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Abstract

We propose a new rank-based test for the number of common primitive shocks, q, in large panel

data. After estimating a VAR(1) model on r static factors extracted by principal component analy-

sis, we estimate the number of common primitive shocks by testing the rank of the VAR residuals’

covariance matrix. The new test is based on the asymptotic distribution of the sum of the small-

est r − q eigenvalues of the residuals’ covariance matrix. We develop both plug-in and bootstrap

versions of this eigenvalue-based test. The eigenvectors associated to the q largest eigenvalues al-

low us to construct an easy-to-implement estimator of the common primitive shocks. We illustrate

our testing and estimation procedures with applications to panels of macroeconomic variables and

individual stocks’ volatilities.

Keywords: Common primitive shocks; Dynamic factor models; Rank tests; Distribution of eigenval-

ues; Principal component analysis.
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1 Introduction

We introduce a rank-based test to determine the number of common primitive shocks in large panel

data. That is, we study the problem of testing and estimating the smallest number q of common sources

of randomness characterizing the N -dimensional vector of observable variables yt = [y1,t, . . . , yN,t]
′,

for t = 1, ..., T , in a linear dynamic factor model.

As a motivating example of a Data Generating Process (DGP) where a large dimensional dynamic

system is driven by q ≪ N primitive shocks, let us consider restricted dynamic factor models of the

kind:

yt = Λ0ht + · · ·+ Λsht−s + εt, (1.1)

ht = Φ1ht−1 + · · ·Φpht−p + wt, (1.2)

where yt depends on contemporaneous ht and lagged (ht−1, . . . , ht−s) values of q latent common

dynamic factors through the (N, q) matrices Λ0,Λ1, . . . ,Λs. Vector ht evolves according to the sta-

tionary VAR(p) in equation (1.2), where we assume p ≤ s < ∞ to simplify the exposition.1 The

N -dimensional vector εt comprises weakly correlated (over time and across entities) zero-mean inno-

vations, while wt is a non-degenerate q-dimensional vector of mutually orthogonal shocks. As p and

s are finite, we can introduce a new r-dimensional vector of factors ft = [h′t, h
′
t−1, . . . , h

′
t−s]

′, with

r = q(s + 1), a new matrix of loadings Λ = [Λ0, ...,Λs], and write the static factor representation of

the model in (1.1)-(1.2) as:

yt = Λft + εt, (1.3)

ft = Φft−1 + vt, (1.4)

where ft follows a stationary VAR(1) with auto-regressive matrix Φ based on matrices Φ1, . . . ,Φp in

(1.2), and innovations vt =
[
Iq 0 . . . 0

]′
wt whose (r, r) covariance matrix V (vt) has rank q < r,

i.e. it is rank deficient so that its smallest r − q eigenvalues are zero. Thus, the common component

of the factor model in (1.3)-(1.4) is based on the r-dimensional random vector ft whose stochasticity

is entirely driven by the a smaller number q of common primitive shocks wt. In the rest of the paper

1The case p > s would require a heavier notation.
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we focus on all the models which can be written as (1.3)-(1.4) such that V (vt) is reduced rank, with

model (1.1)-(1.2) being a special case.

Dynamic factor models based on (1.1)-(1.2), and their generalizations, have been extensively used

in macroeconometrics following the seminal works of Forni and Reichlin (1998) and Forni, Hallin,

Lippi, and Reichlin (2000).2 For restricted dynamic factor models which can be written as (1.3)-(1.4),

estimation and inference on wt, and on its dimension q, have been studied by Bai and Ng (2007),

Amengual and Watson (2007), and Breitung and Pigorsch (2013), who start by estimating the r static

factors ft through Principal Component Analysis (PCA) on the observed panel.3

We contribute to the literature on large dynamic factor models by introducing a sequential testing

procedure for the rank of V (vt), which yields a consistent estimator for the number of common shocks

q. This new procedure relies on testing the rank of V (vt) after having estimated a VAR(1) model on

the Principal Components (PCs) estimate f̂t of the r static factors ft. In particular, the test is based

on the asymptotic distribution of the sum of the smallest r − q eigenvalues of the sample covariance

matrix V̂ (vt). These are all equal to zero in population, but are strictly positive in finite samples due

to the estimation error of factors f̂t, which induces an estimation error in V̂ (vt) and its eigenvalues.

We propose two implementations of the test: a first one based on plug-in estimators of the asymptotic

bias and the variance, and a second one relying on a residual (wild) bootstrap of the standardized

test statistics. We also develop an easy-to-implement estimator for the common shocks wt based

on the eigenvectors associated to the largest q eigenvalues of V̂ (vt). Notably, the derivation of the

asymptotic distribution of the smallest r − q eigenvalues of the positive semi-definite matrix (p.s.d.)

V̂ (vt), discussed more in detail below, is the main theoretical contribution of our work.

Consistent estimation procedures for q based on Information Criteria (IC) have been derived by

Amengual and Watson (2007), Bai and Ng (2007), and Breitung and Pigorsch (2013). Differently

from these approaches, we construct a consistent estimator for q starting from an eigenvalue-based

rank test procedure. This is similar to the approach of Onatski (2009), who tests and estimates the

number of common primitive shocks (or, equivalently, of dynamic factors) for generalized dynamic

2Generalized dynamic factor models, introduced by Forni, Hallin, Lippi, and Reichlin (2000), extend the model (1.1)
- (1.2) to account for an infinite number of lags in the r.h.s. of (1.1) and/or (1.2), e.g. when ht follows an invertible
MA(q) process. See Barigozzi and Hallin (2024) for a review of generalized dynamic factor models and their relation with
restricted ones. Presently, our methodology is restricted to dynamic factor models with a finite number of lags s and p.

3Other estimation techniques based on the Expectation Maximization algorithm are surveyed by Barigozzi and Luciani
(2019), who also establish the asymptotic properties of the resulting factor and loading estimators.
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factor models by exploiting the asymptotic distribution of functions of the eigenvalues of the estimated

spectral density matrix of the observables yi,t.4 Under the same setting, Hallin and Liska (2007)

derive a consistent selection procedure for the number of common dynamic factors/primitive shocks.

Kapetanios (2010) proposes an alternative to the test of Onatski (2009) based on the largest eigenvalues

of the covariance matrix of the data. Importantly, our testing procedure allows for more general relative

convergence rates of N and T compared those required for the asymptotic results in Onatski (2009)

and Kapetanios (2010).

As discussed by Bai and Ng (2007) and Donald, Fortuna, and Pipiras (2010), testing the rank of a

finite-dimensional p.s.d. matrix is a highly non-standard problem. While the literature has developed

plenty of methods to test the rank of a matrix, e.g. Gill and Lewbel (1992), Cragg and Donald (1996),

Robin and Smith (2000), Kleibergen and Paap (2006) and Donald, Fortuna, and Pipiras (2007), these

approaches cannot deal with matrices that are symmetric and semi-definite. Indeed, Donald, Fortuna,

and Pipiras (2007) showed that when the rank of a semi-definite matrix, say M0, is estimated using

a semi-definite matrix, say M̂, the asymptotic variance-covariance matrix of the estimator, say W0 =

V (vech{M̂}), is necessarily singular. Hence, the aforementioned rank tests for indefinite matrices

cannot be applied as they assume that W0 is full rank. To the best of our knowledge, we are the first

to solve the problem of testing the rank of a finite dimensional positive semi-definite (p.s.d.) matrix in

panel data where both N and T diverge.5

Our solution consists in a sequential testing procedure based on the asymptotic distribution of the

sum of the smallest r − q eigenvalues of the estimated covariance matrix V̂ (vt). This distribution is

derived through an asymptotic expansion of the PC estimator f̂t and by applying perturbation methods

to expand the sum of the smallest r− q estimated eigenvalues.6 Remarkably, under the null hypothesis

of V (vt) having rank q, the asymptotic distribution of the test statistic is Gaussian, has a non-standard

convergence rateN
√
T , and features an asymptotic bias of order 1/N . This bias is due to the measure-

ment error in the eigenvalues of V̂ (vt) originated by the estimation error of the static factors. Starting

from this asymptotic distribution, we develop a consistent sequential testing procedure to determine

4The testing procedure of Onatski (2009) requires the use of frequency-domain techniques, as the test is developed for
generalized dynamic factor models. Our testing and estimation procedures do not require frequency-domain techniques.

5Fortin, Gagliardini, and Scaillet (2023a,b) develop rank-based testing procedures for the number of static factors when
N diverges but T is finite, under a more restrictive set of assumptions.

6Perturbation arguments are also used by Andreou, Gagliardini, Ghysels, and Rubin (2019), AGGR henceforth, to
derive the asymptotic distribution of the sum of the largest canonical correlations of two sets of factors estimated by PCA
from two separate panels to test for the presence of common factors among them.
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the rank of V (vt) which takes into account the usual issues related to multiple testing in the spirit of,

e.g., Robin and Smith (2000). To improve finite sample properties of the test, we develop a residual-

based wild bootstrap inspired by the works of Gonçalves and Perron (2014, 2020), and Gonçalves,

Koh, and Perron (2024).

Empirical sizes and powers of the two implementations are studied in a Monte Carlo (MC) analy-

sis. The asymptotic test is over-sized when N is small, e.g. N < 200, but it has unitary empirical even

when controlling for the size distortion. The bootstrap scheme refines the actual size while preserving

most of its power. Both implementations return estimators of q that improve upon extant approaches.

Finally, we use the new methodology in two separate empirical applications to study the factor struc-

ture of US macroeconomic variables and of volatility measures on US stocks.

The rest of the paper is organized as follows. Section 2 details the modelling setting and the iden-

tification strategy for the common primitive shocks and their number q. Section 3 describes estimators

of the static factors, the primitive shocks, and their number. The large sample theory of the test and

estimators are presented in Section 4. Section 5 introduces the bootstrap implementation of the test

and related sequential estimation procedure. Section 6 shows results of different MC studies, while

Section 7 covers the empirical applications. Section 8 concludes. Appendix A provides the regularity

conditions, while Appendix B includes the proofs of Propositions and Theorems. The Online Ap-

pendix (OA) provides the proofs of additional technical results (Section C), details of the bootstrap

implementation of the tests based either on the smallest r − q eigenvalues (Section D), a detailed dis-

cussion of the alternative estimators of q considered in the MC experiments (Section E), and additional

MC analyses (Section F).7

7Regarding notation, we partition an r-dimensional vector xt as xt = [x′Ht, x
′
Lt]

′, where xHt is the upper q-dimensional
sub-vector, and xHt is the lower (r− q)-dimensional sub-vector. Moreover, we partition any (r, r) matrix A in four blocks
as:

A =

[
AHH AHL
ALH ALL

]
,

where AHH is the upper-left (q, q) block, AHL the upper-right (q, r − q) block, ALH is the bottom-left (r − q, q) block
and ALL the bottom-right (r − q, r − q) block.
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2 The model

In the rest of the paper, we consider the following factor model:

yt = Λ̆f̆t + εt (2.1)

f̆t = Φ̆f̆t−1 + v̆t, (2.2)

v̆t = Gηt, with ηt ∼ iid(0, Iq) (2.3)

where yt = [y1t, ..., yNt]
′ is a vector of observations for N individuals at time t = 1, . . . , T , Λ̆ =

[λ̆1, ..., λ̆N ]
′ is the (N, r) matrix of factor loadings, f̆t is the r-dimensional vector of latent static fac-

tors with 1 < r ≪ min (N, T ), and εt = [ε1t, ..., εNt]
′ is an N -dimensional vector of weakly corre-

lated (over time and across entities) error terms. Factors f̆t follow a stationary VAR(1) process with

autoregressive matrix Φ̆. The r-dimensional innovations vector v̆t is a linear combination of the q-

dimensional vector of “primitive shocks” ηt, with 1 ≤ q ≤ r. These primitive shocks are orthogonal

and independent over time. The (r, q) full-column rank matrix G maps the primitive shocks ηt into v̆t,

so that

v̆t ∼ iid(0, Σ̆v), (2.4)

for Σ̆v := E(v̆tv̆
′
t) = GIqG

′ = GG′, and we denote by σ2
ℓ its ℓ-th largest eigenvalue, where ℓ =

1, ..., r.8 When q < r the (r, r) matrix Σ̆v has reduced rank q, so that its smallest r − q (largest r)

eigenvalues are zero (positive), i.e. σ2
1 ≥ σ2

2 ≥ ... ≥ σ2
q > σ2

q+1 = σ2
q+2 = ... = σ2

r = 0.

2.1 Identification of static factors and primitive shocks

Our identification strategy for the number q of primitive shocks is based on the number r − q of zero

eigenvalues of Σ̆v in (2.4). Similarly, the actual common shocks are identified by using the eigenvectors

of Σ̆v associated to its largest q eigenvalues.

Static factors f̆t are identifiable, up to a rotation (and change of sign), by performing PCA on the

8The assumption V (ηt) = Iq is an identification condition. Different values of variance and (non-perfect) correlation
among the innovations v̆t can be obtained by appropriate values of the entries of matrix G.
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panel of observables yt, under the standard identification assumptions:

E(f̆t) = 0 and V (f̆t) = E(f̆tf̆
′
t) = Ir. (2.5)

The zero mean assumption is implied by not including an intercept in the r.h.s. of (2.2). We refer to

(2.5) as Assumption A.2 ii) in the list of regularity conditions in Appendix A.

When Σ̆v has rank q < r, there exists an equivalent way of expressing the DGP in (2.1) - (2.4)

which allows identification of the common primitive shocks ηt while simplifying the derivation of the

distribution of the test statistics for q. Let Σv be the (r, r) diagonal matrix of the sorted eigenvalues

of Σ̆v, that is

Σv := diag(σ2
1, ..., σ

2
q , 0, ..., 0), (2.6)

and let Wv = [Wv,q , Wv,r−q] be the (r, r) matrix containing the associated orthonormal eigenvectors,

with Wv,q being the (r, q) matrix of eigenvectors associated to the largest q eigenvalues, and Wv,r−q

being the (r, r − q) matrix of eigenvectors associated to the r − q zero eigenvalues. Then,

Σ̆vWv = WvΣv , with W ′
vWv = WvW

′
v = Ir. (2.7)

Let us define the rotated factors and associated loadings as

ft =
[
f ′
H,t, f

′
L,t

]′
:= W ′

vf̆t, t = 1, ..., T and Λ = [λ1, ..., λN ]
′ := Λ̆Wv (2.8)

with λi = W ′
vλ̆i for i = 1, ..., N . Then, equation (2.1) can be written as:

yt = Λft + εt. (2.9)

By defining Φ := W ′
vΦ̆Wv, vt := W ′

vv̆t = [(W ′
v,qGηt)

′ (W ′
v,r−qGηt)

′]′, and by premultiplying both

sides of equation (2.2) by W ′
v we obtain W ′

vf̆t = W ′
vΦ̆WvW

′
vf̆t−1 +W ′

vv̆t, which is an equivalent

DGP for the rotated factors:

ft = Φft−1 + vt, with vt ∼ iid(0,Σv) (2.10)
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and Σv := V (vt) = W ′
vΣ̆vWv. From equations (2.4) and (2.6), the (r− q)-dimensional sub-vector vLt

of vt is degenerate with E[vLt] = 0 and V (vLt) = Σv,LL = 0(r−q,r−q), so that

vt =

 vHt

vLt

 =

 vHt

0

 , (2.11)

almost surely, for any t. Hence, equation (2.10) can be re-written as: fHt

fLt

 =

 ΦHH ΦHL

ΦLH ΦLL

 fHt−1

fLt−1

+

 vHt

0

 , (2.12)

or, by recursive substitution,

 fHt

fLt

 =

 vH,t

0

+
∞∑
s=1

 ΦHH ΦHL

ΦLH ΦLL

s  vH,t−s

0

 .
In this DGP, the non-degenerate vector vHt = W ′

v,qGηt collects a one-to-one linear transformation

of the q primitive shocks ηt given by the full rank (q, q) matrix W ′
v,qG. On the other hand, the r − q

factors collected in fLt have degenerate innovations vLt = W ′
v,r−qGηt = 0 for any t. Thus, factors

fHt are the only ones to bring most recent information of the q common shocks ηt into the common

component Λft: for this reason we refer to them as non-redundant factors. The remaining factors fLt

are a deterministic function of the common shocks up to and including time t − 1, and can be seen a

linear transformation of lagged factors ft−1 or, equivalently, as a function only of past primitive shocks

vt−1, vt−2, .... Hence, we refer to them as redundant factors in what follows.9

3 Estimators

Section 3.1 presents the OLS estimator of Σ̆v (resp. Σv) when factors f̆t (resp. ft) are observed. In

Section 3.2 we introduce estimators for the static factors, the common shocks, VAR(1) parameters,

9This discussion implies the existence of r − q different linear combinations of ft (resp. f̆t) which are perfectly cor-
related with other r − q linear combinations of ft−1 (resp. f̆t−1) or, equivalently, that there exist r − q unitary canonical
correlations between ft (resp. f̆t) and ft−1 (resp. f̆t−1). A similar argument was first used by Breitung and Pigorsch
(2013).
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and eigenvalues/eigenvectors of Σ̆v when static factors are estimated by PCA. Section 3.3 deals with

the sequential testing strategy characterizing our estimator of q.

3.1 Estimation of Σv when factors are observed

Let ˜̆Φ = (
∑T

t=1 f̆tf̆
′
t−1)(

∑T
t=1 f̆t−1f̆

′
t−1)

−1 be the Ordinary Least Squares (OLS) estimator of Φ̆ when

factors f̆t are observable, and let ˜̆vt = f̆t− ˜̆
Φf̆t−1 be the VAR residuals estimated using ˜̆

Φ. In this case,

the OLS estimator of Σ̆v is:

˜̆
Σv =

1

T

T∑
t=1

˜̆vt ˜̆v
′
t. (3.1)

Moreover, let

Φ̃ :=

(
T∑
t=1

ftf
′
t−1

)(
T∑
t=1

ft−1f
′
t−1

)−1

=

 Φ̃HH Φ̃HL

Φ̃LH Φ̃LL

 , (3.2)

be the OLS estimator of Φ when factors ft are observable, and ṽt = ft− Φ̃ft−1 be the associated VAR

innovations. The OLS estimator of Σv reads:

Σ̃v =
1

T

T∑
t=1

ṽtṽ
′
t. (3.3)

Note that both estimators ˜̆
Σv and Σ̃v are infeasible when factors are unobserved.

3.2 Estimation when factors are unobserved

Let us assume that the true number of static factors r is known, but the true factors f̆t are unobservable

and q is unknown. To determine q, we start by estimating factors f̆t by PCA. Let ˆ̆
F = [

ˆ̆
f0,

ˆ̆
f1, ...,

ˆ̆
fT ]

′,

i.e. the estimator of F̆ = [f̆0, f̆1, ..., f̆T ]
′, be the (T + 1, r) matrix of estimated Principal Components

(PCs) extracted from the (T +1, N) panel Y = [y0, y1, ..., yT ]
′. These PCs are associated to the largest

r eigenvalues of matrix 1
N(T+1)

Y Y ′, i.e. ˆ̆
F satisfies the usual PCA eigenvalue-eigenvector equation:

1

N(T + 1)
Y Y ′ ˆ̆F =

ˆ̆
FV̂ ,
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where V̂ is the (r, r) diagonal matrix containing the largest r eigenvalues of Y Y ′/(N(T + 1)) in

descending order, and the columns of matrix ˆ̆
F are the associated normalized eigenvectors such that

1
T+1

ˆ̆
F ′ ˆ̆F = 1

T+1

∑T
t=0

ˆ̆
ft
ˆ̆
f ′
t = Ir.10

Let ˆ̆Φ = (
∑T

t=1
ˆ̆
ft
ˆ̆
f ′
t−1)(

∑T
t=1

ˆ̆
ft−1

ˆ̆
f ′
t−1)

−1 be the OLS estimator of Φ̆ when factors f̆t are estimated

by PCA, and ˆ̆vt =
ˆ̆
ft− ˆ̆

Φ
ˆ̆
ft−1 be the VAR residuals estimated using ˆ̆

Φ. Then, the OLS estimator of Σ̆v

reads:
ˆ̆
Σv =

1

T

T∑
t=1

ˆ̆vt ˆ̆v
′
t.

Let Ŵv be the (r, r) matrix collecting the eigenvectors associated to the ordered eigenvalues σ̂2
ℓ , with

ℓ = 1, ..., r, of ˆ̆
Σv:

ˆ̆
ΣvŴv = ŴvΣ̂v , (3.4)

where Σ̂v := diag(σ̂2
1, ..., σ̂

2
r) and Ŵ ′

vŴv = ŴvŴ
′
v = Ir. From the definition of rotated factors

in (2.8), we can define the estimator of ft = W ′
vf̆t as f̂t := Ŵ ′

v
ˆ̆
ft, and construct the estimator of

F = [f0, f1, ..., fT ]
′ as F̂ := [f̂0, f̂1, ..., f̂T ]

′ =
ˆ̆
FŴv. Analogously, we define the estimator v̂t := Ŵ ′

v
ˆ̆vt

of vt = W ′
vv̆t. By denoting as Ŵv,q (resp. Ŵv,r−q) the first q (resp. last r − q) columns of Ŵv,

i.e. Ŵv = [Ŵv,q, Ŵv,r−q], we can also define a natural estimator of fH,t and vH,t.

DEFINITION 1. The estimator of the non-redundant static factors fH,t is f̂H,t = Ŵ ′
v,q

ˆ̆
ft, and the

estimator of the q primitive shocks vH,t is v̂H,t = Ŵ ′
v,q
ˆ̆vt, for all t = 1, ..., T .

The matrix of loadings Λ in (2.9) is estimated by time-series regressions of yit on f̂t, yielding the

estimator Λ̂ = [λ̂1, ..., λ̂N ]
′:

Λ̂ = Y ′F̂ (F̂ ′F̂ )−1 =
1

T + 1
Y ′F̂ , (3.5)

where the second equality follows from F̂ ′F̂ /(T + 1) =
ˆ̆
F ′WvW

′
v
ˆ̆
F/(T + 1) =

ˆ̆
F ′ ˆ̆F/(T + 1) = Ir.

Let Φ̂ be the OLS estimator of Φ for the VAR(1) in equation (2.10):

Φ̂ =

(
T∑
t=1

f̂tf̂
′
t−1

)(
T∑
t=1

f̂t−1f̂
′
t−1

)−1

=

 Φ̂HH Φ̂HL

Φ̂LH Φ̂LL

 , (3.6)

10Let F̂ ∗ be the orthonormal eigenvectors of 1
N(T+1)Y Y

′, s.t. 1
N(T+1)Y Y

′F̂ ∗ = F̂ ∗V̂ and F̂ ∗′F̂ ∗ = Ir, then the

normalized factor estimator ˆ̆
F is computed as ˆ̆

F =
√
T + 1 · F̂ ∗.
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so that v̂t = f̂t − Φ̂f̂t−1 for all t = 1, ..., T . Then, equation (3.6) implies that:

1

T

T∑
t=1

v̂tv̂
′
t = Σ̂v, (3.7)

where (1/T )
∑T

t=1 v̂tv̂
′
t is the OLS estimator of Σv.

Equations (3.4) and (3.7) imply that the ℓ-th eigenvalue of ˆ̆
Σv is equal to the element in position

(ℓ, ℓ) of 1
T

∑T
t=1 v̂tv̂

′
t. Importantly, in Section 4 we show that all estimated eigenvalues σ̂2

ℓ are strictly

positive w.p.a. 1 when T → ∞ and for all ℓ = 1, ..., r, as the smallest r − q eigenvalues are functions

of the estimation error in the principal component estimator ˆ̆
ft.

3.3 Sequence of tests of hypotheses on the number of primitive shocks

As shown in Section 2, the number of primitive shocks q coincides with the number of non-zero

eigenvalues of matrix Σ̆v. To develop an estimator for q, we consider the sequence of hypotheses

in Table 1, which are expressed in terms of the number of non-zero eigenvalues of Σ̆v. The generic

hypothesis H(q) corresponds to the presence of q primitive shocks, with 1 ≤ q ≤ r, and implies that

the r−q smallest eigenvalues of Σ̆v are all equal to zero, while the q largest ones are strictly positive.11

Table 1 – Hypotheses on the number of common primitive shocks q

H(q) Eigenvalues of Σ̆v

H(1) σ2
1 > σ2

2 = σ2
3 = ... = σ2

r = 0

H(2) σ2
1 ≥ σ2

2 > σ2
3 = ... = σ2

r = 0

... ...

H(q) σ2
1 ≥ σ2

2 ≥ ... ≥ σ2
q > σ2

q+1 = ... = σ2
r = 0

... ...

H(r − 1) σ2
1 ≥ σ2

2 ≥ ... ≥ σ2
r−1 > σ2

r = 0

H(r) σ2
1 ≥ σ2

2 ≥ ... ≥ σ2
r−1 ≥ σ2

r > 0

11Note that the assumption 1 ≤ q ≤ r implies that there exists at least one factor in our model (2.1), and therefore we do
not consider the degenerate case H(0) =

{
σ2
1 = σ2

2 = ... = σ2
r = 0

}
, which corresponds to the absence of any common

primitive shock. This degenerate case is easy to detect empirically by applying the usual approaches for the number of
static factors mentioned below.
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To select the number of primitive shocks q, let us consider the following sequence of tests:

H0 = H(q) vs. H1 =
⋃

q<s≤r

H(s), for q = 1, 2, ..., r − 1 .

Given q = 1, 2, ..., r − 1, testing H0 against H1 is based on the test statistics

ξ̂(q) =

r−q∑
ℓ=1

σ̂2
r−ℓ+1, (3.8)

which corresponds to the sum of the r − q smallest eigenvalues of ˆ̆
Σv. We reject the null H0 = H(q)

when ξ̂(q) is positive and large, corresponding to the case where at least one of the eigenvalues in

ξ̂(q) is significantly different from zero. Critical values of the test are obtained from the asymptotic

distribution of ξ̂(q) derived in Section 4.2. The number of primitive shocks q is estimated by sequen-

tially applying the test for H(q), starting from q = 1 and increasing it if the null H(q) is rejected; as

described in Section 4.3, the procedure is stopped at the smallest value of q for which the H(q) is not

rejected.

When the true number of static factors r is unknown, the asymptotic distribution and rate of con-

vergence for ξ̂(q) based on a consistent r̂ are the same as those based on r.12 Hence, we derive the

asymptotic distribution and convergence rate of the test statistics assuming that r is known, as also

done in Amengual and Watson (2007) and Bai and Ng (2007).

4 Large sample theory

In Section 4.1, we show that the OLS estimator of Σv has r − q zero eigenvalues when factors f̆t

(or ft) are observed. That is, for any finite sample of dimension T its smallest r − q eigenvalues

have a degenerate distribution centered around 0. This implies that testing for the number of primitive

shocks is a degenerate problem when factors are observed without error. Then, in Section 4.2 we

derive the large sample distribution of ξ̂(q) and provide an implementation of the test based on plug-in

12Examples of consistent estimators of r are those proposed by Bai and Ng (2002a), Alessi, Barigozzi, and Capasso
(2010), Onatski (2010), Ahn and Horenstein (2013), and Trapani (2018). As also discussed in AGGR, a word of caution is
warranted. It is known that pre-testing generates problems in terms of lack of uniform properties, and we therefore abstract
from uniformity in this paper.
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estimators of its asymptotic bias and variance. A consistent selection procedure for the number of

primitive shocks q is presented in Section 4.3.

4.1 Distribution of eigenvalue estimators when static factors are observed

We first study the eigenvalues of matrices ˜̆
Σv (resp. Σ̃v), obtained by estimating the VAR(1) in (2.2)

(resp. (2.10)) by OLS from the T -dimensional sample of observed factors f̆t (resp. ft).

PROPOSITION 1. Let f̆t (resp. ft), with t = 1, ..., T ≥ r2, be a T -dimensional sample of observa-

tions on f̆t (resp. ft) as given by (2.2) (resp. (2.10)), and let ˜̆Σv (resp. Σ̃v) be the OLS estimator of Σ̆v

(resp. Σv) defined in (3.1) (resp. (3.3)) based on this sample. Then:

(i) ˜̆
Σv and Σ̃v have the same eigenvalues σ̃2

ℓ ≥ 0, with ℓ = 1, ..., r:

σ̃2
1 ≥ σ̃2

2 ≥ ... ≥ σ̃2
q−1 ≥ σ̃2

q ≥ σ̃2
q+1 = σ̃2

q+2 = ... = σ̃2
r = 0. (4.1)

(ii) The smallest r − q (resp. largest q) eigenvalues of ˜̆Σv and Σ̃v are equal to (resp. strictly larger

than) zero w.p.a. 1, i.e. as T → ∞

σ̃2
1 ≥ σ̃2

2 ≥ ... ≥ σ̃2
q−1 ≥ σ̃2

q > σ̃2
q+1 = σ̃2

q+2 = ... = σ̃2
r = 0 w.p.a. 1. (4.2)

(iii) Assume that the largest q eigenvalues σ2
1, . . . , σ

2
q of Σ̆v are distinct. Then, the largest q eigen-

values of ˜̆
Σv (resp. Σ̃v) converge in distribution to the largest q eigenvalues of Σ̆v (resp. Σv) at rate

√
T ,

that is
√
T (σ̃2

ℓ −σ2
ℓ )

d→ N(0, Vasy(σ̃
2
ℓ )), as T → ∞, where Vasy(σ̃2

ℓ ) = e′q,ℓ(e
′
q,ℓ⊗Iq) ·V1 ·(eq,ℓ⊗Iq)eq,ℓ,

where V1 := E[vec(vtv
′
t − Σv) · vec(vtv′t − Σv)

′] and eq,ℓ is the ℓ-th column of Iq.

Proof: see Appendix B.1.

Proposition 1 implies that when factors f̆t (or ft) are observable, there is no need the test for the

number of common shocks. Indeed, the (estimated) eigenvalues of ˜̆
Σv or Σ̃v allow to determine the

number of primitive shocks: as the q largest eigenvalues of ˜̆
Σv and Σ̃v will be strictly positive, while

the smallest r− q ones will be exactly zero. Similarly to the other cases discussed in Donald, Fortuna,

and Pipiras (2014), this is another situation where testing for the rank of a p.s.d. matrix ( ˜̆Σv in our case)

is a degenerate problem as the (asymptotic) variance-covariance matrix of this estimator is necessarily

singular.
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Notably, Proposition 1 shows that when factors are observed the estimation error of Σv affects only

the largest q eigenvalues, but not the smallest r−q. Importantly, this result refines the claim in Section

2 of Bai and Ng (2007) on the eigenvalues of ˜̆
Σv: we establish that the smallest r − q eigenvalues are

exactly equal to 0 for any finite sample size T ≥ r2, while they claim that these eigenvalues converge

to 0 as T → ∞. In contrast, the next Section 4.2 shows that when factors ft are estimated by PCA

and matrix Σv is estimated using the estimated factors instead of the true ones, all its r eigenvalues are

strictly larger than 0 (w.p.a. 1) for any finite sample, as they are contaminated by PCs estimation error,

and converge to 0 only asymptotically when N, T → ∞.

4.2 Distribution of test statistics when static factors are estimated

We consider the joint asymptotics N, T → ∞ and assume that:

√
T/N = o(1), N/T 3/2 = o(1),

which correspond to Assumption A.1 in the list of regularity conditions in Appendix A. To derive the

large sample distribution of the test statistic for the number of primitive shocks we deploy the refined

asymptotic expansion for the estimated PCs derived by AGGR. This expansion extends results in Bai

and Ng (2002a), Stock and Watson (2002), Bai (2003), and Bai and Ng (2006), and is reported for

convenience as Proposition B.1 in Appendix B. For t = 1, . . . , T the estimate ˆ̆
ft is asymptotically

equivalent (see details in Proposition B.1), up to negligible terms, to ĤWv

(
ft +

1√
N
ut

)
, where ut =(

1
N

∑N
i=1 λiλ

′
i

)−1
1√
N

∑N
i=1 λiεi,t, and Ĥ is a nonsingular stochastic factor rotation matrix.13 The

zero-mean term ut drives the randomness in factor estimates conditional on factor path.

Let Σ̃u,s(h|Ft) = Cov(us, us−h|Ft), with s ≤ t, be the conditional covariance between us and

us−h conditional on the sigma field Ft = σ(fτ , τ ≤ t) generated by current and past factor values ft,

i.e.

Σ̃u,s(h|Ft) =

(
1

N

N∑
i=1

λiλ
′
i

)−1
1

N

N∑
i=1

N∑
ℓ=1

λiλ
′
ℓCov(εi,s, εℓ,s−h|Ft)

(
1

N

N∑
i=1

λiλ
′
i

)−1

,

and Σ̃u,s(−h|Ft) = Σ̃u,s(h|Ft)
′, for h= 0, 1, . . .. We set Σ̃u,s ≡ Σ̃u,s(0|Ft), and define Σu,s(h|Ft) =

13Vector ut depends on sample sizes but, for convenience, we omit the indices N , T . Moreover, as shown in, e.g.,

Bai and Ng (2002a), Ĥ :=
(

Λ′Λ
N

)−1 (
F̂ ′F
T+1

)
V̂ −1, where V̂ is the is the (r, r) diagonal matrix containing the r largest

eigenvalues of matrix 1
N(T+1)Y Y

′. See also the proof of Proposition C.1 in the OA of AGGR for further details on Ĥ.
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plim
N→∞

Σ̃u,s(h|Ft) and Σλ = lim
N→∞

1
N

∑N
i=1 λiλ

′
i.

THEOREM 1. Under Assumptions A.1 - A.7, and the null hypothesis H0 = H(q) of q primitive

shocks, we have:

ξ̃u(q) := N
√
TΩ

−1/2
U

(
ξ̂(q)− 1

N
tr
{
C̃−1B̃U

})
d−→ N (0, 1) , (4.3)

with ΩU = 2
∑∞

h=−∞E [tr {ΣU,t(h)ΣU,t(h)
′}], B̃U = 1

T

∑T
t=1 B̃U,t,

ΣU,t(h) := Σu,t,LL(h|Ft)− ΦLHΣu,t−1,LH(h− 1|Ft)
′ − ΦLLΣu,t−1,LL(h− 1|Ft)

′

−Σu,t,LH(h+ 1|Ft)Φ
′
LH + ΦLHΣu,t−1,HH(h|Ft)Φ

′
LH + ΦLLΣu,t−1,LH(h|Ft)Φ

′
LH

−Σu,t,LL(h+ 1|Ft)Φ
′
LL + ΦLHΣu,t−1,HL(h|Ft)Φ

′
LL + ΦLLΣu,t−1,LL(h|Ft)Φ

′
LL ,

B̃U,t := Σ̃u,t,LL(0|Ft)− ΦLHΣ̃u,t−1,LH(−1|Ft)
′ − ΦLLΣ̃u,t−1,LL(−1|Ft)

′

−Σ̃u,t,LH(1|Ft)Φ
′
LH + ΦLHΣ̃u,t−1,HH(0|Ft)Φ

′
LH + ΦLLΣ̃u,t−1,LH(0|Ft)Φ

′
LH

−Σ̃u,t,LL(1|Ft)Φ
′
LL + ΦLHΣ̃u,t−1,HL(0|Ft)Φ

′
LL + ΦLLΣ̃u,t−1,LL(0|Ft)Φ

′
LL ,

C̃ = W ′
v,r−qĤ−1(Ĥ′)−1Wv,r−q .

Proof: See Appendix B.2.

The estimation error ut originating from the PC estimation of the factors, and its lagged value

ut−1, determines the asymptotic distribution of the infeasible statistic ξ̃u(q). In fact, matrix ΣU,t(h)

appearing in the variance is the limit (with respect to N ) covariance matrix between the (r − q)-

dimensional vector Ut = uLt+ΦLHuHt−1+ΦLLuLt−1 and its h-th lag Ut−h = uLt−h+ΦLHuHt−h−1+

ΦLLuLt−h−1. Remarkably, even if we are testing for parameters at the boundary of their domain,

i.e. the eigenvalues of a positive semi-definite matrix to be zero, a Gaussian asymptotic distribution

is obtained because the non-negative test-statistic ξ̂(q) is re-centered by subtracting a strictly (a.s.)

positive asymptotic bias term of order N−1 which is also a function of the covariance between Ut and

Ut−h. Importantly, our Theorem 1 implies that the (the sum of the) smallest r − q eigenvalues of ˆ̆
Σv

converge to zero at non-standard rate N
√
T , while the remaining ones converge to their true values

at the slower “usual” (for time averages of functions of PC estimates) rate min(
√
N,

√
T ). The latter

result, can be obtained by using our Proposition 1 and the same arguments in Bai and Ng (2007).
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To get a feasible distributional result for the statistic ξ̃u(q), we need consistent estimators of the

bias tr{C̃−1B̃U} and variance ΩU terms in (4.3). To estimate these terms we make the simplifying

assumptions that the errors εi,t are (i) uncorrelated across individuals i, at all leads and lags, and (ii) a

conditionally homoskedastic martingale difference sequence for each individual i, conditional on the

factor path, i.e.

Cov(εi,t, εj,t−h|Ft) = 0, if i ̸= j,

E[εi,t|{εi,t−h}h≥1,Ft] = 0, E[ε2i,t|{εi,t−h}h≥1,Ft] = γii,

for all i, t, h (see Assumption A.9). These assumptions imply Σ̃u,s(h|Ft) = Σu,s(h|Ft) = 0 for all

h ̸= 0, and Σ̃u,jℓ(h|Ft) ≡ Σ̃u,s,jℓ(h|Ft) for all dates s, i.e. these matrices do not depend on time, for

j, ℓ = L,H . Matrices Σ̃u ≡ Σ̃u,s(0|Ft), Σu ≡ Σu,s(0|Ft) and Σ̃U(h) ≡ Σ̃U,t(h) also do not depend on

time for any h.14 Therefore, we have:

B̃U = Σ̃u,LL +ΦLHΣ̃u,HHΦ
′
LH +ΦLLΣ̃u,LHΦ

′
LH +ΦLHΣ̃u,HLΦ

′
LL +ΦLLΣ̃u,LLΦ

′
LL , (4.4)

ΣU (0) ≡ ΣU,t(0)

= Σu,LL +ΦLHΣu,HHΦ
′
LH +ΦLLΣu,LHΦ

′
LH +ΦLHΣu,HLΦ

′
LL +ΦLLΣu,LLΦ

′
LL ,

ΣU (1) ≡ ΣU,t(1) = −ΦLHΣ
′
u,LH − ΦLLΣ

′
u,LL,

ΣU (−1) ≡ ΣU,t(−1) = −Σu,LHΦ
′
LH − Σu,LLΦ

′
LL,

and ΣU,t(h) = 0, for all h ̸= −1, 0, 1, implying that ΩU simplifies to

ΩU = 2tr {ΣU(0)ΣU(0)
′ + ΣU(1)ΣU(1)

′ + ΣU(−1)ΣU(−1)′} . (4.5)

In Theorem 2 below, we replace matrices C̃−1B̃U and ΩU by consistent estimators, namely B̂U

and Ω̂U . Importantly, we show that the estimation error for the bias adjustment term 1
N
tr{C̃−1B̃U} is

of order op
(

1
N
√
T

)
, implying that the asymptotic distribution of the feasible statistic remains standard

normal, and has the same convergence rate as the infeasible one of Theorem 1.

14If the errors are weakly correlated across series and/or time, consistent estimation of Σ̃U and ΩU requires thresholding
of estimated cross-sectional covariances and/or HAC-type estimators.
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THEOREM 2. Let

Σ̂u =

(
1

N
Λ̂′Λ̂

)−1(
1

N
Λ̂′Γ̂Λ̂

)(
1

N
Λ̂′Λ̂

)−1

=

 Σ̂u,HH Σ̂u,HL

Σ̂u,LH Σ̂u,LL

 , (4.6)

where Λ̂ are the loadings estimators defined in equation (3.5), Γ̂ = diag(γ̂ii, i = 1, ..., N) with

γ̂ii =
1

T+1

∑T
t=0 ε̂

2
i,t, and ε̂i,t = yi,t − λ̂′if̂t. Let Φ̂ be the estimator of Φ defined in (3.6). Define also:

B̂U = Σ̂u,LL + Φ̂LHΣ̂u,HHΦ̂
′
LH + Φ̂LLΣ̂u,LHΦ̂

′
LH + Φ̂LHΣ̂u,HLΦ̂

′
LL + Φ̂LLΣ̂u,LLΦ̂

′
LL ,

and

Ω̂U = 2tr
{
Σ̂U(0)Σ̂U(0)

′ + Σ̂U(1)Σ̂U(1)
′ + Σ̂U(−1)Σ̂U(−1)′

}
,

where

Σ̂U(0) = Σ̂u,LL + Φ̂LHΣ̂u,HHΦ̂
′
LH + Φ̂LLΣ̂u,LHΦ̂

′
LH + Φ̂LHΣ̂u,HLΦ̂

′
LL + Φ̂LLΣ̂u,LLΦ̂

′
LL ,

Σ̂U(1) = −Φ̂LHΣ̂
′
u,LH − Φ̂LLΣ̂

′
u,LL,

Σ̂U(−1) = −Σ̂u,LHΦ̂
′
LH − Σ̂u,LLΦ̂

′
LL.

The feasible test statistic is

ξ̃(q) := N
√
T Ω̂

−1/2
U

(
ξ̂(q)− 1

N
tr
{
B̂U

})
. (4.7)

Let Assumptions A.1 - A.9 hold, then: (i) under the null hypothesis H0 = H(q) of q primitive shocks,

with 1 ≤ q ≤ r−1, we have ξ̃(q) d−→ N (0, 1) ; (ii) under the alternative hypothesisH1 =
⋃

q<s≤r
H(s),

ξ̃(q)
p−→ +∞.

Proof: See Appendix B.3.

The feasible asymptotic distribution in Theorem 2 is the building block for a one-sided test of the

null hypothesis of q primitive shocks. The rejection region for the test based on ξ̃(q) at significance

level α is ξ̃(q) > z1−α, where z1−α is the (1 − α)-quantile of the standard Gaussian distribution for
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α ∈ (0, 1). Similarly, we can define an acceptance region for the same one-sided test at level α

directly in terms of the values of ξ̂(q), that is the sum of the smallest r − q eigenvalues, instead of the

standardized statistics ξ̃(q), as

ARα =

{
x ∈ R : 0 ≤ x ≤ z1−α

N
√
T

√
Ω̂U +

1

N
B̂U

}
, (4.8)

so that we cannot reject the null of q common primitive shocks as long as ξ̂(q) ∈ ARα. Theorem 2 (ii)

implies that the test is consistent.

An intermediate result required for the proof of Theorem 2 is the asymptotic expansion of factors’

estimator f̂t, which is provided by Lemma C.4 in OA, Section C.9. A direct consequence of this

Lemma is that the estimator ˆ̆
Φ (Φ̂ resp.) is consistent for the auto-regressive matrix Φ (Φ̆ resp.). This

implies that we can consistently estimate the common primitive shocks vH,t with the estimator v̂H,t

presented in Definition 1. All these results hold up to a rotation and, for the factors, also a change of

sign.

4.3 Sequential tests for the number of common primitive shocks q

One way to estimate the number primitive shocks consists in sequentially testing the null hypothesis

H0 = H(k), against the alternative H1 =
⋃

k<ℓ≤r
H(ℓ), using the test statistic ξ̃(k) of Theorem 2. A

“naive” estimation procedure is initiated by testing the null of k = 1, proceeds by increasing k by one

unit and performing the test of the null k = 2, and so on, for k = 1, ..., r−1. The estimation procedure

is stopped at the smallest integer q̂naive = k such that the null H(k) cannot be rejected by performing

a one-sided test with significance level α, i.e. at the first k such that ξ̃(k) ≤ z1−α. Otherwise, set

q̂naive = r if the test rejects the null H(k) for all k = 1, ..., r − 1. This “naive” procedure does not

return a consistent estimator of q, as there exists an asymptotic probability α > 0 of overestimating q

due to the type I error when testing H(q0) against
⋃

q0<ℓ≤r
H(ℓ).

Building on the results in Pötscher (1983), Cragg and Donald (1997), and Robin and Smith (2000),

a consistent estimator of q is obtained by implementing the above naive procedure but allowing the

asymptotic size α of the test to go to zero as N , T → ∞. The following Proposition 2 formalizes this

consistent estimation procedure.
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PROPOSITION 2. Let αN,T be a sequence of scalars defined on (0, 1) for any N, T , such that:

(i) αN,T → 0 and (ii) (N
√
T )−1z1−αN,T

→ 0 for N, T → ∞, with z1−αN,T
> 0. Consider the

estimator q̂ for the number primitive shocks q defined as:

q̂ = min
{
k : 1 ≤ k ≤ r − 1, ξ̃(k) ≤ z1−αN,T

}
,

or q̂ = r if ξ̃(k) > z1−αN,T
for all k = 1, ..., r − 1.

Then, under Assumptions A.1 - A.9, the estimator q̂ is consistent, i.e. P (q̂ = q) −→ 1 under H(q), for

any integer q ∈ {1, . . . , r}.

The proof of Proposition 2 is a standard proof of consistency for sequential testing procedures, see,

e.g. Robin and Smith (2000) for a general proof and AGGR for a particular case with similar rates

for αN,T . Condition (i) ensures an asymptotically zero probability of type I error when testing H(q0)

against
⋃

q0<ℓ≤r
H(ℓ). Condition (ii) is a lower bound on the convergence rate to zero of the asymptotic

size, and is used to keep asymptotically zero probability of type II error at each step of the procedure.

The conditions in Proposition 2 are satisfied when αN,T is such that:

z1−αN,T
= c(N

√
T )γ, (4.9)

for constants c > 0 and 0 < γ < 1.

5 Bootstrap

Starting from the works of Gonçalves and Perron (2014, 2020) and Gonçalves, Koh, and Perron

(2024) we propose a residual-based wild bootstrap implementation of the test in Theorem 1. This

approach relies on PCA estimation of the static factors on Nb bootstrapped panels of observations

Y (b) =
[
y
(b)
0 , y

(b)
1 , . . . , y

(b)
T

]′
with b = 1, . . . , Nb. Differently from Cavaliere, Gonçalves, Nielsen, and

Zanelli (2024), we do not use the bootstrap to overcome the issue that the bias and/or the variance of

our test statistics cannot be consistently estimated, as we do have derived their consistent estimators.

Instead, we use the bootstrap to improve the small sample properties of our test based on the rescaled

(using the expression for the variance) and recentered (using the expression for the bias) feasible statis-
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tic in equation (4.7). Monte Carlo experiments reported in Section 6 show that this bootstrap approach

delivers better small sample properties than the test of Theorem 2. In particular, its actual size is much

closer to the nominal one, especially when sample sizes are relatively small and comparable to values

often encountered in macro-financial applications, e.g., N = 100 and T = 100.15

5.1 Bootstrap data generating process, estimation and testing procedure

This section describes the non-parametric bootstrap implementation of our test for the number of

common primitive shocks. This testing procedure relies on a wild bootstrap resampling scheme and

can be implemented as a three-step methodology.

• Step (1): Estimate the r static factors ft through the PCA estimator f̂t of Section 3.2. Estimate

a VAR(1) model on f̂t, and let Φ̂ be the estimated autoregressive matrix. Construct the vector

of estimated VAR residuals v̂t = f̂t − Φ̂f̂t−1. Additionally, use the estimated loadings Λ̂ (see

equation (3.5)) to obtain the estimated residuals ε̂t = yt − Λ̂f̂t.

• Step (2): For each value of q = 1, . . . , r − 1, define a new r-dimensional vector:

v̂
H0(q)
t :=

[
v̂′H,t, 0

′
(r−q,1)

]′
, (5.1)

where v̂H,t is the upper q-dimensional subvector of v̂t, and consider the next steps:

– Step (2.a): For each bootstrap iteration b = 1, ..., Nb, with Nb large, construct a bootstrap

sample ε(b)t = [ε
(b)
1t , ..., ε

(b)
Nt]

′ from ε̂t using a wild bootstrap scheme:

ε
(b)
it = ε̂it · ηε,it, i = 1, ..., N, t = 0, . . . , T, (5.2)

where ηε,it is a zero-mean and unit-variance “external” random variable that is i.i.d. across

all individuals and dates.16 Starting from the variables in (5.1) and (5.2), construct the

15Unreported results, available upon requests, showed that our bootstrap procedure has better size and power than one
which simply bootstraps the eigenvalue sum ξ̂(q) without estimating the bias and the variance terms, which corresponds to
the suggestions of Cavaliere, Gonçalves, Nielsen, and Zanelli (2024) and Gonçalves, Koh, and Perron (2024).

16We assume that ηε,it ∼ iiN(0, 1) in the Monte Carlo analysis and empirical applications.
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following bootstrap analogous of the DGP in (2.9)-(2.12) for all t = 0, 1, ..., T :

y
(b)
t = Λ̂f

(b)
t + ε

(b)
t , (5.3)

f
(b)
t = Φ̂f

(b)
t−1 + v̂

H0(q)
t , (5.4)

where the VAR(1) is initialized at f (b)
0 = f̂0.

– Step (2.b): As detailed in Section D.1 of the OA, use bootstrapped data Y (b) = [y
(b)
0 , y

(b)
1 , ..., y

(b)
T ]′

to construct the sum of the smallest r − q eigenvalues σ̂2(b)
q+1, . . . , σ̂

2(b)
r of the estimator for

the variance covariance matrix of v̂H0(q)
t :

ξ̂(b)(q) =

r−q∑
ℓ=1

σ̂
2(b)
r−ℓ+1, (5.5)

and

Σ̂(b)
u =

(
1

N
Λ̂(b)′Λ̂(b)

)−1(
1

N
Λ̂(b)′Γ̂(b)Λ̂(b)

)(
1

N
Λ̂(b)′Λ̂(b)

)−1

=

 Σ̂
(b)
u,HH Σ̂

(b)
u,HL

Σ̂
(b)
u,LH Σ̂

(b)
u,LL

 ,(5.6)

where Γ̂(b) = diag(γ̂
(b)
ii , i = 1, ..., N) with γ̂(b)ii = 1

T+1

∑T
t=0 ε̂

(b)2
i,t , for ε̂(b)i,t the estimator of

ε
(b)
t based on the b-th bootstrap sample.17 Using Σ̂

(b)
u to derive bootstrap equivalents of B̂U

and Ω̂U in Theorem 2, one obtains the bootstrap test statistic

ξ̃(b)(q) := N
√
T
(
Ω̂

(b)
U

)−1/2
[
ξ̂(b)(q)− 1

N
tr
{
B̂

(b)
U

}]
. (5.7)

– Step (2.c): Iterating Steps (2.a) and (2.b) Nb times yields Nb bootstrapped values of the

feasible test statistic under the null hypothesis of q primitive shocks. Using these val-

ues, one can evaluate the cumulative distribution function of ξ̃(q) under the bootstrap

probability measure at any c∗ ∈ R as F̂B
ξ̃
(c∗; q) := 1

Nb

∑Nb

b=1 1
{
ξ̃(b)(q) ≤ c∗

}
, where

1
{
ξ̃(b)(q) ≤ c∗

}
= 1 if ξ̃(b)(q) ≤ c∗, and 0 otherwise. For any α ∈ (0, 1), the α-percentile

of the bootstrapped distributions of ξ̃(q) is p̂Bα (q) := inf
{
p : F̂B

ξ̃
(p; q) ≥ α

}
, from which

17Expressions for all quantities can be found in Section D.1 of the OA.
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we can also construct the bootstrap-based acceptance rejection as

ARB
α =

{
x ∈ R : 0 ≤ x ≤ 1

N
√
T

√
Ω̂U p̂

B
1−α(q) +

1

N
B̂U

}
, (5.8)

for Ω̂U and B̂U computed as in Theorem 2, and which implies not rejecting the null of q

common primitive shocks when ξ̂(q) ∈ ARB
α .

• Step (3): Define the bootstrap-based estimator of q as in Proposition 2, this time replacing the

adjusted critical value z1−αN,T
with the adjusted bootstrapped percentile p̂B1−α∗

N,T
(q). Hence, the

bootstrap-based estimator of q is

q̂B = min
{
k : 1 ≤ k ≤ r − 1, ξ̃(k) ≤ p̂B1−α∗

N,T
(q)
}
,

or q̂B = r if ξ̃(k) > p̂B1−α∗
N,T

(k) for all k = 1, ..., r − 1,

where

α∗
N,T :=

α

c
(
N
√
T
)γ , (5.9)

c > 0 and γ ∈ (0, 1) as in Equation (4.9).

Two remarks are in order. First, the bootstrap DGP in (5.3)-(5.4) satisfies by construction the null

hypothesis of q primitive shocks, as the VAR for f (b)
t = [ f

(b)′
Ht , f

(b)′
Lt ]′ reads:

 f
(b)
Ht

f
(b)
Lt

 =

 Φ̂HH Φ̂HL

Φ̂LH Φ̂LL

 f
(b)
Ht−1

f
(b)
Lt−1

+

 v̂Ht

0

 ,
showing that the innovations on the factor VAR(1) in the bootstrap DGP have reduced rank q. As

discussed by Andreou, Gagliardini, Ghysels, and Rubin (2024), one can establish first order validity of

a general bootstrap scheme under high level assumptions on the asymptotic behaviour of the bootstrap

test statistic ξ̃(b)(q) (see their Assumption 2, which is in line with those of Gonçalves, Koh, and Perron,

2024).18 Second, the functional form of α∗
N,T in (5.9) is a Bonferroni-type correction as in Trapani

18Establishing primitive conditions for validity of our wild bootstrap scheme is beyond the scope of this paper, and we
leave this task to future research. Nevertheless, our MC experiments confirm that the bootstrap has the excellent size and
power in both finite samples.
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(2018), and ensures that
(
N
√
T
)−1

pB1−α∗
N,T

→ 0 when the proposed bootstrap is valid. If this is

the case, one can show that P (q̂B = q) → 1 as N, T,B → ∞ using arguments similar to those of

Proposition 2. As discussed in Section 4.3, adjusting the probability level of the bootstrap percentile

so that α∗
N,T → 0 is necessary for consistency of q̂B.

6 Monte Carlo simulation analysis

The objectives of the Monte Carlo (MC) simulation study are: i) assessing the adequacy of the asymp-

totic standard Gaussian distribution of ξ̃(q) to approximate its small sample counterpart; ii) evaluating

the size and power properties of the test in Theorem 1 both under the plug-in and the bootstrap imple-

mentations, and iii) comparing the asymptotic and bootstrap-based estimator of q with the alternatives

suggested in the literature.

6.1 Simulation Design

We simulate the observation yi,t for i = 1, ..., N , t = 0, 1, ..., T from the following factor model:

yi,t = λ̆′if̆t + εi,t.

TheN -dimensional vectors of idiosyncratic innovations {ε0, ε1, . . . , εT} with εt = [ε1,t, ..., εi,t, ...εN,t]
′

are i.i.d. draws from a Gaussian random variable N(0N,1, IN). We resample these innovations in each

MC simulation. For each individual i, the loadings are drawn from N independent Gaussian distribu-

tions, λ̆i ∼ i.i.N.( 0, Ir) for i = 1, . . . , N .

The r-dimensional vector f̆t follows the stationary VAR(1) process: f̆t = Φ̆f̆t−1+v̆t, and v̆t = Gηt,

where Φ̆ is an (r, r) autoregressive matrix. The (r, q) matrix G links the q primitive shocks to the r

factor innovations v̆t, and is simulated at each iteration as in Section 5 of Bai and Ng (2007). To gen-

erate G, we start from an (r, r) diagonal matrix S whose first q non-zero elements are drawn from q

independent uniform distributions U(.01, 0.31) so that S has rank q. Second, we consider an arbitrary

orthonormal matrix R, i.e. RR′ = Ir, that we obtain in Matlab through “R = orth(rand(r, r))” at each

MC iteration. Third, we set G = RSR′ and keep it constant across all i and t for a given MC sample.

Note that the variance-covariance matrix of v̆t is Σ̆v = RS2R′ and has rank q.
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Consistently with the number of static factors often documented in macroeconomic studies (see

Onatski, 2010), we consider a DGP based on r = 7 static factors and q0 = 5 primitive shocks.19 The

autoregressive matrix of the VAR(1) process is given by

Φ̆ = diag(0.2, 0.2875, 0.375, 0.55, 0.725, 0.8125, 0.9),

while the q0 primitive shocks ηt are always simulated as ηt ∼ i.i.d.N(0, Iq0). Results using other

DGPs are reported in Section F.1 of the OA. We always consider M = 2000 Monte Carlo samples.

6.2 Asymptotic and bootstrap distribution; size and power properties

First, we study whether the asymptotic Gaussian distribution and the one based on Nb bootstrap sam-

ples provide a good approximation to the small-sample distribution of the “plug-in” test statistics

ξ̃(q) in Theorem 2. Blue histograms in Figure 1 display the empirical distribution of ξ̃(q) under the

null hypothesis q = q0, while red solid lines represent the density of the asymptotic N(0, 1) distri-

bution. Though the empirical distribution is shifted to the right with respect to the asymptotic one

when (N, T ) = (100, 100), the two become much closer when (N, T ) = (400, 600). Yellow his-

tograms visualize the distribution of ξ̃(b)(q0) across Nb = 499 bootstrap replicates for the first Monte

Carlo sample. The bootstrap distribution is very close to the empirical one, thus suggesting that the

bootstrap-based test will outperform the asymptotic one, at least for the smallest sample sizes.

Table 2 presents empirical sizes and powers of the test based on ξ̃(q) in Theorem 2. Results are

presented for both the plug-in version (left panel) and the bootstrap one (right panel). For the plug-in

test, we consider significance levels α ∈ {0.01, 0.05, 0.1} and reject the null H(q) = H(5) when the

test statistics is larger than the (1− α)-quantile of the standard Gaussian distribution. In the bootstrap

case, we look at the same percentiles but computed from the bootstrapped distribution of the test

statistic. The latter is based on Nb = 499 bootstrap iterations for each MC sample. Empirical powers

are computed as the rejection frequency of the null hypotheses H0 = H(3) and H0 = H(4), against

the alternatives q > 3 and q > 4, respectively. We report powers for the 5% significance level.

The plug-in version is oversized even when N = 400 and T = 600, which are values larger

than what usually encountered in macro-financial analyses, e.g. the FRED-MD database of monthly

19The notation q0 highlights that this is the true number of primitive shocks that we want to estimate.
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Figure 1 – Small sample and bootstrapped distribution of the test statistic ξ̃(q0).

(a) N = 100, and T = 100. (b) N = 400, and T = 600.

Blue histograms report the empirical distribution of the test statistic ξ̃(q0) for (N,T ) = (100, 100) and (N,T ) =
(400, 600) across M = 2000 Monte Carlo samples. Red solid lines correspond to the density of the asymptotic distri-
bution N(0, 1) of the re-centered and re-scaled statistic. Yellow histograms visualize the bootstrap distribution of the test
statistic for the first Monte Carlo sample.

macroeconomic indicators of the US economy. The bootstrap test corrects this over-rejection of the

null, particularly when N < 200. The asymptotic test has unit power irrespectively of H (q) and of

the combination of N and T .20 The bootstrap implementation also returns good power results. Lastly,

Table 10 in the OA shows that actual sizes of the plug-in implementation become close to the nominal

ones only when N and T are very large, e.g. N ≥ 1000, and T ≥ 600.

6.3 Estimation of the number of primitive shocks

We now assess the finite sample properties of our estimators of q. To understand the finite sample

improvements of the adjustment discussed in Proposition 2 and Step 3 of the bootstrap algorithm, we

implement the sequential testing procedures using both adjusted and unadjusted critical values, e.g.

z1−αN,T
and z1−α in the asymptotic case. Critical values are adjusted as in Equations (4.9) and (5.9),

for which we fix c = 0.95 and γ = 0.1.21 We compare performances of our estimators with those of

several competitors: q̂3 and q̂4 introduced by Bai and Ng (2007, BN henceforth); q̂aw,A and q̂aw,B from

Amengual and Watson (2007, AW), and q̂bp of Breitung and Pigorsch (2013, BP). Like our approach,

these estimators – summarized in Appendix E – were developed to determine the number of common

shocks in factor models as that in (2.1) - (2.2). Section F.3 of the OA shows that our estimators perform

20The same conclusion holds when the size-adjusted power is considered, results are available upon request.
21These are the same values adopted by AGGR and provide good finite sample results for all DGPs that we consider.
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Table 2 – Empirical sizes and powers of the plug-in and of the bootstrap versions of the test of the number of
primitive shocks

Plug-in: Th. 2 Bootstrap: Th. 2
size power size power

N T 1% 5% 10% H(3) H(4) 1% 5% 10% H(3) H(4)
100 100 0.07 0.17 0.25 1.00 0.99 0.03 0.09 0.15 0.98 0.95
100 200 0.13 0.28 0.39 1.00 1.00 0.02 0.08 0.14 0.99 0.96
200 100 0.03 0.09 0.13 1.00 1.00 0.02 0.08 0.14 0.99 0.98
200 200 0.03 0.12 0.19 1.00 1.00 0.02 0.07 0.12 0.99 0.99
200 300 0.05 0.15 0.22 1.00 1.00 0.01 0.06 0.12 0.99 0.99
400 100 0.02 0.06 0.09 1.00 1.00 0.02 0.07 0.13 1.00 1.00
400 200 0.02 0.07 0.13 1.00 1.00 0.02 0.06 0.12 1.00 1.00
400 300 0.02 0.07 0.13 1.00 1.00 0.01 0.06 0.12 1.00 1.00
400 600 0.02 0.11 0.18 1.00 1.00 0.01 0.06 0.11 1.00 0.99

Empirical sizes and powers of the test for the null hypothesis of q primitive shocks. Results in the left panel
are based on the feasible test statistic in Theorem 2. Those in the right panel pertain to the bootstrap implementation.
Simulated data come from the DGP of Section 6.1 with r = 7 and q0 = 5. Empirical sizes are assessed at significance
levels α ∈ {0.01, 0.05, 0.1}, while powers represent the empirical rejection frequency of the null hypotheses
H0 = H(3) and H0 = H(4) under the alternatives q > 3 and q > 4, respectively. These powers are assessed at the
5% significance level. Results are based on M = 2000 MC simulations.

well also with respect to those of Hallin and Liska (2007), which were originally developed for the

estimation of q in generalized dynamic factor models, and, in our simulation designs, consistently

outperform the procedure of Onatski (2009), that we do not report. We always generate M = 2000

Monte Carlo samples and, for our tests, set α = 0.05 in line with the power results from the previous

analysis.

Table 3 reports the average estimated number of shocks using the five approaches. The third and

fourth columns present results for the estimators of BN. For all sample sizes, our four estimators

improve upon those of Bai and Ng (2007), which consistently underestimate q0. Estimators q̂aw,A

and q̂aw,B underestimate q0 when N and T are small but their performance improves as both sizes

increase. While both bootstrap-based estimators outperform those of AW whenN < 400 and T ≤ 200,

only the adjusted one consistently performs better than – or on par with – q̂aw,A and q̂aw,B. The

approach of BP underestimates q0 and is always outperformed by all our estimators improving. The

asymptotic sequential procedure based on standard Gaussian quantiles (eight column, labelled by zα)

always overestimates q, mostly because the test is oversized for these sample sizes.

Results substantially improve when we adjust the critical value of the test (ninth column, labeled

by zαN,T
). Finally, the bootstrap-based estimator (tenth column, labeled by pBα ) delivers the best results

when N = 100 but is outperformed by its adjusted counterpart (pBα∗
N,T

) for all the other sample sizes.
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This is a consequence of adjusting the level of the test, as the non-zero asymptotic type I error proba-

bility makes the sequential procedure reject the null even when it holds, which implies overestimating

the number of common primitive shocks.

Table 3 – Comparison of estimators of q
N T q̂3 q̂4 q̂aw,A q̂aw,B q̂bp zα zαN,T

pBα pBα∗
N,T

100 100 4.48 4.49 4.86 4.88 4.23 5.17 5.12 5.01 4.97
100 200 4.49 4.50 4.92 4.93 4.39 5.30 5.20 5.03 4.97
200 100 4.45 4.46 4.90 4.92 4.34 5.07 5.04 5.06 5.01
200 200 4.63 4.63 4.94 4.95 4.55 5.12 5.06 5.05 5.01
200 300 4.64 4.64 4.96 4.96 4.63 5.17 5.06 5.05 5.01
400 100 4.44 4.45 4.92 4.93 4.40 5.04 5.01 5.07 5.03
400 200 4.62 4.62 4.96 4.97 4.63 5.06 5.02 5.06 5.02
400 300 4.70 4.70 4.97 4.98 4.71 5.08 5.02 5.06 5.02
400 400 4.74 4.74 4.99 4.99 4.79 5.12 5.03 5.05 5.02

Average estimates of q when r = 7 and q0 = 5. The third and the fourth columns present results for estima-
tors q̂3 and q̂4 of Bai and Ng (2007). The fifth and sixth columns consider q̂aw,A and q̂aw,B by Amengual and Watson
(2007), while the seventh one is based on q̂bp of Breitung and Pigorsch (2013). The eighth and ninth columns show
results for our estimator q̂ based on the asymptotic sequential testing procedure. The former is based on the 95%
quantile of the asymptotic N (0, 1) distribution while the latter considers quantiles adjusted for a consistent selection
procedure. The last two columns are based on the bootstrap version of the test performed at the 5% significance level:
the first one considers unadjusted bootstrap percentiles (i.e. pBα ) and the second adjusted ones (i.e. pBα∗

N,T
). We adjust

the significance level α using equations (4.9) and (5.9), where we always set c = 0.95 and γ = 0.1. The number of
MC samples is always M = 2000 MC.

7 Common shocks in volatility and macro-financial panels

7.1 Common shocks in US macro-financial data

We consider a macro-financial application where we test the number of common shocks in the FRED-

MD monthly dataset of McCracken and Ng (2016). In particular, we work with a balanced panel of

N = 120 monthly indicators of the US economic and financial system ranging between January 1960

and December 2019 (T = 720). This is the longest dataset not contaminated by the COVID-crisis. We

consider the September 2022 vintage and make all the series stationary following the suggestions of

McCracken and Ng (2016). As recommended when using this dataset, we remove outliers following

the procedure of McCracken and Ng (2016).

Information criteria ICp1 and ICp2 of Bai and Ng (2002a), and their modifications by Alessi,

Barigozzi, and Capasso (2010), suggest the presence of r = 7 static factors. We use this value as
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Figure 2 – Eigenvalue analysis for the covariance matrix of VAR innovations v̆t when r̂ = 7 in US macroeco-
nomic data

(a) Estimated eigenvalues when r̂ = 7. (b) ξ̂(q) when r̂ = 7.

Left panel: estimated eigenvalues of the covariance matrix of factors’ VAR(1) when r̂ = 7. Right panel: sum of the
smallest r−q eigenvalues ξ̂(q) (blue solid line) when r̂ = 7 for multiple values of q. In the right panel, vertical bars denote
the acceptance region when testing the null hypothesis of q primitive shocks, i.e. H0(q), at the adjusted 5% significance
level. Yellow bars pertain to the bootstrap-based test while orange ones come from the asymptotic version of the test.

starting point for our sequential testing procedure. Following results of the Monte Carlo analysis, we

use the adjusted bootstrap estimator of q, run the testing procedure with Nb = 999 bootstrap samples,

and consider 5% level of significance, which we adjust as in Equation (5.9). The null of q = 4 common

primitive shocks is the first one not to be rejected. The same result holds when the procedure is run

at the (adjusted) 1% level of significance, and if Nb = 499 and Nb = 1499 bootstrap samples are

considered. Thus, we conclude that the common temporal variation in US macro-financial system is

fully characterized by four primitive shocks.22

Figure 2(a) shows the estimated eigenvalues when r̂ = 7. Estimates for the first four eigenvalues

of the VAR innovations’ covariance matrix Σ̆v range between 0.98 and 0.83. We then observe a sharp

decrease in the magnitude of the eigenvalues, with the fifth one taking value 0.41. Our test signals

that we cannot reject the hypothesis that this eigenvalue is zero at adjusted significance level 5%.

Remaining eigenvalues are estimated at 0.15 and 0.05. The blue solid line in Figure 2(b) represents

the sum of the smallest r − q eigenvalues, i.e. ξ̂(q), when r = 7 and q varies between one and six.

Vertical bars denote the acceptance region when testing the null hypothesis of q shocks, i.e. H0(q),

22Note that Bai and Ng (2007) reach same conclusions in terms of (IC-based) r̂ and q̂ when analyzing the monthly
dataset of Stock and Watson (2005).
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at the adjusted 5% significance level. Orange ones denote the plug-in version (see equation (4.8),

replacing z1−α with z1−αN,T
), while yellow bars are for the bootstrap-based implementation of the

test (see equation (5.8) with p̂B1−α replaced by p̂B1−α∗
N,T

). In line with Monte Carlo results, acceptance

regions for the plug-in implementation are narrower than those for the bootstrap-based version, so that

the former estimates five instead of four common shocks.

Figure 3 – Estimated non-redundant factors on US macroeconomic data

(a) First factor (b) Second factor

(c) Third factor (d) Fourth factor

Monthly values of the estimated non-redundant factors f̂H,t from the panel of macroeconomic data in FRED-MD between
January 1960 and December 2019. Grey shaded areas denote official NBER recession dates. Non-redundant factors are
estimated as in Definition 1.

Figure 3 plots the four non-redundant factors between January 1960 and December 2019, while

Table 4 reports the ten observable macro-financial variables that exhibit the highest absolute correlation

with each of these factors. The first factor is positively correlated with time series that characterise

the output of the US economy.23 Hence, this is a cyclical factor that approximates the state of the
23All this discussion is based on the eight groups of variables constructed by McCracken and Ng (2016). These are: Out-

put and Income; Labor Market; Housing; Consumption, orders, and inventories; Money and Credit; Interest and Exchange
Rates; Prices; Stock Market.
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Table 4 – Variables exhibiting the highest absolute correlation with the non-redundant macroeconomic factors
Factor 1 Factor 2

IP: Final Products 0.74 S&P 500 -0.64
IP: Consumer Goods 0.73 S&P Index: Industrials -0.62
IP: Final Products and Nonindustrial Supplies 0.71 S&P Index: Dividend Yield 0.61
IP: Total Index 0.67 CPI: All Items Less Shelter 0.57
IP: Manufacturing (SIC) 0.65 CPI: All Items 0.56
CU: Manufacturing 0.64 CPI: Commodities 0.56
IP: Durable Consumer Goods 0.64 PCE: Non-durable good 0.56
IP: Materials 0.52 CPI: All Items Less Medical Care 0.55
IP: Durable Goods Materials 0.51 S&P Index: Price-Earnings Ratio -0.53
IP: Business Equipment 0.50 CPI: All Items Less Food 0.48

Factor 3 Factor 4
CPI: Commodities -0.69 5-Year Treasury Rate 0.76
PCE: Non-durable goods -0.69 1-Year Treasury Rate 0.76
CPI: All Items Less Shelter -0.68 10-Year Treasury Rate 0.74
PCE: Chain Index -0.67 6-Month Treasury Bill 0.72
CPI: All Items -0.66 AAA Corporate Bond Yield 0.72
CPI: Transportation -0.56 BAA Corporate Bond Yield 0.64
CPI: All Items Less Medical Care -0.65 3-Month Treasury Bill 0.64
CPI: All Items Less Food -0.67 Effective Fed Funds Rate 0.39
PPI: Intermediate Materials -0.60 CHF/USD ForEx rate 0.35
PPI: Finished Consumer Goods -0.57 IP: Consumer Goods 0.33

For each of the four non-redundant factors extracted from the panel of macroeconomic data in FRED-MD be-
tween January 1960 and December 2019, we report the ten macroeconomic variables in FRED-MD characterised by
the highest absolute correlation with the factor itself, and computed on the same sample period. For each variable, the
value of the correlation coefficient is reported.

US economy. The second factor is exposed to fluctuations in price indexes and in the stock market,

while the third one is solely driven by the level of prices in the economy. Thus, the second and the

third factors gauge the behaviour of month-over-month inflation in the US. Finally, the fourth factor

is influenced by interest and exchange rates, and therefore behaves as an indicator of the US financial

system: the higher its value the worsen the financial outlook, especially for what regards the funding

market.
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7.2 Common shocks in volatility measures

We now study common shocks in a panel of volatility measures for the constituents of the S&P 500

index. We consider the S&P 500 composition of December 2023 and obtain daily prices from the

Datastream platform for a period ranging between December 28, 2018 and December 28, 2023 (T =

1256). Following Brownlees and Gallo (2010) and Barigozzi, Cho, and Owens (2023), we measure

volatility for the i-th stock on the t-th day using the high-low range:

σ2
i,t = 0.361

(
phighi,t − plowi,t

)2
,

where phighi,t (plowi,t ) is the highest (lowest) log-price on day t for stock i. In what follows, yi,t = log
(
σ2
i,t

)
.

The same information criteria of Section 7.1 suggest the presence of r = 7 static factors, while our

bootstrap-based procedure estimates q = 4 common shocks.24 Figure 4 plots the four non-redundant

factors estimated on the sample of interest, while table 5 reports the ten stocks which exhibit the

highest absolute correlation with these factors. We also report linear correlation coefficients between

the stocks and the factor of interest. The first factor is negatively related to providers of electricity and

natural gas.25 These firms experienced periods of higher volatility during both the COVID pandemic

and the energy crisis driven by the Russian invasion of Ukraine. The second factor is negatively

related to firms that deal with oil extraction, while it exhibits a positive correlation with healthcare

providers. Volatility on oil firms peaked during the COVID pandemic as a consequence of extremely

low oil prices. The third factor is highly correlated with technology firms that are heavily reliant on

microchips. The global shortage of semi-conductors that occurred between 2020 and 2023 explains

the importance of these firms for our dataset. Such a shortage was driven by a combination of the

COVID pandemic, and of a trade war between the US and China. Finally, the fourth factor correlates

with US commercial banks, particularly regional ones. These firms were extremely volatile during the

spring 2023 amid the failure of three US commercial banks and the rescue of Credit Suisse.

24As in the previous application, we consider Nb = 999 bootstrap samples and check for the robustness of our findings
with respect to this value. The bootstrap test is run at the adjusted 5% level of significance and we check robustness with
to the respect to the adjusted 1% level of significance.

25All stocks are categorised according to the sub-industry code of the Global Industry Classification Standard.
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Figure 4 – Estimated non-redundant factors estimated from a panel of individual stocks volatilities

(a) First factor (b) Second factor

(c) Third factor (d) Fourth factor

Daily values of the estimated non-redundant factors f̂H,t from a panel of volatility proxies for S&P 500 constituents,
between December 28, 2018 and December 28, 2023. Non-redundant factors are estimated as in Definition 1.
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Table 5 – Stocks exhibiting the highest absolute correlation with the non-redundant volatility factors
Factor 1 Factor 2

Alliant Energy -0.35 Halliburton -0.31
Ameren -0.35 Schlumberger -0.28
WEC Energy -0.34 Marathon Oil -0.27
CMS Energy -0.34 Devon Energy -0.26
Consolidated Edison -0.33 APA Corporation -0.26
Duke Energy -0.33 ConocoPhillips -0.25
American Electric Power -0.33 Agilent Technologies 0.25
Eversource -0.31 Diamondback Energy -0.24
NiSource -0.31 Pioneer Natural Resources -0.24
Xcel Energy -0.30 Idexx Laboratories 0.24

Factor 3 Factor 4
Nvidia 0.39 KeyCorp 0.50
Applied Materials 0.38 Comerica 0.46
Micron Technology 0.37 Citizens Financial Group 0.44
Lam Research 0.35 Zions Bancorporation 0.44
Advanced Micro Devices 0.35 Truist 0.44
Microchip Technology 0.34 U.S. Bank 0.42
Teradyne 0.33 Huntington Bancshares 0.42
Analog Devices 0.32 Fifth Third Bank 0.41
Broadcom Inc. 0.32 PNC Financial Services 0.40
Skyworks Solutions 0.31 Regions Financial Corporation 0.39

For each of the four non-redundant factors extracted from the panel of volatility proxies for S&P 500 con-
stituents between December 28, 2018 and December 28, 2023 we report the ten stocks characterised by the highest
absolute correlation with the factor itself, and computed on the same sample period. For each variable, the value of
the correlation coefficient is reported.
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8 Conclusions

We present new tests and estimators for the number of common primitive shocks in a large (restricted)

dynamic factor model, where factors can be estimated by PCA. The starting point of our testing proce-

dure is a static factor representation of the model where r factors evolve as a VAR(1) with innovations

having rank-deficient covariance matrix Σv. In particular, its rank q ≤ r coincides with the number of

common primitive shocks in the data. Hence, we test the number of such shocks by testing the rank

of Σv. In doing it, we are the first to develop a test for the rank of a finite dimensional positive semi-

definite matrix in panel data where the number of both cross-sectional entities and observations over

time diverge. We are able to overcome the well known problems of testing the rank of a semi-definite

matrix, and construct a test statistic whose asymptotic distribution under the null of q primitive shocks

is Gaussian, and has non-standard convergence rate N
√
T . This is done by exploiting the estimation

error of the principal component estimator of the r static factors and of related quantities, e.g. Σv and

its eigenvalues/eigenvectors. We propose two implementations of the test: one is based on the asymp-

totic distribution of a consistent plug-in estimator for the test statistic, while the other relies on a wild

bootstrap scheme. We also introduce estimators of the number of common shocks and non-redundant

factors based on both implementations.

An analysis of the factor structure of the FRED-MD dataset suggests that output measures and

price indexes explain most of the temporal variation in the US macro-financial system between January

1960 and December 2019. An application to volatility measures of US stocks shows that the COVID

pandemic and the bank crisis of March 2023 were key drivers of volatility between January 2019 and

January 2024.

The tests and estimators of this paper can be naturally extended to the Factor Augmented VAR

(FAVAR) model of Bernanke, Boivin, and Eliasz (2005) where both latent factors estimated by PCA

and observable factors follow a singular VAR model with a smaller number q of primitive shocks. This

extension is in our current research agenda.
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Appendices
We use the following notation. ⊗ denotes the Kronecker product. ∥A∥ =

√
tr(A′A) denote the Frobenius norm

of matrix A. We denote by ∥Z∥p = (E[∥Z∥p])1/p the Lp-norm of random matrix Z, for p > 0. We denote by
d→ convergence in distribution. For a sigma-field F , we denote by Zn

d→ Z (F-stably) the stable convergence
on F of a sequence of random vectors, that is, P (Zn ∈ A,U) → P (Z ∈ A,U) as n → ∞, for any Borel set
A with P (Z ∈ ∂A) = 0, where ∂A is the boundary of set A, and any measurable set U ∈ F (see e.g. Renyi
(1963), Aldous and Eagleson (1963), Hall and Heyde (1980), Kuersteiner and Prucha (2013)). In particular, for
a symmetric positive definite random matrix Ω measurable with respect to F , by Zn

d→ N(0,Ω) (F-stably) we

mean Zn
d→ Ω1/2ε (F-stably), where ε ∼ N(0, I) is independent of F .
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A Assumptions
We make the following assumptions:

Assumption A.1. N,T → ∞ with
√
T/N = o(1) and N/T 3/2 = o(1).

Assumption A.2. The “rotated” factor VAR ft = Φft−1 + vt is stationary and satisfies the normalization
restrictions

E(ft) = 0 and V (ft) = E(ftf
′
t) = Ir;

its innovations are such that vt ∼ iid(0,Σv), where the (r, r) covariance matrix is defined as Σv = diag(σ21, . . . , σ
2
q , 0, . . . , 0),

with σ21 ≥ σ22 ≥ · · · ≥ σ2q > 0, and E[∥vt∥4] ≤M , for a constant M <∞.

Assumption A.3. The loadings matrix Λ = [ λ1, . . . , λN ]′ is such that lim
N→∞

1
NΛ′Λ = Σλ, where Σλ is a

positive-definite (r, r) matrix with distinct eigenvalues.

Assumption A.4. The error terms εi,t and the factors ft are such that for all i, t ≥ 1: a) E[εi,t|Ft] = 0 and
E[ε2i,t|Ft] ≤ M , a.s., where Ft = σ(Fs, s ≤ t), b) E[ε8i,t] ≤ M and E[∥vt∥2r∨8] ≤ M , for a constant
M <∞, where r > 2 is defined in Assumption A.5 b).

Assumption A.5. Define the variables ξt = 1√
N

∑N
i=1 λiεi,t and κt = 1√

N

∑N
i=1(ε

2
i,t − η2t ), indexed by N ,

where η2t = plim
N→∞

1
N

∑N
i=1E[ε2i,t|Ft]. a) For any t ≥ 1 and h ≥ 0 have:

[ξ′t, ξ
′
t−h]

′ d→ N( 0 ,Vt(h) ), (Ft-stably),

as N → ∞, where the asymptotic variance matrix is:

Vt(h) =
[
Ωt(0|Ft) Ωt(h|Ft)

Ωt−h(0|Ft)

]
,

for Ωt(h|Ft) = plim
N→∞

1
N

∑N
i=1

∑N
ℓ=1 λiλ

′
ℓcov(εi,t, εℓ,t−h|Ft), for any h.

Moreover, for N ≥ 1 we have: b) E(∥ξt∥2r|Ft) ≤ M , a.s., and c) E
[
|κt|4

]
≤ M , for constants M < ∞ and

r > 2.

Assumption A.6. Innovations ϵt and vt are such that: a) The triangular array processes Vt ≡ VN,t = [f ′t , ξ
′
t]
′

and V ∗
t ≡ V ∗

N,t = [κt, η
2
t ]

′ are strong mixing of size − r
r−2 , uniformly in N ≥ 1. 26 Moreover,

b) ∥E(ξtξ
′
t|Ft) − E(ξtξ

′
t|Ft, ..., Ft−m)∥2 = O(m−ψ), ∥E(ξt−1ξ

′
t|Ft) − E(ξt−1ξ

′
t|Ft, ..., Ft−m)∥2 = O(m−ψ)

and ∥E(ξt−1ξ
′
t|Ft)− E(ξt−1ξ

′
t|Ft, ..., Ft−m)∥2 = O(m−ψ) as m→ ∞, uniformly in N ≥ 1, and with ψ > 1.

Assumption A.7. Innovations ϵt and vt are such that: a) 1
T

∑T
t=1

∑t−1
s=1E[η4ts] ≤M ,E

[(
1√
N

∑N
i=1(εi,tεi,s − η2ts)

)2]
≤

M , for any s < t and a constant M , where η2ts = plim
N→∞

1
N

∑N
i=1E[εi,tεi,s|Ft]; b) 1√

T

∑T
t=1(1 + η2t )ftα

′
t =

Op(1), 1
T

∑T
t=1 ξtα

′
t = op(1), E[∥αt∥2] = O(1), where αt = 1√

NT

∑N
i=1

∑T
s=1,s ̸=t εi,tεi,sfs;

c) E[∥βt∥2] = O(1) and E[∥β̄t∥2] = O(1), where βt = 1√
NT

∑N
i=1

∑T
s=1,s ̸=t εi,t(εi,sζs − E[εi,sζs]) and

β̄t =
1
T

∑N
i=1

∑T
s=1,s ̸=t εi,tE[εi,sζs], where ζt = (η2t f

′
t , κtf

′
t , ξ

′
t, α

′
t)
′.

26That is, α(h) = O(h−ϕ) for some ϕ > r
r−2 , where α(h) = sup

N≥1
sup
t≥1

sup
A∈Vt

−∞,B∈V∞
t+h

|P (A∩B)−P (A)P (B)|, where

Vt+mt−m = σ(Vs, t−m ≤ s ≤ t+m), and similarly for V ∗
t .
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Assumption A.8. Innovations ϵt and vt are such that: a) P [∥ft∥ ≥ δ] ≤ c1 exp(−c2δb), for large δ; b)∑N
ℓ=1:ℓ̸=iE[εℓ,tεi,t] ≤M , for all i ≥ 1; c)P [∥ 1

T

∑T
t=1 zi,t∥ ≥ δ] ≤ c1T exp(−c2δ2T η)+c3Tδ−1 exp(−c4T η̄),

for all i ≥ 1 and δ > 0, where either zi,t = ftεi,t, or zi,t = ε2i,t − E[ε2i,t], or zi,t = 1√
N

∑N
ℓ=1:ℓ̸=i εℓ,tεi,t −

E[ 1√
N

∑N
ℓ=1:ℓ ̸=i εℓ,tεi,t]; d) ∥λi∥ ≤ M , for all i ≥ 1; where b, c1, c2, c3, c4, η, η̄,M > 0 are constants, and

η ≥ 1/2.

Assumption A.9. The error terms are such that: a)Cov(εi,t, εℓ,t−h|Ft) = 0, if i ̸= ℓ, b)E[εi,t|{εi,t−h}h≥1,Ft] =
0, c) E[ε2i,t|{εi,t−h}h≥1,Ft] = γii, say, where γii > 0, for all i, t, h.

Assumption A.1 defines the asymptotic scheme. Assumption A.2 concerns the stationarity of the factors’ VAR,
as well as their first and second moments. Note that the same properties hold true also in the unrotated factor
space. That is, the factor VAR f̆t = Φ̆f̆t−1 + v̆t is stationary and such that:

E(f̆t) = 0 and V (f̆t) = E(f̆tf̆
′
t) = Ir.

Moreover, VAR innovations v̆t, are such that v̆t ∼ iid(0, Σ̆v), for Σ̆v as defined in Section 2, andE[∥v̆t∥4] ≤M ,
for a constant M < ∞. All remaining assumptions are the same as in AGGR, and we refer to their Appendix
A for a detailed discussion of each of them and their relationship with analogous assumptions made in the
literature.

Assumption A.9 simplifies the derivation of the feasible asymptotic distribution of the statistic in Theorem
2. This condition excludes correlation of the error terms across individuals and time (conditional on the factors),
as well as conditional heteroschedasticity, and implies a “strict factor model” for each group. In that sense,
it is more restrictive than Assumptions A.5, A.6, A.7 and A.8 b)-c). Moreover, under Assumption A.9, the
matrix Ωt(0|Ft) in Assumption A.5 a) simplifies to Ω = limN→∞(1/N)

∑N
i=1 λiλ

′
iγii , while Ωt(h) = 0 if

h ̸= 0. Note that Assumption A.9 simplifies substantially the proof of Theorems 2 but is not needed to prove
Theorem 1.

B Proofs
Section B.1 presents the proof of Proposition 1, Section B.2 and Section B.3 present the proof of Theorem 2 and
Theorem 1, respectively. The proofs of technical Lemmas are reported in Section C.1 of the OA.

Let us provide some fundamental moments of the rotated static factors ft which will turn out to be useful
in the following proofs. We define V11 := E(ft−1f

′
t−1), V22 := E(ftf

′
t), and V12 := E(ft−1f

′
t) = V ′

21.
Stationarity of the process for factors f̆t from Assumption A.2 i) implies that also the factor process of ft in
(2.10) is stationary, and that V22 = V11, irrespectively of the normalization in (2.5). Moreover, as W is an
orthonormal (r, r) eigenvector matrix, from the normalization in (2.5) it follows that V11 = Ir.

B.1 Proof of Proposition 1
In Section B.1.1 we characterize the eigenvalues and eigenvectors of the population covariance matrix Σv =
V (vt) and its OLS estimator Σ̃v =

∑T
t=1 ṽtṽ

′
t/T . In particular, we show that their smallest r−q eigenvalues are

all equal to zero. Then, in Section B.1.2 we prove that the r − q smallest eigenvalues of the sample covariance
matrix ˜̆

Σv are equal to zero. These two results imply part (i) of Proposition 1. Section B.1.3 shows that the
largest q eigenvalues converge, as T → ∞, to the q non-zero eigenvalues of Σ̃v, which, together with the
result in part (i), proves part (ii) of Proposition 1. Finally, we derive the asymptotic distribution of the largest q
eigenvalues of ˜̆

Σv, which corresponds to part (iii) of Proposition 1.
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B.1.1 Eigendecomposition of Σv and Σ̃v

Define the following two matrices:

EH
(r×q)

=

[
Iq
0(r−q,q)

]
, EL

(r×(r−q))
=

[
0(q,r−q)
Ir−q

]
. (B.1)

The columns of EH and EL span Rr. Since Σv = E[vtv
′
t] = diag(σ21, ..., σ

2
q , 0, ..., 0), the eigenvectors associ-

ated with the r − q zero eigenvalues of Σv are spanned by the columns of matrix EL. Analogously, the eigen-
vectors associated with the q non-zero eigenvalues of Σv are spanned by the columns of matrix EH . If we make
the additional assumption that the q non-zero eigenvalues of Σv are distinct, that is σ21 > σ22 > ...... > σ2q > 0,
then the orthonormal eigenvectors associated with these eigenvalues correspond to the columns of EH .

To characterize matrix Σ̃v and its sorted eigenvalues σ̃21 ≥ σ̃22 ≥ ... ≥ σ̃2r , we first define:

Ṽ11 :=
1

T

T∑
t=1

ft−1f
′
t−1 , Ṽ22 :=

1

T

T∑
t=1

ftf
′
t , Ṽ12 :=

1

T

T∑
t=1

ft−1f
′
t , Ṽ21 := Ṽ ′

12,

(B.2)

and

Ṽv,11 :=
1

T

T∑
t=1

vt−1v
′
t−1 , Ṽv,22 :=

1

T

T∑
t=1

vtv
′
t , Ṽvf,21 :=

1

T

T∑
t=1

vtf
′
t−1 , (B.3)

From the definition of Σ̃v in (3.3), and that of the OLS residuals ṽt = ft − Φ̃ft−1 obtained by OLS estimation
of the VAR(1) model in equation (2.10) from the T -dimensional sample of true factors ft, we get:

Σ̃v =
1

T

T∑
t=1

ṽtṽ
′
t =

1

T

T∑
t=1

(ft − Φ̃ft−1)(ft − Φ̃ft−1)
′ = Ṽ22 − Ṽ21Ṽ

−1
11 Ṽ12, (B.4)

where the third equality follows from (B.2) and the definition in equation (3.2) of the OLS estimator Φ̃ of Φ, i.e.
Φ̃ = Ṽ21Ṽ

−1
11 . By straightforward matrix algebra, we get the next Lemma.

LEMMA B.1. The matrix Σ̃v = Ṽ22 − Ṽ21Ṽ
−1
11 Ṽ12 is such that:

Σ̃v = Ṽv,22 − Ṽvf,21Ṽ
−1
11 Ṽ

′
vf,21 =

[
Σ̃v,HH 0(q,r−q)
0(r−q,q) 0(r−q,r−q)

]
, (B.5)

where the (q, q) matrix Σ̃v,HH is:

Σ̃v,HH =
1

T

T∑
t=1

vH,tv
′
H,t −

 1

T

T∑
t=1

vH,tf
′
t−1

(
1

T

T∑
t=1

ft−1f
′
t−1

)−1
1

T

T∑
t=1

ft−1v
′
H,t

 . (B.6)

From Lemma B.1 it immediately follows that the r− q smallest eigenvalues of Σ̃v are σ̃2q+1 = ... = σ̃2r = 0.
This is our first non-trivial result, which shows that the smallest r − q eigenvalues of Σ̃v are exactly equal to
the r − q zero eigenvalues of the population covariance matrix Σv for any finite sample of dimension T ≥ r2.
From (B.5), it follows that the orthonormal eigenvectors associated to the r − q zero estimated eigenvalues of
Σ̃v are spanned by the columns of matrix EL. Let W̃v,r−q be the matrix having as columns each of the r − q
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associated eigenvectors, then W̃v,r−q = EL · A, where A is an (r − q, r − q) orthonormal matrix, implying:
Σ̃vW̃v,r−q = W̃v,r−q · 0(r−q,r−q), and W̃ ′

v,r−qW̃v,r−q = Ir−q.

Moreover, the (q, q) matrix Σ̃v,HH in (B.6) is the sample covariance matrix of the residuals obtained from a
multivariate regression of vH,t on (lagged) factors ft−1. In fact, the estimated matrix of regression coefficients
of such multivariate regression is

∑T
t=1 vH,tf

′
t−1(

∑T
t=1 ft−1ft−1)

−1 = Ṽvf,12Ṽ
−1
11 , the residuals are vH,t −

Ṽvf,12Ṽ
−1
11 ft−1, so that the OLS residuals’ covariance matrix is

1

T

T∑
t=1

(vH,t − Ṽvf,12Ṽ
−1
11 ft−1)(vH,t − Ṽvf,12Ṽ

−1
11 ft−1)

′ = Σ̃v,HH ,

which is positive semi-definite, thus having all non-negative eigenvalues. Hence, the largest q eigenvalues of Σ̃v
are such that σ̃21 ≥ ... ≥ σ̃2q ≥ 0, which implies

σ̃21 ≥ ... ≥ σ̃2q ≥ σ̃2q+1 = ...σ̃2r = 0. (B.7)

Equation (B.5) entails that the orthonormal eigenvectors associated to the q largest eigenvalues of Σ̃v are spanned
by the columns of matrix EH . Let W̃v,q be the matrix having as columns each of the q associated eigenvectors,
then W̃v,q = EH ·B, whereB is a (q, q) orthogonal matrix, implying: Σ̃vW̃v,q = W̃v,qΣ̃

eig
v,HH , W̃ ′

v,qW̃v,q = Iq,

and Σ̃eigv,HH := diag(σ̃21, ..., σ̃
2
q ).

Let Σ̃eigv be the (r, r) diagonal matrix collecting the ordered eigenvalues of Σ̃v:

Σ̃eigv := diag(σ̃21, ..., σ̃
2
r ) = diag(σ̃21, ..., σ̃

2
q , 0, ..., 0), (B.8)

and let W̃v := [W̃v,q , W̃v,r−q] be the (r, r) matrix collecting the associated orthonormal eigenvectors. Then,

Σ̃vW̃v = W̃vΣ̃
eig
v , with W̃ ′

vW̃v = W̃vW̃
′
v = Ir. (B.9)

B.1.2 Eigendecomposition of ˜̆
Σv

Let us define

˜̆
V11 :=

1

T

T∑
t=1

f̆t−1f̆
′
t−1 ,

˜̆
V22 :=

1

T

T∑
t=1

f̆tf̆
′
t ,

˜̆
V12 :=

1

T

T∑
t=1

f̆t−1f̆
′
t =

˜̆
V ′
12

From the definition of ˜̆
Σv in Section 3.1, and that of the OLS residuals ˜̆vt = f̆t − ˜̆

Φf̆t−1 obtained by estimating
the VAR(1) model in equation (2.10) from the T -dimensional sample of true factors f̆t, we get:

˜̆
Σv =

1

T

T∑
t=1

˜̆vt ˜̆v
′
t =

1

T

T∑
t=1

(f̆t − Φ̃f̆t−1)(f̆t − Φ̃f̆t−1)
′ =

˜̆
V22 − ˜̆

V21
˜̆
V −1
11

˜̆
V12,

which follows by writing ˜̆
Φ =

˜̆
V21

˜̆
V −1
11 . Recalling that ft = W ′

vf̆t and W ′
vWv = Ir, we get f̆t = Wvft, which

implies:

˜̆
V11 = W ′

vṼ11Wv ,
˜̆
V22 = W ′

vṼ22Wv ,
˜̆
V12 = W ′

vṼ12Wv =
˜̆
V ′
21,
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and

˜̆
Σv = WvV̆22W

′
v −WvṼ21W

′
vWvṼ

−1
11 W

′
vWvṼ12W

′
v = WvΣ̃vW

′
v. (B.10)

Equation (B.9) implies Σ̃v = W̃vΣ̃
eig
v W̃ ′

v, and therefore ˜̆
Σv = WvW̃vΣ̃

eig
v W̃ ′

vW
′
v. As W̃ ′

vW
′
vWvW̃v = Ir, we

get that

˜̆
Σv(WvW̃v) = (WvW̃v)Σ̃

eig
v ,

i.e. Σ̃eigv is the diagonal matrix containing the sorted eigenvalues of ˜̆Σv, with associated orthonormal eigenvectors
being the r columns of matrix WvW̃v. As Σ̃eigv is also the matrix of the sorted eigenvalues of Σ̃v, this proves
part (i) of Proposition 1.

B.1.3 Convergence of the eigenvalues of Σ̃v

Under Assumption A.2, a Central Limit Theorem (CLT) for iid random variables with finite second moment
implies that

√
T · vec

(
1

T

T∑
t=1

vH,tv
′
H,t − Σv,HH

)
d−→ N(0,V∗

1 ), where V∗
1 := E[vec(vtv

′
t − Σv) · vec(vtv′t − Σv)

′],

(B.11)

as T → ∞. Hence,
∑T

t=1 vH,tv
′
H,t/T − Σv,HH = Op(1/

√
T ). The same assumptions entails

1

T

T∑
t=1

vH,tf
′
t−1 = Op(1/

√
T ), and

1

T

T∑
t=1

ft−1f
′
t−1 = V11 +Op(1/

√
T ).

Substituting these equations into (B.6) we get Σ̃v,HH = Σv,HH +Op(1/
√
T ) and, by substituting the last result

in (B.5), also

Σ̃v =

[
Σv,HH +Op(1/

√
T ) 0(q,r−q)

0(r−q,q) 0(r−q,r−q)

]
. (B.12)

We know from the results in Subsection B.1.1 that the eigenspace associated with the zero eigenvalues of Σ̃v has
dimension r − q and is spanned by the columns of matrix EL. Therefore, from (B.8), (B.9) and (B.12), we can
write the following expansions for the eigenvalue matrix Σ̃eigv,HH and the associated eigenvector matrix W̃v,q:

W̃v,q = EHUv,q, Σ̃eigv,HH = Σv,HH +Mv,q = diag(σ̃21, ..., σ̃
2
q ) +Mv,q,

where EH is defined in equation (B.1), the stochastic (q, q) matrix Uv,q is nonsingular with probability ap-
proaching (w.p.a.) 1 and stochastic matrix Mv,q is diagonal. By the continuity of the matrix eigenvalue and
eigenfunction mappings, as Σ̃v = Σv + Op(1/

√
T ), the largest q eigenvalues and the associated eigenvectors

converge at the same rate to the eigenvalues and eigenvectors of Σv. Therefore, Mv,q converges in probability
to a null matrix as T → ∞ at rate Op(1/

√
T ), that is Mv,q = 0q,q +Op(1/

√
T ), which implies:

σ̃2ℓ = σ2ℓ +Op(1/
√
T ), ℓ = 1, ..., q,
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and Uv,q converges in probability to a non-singular matrix at the same rate. Therefore, from the set of inequalities
(B.7), the definition Σv,HH = diag(σ21, ..., σ

2
q ), and the assumption σ21 ≥ σ22 ≥ ... ≥ σ2q > 0, we have

σ̃21 ≥ ... ≥ σ̃2q > σ̃2q+1 = ... = σ̃2r = 0 w.p.a. 1,

at T → ∞, which concludes the proof of part (ii) of Proposition 1.

To simplify the proof of the convergence in distribution of the largest q eigenvalues of Σ̃v, that is the proof
of part (iii) of Proposition 1, we assume that all the q non-zero eigenvalues of Σv are distinct, namely:

σ21 > ... > σ2q > 0.

This assumption implies that the orthonormal eigenvectors associated with the largest q non-zero eigenvalues of
Σv are given exactly by the first q columns of matrix Iq. We denote each of these columns, i.e. each one of these
eigenvectors, as eq,ℓ := [0, ..., 0, 1, 0, ...., 0]′, which is a q-dimensional vector of zeros, with the exception of the
element in row ℓ which is equal to 1, with ℓ = 1, ..., q. This implies Iq = [eq,1, ..., eq,q].

By noting that

Ṽ12 =
1

T

T∑
t=1

ft−1f
′
t =

1

T

T∑
t=1

ft−1(Φft−1 + vt)
′ = Ṽ11Φ

′ +
1

T

T∑
t=1

ft−1v
′
t

= Ṽ11Φ
′ +
[

1
T

∑T
t=1 ft−1v

′
H,t, 0(r,r−q)

]
we get

Φ̃ = Ṽ21Ṽ
−1
11 = Φ+

[
1
T

∑T
t=1 vH,tf

′
t−1

0(r−q,r)

]
Ṽ −1
11 .

Assumption (A.2) implies that 1
T

∑T
t=1 vH,tft−1 = Op(1/

√
T ). Hence Φ̃HL = ΦHL + Op(1/

√
T ), Φ̃HH =

ΦHH +Op(1/
√
T ), and

ṽH,t = fH,t − Φ̃HHfH,t−1 − Φ̃HLfL,t−1

= (fH,t − ΦHHfH,t−1 − ΦHLfL,t−1)− (Φ̃HH − ΦHH)fH,t−1 − (Φ̃HL − ΦHL)fL,t−1

= vH,t +Op(1/
√
T ).

Thus, 1
T

∑T
t=1 ṽH,tṽ

′
H,t =

1
T

∑T
t=1 vH,tv

′
H,t +Op(1/T ), which together with (B.11) implies:

1

T

T∑
t=1

ṽH,tṽ
′
H,t − Σv,HH =

1

T

T∑
t=1

vH,tv
′
H,t − Σv,HH +

(
1

T

T∑
t=1

ṽH,tṽ
′
H,t −

1

T

T∑
t=1

vH,tv
′
H,t

)

=
1

T

T∑
t=1

(
vH,tv

′
H,t − Σv,HH

)
+ op

(
1√
T

)
.

and
√
T · vec

(
1

T

T∑
t=1

ṽH,tṽ
′
H,t − Σv,HH

)
d−→ N(0,V∗

1 ), (B.13)

where V∗
1 is defined in (B.11).

Then, from the result on the asymptotic distribution of eigenvalues and eigenvectors of symmetric random
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matrices in Section 1 of Ruymgaart and Yang (1997), which was originally derived in Watson (1983) using
Kato’s (1966) perturbation theory, the convergence result in (B.13), and the assumption that the eigenvalues σ2ℓ ,
ℓ = 1, ..., q are all distinct, it follows that:

√
T (σ̃2ℓ − σ2ℓ ) = tr

{
√
T ·

(
1

T

T∑
t=1

ṽH,tṽ
′
H,t − Σv,HH

)
eq,ℓe

′
q,ℓ

}
+ op(1)

=
√
T · e′q,ℓ

(
1

T

T∑
t=1

ṽH,tṽ
′
H,t − Σv,HH

)
eq,ℓ + op(1)

which can also be written as

√
T (σ̃2ℓ − σ2ℓ ) =

√
Te′q,ℓ

(
1

T

T∑
t=1

ṽH,tṽ
′
H,t − Σv,HH

)
eq,ℓ + op(1)

= e′q,ℓ(e
′
q,ℓ ⊗ Im)

√
T · vec

(
1

T

T∑
t=1

ṽH,tṽ
′
H,t − Σv,HH

)
+ op(1), (B.14)

where the last result follows from the equality tr(ABC) = vec(A′)′(C′ ⊗ I·)vec(B), where A, B and C are
conformable matrices. Therefore, results (B.13) and (B.14) imply

√
T (σ̃2ℓ − σ2ℓ )

d−→ N(0,V∗
2 ), where V∗

2 := e′q,ℓ(e
′
q,ℓ ⊗ Iq) · V∗

1 · (eq,ℓ ⊗ Im)eq,ℓ.

which concludes the proof of part (iii) of Proposition 1.

B.2 Proof of Theorem 1
The proof of Theorem 1 is structured as follows. We start by reporting the asymptotic expansion for PC estimator
of the static factors (Subsection B.2.1). This first result result yields an asymptotic expansion for the VAR
residual matrix Σ̂v (Subsection B.2.2), and is used to obtain the asymptotic expansions of the eigenvalues and
eigenvectors of matrix Σ̂v by perturbation methods (Subsection B.2.3). This yields the asymptotic expansions
of the eigenvalues and of the test statistic ξ̂(q) (Subsection B.2.4). Finally, the asymptotic Gaussian distribution
of the test statistic follows by applying a suitable CLT for dependent triangular arrays (Subsection B.2.5).

B.2.1 Asymptotic expansion of the factor estimates f̂t
PROPOSITION B.1. Under Assumptions A.1-A.4, A.5 b), c), A.6 a), and A.7, we have:

ˆ̆
ft = Ĥ(f̆t + ψ̆t), ψ̆t :=

1√
N
ŭt +

1

T
b̆t +

1√
NT

d̆t + ϑ̆t, (B.15)

for t = 1, . . . , T , where ŭt =
(

1
N

∑N
i=1 λ̆iλ̆

′
i

)−1
1√
N

∑N
i=1 λ̆iεi,t,

b̆t =
(

1
N

∑N
i=1 λ̆iλ̆

′
i

)−1 (
1
T

∑T
t=1 f̆tf̆

′
t

)−1
(η∗t )

2f̆t,

d̆t =
(

1
N

∑N
i=1 λ̆iλ̆

′
i

)−1 (
1
T

∑T
t=1 f̆tf̆

′
t

)−1 (
1√
NT

∑N
i=1

∑T
s=1 εi,sf̆sλ̆

′
i

)
f̆t, and terms ϑ̆t are such that

1
T

∑T
t=1

(
1√
N
ŭt +

1
T b̆t +

1√
NT

d̆t + ϑ̆t

)
ϑ̆′t = op

(
1

N
√
T

)
and 1

T

∑T
t=1 f̆tϑ̆

′
t = Op

(
1
N + 1

T 2

)
as N,T → ∞,
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the matrix Ĥ converges in probability to a nonstochastic orthogonal (r, r) matrix, and η∗t =
(

plim
N→∞

1
N

∑N
i=1E[ε2i,t|Ft]

)1/2

.

Proposition B.1 corresponds to Proposition 3 in AGGR and the proof is omitted. From the definitions of
ft :=W ′

vf̆t and λi =W ′
vλ̆i, and the fact that Wv is an orthonormal (r, r) matrix, the next Corollary B.1 follows

immediately from Proposition B.1.

COROLLARY B.1. Under Assumptions A.1-A.4, A.5 b), c), A.6 a), and A.7, we have:

ˆ̆
ft = ĤWv(ft + ψt), ψt :=

1√
N
ut +

1

T
bt +

1√
NT

dt + ϑt, (B.16)

for t = 1, . . . , T , where ut =
(

1
N

∑N
i=1 λiλ

′
i

)−1
1√
N

∑N
i=1 λiεi,t,

bt =
(

1
N

∑N
i=1 λiλ

′
i

)−1 (
1
T

∑T
t=1 ftf

′
t

)−1
(η∗t )

2ft,

dt =
(

1
N

∑N
i=1 λiλ

′
i

)−1 (
1
T

∑T
t=1 ftf

′
t

)−1 (
1√
NT

∑N
i=1

∑T
s=1 εi,sfsλ

′
i

)
ft, and terms ϑt are such that

1
T

∑T
t=1

(
1√
N
ut +

1
T bt +

1√
NT

dt + ϑt

)
ϑ′t = op

(
1

N
√
T

)
and 1

T

∑T
t=1 ftϑ

′
t = Op

(
1
N + 1

T 2

)
as N,T → ∞,

and η∗t is defined in Proposition B.1.

B.2.2 Asymptotic expansion of matrix ˆ̆
Σv

We can re-write matrix ˆ̆
Σv by using the following quantities:

ˆ̆
V11 =

1

T

T∑
t=1

ˆ̆
ft−1

ˆ̆
f ′t−1 =

1

T

T∑
t=1

ĤWv (ft−1 + ψt−1) (ft−1 + ψt−1)
′W ′

vĤ′ = ĤWv(Ṽ11 + X̂11)W
′
vĤ′,

(B.17)

ˆ̆
V22 =

1

T

T∑
t=1

ˆ̆
ft

ˆ̆
f ′t =

1

T

T∑
t=1

ĤWv (ft + ψt) (ft + ψt)W
′
vĤ′ = ĤWv(Ṽ22 + X̂22)W

′
vĤ′, (B.18)

ˆ̆
V12 =

1

T

T∑
t=1

ˆ̆
ft−1

ˆ̆
f ′t =

1

T

T∑
t=1

ĤWv (ft−1 + ψt−1) (ft + ψt)
′W ′

vĤ′ = ĤWv(Ṽ12 + X̂12)W
′
vĤ′,

ˆ̆
V21 =

ˆ̆
V ′
12, (B.19)

where Ṽij for i, j = 1, 2 are defined in (B.2) and

X̂11 =
1

T

T∑
t=1

(ft−1ψ
′
t−1 + ψt−1f

′
t−1) +

1

T

T∑
t=1

ψt−1ψ
′
t−1, (B.20)

X̂22 =
1

T

T∑
t=1

(ftψ
′
t + ψtf

′
t) +

1

T

T∑
t=1

ψtψ
′
t, (B.21)

X̂12 =
1

T

T∑
t=1

(ft−1ψ
′
t + ψt−1f

′
t) +

1

T

T∑
t=1

ψt−1ψ
′
t, X̂21 = X̂ ′

12. (B.22)
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From the definition of matrix ˆ̆
Σv =

1
T

∑T
t=1

ˆ̆vt ˆ̆v
′
t and ˆ̆

Φ :=
ˆ̆
V21

ˆ̆
V −1
11 from definitions (B.17)-(B.19) we get:

ˆ̆
Σv =

1

T

T∑
t=1

ˆ̆vt ˆ̆v
′
t =

1

T

T∑
t=1

(
ˆ̆
ft − ˆ̆

Φ
ˆ̆
ft−1)(

ˆ̆
ft − ˆ̆

Φ
ˆ̆
ft−1)

′ =
ˆ̆
V22 − ˆ̆

V21
ˆ̆
V −1
11

ˆ̆
V12.

Then, using ˆ̆
V −1
11 = (Ĥ′)−1Wv(Ṽ11 + X̂11)

−1W ′
vĤ−1 = (Ĥ′)−1WvṼ

−1
11

(
Ir + X̂11Ṽ

−1
11

)−1
W ′
vĤ−1, we get:

ˆ̆
Σv = ĤWvΣ̂vW

′
vĤ′, (B.23)

where:

Σ̂v := Ṽ22 + X̂22 − (Ṽ21 + X̂21)Ṽ
−1
11

(
Ir + X̂11Ṽ

−1
11

)−1
(Ṽ12 + X̂12). (B.24)

When factors are estimated by PCA, the OLS estimators ˆ̆
Σv and Σ̂v depend on: i) estimators of the factors’

covariance matrices in the observable case through the terms Ṽij for i, j = 1, 2; and ii) the principal components’
estimation error through the terms X̂ij for i, j = 1, 2.

By using the definition of ψt in Corollary B.1, the next Lemma provides a stochastic rate for terms X̂jk.

LEMMA B.2. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7 we have X̂jk = Op (δN,T ), for j, k = 1, 2,
where δN,T := (min{N,T})−1.

LEMMA B.3. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7, the second-order asymptotic expansion

of matrix ˆ̆
Σv is:

ˆ̆
Σv = ĤWv(Σ̃v + Ψ̂)W ′

vĤ′ +Op(δ
2
N,T ), (B.25)

where Σ̃v is defined in equation (B.4), and Ψ̂ := X̂22 − Φ̃X̂12 − X̂21Φ̃
′ + Φ̃X̂11Φ̃

′, with Φ̃ = Ṽ21Ṽ
−1
11 .

Equation (B.25) represents matrix ˆ̆
Σv as a function of i) the estimated VAR errors’ matrix ˜̆

Σ = WvΣ̃uW
′
v

defined in (B.10) and computed with the true rotated factor values f̆t = Wvft; ii) a second term Ψ̂ and a
reminder Op(δ2N,T ), both originating from the PC estimation error.

B.2.3 Eigenvalues and eigenvectors of matrix ˆ̆
Σv obtained by perturbation methods

The estimators of the smallest r−q zero eigenvalues of ˆ̆Σv are denoted as σ̂2ℓ , for ℓ = q+1, ..., r. We now derive
their asymptotic expansion under the null hypothesis H(q) using perturbations arguments applied to equation

(B.25). Let Ŵ ∗
v,r−q be a (r, r − q) matrix whose columns are eigenvectors of matrix ˆ̆

Σv associated with the
eigenvalues σ̂2ℓ , with ℓ = q + 1, ..., r. We have:

ˆ̆
ΣvŴ

∗
v,r−q = Ŵ ∗

v,r−qΛ̂v, (B.26)

where Λ̂v = diag(σ̂2ℓ , ℓ = q + 1, ..., r) is the (r − q, r − q) diagonal matrix containing the r − q smallest

eigenvalues of ˆ̆
Σv.

We know from Subsection B.1.1 that the eigenspace associated with the zero eigenvalues of Σ̃v has dimen-
sion r−q and is spanned by the columns of matrixEL, which implies that the eigenspace associated with the zero
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eigenvalues of ĤWvΣ̃vW
′
vĤ′ has also dimension r−q and is spanned by the columns of matrix (Ĥ′)−1WvEL.27

Since the columns of EL and EH span Rr, (B.25) entails the following expansions:

Ŵ ∗
v,r−q = (Ĥ′)−1Wv[EL Û + EH α̂], Λ̂v = 0(r−q,r−q) + M̂, (B.27)

where EL and EH are defined in equation (B.1), the stochastic (r − q, r − q) matrix Û is nonsingular with
probability approaching (w.p.a.) 1, stochastic matrix M̂ is diagonal, and α̂ is a (q, r − q)) stochastic matrix. By
the continuity of the matrix eigenvalue and eigenfunction mappings, and Lemma B.2, we have that α̂ and M̂
converge in probability to null matrices as N,T → ∞ at rate Op(δN,T ). By substituting the expansions (B.25)
and (B.27) into the eigenvalue-eigenvector equation (B.26), using the characterization of matrix Σ̃v obtained in
Lemma B.1, and keeping terms up to order Op(δ2N,T ), we get expressions for matrices α̂ and M̂ . These yield
the asymptotic expansions of the smallest r − q eigenvalues and associated eigenvectors of matrix Σ̂v provided
in the next Lemma.

LEMMA B.4. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7, we have:

Λ̂v = Û−1C̃−1Ψ̂LLÛ +Op(δ
2
N,T ) (B.28)

Ŵ ∗
v,r−q = (Ĥ′)−1Wv

(
EL − EHÂ

)
Û +Op(δ

2
N,T ), (B.29)

where Â := [E′
HW

′
vĤ′ĤWvΣ̃vEH ]

−1E′
HW

′
vĤ′ĤWvΨ̂EL, matrix Ψ̂ is defined in Lemma B.3, and

C̃ := W ′
v,r−qĤ−1(Ĥ′)−1Wv,r−q . (B.30)

Note that the approximation in (B.28) holds for the terms in the main diagonal, as matrix Λ̂v has been defined
to be diagonal.

B.2.4 Asymptotic expansion of
∑r−q

ℓ=1 σ̂
2
r−ℓ+1

Let us now derive an asymptotic expansion for the sum of the r − q smallest eigenvalues
∑r−q

ℓ=1 σ̂
2
r−ℓ+1. Using∑r−q

ℓ=1 σ̂
2
r−ℓ+1 = tr

{
Λ̂v

}
, we get:

r−q∑
ℓ=1

σ̂2r−ℓ+1 = tr
{
C̃−1 · Ψ̂LL

}
+Op(δ

2
N,T ), (B.31)

by the cyclic property of the trace and including second-order terms in Op(δ2N,T ). Lemma B.5 provides asymp-
totic expansions of the terms within curly brackets in (B.31). These are derived starting from the expressions for
Ψ̂LL and its components from Lemma B.3, and noting that from Lemma C.1 in the OA we get:

Φ̃ =

(
T∑
t=1

ftf
′
t−1

)(
T∑
t=1

ft−1f
′
t−1

)−1

= Ṽ21Ṽ
−1
11 =

[
Φ̃HH Φ̃HL
ΦLH ΦLL

]
.

27This can be easily seen by noting that

(ĤWvΣ̃vW
′
vĤ′) · (Ĥ′)−1WvEL = ĤWvΣ̃vEL = 0(r,r−q) = (Ĥ′)−1WvEL · 0(r−q,r−q),

where the first equality follows from W ′
vWv = Ir, and the second one from equation (B.12) and EL = [0(r−q,q), Ir−q]

′.
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Importantly, the last equation shows that Φ̃HL = ΦHL and Φ̃LL = ΦLL, i.e. that the bottom blocks of matrix Φ
are estimated without error if the true factors are observed without error, which is critical to derive our asymptotic
distribution below.

LEMMA B.5. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a) and A.7 we have:

r−q∑
ℓ=1

σ̂2
r−ℓ+1 =

1

N
tr

{
C̃−1 · 1

T

T∑
t=1

E[(uLt − ΦLHuHt−1 − ΦLLuLt−1)(uLt − ΦLHuHt−1 − ΦLLuLt−1)
′|Ft]

}

+
1

N
√
T
tr

{
1√
T

T∑
t=1

[(uLt − ΦLHuHt−1 − ΦLLuLt−1)(uLt − ΦLHuHt−1 − ΦLLuLt−1)
′

−E[(uLt − ΦLHuHt−1 − ΦLLuLt−1)(uLt − ΦLHuHt−1 − ΦLLuLt−1)
′|Ft]]

}
+Op(δ

2
N,T ) + op (ϵN,T ) , (B.32)

where ϵN,T := 1
N
√
T

and the terms in curly brackets are Op(1).

From the definition of ϵN,T = 1
N
√
T

in Lemma B.5 and of δN,T := (min{N,T})−1 in Lemma B.2, and the

condition
√
T ≪ N ≪ T 3/2 in Assumption A.1, we have δ2N,T = o (ϵN,T ). Therefore the leading stochastic

terms in
∑r−q

ℓ=1 σ̂
2
r−ℓ+1 are of order Op

(
1
N

)
and Op

(
1

N
√
T

)
. Let us define the process

Ut := uLt − ΦLHuHt−1 − ΦLLuLt−1. (B.33)

Process Ut depends on N , but we do not make this dependence explicit for expository purpose. Then, from
Lemma B.5 we get:

r−q∑
ℓ=1

σ̂2
r−ℓ+1 −

1

N
tr
{
C̃−1B̃U

}
=

1

N
√
T

(
1√
T

T∑
t=1

[U ′
tUt − E(U ′

tUt|Ft)]

)
+ op (ϵN,T ) , (B.34)

where:

B̃U :=
1

T

T∑
t=1

E(UtU
′
t |Ft) .

Under our assumptions, term 1√
T

∑T
t=1 [U

′
tUt − E(U ′

tUt|Ft)] is Op(1) as, in the next subsection, we show that

this term is asymptotically Gaussian distributed. Under our condition
√
T ≪ N ≪ T 3/2 the remainder term

op (ϵN,T ) in the r.h.s. of (B.34) is negligible with respect to the first term in the r.h.s.28

B.2.5 Asymptotic distribution of the test statistic under the null hypothesis H(q)

From the asymptotic expansion (B.34) we obtain the asymptotic distribution of ξ̂(q) =
∑r−q

ℓ=1 σ̂
2
r−ℓ+1 under the

null hypothesis H(q) of q common shocks. First, we apply a CLT for weakly dependent triangular array data to

28If N ⪆ T 3/2, then, similarly to what happens in the asymptotic expansion AGGR, additional higher order terms
appear in the asymptotic distribution of

∑r−q
ℓ=1 σ̂

2
r−ℓ+1, not necessarily negligible with respect to the term of order 1

N
√
T

,

driven by non-linear functions of the higher order term bt of the expansion of ˆ̆
f in Corollary B.1. Under the Assumptions

of Theorem 2 these terms are zero.
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prove the asymptotic normality of 1√
T

∑T
t=1ZN,t as N,T → ∞, where

ZN,t := U ′
tUt − E(U ′

tUt|Ft)

depends on N via process Ut defined in (B.33). Let process VN,t ≡ Vt be as defined in Assumption A.6, and let
Vt+mt−m = σ(Vs, t−m ≤ s ≤ t+m) for any positive integer m, with Vt ≡ Vt−∞.

LEMMA B.6. Under Assumptions A.3, A.4 a), b), A.5 b) and A.6 a), b) we have:

(i) ZN,t is measurable w.r.t. Vt, and E[ZN,t] = 0 for all t ≥ 1 and N ≥ 1,

(ii) sup
t≥1,N≥1

E [|ZN,t|r] <∞, for a constant r > 2,

(iii) Process (ZN,t) is L2 Near Epoch Dependent (L2-NED) of size −1 on process (Vt), and (Vt) is strong
mixing of size −r/(r − 2), uniformly in N ≥ 1, 29

(iv) The limiting variance ΩU := limT,N→∞ V
(

1√
T

∑T
t=1ZN,t

)
is strictly positive and such that

ΩU =
∞∑

h=−∞
Γ(h), Γ(h) := lim

N→∞
Cov (ZN,t,ZN,t−h) . (B.35)

Then, by an application of the univariate CLT in Corollary 24.7 in Davidson (1994) and the Cramér-Wold device,
we have that:

1√
T

T∑
t=1

ZN,t
d−→ N (0,ΩU ) , (B.36)

as T,N → ∞. Let us now compute the limit autocovariance function Γ(h) explicitly. By the Law of Iterated
Expectation and E[ZN,t|Ft] = 0, we have:

Γ(h) = lim
N→∞

E [Cov (ZN,t,ZN,t−h|Ft)] . (B.37)

The next Lemma provides the asymptotic distribution of (U ′
t , U

′
t−h)

′.

LEMMA B.7. From Assumptions A.3 and A.5 a), the vector (U ′
t , U

′
t−h)

′ is asymptotically Gaussian for any h,
t as N → ∞:(

Ut
Ut−h

)
d→
(

U∞
t

U∞
t−h

)
∼ N

(
0(2r,1),

[
ΣU,t(0) ΣU,t(h)
ΣU,t(h)

′ ΣU,t−h(0)

])
, (Ft-stably), (B.38)

where

ΣU,t(h) = Cov(U∞
t , U

∞
t−h|Ft) = E[U∞

t U
∞′
t−h|Ft]

= Σu,t,LL(h|Ft)− ΦLHΣu,t−1,LH(h− 1|Ft)′ − ΦLLΣu,t−1,LL(h− 1|Ft)′

−Σu,t,LH(h+ 1|Ft)Φ′
LH − Σu,t,LL(h+ 1|Ft)Φ′

LL +ΦLHΣu,t−1,HH(h|Ft)Φ′
LH

+ΦLLΣu,t−1,LH(h|Ft)Φ′
LH +ΦLHΣu,t−1,HL(h|Ft)Φ′

LL +ΦLLΣu,t−1,LL(h|Ft)Φ′
LL ,

and ΣU,s(h|Ft) = Cov(U∞
s , U

∞
s−h|Ft) = E[U∞

s U
∞′
s−h|Ft], for all t and h including h = 0, and s ≤ t.

29That is,
∥∥ZN,t − E[ZN,t|Vt+mt−m ]

∥∥
2
≤ ξ(m), uniformly in t ≥ 1 andN ≥ 1, where ξ(m) = O(m−ψ) for some ψ > 1.
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Using analogous arguments, we can also compute explicitly the term B̃U in the bias of ξ̃u(q):

B̃U =
1

T

T∑
t=1

{
Σ̃u,t,LL(0|Ft)− ΦLHΣ̃u,t−1,LH(−1|Ft)′ − ΦLLΣ̃u,t−1,LL(−1|Ft)′

−Σ̃u,t,LH(1|Ft)Φ′
LH − Σ̃u,t,LL(1|Ft)Φ′

LL +ΦLHΣ̃u,t−1,HH(0|Ft)Φ′
LH

+ΦLLΣ̃u,t−1,LH(0|Ft)Φ′
LH +ΦLHΣ̃u,t−1,HL(0|Ft)Φ′

LL +ΦLLΣ̃u,t−1,LL(0|Ft)Φ′
LL

}
.

The next lemma provides the expression for Γ(h), which is necessary to compute the variance ΩU .

LEMMA B.8. Under Assumptions A.3 and A.5 b), we have:

Γ(h) = E
[
Cov(U∞ ′

t U∞
t , U

∞ ′
t−hU

∞
t−h|Ft)

]
, (B.39)

where
Cov(U∞ ′

t U∞
t , U

∞ ′
t−hU

∞
t−h|Ft) = 2tr

{
ΣU,t(h)ΣU,t(h)

′} . (B.40)

From (B.35) and Lemma B.8 we get:

ΩU =
∞∑

h=−∞
2tr
{
E
[
ΣU,t(h)ΣU,t(h)

′]} . (B.41)

Finally, from equations (B.34) and (B.41), andN
√
TΩ

−1/2
U = O

(
N
√
T
)
= O(ϵ−1

N,T ), under the hypothesis

of q primitive shocks the statistic ξ̂(q) =
∑r−q

ℓ=1 σ̂
2
r−ℓ+1 is such that:

N
√
TΩ

−1/2
U

[
ξ̂(q)− 1

N
tr
{
C̃−1B̃U

}]
= Ω

−1/2
U

(
1√
T

T∑
t=1

ZN,T

)
+ op(1)

From equation (B.36), the r.h.s. converges in distribution to a standard normal distribution, which yields Theo-
rem 1.

B.3 Proof of Theorem 2
The derivation of the asymptotic distribution of the feasible statistic ξ̃(q) in (4.6) in Theorem 2 requires to
control the effect of replacing the bias term tr{C̃−1B̃U} and variance ΩU terms in the unfeasible statistics ξ̃u(q)
by means of their estimates, which are functions of the factors and loadings estimates. In the OA Section C.9
we derive also the asymptotic expansions of factors and loadings estimators which, additionally to confirming
that the estimators are consistent, are also critical to prove Theorem 2. In Subsection B.3.1 and B.3.2 we prove
the statements in Part i) and in Part ii) of Theorem 2, respectively.

B.3.1 Proof of Part (i)

Under the assumptions of Theorem 2, the asymptotic distribution of the unfeasible statistic ξ̃u(q) is:

ξ̃u(q) = N
√
TΩ

−1/2
U

[
ξ̂(q)− 1

N
tr
{
C̃−1B̃U

}]
d→ N(0, 1), (B.42)
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where, importantly, the expressions of B̃U and ΩU simplify those in (4.4) and (4.5), respectively. By rewriting
the feasible test statistics ξ̃(q) in (4.7) as

ξ̃(q) =

(
Ω̂U
ΩU

)−1/2 {
ξ̃u(q) +Op

(√
T
[
tr
{
C̃−1B̃U

}
− tr

{
B̂U

}]) }
, (B.43)

it can be seen that Theorem 2 part i) follows if we prove

tr
{
B̂U

}
= tr

{
C̃−1B̃U

}
+ op

(
1√
T

)
, (B.44)

Ω̂U = ΩU + op(1), (B.45)

as the ratio Ω̂U/ΩU converges in probability to 1 from (B.45), the first term ξ̃u(q) in curly brackets converges
in distribution to a standard Gaussian distribution from (B.42), and the second term in curly brackets is op(1)
from (B.44). We now prove results (B.44) and (B.45) by deriving the asymptotic expansions of C̃−1 and all
the terms appearing in the expressions of B̂U and Ω̂u defined in Theorem 2, i.e. the blocks of Φ̂ and those of

Σ̂u =
(

1
N Λ̂′Λ̂

)−1 (
1
N Λ̂′Γ̂Λ̂

)(
1
N Λ̂′Λ̂

)−1
, which involve the estimated factors, loadings and residuals. The

asymptotic expansions of the factors and loadings from Lemma C.4 in OA Section C.9 allow to show the next
result.

LEMMA B.9. Under Assumptions A.1 - A.9, i) The asymptotic expansion of Φ̂ =
(∑T

t=1 f̂tf̂
′
t−1

)(∑T
t=1 f̂t−1f̂

′
t−1

)−1

is:

Φ̂ = H̃−1Φ̃H̃+ op

(
1√
T

)
, (B.46)

where

H̃ :=

[
H̃H 0(q,r−q)
0(r−q,q) H̃L

]
, (B.47)

and ĤH , ĤL are non-singular matrices w.p.a. 1, and such that:

Σ̃−1
f,HH =

(
H̃−1
H

)′
H̃−1
H + op

(
1√
T

)
, Σ̃−1

f,LL =
(
H̃−1
L

)′
H̃−1
L + op

(
1√
T

)
,

with Σ̃f,HH :=
[

1
T+1

∑T
t=0 ftf

′
t

]
HH

and Σ̃f,LL :=
[

1
T+1

∑T
t=0 ftf

′
t

]
LL

. ii) The asymptotic expansion of

estimator Λ̂′Λ̂/N is:

Λ̂′Λ̂

N
= H̃′Σ̃ΛH̃+ op

(
1√
T

)
, (B.48)

where Σ̃Λ = 1
NΛ′Λ with Λ = [Λq

... Λr−q]. iii) The asymptotic expansion of Λ̂′Γ̂Λ̂/N is:

1

N
Λ̂′Γ̂Λ̂ = H̃′Ω̃H̃+ op

(
1√
T

)
, (B.49)

where Ω̃ = 1
NΛ′ΓΛ, with Γ = diag(γii, i = 1, ..., N).
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From equation (B.48) we get
(

1
N Λ̂′Λ̂

)−1
= H̃−1Σ̃−1

Λ

(
H̃′
)−1

+op

(
1√
T

)
. By substituting the latter equal-

ity into the expression of Σ̂u in (4.6), and using (B.49), we get

Σ̂u = H̃−1Σ̃u

(
H̃′
)−1

+ op

(
1√
T

)
, (B.50)

where Σ̃u = Σ̃−1
Λ Ω̃Σ̃−1

Λ . From equation (B.50) and (B.46) we get the asymptotic expansion for B̂U in (4.4):

B̂U = H̃−1
L B̃U

(
H̃′
L

)−1
+ op

(
1√
T

)
. (B.51)

From Lemma C.4 in the OA we have Σ̃−1
f,LL =

(
H̃−1
L

)′
H̃−1
L + op

(
1√
T

)
. The following Lemma B.10,

establishes the link between C̃ and Σ̃f,LL.

LEMMA B.10. Under Assumptions A.1-A.4, A.5 b), c), A.6 a), and A.7, we have C̃ = Σ̃f,LL + op

(
1√
T

)
.

Therefore, we have C̃−1 =
(
H̃−1
L

)′
H̃−1
L + op

(
1√
T

)
. This equation, together with the asymptotic expansion

(B.51), the cyclical property of the trace operator, and the fact that Φ̃LH = ΦLH and Φ̃LL = ΦLL imply equation
(B.44). Similarly, the asymptotic expansions (B.46) and (B.50), and the result Σ̃u

p−→ Σu(0) imply equation
(B.45).

B.3.2 Proof of Part (ii)

In order to prove Theorem 2 (ii), we consider the behavior of statistic ξ̃(q) under the alternative hypothe-
sis H1 of more than q∗ > q primitive shocks. Specifically, let q∗ > q be the true number of primitive
shocks in the DGP corresponding to the alternative hypothesis. The statistic is given by: ξ̃(q) = N

√
T Ω̂

−1/2
U

×
(∑r−q

ℓ=1 σ̂
2
r−ℓ+1 −

1
N tr

{
B̂U

})
. We rely on the following Lemma to prove that B̂U is asymptotically bounded

in probability.

LEMMA B.11. Under the alternative hypothesis H(q∗), with q∗ > q, we have ∥B̂U∥ ≤ C, w.p.a. 1, for a
constant C > 0.

From Lemma B.11 and using
∑r−q

ℓ=1 σ̂
2
r−ℓ+1 =

∑r−q
ℓ=1 σ

2
r−ℓ+1 + op(1), where the op(1) term follows from the

continuity of the eigenvalues mapping, we get ξ̃(q) = N
√
T Ω̂

−1/2
U

(∑r−q
ℓ=1 σ

2
r−ℓ+1 + op(1)

)
. Under H(q∗),

we have only r− q∗ < r− q eigenvalues that are equal to 0, while all the other q∗ eigenvalues are strictly larger
than 0. Therefore,

∑r−q
ℓ=1 σ

2
r−ℓ+1 =

∑r−q
ℓ=r−q∗+1 σ

2
r−ℓ+1 =

∑q∗

ℓ=q+1 σ
2
ℓ > 0. Then, from Lemma B.11 we get

ξ̃(q) ≥ N
√
Tc1, w.p.a. 1, for a constant c1 > 0. The conclusion follows.
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ONLINE APPEDIX - Not for publication

“New Tests and Estimators for Common Primitive
Shocks”.

Federico Carlini 1 Mirco Rubin 2 Pierluigi Vallarino 3

This Online Appendix provides supplementary material for Carlini, Rubin and Vallarino (2025),
and is structured as follows:

• Section C presents the proofs for Lemmas B.1-B.11 from the main paper. It also contains the
proofs of intermediate results required for the those lemmas;

• Section D briefly presents the alternative estimators for q discussed in the Monte Carlo analysis
of the main paper;

• Section E contains detailed derivations of the bootstrap quantities introduced in Section 5 of the
main body;

• Section F discusses further Monte Carlo results.

C Proofs of Lemmas

C.1 Proof of Lemma B.1
By substituting the expression for ft provided in (2.10) into the definitions of Ṽ22 and Ṽ12 in (B.2) we
get:

Ṽ22 =
1

T

T∑
t=1

ftf
′
t =

1

T

T∑
t=1

(Φft−1 + vt)(Φft−1 + vt)
′

= ΦṼ11Φ
′ + Φ

(
1

T

T∑
t=1

ft−1v
′
t

)
+

(
1

T

T∑
t=1

vtf
′
t−1

)
Φ′ +

1

T

T∑
t=1

vtv
′
t,

Ṽ12 =
1

T

T∑
t=1

ft−1f
′
t =

1

T

T∑
t=1

ft−1(Φft−1 + vt)
′ = Ṽ11Φ

′ +
1

T

T∑
t=1

ft−1v
′
t.

1LUISS Business School, Rome, Italy (fcarlini@luiss.it).
2EDHEC Business School, Nice, France (mirco.rubin@edhec.edu), corresponding author.
3Econometrics Institute, Erasmus School of Economics, Rotterdam, The Netherlands (vallarino@ese.eur.nl).
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By plugging-in the last two expressions in the definition of Σ̃v = Ṽ22 − Ṽ21Ṽ
−1
11 Ṽ12, and simplifying

terms we get:

Σ̃v = Ṽ22 − Ṽ21Ṽ
−1
11 Ṽ12

= ΦṼ11Φ
′ + Φ

(
1

T

T∑
t=1

ft−1v
′
t

)
+

(
1

T

T∑
t=1

vtf
′
t−1

)
Φ′ +

1

T

T∑
t=1

vtv
′
t

−

(
ΦṼ11 +

1

T

T∑
t=1

vtf
′
t−1

)
Ṽ −1
11

(
Ṽ11Φ

′ +
1

T

T∑
t=1

ft−1v
′
t

)

=
1

T

T∑
t=1

vtv
′
t −

(
1

T

T∑
t=1

vtf
′
t−1

)
Ṽ −1
11

(
1

T

T∑
t=1

ft−1v
′
t

)
. (C.1)

By substituting the definition vt = [v′Ht , 01×q]
′ from (2.11) into (C.1) it follows that

Σ̃v =

[
1
T

∑T
t=1 vH,tv

′
H,t 0q×(r−q)

0(r−q)×q 0(r−q)×(r−q)

]
−
[

1
T

∑T
t=1 vH,tf

′
t−1

0(r−q)×r

]
Ṽ −1
11

[
1
T

∑T
t=1 ft−1v

′
H,t 0r×(r−q)

]
=

[
1
T

∑T
t=1 vH,tv

′
H,t 0q×(r−q)

0(r−q)×q 0(r−q)×(r−q)

]
−

[
1
T

∑T
t=1 vH,tf

′
t−1Ṽ

−1
11

(
1
T

∑T
t=1 ft−1v

′
H,t

)
0q×(r−q)

0(r−q)×q 0(r−q)×(r−q)

]
,

which concludes the proof. ■

C.2 Proof of Lemma B.2
The proof of Lemma B.2 follows that of Lemma B.1 in AGGR. As some of the terms in this proof
will be needed in the proofs of the following Lemmas, here we report the main steps and results,
adapting them to the notation and setup of our paper. We provide the bound for X̂12 only as the
bounds for the other terms X̂11, X̂22 and X̂21 are obtained similarly. By substituting the definition
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ψt =
1√
N
ut +

1
T
bt +

1√
NT
dt + ϑt from (B.16) into (B.22) we get:

X̂12 =
1

T

T∑
t=1

(ft−1ψ
′
t + ψt−1f

′
t) +

1

T

T∑
t=1

ψt−1ψ
′
t

=
1

T
√
N

T∑
t=1

(ft−1u
′
t + ut−1f

′
t) +

1

NT

T∑
t=1

ut−1u
′
t

+
1

T 2

T∑
t=1

(ft−1b
′
t + bt−1f

′
t) +

1

T 2
√
N

T∑
t=1

(bt−1u
′
t + ut−1b

′
t) +

1

T 3

T∑
t=1

bt−1b
′
t

+
1

T
√
NT

T∑
t=1

(ft−1d
′
t + dt−1f

′
t) +

1

TN
√
T

T∑
t=1

(dt−1u
′
t + ut−1d

′
t) +

1

NT 2

T∑
t=1

dt−1d
′
t

+
1

T 2
√
NT

T∑
t=1

(bt−1d
′
t + dt−1b

′
t) +

1

T

T∑
t=1

(ft−1ϑ
′
t + ϑt−1f

′
t)

+
1

T

T∑
t=1

[(
1√
N
ut−1 +

1

T
bt−1 +

1√
NT

dt−1 + ϑt−1

)
ϑ′t + ϑt−1

(
1√
N
ut +

1

T
bt +

1√
NT

dt + ϑt

)′]
.

(C.2)

Under Assumptions A.2-A.4, A.5 b)-c), A.6 a) we have

1√
T

T∑
t=1

ft1u
′
t2 = Op(1),

1

T

T∑
t=1

ut1u
′
t2 = Op(1) (C.3)

1

T

T∑
t=1

ft1b
′
t2 = Op(1) (C.4)

1

T

T∑
t=1

bt1u
′
t2 = Op

(
1√
T

)
(C.5)

1

T

T∑
t=1

bt1b
′
t2 = Op(1) (C.6)

1

T

T∑
t=1

ft1d
′
t2 = Op(1) (C.7)

1√
T

T∑
t=1

ut1d
′
t2 = Op(1) (C.8)

1

T

T∑
t=1

bt1d
′
t2 = Op(1) (C.9)

1

T

T∑
t=1

dt1d
′
t2 = Op(1) (C.10)

for t1, t2 = t, t − 1. As these bounds can be proved using the same arguments as those used in OA
Section C.4 in AGGR to prove their Lemma B.1, their proof is omitted. Therefore, the first nine sum-
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mation terms in the r.h.s of equation (C.2) are of order OP

(
1√
NT

)
, OP

(
1
N

)
, OP

(
1
T

)
, OP

(
1

T
√
NT

)
,

OP

(
1
T 2

)
, OP

(
1√
NT

)
, OP

(
1
NT

)
, OP

(
1

T
√
NT

)
, OP

(
1
NT

)
, respectively. From Corollary (B.1), the last

two terms in the r.h.s. of equation (C.2) are of orderOP

(
1
N
+ 1

T 2

)
and oP

(
1

N
√
T

)
, respectively. There-

fore, we get X̂12 = Op(δN,T ), where δN,T = max
{

1
N
, 1
T

}
= (min{N, T})−1, which concludes the

proofs. ■

C.3 Proof of Lemma B.3
As (Ir −X)−1 = Ir +X +Op(δ

2
N,T ) for any (r, r) matrix X = Op(δN,T ), matrix Σ̂v in (B.24) can be

expressed as:

Σ̂v = Ṽ22 + X̂22 − (Ṽ21 + X̂21)Ṽ
−1
11

[
Ir − X̂11Ṽ

−1
11 +Op(δ

2
N,T )

]
(Ṽ12 + X̂12)

= Ṽ22 + X̂22 − (Ṽ21 + X̂21)Ṽ
−1
11

[
Ṽ12 + X̂12 − X̂11Ṽ

−1
11 Ṽ12 ++Op(δ

2
N,T )

]
= Ṽ22 − Ṽ21Ṽ

−1
11 Ṽ12 + X̂22 − Ṽ21Ṽ

−1
11 X̂12 − X̂21Ṽ

−1
11 Ṽ12 + Ṽ21Ṽ

−1
11 X̂11Ṽ

−1
11 Ṽ12 +Op(δ

2
N,T ),

where we have used the fact thatXjk = Op(δN,T ) for any (j, k) ∈ {1, 2}2 impliesXjkXlm = Op(δ
2
N,T )

for any (j, k, l,m) ∈ {1, 2}4 in the second and the third equations. Recalling that Σ̃v = Ṽ22 −
Ṽ21Ṽ

−1
11 Ṽ12 from equation (B.4), Φ̃ = Ṽ21Ṽ

−1
11 and the definition Ψ̂ := X̂22−Φ̃X̂12−X̂21Φ̃

′+Φ̃X̂11Φ̃
′,

we get the expansion

Σ̂v = Σ̃v + Ψ̂ +Op(δ
2
N,T ).

Substituting the last equation into (B.23) we get the asymptotic expansion in (B.25), and proves
Lemma B.3. ■

C.4 Proof of Lemma B.4
Substituting expansions (B.25) and (B.27) into the eigenvalue-eigenvector equation (B.26), we get:(
ĤWv(Σ̃v + Ψ̂)W ′

vĤ′ +Op(δ
2
N,T )

)
(Ĥ′)−1Wv[EL Û + EH α̂] = (Ĥ′)−1Wv[EL Û + EH α̂](0(r−q,r−q) + M̂).

By using Σ̃vEL = 0r,r−q and keeping only the terms up to first order in δN,T , the last equation
simplifies to:

ĤWvΣ̃vEH α̂+ ĤWvΨ̂EL Û = (Ĥ′)−1WvELÛM̂ +Op(δ
2
N,T ) .

(C.11)

as ĤWvΨ̂EHα̂ = Op(δ
2
N,T ) and α̂M̂ = Op(δ

2
N,T ). Pre-multiplying both sides of equation (C.11) by

E ′
HW

′
vĤ′, and noting that E ′

HEL =q,r−q we get:

[E ′
HW

′
vĤ′ĤWvΣ̃vEH ]α̂ + [E ′

HW
′
vĤ′ĤWv]Ψ̂EL Û = Op(δ

2
N,T ) ,
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which implies:

α̂ = −[E ′
HW

′
vĤ′ĤWvΣ̃vEH ]

−1E ′
HW

′
vĤ′ĤWvΨ̂EL Û +Op(δ

2
N,T ).

Similarly, pre-multiplying equation (C.11) by E ′
LW

′
vĤ−1, and noting that equation (B.12) implies

Σ̃v,LH = 0 we get:

Ψ̂LLÛ = [E ′
LW

′
vĤ−1(Ĥ′)−1WvEL]ÛM̂ +Op(δ

2
N,T ).

(C.12)

where Ψ̂LL = E ′
LΨ̂EL, which implies:

M̂ = Û−1[E ′
LW

′
vĤ−1(Ĥ′)−1WvEL]

−1Ψ̂LLÛ +Op(δ
2
N,T ). (C.13)

The proof of Lemma B.4 is concluded by substituting (C.12) and (C.13) into the expressions of Ŵv,r−q

and Λ̂v in (B.27). ■

C.5 Proof of Lemma B.5
The proof is based on the asymptotic expansion of the term Ψ̂LL in the r.h.s. of equation (B.31). By
substituting equations (B.20)-(B.22) into the expression of Ψ̂ = X̂22 − Φ̃X̂12 − X̂21Φ̃

′ + Φ̃X̂11Φ̃
′

provided in Lemma B.3, we get:

Ψ̂ =
1

T

T∑
t=1

[
ftψ

′
t + ψtf

′
t + ψtψ

′
t − Φ̃ft−1ψ

′
t − Φ̃ψt−1f

′
t − Φ̃ψt−1ψ

′
t

−ψtf ′
t−1Φ̃

′ − ftψ
′
t−1Φ̃

′ − ψtψ
′
t−1Φ̃

′ + Φ̃ft−1ψ
′
t−1Φ̃

′ + Φ̃ψt−1f
′
t−1Φ̃

′ + Φ̃ψt−1ψ
′
t−1Φ̃

′
]

=
1

T

T∑
t=1

[
ṽt(ψt − Φ̃ψt−1)

′ + (ψt − Φ̃ψt−1)ṽ
′
t + (ψt − Φ̃ψt−1)(ψt − Φ̃ψt−1)

′
]

(C.14)

where the last equality follows by collecting terms in the previous equation and recalling that

ṽt = ft − Φ̃ft−1

from Section 3.2. Recalling that matrix Ψ̂LL is the bottom-right (r−q, r−q) block of Ψ̂, from equation
(C.14) we get

Ψ̂LL =
1

T

T∑
t=1

{[
ṽt(ψt − Φ̃ψt−1)

′
]
LL

+
[
(ψt − Φ̃ψt−1)ṽ

′
t

]
LL

+
[
(ψt − Φ̃ψt−1)(ψt − Φ̃ψt−1)

′
]
LL

}
(C.15)
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The first two terms in the curly brackets in (C.15) can be computed by noting that:

ṽt = ft − Φ̃ft−1 = (Φft−1 + vs)−

[
T∑
s=1

fsf
′
s−1

]
·

[
T∑
s=1

fs−1f
′
s−1

]−1

ft−1

= Φft−1 + vt −

[
T∑
s=1

(Φfs−1 + vt)f
′
s−1

]
·

[
T∑
s=1

fs−1f
′
s−1

]−1

ft−1

= Φft−1 + vt − Φft−1 −

[
T∑
s=1

vsf
′
s−1

]
Ṽ −1
11 ft−1

= vt −

[
T∑
s=1

vsf
′
s−1

]
Ṽ −1
11 ft−1.

Recalling that from equation (2.11) that vt = [v′Ht , 0
′
(r−q)×1]

′ for all dates t = 1, ..., T , we get:

ṽt(ψt − Φ̃ψt−1)
′ =

[
· ·
0(r−q),q 0(r−q),(r−q)

]
,

which implies[
ṽt(ψt − Φ̃ψt−1)

′
]
LL

= 0(r−q,r−q), and
[
(ψt − Φ̃ψt−1)ṽ

′
t

]
LL

= 0(r−q,r−q),

so that

Ψ̂LL =

[
1

T

T∑
t=1

(ψt − Φ̃ψt−1)(ψt − Φ̃ψt−1)
′

]
LL

. (C.16)

The r.h.s. of (C.16) is obtained by substituting ψs = 1√
N
us+

1
T
bs+

1√
NT
ds+ϑs for s = t, t− 1. From

Corollary (B.1) the contribution of the remainder terms ϑs, with s = t, t − 1, is of order op(ϵN,T ) =

op

(
1

N
√
T

)
. Moreover, under Assumptions A.2-A.4, A.5 b)-c), and A.6 a) from bounds (C.8) and

(C.10) we have 1√
T

∑T
t=1 ut1d

′
t2
= Op(1) and 1

T

∑T
t=1 dt1d

′
t2
= Op(1). Therefore, we have:

1

T

T∑
t=1

(ψt − Φ̃ψt−1)(ψt − Φ̃ψt−1)
′

=
1

TN

T∑
t=1

(ut − Φ̃ut−1)(ut − Φ̃ut−1)
′ +

1

T 2
√
N

T∑
t=1

[
(bt − Φ̃bt−1)(ut − Φ̃ut−1)

′ + (ut − Φ̃ut−1)(bt − Φ̃bt−1)
′
]

+
1

T 3

T∑
t=1

(bt − Φ̃bt−1)(bt − Φ̃bt−1)
′ +

1

T 2
√
NT

T∑
t=1

[
(bt − Φ̃bt−1)(dt − Φ̃dt−1)

′ + (dt − Φ̃dt−1)(bt − Φ̃bt−1)
′
]

+op(ϵN,T ) (C.17)

By recentering the first term in the r.h.s., and highlighting the convergence rates, equation (C.17) can
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be rewritten as:

1

T

T∑
t=1

(ψt − Φ̃ψt−1)(ψt − Φ̃ψt−1)
′

=
1

N

(
1

T

T∑
t=1

E
[
(ut − Φ̃ut−1)(ut − Φ̃ut−1)

′|Ft
])

+
1

N
√
T

(
1√
T

T∑
t=1

(ut − Φ̃ut−1)(ut − Φ̃ut−1)
′ − E

[
(ut − Φ̃ut−1)(ut − Φ̃ut−1)

′|Ft
])

+
1

T
√
NT

(
1√
T

T∑
t=1

[
(bt − Φ̃bt−1)(ut − Φ̃ut−1)

′ + (ut − Φ̃ut−1)(bt − Φ̃bt−1)
′
])

+
1

T 2

(
1

T

T∑
t=1

(bt − Φ̃bt−1)(bt − Φ̃bt−1)
′

)

+
1

T
√
NT

(
1

T

T∑
t=1

[
(bt − Φ̃bt−1)(dt − Φ̃dt−1)

′ + (dt − Φ̃dt−1)(bt − Φ̃bt−1)
′
])

+ op(ϵN,T ),

(C.18)

where the terms in the round brackets are Op(1) from (C.5), (C.6), (C.8) and Lemma B.6, which pro-

vides a CLT for 1√
T

∑T
t=1(ut− Φ̃ut−1)(ut− Φ̃ut−1)

′ −E
[
(ut − Φ̃ut−1)(ut − Φ̃ut−1)

′|Ft

]
. Moreover,

under our assumption A.1 we also have that 1
T
√
NT

= o(ϵN,T ) and 1
T 2 = o(ϵN,T ), which allows to

simplify (C.18) as:

1

T

T∑
t=1

(ψt − Φ̃ψt−1)(ψt − Φ̃ψt−1)
′ =

1

N

(
1

T

T∑
t=1

E
[
(ut − Φ̃ut−1)(ut − Φ̃ut−1)

′|Ft
])

+
1

N
√
T

(
1√
T

T∑
t=1

(ut − Φ̃ut−1)(ut − Φ̃ut−1)
′ − E

[
(ut − Φ̃ut−1)(ut − Φ̃ut−1)

′|Ft
])

+ op(ϵN,T ).

Substituting the last equation into (C.16) we get:

Ψ̂LL =
1

N

[
1

T

T∑
t=1

E
(
(ut − Φ̃ut−1)(ut − Φ̃ut−1)

′|Ft
)]

LL

+
1

N
√
T

(
1√
T

T∑
t=1

(ut − Φ̃ut−1)(ut − Φ̃ut−1)
′ − E

[
(ut − Φ̃ut−1)(ut − Φ̃ut−1)

′|Ft
])

LL

+ op(ϵN,T ).

=
1

N

(
1

T

T∑
t=1

E
[
(ut − Φ̃ut−1)L(ut − Φ̃ut−1)

′
L|Ft

])

+
1

N
√
T

(
1√
T

T∑
t=1

(ut − Φ̃ut−1)L(ut − Φ̃ut−1)
′
L − E

[
(ut − Φ̃ut−1)L(ut − Φ̃ut−1)

′
L|Ft

])
+ op(ϵN,T ).

(C.19)
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By using
(ut − Φ̃ut−1)L = uLt − [Φ̃ut−1]L = uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1

equation (C.19) can be rewritten as:

Ψ̂LL =
1

N

(
1

T

T∑
t=1

E
[
(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)

′|Ft
])

+
1

N
√
T

(
1√
T

T∑
t=1

(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)
′

−E
[
(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)

′|Ft
])

+ op(ϵN,T ).

(C.20)

By substituting (C.20) into (B.31) we get:

r−q∑
ℓ=1

σ̂2r−ℓ+1 = tr
{
C̃−1 · Ψ̂LL

}
+Op(δ

2
N,T )

=
1

N
tr

{
C̃−1 1

T

T∑
t=1

E
[
(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)

′|Ft
]}

+
1

N
√
T
tr

{
C̃−1

[
1√
T

T∑
t=1

(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)
′

−E
[
(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)(uLt − Φ̃LHuHt−1 − Φ̃LLuLt−1)

′|Ft
]]}

+ Op(δ
2
N,T ) + op(ϵN,T ). (C.21)

The next lemma allows to replace the estimated quantities Φ̃LH and Φ̃LL with their true values ΦLH

and ΦLL. Notably, the results is not asymptotic and only relies on the fact that the lower (r − q)-
dimensional subvector vLt is a zero vector.

LEMMA C.1. For any sample size N and T > r2 it holds that

Φ̃LH = ΦLH + 0q,(r−q),

Φ̃LL = ΦLL + 0(r−q),(r−q).

Hence, we get

r−q∑
ℓ=1

σ̂2r−ℓ+1 =
1

N
tr

{
C̃−1 1

T

T∑
t=1

E
[
(uLt − ΦLHuHt−1 − ΦLLuLt−1)(uLt − ΦLHuHt−1 − ΦLLuLt−1)

′|Ft
]}

+
1

N
√
T
tr

{
C̃−1

[
1√
T

T∑
t=1

(uLt − ΦLHuHt−1 − ΦLLuLt−1)(uLt − ΦLHuHt−1 − ΦLLuLt−1)
′

−E
[
(uLt − ΦLHuHt−1 − ΦLLuLt−1)(uLt − ΦLHuHt−1 − ΦLLuLt−1)

′|Ft
]]}

+ Op(δ
2
N,T ) + op(ϵN,T ). (C.22)

which can be further simplified by using the next Lemma C.2, which provides an asymptotic expansion
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of matrix C defined in Theorem 1.

LEMMA C.2. Under Assumptions A.2-A.4, A.5 b)-c), A.6 a) and A.7 we have:

Ĥ′Ĥ = Ir−q + op(1), (C.23)

which implies C = Ir−q + op(1), and

C̃−1 = Ir−q + op(1) . (C.24)

Plugging in C̃−1 = Ir−q + op(1) from equation (C.24) into the second term in (C.22) concludes the

proof of Lemma B.5, as 1
N
√
T
· op(1) ·Op(1) = op

(
1

N
√
T

)
= op(ϵN,T ). ■

C.5.1 Proof of Lemma C.1

By definition of the OLS estimator of Φ when factors are observable, and using the VAR(1) expression
in rotated factor space (see equations (2.10) and (3.2)), we have that

Φ̃ =

(
T∑
t=1

ftf
′
t−1

)(
T∑
t=1

ft−1f
′
t−1

)−1

= Φ

(
T∑
t=1

ft−1f
′
t−1

)(
T∑
t=1

ft−1f
′
t−1

)−1

+

(
T∑
t=1

vtf
′
t−1

)(
T∑
t=1

ft−1f
′
t−1

)−1

= Φ+

(
T∑
t=1

vtf
′
t−1

)
S−1
f ,

where Sf :=
∑T

t=1 ft−1f
′
t−1. Since vt = [v′H,t, 0

′
(r−q)]

′, we have that(
T∑
t=1

vtf
′
t−1

)
=

[
· ·
0(r−q),q 0(r−q),(r−q)

]
,

where we omitted the upper blocks as they are irrelevant for the Lemma. Combining this results with
the expansion for Φ̃ we get that[

Φ̃HH Φ̃HL

Φ̃LH Φ̃LL

]
=

[
ΦHH ΦHL

ΦLH ΦLL

]
+

[
· ·
0(r−q),q 0(r−q),(r−q)

]
,

where we have again omitted irrelevant blocks in the last matrix. This concludes the proof.

C.5.2 Proof of Lemma C.2

The first result (C.23) corresponds to result in equation (C.29) in OA C.3.1 in of AGGR. The proof of
that result requires first to show that all their Assumptions A.2-A.4, A.5 b)-c), A.6 a) and A.7 imply
their Proposition C.2, their Assumption C.1 and their equation (C.27). Additionally, the proof of that
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result requires that the estimated factors are orthogonal, that is ˆ̆
F ′ ˆ̆F/(T + 1) = Ir in our notation. As

our Assumptions A.2-A.4, A.5 b)-c), A.6 a) and A.7 correspond to those with the same numbering in

AGGR, and we also assume that ˆ̆
F ′ ˆ̆F/(T + 1) = Ir (see Section 3.2), result (C.23) using the same

arguments as in OA C.3.1 in of AGGR.
Equation (C.23) and the equality (Ĥ′Ĥ)−1 = Ĥ−1(Ĥ′)−1 imply

Ĥ−1(Ĥ′)−1 = Ir−q + op(1), (C.25)

where the equality follows the expansion of the matrix inverse function in a neighborhood of the
identity is

(Ir−q +X)−1 = Ir−q −X, where X = op(1). (C.26)

Substituting equation (C.25) in the expression C̃ = W ′
v,r−qĤ−1(Ĥ′)−1Wv,r−q from Theorem 1, we

get:

C̃−1 = W ′
v,r−qWv,r−q + op(1) = Ir−q + op(1) (C.27)

where the second equality follows from the definition of the (r, r − q) eigenvector matrix Wv,r−q in
Section 2.1, which implies W ′

v,r−qWv,r−q = Ir−q. Finally, the result C̃−1 = Ir−q + op(1) follows
substituting (C.27) the expansion of the matrix inverse function in (C.26). ■

C.6 Proof of Lemma B.6
The proof of Lemma B.6 follows the same steps as the Proof of Lemma B.6 of AGGR, with the
notable difference that the definition of process Ut in their paper is different from the one in our
paper, as our Ut involves not only the contemporaneous values of the terms ut (which are function
of the terms ξt = 1√

N

∑N
i=1 λiεi,t defined in Assumption A.5 ), but also their lagged version ut−1,

and Φ̃ =
(∑T

t=1 ftf
′
t−1

)(∑T
t=1 ft−1f

′
t−1

)−1

. The proof relies on showing that the conditions in parts
(i)-(iv) of Lemma B.6 hold under our Assumptions A.3, A.4 a), b), A.5 b) and A.6 a), b).

Part (i) follows by the Law of Iterated Expectation and E(Ut|Ft) = 0, which is implied by As-
sumption A.4 a). Part (ii) is implied by Assumptions A.3, A.4 b) and A.5 b). The NED property in
part (iii) holds true because conditional expectations given Ft can be well approximated by elements
in the sigma-field V t+mt−m generated by the mixing process (Vt), for large m, by Assumptions A.3, A.4
b), A.5 b) and A.6 a),b), as shown in the next lemma.

LEMMA C.3. Assumptions A.3, A.4 b), A.5 b) and A.6 a),b) imply part (iii) in Lemma B.6.

To check part (iv) in Lemma B.6 we use:

lim
T,N→∞

V

(
1√
T

T∑
t=1

ZN,t

)
= lim

T,N→∞

1

T

T−1∑
h=−T+1

(T − |h|)Cov (ZN,t,ZN,t−h)

= lim
N→∞

∞∑
h=−∞

Cov (ZN,t,ZN,t−h) ,
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where the first equality follows from stationarity of the data. The series converges because the zero-
mean process ZN,t is a L2-mixingale with size −1, 4 by Theorem 17.5 in Davidson (1994) and Condi-
tions (ii)-(iii), which implies

∥Cov (ZN,t,ZN,t−h)∥ =
∥∥E [E(ZN,t|Vt−h)Z ′

N,t−h
]∥∥ ≤ ∥E(ZN,t|Vt−h)∥2∥ZN,t−h∥2 = O

(
h−ψ

)
,

uniformly in N ≥ 1, for some ψ > 1. The latter uniform bound also allows for an application of the
Lebesgue Lemma to get:

ΩU = lim
T,N→∞

V

(
1√
T

T∑
t=1

ZN,t

)
=

∞∑
h=−∞

Γ(h),

where Γ(h) = limN→∞Cov (ZN,t,ZN,t−h), which yields equation (B.35). The computations in Sub-
section B.2.5, and in particular Lemma B.8, show that the limit in Γ(h) is well-defined. This concludes
the proof of Lemma C.6. ■

C.6.1 Proof of Lemma C.3

Assumption A.6 a) gives the strong mixing condition for process Vt. Since

Ut = [ut − Φut−1]L =
[
Σ̃−1

Λ ξt − ΦΣ̃−1
Λ ξt−1

]
L

where Σ̃Λ = Λ′Λ/N . Process Ut is a linear combination of components of the α-mixing process Vt and
of a finite number of its lags. Hence, Ut is an α-mixing sequence (see Theorem 14.1 in Davidson, 1994)
and the NED property for process ZN,t can be proved by showing that process XN,t = E(U ′

tUt|Ft) is
L2-NED on (Vt). This is the case as

∥XN,t − E(XN,t|V t+mt−m )∥2 ≤ ∥XN,t − E(XN,t|Ft, ..., Ft−m)∥2
= ∥E(U ′

tUt|Ft)− E(U ′
tUt|Ft, ..., Ft−m)∥2

≤ ∥E([u′tut]LL|Ft)∥2 + ∥E([u′t−1Φ
′ut]LL|Ft)∥2 + 2∥E([ut−1Φ

′Φut−1)LL]LL|Ft)∥2
= O(m−ψ),

for ψ > 1, where the first inequality follows from the Minkowski’s inequality and the Law of Iterated
Expectation (LIE), the first equality follows again by applying the LIE, the second inequality follows
by applying again first inequality follows from the Minkowski’s inequality, and the last equality fol-
lows directly form Assumption A.6 b). The conclusion follows. ■

4That is, ∥E[ZN,t|Vt−m]∥2 ≤ ζ(m), uniformly in t ≥ 1 and N ≥ 1, where ζ(m) = O(m−ψ) for some ψ > 1.
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C.7 Proof of Lemma B.7
Since Ut = [ut − Φut−1]L, and ut = ( 1

N

∑N
i=1 λiλ

′
i)
−1ξi,t, Assumptions A.3 and A.5 a) imply that

(U ′
t , U

′
t−h)

′ d→ (U∞ ′
t , U∞ ′

t−h), where(
Ut
Ut−h

)
d→
(

U∞
t

U∞
t−h

)
∼ N

([
E (U∞

t |Ft)

E
(
U∞
t−h|Ft

) ] ,

[
Cov (U∞

t , U
∞
t |Ft) Cov

(
U∞
t , U

∞
t−h|Ft

)
Cov

(
U∞
t , U

∞
t−h|Ft

)′
Cov

(
U∞
t−h, U

∞
t−h|Ft

) ]) ,
with

E
(
U∞
t−h|Ft

)
= plim

N→∞
E [Ut|Ft] = plim

N→∞
E [(ut − Φut−1)L |Ft] = 0

as E [ut−h|Ft] = 0 for any h, and

Cov
(
U∞
t , U

∞
t−h|Ft

)
= E

[
U∞
t U

∞′
t−h|Ft

]
= plim

N→∞
E
[
(ut − Φut−1)L (ut−h − Φut−h−1)

′
L |Ft

]
= plim

N→∞
E
[(
utu

′
t−h − Φut−1u

′
t−h − utu

′
t−h−1Φ

′ +Φut−1u
′
t−h−1Φ

′)
LL

|Ft
]

= plim
N→∞

(
Σ̃u,t(h|Ft)− ΦΣ̃u,t−1(h− 1|Ft)− Σ̃u,t(h+ 1|Ft)Φ′ +ΦΣ̃u,t−1(h|Ft)Φ′

)
LL

=
[
Σu,t(h|Ft)− ΦΣu,t−1(h− 1|Ft)− Σu,t(h+ 1|Ft)′Φ+ ΦΣu,t−1(h|Ft)Φ′]

LL

= Σu,t,LL(h|Ft)− ΦLHΣu,t−1,HL(h− 1|Ft)− ΦLLΣu,t−1,LL(h− 1|Ft)

−Σu,t,LH(h+ 1|Ft)′Φ′
LH − Σu,t,LL(h+ 1|Ft)′Φ′

LL +ΦLHΣu,t−1,HH(h|Ft)ΦLH
+ΦLLΣu,t−1,LH(h|Ft)Φ′

LH +ΦLHΣu,t−1,HL(h|Ft)Φ′
LL +ΦLLΣu,t−1,LL(h|Ft)Φ′

LL

for all h, including h = 0. ■

C.8 Proof of Lemma B.8
The proof of result (B.39) follows similar arguments as the Proof of Lemma B.7 in AGGR. We report
it for completeness adapting it our set-up and modified set of assumptions.

First, we show that we can interchange the limit N → ∞ and the outer expectation in the r.h.s. of
equation (B.37), i.e.:

lim
N→∞

E [Cov (ZN,t,ZN,t−h|Ft)] = E
[
lim
N→∞

Cov (ZN,t,ZN,t−h|Ft)
]
. (C.28)

Indeed, by the Cauchy-Schwarz inequality, we have the bound Cov (ZN,t,ZN,t−h|Ft) ≤ χtχt−h,
P -a.s., uniformly in N ≥ 1, where χt := supN≥1E [|ZN,t|2|Ft]

1/2. The uniform upper bound
χtχt−h is integrable, because E[χtχt−h] ≤ E[χ2

t ]
1/2E[χ2

t−h]
1/2 by Cauchy-Schwarz, and E[χ2

t ] =
E
[
supN≥1E (|ZN,t|2 |Ft)

]
≤ c∗ · E

[
supN≥1E (|Ut|4|Ft)

]
< ∞, for a constant c∗, by Assumption

A.5 b). Then, (C.28) follows from the Lebesgue Lemma.
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We now need to show that:

lim
N→∞

Cov(U ′
tUt, U

′
t−hUt−h|Ft) = Cov(U∞ ′

t U∞
t , U

∞ ′
t−hU

∞
t−h|Ft), P − a.s. (C.29)

We have Cov(U ′
tUt, U

′
t−hUt−h|Ft) = E[(U ′

tUt)(U
′
t−hUt−h)|Ft] − E[U ′

tUt|Ft]E[U
′
t−hUt−h|Ft]. Let us

prove that:

lim
N→∞

E[(U ′
tUt)(U

′
t−hUt−h)|Ft] = E[(U∞′

t U∞
t )(U∞′

t−hU
∞
t−h)|Ft], P − a.s.

By definition of conditional expectation, this is equivalent to:

E
[
lim
N→∞

E[(U ′
tUt)(U

′
t−hUt−h)|Ft]1A

]
= E

[
(U∞′

t U∞
t )(U∞′

t−hU
∞
t−h)1A

]
,

for any measurable set A ∈ Ft. By Assumption A.5 b) and the Lebesgue Lemma, we can interchange
the limes and the expectation in the l.h.s., and by the Law of Iterated Expectation we get:

lim
N→∞

E
[
(U ′

tUt)(U
′
t−hUt−h)1A

]
= E

[
(U∞′

t U∞
t )(U∞′

t−hU
∞
t−h)1A

]
. (C.30)

Now, by (B.38) and stable convergence, we have (U ′
tUt)(U

′
t−hUt−h)1A

d→ (U∞′
t U∞

t )(U∞′
t−hU

∞
t−h)1A.

Moreover, by Assumption A.5 b), we have uniform integrability: supN≥1E[|(U ′
tUt)(U

′
t−hUt−h)1A|ρ] <

∞, for some ρ > 1. Therefore, by the Corollary of Theorem 25.12 on page 338 in Billingsley (1995),
we get (C.30). By similar arguments applied to E[U ′

tUt|Ft] and E[U ′
t−hUt−h|Ft] equation (C.29) fol-

lows. Combining (C.28) and (C.29), equation (B.39) follows.

Equation (B.39) in Lemma B.8 allows to deploy the joint asymptotic Gaussian distribution of
(U∞ ′

t , U∞ ′
t−h)

′ to compute the limit autocovariance Γ(h). The expression ofCov(U∞ ′
t U∞

t , U
∞ ′
t−hU

∞
t−h|Ft)

inside Γ(h) in (B.40) is derived by applying Theorem 12 p. 284 in Magnus and Neudecker (2007) and
Theorem 11.22 in Schott (2017) which provide the covariance between two quadratic forms of Gaus-
sian vectors. In particular, as vector U∞,⋆

t := (U∞′
t , U∞′

t−h)
′ in equation (B.38) is, conditionally on Ft,

normally distributed with zero mean and variance-covariance matrix:

V (U∞,⋆
t |Ft) =

[
ΣU,t(0) ΣU,t(h)
ΣU,t(h) ΣU,t−h(0)

]
,

and as
Cov(U∞ ′

t U∞
t , U

∞ ′
t−hU

∞
t−h|Ft) = Cov(U∞,⋆ ′

t M1U
∞,⋆
t , U∞,⋆ ′

t M1U
∞,⋆
t |Ft)

with

M1 :=

[
Ir−q 0(r−q),(r−q)
0(r−q),(r−q) 0(r−q),(r−q)

]
, M2 :=

[
0(r−q),(r−q) 0(r−q),(r−q)
0(r−q),(r−q) Ir−q

]
,

Theorem 11.22 in Schott (2017) implies:

Cov(U∞ ′
t U∞

t , U
∞ ′
t−hU

∞
t−h|Ft) = 2 tr {M1 · V (U∞,⋆

t |Ft) ·M2 · V (U∞,⋆
t |Ft)} = 2 tr {ΣU,t(h)ΣU,t(h)

′} ,

where the second equality follows by substituting the expressions for matricesM1,M2 and V (U∞,⋆
t |Ft).

Therefore, Lemma B.8 follows. ■
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C.9 Proof of Lemma B.9
In order to prove Lemma B.9 we first need to define the estimator f̂L,t of the redundant factors fL,t,
and then to derive the asymptotic expansion of the factors estimators f̂H,t and f̂L,t and the associated
loadings, which are provided by Lemma C.4. Then, the three separate Subsections C.9.1, C.9.3 and
C.9.3 provide the proofs of parts i), ii) and iii), respectively, of Lemma B.9.

DEFINITION 2. The estimator of the redundant static factors fL,t is f̂L,t = Ŵ ′
v,r−q

ˆ̆
ft, with Ŵv,r−q

defined in Section 3.2.

LEMMA C.4. Under Assumptions A.1-A.4, A.5 b)-c), A.6 a), A.7, A.8, the asymptotic expansions of
factors and loadings estimates are

f̂L,t = H̃−1
L

[
fL,t +

1√
N
uL,t

]
+ op

(
T−1/2

)
, (C.31)

f̂H,t = H̃−1
L

[
fH,t +

1√
N
uL,t

]
+ op(T

−1/2), (C.32)

λ̂L,i = H̃′
L

[
λL,i +

1√
T + 1

wL,i

]
+ op

(
T−1/2

)
, (C.33)

λ̂H,i = H̃′
H

[
λH,i +

1√
T + 1

wH,i

]
+ op

(
T−1/2

)
, (C.34)

where the op(T−1/2) terms are uniform w.r.t. 0 ≤ t ≤ T and 1 ≤ i ≤ N , vector ut = [u′H,t , u
′
L,t]

′ is
defined in Corollary B.1, wL,i = Σ̃−1

f,LL
1√
T+1

∑T
t=0 fL,tεi,t and wH,i = Σ̃−1

f,HH
1√
T+1

∑T
t=0 fH,tεi,t, with

Σ̃f,HH :=
[

1
T+1

∑T
t=0 ftf

′
t

]
HH

and Σ̃f,LL :=
[

1
T+1

∑T
t=0 ftf

′
t

]
LL

, and matrices H̃L and H̃H are such
that

Σ̃−1
f,HH =

(
H̃−1
H

)′
H̃−1
H + op

(
1√
T

)
, Σ̃−1

f,LL =
(
H̃−1
L

)′
H̃−1
L + op

(
1√
T

)
(C.35)

H̃′
LĤL = Ir−q + op(1), H̃′

HĤH = Iq + op(1), (C.36)

By recalling that the estimator f̂t of the r static factors can be written as

f̂t =

[
f̂H,t
f̂L,t

]
=

[
Ŵ ′
v,q

Ŵ ′
v,r−q

]
ˆ̆
ft = Ŵ ′

v
ˆ̆
ft,

from (C.31) and (C.32) we get:

f̂t = H̃−1

[
ft +

1√
N
ut

]
+ op(T

−1/2), (C.37)

where H̃ is the block-diagonal matrix defined in equation (B.47), namely:

H̃ :=

[
H̃H 0(q,r−q)
0(r−q,q) H̃L

]
,
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which implies:

H̃−1 =

[
H̃−1
H 0(q,r−q)

0(r−q,q) H̃−1
L

]
. (C.38)

Finally, to prove this Lemma is useful to explicitly write the factor model in (2.9) for the i-th individual:

yi,t = λ′ift + εi,t, i = 1, ..., N, t = 0, 1, ..., T,

and in matrix notation as:
Y = FΛ′ + ε,

where Y = [y1, ..., yi, ...yN ], with yi = [yi,0, yi,1, ..., yi,T ]
′ is the (T + 1, N) matrix collecting the

observations yi,t, F = [f0, f1, ..., fT ]
′ is the (T + 1, r) matrix of factor values, Λ = [λ1, ..., λN ]

′ and
ε = [ε1, ..., εi, ...., εN ] where εi = [εi,0, εi,1, ..., εi,T ]

′ for all i = 1, ..., N . Moreover, to prove some of
the next results we need the following Lemma (C.5)

LEMMA C.5. Under Assumptions A.2 and A.3, the factors are such

F ′F/(T + 1) = Ir + op(1) as T → ∞, (C.39)

and the loadings are such that

Λ′Λ/N = Σλ + o(1) as N → ∞, (C.40)

where matrix Σλ is positive definite.

The results in Lemma C.5 correspond to standard assumptions in the factor literature, see e.g. Bai
and Ng (2002b), Stock and Watson (2002), Bai (2003).

C.9.1 Proof of Lemma B.9 Part (i)

By substituting (C.37) into the estimator Φ̂ =
(∑T

t=1 f̂tf̂
′
t−1

)(∑T
t=1 f̂t−1f̂

′
t−1

)−1

in (3.6), we get:

Φ̂ = H̃−1

(
1

T

T∑
t=1

[
ft +

1√
N
ut + op

(
T−1/2

)]
·
[
ft−1 +

1√
N
ut−1 + op

(
T−1/2

)]′)
(H̃−1)′[(H̃−1)′]−1

×

(
1

T

T∑
t=1

[
ft−1 +

1√
N
ut−1 + op

(
T−1/2

)]
·
[
ft−1 +

1√
N
ut−1 + op

(
T−1/2

)]′)−1

(H̃−1)−1.

By noting that 1
T
√
N

∑T
t=1 ftut−1 = Op

(
1√
NT

)
= op

(
T−1/2

)
, 1
T
√
N

∑T
t=1 ft−1ut = op

(
T−1/2

)
,

1
T
√
N

∑T
t=1 ft−1ut−1 = op

(
T−1/2

)
, and 1

TN

∑T
t=1 ut−1ut−1 = Op

(
1
N

)
= op

(
T−1/2

)
from (C.3), the
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assumption that T 1/2 ≪ N , and by using Assumptions A.2, A.5 and A.6 a) we get:

Φ̂ = H̃−1

(
1

T

T∑
t=1

ftf
′
t−1

)(
1

T

T∑
t=1

ft−1f
′
t−1

)−1

H̃ + op
(
T−1/2

)
= H̃−1Φ̃H̃ + op

(
T−1/2

)
=

[
H̃−1
H Φ̃HHH̃H H̃−1

H Φ̃HLH̃L

H̃−1
L Φ̃LHH̃H H̃−1

L Φ̃LLH̃L

]
+ op

(
T−1/2

)
,

where the last equation follows from the definition of H̃−1 in (C.38).

C.9.2 Proof of Lemma B.9 Part ii)

Vectors λi, λ̂i and wi are defined as

λi =

[
λH,i
λ′L,i

]
, λ̂i =

[
λ̂H,i
λ̂′L,i

]
, and wi =

[
wH,i
wL,i

]
.

Then, the estimator Λ̂ = [λ̂1, ..., λ̂N ]
′ of loadings matrix Λ (which is Λ̂ = 1

T+1
Y ′F̂ , and is provided

in (3.5)) has the following asymptotic expansion:

Λ̂ =

[
Λ +

1√
T + 1

G

]
H̃ + op

(
T−1/2

)
, (C.41)

where

G =
1√
T + 1

ε′F,

as Σ̃f,LL :=
[

1
T+1

∑T
t=0 ftf

′
t

]
LL

= Ir−q + op(1) from Lemma C.5, and op(T−1/2) denotes a matrix

whose rows are (r, 1) vectors uniformly of order op(T−1/2).
To derive the asymptotic expansion of matrix Λ̂′Λ̂/N , we work with the asymptotic expansion in

equation (C.41), which involves the matrix product:

1

N

[
Λ +

1√
T + 1

G

]′ [
Λ +

1√
T + 1

G

]
=

1

N
Λ′Λ +

1

N
√
T + 1

(Λ′G+GΛ) +
1

N(T + 1)
G′G

(C.42)

The different terms in the r.h.s of the last equation can be bounded as:

1√
N
Λ′G =

1√
N(T + 1)

Λ′ε′F =
1√

N(T + 1)

N∑
i=1

T∑
t=0

λif
′
tεi,t = Op (1) ,
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and
1

N
G′G =

1

N

N∑
i=1

(
1√
T + 1

T∑
t=0

ftεi,t

)(
1√
T + 1

T∑
t=0

ftεi,t

)′

= Op(1),

by arguments similar to the proof of Lemma B.2. Thus, by using these bounds and Λ′Λ/N = O(1),
from equation (C.42) we get:

1

N

[
Λ +

1√
T + 1

G

]′ [
Λ +

1√
T + 1

G

]
=

1

N
Λ′Λ +Op

(
1√
NT

+
1

T

)
,

which implies:

Λ̂′Λ̂

N
= H̃′

(
Λ′Λ

N

)
H̃ + op

(
1√
T

)
= H̃′Σ̃ΛH̃ + op

(
1√
T

)
,

where the second equality follow from the definition of Σ̃Λ.

C.9.3 Proof of Lemma B.9 Part iii)

a) Asymptotic expansion of Γ̂
We start by deriving the uniform asymptotic expansion for the residuals. The asymptotic expansions
in (C.31)-(C.34) allow to compute the asymptotic expansion of ε̂i,t:

ε̂i,t = yi,t − λ̂′if̂t = εi,t −
[
λ̂′if̂t − λ′ift

]
= εi,t −

[(
λi +

1√
T + 1

wi + op(T
−1/2)

)′(
ft +

1√
N
ut + op(T

−1/2)

)
− λ′ift

]
= εi,t −

(
1√
N
λ′iut +

1√
T + 1

w′
ift

)
+ op

(
T−1/2

)
. (C.43)

Here the op(T−1/2) term is uniform w.r.t. 1 ≤ i ≤ N , 0 ≤ t ≤ T by the bounds in the next Lemma
C.6 and Assumption A.8 d).

LEMMA C.6. Let X = Op,ℓ(aN,T ) mean X = Op[aN,T (log T )
b̄] for some b̄ > 0. Under Assumption

A.8 we have the following uniform bounds:

sup
0≤t≤T

∥ft∥ = Op,ℓ(1),

sup
0≤t≤T

∥ut∥ = Op,ℓ(1),

sup
1≤i≤N

∥ 1

T + 1

T∑
t=0

ftεi,t∥ = Op,ℓ(T
−η/2),

where η ≥ 1/2.
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Equation (C.43) allows us to compute:

γ̂ii =
1

T + 1

T∑
t=0

ε̂2i,t =
1

T + 1

T∑
t=0

[
εi,t −

1√
T + 1

w′
ift −

1√
N
λ′iut

]2
+ op

(
T−1/2

)
=

1

T + 1

T∑
t=0

ε2i,t −
2

(T + 1)
√

(T + 1)

T∑
t=0

εi,tw
′
ift −

2

(T + 1)
√
N

T∑
t=0

εi,tλ
′
iut

+
1

(T + 1)2

T∑
t=0

(
w′
ift
)2

+
1

(T + 1)N

T∑
t=0

(
λ′iut

)2
+

2

(T + 1)
√

(T + 1)N

T∑
t=0

(
w′
ift
) (
λ′iut

)
+ op

(
T−1/2

)
.

By using wi = 1√
T+1

∑T
t=0 εi,tft = Op(1), 1√

T+1

∑T
t=0 εi,tut = Op(1) uniformly in 1 ≤ i ≤ N , we

get:

γ̂ii =
1

T + 1

T∑
t=0

ε2i,t +Op

(
1

N

)
+ op

(
T−1/2

)
,

uniformly in 1 ≤ i ≤ N . Using that 1/N = o(1/
√
T ) when

√
T ≪ N , we get:

γ̂ii =
1

T + 1

T∑
t=0

ε2i,t + op
(
T−1/2

)
= γii +

1√
T + 1

wεi + op
(
T−1/2

)
,

uniformly in 1 ≤ i ≤ N , where

wεi :=
1√
T + 1

T∑
t=0

(ε2i,t − γii).

Therefore, we have:

Γ̂ = Γ +
1√
T + 1

W ε + op
(
T−1/2

)
, (C.44)

where Γ = diag(γii, i = 1, ..., N) and W ε = diag(wεi , i = 1, ..., N), for j = 1, 2.

b) Asymptotic expansion of 1
N
Λ̂′Γ̂Λ̂

From (C.41) and (C.44) we have:

1

N
Λ̂′Γ̂Λ̂ = H̃′Ω̂∗H̃ + op

(
T−1/2

)
, (C.45)

where we define:

Ω̂∗ :=
1

N

(
Λ +

1√
T + 1

G

)′(
Γ +

1√
T + 1

W ε

)(
Λ +

1√
T + 1

G

)
= Ω̃ + Ω̂∗

I + Ω̂∗
II + Ω̂∗ ′

II + Ω̂∗
III + Ω̂∗ ′

III + Ω̂∗
IV + Ω̂∗

V ,

71



and:

Ω̃ :=
1

N
Λ′ΓΛ,

Ω̂∗
I :=

1

N
√
T + 1

Λ′W εΛ = Op

(
1√
NT

)
,

Ω̂∗
II :=

1

N
√
T + 1

G′ΓΛ = Op

(
1√
NT

)
,

Ω̂∗
III :=

1

N(T + 1)
G′W εΛ = Op

(
1

T

)
,

Ω̂∗
IV :=

1

N(T + 1)
G′ΓG = Op

(
1

T

)
,

Ω̂∗
V :=

1

N(T + 1)
√
T + 1

G′W εG = Op

(
1

T
√
T

)
.

Collecting the previous results, we get:

Ω̂∗ = Ω̃ +Op

(
1√
NT

+
1

T

)
.

By substituting into equation (C.45) we get:

1

N
Λ̂′Γ̂Λ̂ = H̃′ Ω̃ H̃ + op

(
T−1/2

)
.

which concludes the Proof of Lemma B.9. ■

C.9.4 Proof of Lemma C.4

We start by providing some uniform bounds in Subsection C.9.4 a), that are instrumental for the rest
of the proof of Lemma C.4. Then, in Subsections C.9.4 b) and c) we establish the uniform asymptotic
expansions of factors and loadings up to order op(N̄−1/2), where N̄ = max{N, T}. Finally, in Sub-
section C.9.4 e) we show how to get the uniform asymptotic expansions up to order op(T−1/2) under a
less restrictive asymptotic scheme.
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a) Uniform bounds

Let X = Op,ℓ(aN,T ) mean X = Op[aN,T (log T )
b̄] for some b̄ > 0. Under Assumption A.8 we have the

following uniform bounds, which complement those in Lemma C.6:

sup
0≤t≤T

∥bt∥ = Op,ℓ(1), (C.46)

sup
0≤t≤T

∥dt∥ = Op,ℓ(1), (C.47)

sup
0≤t≤T

∥f̂t∥ = Op,ℓ(1), (C.48)

sup
1≤i≤N

∥ 1

T + 1

T∑
t=0

ε2i,t∥ = Op(1), (C.49)

sup
1≤i≤N

1

N(T + 1)

N∑
ℓ=1,ℓ ̸=i

T∑
t=0

λℓεℓ,tεi,t = Op,ℓ(
1√
NT η

) +O(
1

N
), (C.50)

where η ≥ 1/2. The proofs of these uniform bounds is analogous to that in Section D.4.1 in the OA
of AGGR, and therefore is omitted.

b) Asymptotic expansion of f̂L,t

Let us start by establishing the asymptotic expansion of f̂L,t up to order op(N̄−1/2). The eigenvectors

associated to the smallest r − q eigenvalues of ˆ̆
Σv are spanned by Ŵ ∗

v,r−q, which has the following

asymptotic expansion Ŵ ∗
v,r−q = (Ĥ′)−1Wv

(
EL − EHÂ

)
Û + Op(δ

2
N,T ) from (B.29). Hence, the

normalized eigenvectors associated to the smallest r − q eigenvalues of ˆ̆
Σv are:

Ŵv,r−q = Ŵ ∗
v,r−qD̂1,

where

D̂1 = diag(Ŵ ∗ ′
v,r−qŴ

∗
v,r−q)

−1/2.

Then, we get:

f̂L,t = Ŵ ′
v,r−q

ˆ̆
ft = D̂1Û ′

[
E ′
L − Â′E ′

H

]
W ′
vĤ−1ĤWvft +Op,l

(
δ2N,T

)
= D̂1Û ′

[
fL,t +

1√
N
uL,t +

1

T
bL,t +

1√
NT

dL,t + ϑL,t

−Â
(
fH,t +

1√
N
uH,t +

1

T
bH,t +

1√
NT

dH,t + ϑ
(s)
H,t

)]
+Op,l

(
δ2N,T

)
,

uniformly in 1 ≤ t ≤ T , where we use the expansion of the factor estimates in Corollary B.1, and
(C.48). Under Assumption A.1 we have (log T )b̄δ2N,T = o(N̄−1/2), for any b̄ > 0, 1√

N
δN,T = o(N̄−1/2)

and 1
T
δN,T = o(N̄−1/2). By using uniform bounds in Lemma C.6 and (C.46)-(C.47), and keeping only
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terms up to op(N̄−1/2), we get:

f̂L,t = Ĥ−1
L

[
fL,t +

1√
N
uL,t − Â · fL,t

]
+ op

(
N̄−1/2

)
, (C.51)

uniformly in 1 ≤ t ≤ T , where

Ĥ−1
L = D̂1Û ′.

Recalling from definition of Â in Lemma B.4 that it is a function of Ψ̂ = Op(δN,T ), we have Â =
Op(δN,T ), and by using Assumption A.1, equation (C.51) further simplifies to:

f̂L,t = Ĥ−1
L

[
fL,t +

1√
N
uL,t

]
+ op

(
N̄−1/2

)
, (C.52)

uniformly in 1 ≤ t ≤ T . By using Assumption A.1 we have

f̂L,t = Ĥ−1
L

[
fL,t +

1√
N
uL,t

]
+ op

(
T−1/2

)
,

Finally, let us show the asymptotic expansion for ĤLĤ′
L. Substituting the expression of f̂L,t from

equation (C.52) into the equality 1
T+1

∑T
t=0 f̂L,tf̂

′
L,t = Ir−q, we get:

Ir−q = Ĥ−1
L

1

T + 1

T∑
t=0

(
fL,t +

1√
N
uL,t

)(
fL,t +

1√
N
uL,t

)′ (
Ĥ−1
L

)′
+ op

(
N̄−1/2

)
= Ĥ−1

L

(
1

T + 1

T∑
t=0

fL,tf
′
L,t

)(
Ĥ−1
H

)′
+ op

(
N̄−1/2

)
,

= Ĥ−1
L Σ̃f,LL

(
Ĥ−1
L

)′
+ op

(
N̄−1/2

)
,

using arguments similar to the proof of Lemma B.2 and Assumption A.1. Thus, we get

ĤLĤ′
L = Σ̃f,LL + op

(
N̄−1/2

)
, (C.53)

which yields the first equation in (C.35). By using (C.39) it follows:

ĤLĤ′
L = Ir−q +Op(T

−1/2). (C.54)

c) Asymptotic expansion of f̂H,t

To find the asymptotic expansion of f̂H,t up to order op(N̄−1/2), we first need to find the asymptotic
expansion of the estimator Ŵw,q. Let Ŵ ∗

v,q be a (r, q) matrix whose columns are eigenvectors of matrix
ˆ̆
Σv associated with the largest eigenvalues σ̂2

1 , ..., σ̂2
q . We have:

ˆ̆
ΣvŴ

∗
v,q = Ŵ ∗

v,qΛ̂v,1:q,

74



where Λ̂v,1:q = diag(σ̂2
1, ..., σ̂

2
q ) is the (q, q) diagonal matrix containing the q largest eigenvalues of

ˆ̆
Σv. Using arguments analogous to those in Section B.2.3 we have

Ŵ ∗
v,q = (Ĥ′)−1Wv

(
EH + ELÂ2

)
Û2 +Op(δ

2
N,T ),

the stochastic (q, r) matrix Û2 is nonsingular with probability approaching (w.p.a.) 1, and Â2 is a
(r − q, q) stochastic matrix such that α̂ = op(δN,T ).

Therefore, the normalized eigenvectors associated to the smallest q eigenvalues of ˆ̆
Σv are:

Ŵv,r−q = Ŵ ∗
v,r−qD̂2,

where

D̂2 = diag(Ŵ ∗ ′
v,r−qŴ

∗
v,r−q)

−1/2.

Then, by using arguments analogous to those used to derive the asymptotic distribution of f̂L,t in the
previous Subsection C.9.4 b) we get:

f̂H,t = Ĥ−1
H

[
fH,t +

1√
N
uH,t

]
+ op

(
N̄−1/2

)
, (C.55)

uniformly in 0 ≤ t ≤ T , where

Ĥ−1
H = D̂2Û ′

2.

By using Assumption A.1 we have

f̂H,t = Ĥ−1
H

[
fH,t +

1√
N
uH,t

]
+ op

(
T−1/2

)
,

By substituting the expression of f̂H,t from equation (C.55) into the equality 1
T+1

∑T
t=0 f̂H,tf̂

′
H,t =

Ir−q, we get:

Iq = Ĥ−1
H

1

T + 1

T∑
t=0

(
fH,t +

1√
N
uH,t

)(
fH,t +

1√
N
uH,t

)′ (
Ĥ−1
H

)′
+ op

(
N̄−1/2

)
= Ĥ−1

H

(
1

T + 1

T∑
t=0

fH,tf
′
H,t

)(
Ĥ−1
H

)′
+ op

(
N̄−1/2

)
,

= Ĥ−1
H Σ̃f,HH

(
Ĥ−1
H

)′
+ op

(
N̄−1/2

)
,

using arguments similar to the proof of Lemma B.2 and Assumption A.1. Thus, we get

ĤHĤ′
H = Σ̃f,HH + op

(
N̄−1/2

)
, (C.56)
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which yields the second equation in (C.35). By using (C.39) it follows:

ĤHĤ′
H = Iq +Op(T

−1/2). (C.57)

d) Asymptotic expansion of λ̂i

We now derive the asymptotic expansion of λ̂i =
[
λ̂′H,i, λ̂L,i

]′
, which is the i − th row of the (N, r)

matrix Λ̂ = 1
T+1

Y ′F̂ defined in (3.5). Stacking together (C.52) and (C.55) in f̂t = [f̂ ′
H,t, f̂

′
L,t]

′ we get:

f̂t = Ĥ−1

[
ft +

1√
N
ut

]
+ op

(
N̄−1/2

)
, (C.58)

where ft = [f ′
H,t, f

′
L,t]

′, ut = [u′H,t, u
′
L,t]

′ and Ĥ−1 is defined in equation (C.38). As F̂ = [f̂1, ..., f̂T ]
′,

equation (C.58) implies

F̂ =

(
F +

1√
N
U

)(
Ĥ−1

)′
+ op

(
N̄−1/2

)
,

for U = [u1, ..., uT ]
′, so that

F̂ Ĥ′ − F =
1√
N
U + op

(
N̄−1/2

)
,

where op
(
N̄−1/2

)
denotes a matrix whose rows are uniformly of stochastic order op

(
N̄−1/2

)
. Then,

by using yi = [yi,1, ..., yi,T ]
′ , we have:

λ̂i =
1

T + 1
F̂ ′yi =

1

T + 1
F̂ ′ (Fλi + εi)

=
1

T + 1
F̂ ′
([
F̂ Ĥ′ −

(
F̂ Ĥ′ − F

)]
λi + εi

)
= Ĥ′λi −

1

T + 1
F̂ ′
(
F̂ Ĥ′ − F

)
λi +

1

T + 1
F̂ ′εi.

By writing F̂ =
[
F + (F̂ Ĥ′ − F )

]
(Ĥ′)−1, we get:

λ̂i = Ĥ′
{
λi + (Ĥ′)−1(Ĥ)−1 1

T + 1
F ′εi + (Ĥ′)−1(Ĥ)−1 1

T + 1
(F̂ Ĥ′ − F )′εi

−(Ĥ′)−1(Ĥ)−1 1

T + 1

[
F + (F̂ Ĥ′ − F )

]′ (
F̂ Ĥ′ − F

)
λi

}
. (C.59)

Define the (r, r) block diagonal matrix

Σ̃f,BD =

[
Σ̃f,HH 0(q,r−q)
0(r−q,q) Σ̃f,LL

]
,
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then, from (C.54) and (C.57) we have

(Ĥ′)−1(Ĥ)−1 =

[
(H̃′

H)
−1 0(q,r−q)

0(r−q,q) (H̃′
L)

−1

] [
H̃−1
H 0(q,r−q)

0(r−q,q) H̃−1
L

]
=

[
(H̃HH̃′

H)
−1 0(q,r−q)

0(r−q,q) (H̃LH̃′
L)

−1

]
= Σ̃−1

f,BD + op(N̄
−1/2)

= Ir +Op(T
−1/2)

where the third equality follows from (C.53) and (C.56), while the last equality is due to Assumption
A.1. Then, as Assumptions A.1 and A.8 allow to bound the different terms in (C.59), we get:

λ̂i = Ĥ′
[
λi + Σ̃−1

f,BD

1

T + 1
F ′εi

]
+ op(N̄

−1/2),

uniformly in 1 ≤ i ≤ N . The last equation can be rewritten as

λ̂i = Ĥ′
[
λi +

1√
T + 1

wi

]
+ op

(
N̄−1/2

)
, (C.60)

where:

wi := Σ̃−1
f,BD

1√
T + 1

F ′εi = Σ̃−1
f,BD

1√
T + 1

T∑
t=0

ftεi,t.

Equation (C.60), the fact that Σ̃−1
f,BD is block-diagonal (as Σ̃−1

f,BD is block diagonal), the definition of
H̃, and the fact that ft = [f ′

H,t, f
′
L,t]

′ imply:

λ̂H,i = Ĥ′
H

[
λH,i +

1√
T + 1

wH,i

]
+ op

(
N̄−1/2

)
,

λ̂L,i = Ĥ′
L

[
λL,i +

1√
T + 1

wL,i

]
+ op

(
N̄−1/2

)
,

where wL,i = Σ̃−1
f,LL

1√
T+1

∑T
t=0 fL,tεi,t and wH,i = Σ̃−1

f,HH
1√
T+1

∑T
t=0 fH,tεi,t. Assumption A.1 im-

plies:

λ̂H,i = Ĥ′
H

[
λH,i +

1√
T + 1

wH,i

]
+ op

(
T−1/2

)
,

λ̂L,i = Ĥ′
L

[
λL,i +

1√
T + 1

wL,i

]
+ op

(
T−1/2

)
,

which concludes the proof of Lemma C.4.
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C.9.5 Proof of Lemma C.5

The results in Lemma C.5 are implied by implied by Assumptions A.2 and A.3. These results are is
standard in the factor literature, see e.g. Bai and Ng (2002b), Stock and Watson (2002), Bai (2003).

C.9.6 Proof of Lemma C.6

The uniform bounds in Lemma C.6 can be proved by using analogous arguments to those used to prove
the analogous Lemma B.10 of AGGR in Section C.11.13 of their OA.

C.10 Proof of Lemma B.10
Assumptions A.1-A.4, A.5 b), c), A.6 a), and A.7 allow to prove the asymptotic expansion (B.16) in

Corollary B.1. By substituting the expansion of ˆ̆
ft from (B.16) into the equality 1

T+1

∑T
t=0

ˆ̆
ft
ˆ̆
f ′
t = Ir,

using arguments similar to the proof of Lemma B.2 and Assumption A.1, we get:

Ir = ĤWv

[
1

T

T∑
t=0

(
ft +

1√
N
ut

)(
ft +

1√
N
ut

)′
]
W ′
vĤ′ + op

(
N̄−1/2

)
= ĤWv

[
1

T + 1

T∑
t=0

ftf
′
t

]
W ′
vĤ′ + op

(
T−1/2

)
,

= ĤWvΣ̃fW
′
vĤ′ + op

(
T−1/2

)
,

where Σ̃f = 1
T+1

∑T
t=0 ftf

′
t . Pre-multiplying both sides by (ĤWv)

−1 and post-multiplying them by
(W ′

vĤ′)−1 yields

(ĤWv)
−1(W ′

vĤ′)−1 = W ′
vĤ−1(Ĥ′)−1Wv = Σ̃f + op

(
T−1/2

)
.

Noting that C̃ = W ′
v,r−qĤ−1(Ĥ′)−1Wv,r−q =

[
W ′
vĤ−1(Ĥ′)−1Wv

]
LL

, the last equation implies

C̃ = Σ̃f,LL + op
(
T−1/2

)
.

This concludes the proof of Lemma B.10. ■

C.11 Proof of Lemma B.11
Let q∗ be the true number of common factors (corresponding to the alternative hypothesis), and let
q denote the number of primitive shocks used in the estimation procedure (corresponding to the null
hypothesis of interest H0(q)). We consider the case with q < q∗ ≤ r, which implies r − q > r − q∗.
The proofs consists in bounding the different terms of

B̂U = Σ̂u,LL + Φ̂LHΣ̂u,HHΦ̂
′
LH + Φ̂LLΣ̂u,LHΦ̂

′
LH + Φ̂LHΣ̂u,HLΦ̂

′
LL + Φ̂LLΣ̂u,LLΦ̂

′
LL,

when a model with q primitive shocks is estimated from a DGP with q∗ primitive shocks.
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The factor estimator is f̂t = Ŵ ′
v
ˆ̆
ft, with Ŵv = [Ŵv,q, Ŵv,r−q] where Ŵv,q and is the r × q matrix

whose columns are the eigenvectors of ˆ̆
Σv associated with its q largest eigenvalues, and Ŵr−q and is

the r × (r − q) matrix whose columns are thr eigenvectors of ˆ̆
Σv associated with its r − q smallest

eigenvalues, normalized such that, Ŵ ′
v,qŴv,q = Iq, Ŵ ′

v,r−qŴv,r−q = Ir−q, and Ŵ ′
v,qŴv,r−q = 0(q,r−q).

As, in this proof, we only want to show that elements of B̂U are stochastically bounded, we can,
without loss of generality, simplify the exposition, and let Ĥ = Ir, and

Wv = [Wv,q∗ ,Wv,r−q∗ ] = Ir, with, Wv,q∗ =

[
Iq∗
0(r−q∗,q∗)

]
, and Wv,r−q∗ =

[
0(q∗,r−q∗)
I(r−q∗,r−q∗)

]
.

Then, we have ˆ̆
Σv = Σ̃v + op(1), where

Σ̃v =

[
Σ̃v,HH 0(q,r−q∗)
0(r−q∗,q∗) 0(r−q∗,r−q∗)

]
,

where the q∗ × q∗ matrix Σ̃v,HH is:

Σ̃v,HH =
1

T

T∑
t=1

vH,tv
′
H,t −

1

T

T∑
t=1

vH,tf
′
t−1Ṽ

−1
11

(
1

T

T∑
t=1

ft−1v
′
H,t

)
.

The large-sample limit of Ŵv,q (resp. Ŵv,r−q) is the matrix of normalized eigenvectors associated to
the q (resp. r − q) largest (resp. smallest) eigenvalues of matrix Σ̃v. The smallest r − q∗ eigenvalues
of Σ̃v are σ2

r−q = σ2
r−q+1 = ... σ2

r = 0, while the q∗ largest ones of matrix Σ̃v,HH are assumed to be
strictly positive and distinct, i.e. σ2

1 > σ2
2 >, ..., > σ2

r−q∗ > 0, to simplify the proof.
Let α denote the q∗×(q∗−q) matrix whose columns are the normalized eigenvectors corresponding

to the smallest q∗ − q eigenvalues of Σ̃v,HH . Then, we have that Ŵv,r−q = W1 + op(1) where

W1 =

[
α 0(q∗,r−q∗)
0(r−q∗,q∗−q) U

]
,

where the (r−q∗)×(r−q∗) matrix U is possibly stochastic and such that U ′U = Ir−q∗ , and α′α = Iq∗−q.
For later use, we denote by β the q∗ × q matrix whose columns are an orthonormal basis of the

orthogonal complement to the columns space of α. Then, [β
... α] is an orthogonal (q∗, q∗) matrix, with

β′β = Iq, α′β = 0(q∗−q,q), and:
αα′ + ββ′ = Iq∗ . (C.61)

Then, we also have: Ŵv,q = W2 + op(1) where

W2 =

[
β
0r−q∗,q

]
.

From Corollary B.1 with Ĥ = Ir and Wv = Ir, we have f̂t ≃ ft, where symbol ≃ means equality
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up to terms that are asymptotically negligible for determining large-sample limits. Then:

f̂H,t ≃ W ′
2ft = β′fH,t, and f̂L,t ≃ W ′

1ft =

[
α′fH,t
U ′fL,t

]
.

Define the r × r matrix R := [W2,W1]. From its definition it follows that RR′ = R′R = Ir, and:

f̂t ≃ R′ft =

 β′fH,t
α′fH,t
U ′fL,t

 ,
which implies that f̂t is, asymptotically, an orthogonal transformation of ft, and that

Φ̂ =

(
T∑
t=1

f̂tf̂
′
t−1

)(
T∑
t=1

f̂t−1f̂
′
t−1

)−1

≃ RΦR′.

Importantly, the last equation implies that

Φ̂HH = Op(1), Φ̂HL = Op(1), Φ̂LL = Op(1). (C.62)

Let us consider the estimation of the factor loadings. From (C.61) and the definition of U , yi,t is
given by:

yi,t = f ′
H,tλH,i + f ′

L,tλL,i + εi,t

= [β′fH,t]
′[β′λH,i] + [α′fH,t]

′[α′λH,i] + [U ′fL,t]
′[U ′λL,i] + εi,t

= f ′
H,t
λH,i + f ′

L,t
λL,i + εi,t,

where f
H,t

= β′fH,t and λH,i = β′λH,i, fL,t =
[
α′fH,t
U ′fL,t

]
, λL,i =

[
α′λH,i
U ′λL,i

]
. The estimated factor

loadings λ̂H,i and λ̂L,i are obtained by regressing yi,t on f
H,t

and f
L,t

, which implies:

λ̂H,i ≃ λH,i = β′λH,i, λ̂L,i ≃ λL,i =

[
α′λH,i
U ′λL,i

]
Since λ̂i ≃ R′λi, λ̂i is, asymptotically, an orthogonal transformation of λi. Using ε̂i,t ≃ εi,t, we get
Σ̂u ≃ RΣuR′, which implies

Σ̂u,HH = Op(1), Σ̂u,HL = Op(1), Σ̂u,LL = Op(1). (C.63)

Results (C.62) and (C.63) imply that B̂U = Op(1), which concludes the proof of Lemma B.11. ■
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D Estimation of the test statistics under the wild Bootstrap scheme
This Section provides details for the construction of the test statistics in equation (5.7) starting from

the (T +1, N) bootstrapped panel of observables Y (b) =
[
y
(b)
0 , y

(b)
1 , . . . , y

(b)
T

]′
. This panel is generated

from the bootstrap DGP in equations (5.3)-(5.4), that we report here for the sake of illustration:

y
(b)
t = Λ̂f

(b)
t + ε

(b)
t ,

f
(b)
t = Φ̂f

(b)
t−1 + v̂

H0(q)
t ,

for Λ̂ and Φ̂ defined in Section 3.2, while ε(b)t and v̂H0(q)
t are defined in Section 5.1 (equations (5.1) and

(5.2), respectively).

D.1 Test based on the smallest eigenvalues

Let ˆ̆
F (b) = [

ˆ̆
f
(b)
0 ,

ˆ̆
f
(b)
1 , ...,

ˆ̆
f
(b)
T ]′ be the (T + 1, r) matrix of estimated Principal Components (PCs)

extracted from panel Y (b) associated with the largest r eigenvalues of matrix 1
N(T+1)

Y (b)Y (b)′. That is,
ˆ̆
F (b) satisfies the usual PCA eigenvalue-eigenvector equation:

1

N(T + 1)
Y (b)Y (b)′ ˆ̆F (b) =

ˆ̆
F (b)V̂ (b),

where V̂ (b) is the (r, r) diagonal matrix of the r largest eigenvalues of matrix 1
N(T+1)

Y (b)Y (b)′, and

the columns of matrix ˆ̆
F (b) are the associated normalized eigenvectors such that 1

T+1

ˆ̆
F (b)′ ˆ̆F (b)′ =

1
T+1

∑T
t=0

ˆ̆
f
(b)
t

ˆ̆
f
(b)′
t = Ir. 5

Let ˆ̆Φ(b) = (
∑T

t=1
ˆ̆
f
(b)
t

ˆ̆
f
(b)′
t−1)(

∑T
t=1

ˆ̆
f
(b)
t−1

ˆ̆
f
(b)′
t−1)

−1 be the OLS estimator of Φ̆(b), and let ˆ̆v(b)t =
ˆ̆
f
(b)
t −

ˆ̆
Φ(b) ˆ̆f

(b)
t−1 be the VAR residuals estimated by using ˆ̆

Φ(b). In this case, the OLS estimator of ˆ̆
Σ

(b)
v is:

ˆ̆
Σ(b)
v =

1

T

T∑
t=1

ˆ̆v
(b)
t
ˆ̆v
(b)′
t .

Let Ŵ (b)
v be the (r, r) matrix collecting the (orthonormal) eigenvectors associated to the ordered eigen-

values σ̂2(b)
ℓ , ℓ = 1, ..., r, of ˆ̆

Σ
(b)
v :

ˆ̆
Σ(b)
v Ŵ

(b)
v = Ŵ (b)

v Σ̂(b)
v ,

where Σ̂
(b)
v := diag(σ̂

2(b)
1 , ..., σ̂

2(b)
r ) is the diagonal matrix collecting the ordered eigenvalues of ˆ̆

Σ
(b)
v ,

and Ŵ (b)′
v Ŵ

(b)
v = Ŵ

(b)
v Ŵ

(b)′
v = Ir. Let us define the estimator f̂ (b)

t := Ŵ
(b)′
v

ˆ̆
f
(b)
t of ft, and matrix

F̂ (b) := [f̂
(b)
0 , f̂

(b)
1 , ..., f̂

(b)
T ]′= Ŵ

(b)′
v

ˆ̆
F (b). The (N, r) matrix of estimated loadings Λ̂(b) = [λ̂

(b)
1 , ..., λ̂

(b)
N ]′

5Let F̂ (b)∗ be the orthonormal eigenvectors of 1
N(T+1)Y

(b)Y (b)′, s.t. 1
N(T+1)Y

(b)Y (b)′F̂ ∗ = F̂ (b)∗V̂ (b) and

F̂ (b)∗′F̂ (b)∗ = Ir, then the normalized factor estimator ˆ̆
F (b) is computed as ˆ̆

F (b) =
√
T + 1 · F̂ (b)∗.
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is computed as:
Λ̂(b) = Y (b)′F̂ (b)(F̂ (b)′F̂ (b))−1

Define

Φ̂(b) =

(
T∑
t=1

f̂
(b)
t f̂

(b)′
t−1

)(
T∑
t=1

f̂
(b)
t−1f̂

(b)′
t−1

)−1

=

[
Φ̂

(b)
HH Φ̂

(b)
HL

Φ̂
(b)
LH Φ̂

(b)
LL

]
.

Let also v̂(b)t = f̂
(b)
t − Φ̂(b)f̂

(b)
t−1 be the VAR residuals estimated by using Φ̂(b).

Consider also the estimator of Σ(b)
v :

Σ̂(b)
v =

1

T

T∑
t=1

v̂
(b)
t v̂

(b)′
t , (D.1)

and let σ̂2(b)
ℓ be the ℓ-th largest eigenvalue of matrix Σ̂

(b)
v . Then, the sum of the smallest r−q estimated

eigenvalues σ̂2(b)
q+1, . . . , σ̂

2(b)
r is what we use when constructing ξ̂(b)(q) in equation (5.5).

Starting from Σ̂
(b)
u in equation (5.6), we can also define the quantities:

B̂
(b)
U = Σ̂

(b)
u,LL + Φ̂

(b)
LHΣ̂

(b)
u,HHΦ̂

(b)′
LH + Φ̂

(b)
LLΣ̂

(b)
u,LHΦ̂

(b)′
LH + Φ̂

(b)
LHΣ̂

(b)
u,HLΦ̂

(b)′
LL + Φ̂

(b)
LLΣ̂

(b)
u,LLΦ̂

(b)′
LL ,

Σ̂
(b)
U (0) = Σ̂

(b)
u,LL + Φ̂

(b)
LHΣ̂

(b)
u,HHΦ̂

(b)′
LH + Φ̂

(b)
LLΣ̂

(b)
u,LHΦ̂

(b)′
LH + Φ̂

(b)
LHΣ̂

(b)
u,HLΦ̂

(b)′
LL + Φ̂

(b)
LLΣ̂

(b)
u,LLΦ̂

(b)′
LL ,

Σ̂
(b)
U (1) = −Φ̂

(b)
LHΣ̂

(b)′
u,LH − Φ̂

(b)
LLΣ̂

(b)′
u,LL, Σ̂

(b)
U (−1) = −Σ̂

(b)
u,LHΦ̂

(b)′
LH − Σ̂

(b)
u,LLΦ̂

(b)′
LL ,

Ω̂
(b)
U,1 = 2tr

{
Σ̂

(b)
U (0)Σ̂

(b)′
U (0) + Σ̂

(b)
U (1)Σ̂

(b)′
U (1) + Σ̂

(b)
U (−1)Σ̂

(b)′
U (−1)

}
,

which are instrumental to scale and shift ξ̂(b)(q) so as to obtain ξ̃(b)(q) in equation (5.7).

E Estimators of q proposed in the literature
This section describes estimators of the number of common shocks that we employed in Section 6.3.

E.1 Estimators of Bai and Ng (2007)
As in Bai and Ng (2007) we define:

D̂1,k =

(
σ̂2
k+1∑r
ℓ=1 σ̂

2
ℓ

)0.5

, D̂2,k =

(∑r
ℓ=k+1 σ̂

2
ℓ∑r

ℓ=1 σ̂
2
ℓ

)0.5

K3 =

{
k : D̂1,k < m3

min(N0.5−δ,T 0.5−δ)

}
, and K4 =

{
k : D̂2,k < m4

min(N0.5−δ,T 0.5−δ)

}
, where

sNT := min (N, T ), with δ = 0.1, implying :

K3 =

{
k : D̂1,k <

m3

s
2/5
NT

}
K4 =

{
k : D̂2,k <

m4

s
2/5
NT

}
,
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Then, the estimator of q considered by Bai and Ng (2007) are:

q̂bn,3 = min (k ∈ K3) , q̂bn,4 = min (k ∈ K4) . (E.1)

Bai and Ng (2007) set either m3 = m4 = 1, or m3 = 1.25 and m4 = 2.25. The first values are
preferable when working with covariance matrices, while the latter are recommended when dealing
with correlation matrices.

E.2 Estimators of Amengual and Watson (2007)
Amengual and Watson (2007) define the N -dimensional vectors ẐA

t = [ẐA
1t, ..., Ẑ

A
Nt]

′ and ẐB
t =

[ẐB
1t, ..., Ẑ

B
Nt]

′ as:

ẐA
t := Yt −

p∑
i=1

ˆ̆
Λ
ˆ̆
Φi

ˆ̆
Ft−i, ẐB

t := Yt −
p∑
i=1

ˆ̆
Π
ˆ̆
Ft−i,

where ˆ̆
Φ1,

ˆ̆
Φ2, ...,

ˆ̆
Φp denote the OLS estimators from the regression of ˆ̆

Ft on (
ˆ̆
Ft−1,

ˆ̆
Ft−2, ...,

ˆ̆
Ft−p),

while ˆ̆
Π1,

ˆ̆
Π2, ...,

ˆ̆
Πp are OLS estimators from regressing Yt on (

ˆ̆
Ft−1,

ˆ̆
Ft−2, ...,

ˆ̆
Ft−p). Starting from

these new panels, they introduce the estimators

q̂aw,A = argmin
0≤k≤r

{
ln[σ̂2

ẐA −R(k, ẐA)] + k × ln[sNT ] · (N + T )

NT

}
, (E.2)

q̂aw,B = argmin
0≤k≤r

{
ln[σ̂2

ẐB −R(k, ẐB)] + k × ln[sNT ] · (N + T )

NT

}
, (E.3)

where σ̂2
ẐA := 1

NT

∑T
t=1

∑N
i=1(Ẑ

A
it )

2, R(k, ẐA) is defined as

R(k, ẐA) :=
k∑
ℓ=1

ωAℓ , (E.4)

for ωAi the largest ℓ- eigenvalue of
1

NT
ẐAẐA′ with ẐA := [ẐA′

1 , ..., Ẑ
A′
T ]′. Identical definitions hold

for quantities indexed by ẐB. Because their MC analysis is comparable to ours, we follow Amengual
and Watson (2007) and set p = 2 in Section 6.3.

E.3 Estimator of Breitung and Pigorsch (2013)

Breitung and Pigorsch (2013) define Ĝt−1 := [
ˆ̆
F ′
t−1,

ˆ̆
F ′
t−2, ...,

ˆ̆
F ′
t−m], and consider the matrices:

S̃00 :=
T∑

t=m+1

ˆ̆
Ft

ˆ̆
F ′
t S̃01 :=

T∑
t=m+1

ˆ̆
FtĜ

′
t−1, S̃11 :=

T∑
t=m+1

Ĝt−1Ĝ
′
t−1. (E.5)

Let ˆ̃Rbp = S̃−1
00 S̃01S̃

−1
11 S̃

′
01, then the k largest eigenvalues of ˆ̃Rbp, denoted as ρ̂2bp,ℓ, ℓ = 1, ..., k, are the

first squared sample canonical correlations between ˆ̆
Ft and Ĝt−1, with k ≤ r. They also define the
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statistic:

ξ̂bp(k) = C̃2−δ
NT ·

r−k∑
ℓ=1

(1− ρ̂bp,ℓ), k = 1, ..., r − 1

ξ̂bp(r) = 0 ,

for C̃ =
√
NT/

√
N + T . Starting from ξ̂bp(k), they estimate q with:

q̂bp = min
(
k : ξ̂bp(k) < τ

)
.

Because δ = 1/2 and τ = 4.5 deliver good results in their MC simulations, we can write their preferred
estimator as:

q̂bp = min
(
k : ξ̂∗bp(k) < 4.5

)
, (E.6)

where:

ξ̂∗bp(k) = C̃
3/2
NT ·

r−k∑
ℓ=1

(1− ρ̂bp,ℓ), k = 1, ..., r − 1 (E.7)

ξ̂bp(r) = 0 . (E.8)

F Monte Carlo: additional results

F.1 Alternative data generating processes
This section repeats the Monte Carlo analysis of Section 6 but using alternative DGPs. In particular,
we work under the same setting of Section 6.1 but consider different values of (r, q0) and of the auto-
regressive matrices. The first alternative DGP, that we call Design 1, sets r = 5, q0 = 3, and considers
the autoregressive matrix

Φ = diag(0.2, 0.375, 0.55, 0.725, 0.9).

The second DGP of this section relies on r = 9, q0 = 8 and autoregressive matrix

Φ = diag(0.2, 0.2875, 0.375, 0.4625, 0.55, 0.6375, 0.725, 0.8125, 0.9).

Design 1 is very similar to that of Amengual and Watson (2007) and Bai and Ng (2007), while the
second one extends it to allow for a richer factor space.

Blue histograms in Figure 1 display the empirical distribution of ξ̃(q) under the null hypothesis
of q = q0 common shocks. Histograms are based on data simulated from Design 1 (first row) and
Design 2 (second row). Red solid lines denote the probability density function of the asymptotic
N(0, 1) distribution. Under Design 1, the empirical distribution is a bit far from the asymptotic one
when (N, T ) = (100, 100). The difference is smaller yet still present when Design 2 is considered.
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Results for both designs improve when (N, T ) = (400, 600), in which case the empirical distribution
becomes quite similar to a standard Gaussian one. The DGP notwithstanding, the distribution based
on Nb = 499 bootstrap replicates for the first Monte Carlo sample (yellow histogram) provides a more
accurate approximation to the empirical one of ξ̃(q0). As for the DGP in the main body, summary
statistics for ξ̃(q0) are reported in Table 13 of Section F.2.

Figure 5 – Small sample and bootstrapped distribution of the test statistic ξ̃(q0).

(a) ξ̃(3), N = 100, and T = 100; Design 1 (b) ξ̃(3), N = 400, and T = 600; Design 1

(c) ξ̃(8), N = 100, and T = 100; Design 2 (d) ξ̃(8), N = 400, and T = 600; Design 2

Empirical distribution of the test statistic ξ̃(q0) for (N,T ) = (100, 100) and (N,T ) = (400, 600). The first row refers to
Design 1, while the second one is based on Design 2. Red solid lines correspond to the asymptotic distribution N(0, 1) of
the re-centered and re-scaled statistic.

Tables 6 and 7 exhibit empirical sizes and powers. As far as powers are concerned, we test the null
hypotheses H0 = H(1) and H0 = H(2) for Design 1, and H0 = H(6) and H0 = H(7) for Design
2. The alternative hypothesis is always given by q > k for k the number of factors under the null.
Left panels pertain to the asymptotic test, while right ones study the bootstrap procedure. The DGP
notwithstanding, the asymptotic test is always oversized and has unit power.6 Adopting a bootstrap
procedure always improves the size of the test at the cost of some loss of power under Design 1.

6The asymptotic test consistently returns unit power also when controlling for size distortion.
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Table 6 – Empirical sizes and powers of the plug-in and of the bootstrap versions of the test of the number of
common shocks; Design 1

Plug-in: Th. 2 Bootstrap: Th. 2
size power size power

N T 1% 5% 10% H(1) H(2) 1% 5% 10% H(1) H(2)
100 100 0.07 0.16 0.24 1.00 1.00 0.02 0.07 0.14 1.00 0.84
100 200 0.09 0.22 0.31 1.00 1.00 0.01 0.06 0.12 1.00 0.85
200 100 0.03 0.09 0.14 1.00 1.00 0.01 0.07 0.13 1.00 0.90
200 200 0.04 0.11 0.19 1.00 1.00 0.01 0.06 0.11 1.00 0.90
200 300 0.04 0.13 0.21 1.00 1.00 0.01 0.06 0.11 1.00 0.90
400 100 0.02 0.06 0.11 1.00 1.00 0.02 0.07 0.12 1.00 0.93
400 200 0.02 0.06 0.12 1.00 1.00 0.01 0.06 0.12 1.00 0.93
400 300 0.02 0.08 0.13 1.00 1.00 0.01 0.06 0.11 1.00 0.93
400 600 0.03 0.10 0.17 1.00 1.00 0.01 0.05 0.11 1.00 0.93

Empirical sizes and powers of the one-sided test for the null hypothesis of q common shocks. Results in the
left panel are based on the plug-in version of the feasible test statistic in Theorem 2. Those in the right panel pertain
to the bootstrap counterpart of this test. Simulated data come from Design 1 with r = 5 and q0 = 3. Empirical sizes
are assessed at significance levels α ∈ {0.01, 0.05, 0.1}, while powers represent the empirical rejection frequency of
the null hypotheses H0 = H(1) and H0 = H(2) under the alternatives q > 1 and q > 2, respectively. These powers
are assessed at the 5% significance level. Results are based on M = 2000 MC simulations.

Table 7 – Empirical size and power of the plug-in and of the bootstrap versions of the test of the number of
common shocks; Design 2

Plug-in: Th. 2 Bootstrap: Th. 2
size power size power

N T 1% 5% 10% H(6) H(7) 1% 5% 10% H(6) H(7)
100 100 0.08 0.15 0.22 1.00 0.98 0.04 0.11 0.17 0.99 0.96
100 200 0.12 0.25 0.34 1.00 1.00 0.03 0.08 0.14 0.99 0.98
200 100 0.02 0.07 0.11 1.00 0.99 0.03 0.08 0.15 1.00 0.99
200 200 0.03 0.10 0.16 1.00 1.00 0.02 0.07 0.13 1.00 1.00
200 400 0.04 0.11 0.19 1.00 1.00 0.01 0.07 0.13 1.00 1.00
400 100 0.01 0.03 0.07 1.00 1.00 0.02 0.07 0.14 1.00 1.00
400 200 0.02 0.06 0.10 1.00 1.00 0.01 0.06 0.12 1.00 1.00
400 300 0.02 0.06 0.11 1.00 1.00 0.01 0.06 0.11 1.00 1.00
400 600 0.03 0.09 0.15 1.00 1.00 0.02 0.06 0.11 1.00 1.00

Empirical sizes and powers of the one-sided test for the null hypothesis of q common shocks. Results in the
left panel are based on the plug-in version of the feasible test statistic in Theorem 2. Those in the right panel pertain
to the bootstrap counterpart of this test. Simulated data come from Design 2 so that r = 9 and q0 = 8. Empirical sizes
is assessed at significance levels α ∈ {0.01, 0.05, 0.1}, while powers represent the empirical rejection frequency of
the null hypotheses H0 = H(6) and H0 = H(7) under the alternatives q > 6 and q > 7, respectively. These powers
are assessed at the 5% significance level. Results are based on M = 2000 MC simulations.

Tables 8, 9 and 10 report empirical sizes and powers when N and T are large for the DGPs of this
section and of the main body. Given that bootstrap inference is usually employed when sample sizes
are small, we only consider the asymptotic test. Actual sizes are now very close to nominal ones while
powers are unaltered.

86



Table 8 – Empirical sizes and powers of the plug-in version of the feasible test of the number of common shocks
when N and T are large; Design 1

Plug-in: Th. 2
size power

N T 1% 5% 10% H(1) H(2)
1000 100 0.01 0.05 0.09 1.00 1.00
1000 200 0.01 0.05 0.09 1.00 1.00
1000 300 0.02 0.05 0.10 1.00 1.00
1000 600 0.02 0.07 0.12 1.00 1.00
1000 1000 0.02 0.07 0.13 1.00 1.00
1000 2000 0.02 0.08 0.15 1.00 1.00
2000 100 0.01 0.05 0.09 1.00 1.00
2000 200 0.01 0.05 0.08 1.00 1.00
2000 300 0.01 0.05 0.09 1.00 1.00
2000 600 0.01 0.05 0.09 1.00 1.00
2000 1000 0.01 0.05 0.10 1.00 1.00
2000 2000 0.01 0.06 0.11 1.00 1.00

Empirical sizes and powers of the one-sided test for the null hypothesis of q common shocks. Results are
based on the plug-in version of the feasible test statistic in Theorem 2. Simulated data come from Design 1 so that
r = 5 and q0 = 3. Empirical sizes are assessed at significance levels α ∈ {0.01, 0.05, 0.1}, while powers represent
the empirical rejection frequency of the null hypotheses H0 = H(1) and H0 = H(2) under the alternatives q > 1
and q > 2, respectively. These powers are assessed for a test performed at the 5% significance level. All empirical
probabilities are based on M = 2000 MC simulations.

Table 9 – Empirical sizes and powers of the plug-in version of the feasible test of the number of shocks q when
N and T are large; Design 2

Plug-in: Th. 2
size power

N T 1% 5% 10% H(6) H(7)
1000 100 0.01 0.03 0.04 1.00 1.00
1000 200 0.01 0.03 0.06 1.00 1.00
1000 300 0.01 0.03 0.07 1.00 1.00
1000 600 0.01 0.05 0.09 1.00 1.00
1000 1000 0.01 0.06 0.11 1.00 1.00
1000 2000 0.02 0.08 0.14 1.00 1.00
2000 100 0.01 0.02 0.05 1.00 1.00
2000 200 0.01 0.03 0.06 1.00 1.00
2000 300 0.01 0.03 0.07 1.00 1.00
2000 600 0.01 0.05 0.09 1.00 1.00
2000 1000 0.01 0.04 0.10 1.00 1.00
2000 2000 0.01 0.06 0.10 1.00 1.00

Empirical sizes and powers of the one-sided test for the null hypothesis of q common shocks. Results are
based on the plug-in version of the feasible test statistic in Theorem 2. Simulated data come from Design 2 so that
r = 9 and q0 = 8. Empirical sizes are assessed at significance levels α ∈ {0.01, 0.05, 0.1}, while powers represent
the empirical rejection frequency of the null hypotheses H0 = H(6) and H0 = H(7) under the alternatives q > 6
and q > 7, respectively. These powers are assessed for a test performed at the 5% significance level. All empirical
probabilities are based on M = 2000 MC simulations.
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Table 10 – Empirical sizes and powers of the plug-in version of the feasible test of the number of shocks when
N and T are large; DGP of the main body

Plug-in: Th. 2
size power

N T 1% 5% 10% H(3) H(4)
1000 100 0.01 0.03 0.07 1.00 1.00
1000 200 0.01 0.04 0.07 1.00 1.00
1000 300 0.01 0.04 0.09 1.00 1.00
1000 600 0.01 0.05 0.10 1.00 1.00
1000 1000 0.01 0.07 0.13 1.00 1.00
1000 2000 0.03 0.09 0.16 1.00 1.00
2000 100 0.01 0.03 0.05 1.00 1.00
2000 200 0.01 0.03 0.06 1.00 1.00
2000 300 0.01 0.03 0.07 1.00 1.00
2000 600 0.01 0.04 0.09 1.00 1.00
2000 1000 0.01 0.05 0.10 1.00 1.00
2000 2000 0.01 0.06 0.11 1.00 1.00

Empirical sizes and powers of the one-sided test for the null hypothesis of q common shocks. Results are
based on the plug-in version of the feasible test statistic in Theorem 2. Simulated data come from the DGP of Section
6.1 with r = 7 and q0 = 5. Empirical sizes is assessed at significance levels α ∈ {0.01, 0.05, 0.1}., while powers
represent the empirical rejection frequency of the null hypotheses H0 = H(3) and H0 = H(4) under the alternatives
q > 3 and q > 4, respectively. These powers are assessed for a test performed at the 5% significance level. All
empirical probabilities are based on M = 2000 MC simulations.

Finally, Tables 11 and 12 repeat the comparison with some alternative estimators already proposed
in the literature. The former deals with Design 1 while the latter with Design 2. The estimators of
Amengual and Watson (2007) perform very well for Design 1 but tend to underestimate q0 under
Design 2. The approaches of Bai and Ng (2007) and Breitung and Pigorsch (2013) perform on par
with our unadjusted bootstrap based estimator (pBα ) under Design 1; interestingly, the size-adjustment
improves the asymptotic-based estimator but hinder performances of the bootstrap one for this data
generating process. In the case of Design 2, both bootstrap based procedures, and the (adjusted)
asymptotic estimator always outperform all competitors.
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Table 11 – Comparison of estimators of q under Design 1
N T q̂3 q̂4 q̂aw,A q̂aw,B q̂bp zα zαN,T

pBα pBα∗
N,T

100 100 2.94 2.95 2.98 2.99 2.82 3.19 3.13 2.93 2.88
100 200 2.94 2.95 2.99 2.99 2.88 3.27 3.19 2.93 2.89
200 100 2.94 2.94 2.99 2.99 2.86 3.09 3.05 2.97 2.93
200 200 2.96 2.96 2.99 2.99 2.93 3.13 3.06 2.98 2.94
200 300 2.96 2.96 2.99 3.00 2.94 3.16 3.06 2.98 2.94
400 100 2.94 2.94 2.99 2.99 2.88 3.07 3.03 3.02 2.97
400 200 2.96 2.96 3.00 3.00 2.94 3.07 3.02 3.02 2.98
400 300 2.97 2.97 3.00 3.00 2.96 3.09 3.02 3.01 2.96
400 400 2.98 2.98 3.00 3.00 2.97 3.12 3.03 3.02 2.97

Average estimated number of shocks q under Design 1 so that r = 5 and q0 = 3. The third and the fourth
columns present results for estimators q̂3 and q̂4 of Bai and Ng (2007). The fifth and sixth columns consider q̂aw,A
and q̂aw,B by Amengual and Watson (2007), while the seventh one is based on q̂bp of Breitung and Pigorsch (2013).
The eighth and ninth columns show results for our estimator q̂ based on the asymptotic sequential testing procedure.
The former is based on the 95% quantile of the asymptotic N (0, 1) distribution while the latter considers quantiles
adjusted for a consistent selection procedure. The last two columns are based on the bootstrap version of the test
performed at the 5% significance level: the first one considers unadjusted bootstrap percentiles (i.e. pBα ) and the
second adjusted ones (i.e. pBα∗

N,T
). We adjust the significance level α using equations (4.9) and (5.9), where we always

set c = 0.95 and γ = 0.1. Results are based on M = 2000 MC simulations.

Table 12 – Comparison of estimators of q under Design 2
N T q̂3 q̂4 q̂aw,A q̂aw,B q̂bp zα zαN,T

pBα pBα∗
N,T

100 100 6.44 6.58 7.50 7.58 6.53 8.13 8.09 8.05 8.01
100 200 6.51 6.63 7.71 7.74 6.77 8.25 8.18 8.05 8.01
200 100 6.42 6.54 7.62 7.70 6.68 8.06 8.03 8.07 8.03
200 200 6.84 6.90 7.77 7.79 6.95 8.10 8.04 8.07 8.03
200 300 6.85 6.90 7.84 7.84 7.06 8.11 8.05 8.06 8.03
400 100 6.41 6.52 7.69 7.75 6.76 8.03 8.01 8.07 8.03
400 200 6.82 6.88 7.84 7.85 7.07 8.06 8.02 8.06 8.03
400 300 7.00 7.04 7.88 7.88 7.20 8.06 8.02 8.06 8.03
400 400 7.12 7.14 7.92 7.92 7.37 8.09 8.02 8.06 8.02

Average estimated number of shocks q under Design 2, i.e. r = 9 and q0 = 8. The third and the fourth
columns present results for estimators q̂3 and q̂4 of Bai and Ng (2007). The fifth and sixth columns consider q̂aw,A
and q̂aw,B by Amengual and Watson (2007), while the seventh one is based on q̂bp of Breitung and Pigorsch (2013).
Details on these estimators can be found in Section E. The eighth and ninth columns show results for our estimator
q̂ based on the asymptotic sequential testing procedure. The former is based on the 95% quantile of the asymptotic
N (0, 1) distribution while the latter considers quantiles adjusted for a consistent selection procedure. The last two
columns are based on the bootstrap version of the test performed at the 5% significance level: the first one considers
unadjusted bootstrap percentiles (i.e. pBα ) and the second adjusted ones (i.e. pBα∗

N,T
). We adjust the significance level

α using equations (4.9) and (5.9), where we always set c = 0.95 and γ = 0.1. Results are based on M = 2000 MC
simulations.

F.2 Summary statistics for the empirical distribution of ξ̃(q)
Table 13 reports the mean, median, standard deviation and interquartile range for the simulated distri-
bution of the test statistic ξ̃(q) when q = q0, i.e. the null hypothesis holds. The central panel pertains
to the Design of Section 6.1 while the left (right) one is based on Design 1 (2) of Section F.1.
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Table 13 – Summary statistics for the empirical distribution of the test statistic ξ̃(q0) in Theorem 2.
r = 5, q0 = 3 r = 7, q0 = 5 r = 9, q0 = 8

N T m. med. std. iqr m. med. std. iqr m. med. std. iqr
100 100 0.50 0.44 1.16 1.54 0.52 0.42 1.26 1.62 0.43 0.27 1.52 1.73
100 200 0.81 0.73 1.13 1.47 0.97 0.93 1.19 1.61 0.86 0.77 1.33 1.71
200 100 0.11 0.03 1.08 1.42 0.03 -0.08 1.13 1.48 -0.11 -0.24 1.24 1.51
200 200 0.32 0.27 1.06 1.42 0.30 0.25 1.09 1.51 0.20 0.14 1.11 1.42
200 300 0.43 0.38 1.05 1.38 0.47 0.44 1.10 1.46 0.35 0.31 1.09 1.43
400 100 -0.01 -0.07 1.04 1.34 -0.17 -0.24 1.09 1.45 -0.29 -0.37 1.12 1.34
400 200 0.11 0.08 1.01 1.34 0.02 -0.05 1.05 1.42 -0.08 -0.10 1.05 1.37
400 300 0.17 0.14 1.01 1.34 0.10 0.06 1.04 1.42 0.03 0.00 1.03 1.39
400 600 0.31 0.26 1.02 1.35 0.30 0.29 1.04 1.44 0.24 0.22 1.02 1.37

1000 100 -0.11 -0.13 1.01 1.34 -0.30 -0.34 1.04 1.41 -0.46 -0.54 0.99 1.30
1000 200 -0.04 -0.03 1.02 1.37 -0.19 -0.22 1.01 1.31 -0.30 -0.35 1.00 1.33
1000 300 -0.01 -0.03 1.01 1.36 -0.12 -0.13 1.01 1.36 -0.18 -0.22 1.00 1.36
1000 600 0.08 0.05 1.01 1.33 0.01 -0.01 1.02 1.43 -0.03 -0.07 0.99 1.35
1000 1000 0.16 0.16 1.02 1.40 0.12 0.10 1.00 1.33 0.07 0.04 1.00 1.39
1000 2000 0.25 0.25 1.01 1.33 0.30 0.30 1.00 1.32 0.20 0.19 1.01 1.35
2000 100 -0.16 -0.21 1.03 1.39 -0.36 -0.41 0.98 1.27 -0.49 -0.56 0.99 1.33
2000 200 -0.10 -0.11 1.01 1.36 -0.28 -0.32 0.98 1.28 -0.34 -0.38 1.00 1.31
2000 300 -0.08 -0.13 1.01 1.32 -0.21 -0.23 0.99 1.31 -0.24 -0.29 1.00 1.35
2000 600 -0.01 -0.06 0.99 1.28 -0.11 -0.11 1.01 1.34 -0.08 -0.10 1.01 1.35
2000 1000 0.02 0.03 0.99 1.27 -0.03 -0.06 0.99 1.37 -0.02 -0.05 0.98 1.29
2000 2000 0.10 0.13 0.99 1.32 0.09 0.07 0.99 1.37 0.04 0.04 0.97 1.32

This table reports the mean (m.), median (med.), standard deviation (std.) and interquartile range (iqr.) of the empirical
distribution of the statistic ξ̃(q) in Theorem 2. The first four columns pertain to Design 1 in Section F.1 (r = 5, q0 = 3),
the second four columns refer to the Design of Section 6.1 (r = 7, q0 = 5) and the last four ones are based on Design
2 of Section F.1 (r = 9, q0 = 8). Empirical distributions are obtained for different sample sizes (N , T ) and using
M = 2000 MC simulations. The asymptotic distribution of the statistics is always N(0, 1) and has interquartile range
of approximately 1.35.

F.3 Comparison with the estimators of Hallin and Liska
In this section, we compare our estimators for the number of common shocks with those of Hallin
and Liska (2007). Because the latter are based on frequency domain analysis within the context of
generalized dynamic factor models, we do not present them in details.

We combine their information criteria IC1 and IC2 with their penalty terms p1, p2 and p3, thus
ending up with six different estimators. Their implementation always follows the same steps and
modelling choices of Onatski (2009).7 Comparisons are done for the data generating process of the
main body, as well as for Design 1 and Design 2 of the previous sections.

Table 14 presents results for Design 1. The first six columns contain results for the estimators of
Hallin and Liska (2007), where HL11 labels that based on information criterion IC1 and penalty term
p1, and similarly for the remaining columns. The unadjusted bootstrap-based estimator is the most ac-
curate one for all sample sizes but (N, T ) = (400, 200), in which case there is a slight outperformance
from estimator HL12. The latter is also the best performer among all estimators of Hallin and Liska
(2007) for most sample sizes. The asymptotic estimator based on the consistent selection procedure
also improves upon all estimators of Hallin and Liska (2007) for most combinations of N and T .

7We are grateful to Professor Alexey Onatskiy for sharing codes of his paper.
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Table 14 – Comparison of estimators of q based on Hallin and Liska (2007) under Design 1
N T HL1,1 HL1,2 HL1,3 HL2,1 HL2,2 HL2,3 zα zαN,T

pBα pBα∗
N,T

100 100 3.80 3.81 3.92 3.94 3.86 3.87 3.19 3.13 2.93 2.88
100 200 3.34 3.18 3.41 3.98 3.97 3.98 3.27 3.19 2.93 2.89
200 100 3.84 3.81 3.92 3.96 3.91 3.91 3.09 3.05 2.97 2.93
200 200 3.20 3.04 3.28 3.98 3.94 3.98 3.13 3.06 2.98 2.94
200 300 3.30 3.16 3.46 3.99 3.98 3.99 3.16 3.06 2.98 2.94
400 100 3.83 3.83 3.92 3.96 3.91 3.92 3.07 3.03 3.02 2.97
400 200 3.18 3.00 3.27 3.97 3.92 3.98 3.07 3.02 3.02 2.94
400 300 3.31 3.18 3.42 3.98 3.97 3.99 3.09 3.02 3.01 2.96
400 600 2.90 2.73 3.03 3.97 3.95 3.98 3.12 3.03 3.02 2.97

Average estimated number of shocks q under Design 1, i.e. r = 5 and q0 = 3. Columns HL1,1 to H2,3 re-
port six possible implementations of the consistent estimator of Hallin and Liska (2007). The ninth and the tenth
columns show results for our estimator q̂ using the asymptotic sequential testing procedure based either on the 95%
quantile of the asymptotic N (0, 1) distribution (zα) or on its adjusted counterpart (zαN,T

). The last two columns are
based on the bootstrap version of the test performed at the 5% significance level: the first one considers unadjusted
bootstrap percentiles (i.e. pBα ) and the second adjusted ones (i.e. pBα∗

N,T
). We adjust the significance level α using

equations (4.9) and (5.9), where we always set c = 0.95 and γ = 0.1. Results are based on M = 2000 MC
simulations.

Results for the data generating process of the main body are in Table 15. At least one of our
estimators always outperforms those of Hallin and Liska (2007) for all sample sized. Identical results
hold for Design 2, as can be seen from Table 16.

Table 15 – Comparison of estimators of q based on Hallin and Liska (2007) under the DGP of main body
N T HL1,1 HL1,2 HL1,3 HL2,1 HL2,2 HL2,3 zα zαN,T

pBα pBα∗
N,T

100 100 5.67 5.62 5.82 5.76 5.61 5.62 5.17 5.12 5.01 4.97
100 200 5.29 5.62 5.37 5.96 5.95 5.96 5.30 5.20 5.03 4.97
200 100 5.71 5.67 5.85 5.84 5.73 5.74 5.07 5.04 5.06 5.01
200 200 5.14 4.95 5.23 5.97 5.93 5.97 5.12 5.06 5.05 5.01
200 300 5.22 5.03 5.38 5.96 5.95 5.96 5.17 5.06 5.05 5.01
400 100 5.76 5.68 5.86 5.86 5.75 5.75 5.04 5.01 5.07 5.03
400 200 5.09 4.94 5.20 5.97 5.93 5.97 5.06 5.02 5.06 5.02
400 300 5.26 5.03 5.40 5.96 5.95 5.96 5.08 5.02 5.06 5.02
400 600 4.82 4.50 4.92 5.97 5.95 5.97 5.12 5.03 5.05 5.02

Average estimated number of shocks q under the DGP of the main body, i.e. r = 7 and q0 = 5. Columns
HL1,1 to H2,3 report six possible implementations of the consistent estimator of Hallin and Liska (2007). The ninth
and the tenth columns show results for our estimator q̂ using the asymptotic sequential testing procedure based either
on the 95% quantile of the asymptotic N (0, 1) distribution (zα) or on its adjusted counterpart (zαN,T

). The last two
columns are based on the bootstrap version of the test performed at the 5% significance level: the first one considers
unadjusted bootstrap percentiles (i.e. pBα ) and the second adjusted ones (i.e. pBα∗

N,T
). We adjust the significance level

α using equations (4.9) and (5.9), where we always set c = 0.95 and γ = 0.1. Results are based on M = 2000 MC
simulations.
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Table 16 – Comparison of estimators of q based on Hallin and Liska (2007) under Design 2
N T HL1,1 HL1,2 HL1,3 HL2,1 HL2,2 HL2,3 zα zαN,T

pBα pBα∗
N,T

100 100 7.65 7.50 7.73 7.22 7.14 7.26 8.13 8.09 8.05 8.01
100 200 7.52 7.34 7.52 7.89 7.86 7.90 8.25 8.18 8.05 8.01
200 100 7.66 7.54 7.75 7.38 7.41 7.48 8.06 8.03 8.07 8.03
200 200 7.33 7.22 7.41 7.94 7.89 7.94 8.10 8.04 8.07 8.03
200 300 7.23 7.09 7.41 7.97 7.97 7.97 8.11 8.05 8.06 8.03
400 100 7.68 7.57 7.78 7.48 7.47 7.54 8.03 8.01 8.07 8.03
400 200 7.30 7.20 7.38 7.94 7.87 7.95 8.06 8.02 8.06 8.03
400 300 7.25 7.05 7.39 7.97 7.96 7.97 8.06 8.02 8.06 8.03
400 600 6.77 6.52 6.92 7.97 7.96 7.98 8.09 8.02 8.06 8.02

Average estimated number of shocks q under the DGP of the main body, i.e. r = 9 and q0 = 8. Columns
HL1,1 to H2,3 report six possible implementations of the consistent estimator of Hallin and Liska (2007). The ninth
and the tenth columns show results for our estimator q̂ using the asymptotic sequential testing procedure based either
on the 95% quantile of the asymptotic N (0, 1) distribution (zα) or on its adjusted counterpart (zαN,T

). The last two
columns are based on the bootstrap version of the test performed at the 5% significance level: the first one considers
unadjusted bootstrap percentiles (i.e. pBα ) and the second adjusted ones (i.e. pBα∗

N,T
). We adjust the significance level

α using equations (4.9) and (5.9), where we always set c = 0.95 and γ = 0.1. Results are based on M = 2000 MC
simulations.
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