(Rs+1, qs) for

32



t, s = 1, . . . , T . This allows expressing

√
T

(
1

T

T∑
t=1

D0(Rt+1, qt, ĝ − ḡh)−
∫
D0(r, q, ĝ − ḡh) dF (r, q)

)

=
√
T

(
1

T 2

T∑
t=1

T∑
s=1

dT,ts −
1

T

T∑
t=1

dT1,t −
1

T

T∑
t=1

dT2,t + E (dT1,t)

)

=
√
T

(
1

T 2

T∑
t=1

d̃T,t +
T − 1

T
UT

)

in terms of the second-order, centered U-statistic with symmetric kernel uT (Rt+1, qt, Rs+1, qs),

or uT,ts for short:

UT =
1

T (T − 1)

T∑
t=1

∑
s<t

(uT,ts − uT1,t − uT1,s + E (uT1,t)) ,

where uT,ts = dT,ts + dT,st, uT1,t = dT1,t + dT2,t, and d̃T,t = dT,tt − uT1,t + E (dT1,t).

First, we analyze these terms for R∗
t,l ≤ Rt+1 ≤ R∗

t,u, in which case

dT (Rt+1, qt, Rs+1, qs) =
1

gγ0(U0,t+1)

(
U̇0,s+1 − U̇0,t+1

)
K ′
h(U0,s+1 − U0,t+1)

−
ġγ0(U0,t+1) + g′γ0(U0,t+1)U̇0,t+1

gγ0(U0,t+1)2
Kh(U0,s+1 − U0,t+1)

=
1

gγ0(U0,t+1)

∂

∂γ
Kh (Ut+1(γ)− Us+1(γ))

∣∣∣
γ=γ0

−
∂
∂γ gγ(Ut+1(γ))|γ=γ0

gγ0(U0,t+1)2
Kh(U0,s+1 − U0,t+1)

=
∂

∂γ

Kh (Ut+1(γ)− Us+1(γ))

gγ(Ut+1(γ))

∣∣∣
γ=γ0

.

This allows computing the following for 1mt+1 = 1:

dT (Rt+1, qt, Rt+1, qt) = −

(
ġγ0(U0,t+1) + g′γ0(U0,t+1)U̇0,t+1

)
gγ0(U0,t+1)2

h−1K(0) = Op
(
h−1

)
,

dT1(Rt+1, qt) =

∫
∂

∂γ

Kh (Ut+1(γ)− U(γ))

gγ(Ut+1(γ))

∣∣∣
γ=γ0

dF (r, q)

=
∂

∂γ

∫
K(z)gγ(Ut+1(γ) + hz) dz

gγ(Ut+1(γ))

∣∣∣
γ=γ0

= Op (h) ,

dT2(Rt+1, qt) =

∫
∂

∂γ

Kh (Ut+1(γ)− U(γ))

gγ(U(γ))

∣∣∣
γ=γ0

dF (r, q)

=
∂

∂γ

∫
Kh (Ut+1(γ)− u) du

∣∣∣
γ=γ0

= 0.

Therefore E
(
h∥1mt+1d̃T,t∥

)
<∞, so by the ergodic theorem 1

T
√
T

∑T
t=1 1

m
t+1d̃T,t = Op

(
1√
Th

)
.
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Focusing on the U-statistic, suppose that for some δ > 0, M <∞, positive series aT , and all T∫∫
∥uT (Rt+1, qt, Rs+1, qs)∥2+δ dF (Rt+1, qt) dF (Rs+1, qs) ≤MaT , (A.10)

and for all integers t1 < t2

E
(
∥uT (Rt2+1, qt2 , Rt1+1, qt1)∥2+δ

)
≤MaT . (A.11)

By Assumptions A(i) and C(iv), qt is a measurable function ofXt so that measurable functions of

(Rt+1, qt) are mixing at the rate in Assumption SE(i). Yoshihara (1976, Lemma 2) then implies

that (A.10) and (A.11) are sufficient for E
(
∥UT ∥2

)
= O

(
T−1−ηa

2
2+δ

T

)
with η = 2 δ−δ′

δ′(2+δ) > 0.

Writing uT,ts =
∑

i,j∈{l,m,u} 1
i
t+11

j
s+1uT,ts, we can establish (A.10) and (A.11) for the middle

region (i = j = m), the tails (i = j ̸= m), and the cross-terms (i ̸= j) separately.

To establish (A.10) on the middle region, use | 1
gγ0 (U0,t+1)

− 1
gγ0 (U0,s+1)

| ≤ C |U0,t+1 − U0,s+1| to
write

1mt+11
m
s+1∥uT (Rt+1, qt, Rs+1, qs)∥ ≤ C

∥∥∥(U0,t+1 − U0,s+1)
(
U̇0,s+1 − U̇0,t+1

)
K ′
h (U0,s+1 − U0,t+1)

∥∥∥
+
(
C0 + C1

(
∥U̇0,s+1∥+ ∥U̇0,t+1∥

))
|Kh (U0,s+1 − U0,t+1)| ,

(A.12)

where C, C0 and C1 are some large, positive constants. For the first term in (A.12), note∫∫
1mt+11

m
s+1

∥∥∥(U0,t+1 − U0,s+1)
(
U̇0,s+1 − U̇0,t+1

)
K ′

h (U0,s+1 − U0,t+1)
∥∥∥2+δ

dF (Rt+1, qt) dF (Rs+1, qs)

≤ 2C

∫
1ms+1

∫ 1−v∗

v∗

∥∥∥(U0,t+1 − U0,s+1) U̇0,s+1K
′
h (U0,s+1 − U0,t+1)

∥∥∥2+δ

dGγ0
(U0,t+1) dF (Rs+1, qs)

≤ C

h1+δ

∫ ∣∣zK ′ (z)
∣∣2+δ dz max

v∗≤v≤1−v∗
E
(
∥U̇0∥2+δ | U0 = v

)
gγ0(v) = O

(
1

h1+δ

)
,

using Minkowski’s inequality and stationarity in the first step, and continuity of the functions

inside the maximum in the second. To establish (A.11) in the middle region, for the first term

in (A.12) we derive for any s > t that

E
(
1mt 1

m
s

∥∥∥(U0,t − U0,s) (U̇0,s − U̇0,t)K
′
h (U0,s − U0,t)

∥∥∥2+δ)
≤
∫ 1−v∗

v∗

∫ 1−v∗

v∗
|(U0,t − U0,s)K

′
h (U0,s − U0,t)|

2+δ E
(
∥U̇0,s − U̇0,t∥2+δ | U0,t, U0,s

)
dGγ0(U0,t) dGγ0(U0,s)

≤ C

h1+δ

∫ ∣∣zK ′ (z)
∣∣2+δ dz max

v∗≤v≤1−v∗
E
(
∥U̇0,s − U̇0,t∥2+δ | U0,s = U0,t = v

)
+O

(
h−δ

)
,

which is O
(

1
h1+δ

)
since the conditional moment inside the maximum is bounded on [v∗, 1− v∗]

by SE(ii). The integrals in (A.10) and (A.11) for the second term in (A.12) are also O
(

1
h1+δ

)
by the moment condition on U̇0.

34



Meanwhile, when 1lt+1 = 1, with U̇ i0,t := U̇ it (γ0) where U̇
i
t (γ) := U̇t(R

∗
t,i; γ) for i ∈ {l, u},

dT (Rt+1, qt, Rs+1, qs) =
1

G0,γ0(U
l
0,t)

(
U̇ l0,t − U̇0,s+1

)
Kh

(
U l0,t − U0,s+1

)
−
Ġ0,γ0(U

l
0,t) + g0,γ0(U

l
0,t)U̇

l
0,t

G0,γ0(U
l
0,t)

2
FK

(
U l0,t − U0,s+1

h

)

=
∂

∂γ

FK
(
1
h

(
U lt(γ)− Us+1(γ)

))
G0,γ(U lt(γ))

∣∣∣
γ=γ0

.

Similar steps as for the middle region allow computing that E
∥∥1lt+1dT,tt

∥∥ = O(1), E
∥∥1lt+1dT1,t

∥∥ =

O(h), and E
∥∥1lt+1dT2,t

∥∥ = O(1). The first of these is now O(1) rather than O(h−1) due to

integrating the kernel function, while the second is now O(h) rather than O(h2) as FK is asym-

metric. The term dT2(Rt+1, qt) is bounded since U l0(q) ∈ [v∗, 1 − v∗] for all q. Combining

implies E
(
∥1lt+1d̃T,t∥

)
<∞, so by the ergodic theorem 1

T
√
T

∑T
t=1 1

l
t+1d̃T (Rt+1, qt) = Op

(
1√
T

)
.

Furthermore, U l0,t ∈ [v∗, 1− v∗] a.s. implies

1lt+1 ∥dT (Rt+1, qt, Rs+1, qs)∥ ≤ C
∥∥∥U̇ l0,t − U̇0,s+1

∥∥∥ ∣∣∣Kh

(
U l0,t − U0,s+1

)∣∣∣
+
(
C0 + C1∥U̇ l0,t∥

) ∣∣∣∣∣FK
(
U l0,t − U0,s+1

h

)∣∣∣∣∣ . (A.13)

The first term in (A.13) is similar to the second term in (A.12). Using that

E(∥U̇ l0,t∥2+δ) = E
(
E(∥U̇0,t+1∥2+δ | U0 = U l0,t)

)
<∞,

its integrals in (A.10) and (A.11) are O
(

1
h1+δ

)
. The integrals over the second term in (A.13) are

O(1).

For cross-terms with one observation in the middle and the other in the lower tail, write

1mt+11
l
s+1uT,ts+1lt+11

m
s+1uu,ts = (1mt+11

l
s+1dts,T +1lt+11

m
s+1dst,T )+ (1mt+11

l
s+1dst,T +1lt+11

m
s+1dts,T ).

The first bracketed term is ordered to satisfy the middle region bound (A.12), while the terms in

the second bracket satisfy the tail bound (A.13). Therefore, their integrals in (A.10) and (A.11)

are also O
(

1
h1+δ

)
. By symmetry, the same order is obtained when one or both observations are

in the upper tail, i.e. when 1ut+1 = 1.

We conclude that (A.10) and (A.11) hold with aT = 1
h1+δ . As a result, we find

√
TUT =

Op

((
T

δ−δ′
δ′ h1+δ

) −1
2+δ

)
, which is op(1) under the bandwidth conditions in SE(iv).

Proof of Proposition N. This follows by combining Proposition C, Lemma A, Assumption N,

and the mean-value expansion in (3.14). We show that 1√
T

∑T
t=1 s(Rt+1, qt, γ0, g0)

d−→ N(0, V ).
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The score of each observation equals

s(Rt+1, qt, γ, g)

= 1mt+1

∂

∂γ
log ft(Rt+1; γ, gγ) + 1lt+1

∂

∂γ
logGγ(U

l
t(γ)) + 1ut+1

∂

∂γ
log(1−Gγ(U

u
t (γ))).

Under specification (3.3), Ets(Rt+1, qt, γ0, g0) = 0 for all t. Therefore, applying a central limit

theorem for martingale difference sequences to the scores at the true parameter yields the asymp-

totic normality. Here the covariance matrix V exists due to the moment conditions in N(i) and

the boundedness of
Ġγ0 (v)

Gγ0 (v)
on the trimmed domain. Furthermore, the uniform convergence of the

Jacobian to the family of matrices M(γ) := ∂EP (s(Rt+1, qt, γ, g0)) /∂γ follows from the triangle

inequality

sup
γ∈N0

∥∥∥∥ ∂2

∂γ∂γ⊤
ℓ∗T (γ)−M(γ)

∥∥∥∥
≤ sup

γ∈N0

∥∥∥∥ ∂2

∂γ∂γ⊤
(ℓ∗T (γ)− ℓ∗T (γ, g0,γ))

∥∥∥∥+ sup
γ∈N0

∥∥∥∥ ∂2

∂γ∂γ⊤
ℓ∗T (γ, g0,γ)−M(γ)

∥∥∥∥ . (A.14)

Define the norm ∥g∥N0,v∗,l = maxi+|j|≤l supγ∈N0
∥ ∂i+|j|

∂vi∂γj
g∥∞,v∗ for non-negative integers (i, l) and

multi-index j with sum |j|. To control the first term in (A.14), we show there is some integrable

b̃ such that supγ∈N0
∥ ∂
∂γ s(Rt+1, qt, γ, g) − ∂

∂γ s(Rt+1, qt, γ, g0)∥ ≤ b̃(Rt+1, qt)∥g − g0∥N0,v∗,2 for

small enough ∥g − g0∥N0,v∗,2. The partial derivative of the score, using the twice continuous

differentiability of gγ(v) by Lemma D and Assumption N(ii), equals

∂

∂γ
s(Rt+1, qt, γ, g) = 1mt+1

(
∂2

∂γ∂γ⊤
log ct(γ)−

∂2

∂γ∂γ⊤
log u′(Rt+1; γ) +

∂2

∂γ∂γ⊤
log gγ(Ut+1(γ))

)
+ 1lt+1

∂2

∂γ∂γ⊤
logGγ(U

l
t(γ)) + 1ut+1

∂2

∂γ∂γ⊤
log(1−Gγ(U

u
t (γ))).

For R∗
l (q, v

∗) ≤ r ≤ R∗
u(q, v

∗), we have
∥∥∥ ∂
∂γ s(r, q, γ, g)−

∂
∂γ s(r, q, γ, g0)

∥∥∥ ≤ (∗) + (∗∗), where

(∗) =

∥∥∥∥∥∥
∂2

∂γ∂γ⊤
gγ (U(γ))

gγ (U(γ))
−

∂2

∂γ∂γ⊤
g0,γ (U(γ))

g0,γ (U(γ))

∥∥∥∥∥∥
≤ 1

gγ(U(γ))

∥∥∥∥ ∂2

∂γ∂γ⊤
(gγ (U(γ))− g0,γ (U(γ)))

∥∥∥∥
+

∥ ∂2

∂γ∂γ⊤
g0,γ (U(γ)) ∥

gγ(U(γ))g0,γ(U(γ))
|gγ (U(γ))− g0,γ (U(γ))|

≤ 1 + 2∥U̇(γ)∥+ ∥Ü(γ)∥
gγ(U(γ))

∥g − g0∥N ,v∗,2 +
∥ ∂2

∂γ∂γ⊤
g0,γ (U(γ)) ∥

gγ(U(γ))g0,γ(U(γ))
∥g − g0∥N ,v∗,0,
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and

(∗∗) =

∥∥∥∥∥
∂
∂γ gγ(U(γ)) ∂∂γ gγ(U(γ))⊤

gγ(U(γ))2
−

∂
∂γ g0,γ(U(γ)) ∂∂γ g0,γ(U(γ))⊤

g0,γ(U(γ))2

∥∥∥∥∥
≤

∥∥∥∥∥
∂
∂γ gγ (U(γ))

gγ (U(γ))
−

∂
∂γ g0,γ (U(γ))

g0,γ (U(γ))

∥∥∥∥∥ ·
∥∥∥∥∥
∂
∂γ gγ (U(γ))

gγ (U(γ))
+

∂
∂γ g0,γ (U(γ))

g0,γ (U(γ))

∥∥∥∥∥
⊤

≤
(
1 + ∥U̇(γ)∥+ 1

gγ(U(γ))∥ġγ(U(γ)) + g′γ(U(γ))U̇(γ)∥
gγ(U(γ))

∥g − g0∥N0,v∗,1 + oP (∥g − g0∥N0,v∗,1)

)

· 2 sup
γ∈N0

∥ġγ(U(γ)) + g′γ(U(γ))U̇(γ)∥
gγ(U(γ))

,

using the same asymptotic linearization as in the proof of Lemma A. The first two derivatives

of g in both arguments are continuous and therefore bounded on the trimmed domain, so that

integrability of b̃ follows from that of U̇ and Ü .

When r < R∗
l (q, v

∗) or r > R∗
u(q, v

∗),
∥∥∥ ∂
∂γ s(r, q, γ, g)−

∂
∂γ s(r, q, γ, g0)

∥∥∥ is bound using the

same expansion in the order of ∥G − G0∥N0,v∗,2, which vanishes when ∥g − g0∥N0,v∗,2 and

supγ∈N0
| ∂|j|
∂γj

(Gγ(v
∗)−G0,γ(v

∗))| vanish for all multi-indices j with |j| ≤ 2.

The second term in (A.14) vanishes by dominated convergence. In particular, the continuous

differentiability assumptions ensure that ∂
∂γ s(Rt+1, qt, γ, g0) is continuous in γ at γ0 a.s., while

the uniform integrability assumptions assure that E
(
supγ∈Nγ0

∥ ∂
∂γ s(Rt+1, qt, γ, g0)∥

)
<∞.

B Uniform Convergence of the Kernel Estimator

This subsection verifies the uniform convergence conditions imposed in Assumptions C, A, and

N for the kernel estimators of g and G given by (3.6) and (3.13), respectively. Throughout, we

make the following assumptions on the dynamic properties of (R, q) and the kernel K, where

µk(K) =
∫
zkK(z) dz:

Assumption K.

(i) ft(r) = f(r|Xt) is a positive, continuous function of the stationary process (Rt+1, Xt) on

R++ × X ;

(ii) (Rt+1, Xt) is strongly mixing with mixing coefficients α(j) ≤ Aj−β for some finite, positive

A and β;

(iii) Z ′(P ), u′(r; γ), and ct(γ) are positive and continuous on (0, 1), R++ × Θ, and Θ a.s.,

respectively;

(iv) The kernel K is Lipschitz continuous, has compact support, and µ0(K) = 1.

Consider the family of time series processes (Ut+1(γ))
T
t=1 indexed by γ ∈ Θ ⊂ Rk. Let g(u; γ)

and gj(u, v; γ) denote the densities of Ut(γ) and (Ut(γ), Ut+j(γ)), which do not depend on (t, T )

due to the stationarity assumption. Assumptions K(i)-K(iii) imply that g(u; γ) is positive and
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continuous by Lemma D. Furthermore, they imply that qt(r) is a measurable function of the

mixing processXt, and is therefore itself strongly mixing with polynomially decaying coefficients.

Moreover, this property carries over to measurable functions of qt and Rt+1, such as Ut+1(γ).

First, we establish sufficient conditions for supγ∈Θ ∥ĝγ − gγ∥∞,v∗
p−→ 0 by adapting a result from

Kristensen (2009).

Lemma K-1. Suppose Assumption K and the following conditions hold:

(i) Z ′(P ), u′(r; γ), and ct(γ) are continuously differentiable on (0, 1), R++ × Θ, and Θ a.s.,

respectively;

(ii) E
(
∥U̇t(γ)∥2+δ|Ut(γ) = u

)
g(u; γ) is continuous on (0, 1) × Θ for some δ > 0 such that

β > 1+(1+δ)(2+k)
δ ;

(iii) For some M ≥ 0, sup|t−s|≥M E
(
|U̇t(γ)U̇s(γ)⊤|

∣∣∣Ut(γ) = u, Us(γ) = v
)
gt−s(u, v; γ) is con-

tinuous on (0, 1)2 ×Θ;

(iv) The bandwidth satisfies h→ 0 and log T/(T θh) → 0 with

θ =
β − 2− k − (1 + β)/(1 + δ)

β + 2− k − (1 + β)/(1 + δ)
.

Then supγ∈Θ ∥ĝγ − gγ∥∞,v∗
p−→ 0.

Proof. Assumptions (i)-(iii) are sufficient for A.1-A.4 and A.6.1 in Kristensen (2009, Theo-

rem 1(i)) with Xt,T (γ) = Ut(γ), cT = 1, and dT = d for some large d > 0. In particular,

(i) implies that g′ is continuous and the derivative U̇t(γ) exists. Condition (ii) implies that

E(1mt+1∥U̇t+1(γ)∥2+δ) < ∞ by the law of iterated expectations. Continuity of the function in

(iii) guarantees its boundedness on [v∗, 1−v∗]2. The theorem yields that supγ∈Θ ∥ĝγ−Eĝγ∥∞,v∗ =

Op(
√

log T/(Th)) = op(1) under bandwidth condition (iv). Furthermore, supγ∈Θ ∥Eĝγ−gγ∥∞,v∗ =

O(h) by a Taylor expansion and the continuity of g′. The conclusion follows from the triangle

inequality.

Next we verify that supγ∈Θ |Ĝγ(v∗) − Gγ(v
∗)| p−→ 0 for the kernel CDF estimator (3.13). Its

uniform convergence would follow directly from Lemma K-1, provided Assumptions (i) and (iii)

hold on the closed interval [0, 1]. However, this rules out asymptotes in gγ , g
′
γ and Ġγ when v

goes to 0 or 1 for any γ. Instead, the following Lemma requires some additional continuity and

moment conditions:

Lemma K-1*. The following conditions, in addition to those in Lemma K-1, imply that

supγ∈Θ |Ĝγ(v∗)−Gγ(v
∗)| p−→ 0 for the kernel CDF estimator:

(i) u′(r; γ) and ct(γ) are twice continuously differentiable in γ on R++ × Θ and Θ a.s., re-

spectively;

(ii) For some δ > 0 and all γ ∈ Θ, E(∥Üt(γ)∥2+δ) <∞ and E(∥U̇t(γ)∥4+2δ) <∞;
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(iii) The following quantities are finite and continuous in γ on Θ:

B̃∗
1(γ) = E (∥Wt(γ)∥ | Ut(γ) = v∗)

B̃∗
2(γ) = sup

|t−s|≥M
E
(
∥Wt(γ)Ws(γ)

⊤∥
∣∣∣Ut(γ) = v∗, Us(γ) = v∗

)
gt−s(v

∗, v∗; γ),

for Wt(γ) ∈ { ∂1+|j|

∂γ1+jUt(γ), U̇t(γ)
∂|j|

∂γj
Ut(γ)} for multi-indices |j| ≤ 1 and some M > 0.

Proof. The derivative of Ĝγ(v
∗) w.r.t. γ is the kernel-weighted average

̂̇Gγ(v∗) = − 1

T

T∑
t=1

U̇t+1(γ)Kh(v
∗ − Ut+1(γ)).

Conditions (i)-(iii) imply those required in Kristensen (2009, Thm. 1(i)) for the uniform con-

vergence supγ∈Θ ∥ ̂̇Gγ(v∗) − E ̂̇Gγ(v∗)∥ p−→ 0. In particular, (i) ensures that Ut(γ) is a.s. twice

differentiable. Meanwhile,

sup
γ∈Θ

∥E ̂̇Gγ(v∗)∥ = sup
γ∈Θ

∥∥∥E(U̇t+1(γ)Kh(v
∗ − Ut+1(γ))

)∥∥∥ = sup
γ∈Θ

∥Ġγ(v∗)∥+O(h),

where the last equation uses that ġ(v; γ) is continuous in a neighborhood of v∗ for all γ ∈ Θ under

K-1(i). The mean-value theorem thus establishes stochastic equicontinuity of Ĝ(v∗; γ), whose

pointwise convergence follows from the boundedness of FK and the ergodic theorem. Therefore

supγ∈Θ |Ĝγ(v∗) − EĜγ(v∗)|
p−→ 0 by a uniform law of large numbers such as (Andrews, 1992,

Thm. 3). A Taylor expansion implies that supγ∈Θ |EĜγ(v∗)−Gγ(v
∗)| = O(h). The conclusion

follows from the triangle inequality.

Next, we provide primitive conditions for the kernel estimator to satisfy the uniform convergence

rate assumptions A(ii). The rate conditions on the density estimator and its first derivatives

follow from existing results for kernel estimators, such as Andrews (1995). In particular, the

following Lemma provides sufficient conditions.

Lemma K-2. Suppose Assumption K and the following conditions hold, for some ω ≥ 4:

(i) Z ′(P ) is ω times continuously differentiable on (0, 1), u′(r; γ0) and u̇
′(r; γ0) are ω and ω−1

times continuously differentiable on R++, ft(r) is ω − 1 times continuously differentiable

a.s. on R++, and ct(γ) is continuously differentiable a.s. at γ0;

(ii) E∥U̇0∥2+δ <∞ for some δ > 0 such that β > 2+δ
δ ;

(iii) µk(K) = 0 for k = 1, . . . , ω − 2;

(iv) h = O(T−ψ) and h−1 = O(Tψ) for some ψ > 0 that satisfies 1
4(ω−1) < ψ < 1

8 .

Then
√
T∥ĝ − g0∥2

p−→ 0.

Proof. Condition (i) implies that gγ0 and ġγ0 are continuously differentiable on (0, 1) up to

orders ω ≥ 4 and ω − 1, respectively, by Lemma D. Condition (ii) establishes that (U̇0, U0) are
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strongly mixing with coefficients such that
∑∞

l=1 α(l)
δ

2+δ <∞. The result follows from Andrews

(1995, Lemma A-1) by verifying its assumptions NP1-NP5 with (Yt, Xt) = (1, U0) with λ = 0, 1,

and (Yt, Xt) = (U̇0, U0) with λ = 1, to establish the uniform convergence of ĝγ0 , ĝ
′
γ0 , and

̂̇gγ0 ,
respectively, on [v∗, 1− v∗] for any v∗ > 0.

Lemma K-2*. If the conditions in Lemma K-2 hold, and E
(
∥U̇0∥2 | U0 = v

)
exists and is

continuously differentiable at v∗, then Ĝγ0(v
∗)−Gγ0(v

∗) = op
(
T−1/4

)
and ̂̇Gγ0(v∗)− Ġγ0(v

∗) =

op
(
T−1/4

)
for the kernel CDF estimator.

Proof. For the result on Ĝγ0(v
∗), suppose that h ≤ v∗, which happens for T large enough. Using

partial integration, the expectation of the kernel CDF estimator can then be written as

EFK
(
v∗ − U0,t+1

h

)
=

∫ 1

0
FK

(
v∗ − v

h

)
gγ0(v) dv

= FK (z)Gγ0(v
∗ − hz)

∣∣∣v∗/h
(v∗−1)/h

+

∫ 1

−1
K (z)Gγ0(v

∗ − hz) dz

= Gγ0(v
∗) +O(hω−1),

using the higher order kernel Assumption K-2(iii), and the ω+1 times continuous differentiability

of Gγ0 at v
∗. Meanwhile, since the summands FK

(
v∗−U0,t+1

h

)
inherit the i.i.d. property of U0,t+1,

the variance term equals Var Ĝγ0(v∗) = 1
T Var

(
FK

(
v∗−U0,t+1

h

))
≤ C

T since FK is bounded. We

conclude that Ĝγ0(v
∗) − Gγ0(v

∗) = O(hω−1) + Op
(
T−1/2

)
= op

(
T−1/4

)
under the bandwidth

condition K-2(iv).

For the second result, differentiating Gγ w.r.t. γ yields the relation

Ġγ0(v) = −E(U̇0 | U0 = v)gγ0(v).

With ̂̇Gγ0(v∗) = − 1
T

∑T
t=1 U̇0,t+1Kh (v

∗ − U0,t+1), we can decompose ̂̇Gγ0(v∗)− Ġγ0(v
∗) = BT +

VT +DT into bias, variance, and density estimation terms, where the bias term

BT = − 1

T

T∑
t=1

(
E(U̇0,t+1 | U0,t+1)− E(U̇0,t+1 | U0,t+1 = v∗)

)
Kh (v

∗ − U0,t+1)

has i.i.d. summands with EBT = O(hω−1) and VarBT = O
(

1
Th

)
, the variance term equals

VT = − 1

T

T∑
t=1

(
U̇0,t+1 − E(U̇0,t+1 | U0,t+1)

)
Kh (v

∗ − U0,t+1) ,

and the density estimation term, which is op
(
T−1/4

)
by Lemma K-2, equals

DT = −E(U̇0,t+1 | U0,t+1 = v∗) (ĝγ0(v
∗)− gγ0(v

∗)) .

The variance term has mean EVT = 0 and long-run covariance matrix EVTV ⊤
T = V1T + V2T ,
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where the contemporaneous covariance is

V1T :=
1

T
E
(
U̇ c0,t+1U̇

c ⊤
0,t+1K

2
h (v

∗ − U0,t+1)
)

=
gγ0(v

∗)

Th
E(U̇0,t+1U̇

⊤
0,t+1 | U0,t+1 = v∗)

∫
K2(z)dz + o

(
1

Th

)
,

with U̇ c0,t+1 := U̇0,t+1 − E(U̇0,t+1 | U0,t+1), and the between-period covariances sum to

V2T :=
1

T 2

T∑
l=1

(
1− l

T

)
E
(
U̇ c0,1U̇

c ⊤
0,1+lKh (v

∗ − U0,1)Kh (v
∗ − U0,1+l)

)
≤ C

1

T 2h2

(
E||U̇0∥2+δ

) 2
2+δ

T∑
l=1

(
1− l

T

)
α(l)

δ
2+δ ,

which is O
(

1
T 2h2

)
by K-2(ii). We conclude that ̂̇Gγ0(v∗) − Ġγ0(v

∗) = Op

(
hω−1 + 1√

Th

)
+

op
(
T−1/4

)
= op

(
T−1/4

)
by K-2(iv).

Lemma K-3. Suppose Assumption K and the following conditions hold for some neighborhood

N0 of γ0:

(i) For some δ > 0, all γ ∈ N0, and multi-indices j,

E

∣∣∣∣∣ ∂|j|∂γj
Ut(γ)

∣∣∣∣∣
2+δ
 <∞ for |j| ≤ 3,

E

∣∣∣∣∣ ∂|j|∂γj
Ut(γ)

∣∣∣∣∣
2+δ

∥U̇t(γ)∥2+δ
 <∞ for |j| ≤ 2;

(ii) The mixing exponent β satisfies β > 1+(1+δ)(2+k)
δ ;

(iii) The following quantities are continuous on (0, 1)×N0:

B̃1(γ, v) = E (∥Wt(γ)∥ | Ut(γ) = v) ,

B̃2(γ, u, v) = sup
|t−s|≥M

E
(
∥Wt(γ)Ws(γ)

⊤∥
∣∣∣Ut(γ) = u, Us(γ) = v

)
gt−s(u, v; γ),

for Wt(γ) ∈ { ∂1+|j|

∂γ1+jUt(γ), U̇t(γ)
∂|j|

∂γj
Ut(γ)} for multi-indices |j| ≤ 2 and some M > 0;

(iv) K is three times differentiable;

(v) log T
Th5

→ 0 and log T
T θh

→ 0 with θ = β−2−k−(1+β)/(1+δ)
β+2−k−(1+β)/(1+δ) ;

(vi) Z ′(P ), u′(r; γ), and ct(γ) are three times, and ft(r) two times, continuously differentiable

on (0, 1), R++ ×N0, N0 a.s., and R++ a.s., respectively.

Then supγ∈N0
∥ ∂i+|j|

∂vi∂γj
(ĝγ − gγ)∥∞,v∗

p−→ 0 for any non-negative integer i and multi-index j with

i+ |j| ≤ 2.
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Proof. Condition (vi) implies that g(v; γ) is three times continuously differentiable on (0, 1)×N0

by Lemma D, and that Ut(γ) is a.s. three times differentiable onN0. The result follows from Kris-

tensen (2009, Thm. 1(i)) by verifying its assumptions A.1-A.4 and A.6.1 with (Yt(γ), Xt(γ)) =

( ∂
|j|

∂γj
Ut(γ), Ut(γ)) and Ki(z) =

∂i

∂iz
K(z) for each (i, j) with i+ |j| ≤ 2, while setting cT = 1 and

dT = γ0 + ϵ for some ϵ > 0. It establishes that

sup
γ∈N0

∥∥∥∥∥ ∂i+|j|

∂vi∂γj
(ĝγ − Eĝγ)

∥∥∥∥∥
∞,v∗

= Op

(√
log T

Th1+2(i+|j|)

)
,

which is op(1) by Assumption (v). The conclusion then follows from supγ∈N0
∥ ∂i+|j|

∂vi∂γj
(Eĝγ −

gγ)∥∞,v∗ = O(hω−1−i) by a Taylor expansion of order ω − 1, and the triangle inequality.

Lemma K-3*. If the conditions in K-3 hold, then supγ∈N0

∣∣∣ ∂|j|∂γj
(Ĝγ(v

∗)−Gγ(v
∗))
∣∣∣ p−→ 0 for

|j| ≤ 2.

Proof. For |j| = 0, 1 the result follows analogous to the proof of Lemma K-1*, whose con-

ditions are satisfied by those in K-3 with N0 instead of Θ. For |j| = 2, write ̂̈Gγ(v∗) =
1
T

∑T
t=1 U̇t+1(γ)U̇

⊤
t+1(γ)K

′
h (v

∗ − Ut+1(γ))− 1
T

∑T
t=1 Üt+1(γ)Kh (v

∗ − Ut+1(γ)). Both components

are kernel averages whose uniform convergence follows from Kristensen (2009, Thm. 1(i)) with

(Yt(γ), Xt(γ)) = (U̇t(γ)U̇
⊤
t (γ), Ut(γ)) and (Yt(γ), Xt(γ)) = (Üt(γ), Ut(γ)) with kernels K ′ and

K, respectively. The conclusion then follows from supγ∈N0
| ∂|j|
∂γj

(EĜγ(v∗)−Gγ(v
∗))| = O(h) by

K-3(vi) and the triangle inequality.

C Additional Simulation Results

C.1 Weekly observations

This appendix considers the same DGP as Section 4, but changes the observation scheme to

match weekly data instead of monthly. Historic weekly data does not extend as far back as

monthly data, so we consider a sample of 12 years, or T = 624. This is not a ceteris paribus

sample size increase, as the shortened observation span affects the shape of the distributions.
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Table 5: Profile likelihood performance

v∗ = 0 v∗ = 0.001 v∗ = 0.01 v∗ = 0.05
h Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE

0.15 -0.05 1.76 3.09 0.41 0.38 1.82 3.47 0.48 0.74 1.97 4.44 0.60 1.00 2.09 5.40 0.72
0.20 0.24 1.44 2.14 0.31 0.60 1.48 2.55 0.38 0.98 1.62 3.58 0.50 1.22 1.88 5.01 0.67
0.25 0.55 1.27 1.92 0.29 0.86 1.30 2.42 0.36 1.26 1.44 3.65 0.51 1.55 1.71 5.32 0.71
0.30 0.89 1.20 2.22 0.33 1.17 1.21 2.84 0.41 1.58 1.35 4.33 0.58 1.96 1.55 6.24 0.81

MLE 3.29 1.09 12.04 1.34 3.30 1.09 12.08 1.34 3.30 1.10 12.07 1.34 3.22 1.14 11.69 1.29

(a) ZTK

v∗ = 0 v∗ = 0.001 v∗ = 0.01 v∗ = 0.05
h Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE

0.15 0.55 2.24 5.32 0.39 1.52 2.24 7.32 0.52 1.98 2.44 9.84 0.66 1.89 2.53 9.98 0.71
0.20 0.91 2.02 4.93 0.34 1.77 2.01 7.18 0.49 2.24 2.18 9.79 0.63 2.18 2.47 10.89 0.73
0.25 1.19 1.85 4.83 0.32 1.97 1.83 7.22 0.47 2.44 2.00 9.95 0.63 2.41 2.36 11.41 0.74
0.30 1.43 1.78 5.22 0.33 2.15 1.75 7.72 0.49 2.62 1.93 10.58 0.65 2.64 2.28 12.13 0.78

MLE 3.92 1.64 18.03 1.00 3.94 1.61 18.08 1.00 4.00 1.62 18.64 1.03 4.09 1.67 19.48 1.06

(b) ZP

v∗ = 0 v∗ = 0.001 v∗ = 0.01 v∗ = 0.05
h Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE

0.15 -2.82 2.32 13.38 0.71 -1.49 2.33 7.68 0.46 -0.68 2.58 7.13 0.45 0.05 2.46 6.07 0.44
0.20 -2.76 2.11 12.07 0.62 -1.58 2.11 6.96 0.40 -0.70 2.31 5.85 0.36 -0.16 2.50 6.26 0.41
0.25 -2.71 1.91 10.98 0.55 -1.63 1.90 6.26 0.35 -0.72 2.11 4.97 0.31 -0.13 2.43 5.93 0.38
0.30 -2.64 1.82 10.30 0.51 -1.63 1.80 5.92 0.32 -0.71 2.03 4.63 0.28 0.05 2.39 5.73 0.36

MLE 0.01 1.66 2.77 0.14 0.04 1.65 2.73 0.14 0.06 1.68 2.83 0.14 0.04 1.72 2.96 0.13

(c) Z0

Note: Subtables display the bias, standard deviation, and mean squared error (MSE) of the profile likelihood
estimator γ̂ over N = 1000 replications of samples of length T = 300 for various levels of trimming v∗, with
bandwidth h∗ = h/2 for the CDF estimator. Each subpanel represents a different true probability weighting
function. Columns labeled IMSE display the integrated mean squared error of the nonparametric estimator
Ẑ, multiplied by 1,000. The bottom rows represent the maximum likelihood estimator of the expected utility
model, which fixes the weighting function as the identity map.

Table 6: Testing the probability weighting function

ZTK ZP Z0

α (%) 10 5 1 10 5 1 10 5 1

Rejection rate (%)

v∗ = 0 100 100 100 49.4 37.9 18.3 9.9 5.6 1.3
v∗ = 0.001 100 100 100 49.9 38.3 17.9 9.8 5.4 1.2
v∗ = 0.01 100 100 100 51.9 39.6 19.5 8.8 4.8 1.3
v∗ = 0.05 100 100 100 48.5 37.2 17.6 8.3 4.0 1.1

Note: This table displays the rejection rate of the Bai (2003) test at level α. The first two sets of three
columns consider the power under two different alternatives, the last set considers a DGP where the null is
true and display the size of the test. The rejection rates are based on N = 1000 simulations. Critical values
are constructed by simulation.

C.2 Different CRRA parameter: Higher risk aversion

This appendix considers the same DGP as Section 4, but increases the CRRA parameter to

γ0 = 10 from its baseline value of γ0 = 2. This is perhaps not an empirically realistic case; we

study it primarily to investigate the robustness of our estimator to relatively extreme values of

γ0. The interval for the parameter under trimming is set to Θ = [0, 15], to maintain the same

width relative to the baseline case.
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Table 7: Profile likelihood performance

v∗ = 0 v∗ = 0.001 v∗ = 0.01 v∗ = 0.05
h Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE

0.15 -0.27 1.30 1.76 1.02 -0.18 1.27 1.64 0.95 0.01 1.45 2.10 1.15 -0.36 1.38 2.03 1.22
0.20 -0.16 1.23 1.54 0.94 -0.03 1.01 1.02 0.60 0.11 1.14 1.32 0.74 -0.02 1.23 1.51 0.90
0.25 0.03 1.12 1.25 0.76 0.14 0.88 0.80 0.45 0.24 1.00 1.07 0.59 0.27 1.14 1.37 0.80
0.30 0.28 0.95 0.98 0.54 0.36 0.84 0.83 0.44 0.42 0.94 1.05 0.57 0.49 1.03 1.31 0.76

MLE 1.92 0.76 4.26 1.88 1.92 0.76 4.26 1.88 1.93 0.76 4.30 1.89 2.00 0.80 4.65 2.02

(a) ZTK

v∗ = 0 v∗ = 0.001 v∗ = 0.01 v∗ = 0.05
h Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE

0.15 -0.13 1.47 2.18 0.72 0.05 1.50 2.25 0.78 0.08 1.73 2.98 0.97 -0.87 1.38 2.66 1.08
0.20 0.02 1.33 1.76 0.54 0.17 1.34 1.82 0.60 0.13 1.49 2.25 0.72 -0.32 1.39 2.04 0.80
0.25 0.14 1.22 1.51 0.42 0.28 1.22 1.57 0.48 0.18 1.36 1.88 0.58 0.05 1.44 2.09 0.74
0.30 0.26 1.19 1.48 0.37 0.39 1.18 1.55 0.43 0.25 1.31 1.79 0.53 0.26 1.44 2.15 0.72

MLE 2.04 1.12 5.41 1.26 2.05 1.11 5.42 1.26 2.08 1.11 5.55 1.29 2.14 1.15 5.93 1.34

(b) ZP

v∗ = 0 v∗ = 0.001 v∗ = 0.01 v∗ = 0.05
h Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE

0.15 -1.91 1.54 6.02 1.52 -1.54 1.59 4.91 1.31 -1.29 1.84 5.04 1.35 -1.33 1.37 3.64 1.20
0.20 -1.90 1.40 5.58 1.36 -1.57 1.44 4.53 1.17 -1.33 1.61 4.38 1.15 -1.08 1.45 3.26 1.00
0.25 -1.89 1.29 5.22 1.22 -1.58 1.31 4.22 1.04 -1.36 1.46 3.97 1.02 -0.89 1.55 3.19 0.91
0.30 -1.85 1.24 4.99 1.13 -1.57 1.26 4.05 0.96 -1.35 1.40 3.77 0.95 -0.75 1.59 3.09 0.86

MLE 0.07 1.18 1.40 0.28 0.08 1.18 1.39 0.28 0.08 1.18 1.40 0.28 0.06 1.21 1.47 0.27

(c) Z0

Note: Subtables display the bias, standard deviation, and mean squared error (MSE) of the profile likelihood
estimator γ̂ over N = 1000 replications of samples of length T = 300 for various levels of trimming v∗, with
bandwidth h∗ = h/2 for the CDF estimator. Each subpanel represents a different true probability weighting
function. Columns labeled IMSE display the integrated mean squared error of the nonparametric estimator
Ẑ, multiplied by 1,000. The bottom rows represent the maximum likelihood estimator of the expected utility
model, which fixes the weighting function as the identity map.

Table 8: Testing the probability weighting function

ZTK ZP Z0

α (%) 10 5 1 10 5 1 10 5 1

Rejection rate (%)

v∗ = 0 100 100 100 23.9 14.6 4.1 9.9 5.4 0.8
v∗ = 0.001 100 100 100 24.2 15.1 4.1 9.8 5.1 0.7
v∗ = 0.01 100 100 100 25.8 15.8 4.3 9.2 4.2 0.8
v∗ = 0.05 100 100 99.8 23.1 13.8 3.7 8.2 4.2 0.7

Note: This table displays the rejection rate of the Bai (2003) test at level α. The first two sets of three
columns consider the power under two different alternatives, the last set considers a DGP where the null is
true and display the size of the test. The rejection rates are based on N = 1000 simulations. Critical values
are constructed by simulation.

C.3 Different P-dynamics

This appendix considers a different DGP as Section 4, using instead the following P-dynamics

d logFt =
(
−1

2Vt − µJλt
)
dt+

√
Vt dW1,t + Jt dNt,

dVt = 8(0.015− Vt) dt+ 0.3
√
Vt dW2,t + JVt 1{Jt<0} dNt,

(C.1)
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where W1,t and W2,t are correlated with coefficient ρ = −0.6, and λt = 30Vt. Jump parameters,

and utility and probability weighting functions are the same as in Section 4. This model does

not satisfy Assumption I, as there is only one state variable. Nonetheless, the utility parameter

does seem to be identified.

Table 9: Profile likelihood performance

v∗ = 0 v∗ = 0.001 v∗ = 0.01 v∗ = 0.05
h Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE

0.15 -0.15 1.64 2.70 0.83 0.12 1.69 2.86 0.89 0.30 1.87 3.58 1.09 0.66 1.85 3.87 1.25
0.20 0.04 1.30 1.70 0.53 0.27 1.34 1.86 0.58 0.51 1.48 2.46 0.76 0.80 1.68 3.46 1.09
0.25 0.26 1.13 1.35 0.42 0.47 1.16 1.57 0.49 0.76 1.29 2.25 0.69 1.11 1.54 3.61 1.11
0.30 0.50 1.07 1.39 0.42 0.71 1.09 1.69 0.52 1.03 1.21 2.53 0.76 1.50 1.37 4.15 1.25

MLE 2.27 0.94 6.01 1.58 2.27 0.94 6.03 1.58 2.26 0.94 6.00 1.57 2.20 0.99 5.80 1.50

(a) ZTK

v∗ = 0 v∗ = 0.001 v∗ = 0.01 v∗ = 0.05
h Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE

0.15 0.20 2.00 4.02 0.68 0.79 1.99 4.58 0.79 1.24 2.27 6.67 1.08 1.24 2.00 5.53 1.08
0.20 0.39 1.81 3.41 0.54 0.92 1.79 4.06 0.66 1.40 1.99 5.92 0.94 1.38 2.08 6.21 1.08
0.25 0.54 1.64 2.98 0.44 1.03 1.62 3.70 0.57 1.52 1.80 5.54 0.86 1.56 2.09 6.80 1.12
0.30 0.69 1.58 2.96 0.42 1.15 1.56 3.75 0.56 1.65 1.72 5.68 0.86 1.80 2.04 7.39 1.19

MLE 2.57 1.42 8.62 1.20 2.59 1.42 8.70 1.21 2.61 1.43 8.84 1.22 2.66 1.48 9.25 1.25

(b) ZP

v∗ = 0 v∗ = 0.001 v∗ = 0.01 v∗ = 0.05
h Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE Bias St.d. MSE IMSE

0.15 -2.14 2.12 9.06 1.23 -1.21 2.11 5.91 0.87 -0.49 2.42 6.11 0.94 0.29 1.97 3.98 0.82
0.20 -2.14 1.93 8.31 1.09 -1.29 1.93 5.40 0.76 -0.48 2.14 4.79 0.73 -0.03 2.12 4.51 0.77
0.25 -2.12 1.75 7.58 0.97 -1.34 1.75 4.88 0.66 -0.48 1.92 3.92 0.60 -0.06 2.20 4.83 0.76
0.30 -2.08 1.67 7.13 0.89 -1.35 1.68 4.64 0.60 -0.45 1.83 3.56 0.54 0.12 2.21 4.91 0.76

MLE -0.01 1.55 2.39 0.28 0.01 1.54 2.38 0.28 0.02 1.56 2.44 0.27 0.01 1.60 2.56 0.27

(c) Z0

Note: Subtables display the bias, standard deviation, and mean squared error (MSE) of the profile likelihood
estimator γ̂ over N = 1000 replications of samples of length T = 300 for various levels of trimming v∗, with
bandwidth h∗ = h/2 for the CDF estimator. Each subpanel represents a different true probability weighting
function. Columns labeled IMSE display the integrated mean squared error of the nonparametric estimator
Ẑ, multiplied by 1,000. The bottom rows represent the maximum likelihood estimator of the expected utility
model, which fixes the weighting function as the identity map.

Table 10: Testing the probability weighting function

ZTK ZP Z0

α (%) 10 5 1 10 5 1 10 5 1

Rejection rate (%)

v∗ = 0 100 100 100 27.4 19.6 6.3 9.9 4.9 0.6
v∗ = 0.001 100 100 100 27.5 19.8 6.3 9.6 4.8 0.6
v∗ = 0.01 100 100 100 28.4 20.3 6.9 9.0 4.3 0.4
v∗ = 0.05 100 100 100 28.2 20.1 6.7 9.1 4.1 0.7

Note: This table displays the rejection rate of the Bai (2003) test at level α. The first two sets of three
columns consider the power under two different alternatives, the last set considers a DGP where the null is
true and display the size of the test. The rejection rates are based on N = 1000 simulations. Critical values
are constructed by simulation.
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