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Abstract

We develop a score-driven time-varying parameter model where no particular

parametric error distribution needs to be specified. The proposed method relies

on a versatile spline-based density, which produces a score function that follows a

natural cubic spline. This flexible approach nests the Gaussian density as a spe-

cial case. It can also represent asymmetric and leptokurtic densities that produce

outlier-robust updating functions for the time-varying parameter and are often ap-

pealing in empirical applications. As leading examples, we consider models where

the time-varying parameters appear in the location or in the log-scale of the obser-

vations. The static parameter vector of the model can be estimated by means of

maximum likelihood and we formally establish some of the asymptotic properties

of such estimators. We illustrate the practical relevance of the proposed method

in two empirical studies. We employ the location model to filter the mean of the

U.S. monthly CPI inflation series and the scale model for volatility filtering of the

full panel of daily stock returns from the S&P 500 index. The results show a com-

petitive performance of the method compared to a set of competing models that

are available in the existing literature.

Key words: natural cubic spline, location model, volatility model, maximum like-

lihood estimation, consistency

JEL classification: C13, C22.
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1. Introduction

Observation-driven models constitute a large class of dynamic models where the time-

varying parameters are driven by past observations (see Cox, 1981). Examples include

the seminal generalized autoregressive conditional heteroskedasticity (GARCH) model

(Engle, 1982; Bollerslev, 1986) and its variants, the conditional duration model (Engle

and Russell, 1998), the conditional copula model (Patton, 2006) and many other dynamic

models that are widely used in economics and finance. A general and effective approach

to specify the updating equation of observation-driven time-varying parameters is given

by the score-driven framework (Creal et al., 2011, 2013; Harvey, 2013). We refer the

reader to Artemova et al. (2022a,b) for a review of score-driven models. In score-driven

models, the specification of the time-varying parameter is obtained through its score of

the conditional density, which is typically selected to be a parametric density function.

The use of a parametric density can be rather restrictive in practice. We consider a novel

semiparametric score-driven model that features a nonparametric error distribution. The

nonparametric distribution is approximated via a spline function and this leads to a

flexible score that takes the form of a natural cubic spline.

Earlier semiparametric score-driven models include the conditional volatility model

proposed by Blasques et al. (2016) that relies on Kernel density estimation (KDE) of the

distribution of the error term. The method requires the model errors to be dependent

on the score of a kernel density which in turn is constructed from these same errors.

Therefore, an iterative or multi-step procedure is needed for the estimation of the model

parameters. On the other hand, our approach based on a spline density does not require

such an iterative estimation procedure and the model can be estimated through a single

optimization of a likelihood function. Furthermore, we develop a more general class of

score-driven models that can handle both location (mean) and scale (variance) but po-

tentially also other time-varying features of the density. The dynamic quantile model of

Catania and Luati (2023) and the expected shortfall model of Patton et al. (2019) are

other earlier examples of semiparametric score-driven models but these consider param-

eter estimation based on loss functions different from the negative log likelihood, such

that they do not require the specification of a parametric error density. For example,

the quantile model uses the check loss function instead. Furthermore, Abdelkarim and

Onour (2023) introduce a semiparametric exponentially weighted moving average model

for conditional volatilities, using an approach similar to that of Blasques et al. (2016),

based on KDE.
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The two most common approaches to density estimation with splines are smoothing

splines and interpolation splines. For smoothing splines, a knot is placed at every ob-

servation in the sample and the smoothness of the resulting density is enforced using a

regularization term in the objective function, see, for example, Gu and Qiu (1993) and

Gu (1993). In our score-driven model, the use of smoothing splines would lead to the

same iterative procedure for parameter estimation as is needed in case KDE is used. We

can circumvent a multi-step estimation approach when considering interpolation splines.

In the case of interpolation splines, the number of knots must be set a-priori, while the

knot positions and the corresponding ordinates can be estimated using a specifically de-

signed procedure. The interpolation spline goes exactly through the ordinates of all knot

positions in a smooth manner, depending on the order of continuity at the knots.

A challenge in spline-based density estimation is enforcing positivity of the estimated

density function. This can either be achieved by adding a constraint to the optimization

problem (Gu and Qiu, 1993), or by using so-called M -splines which are positive by con-

struction (see e.g. Abrahamowicz et al., 1992), or by estimating the log density instead

of the density itself. The latter approach is used by Kooperberg and Stone (1991, 1992)

in their so-called logspline model. This is a density estimation method in which the log

density is modeled as a natural cubic B-spline function, where the B-spline coefficients

are estimated using the method of maximum likelihood (ML). Stone (1990) has shown

that in case the support is in a compact interval, the ML estimator converges to the

true density at an optimal rate of convergence under mild conditions, provided that the

number of parameters increases with the sample size at an appropriate rate. Our pro-

posed methodology adopts a modeling approach that is similar to this idea. In particular,

we model the score function as a natural cubic spline, and use it to reconstruct the log

density of the error. Since we force the score to be linear outside the outer knots, the

corresponding density will have tails that decay at an exponential rate. This framework

implies that the spline-based distribution will not be heavy-tailed, but it is not hard to

see that any distribution can be approximated arbitrarily well if sufficiently many knots

are considered. As the spline function is highly flexible, the score function can take many

different shapes and forms. Hence, we can deliver a spline function with sufficient support

in the tails of the density such that the filter for the time-varying parameter is effectively

outlier-robust. Also, the spline can handle asymmetries in the log density.

We aim to develop the semiparametric spline-based score-driven framework and show-

case its use in relevant empirical studies. For a given vector of knots, the spline param-
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eters and remaining model parameters are estimated jointly using ML. The number of

knots can be selected based on existing information criteria. We further examine the

conditional location and log-scale variants of the model in detail. Consistency of the ML

estimator is established for both of these models under correct specification. For the

conditional location model, we also establish asymptotic normality of the ML estimator.

For the log-scale model, we do not establish this, as it is too intricate to verify whether

the required moment conditions hold, which is a known challenge for log-scale models, see

e.g. the discussions in Nelson and Foster (1994) and Straumann and Mikosch (2006) on

the exponential GARCH model. The results of Blasques et al. (2022), where high-level

conditions for consistency and asymptotic normality are provided for ML estimators of

score-driven models, can be used for some parts of the derivations, while other aspects of

this development require tailored derivations.

We demonstrate the empirical relevance and broad applicability of our framework

by presenting two illustrations in economics and finance. First, the location model is

considered for the filtering of the key monthly time series of U.S. inflation. Second, the

scale model is used for the volatility analysis of 456 stock returns from the S&P 500 index.

The results show that our flexible spline-based framework can deliver outlier-robust filters

and that the fit is in many cases considerably better than the competitive Student’s t

model. These findings underscore the potential of spline-based score-driven models for

enhancing model flexibility and improving the modeling and analysis of macroeconomic

and financial time series.

The paper is organized as follows. Section 2 introduces the spline-based density and

the corresponding score-driven model. Section 3 treats parameter estimation through ML

and in Section 4 the asymptotic theory for this estimator is established for location and

scale models. Section 5 contains the empirical applications. Finally, Section 6 concludes.

2. The score-driven model with spline-based error density

2.1. The natural cubic spline function

We start by introducing cubic splines and the corresponding notation. The cubic spline

function, as for instance treated by Poirier (1973), is constructed based on a vector of

x-coordinates t = (t1, . . . , tk) called knots, where k ∈ N is the number of knots and

where t1 < t2 < . . . < tk, and a vector of corresponding function values or ordinates

y = (y1, . . . , yk) ∈ Rk. Typically, a cubic spline is defined on some interval [a, b] and
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the outer knots are set as t1 = a and tk = b. Instead, here we consider the entire real

line as the domain. The natural cubic spline function h(·; t,y) : R → R is a twice

differentiable function that goes through each (ti, yi)-pair, such that in each interval

(t1, t2], . . ., (tk−1, tk], h is a third degree polynomial and outside of (t1, tk] the function h

is linear. From now on we supress the arguments t and y in h if possible, for notational

convenience. In particular, for any z ∈ R, the spline function is:

h(z) =


h0(z) if z ≤ t1 ,

hi(z) if ti < z ≤ ti+1 , for i = 1, . . . , k − 1 ,

hk(z) if z > tk ,

where hi, for i = 0, . . . , k − 1, are functions of the form:

hi(z) = ai + bi(z − ti+1) + ci(z − ti+1)
2 + di(z − ti+1)

3 ,

and

hk(z) = ak + bk(z − tk) ,

where c0 = d0 = 0, and where the real-valued coefficients ai and bi for i = 0, . . . , k, and

ci and di for i = 1, . . . , k − 1 must be such that:

(i) hi(ti) = yi = hi−1(ti), for i = 1, . . . , k,

(ii) h′i(ti) = h′i−1(ti), for i = 1, . . . , k,

(iii) h′′i (ti) = h′′i−1(ti), for i = 1, . . . , k, where it can be noted that h′′0(t1) = h′′k(tk) = 0,

as h0 and hk are linear.

This system of 4k equations, with the 4(k + 1) − 4 = 4k unkown coefficients ai, bi, ci

and di, has a unique solution that can be obtained analytically. In particular, it can be

rewritten as a linear system with a tridiagonal matrix, see Poirier (1973). Such linear

systems can be solved using a simple recursive algorithm, see, for instance, Alberg et al.

(1967, Chapter 2). Conveniently, the coefficients are a linear function of the vector of

ordinates y. Also, due to the parametrization of the spline functions above, it follows

immediately from condition (i) that ai = yi+1 for i = 0, . . . , k − 1 and ak = yk.

2.2. Constructing the natural cubic spline density

The next step is to construct a density function pε : R → R+ based on spline function h.

For any ε ∈ R let

∂ log pε(ε)

∂ε
= −h(ε; t,y) , (1)
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such that the score of the density pε is equal to the spline function multiplied by minus

one. Then log pε(ε) can be obtained by calculating the anti-derivative of this function with

respect to ε. As h is a piecewise polynomial function, it is straightforward to construct

its anti-derivative denoted by H, since for any z ∈ R:

H(z) =


H0(z) if z ≤ t1 ,

Hi(z) if ti < z ≤ ti+1 , for i = 1, . . . , k − 1 ,

Hk(z) if z > tk ,

where for i = 0, . . . , k − 1:

Hi(z) = ai(z − ti+1) +
1

2
bi(z − ti+1)

2 +
1

3
ci(z − ti+1)

3 +
1

4
di(z − ti+1)

4 + ei ,

and

Hk(z) = ak(z − tk) +
1

2
bk(z − tk)

2 + ek ,

and where ei for i = 0, . . . , k are some (non-unique) constants that should be chosen

such that the anti-derivative H is continuous. These coefficients are again linear in the

vector y, as they are linear functions of the original coefficients ai, bi, ci and di, which are

themselves linear in y. For numerical reasons, it is convenient to choose the ei coefficients

such that −H(z) does not become too large, for instance by setting H(0) = 0. From (1),

it follows that

pε(ε) ∝ exp(−H(ε)) .

In order to obtain a density, we normalize the function exp(−H(·)) such that it integrates

to one. To this end, we define the normalizing constant C:

C =

∫ ∞

−∞
exp(−H(ε))dε , (2)

such that pε(ε) = exp(−H(ε))/C. To ensure that the integral is finite, we impose that t

and y are such that (i) either b0 > 0 or b0 = 0 and a0 < 0, and (ii) either bk > 0 or bk = 0

and ak > 0. This restrictions ensures that limz→∞H(z) = ∞ and limz→−∞H(z) = ∞
at a rate that is at least linear. This ensures the integrability of exp(−H(z)). The

normalizing constant C is not available in closed form, but can be reliably approximated

numerically, as is discussed in Section E of the Supplementary Appendix.

The class of densities that we propose has a log density that is a piecewise quartic

polynomial. This flexible density can, for instance, be asymmetric, multi-modal or both.

Although our proposed spline density cannot have fat tails by any formal definition, it is
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not hard to see that if sufficiently many knots are used, any smooth density function with

domain R can be approximated arbitrarily well. Furthermore, if the spline h(z) is linear

and goes through the origin, i.e. if t = cy for some c > 0 and h(0) = 0, the distribution

pε is a Gaussian distribution with mean zero. Thus, the Gaussian distribution is a special

case in this flexible class of spline densities.

Due to the exponentially decaying tails of the density function pε, it is clear that

ε ∼ pε(ε) has finite moments of any order. Consider the case where h is rotationally

symmetric around the origin, i.e. h is a so-called odd function. Then it is clear that the

expected value of ε ∼ exp(−H(ε))/C is equal to zero.

In case of asymmetry, however, the expectation of ε ∼ pε(ε) is not necessarily zero.

Since it is our aim to use pε as an innovation density with mean zero, we re-center the

distribution. Let pε∗(ε) = exp(−H(ε))/C denote the uncentered version of pε and define

µ := Eε∼pε∗ (ε)[ε] =

∫ ∞

−∞
ε
exp(−H(ε))

C
dε . (3)

Then setting pε(ε) = pε∗(ε + µ) = exp(−H(ε + µ))/C ensures that Eε∼pε(ε)[ε] = 0. This

leads to ∂ log pε(ε)/∂ε = −h(ε+µ). How to construct the mean µ in practice is discussed

in Section E of the Supplementary Appendix.

2.3. Incorporating the spline density in a score-driven model

Let us consider the general framework of score-driven models as introduced by Creal et al.

(2013) and Harvey (2013). Say that {xt}t∈Z is a sequence of observations with elements xt

which are a function of a time-varying parameter ft and an innovation term εt ∼ pε(εt),

where pε is the spline probability density function defined above and where the elements

of {εt}t∈Z are assumed to have mean zero and are independent and identically distributed

(iid) over time. In particular, let xt = g(ft, εt;λ) for some link function g(·, ·;λ) that is
strictly increasing in its second argument. Here λ is a parameter, which will be omitted

from the notation whenever this does not lead to confusion. The time-varying parameter

ft takes values in some space F ⊆ R. Let {Gt}t∈Z denote the filtration containing the

sigma algebras Gt = σ(xt, xt−1, . . .). The time-varying parameter ft is Gt−1-measurable.

Thus, we have that

xt|Gt−1 ∼ px(xt|ft) = pε(g
−1(ft, xt)) ·

∂g−1(ft, x)

∂x

∣∣∣∣
x=xt

= C−1 exp(−H(g−1(ft, xt) + µ)) · ∂g
−1(ft, x)

∂x

∣∣∣∣
x=xt

,

(4)
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where g−1(f, x) denotes the inverse of the function g(f, ε) in its second argument. The

score-driven update of the time-varying parameter ft is then specified as

ft+1 = ω(1− β) + βft + αs(ft, xt) ,

s(ft, xt) = S(ft) · ∇(ft, xt) ,

∇(ft, xt) =
∂ log px(xt|f)

∂f

∣∣∣∣
f=ft

= −h(g−1(ft, xt) + µ) · ∂g
−1(f, xt)

∂f

∣∣∣∣
f=ft

+
∂ log((g−1)′(f, xt))

∂f

∣∣∣∣
f=ft

,

(5)

with (g−1)′(f, x) = ∂g−1(ft, x)/∂x, and where ∇(ft, xt) denotes the score, S(ft) denotes a

positive scaling factor that may depend on ft, and s(ft, xt) is the scaled score. Common

choices for the scaling factor S(ft) are the inverse conditional information matrix with

respect to ft, or its square root. The spline function h and the mean µ, which is defined

in (3), depend on the knot vector t and corresponding ordinates y, which will be treated

below as part of the parameter vector. Next, we introduce two specific choices of g.

Location model. Let xt = g(ft, εt;λ) = ft + σεt, where λ = σ > 0 is a parameter, such

that g−1(ft, xt;λ) = (xt − ft)/σ. Then the score takes the form:

∇(ft, xt) = h((xt − ft)/σ + µ)/σ .

Since the conditional Fisher information matrix of ft is constant, we set S(f) = 1 for all

f ∈ R.

Scale model. Let xt = g(ft, εt;λ) = m + exp(ft)εt, such that g−1(ft, xt;λ) = (xt −
m) exp(−ft). Here λ = m is a parameter that represents the unconditional mean of the

observations. Furthermore, exp(ft) provides conditional time-variation in the scale. Then

the score takes the form:

∇(ft, xt) = h((xt −m) exp(−ft) + µ)(xt −m) exp(−ft)− 1 .

Since the conditional Fisher information matrix of ft is constant, we set S(f) = 1 for all

f ∈ R.

We focus on these two link functions g throughout the remainder of the paper, but

there are clearly also other interesting choices of g. For example, a scale model without

exponential transformation is obtained by having g(f, ε) = f 1/2ε, for f > 0. Also, the

introduced model can be straightforwardly extended to the case with more than one time-

varying parameter. For instance, it is possible to have both a time-varying location and
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scale. Furthermore, if the support of εt is restricted to the positive part of the real line,

one can consider a time-varying conditional duration model (Engle and Russell, 1998) or

intensity model (Russell, 2001).

3. Parameter estimation via maximum likelihood

The spline function h(·; t,y) can be parametrized in various ways. Estimating both

t and y freely is not advisable, due to the high flexibility of the model. Instead, we

suggest fixing the knot vector t, with elements t1 < . . . < tk, and only estimating the

corresponding ordinates y. We will explain below why this typically offers sufficient

flexibility. Intuitively, the elements of y are more convenient to estimate than those of t,

because the spline coefficients linearly depend on y, whereas the elements of t impact the

coefficients in a nonlinear fashion. A natural choice for t is the quantile function of the

standard normal distribution evaluated on some grid of values on the interval (0, 1) that

is symmetric around 0.5. The approach of Kooperberg and Stone (1991), which uses the

order statistics of sample observations, is not feasible, because this would require having

the order statistics of the residuals, which themselves depend on the spline function that

determines the score.

We define the parameter vector θ that contains all the static parameters of the model

θ = (ω, β, α,γ⊤)⊤ , with γ = (λ,ψ⊤)⊤ ,

where λ is a scalar and ψ is the q-dimensional vector that contains the parameters that

determine y, such that τ(ψ) = y for some continuous function τ : Rq → Rk. For example,

we could let ψ = y, allowing for potential asymmetry. We let λ ∈ Λ ⊆ R, ψ ∈ Ψ ⊆ Rq

and (ω, β, α)⊤ ∈ Π ⊆ R3. Also, we define the notation Γ := Λ ×Ψ. It follows that the

vector θ takes values in a parameter space Θ = Π×Γ. We will impose restrictions on Θ

such that the spline-based density pε is well-defined for any θ ∈ Θ.

We assume that the observed time series {xt}Tt=1 is a subset of a sequence {xt}t∈Z that

is generated from the model defined above for some parameter θ0 ∈ Θ. Our aim is to

estimate this parameter θ0 based on such a sequence of observations using ML. Since we

do not observe the sequence {ft}Tt=1, we need to calculate a filtered sequence {f̂t(θ)}Tt=1

in order to be able to construct the log likelihood:

f̂t+1(θ) = ω(1− β) + βf̂t(θ) + αs(f̂t(θ), xt;γ) , (6)

for t = 1, . . . , T − 1, initialized at some fixed real value f̂1. The function s(·, ·; ·) :

F × R × Γ → R is defined as s in (5), but now with the dependence on the parameters
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in γ explicitly stated in the notation. The ML estimator is then defined as

θ̂T = argmax
θ∈Θ

1

T

T∑
t=1

ℓ̂t(θ) ,

where ℓ̂t(θ) = log px(xt|f̂t(θ);γ)

= −H(g−1(f̂t(θ), xt;λ) + µ(ψ);ψ)− log(C(ψ))

+ log

(
∂g−1(f̂t(θ), x;λ)

∂x

∣∣∣∣∣
x=xt

)
,

and where C(ψ) and µ(ψ) denote the normalization constant and mean defined in (2)

and (3), respectively, under knot vector t and ordinate vector y = τ(ψ). Also, we

let H(·;ψ) := H(·; t, τ(ψ)). Furthermore, from now on we use h(·;ψ) := h(·; t, τ(ψ))
whenever convenient. Note that px(xt|ft;γ) is simply the observation density in (4), with

the dependence on the parameters in γ made explicit.

Scaling of the knot vector

Fixing the knot vector a priori seems restrictive, but by having a scale parameter in the

model, the knots can effectively be rescaled. For instance, take the function g(ft, εt) =

ft + σεt. Then for any σ > 0 and x ∈ R, the spline function h is such that:

h(x; t,y) = h

(
x

σ
;
t

σ
,y

)
=

1

σ
h

(
x

σ
;
t

σ
, σy

)
,

where the first equality holds by definition of the natural cubic spline function and the

second equality holds because the set of spline coefficients, and therefore the spline func-

tion itself, is linear in y. It follows that the anti-derivative H is such that for any σ > 0

and for any x ∈ R:

H(x; t,y) = H

(
x

σ
;
t

σ
, σy

)
, (7)

up to some constant. Therefore, using σ, t, and y is equivalent to using dσ, t/d

and dy for any constant d > 0. Also, it can be shown that h(x + µ(t,y); t,y) =

h(x/σ + µ(t/σ, σy); t/σ, σy)/σ, where µ(t,y) denotes the value in (3) for H(·; t,y), so
this equivalence also holds if a nonzero mean is corrected for.

Enforcing integrability of spline-based density

In practice, it is advisable to ensure that ψ is such that the spline-based density is well-

defined during the numerical optimization of the log likelihood function. Given t, the
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condition that y is such that h has positive slopes beyond the outer knots, i.e. b0 > 0 and

bk > 0, can be reduced to two linear inequality constraints in y, since we have linearity

of the spline coefficients in y. As it is not convenient to impose multiple inequality

constraints for a particular vector of parameters, we suggest reparametrizing the spline

function, where instead of estimating y1 and yk alongside the other elements in y, we

directly estimate b0 and bk themselves, and then reconstruct the values of y1 and yk

based on (y2, . . . , yk−1) and b0 and bk. This reconstruction is straightforward, due to the

linearity of b0 and bk in y. The advantage of this parametrization is that b0 > 0 and

bk > 0 can be enforced directly on these two separate parameters, instead of indirectly

through functions of multiple parameters.

In order to impose b0 = 0 and a0 < 0 and bk = 0 and ak > 0, we need a different

parametrization, as we have that a0 = y1 and ak = yk. In this case, it is preferable to

exclude y2 and yk−1 from the parameter vector and instead estimate y1, y3, . . . , yk−2, and

yk, where a0 = y1 > 0 and ak = yk > 0 is imposed and where y2 and yk−1 are constructed

based on y1, y3, . . . , yk−2, yk and b0 = bk = 0.

4. Asymptotic properties of maximum likelihood estimator

In this section, we derive the asymptotic theory of the maximum likelihood estimator

(MLE) of the score-driven spline model for the location and the scale examples. We

derive our results for the setting where the time-varying parameter and observations are

stationary and ergodic (SE). Stationarity is not required for showing consistency and

asymptotic normality of the MLE, see for instance Blasques et al. (2024) for an example

of a score-driven location model with unit root dynamics, but as non-stationary dynamics

require a more elaborate and intricate approach, we focus on the stationary setting.

For both models, we impose the following restrictions on the parameter set Θ:

Assumption 1.

(i) Θ ⊂ R4+q is a compact set and the knot vector t is fixed and has k elements that

are strictly increasing.

(ii) τ : Rq → Rk is a continuous function such that for every θ ∈ Θ, τ(ψ) = y is such

that the coefficients of h(·; t,y) are such that (i) either b0 > 0 or b0 = 0 and a0 < 0,

and (ii) either bk > 0 or bk = 0 and ak > 0.

(iii) k is even, t is symmetric around 0, ψ = (ψ1, . . . , ψq)
⊤ for q = k/2, and τ is such

that y1 = −ψq, y2 = −ψq−1, . . . , yq = −ψ1, yq+1 = ψ1, . . . , yk = ψq.
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Condition (ii) ensures that the log likelihood is well-defined for any θ ∈ Θ. Condition

(iii) ensures that the spline function is rotationally symmetric around the origin. This

condition is not strictly necessary, but allowing for asymmetry leads to more cumbersome

derivations due to the inclusion of the function µ(ψ) in the log likelihood and the score.

The derivations can also be easily adjusted to the case where y1 and/or yk in ψ are

replaced by b0 and/or bk, in order to be able to conveniently enforce non-negative slopes

beyond the outer knots, as b0 and bk are linear in y.

For feasibility of the theoretical derivations, (iii) of Assumption 1 imposes that the

knots are given a priori. We will also impose correct specification of the density and

we note that this assumption, together with having a fixed number of knots, is not in

line with a semiparametric setting. This is in accordance with the literature on the

mixed normal distribution, where the number of mixing components is considered fixed

for the purpose of deriving asymptotic properties of estimators. In practice, the number

of knots can be selected using an information criterion. Furthermore, theoretical results

can be straightforwardly extended to allow for potential misspecification of the density

and the parametric part of the model as in Blasques et al. (2022). This requires imposing

alternative assumptions on the data generating process and the parameter estimate then

converges to a pseudo-true parameter as the sample size grows to infinity. For ease of

exposition, we limit ourselves to the correctly specified case.

In this section, let ∥ · ∥ denote the Lp-norm for some p ≥ 1 when applied to a vector,

and when applied to a matrix let it denote the operator norm induced by this Lp-norm.

4.1. Location model

We start with the location model defined above, for which we put in place the following

basic assumptions

Assumption 2.

(i) Let {xt}t∈Z be generated according to equations (4) and (5) under g(f, ε;λ) = f+σε

and S(f) = 1 for all f ∈ F = R, for some θ0 ∈ Θ, where λ = σ2. Let Θ be such

that σ2 > 0 for any θ ∈ Θ.

(ii) Let |β| < 1 for all θ ∈ Θ.

Condition (i) ensures correct specification. The additional condition (ii) allows us to

establish stationarity, ergodicity and bounded moments of the sequence of observations

{xt}t∈Z using an application of Proposition 3.1 of Blasques et al. (2022):

12



Proposition 1. Let Assumptions 1 and 2 be satisfied. Then for any θ0 ∈ Θ, the sequence

of true time-varying components {ft}t∈Z and the sequence of observations {xt}t∈Z are SE

with bounded moments of any order.

Now we turn to the invertibility and asymptotic properties of the filter defined in

(6). Filter invertibility ensures that the filter does not depend on the deterministic

initialization f̂1 in the limit. This is important, as it ensures that the filter evaluated in

θ0 converges to the true time-varying parameter {ft}t∈Z. See for instance Blasques et al.
(2018) for a more thorough discussion on filter invertibility. To ensure invertibility, we

need the following additional assumption:

Assumption 3. Let the following contraction condition hold:

sup
z∈R,θ∈Θ

∣∣∣∣β − α
h′(z; t,y)

σ2

∣∣∣∣ < 1 .

In order to verify whether this contraction condition holds, we need to consider the

derivative of the cubic spline function h, i.e. h′(z) = ∂h(z)/∂z. This derivative looks as

follows:

h′(z) =


h′0(z) if z ≤ t1 ,

h′i(z) if ti < z ≤ ti+1 , for i = 1, . . . , k − 1 ,

h′k(z) if z > tk ,

where h′i for i = 0, . . . , k − 1 is given by:

h′i(z) = bi + 2ci(z − ti+1) + 3di(z − ti+1)
2 ,

and

h′k(z) = bk ,

where bi, ci and di are the spline coefficients of the spline h(·; t,y), implying that b0 = d0 =

0. By the linearity of the spline h beyond the outer knots, the derivative h′ is constant

beyond the outer knots. Due to the restrictions on the parameter set in Assumption

1, it follows that h′(z) is uniformly bounded over z ∈ R and ψ ∈ Ψ. Thus, there is a

nonempty parameter space Θ, for which this assumption holds.

Besides filter invertibility, the proposition below establishes the stationarity, ergodic-

ity, and existence of bounded moments of the limit filter uniformly over the parameter

space Θ. This will be useful for establishing consistency of the MLE. Furthermore, it

establishes convergence of the first and second order derivatives of the process of filtered

values to SE limit sequences with bounded moments of any order, which will be used for
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showing asymptotic normality. The first two results follow from applications of Propo-

sitions 3.2 and 3.4 of Blasques et al. (2022). For the third result, an adaptation of the

latter proposition is needed, because the cubic spline function is only twice continuously

differentiable.

Proposition 2. Let Assumptions 1, 2 and 3 hold. Then, the following results hold:

(i) The sequence {f̂t(θ)}t∈N converges exponentially fast almost surely2 (e.a.s.) uni-

formly over Θ to a unique SE limit sequence {ft(θ)}t∈Z as t → ∞, in other words

supθ∈Θ |f̂t(θ) − ft(θ)| e.a.s.→ 0 as t → ∞. Furthermore, E supθ∈Θ |ft(θ)|n < ∞ for

any n > 0.

(ii) The sequence {∂f̂t(θ)/∂θ}t∈N converges e.a.s. uniformly over Θ to an SE sequence

{∂ft(θ)/∂θ}t∈Z with E supθ∈Θ ∥∂ft(θ)/∂θ∥n <∞ for any n > 0.

(iii) The sequence {∂2f̂t(θ)/∂θ∂θ⊤}t∈N converges e.a.s. uniformly over Θ to an SE se-

quence {∂2ft(θ)/∂θ∂θ⊤}t∈Z with E supθ∈Θ ∥∂2ft(θ)/∂θ∂θ⊤∥n <∞ for any n > 0.

Based on the results of Propositions 1 and 2, we can now establish strong consistency

of the MLE θ̂T under the following additional conditions:

Assumption 4. Let

(i) α0 ̸= 0.

(ii) For b, b′ > 0 and ψ,ψ′ ∈ Ψ, let h(z/b;ψ) = h(z/b′;ψ′) hold for every z ∈ R if and

only if (b,ψ) = (b′,ψ′).

Conditions (i) and (ii) ensure identification of θ0. More specifically, condition (i) rules

out the degeneracy of ft and (ii) establishes the identification of ψ and σ. A sufficient

condition for condition (ii) to hold is that the spline function h(x; t,y) is such that its

second order derivative in x is differentiable in none of the knots. Intuitively, if h′′ is such

that it is differentiable at none of the knots, changing σ, will inherently change the spline

function h(x/b;ψ), as it will change the position of the discontinuities in the third order

derivative of h. On the other hand, in the extreme case that h′′ is differentiable in every

knot, there is a clear lack of identification, as this means that h(z) = az for some constant

a, such that H(z) = 1
2
az2. In that case, having (b,ψ) is clearly equivalent to having

(b/
√
d, dψ) for any d > 0, which implies that in this model ψ and σ are not separately

2The sequence {ŷt} converges exponentially fast almost surely to the sequence {yt}, if ct|ŷt−yt| a.s.→ 0

for some c > 1 as t → ∞.
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identified. Even if h′′ is differentiable only in a selection of the knots, an identification

problem might occur, as a different scaling of the knots could lead to an identical spline

function if the elements of ψ are appropriately re-scaled too. In conclusion, imposing that

the third order derivative of the spline h takes different values on each segment (−∞, t1),

(t1, t2), . . ., (tk,∞) is sufficient for condition (ii) of Assumption 4 to hold.

The next result provides the consistency of the MLE. We note that we cannot apply

the consistency theorem of Blasques et al. (2022), because it relies on the boundedness

of the log likelihood function and the score over the values of the time-varying parameter

f ∈ F , which does not hold for our current framework.

Theorem 1 (Consistency of MLE for location model). Let {xt}Tt=1 be a subset of con-

secutive observations from the sequence {xt}t∈Z for which Assumptions 1, 2, 3, and 4 are

satisified. Then the MLE satisfies θ̂T
a.s.→ θ0 as T → ∞.

Next, we establish the asymptotic normality of the MLE under the additional assump-

tion that θ0 lies in the interior of the parameter space Θ. Also in this case, the result of

Blasques et al. (2022) cannot be used because not all required quantities are uniformly

bounded in the time-varying parameter ft in this model.

Theorem 2 (Asymptotic normality of MLE for location model). Let the assumptions of

Theorem 1 be satisfied and let θ0 be in the interior of Θ. Then, the MLE θ̂T satisfies
√
T (θ̂T − θ0) d→ N (0, I−1) as T → ∞, where I := −E[ℓ′′t (θ0)] is the Fisher information

matrix.

4.2. Scale model

For the scale model, we impose the following specification assumption.

Assumption 5.

(i) Let {xt}t∈Z be generated according to equations (4) and (5) under g(f, ε;λ) = m+

exp(f)ε and S(f) = 1 for all f ∈ R, for some θ0 ∈ Θ, and let λ = m.

(ii) Let 0 < β < 1 and α ≥ 0 for any θ ∈ Θ, such that ft takes values in F = [f,∞)

for some f > −∞.

Condition (i) ensures correct specification and condition (ii) ensures that ft is bounded

from below by some finite value, because we know that under Assumption 1, the score

function is uniformly bounded from below by some finite constant:

inf
θ∈Θ,x∈R,f∈R

s(f, x; t,y) = inf
θ∈Θ,z∈R

h(z; t,y)z − 1 = s > −∞ .
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More specifically, this holds because Assumption 1 ensures that the piecewise polynomial

h(·) is such that limz→+∞ h(z) = +∞ and limz→−∞ h(z) = −∞ (or limz→+∞ h(z) = c > 0

and limz→−∞ h(z) = −c < 0 for some constant c > 0) for any θ ∈ Θ. Due to the

exponential transformation of ft in the observation equation, the model is also well-

defined without having a lower bound for ft, but such a bound is necessary for the

derivations of the theoretical results, as exp(−ft) occurs in the score and in the log

likelihood function. The proposition below establishes the stationarity and ergodicity of

the observations under Assumptions 1 and 5.

Proposition 3. Let Assumptions 1 and 5 be satisfied. Then for any θ0 ∈ Θ, the sequence

of true time-varying components {ft}t∈Z and the sequence of observations {xt}t∈Z are SE,

and {ft}t∈Z has bounded moments of any order.

Given that the time-varying parameters and the observations are SE, we can now

establish filter invertibility under the following contraction condition:

Assumption 6. Let the following contraction condition hold:

E log sup
θ∈Θ

sup
f∈F

∣∣∣β − α [h′(z; t,y)z2 + h(z; t,y)z]
∣∣
z=(xt−m) exp(−f)σ−1

∣∣∣ < 0 .

The function h′(z)z2+h(z)z is either quadratic or linear in z beyond the outer knots,

so it is not bounded in z, which makes an invertibility condition that is also uniform over

the observations inapplicable. This complicates the derivation of bounded moments of

the derivative processes {∂ft(θ)/∂θ}t∈Z and {∂2ft(θ)/∂θ∂θ⊤}t∈Z, which is why we refrain

from establishing asymptotic normality for this model. As we impose that inff∈F f =

f > −∞, it is clear that there will be a nonempty parameter set Θ for which Assumption

6 holds. It is not straightforward to evaluate whether the contraction condition holds in

practice, as it requires evaluating an expectation. See Blasques et al. (2018) for a feasible

approach for verifying such a condition.

Proposition 4. Let Assumptions 1, 5 and 6 be satisfied. Then the sequence {f̂t(θ)}t∈N
converges e.a.s. to a unique SE limit sequence {ft(θ)}t∈Z as t → ∞ uniformly over Θ,

i.e. supθ∈Θ |f̂t(θ)− ft(θ)| e.a.s.→ 0 as t→ ∞.

Based on the results of the proposition above and under the identification conditions

in Assumption 4, we can now derive the consistency result below:

Theorem 3 (Consistency of MLE for scale model). Let {xt}Tt=1 be a subset of consecutive

observations from the sequence {xt}t∈Z for which Assumptions 1, 5, 6 and 4 are satisfied.

Then the MLE satisfies θ̂T
a.s.→ θ0 as T → ∞.
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5. Empirical applications

5.1. Location: U.S. monthly inflation

To illustrate the workings of our proposed score-driven spline location model, we apply the

model to the monthly U.S. inflation from January 1950 to September 2024 (i.e. T = 897).

In particular, we consider the percentage change in the consumer price index3 with respect

to the month before and we scale the data by a factor 10 to improve numerical stability.

Our score-driven spline location model allows us to filter the conditional expectation of

the observations in a flexible manner. As the inflation time series has occasional spikes,

see Figure 2, a nonlinear filter will be more suitable than a linear filter.

We consider the spline location model as defined in Section 4.1 with various con-

figurations. In particular, we apply the model with k = 6 and k = 8 knots. Hav-

ing more knots does not substantially improve the fit. For the knot vector we choose

t = 10(Φ−1(1/(k + 1)),Φ−1(2/(k + 1)), . . . ,Φ−1(k/(k + 1)))⊤, where Φ−1 denotes the

quantile function of the standard normal distribution. The knot vector is scaled by 10

to enhance numerical stability, as it ensures that σ2 has a comparable magnitude as the

other parameters in this example. For both choices of k, we apply versions that are (i)

asymmetric, (ii) symmetric and (iii) symmetric with the slopes beyond the outer knots

fixed at zero, from now on referred to as ‘slope 0’. We use the parametrization discussed

at the bottom of Section 3, i.e. instead of estimating y1 and/or yk, we directly estimate

the outer slopes b0 and/or bk. As a benchmark, we consider the special case where h

is forced to be linear, which boils down to using a Gaussian distribution. In particular,

in that case we set y = t, such that γ = σ. Finally, for comparison, we consider the

score-driven location model based on a Student’s t distribution, see Harvey and Luati

(2014). The parameters are estimated using ML. As the initial value for the filters, we

use the unconditional expectation of the time-varying component, i.e. ω. Furthermore,

we use a burn-in period of 12 observations to allow the filter to converge.

The parameter estimates are displayed in Table 1 alongside the log likelihood values

and Akaike’s Information Criterion (AIC), Takeuchi’s Information Criterion (TIC), see

Takeuchi (1976), and the Bayesian Information Criterion (BIC) values. The TIC is a

misspecification-robust version of the AIC, that unlike the AIC does not depend on the

3We use ‘Consumer Price Index for All Urban Consumers: All Items in U.S. City Average’ [CPI-

AUCSL] provided by the U.S. Bureau of Labor Statistics. Data were retrieved from FRED, Federal

Reserve Bank of St. Louis.
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information matrix equality to be valid. The corresponding score functions are plotted

in Figure 1. It stands out that all spline models have a comparable fit. The symmetric

model with k = 6 knots and slopes of zero beyond the outer knots has the best AIC

and BIC out of the spline models. Figure 1 shows that this model yields a robust filter,

as values close to zero receive a relatively larger update than values far from zero. The

asymmetric models lead to a better fit in terms of log likelihood, but the additional three

parameters do not lead to a sufficient improvement according to the information criteria.

Figure 1 shows that the left and middle parts of the asymmetric splines are similar to

the symmetric splines, but the right part is notably higher in magnitude.
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(a) Spline models with k = 6 knots.
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(b) Spline models with k = 8 knots.

Figure 1. Score function plots multiplied by α corresponding to the parameter estimates

in Table 1. The effective position of the knots and corresponding ordinates are marked

with dots.

The Gaussian model has the worst fit according to the information criteria, which can

be explained by the linear filter not being suitable for these data. Due to its linearity, the

filter is sensitive to outliers, which also explains why the estimated persistence parameter

β is lower for the Gaussian model than for the other models, as a lower β dampens the

effect of such outliers. The Student’s t model has a lower log likelihood value than the

spline models, but due to its low number of parameters, it has the best BIC value out

of all models considered, although the difference with the ‘slope 0’ model with k = 6

knots is small. On the other hand, in terms of AIC, the symmetric spline models are

preferred over the Student’s t model, and according to the TIC, which requires fewer

assumptions to be valid, even all nonlinear spline models are preferred over the Student’s

t model. Figure 1 shows that the score function of this model bears resemblance to those

of the symmetric score models, with the important difference that the Student’s t score

redescends to zero, whereas the score functions of the spline models diverge linearly or
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Table 1. Maximum likelihood estimates θ̂T for U.S. inflation data.

Spline

k = 6 k = 8

asym. symm. slope 0 asym. symm. slope 0 Gauss. Stud. t

ω 2.582 2.512 2.506 2.545 2.533 2.518 2.825 2.498

(0.555) (0.603) (0.609) (0.575) (0.592) (0.601) (0.298) (0.678)

β 0.966 0.967 0.968 0.968 0.967 0.967 0.833 0.969

(0.012) (0.012) (0.012) (0.012) (0.012) (0.012) (0.115) (0.012)

α 0.955 0.940 0.939 0.946 0.942 0.940 2.700 0.377

(0.154) (0.151) (0.151) (0.153) (0.151) (0.150) (1.000) (0.059)

σ2 3.335 2.124 1.804 3.062 1.102 4.005 6.103 3.089

(1.589) (0.555) (0.331) (0.353) (0.371) (1.053) (0.527) (0.246)

ν 4.093

(0.563)

b0 0.121 0.010

(0.179) (0.136)

y2 -0.589 -0.394

(0.165) (0.375)

y3 -1.237 -0.694

(0.354) (0.246)

y4 1.602 1.036 0.911 -1.379

(0.573) (0.196) (0.114) (0.208)

y5 0.000 0.574 0.644 0.913 0.473 1.476

(0.298) (0.103) (0.048) (0.174) (0.170) (0.283)

y6/bk 2.311 0.061 0 1.105 0.874 0.672

(4.851) (0.107) - (0.158) (0.121) (0.194)

y7 0.309 0.396 0.605

(0.400) (0.078) (0.369)

b8 4.065 0.021 0

(2.062) (0.042) -

LLH -1977.34 -1978.55 -1978.85 -1975.53 -1978.31 -1978.45 -2056.15 -1981.95

AIC 3974.67 3971.10 3969.70 3975.06 3972.61 3970.90 4120.30 3973.90

TIC 3976.80 3973.98 3972.00 3973.61 3975.31 3973.93 4143.34 3977.47

BIC 4022.53 4004.60 3998.41 4032.49 4010.89 4004.39 4139.45 3997.83

Standard errors reported in brackets. The columns ‘slope 0’ concern the symmetric spline

model where the slopes beyond the outer knots are fixed to 0. LLH, AIC, TIC and BIC

are the log likelihood, Akaike’s Information Criterion, Takeuchi’s Information Criterion and

Bayesian Information Criterion, respectively.

converge to a nonzero constant.

The filtered conditional location path of the symmetric spline model with k = 6 knots
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Figure 2. Filtered location for U.S. monthly inflation for the Gaussian and symmetric

spline location model with k = 6 knots with slopes beyond outer knots fixed at zero.

is plotted alongside that of the Gaussian model in Figure 2. The spline filter’s robustness

is clearly visible, as occasional spikes do not heavily impact the filtered location for the

spline model, whereas for the Gaussian model, there is a large distortion in the filtered

path whenever there is an outlier. Depending on the magnitude of the spike, the filter

needs many months to recover from such a distortion.

5.2. Scale: S&P 500 stock returns

To demonstrate the broad applicability of our proposed methodology, we apply the scale

model as defined in Section 4.2, to all stocks in the Standard & Poor’s (S&P) 500 index.

We take daily log returns from January 3, 2013 until August 21, 20244, and we only

include companies that were part of the S&P 500 index during this entire period. This

gives us 456 companies with T = 2, 928 observations each.

We apply the spline model with k = 6 knots, where we again consider versions with

general h, symmetric h and symmetric h with slopes of zero outside the outer knots.

We let t = 10(Φ−1(1/14),Φ−1(4/14),Φ−1(6/14),Φ−1(8/14),Φ−1(10/14),Φ−1(13/14))⊤.

Thus, here we do not take the standard normal quantile function of an equally spaced

grid of points in [0, 1], but instead the knots further away from 0.5 are more spread out.

The reason is that for this financial application, we expect there to be more intricate

behaviour of the score towards the tails of the distribution. We again consider the ver-

sion of our model with Gaussian and Student’s t errors as two benchmark models for

comparison. Recall that the Gaussian model is a special case of the spline model and

4Data were retrieved from Yahoo! Finance using the yfinance API for Python.
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bears resemblance to the seminal GARCH model of Engle (1982) and Bollerslev (1986),

although here we model the conditional log volatility instead of the conditional volatil-

ity. Furthermore, the Student’s t version is also known as the Beta-t-EGARCH model

(Harvey and Chakravarty, 2008).

For each company under consideration, we estimate the parameters of the five models

using ML. The log volatility filter is again initialized at the unconditional expectation

ω. Furthermore, the first 30 observations of the sample are burned to allow the filters

to converge. For the asymmetric and symmetric spline model, some of the numerical

optimizations fail, possibly due to the high flexibility of these models. Thus, in some

cases we might not have found the true ML estimator, and these results should therefore

be taken as a lower bound of how well these models can perform. A summary of the results

is presented in Table 2. The first panel shows how often each model has the highest log

likelihood or the lowest AIC and BIC out of the 456 companies. It must be noted that the

model with slopes of zero enforced beyond the outer knots surprisingly has the highest

log likelihood for one stock. This can be explained by the fact that the asymmetric and

symmetric models, a slope strictly greater than 0 is imposed, such that these models do

not exactly nest the ‘slope 0’ model. Furthermore, the table shows that in more than

90% of the cases, the spline models have a better log likelihood than the Student’s t

model. The Gaussian version of the model is never selected by the information criteria.

According to the AIC, the spline models are best for over 60% of the companies, while

according to the BIC, this is 20%. Between the spline models, the most parsimonious

model, i.e. the ‘slope 0’ model, is selected by the AIC in the majority of the cases, and by

the BIC for more than 98% of the companies. For this reason, the last sub panel of this

panel shows a direct comparison of this model and the Student’s t model, where it can be

seen that for just over 50% of the companies, the AIC selects the ‘slope 0’ model, while

the BIC selects this model in about 20% of the cases. Thus, for a substantial portion of

the companies, the spline model leads to better results than the competitive Student’s t

benchmark model, which underlines the broad applicability of this model.

The second panel of Table 2 shows the average values of the log likelihood and infor-

mation criteria over all companies. The average AIC of all spline models is lower than

that of the benchmark models. When considering all time series jointly, ignoring any de-

pendence between the time series, the AIC would thus select the symmetric spline model

with a slope of 0 beyond the outer knots imposed. On the other hand, the average BIC

is lowest for the Student’s t model. Finally, the bottom panel shows that whenever the
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Table 2. Summary results of scale models applied to log returns of 456 S&P 500 stocks

between January 3, 2013 and August 21, 2024.

Spline

asym. symm. slope 0 Stud. t Gauss.

perc. best

LLH 92.32% 0.00% 0.22% 7.46% 0.00%

AIC 26.75% 7.68% 27.85% 37.72% 0.00%

BIC 0.00% 0.66% 20.18% 79.17% 0.00%

LLH 99.78% 0.00% 0.22% -

AIC 32.24% 8.33% 59.43% - -

BIC 0.66% 1.10% 98.25% - -

LLH - - 69.52% 30.48% -

AIC - - 51.75% 48.25% -

BIC - - 20.39% 79.61% -

average

LLH -5307.11 -5310.38 -5310.78 -5312.64 -5572.76

AIC 10634.23 10634.76 10633.56 10635.28 11153.51

BIC 10693.94 10676.57 10669.39 10665.14 11177.40

cond. avg. diff.

LLH - - 3.289 1.402 -

AIC - - -6.536 -3.449 -

BIC - - -7.102 -7.163 -

‘Slope 0’ denotes the spline model where the spline is forced to have

slope 0 beyond the outer knots. The first panel shows the percentage of

companies for which each model is selected according to the information

criteria, where each sub-panels compares different models. The middle

panel shows the average criterion values. The bottom panel shows the

criterion value of the ‘slope 0’ model minus that of the Student’s t model,

conditional on the former being better according to that criterion (left

column) and vice versa (right column).

‘slope 0’ model has a better log likelihood value than the Student’s t model, the difference

in log likelihood is more than twice as high than in the remaining cases. Similarly, the

difference in AIC is substantially larger if the ‘slope 0’ model has the lowest AIC than if

the Student’s t model has the lowest AIC. This demonstrates that on average, whenever

the spline model has a better performance than the Student’s t model in terms of log

likelihood or AIC, it is considerably better, while if it is worse, it is only slightly worse.
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On the other hand, for the BIC, these differences are almost identical.

To provide some insight into the forms of the estimated spline functions for the 456

companies under consideration, Figure 3 shows the median and quantiles of the estimated

spline functions for the corresponding score functions, for each of the three spline models

over a grid of points. It must be noted that the quantile plots do not represent actual

spline and score functions of one of the companies, as the ordering of these functions

per company can be different per input-value for which the quantiles are calculated.

Therefore, we should be careful when interpreting these plots. The asymmetric model

has a median and quantiles that are not symmetric in the origin, as the slope of the right

tail tends to be slightly higher than that of the left tail. Stock returns are known to

often have a negatively skewed distribution, which is reflected by the quantile plots, as

the slope of the spline on the right tail is higher than the left tail, which means a thinner

right tail alluding to negative skewness. The plots also show that wider spreads of the

splines and corresponding score functions correspond to more flexible models. The plots

appear to indicate that for the symmetric model, the outer slopes are close to zero in the

majority of the cases. It is therefore not surprising that the ‘slope 0’ model is in many

cases preferred by the AIC. The median score functions seem to indicate that many of
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Figure 3. Median spline values and scaled score values for each fitted spline model of

456 S&P 500 companies. Percentile regions are indicated in different shades of grey.
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the score functions are outlier-robust, as their slopes are higher when the input value

is close to zero relative to being far away from zero. The ‘slope 0’ models lead to the

highest robustness, due to the linear divergence instead of quadratic divergence of the

score function.

6. Conclusion

We have introduced a novel semiparametric score-driven model that relies on a spline-

based density. The framework is presented in a general form, but particular attention is

given to dynamic location and dynamic scale models. For a given vector of knots, parame-

ter estimation is carried out by the method of maximum likelihood and consistency of the

resulting estimator for location and scale models is established. For the location model,

asymptotic normality of this estimator is also proven. The application of the location

model to a monthly time series of U.S. inflation shows the ability of the model to deliver

a robust filter. The more restricted model is most preferred for this data according to

the information criteria. The application of the scale model to the 456 daily return series

from the S&P 500 stock index leads to similar conclusions and demonstrates that the

score-driven model with a spline-based density is widely applicable. Various extensions

to the presented framework can be considered. First, an obvious extension is to consider

multivariate models such as in Creal et al. (2014), although the numerical integration

needed for the normalization constant of the density may become computationally chal-

lenging when the model dimension increases. Second, it is possible to explore the use of

a bounded or double-bounded support for the density. Third, an interesting extenstion is

to include multiple time-varying parameters in the model. Fourth, a regularization term

to the objective function can be added in order to enforce smoothness of the spline, pos-

sibly by using a similar approach as the one of Gu and Qiu (1993) or by using P-splines

as in Eilers and Marx (1996). The last extension enables the use of more parsimonious

models based on a higher number of knots.
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Appendix

A. Proofs of main results

Proof of Proposition 1. First we establish the stochastic properties of the true time-

varying parameter process {ft}t∈Z. Taking the approach of Blasques et al. (2022), define

the process {f̂ ε
t (θ)}t∈N using the following updating equation:

f̂ ε
t+1(θ) = ω(1− β) + βf̂ ε

t (θ) + αs(f̂ ε
t (θ), g(f̂

ε
t (θ), εt);γ) ,

for t = 1, 2, . . . and for some initial value f̂ ε
1 ∈ F and where {εt}t∈Z is iid with εt ∼ pε(εt).

We give f̂ ε
t the superscript ε to indicate that it is not a process of filtered values based

on observations, but a data generating process based on iid innovations εt.

It follows from the form of g that s(f, g(f, εt)) = h(εt)/σ. We can directly apply

Proposition 3.1 of Blasques et al. (2022). Condition (iii) of that proposition is satisfied,

because for any θ ∈ Θ, f̂1 ∈ R and any n > 0, E|s(f̂1, g(f̂1, εt);γ)|n < ∞, as h is a

piecewise polynomial which is linear for values beyond a certain threshold, and εt has

bounded moments of any order. Condition (iv) is also satisfied, as ∂s(f, g(f, εt))/∂f = 0,

such that the condition simplifies to |β| < 1 for any θ ∈ Θ. It then follows that for

any θ ∈ Θ, the sequence {f̂ ε
t (θ)}t∈N converges to a unique SE sequence {f ε

t (θ)}t∈Z with

E|f ε
t (θ)|n < ∞ for any n > 0. As θ0 ∈ Θ, it follows that the true ft = f ε

t (θ0) a.s., such

that {ft}t∈Z is also SE over time with bounded moments of any order.

As the function g(f, ε) = f +σε is measurable in f and ε, and {ft}t∈Z and {εt}t∈Z are

SE, it is follows from Proposition 4.3 of Krengel (1985) that {xt}t∈Z for xt = g(f ε
t (θ0), εt)

is SE. As εt and f ε
t (θ0) have bounded moments of any order, it is clear that this also

counts for xt, as it is the sum of these two variables.

Proof of Proposition 2. We can use that s(f, x) = h((x− f)/σ)/σ. The first result of the

proposition holds because conditions (iii) and (iv) of Proposition 3.2 of Blasques et al.

(2022) hold. Condition (iii) of that proposition holds, because for any f̂1, E supθ∈Θ |h((xt−
f̂1)/σ)/σ|n <∞ for any n > 0, as h is a piecewise third degree polynomial that diverges

linearly, xt has bounded moments of any order by Proposition 1 and Θ is compact and

is such that σ > 0 for any θ ∈ Θ. Condition (iv) of that proposition holds due to

Assumption 3, because ∂s(f, x)/∂f = −h′((x−f)/σ)/σ2, and clearly sup(f,x,θ)∈R×R×Θ |β−
αh′((x− f)/σ)/σ2| = sup(z,θ)∈R×Θ |β − αh′(z)/σ2|.
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Result (ii), follows from an application of the first part of Proposition 3.4 of Blasques

et al. (2022). In particular, this proposition requires in addition to the conditions that

were already in place, bounded moments uniformly over Θ of various quantities. Lemma

B.1 shows that the required moment bounds hold for any n > 0, such that result (ii) of

our proposition holds.

For result (iii), the second part of Proposition 3.4 of Blasques et al. (2022) cannot

be directly applied, because the cubic spline function h is only twice continuously dif-

ferentiable, which means that ∂3s(f, x)/∂f 3, ∂3s(f, x)/∂f∂σ2 and ∂3s(f, x)/∂f 2∂σ are

not everywhere well defined. The moment bounds of these derivatives are used in the

proof of Proposition 3.4 of Blasques et al. (2022) to show that ∂2s(f̂t(θ), xt)/∂f∂f ,

∂2s(f̂t(θ), xt)/∂f∂σ and ∂2s(f̂t(θ), xt)/∂σ∂σ converge e.a.s. to these derivatives evalu-

ated in the limit filter ft(θ), uniformly over Θ. Lemma B.3 shows that these convergence

results still hold in this setting. The other relevant derivatives exist and they have

bounded moments of any order, as shown in Lemma B.2. Thus the result of Proposition

3.4 of Blasques et al. (2022) holds for any n > 0, which finishes the proof.

Proof of Theorem 1. Firstly, the MLE θ̂T exists, because the log likelihood function is

almost surely continuous in θ ∈ Θ and Θ is compact, such that it follows from Weier-

strass’ theorem that a maximizer of the log likelihood function, i.e. the MLE, exists. The

log likelihood function is a.s. continuous because H(·;ψ) is linear in y, g−1 is continuous

in σ and log(C(ψ)) is continuous in y. The latter can be seen, because the expressions

of
∫ t1
−∞ exp(−H(x)) dx and

∫∞
tk

exp(−H(x)) dx derived in Section E.1 in the Supplemen-

tary Appendix are clearly continuous functions of y. Furthermore, as exp(−H(x;ψ)) is

continuous in (x,ψ) over the compact set [t1, tk] ×Ψ, implying it is uniformly continu-

ous, it follows that
∫ tk
t1

exp(−H(x;ψ)) dx is also continuous in y. Furthermore, the score

function s(f, x;γ) is also clearly continuous in all arguments, which implies the filtered

values f̂t(θ) are almost surely continuous in θ.

Due to the compactness of the parameter space Θ, consistency can be shown by

verifying the conditions below, as can be shown by standard arguments, see for instance

Wald (1949).

(C1) supθ∈Θ

∣∣∣ 1T ∑T
t=1 ℓ̂t(θ)− E[ℓt(θ)]

∣∣∣ a.s.→ 0 as T → ∞, where ℓt(θ) = log px(xt|ft(θ);γ).

(C2) The true parameter θ0 is the unique maximizer of the limit criterion: E[ℓt(θ)] <

E[ℓt(θ0)] for any θ ∈ Θ,θ ̸= θ0.
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To show that condition (C1) holds, it is helpful to notice that by the triangle inequality:∣∣∣∣∣ 1T
T∑
t=1

ℓ̂t(θ)− E[ℓt(θ)]

∣∣∣∣∣ ≤
∣∣∣∣∣ 1T

T∑
t=1

ℓ̂t(θ)−
1

T

T∑
t=1

ℓt(θ)

∣∣∣∣∣+
∣∣∣∣∣ 1T

T∑
t=1

ℓt(θ)− E[ℓt(θ)]

∣∣∣∣∣ .
It is shown in Lemmas B.4 and B.5 that both terms on the right hand side converge to

zero almost surely as T → ∞ uniformly over θ ∈ Θ. Finally, Lemma B.6 shows that

condition (C2) holds.

Proof of Theorem 2. Let us follow the approach of the proof of Theorem 3.1 of Gorgi and

Koopman (2021), in which first the asymptotic normality of

θ̃T = argmax
θ∈Θ

1

T

T∑
t=1

ℓt(θ) ,

for ℓt(θ) = log px(xt|ft(θ);γ) is shown, and then the final result follows by showing that

θ̃T and θ̂T have the same limiting distribution.

We start by noting that ℓt(θ) = log px(xt|ft(θ);γ) = −H((xt − ft(θ))/σ;ψ) −
logC(ψ)−0.5 log σ2 is a.s. twice continuously differentiable in θ. This is the case because

the function H(·;ψ) is three times continuously differentiable, as h is a cubic spline. Fur-

thermore, it is linear in y, and therefore it is clearly differentiable in y. That the first

and second order derivatives of the limit filter ft(θ) exist, was shown in Proposition 2.

Finally, the normalization constant C(ψ) is twice continuously differentiable, as the in-

tegrals beyond the outer knots given in Section E.1 in the Supplementary Appendix are

clearly twice continuously differentiable in y, and the remaining part is an integral of

the function exp(−H(z;ψ)) on a compact domain, where the integrand is continuous in

z ∈ [t1, tk] and twice continuously differentiable in y. Thus, the integral and derivative

can be swapped by Leibniz rule.

The derivatives of ℓt(θ) are based on the observations {xt} and the limit processes

{ft(θ)}t∈Z, {∂ft(θ)/∂θ}t∈Z and {∂2ft(θ)/∂θ∂θ⊤}t∈Z, which are SE by Proposition 1 and

2. Thus, as the derivatives of ℓt are continuous in these processes, they are themselves

SE by Krengel (1985, Proposition 4.3). From the proof of Theorem 1, it follows that

θ̃T
a.s.→ θ0 where we assume now that θ0 lies in the interior of Θ. Then the following

conditions can be shown to imply
√
T (θ̃T − θ0) d→ N (0,−E[ℓ′′t (θ0)]−1) as T → ∞:

(A1) E supθ∈Θ ∥ℓ′′t (θ)∥ <∞ ,

(A2) −E[ℓ′′t (θ0)] is positive definite,
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(A3) 1√
T

∑T
t=1 ℓt(θ0)

d→ N (0,−E[ℓ′′t (θ0)]−1) as T → ∞ ,

Lemmas B.7, B.8 and B.9 show that these three conditions hold, respectively. To show

that θ̃T and θ̂T have the same asymptotic distribution, it suffices to show that

√
T sup
θ∈Θ

∥∥∥∥∥ 1T
T∑
t=1

ℓ′t(θ)−
1

T

T∑
t=1

ℓ̂′t(θ)

∥∥∥∥∥ a.s.→ 0 as T → ∞ ,

which holds by Lemma B.10.

Proof of Proposition 3. We use the same approach as for Propostion 1. The first result

follows from an application of Proposition 3.1 of Blasques et al. (2022). We have that

s(f ε, g(f ε, εt);γ) = h(εt)εt−1. Thus, condition (iii) of that proposition holds for any n >

0, as εt has bounded moments of any order and h is a piecewise third degree polynomial.

Furthermore, as ∂s(f ε, g(f ε, εt);γ)/∂f
ε = 0, condition (iv) of that proposition simplifies

to |β| < 1, which holds for any θ ∈ Θ as 0 < β < 1, which is imposed in Assumption 5.

Thus, it follows from Proposition 3.1 of Blasques et al. (2022) that for any f̂ ε
1 and for any

θ ∈ Θ, {f̂ ε
t (θ)}t∈N converges e.a.s. to a unique SE limit sequence {f ε

t (θ)}t∈N where the

elements f ε
t (θ) have bounded moments of any order. As θ0 ∈ Θ, it thus follows that the

true sequence of time-varying parameters {ft}t∈Z is SE with bounded moments of any

order. Finally, {xt}t∈Z is SE by the same argument as in Proposition 1.

Proof of Proposition 4. The convergence result follows from an application of the first

part of Proposition 3.2 of Blasques et al. (2022). It follows from Proposition 3 that {xt}t∈Z
is an SE sequence. We have that s(f, x;γ) = h((x −m) exp(−f))(x −m) exp(−f) − 1,

so for any f̂1 ∈ F , we have E supγ∈Γ log
+ |s(f̂1, xt;γ)| < ∞ as h is a piecewise cubic

spline, Γ is compact and xt has bounded moments of any order by Proposition 3. Thus,

condition (i) of Proposition 3.2 of Blasques et al. (2022) is satisfied. Because

∂s(f, x;γ)

∂f
= −h′((x−m) exp(−f))(x−m)2 exp(−2f)

− h((x−m) exp(−f))(x−m) exp(−f) ,

the condition in Assumption 6 ensures that condition (ii) of that proposition also holds.

Thus, indeed the sequence {f̂t(θ)}t∈N converges e.a.s. to a unique SE limit sequence

{ft(θ)}t∈Z as t→ ∞ uniformly over Θ.
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Proof of Theorem 3. The existence result holds by the same argumentation as for Theo-

rem 1.

Using the proof of Theorem 4.1 of Blasques et al. (2018), which is similar to Theorem

4.1 of Straumann and Mikosch (2006), we know that the following three conditions are

sufficient for showing consistency.

(C1) supθ∈Θ

∣∣∣ 1T ∑T
t=1 ℓ̂t(θ)− 1

T

∑T
t=1 ℓt(θ)

∣∣∣ a.s.→ 0 as T → ∞, where we have ℓt(θ) =

log px(xt|ft(θ);γ).

(C2) sup(x,f,θ)∈R×F×Θ log px(x|f ;γ) <∞ and E|ℓ1(θ0)| <∞ ,

(C3) The true parameter θ0 is the unique maximizer of the limit criterion: E[ℓt(θ)] <

E[ℓt(θ0)] for any θ ∈ Θ,θ ̸= θ0.

Conditions (C1), (C2) and (C3) hold by Lemmas B.11, B.12 and B.13, respectively.

B. Lemmas

The proofs of the Lemmas below are given in Section C of the Supplementary Appendix.

Lemma B.1. Let the conditions of Proposition 2 be satisfied. Then for any n > 0:

E sup
θ∈Θ

|s(ft(θ), xt)|n <∞ , E sup
θ∈Θ

∥∥∥∥∂s(ft(θ), xt)∂ψ

∥∥∥∥n <∞ ,

E sup
θ∈Θ

∣∣∣∣∂s(ft(θ), xt)∂σ2

∣∣∣∣n <∞ , E sup
θ∈Θ

sup
f∈R

∣∣∣∣∂s(f, xt)∂f

∣∣∣∣n <∞ ,

E sup
θ∈Θ

sup
f∈R

∣∣∣∣∂2s(f, xt)∂f∂f

∣∣∣∣n <∞ , E sup
θ∈Θ

sup
f∈R

∥∥∥∥∂2s(f, xt)∂f∂ψ

∥∥∥∥n <∞ ,

E sup
θ∈Θ

sup
f∈R

∣∣∣∣∂2s(f, xt)∂f∂σ2

∣∣∣∣n <∞ .

Lemma B.2. Let the conditions of Proposition 2 be satisfied. Then for any n > 0:

E sup
θ∈Θ

∥∥∥∥∂2s(ft(θ), xt)∂ψ∂ψ⊤

∥∥∥∥n <∞ , E sup
θ∈Θ

∣∣∣∣∂2s(ft(θ), xt)∂σ2∂σ2

∣∣∣∣n <∞ ,

E sup
θ∈Θ

∥∥∥∥∂2s(ft(θ), xt)∂ψ∂σ2

∥∥∥∥n <∞ , E sup
θ∈Θ

sup
f∈R

∥∥∥∥ ∂3s(f, xt)∂ψ∂ψ⊤∂f

∥∥∥∥n <∞ ,

E sup
θ∈Θ

sup
f∈R

∥∥∥∥∂3s(f, xt)∂ψ∂σ2∂f

∥∥∥∥n <∞ , E sup
θ∈Θ

sup
f∈R

∥∥∥∥∂3s(f, xt)∂ψ∂f∂f

∥∥∥∥n <∞ .
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Lemma B.3. Let the conditions of Proposition 2 be satisfied. Then

sup
θ∈Θ

∣∣∣∣∣ ∂2s(f, xt)∂f∂f

∣∣∣∣
f=f̂t(θ)

− ∂2s(f, xt)

∂f∂f

∣∣∣∣
f=ft(θ)

∣∣∣∣∣ e.a.s.→ 0 as t→ ∞ ,

sup
θ∈Θ

∣∣∣∣∣ ∂2s(f, xt)∂σ2∂f

∣∣∣∣
f=f̂t(θ)

− ∂2s(f, xt)

∂σ2∂f

∣∣∣∣
f=ft(θ)

∣∣∣∣∣ e.a.s.→ 0 as t→ ∞ ,

sup
θ∈Θ

∣∣∣∣∣∂2s(f̂t(θ), xt)∂σ2∂σ2
− ∂2s(ft(θ), xt)

∂σ2∂σ2

∣∣∣∣∣ e.a.s.→ 0 as t→ ∞ .

Lemma B.4. Let the conditions of Theorem 1 hold. Then

sup
θ∈Θ

∣∣∣∣∣ 1T
T∑
t=1

ℓ̂t(θ)−
1

T

T∑
t=1

ℓt(θ)

∣∣∣∣∣ a.s.→ 0 as T → ∞ .

Lemma B.5. Let the conditions of Theorem 1 hold. Then

sup
θ∈Θ

∣∣∣∣∣ 1T
T∑
t=1

ℓt(θ)− E[ℓt(θ)]

∣∣∣∣∣ a.s.→ 0 as T → ∞ .

Lemma B.6. Let the conditions of Theorem 1 hold. Then the true parameter θ0 is the

unique maximizer of the limit criterion:

E[ℓt(θ)] < E[ℓt(θ0)] for any θ ∈ Θ,θ ̸= θ0 .

Lemma B.7. Let the conditions of Theorem 2 hold. Then

E sup
θ∈Θ

∥ℓ′′t (θ)∥ <∞ .

Lemma B.8. Let the conditions of Theorem 2 hold. Then −E[ℓ′′t (θ0)] is positive definite.

Lemma B.9. Let the conditions of Theorem 2 hold. Then

1√
T

T∑
t=1

ℓt(θ0)
d→ N (0,−E[ℓ′′t (θ0)]−1) as T → ∞ .

Lemma B.10. Let the conditions of Theorem 2 hold. Then

√
T sup
θ∈Θ

∥∥∥∥∥ 1T
T∑
t=1

ℓ′t(θ)−
1

T

T∑
t=1

ℓ̂′t(θ)

∥∥∥∥∥ a.s.→ 0 as T → ∞ .
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Lemma B.11. Let the conditions of Theorem 3 hold. Then

sup
θ∈Θ

∣∣∣∣∣ 1T
T∑
t=1

ℓ̂t(θ)−
1

T

T∑
t=1

ℓt(θ)

∣∣∣∣∣ a.s.→ 0 as T → ∞ .

Lemma B.12. Let the conditions of Theorem 3 hold. Then sup(x,f,θ)∈R×F×Θ log px(x|f ;γ) <
∞ and E|ℓ1(θ0)| <∞ .

Lemma B.13. Let the conditions of Theorem 3 hold. Then the true parameter θ0 is the

unique maximizer of the limit criterion:

E[ℓt(θ)] < E[ℓt(θ0)] for any θ ∈ Θ,θ ̸= θ0 .
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Supplementary Appendix of

Score-driven time-varying parameter models with

spline-based densities

C. Proofs of lemmas

Proof of Lemma B.1. See Section D.1 for the expressions of the derivatives.

That for any n > 0, E supθ∈Θ |s(ft(θ), xt)|n < ∞, E supθ∈Θ ∥∂s(ft(θ), xt)/∂ψ∥n <

∞, and E supθ∈Θ |∂s(ft(θ), xt)/∂σ2|n < ∞, follows from the assumptions on Θ and the

fact that s(ft(θ), xt), ∂s(ft(θ), xt)/∂ψ and ∂s(ft(θ), xt)/∂σ
2 are all at most third order

piecewise polynomials evaluated in xt−ft(θ), and xt and ft(θ) are known to have bounded

moments of any order by Propositions 1 and 2(i). In particular, due to the compactness

of Θ, the conditions on ψ that ensure the spline-based density is well-defined and σ > 0

for any θ ∈ Θ, the expectation of the supremum over Θ of these quantities will be finite.

For the remaining expectations, so those with a supremum over f ∈ R, it can be argued

that the derivatives are uniformly bounded over θ ∈ Θ, f ∈ R and x ∈ R. In particular,

it is clear that supz∈R,ψ∈Ψ |h′(z;ψ)| < D for some constant D < ∞. Furthermore, the

second order derivative of h is not only such that supz∈R,ψ∈Ψ |h′′(z;ψ)| < D for some

D < ∞, but also has value zero outside the outer knots, due to h being linear outside

the outer knots. It follows that also supz∈R,ψ∈Ψ |zh′′(z;ψ)| < D for some D < ∞. By

again taking into account the assumptions on Θ, it is clear that the derivatives are indeed

uniformly bounded over f and θ, and therefore have bounded moments of any order.

Proof of Lemma B.2. See Section D.1 for the expressions of the derivatives.

For the expectations without a supremum over f ∈ R and the expectations with a

supremum over f ∈ R, exactly the same two respective argumentations can be used as in

the proof of Lemma B.1. Here we also need to use that supz∈R,ψ∈Ψ |z2h′′(z;ψ)| < D for

some constant D <∞, which holds because h′′(z;ψ) = 0 whenever z < t1 or z > tk.

Proof of Lemma B.3. The derivative

∂2s(f, xt)

∂f∂f
=

1

σ3
h′′
(
x− f

σ
;ψ

)
,

is a continuous piecewise linear function of x− f . Due to the compactness of Θ and the

other conditions in place, it is clear that the function h′′ is Lipschitz continuous uniformly
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over ψ ∈ Ψ, i.e. there exists a constant K such that supψ∈Ψ |h′′(z1;ψ) − h′′(z2;ψ)| <
K|z1 − z2| for any z1, z2 ∈ R. Therefore,

sup
θ∈Θ

∣∣∣∣∣ ∂2s(f, xt)∂f∂f

∣∣∣∣
f=f̂t(θ)

− ∂2s(f, xt)

∂f∂f

∣∣∣∣
f=ft(θ)

∣∣∣∣∣
= sup
θ∈Θ

∣∣∣∣∣ 1σ3
h′′

(
xt − f̂t(θ)

σ
;ψ

)
− 1

σ3
h′′
(
xt − ft(θ)

σ
;ψ

)∣∣∣∣∣
≤ sup
θ∈Θ

1

σ3
K sup

θ∈Θ

1

σ
sup
θ∈Θ

∣∣∣ft(θ)− f̂t(θ)
∣∣∣ e.a.s→ 0 ,

as t→ ∞, because σ > 0 for any θ ∈ Θ, Θ is compact and f̂t(θ) converges e.a.s. to ft(θ)

uniformly over Θ by Proposition 2(i).

For the second derivative under consideration,

∂2s(f, x;γ)

∂σ2∂f
=

1

σ4
h′
(
x− f

σ
;ψ

)
− x− f

σ5
h′′
(
x− f

σ
;ψ

)
,

we will show the e.a.s. convergence of the two terms separately, which implies convergence

of the total expression by the subadditivity of the sup-norm. The first term is continuously

differentiable in f , so an application of the mean value theorem gives:

sup
θ∈Θ

∣∣∣∣∣ 1σ4
h′

(
xt − f̂t(θ)

σ
;ψ

)
− 1

σ4
h′

(
xt − f̂t(θ)

σ
;ψ

)∣∣∣∣∣
≤ sup

f∈R,θ∈Θ

∣∣∣∣ 1σ5
h′′
(
xt − f

σ
;ψ

)∣∣∣∣ |f̂t(θ)− ft(θ)|

≤ D|f̂t(θ)− ft(θ)| e.a.s.→ 0 ,

as t → ∞, where D = supθ,z |h′′(z;ψ)/σ5|, which is finite because h′′ is continuous and

is zero for any z < t1 and z > tk by construction and Θ is compact with σ > 0.

For the remaining term, let zt(θ) = (xt − ft(θ))/σ and ẑt(θ) = (xt − f̂t(θ))/σ. Then,

sup
θ∈Θ

∣∣∣∣ ẑt(θ)σ4
h′′ (ẑt(θ);ψ)−

zt(θ)

σ4
h′′ (zt(θ);ψ)

∣∣∣∣ e.a.s.→ 0 ,

as t → ∞ by Lemma TA.14 of Blasques et al. (2022), because clearly supθ∈Θ |ẑt(θ) −
zt(θ)| e.a.s.→ 0 and supθ∈Θ |h′′ (ẑt(θ);ψ) − h′′ (zt(θ);ψ) | e.a.s.→ 0, by the uniform Lipschitz

continuity of h′′, and zt(θ) and h
′′ (zt(θ);ψ) have a bounded log+-moment uniformly over

θ ∈ Θ.

Finally, given that

∂2s(f, x;γ)

∂σ2∂σ2
=

3

4σ5
h

(
x− f

σ
;ψ

)
+

5(x− f)

4σ6
h′
(
x− f

σ
;ψ

)
,
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the final convergence result follows from an application of the mean value theorem, the

e.a.s. convergence of f̂t(θ) to ft(θ) uniformly over Θ, and the observation that the deriva-

tive of the expression with respect to f is bounded:

sup
x∈R,f∈R,θ∈Θ

∣∣∣∣ 3

4σ6
h′
(
x− f

σ
;ψ

)
+

5(x− f)

4σ7
h′′
(
x− f

σ
;ψ

)∣∣∣∣ = D̃ ,

for some finite constant D̃, due to h′(z) and zh′′(z) being bounded in z and Θ being

compact.

Proof of Lemma B.4. To prove the result holds, it is sufficient to show that supθ∈Θ |ℓ̂t(θ)−
ℓt(θ)| e.a.s.→ 0 by Lemma 2.1 of Straumann and Mikosch (2006). The expression of ℓt(θ)

is given in (D.1). Only the first term, −H((xt − ft(θ))/σ;ψ), contains ft(θ), so we

can disregard the other terms. By construction, H(·;ψ) is a continuously differentiable

function. Thus, if we let ẑt(θ) := (xt− f̂t(θ))/σ and zt(θ) := (xt− ft(θ))/σ we can apply

the mean value theorem to obtain:

|H (ẑt(θ);ψ)−H (zt(θ);ψ)| ≤ |h (z∗t (θ))| |ẑt(θ)− zt(θ)| ,

for some processes {ẑt(θ)} and {zt(θ)}, and where z∗t (θ) is on the line segment between

ẑt(θ) and zt(θ). As h is also continuously differentiable, we can apply the mean value

theorem to the first factor on the right-hand side, which gives

|h (z∗t (θ);ψ)| ≤ |h (zt(θ);ψ)|+ |h′ (z∗∗t (θ);ψ)| |z∗t (θ)− zt(θ)|

≤ |h (zt(θ);ψ)|+ sup
z∈R

|h′ (z;ψ)| |ẑt(θ)− zt(θ)| ,

for some value z∗∗t (θ) on the line segment between z∗t (θ) and zt(θ), and where we use

for the second inequality that z∗t (θ) is on the line segment between zt(θ) and ẑt(θ). It

therefore follows that:

sup
θ∈Θ

|H (ẑt(θ);ψ)−H (zt(θ);ψ)|

≤
(
sup
θ∈Θ

|h (zt(θ);ψ)|+ sup
θ∈Θ

sup
z∈R

|h′ (z;ψ)| sup
θ∈Θ

|ẑt(θ)− zt(θ)|
)
sup
θ∈Θ

|ẑt(θ)− zt(θ)| ,

which converges e.a.s. to zero as t→ ∞ as long as supθ∈Θ |ẑt(θ)− zt(θ)| e.a.s.→ 0 as t→ ∞
and ztt∈Z is stationary with a bounded log+-moment. This follows because Θ is compact

and supθ∈Θ supz∈R |h′(z;ψ)| = D for some finite constant D due to the boundedness

of h′ for every ψ ∈ Ψ. The result then follows from Lemma 2.1 of Straumann and
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Mikosch (2006), which says that if ξt
e.a.s.→ 0 as t→ ∞ and {vt} is strictly stationary with

E log+ |vt| <∞, then vtξt
e.a.s.→ 0 as t→ ∞.

Now it remains to be shown that {ẑt} converges to {zt} e.a.s. and {zt} has the required
properties. We have that

sup
θ∈Θ

|ẑt(θ)− zt(θ)| = sup
θ∈Θ

∣∣∣∣∣xt − f̂t(θ)

σ
− xt − ft(θ)

σ

∣∣∣∣∣
≤ sup
θ∈Θ

1

σ
· sup
θ∈Θ

∣∣∣f̂t(θ)− ft(θ)
∣∣∣ e.a.s.→ 0 ,

as t → ∞, due to the compactness of Θ and σ2 > 0 for any θ ∈ Θ by assumptions, and

the convergence result of Proposition 2(i). Finally, {zt(θ)}t∈Z = {(xt − ft(θ))/σ}t∈Z is

clearly SE by Krengel (1985, Proposition 4.3) and it has bounded moments of any order

due to xt and ft(θ) having bounded moments of any order by Propositions 1 and 2. This

concludes the proof.

Proof of Lemma B.5. See Equation (D.1) for an expression of ℓt. The elements ℓt(·) are
continuous functions from Θ to R. Furthermore, {ℓt(θ)}t∈Z is SE for every θ ∈ Θ by

Krengel (1985, Proposition 4.3), as it is a continuous function of the elements of the SE

sequences {xt}t∈Z and {ft(θ)}t∈Z.
Just as in Lemma TA.6 of Blasques et al. (2022), we apply the ergodic theorem

for separable Banach spaces of Rao (1962) to {ℓt(·)}t∈Z, which requires us to show

E supθ∈Θ |ℓt(θ)| <∞. As the last two terms of ℓt(θ) are deterministic and time invariant,

we only have to consider the first term here. We can see immediately that

E sup
θ∈Θ

∣∣∣∣H (xt − ft(θ)

σ
;ψ

)∣∣∣∣ <∞ ,

because (i) Θ is compact, (ii) σ > 0 for any θ ∈ Θ, and (iii) E|xt|n < ∞ and

E supθ∈Θ |ft(θ)|n < ∞ for any n > 0 by Propositions 1 and 2, and H is a continu-

ous piecewise quartic polynomial in xt − ft(θ). Thus, we can apply the ergodic theorem

and the result follows.

Proof of Lemma B.6. It follows from the proof of Lemma B.5 that E[ℓt(θ)] exists and is

bounded for any θ ∈ Θ. It can be shown straightforwardly, see for instance Blasques
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et al. (2018, Theorem 4.1), that under correct specification, in case ℓt(θ) = ℓt(θ0) holds

almost surely if and only if θ = θ0, then θ0 is the unique maximizer of E[ℓt(θ)].

For ease of exposition, we introduce the notation ℓ(ft(θ),γ) := ℓt(θ). We start by

showing that ℓ(ft(θ0),γ0) = ℓ(ft(θ),γ) a.s. if and only if ft(θ0) = ft(θ) a.s. and γ = γ0.

Notice that ft(θ0) is the true time-varying parameter, as we know from Proposition 2

that {ft(θ0)}t∈Z is the unique limit sequence of {f̂t(θ0)}t∈N, which implies that xt =

ft(θ0) + σ0εt.

First, we notice that because each vector ψ ∈ Ψ leads to a unique cubic spline

function h(·;ψ), it also leads to a unique anti-derivative H(·;ψ). Despite to the anti-

derivative H for a given ψ only being unique up to an additive constant, it is clear that

for a, a′ ∈ R and ψ,ψ′ ∈ Ψ, we have a + H(z;ψ) = a′ + H(z;ψ′) for all z ∈ R if and

only if (a,ψ) = (a′,ψ′).

Building on this, we notice that for any a, a′, c, c′ ∈ R, b, b′ > 0, and ψ,ψ′ ∈ Ψ,

a + H((z − c)/b;ψ) = a′ + H((z − c′)/b′;ψ′) for any z ∈ R if and only if (a, b, c,ψ) =

(a′, b′, c′,ψ′). This follows because the division by b essentially leads to a scaling of the

knots t, while c effectively yields a shift of the knots, as it can be seen that h((z −
c)/b; t,y) = h(z − c; bt,y) = h(z; bt+ c,y). Due to the rotational symmetry around the

origin that is imposed on the spline h, it is clear that a shift of the knots will always lead

to an inherently different spline function, which implies that we must have c = c′ for the

equality above to hold. Furthermore, from the second part of Assumption 4, it follows

that h((z − c)/b;ψ) = h((z − c)/b′;ψ′) for any z ∈ R if and only if (b,ψ) = (b,ψ′). This

concludes the proof for the statement above.

Therefore, if ε1 ∼ pε(ε1;ψ), where pε(·;ψ) denotes the spline-based density for pa-

rameter ψ ∈ Ψ, then a′ +H((ε1 − c′)/b′;ψ′) = a′′ +H((ε1 − c′′)/b′′;ψ′′) a.s. if and only

if (a′, b′, c′,ψ′) = (a′′, b′′, c′′,ψ′′), as ε1 is an absolutely continuous random variable with

support on the entire real line. Thus, as ℓ(ft(θ),γ) = ℓ(ft(θ0),γ0) a.s. if and only if

−H

(
ft(θ0)− ft(θ) + σ0εt

σ
;ψ

)
− logC(ψ)− 1

2
log σ2

= −H (εt;ψ0)− logC(ψ0)−
1

2
log σ2

0 ,

holds almost surely, it follows that ℓ(ft(θ),γ) = ℓ(ft(θ0),γ0) a.s. if and only if γ = γ0

and ft(θ0) = ft(θ) a.s.. To show that ℓt(θ) = ℓt(θ0) a.s. if and only if θ = θ0, it now only

remains to be shown that given γ = γ0, ft(θ) = ft(θ0) a.s. if and only if θ = θ0. Because

{ft(θ)}t∈Z is SE for any θ ∈ Θ, then if ft(θ) = ft(θ0) a.s. for some t ∈ Z, this equality

holds almost surely for any t ∈ Z. Let us assume that θ ∈ Θ is such that ft(θ) = ft(θ0)
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a.s., then it follows from the form of the updating equation that

ft+1(θ0)− ft+1(θ) = ω0(1− β0)− ω(1− β) + (β0 − β)ft(θ0) + (α0 − α)
1

σ0
h (εt;ψ0) ,

where εt ∼ pε(εt;ψ0). We start by proving that to have ft(θ0) = ft(θ) a.s., we must have

ω(1− β) = ω0(1− β0). We use a proof by contradiction. Say ω(1− β) ̸= ω0(1− β0) and

ft+1(θ0) − ft+1(θ) = 0 a.s., then we must have (β0 − β)ft(θ0) + (α0 − α) 1
σ0
h (εt;ψ0) =

ω(1−β)−ω0(1−β0) ̸= 0 a.s. As the first and second term of the expression on the left hand

side are independent, this equality can only hold a.s. if both terms are constants and at

least one is different from zero. However, neither of these terms can be nonzero constants,

because ft(θ0) is non-deterministic due to α0 ̸= 0 by Assumption 4 and h(εt;ψ0) is also

clearly non-deterministic under the conditions imposed on Ψ. Therefore, we must have

ω(1− β) = ω0(1− β0). Secondly, we show that β = β0 is needed to have ft(θ0) = ft(θ)

a.s.. If by contradiction we say that β ̸= β0, then to have ft+1(θ0)− ft+1(θ) = 0 a.s., we

must have (α0−α) 1
σ0
h(ε;ψ0) = (β−β0)ft(θ0) ̸= 0 a.s., which is ruled out by h(ε;ψ0) and

ft(θ0) being independent and non-deterministic. Therefore, we must also have β = β0,

which together with ω(1 − β) = ω0(1 − β0) and the assumption that |β0| < 1, implies

that we must have ω = ω0. Finally, we must clearly also have α = α0, because this is the

only way to have (α0 − α) 1
σ0
h (εt;ψ0) = 0 a.s.. This finishes the proof.

Proof of Lemma B.7. The expression of ℓ′′t (θ) = ∂2ℓt(θ)/∂θ∂θ
⊤ is given in Section D.2.

By the sub-additivity of the norm supθ∈Θ ∥ · ∥, it suffices to show that the expectation

of this norm for each term in this expression is bounded. That all these expectations

are bounded follows readily from the following reasons: (i) Θ is a compact set such

that for any θ ∈ Θ, σ > 0 and ψ is such that exp(−H(x;ψ)) is integrable, (ii) by

Proposition 1 we have E|xt|n < ∞ and by Proposition we have 2 E supθ∈Θ |ft(θ)| < ∞,

E supθ∈Θ |∂ft(θ)/∂θ|n < ∞ and E supθ∈Θ |∂2ft(θ)/∂θ∂θ⊤|n < ∞ for any n > 0, and

(iii) h(·;ψ) being a piecewise cubic function and h′(·;ψ) being a piecewise quadratic

function for any y ∈ Rk, and (iv) the assumptions on Ψ that ensure that for any ψ ∈ Ψ,

H(x;ψ) diverges at least linearly as |x| → ∞, which implies that infψ∈ΨC(ψ) > 0 and

supψ∈Ψ ∥∂C(ψ)/∂ψ∥ < ∞ and supψ∈Ψ ∥∂2C(ψ)/∂ψ∂ψ⊤∥ < ∞. For the terms that

contain products of random variables, the finiteness of the expectation of the supremum

follows from the sub-multiplactivity of the norm and the Cauchy-Schwarz inequalty.
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Proof of Lemma B.8. We use an approach similar to the proof of Lemma A.5 of Gorgi and

Koopman (2021). Due to the correct specification assumption and the existence of a finite

moment of the second order derivative of the log likelihood function shown in Lemma

B.7, we can use the Fisher information matrix equality −E[ℓ′′t (θ0)] = E[ℓ′t(θ0)ℓ′t(θ0)⊤].

See Equation D.2 for the expression of ℓt(θ). Because E[ℓ′t(θ0)ℓ′t(θ0)⊤] is positive semi-

definite by construction, we only have to show that it is full rank, which can be achieved

by proving that

v⊤ℓ′t(θ0) = v
⊤





0

0

0

− 1
2σ2

0
(1− εth (εt;ψ0))

−∂H(εt;ψ0)
∂ψ

− 1
C(ψ0)

∂C(ψ0)
∂ψ


+



∂ft(θ0)
∂ω

∂ft(θ0)
∂β

∂ft(θ0)
∂α

∂ft(θ0)
∂σ2

∂ft(θ0)
∂ψ


1

σ0
h (εt;ψ0)


= 0 a.s. ,

(C.1)

if and only if v = 0, where v ∈ R4+q. Furthermore, we use that ft(θ0) is almost surely

equal to the true value of ft in xt = ft + σ0εt due to the correct specification assumption

and due to {ft(θ0)}t∈Z being the unique limit sequence of {f̂t(θ0)}t∈N for any θ ∈ Θ by

Proposition 2.

Let us split the vector v into v = (v⊤1 , v2,v
⊤
3 )

⊤, where v1 ∈ R3, v2 ∈ R and v3 ∈ Rq.

Then, v⊤ℓt(θ0) = 0 a.s. for v ̸= 0 only holds in case either (i) v2 = 0 and v3 ̸= 0, (ii)

v2 ̸= 0 and v3 ̸= 0, or (iii) v1 ̸= 0, v2 = 0 and v3 = 0. We will now prove that neither of

these options are possible here. Because h(εt;ψ0) ̸= 0 a.s., with probability one we have

that (C.1) implies

v⊤1


∂ft(θ0)

∂ω

∂ft(θ0)
∂β

∂ft(θ0)
∂α

+

v2
v3

⊤∂ft(θ0)
∂σ2

∂ft(θ0)
∂ψ

 =
σ0

h(εt;ψ0)

v2
v3

⊤ 1
2σ2

0
(1− εth (εt;ψ0))

∂H(εt;ψ0)
∂ψ

+ 1
C(ψ0)

∂C(ψ0)
∂ψ

 .

(C.2)

The terms on the left-hand side are Gt−1-measurable, while those on the right-hand side

are not. Thus, this equality can only hold almost surely if both sides are equal to some

constant almost surely. We first show that this is not possible under option (i); v2 = 0 and

v3 ̸= 0. In that case, we must have that v⊤3 (∂H(εt;ψ0)/∂ψ + C(ψ0)
−1∂C(ψ0)/∂ψ) = 0

a.s., because (h(εt;ψ0))
−1 is non-degenerate. As C(ψ0)

−1∂C(ψ0)/∂ψ is constant, it

suffices to show that v⊤3 ∂H(εt;ψ0)/∂ψ is non-degenerate whenever v3 ̸= 0. Due to the

linear dependence of the cubic spline coefficients on the vector of ordinates y, we can
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write for any ψ ∈ Rq and any z ∈ R:

H(z;ψ) = ψ⊤


H(z; e1)

H(z; e2)
...

H(z; eq)

 = ψ⊤∂H(z;ψ)

∂ψ
, (C.3)

where ei for i = 1, . . . , k denotes a q-dimensional vector with a 1 on entry i and zeroes

elsewhere. As H(εt;ψ) is clearly a non-degenerate function of εt for any ψ ̸= 0, it is

immediately clear that option (i) is ruled out.

We can now rule out option (ii) by showing that there exists no nontrivial linear

combination of εth(εt;ψ0) and ∂H(εt;ψ0)/∂ψ that is almost surely equal to a constant.

Because by (C.3) H(εt;ψ) = ψ
⊤∂H(εt;ψ)/∂ψ, where the derivative does not depend on

ψ, it suffices to show that there do not exist ψ̃ ∈ Rq and B ∈ R such that

εth(εt;ψ0) = H(εt; ψ̃) +B a.s.

Both functions zh(z;ψ0) and H(z; ψ̃) are piecewise quartic polynomials in z ∈ R, but

they are inherently different, as the former is only twice continuously differentiable under

the assumptions on Ψ, while the latter is three times continuously differentiable. In par-

ticular, their derivatives are different, as h(z; ψ̃) is a cubic spline function by construction

while, h(z;ψ0) + zh′(z;ψ0) is not, as Ψ is such that h′′ is non-differentiable at the knots

t under the current assumptions. Therefore, given that the density function pε is nonzero

on R, there exist no ψ̃ ∈ Rq and B ∈ R such that the equality above holds almost surely.

Thus, to have that the right-hand side of (C.2) is equal to a constant almost surely, we

must have v2 = 0 and v3 = 0.

For case (iii), we would need

1

σ0
h(εt;ψ0)v

⊤
1


∂ft(θ0)

∂ω

∂ft(θ0)
∂β

∂ft(θ0)
∂α

 = 0 a.s. ,

for v1 ̸= 0. First of all, we know that h(εt;ψ0)/σ0 is non-degenerate. Thus, for the

equality to hold almost surely, we must have that the inner product next to it, is equal

to zero almost surely. Looking at the expressions of the equations that describe these

derivative processes:

∂ft+1(θ0)

∂ω
= Bt

∂ft(θ0)

∂ω
+ 1− β0 ,
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∂ft+1(θ0)

∂β
= Bt

∂ft(θ0)

∂β
− ω0 + β0ft(θ0) ,

∂ft+1(θ0)

∂α
= Bt

∂ft(θ0)

∂α
+ s(ft(θ0), xt) ,

where Bt = β0 + α0
∂s(f, xt)

∂f

∣∣∣∣
f=ft(θ0)

,

we see that ∂ft(θ0)/∂ω, ∂ft(θ0)/∂β, and ∂ft(θ0)/∂α, are elements of autoregressive pro-

cesses that are identical, except for their ‘innovations’ being equal to 1−β0, −ω0+ft−1(θ0)

and h(εt−1;ψ0)/σ0, respectively. Clearly, none of the three processes is degenerate and

their ‘innovations’ take different values with probability one, as 1 is a constant and the

remaining two ‘innovations’ are continuous random variables that are independent of each

other. It follows that case (iii) is also ruled out, which concludes the proof.

Proof of Lemma B.9. We apply the central limit theorem of Billingsley (1999) for SE

martingale difference sequences to {ℓ′t(θ0)}t∈Z, which requires us to show that this se-

quence is an SE martingale difference sequence with E|ℓ′t(θ0)|2 < ∞. An application of

Krengel (1985, Proposition 4.3) tells us that {ℓ′t(θ0)}t∈Z is SE, as ℓ′t(θ0) is a continuous

function of ft(θ0), ∂ft(θ0)/∂θ and xt, which are elements of SE sequences by Proposi-

tions 1 and 2. That E|ℓ′t(θ0)|2 <∞ can be seen straightforwardly from the expression of

ℓ′t(θ0) that can be found in (C.1), as it is known that εt and ∂ft(θ0)/∂θ have bounded

moments of any order, and h and H are piecwise polynomials. Finally, {ℓ′t(θ0)}t∈Z is a

martingale difference sequence, because using the notation from the proof of Lemma B.8,

we can write

E [ℓ′t(θ0)|Gt−1] =



0

0

0

− 1
2σ2

0
(1− E[εth (εt;ψ0)])

−E
[
∂H(εt;ψ0)

∂ψ

]
− 1

C(ψ0)
∂C(ψ0)

∂ψ


+



∂ft(θ0)
∂ω

∂ft(θ0)
∂β

∂ft(θ0)
∂α

∂ft(θ0)
∂σ2

∂ft(θ0)
∂ψ


1

σ0
E[h(εt;ψ0)] = 0 ,

where we use that the derivative ∂ft(θ)/∂θ is Gt−1 measurable and that E[h(εt;ψ0)] = 0,

because h is rotationally symmetric around zero by construction, which implies that pε

is a symmetric distribution. Furthermore, E[εth(εt;ψ0)] = 1 follows from:

E[εth(εt;ψ0)] =

∫ ∞

−∞
xh(x;ψ0)pε(x) dx = −

∫ ∞

−∞
x
∂ log pε(x)

∂x
pε(x) dx
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= −
∫ ∞

−∞
xp′ε(x) dx = − [xpε(x)− PX∼pε(X ≤ x)]∞−∞ = 1 .

Finally, for i = 1, . . . , q, it can be seen using the expressions in Section D.2 that

E
[
∂H(εt;ψ0)

∂ψi

]
=

∫ ∞

−∞
H(x; ei)

exp(−H(x;ψ0))

C(ψ0)
dx = − 1

C(ψ0)

∂C(ψ0)

∂ψi

.

Thus, {ℓ′t(θ0)}t∈Z is indeed a martingale difference sequence and the central limit theorem

can be applied, which together with the Fisher information matrix equality, which was

argued to hold in the proof of Lemma B.8, concludes the proof.

Proof of Lemma B.10. By Lemma 2.1 of Straumann and Mikosch (2006) and the sub-

additivity of the sup-norm, it suffices to show that

sup
θ∈Θ

∥ℓ̂′t(θ)− ℓ′t(θ)∥
e.a.s.→ 0 as t→ ∞ .

By considering the expression of the first order derivative in (D.2), and using that

infθ∈Θ 1/σ > 0 under the imposed assumptions, it is clear that the following conver-

gence results are sufficient for this result to hold:

sup
θ∈Θ

∥∥∥∥∥h
(
xt − f̂t(θ)

σ
;ψ

)
∂f̂t(θ)

∂θ
− h

(
xt − ft(θ)

σ
;ψ

)
∂ft(θ)

∂θ

∥∥∥∥∥ e.a.s.→ 0 ,

sup
θ∈Θ

∣∣∣∣∣h
(
xt − f̂t(θ)

σ
;ψ

)
(xt − f̂t(θ))− h

(
xt − ft(θ)

σ
;ψ

)
(xt − ft(θ))

∣∣∣∣∣ e.a.s.→ 0 ,

sup
θ∈Θ

∥∥∥∥∥ ∂H (z;ψ)

∂ψ

∣∣∣∣
z=(xt−f̂t(θ))/σ

− ∂H (z;ψ)

∂ψ

∣∣∣∣
z=(xt−ft(θ))/σ

∥∥∥∥∥ e.a.s.→ 0 , (C.4)

as t → ∞. The first two results follow from applications of Corollary TA.16 of Blasques

et al. (2022), which tells us that if {ẑt(θ)}t∈N and {ŷt(θ)}t∈N converge e.a.s. to SE limit

sequences {zt(θ)}t∈Z and {yt(θ)}t∈Z as t → ∞, respectively, uniformly over Θ, then

in case E supθ∈Θ log+ |zt(θ)| < ∞ and E supθ∈Θ log+ |yt(θ)| < ∞ , supθ∈Θ |ẑt(θ)ŷt(θ) −
zt(θ)yt(θ)| e.a.s.→ 0 as t→ ∞. It is not hard to see that this result can be extended to the

case where either {ẑt(θ)}t∈N or {ŷt(θ)}t∈N is a vector process and the absolute value is

replaced by a norm ∥ · ∥. Thus, here it suffices to show that

sup
θ∈Θ

∣∣∣f̂t(θ)− ft(θ)
∣∣∣ e.a.s.→ 0 ,

sup
θ∈Θ

∥∥∥∥∥∂f̂t(θ)∂θ
− ∂ft(θ)

∂θ

∥∥∥∥∥ e.a.s.→ 0 ,
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sup
θ∈Θ

∣∣∣∣∣h
(
xt − f̂t(θ)

σ
;ψ

)
− h

(
xt − ft(θ)

σ
;ψ

)∣∣∣∣∣ e.a.s.→ 0 ,

as t→ ∞ and that the processes {ft(θ)}t∈Z, {∂ft(θ)/∂θ}t∈Z and {h((xt−ft(θ)/σ;ψ))}t∈Z
are SE and have a finite log+-moment uniformly over Θ. For the first two processes, all the

required results follow readily from Proposition 2. For the last process, the stationarity

and ergodicity follows from Krengel (1985, Proposition 4.3), as it is a continuous function

of SE sequences. Furthermore, the finite log+ moment follows from the assumptions on Θ,

the fact that xt and ft(θ) have been shown to have finite moments of any order uniformly

over Θ and h being a piecewise third degree polynomial. Finally, for the convergence

result, we can apply the mean value theorem, as h(·;ψ) is continuously differentiable and

has a uniformly bounded derivative under the current assumptions:

sup
θ∈Θ

∣∣∣∣∣h
(
xt − f̂t(θ)

σ
;ψ

)
− h

(
xt − ft(θ)

σ
;ψ

)∣∣∣∣∣
≤ sup
θ∈Θ

sup
z∈R

∣∣∣∣h′ (z;ψ)σ

∣∣∣∣︸ ︷︷ ︸
=D<∞

· sup
θ∈Θ

∣∣∣f̂t(θ)− ft(θ)
∣∣∣ e.a.s.→ 0 .

Now it only remains to be shown that (C.4) holds, which can be shown using the same

approach as is used in the proof of Lemma B.4, because ∂H(z;ψ)/∂ψi = H(z; ei) for

i = 1, . . . , q.

Proof of Lemma B.11. Using the same argument as in the proof of Lemma B.4, it is

sufficient to show that supθ∈Θ |ℓ̂t(θ)− ℓt(θ)| e.a.s.→ 0 as t → ∞. The expression of ℓt(θ) is

given by

ℓt(θ) = −H
(

xt −m

exp(ft(θ))
;ψ

)
− logC(ψ)− ft(θ) . (C.5)

As only the first and last term depend on ft(θ), the middle term can be disregarded. For

the final term we have

sup
θ∈Θ

|f̂t(θ)− ft(θ)| e.a.s.→ 0 as t→ ∞ ,

which follows directly from Proposition 3. Thus, it only remains to be shown that

sup
θ∈Θ

∣∣∣∣∣H
(

xt −m

exp(f̂t(θ))
;ψ

)
−H

(
xt −m

exp(ft(θ))
;ψ

)∣∣∣∣∣ e.a.s.→ 0 as t→ ∞ ,
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By arguments used in the proof of Lemma B.4, it suffices to show that

sup
θ∈Θ

∣∣∣∣∣ xt −m

exp(f̂t(θ))
− xt −m

exp(ft(θ))

∣∣∣∣∣ e.a.s.→ 0 as t→ ∞ ,

and that {(xt−m)/ exp(ft(θ))}t∈Z is SE and has a bounded log+-moment uniformly over

Θ. The convergence result holds by an application of the mean value theorem:

sup
θ∈Θ

∣∣∣∣∣ xt −m

exp(f̂t(θ))
− xt −m

exp(ft(θ))

∣∣∣∣∣ ≤ sup
θ∈Θ,f∈F

∣∣∣∣xt −m

exp(f)

∣∣∣∣ sup
θ∈Θ

|f̂t(θ)− ft(θ)|

≤ |xt|+ m̄

exp(f)
sup
θ∈Θ

|f̂t(θ)− ft(θ)|

as we know ft(θ) ∈ F = [f,∞) for some f > −∞, and where m̄ = supθ∈Θm < ∞. It

follows from Proposition 3 that {|xt|}t∈Z is SE and also:

E(log+ |xt|) = E(log+ |m0 + exp(ft)εt|)

≤ 2 log 2 + log+ |m0|+ E(log+ | exp(ft)εt|)

≤ 2 log 2 + log+ |m0|+ E(log+ exp(ft)) + E(log+ |εt|) <∞

where the inequalities follow from Lemma 2.2 of Straumann and Mikosch (2006). The

final expression is finite, because E(log+ exp(ft)) = E(1ft>0ft) ≤ E|ft| < ∞, as ft has

bounded moments of any order by Proposition 3, and E(log+ |εt|) <∞ as εt has bounded

moments of any order.

Finally, that {(xt −m)/ exp(ft(θ))}t∈Z is SE follows from Krengel (1985, Proposition

4.3) and that the elements of this sequence have a bounded log+-moment uniformly over

Θ holds by another application of Lemma 2.2 of Straumann and Mikosch (2006), and the

fact that ft(θ) is bounded from below by f > −∞.

Proof of Lemma B.12. The log likelihood function log px(x|f ;γ) is uniformly bounded

from above over x ∈ R, f ∈ F and θ ∈ Θ, as can be seen from its expression in (C.5),

as we have that Θ is compact, ft(θ) ≥ f > −∞ a.s., ψ is such that H(z) diverges to

+∞ as |z| → ∞, which together with H(z;ψ) being finite on R, implies that H(z;ψ) is

uniformly bounded from below. Also, C(ψ) is finite for any ψ ∈ Ψ under the imposed

conditions. Therefore, log px(x|f ;γ) is uniformly bounded from above, implying that

Eℓt(θ) <∞ exists for any θ, although it can be equal to −∞.

The second result holds because

E|ℓt(θ0)| ≤ E
∣∣∣∣H ( xt −m0

exp(ft(θ0))
;ψ0

)∣∣∣∣+ |logC(ψ0)|+ E|ft(θ0)|
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= E |H (εt;ψ0)|+ |logC(ψ0)|+ E|ft(θ0)| <∞ ,

where we use that ft(θ0) = ft a.s., due to {ft(θ0)}t∈Z being a unique limit sequence.

Each individual term in the expression on the right-hand side is finite, due to ft(θ0)

having bounded moments of any order by Proposition 4 and H being a piecewise quartic

polynomial evaluated in εt, which has bounded moments of any order due to the expo-

nential decay of the tails of its distribution. Furthermore, clearly C(ψ0) < ∞ under the

assumptions that are in place.

Proof of Lemma B.13. We know from Lemma B.12 that ℓt(θ) is bounded from above,

implying it is integrable, such that Eℓt(θ) exists for any θ ∈ Θ. That lemma also tells

us that E|ℓt(θ0)| < ∞. Clearly, whenever θ ∈ Θ is such that Eℓt(θ) = −∞, then

Eℓt(θ) < Eℓt(θ0), so we just have to consider vectors θ ∈ Θ for which Eℓt(θ) is finite.

As for Lemma B.6, we prove the claim by showing that ℓt(θ) = ℓt(θ0) a.s. if and only

if θ = θ0.

We have argued in the proof of Lemma B.6 that if ε1 ∼ pε(ε1;ψ), then a
′ +H((ε1 −

c′)/b′;ψ′) = a′′ + H((ε1 − c′′)/b′′;ψ′′) a.s. if and only if (a′, b′, c′,ψ′) = (a′′, b′′, c′′,ψ′′).

Thus, because ℓt(θ) = ℓt(θ0) a.s. if and only if

−H
(
exp(ft(θ0))εt +m0 −m

exp(ft(θ))
;ψ

)
− logC(ψ)− ft(θ)

= −H (εt;ψ0)− logC(ψ0)− ft(θ0)

a.s., it is clear that ℓt(θ) = ℓt(θ0) holds almost surely if and only if ψ = ψ0, m0 = m

and ft(θ) = ft(θ0) a.s. So it remains to be shown that given ψ = ψ0 and m = m0,

ft(θ) = ft(θ0) a.s. holds if and only if (ω, β, α) = (ω0, β0, α0). Because {ft(θ)}t∈Z is SE

for any θ ∈ Θ, then if we have ft(θ) = ft(θ0) almost surely, this must hold for any t ∈ Z.

Say that θ ∈ Θ is such that the equality holds almost surely, then the update equation

of ft(θ) implies that:

ft+1(θ0)− ft+1(θ)

= ω0(1− β0)− ω(1− β) + (β0 − β)ft(θ0) + (α0 − α)(h(εt;ψ0)εt − 1) a.s.

To have that the left-hand side is equal to zero almost surely, we must have ω0(1−β0) =

ω(1−β), because otherwise, the equality implies that (β0−β)ft(θ0)+(α0−α)(h(εt;ψ0)εt−
1) = ω(1 − β) − ω0(1 − β0) ̸= 0, which is ruled out, because the left-hand side cannot

be equal to a nonzero constant due to ft(θ0) being independent of h(εt)εt, and ft(θ0)
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being non-degenerate due to α0 ̸= 0 and h(εt)εt clearly being non-degenerate under the

maintained assumptions. Next, we also need β0 = β for the equality above to hold

a.s., because in case β0 ̸= β, we would need (α0 − α)(h(εt;ψ0)εt − 1) = (β − β0)ft(θ0),

which is not possible due to h(εt)εt and (β − β0)ft(θ0) being independent and non-

degenerate. It then follows from ω0(1− β0) = ω(1− β) and the assumption that β0 < 1

that ω = ω0. Finally, we must clearly also have α = α0, as there is no other way of having

(α0 − α)(h(εt;ψ0)εt − 1) = 0 a.s.. This concludes the proof.

D. Derivatives location model

D.1. Derivatives of score function location model

In this section we provide the first, second and selected third order derivatives of s(f, xt;γ)

with respect to θ, so effectively γ = (σ2,ψ), and f , necessary for deriving the properties

of the derivatives of ft(θ). Recall that here θ = (ω, β, α, σ2,ψ)⊤, where ψ = (ψ1, . . . , ψq)

for q = k/2, and where τ(ψ) is such that y1 = −ψk, . . ., yq = −ψ1, yq+1 = ψ1, . . .,

yk = ψk. We have that for any f ∈ R, x ∈ R and γ ∈ Γ:

s(f, x;γ) =
1

σ
h

(
x− f

σ
;ψ

)
.

For the first order derivatives we will use that the nonzero elements of the derivative

∂h(z;ψ)/∂θ are given by:

∂h (z;ψ)

∂ψi

= h(z; ei) ,

for any z ∈ R and i = 1, . . . , q, and where ej for j = 1, . . . , q denotes a q-dimensional

vector with a 1 on entry j and zeroes elsewhere. This follows from the linearity of the

function h(z;ψ) in ψ. It follows that for any i = 1, . . . , q

∂s(f, x;γ)

∂f
= − 1

σ2
h′
(
x− f

σ
;ψ

)
,

∂s(f, x;γ)

∂σ2
= − 1

2σ3

[
h

(
x− f

σ
;ψ

)
+ h′

(
x− f

σ
;ψ

)
x− f

σ

]
,

∂s(f, x;γ)

∂ψi

=
1

σ
h

(
x− f

σ
; ei

)
,

where derivative h′(z;ψ) denotes the derivative of the spline function h with respect to

z, which is a second degree piecewise polynomial.
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For second order derivatives of s, we will use that by the linearity of h(z;ψ) in y, the

second order derivative of h with respect to the static parameters is a matrix of zeroes:

∂2h (z;ψ)

∂θ∂θ⊤
= 04+q×4+q .

Furthermore, the nonzero elements of ∂h′(z;ψ)/∂θ are given by

∂h′(z;ψ)

∂ψi

= h′(z; ei) ,

for any z ∈ R and i = 1, . . . , q. Thus, we have for any i = 1, . . . , q and j = 1, . . . , q

∂2s(f, x;γ)

∂f∂f
=

1

σ3
h′′
(
x− f

σ
;ψ

)
∂2s(f, x;γ)

∂σ2∂f
=

1

σ4
h′
(
x− f

σ
;ψ

)
− x− f

σ5
h′′
(
x− f

σ
;ψ

)
,

∂2s(f, x;γ)

∂ψi∂f
= − 1

σ2
h′
(
x− f

σ
; ei

)
,

∂2s(f, x;γ)

∂σ2∂σ2
=

3

4σ5
h

(
x− f

σ
;ψ

)
+

5(x− f)

4σ6
h′
(
x− f

σ
;ψ

)
+

(x− f)2

4σ7
h′′
(
x− f

σ
;ψ

)
,

∂2s(f, x;γ)

∂σ2∂ψi

= − 1

2σ3

[
h

(
x− f

σ
; ei

)
+h′

(
x− f

σ
; ei

)
x− f

σ

]
,

∂2s(f, x;γ)

∂ψi∂ψj

= 0 .

Notice that h′′(z;ψ) is a continuous piecewise linear function and can be straightforwardly

computed given h′(z;ψ).

Finally, we compute the following three selected third order derivatives for i = 1, . . . , q

and j = 1, . . . , q:

∂3s(f, x;γ)

∂ψi∂ψj∂f
= 0 ,

∂3s(f, x;γ)

∂σ2∂ψi∂f
=

1

σ4
h′
(
x− f

σ
; ei

)
− x− f

σ5
h′′
(
x− f

σ
; ei

)
,

∂3s(f, x;γ)

∂ψi∂f∂f
=

1

σ3
h′′
(
x− f

σ
; ei

)
.

D.2. Derivatives of log likelihood location model

In this section we give the first and second order derivatives of the log likelihood function

of the location model defined in Section 4.1, with respect to θ where θ = (ω, β, α, σ2,ψ)⊤,
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where ψ = (ψ1, . . . , ψq) for q = k/2, and where τ(ψ) is such that y1 = −ψk, . . . , yq = −ψ1,

yq+1 = ψ1, . . . , yk = ψk. For any θ ∈ Θ, the log likelihood function reads:

1

T

T∑
t=1

ℓt(θ) , where ℓt(θ) = −H
(
xt − ft(θ)

σ
;ψ

)
− logC(ψ)− 1

2
log σ2 . (D.1)

The first order derivative of ℓt(θ) is given by:

∂ℓt(θ)

∂θ
= h

(
xt − ft(θ)

σ
;ψ

)[
1

σ

∂ft(θ)

∂θ
− (xt − ft(θ))

∂σ−1

∂θ

]
− ∂H (z;ψ)

∂θ

∣∣∣∣
z=(xt−ft(θ))/σ

− 1

C(ψ)

∂C(ψ)

∂θ
− 1

2σ2

∂σ2

∂θ
, (D.2)

where the nonzero elements of ∂H(z;ψ)/∂θ, ∂C(ψ)/∂θ, ∂σ−1/∂θ and ∂σ2/∂σ2 are given

by

∂H(z;ψ)

∂ψi

= H(z; ei) ,

∂C(ψ)

∂ψi

=

∫ ∞

−∞

∂ exp(−H(x;ψ))

∂πi

dx

=

∫ ∞

−∞
− exp(−H(x;ψ))H(x; ei) dx ,

∂σ−1

∂σ2
= − 1

2σ3
,

∂σ2

∂σ2
= 1 ,

for i = 1, . . . , q and any z ∈ R. The form of ∂H(z;ψ)/∂ψi follows from the linearity of

the spline coefficients in y. We will now argue why the derivative can be taken into the

integral in the calculation of ∂C(ψ)/∂ψi. Because Θ is compact, there must be some real

positive value t∗ > 0 such that for some ψ∗ ∈ Ψ and every ψ ∈ Ψ and corresponding y

and y∗, respectively, |∂ exp(−H(x;ψ∗))/∂ψi| ≥ ∂ exp(−H(x;ψ))/∂ψi for every x > t∗ or

x < −t∗. Within [−t∗, t∗], the derivative can be taken into the integral by Leibniz rule

and outside of this interval, the derivative can be taken into the integral by an application

of the dominated convergence theorem, as |∂ exp(−H(x;ψ∗))/∂ψi| is clearly integrable

under the maintained assumptions.

For the second order derivative, we obtain

∂2ℓt(θ)

∂θ∂θ⊤
= −h′

(
xt − ft(θ)

σ
;ψ

)
[
1

σ

∂ft(θ)

∂θ
− (xt − ft(θ))

∂σ−1

∂θ

] [
1

σ

∂ft(θ)

∂θ⊤
− (xt − ft(θ))

∂σ−1

∂θ⊤

]
+ h

(
xt − ft(θ)

σ
;ψ

)[
1

σ

∂2ft(θ)

∂θ∂θ⊤
+
∂ft(θ)

∂θ

∂σ−1

∂θ⊤
+
∂σ−1

∂θ

∂ft(θ)

∂θ⊤
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−(xt − ft(θ))
∂σ−1

∂θ∂θ⊤

]
+

[
1

σ

∂ft(θ)

∂θ
− (xt − ft(θ))

∂σ−1

∂θ

]
∂h(z;ψ)

∂θ⊤

∣∣∣∣
z=(xt−ft(θ))/σ

+
∂h(z;ψ)

∂θ

∣∣∣∣
z=(xt−ft(θ))/σ

[
1

σ

∂ft(θ)

∂θ⊤
− (xt − ft(θ))

∂σ−1

∂θ⊤

]
− 1

C(ψ)

∂2C(ψ)

∂θ∂θ⊤
+

1

C(ψ)2

(
∂C(ψ)

∂θ

)2

− 1

2

∂σ2

∂θ

∂σ−2

∂θ⊤
,

where we use that

∂2H (z;ψ)

∂θ∂θ⊤
= 04+q×4+q , and

∂2σ2

∂θ∂θ⊤
= 04+q×4+q ,

because H(z;ψ) is linear in y and because ∂σ2/∂σ2 = 1. The expressions of the nonzero

elements of ∂h(z;ψ)/∂θ are given in the previous subsection. Finally, the nonzero ele-

ments of ∂2σ−1/∂θ∂θ⊤, ∂σ−2/∂σ2 and ∂2C(ψ)/∂θ∂θ⊤ are given by

∂2σ−1

∂σ2∂σ2
=

3

4σ5
,

∂σ−2

∂σ2
= − 1

σ4
,

∂2C(ψ)

∂ψi∂ψj

=

∫ ∞

−∞
exp(−H(x;ψ))H(x; ei)H(x; t, ej) dx ,

for any i, j = 1, . . . , q, where we use the same argumentation as for ∂C(ψ)/∂ψ for taking

the derivative into the integral.

E. Calculation of moments

Let us derive the moments of the spline probability distribution pε. For any non-negative

integer n, we have that:

CE[εnt ] =
∫ ∞

−∞
εn exp(−H(ε; t,y))dε

=

∫ t1

−∞
εn exp(−H(ε; t,y))dε+

∫ tk

t1

εn exp(−H(ε; t,y))dε (E.1)

+

∫ ∞

tk

εn exp(−H(ε; t,y))dε ,

where C denotes the integrating constant defined in (2). We will discuss how this con-

stant can be calculated in Section E.1. The middle integral can be reliably evaluated

numerically, because it is a smooth function that is integrated over a bounded integra-

tion range. In particular, we suggest using some quadrature routine between each pair of

subsequent knots (ti, ti+1) for i = 1, . . . , k − 1, in order to obtain a good approximation.
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The first and last integrals can be simplified analytically. Note that beyond the outer

knots, the natural cubic spline h is linear and therefore its anti-derivative is quadratic.

For the tail integrals to be finite, the assumption on the coefficients in Assumption 1

must hold. Because the coefficients of the piecewise polynomial are linear in the y-values

y, the conditions b0 > 0 and bk > 0 can be imposed straightforwardly using a linear

constraint on the elements of y.

To evaluate the tail integrals, we have to distinguish between the case where b0 > 0

(bk > 0) and where b0 = 0 and a0 < 0 (bk = 0 and ak > 0). Let us start with the first

integral on the right-hand side of (E.1) for the case b0 > 0:∫ t1

−∞
εn exp(−H(ε; t,y))dε =

∫ t1

−∞
εn exp(−H0(ε; t,y))dε

= exp(−e0)
∫ t1

−∞
εn exp

(
−a0(ε− t1)−

1

2
b0(ε− t1)

2

)
dε

= exp(−e0)
∫ 0

−∞
(y + t1)

n exp

(
−a0y −

1

2
b0y

2

)
dy

=

√
2πb−1

0 exp

(
−e0 +

1

2
a20b

−1
0

)∫ 0

−∞
(y + t1)

n 1√
2πb−1

0

exp

(
−(y + a0b

−1
0 )2

2b−1
0

)
︸ ︷︷ ︸

pdf of N (−a0b
−1
0 ,b−1

0 )

dy

= σ̃0
Φ(β̃0)

φ(β̃0)
exp(−e0)

∫ 0

−∞
(y + t1)

n 1

Φ(β̃0)
√
2πσ̃0

exp

(
−(y − µ̃0)

2

2σ̃2
0

)
︸ ︷︷ ︸

pdf of trN (µ̃0,σ̃2
0 ,−∞,0)

dy

= σ̃0
Φ(β̃0)

φ(β̃0)
exp(−e0)EZ∼trN (µ̃0,σ̃2

0 ,−∞,0) [(Z + t1)
n] ,

where we use the notation µ̃0 = −a0b−1
0 , σ̃2

0 = b−1
0 and β̃0 = −µ̃0/σ̃0 = a0

√
b−1
0 , where we

use the change of variable y = ε− t1 in the third equality and where trN (µ, σ2, a, b) for

µ ∈ R, σ2 > 0 and −∞ ≤ a < b ≤ ∞, denotes the truncated normal distribution with

mean µ, variance σ2 and truncation on the interval (a, b). Furthermore, Φ(·) denotes the
cumulative distribution function of the standard normal distribution and φ(·) denotes its
probability density function. For the last integral in (E.1), under the restriction bk > 0,

a similar derivation gives:∫ ∞

tk

εn exp(−H(ε; t,y))dε = σ̃k
Φ(−β̃k)
φ(β̃k)

exp(−ek)EZ∼trN (µ̃k,σ̃
2
k,0,∞) [(Z + tk)

n] ,

where µ̃k = −akb−1
k , σ̃2

k = b−1
k and β̃k = −µ̃k/σ̃k = ak

√
b−1
k .

For the case b0 = 0 and a0 < 0, the first integral on the right-hand side of (E.1) is
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equal to∫ t1

−∞
εn exp(−H(ε; t,y))dε =

∫ t1

−∞
εn exp(−H0(ε; t,y))dε

= exp(−e0)
∫ t1

−∞
εn exp (−a0(ε− t1)) dε

= exp(−e0)
∫ ∞

0

(t1 − y)n exp (−(−a0)y) dy

= −exp(−e0)
a0

∫ ∞

0

(t1 − y)n (−a0) exp (−(−a0)y)︸ ︷︷ ︸
pdf of Exp(λ) with λ=−a0

dy

= −exp(−e0)
a0

EZ∼Exp(−a0) [(t1 − Z)n] ,

where we use the change of variable y = t1−ε in the third equality and where Exp(λ) de-

notes the exponential distriubtion with parameter λ > 0. The last integral in (E.1), under

the restriction bk = 0 and ak > 0, can be shown to be equal to exp(−ek)
ak

EZ∼Exp(ak) [(Z + tk)
n]

using a similar derivation.

In summary, we have found that for any integer n,

∫ t1

−∞
εn exp(−H(ε))dε =

σ̃0
Φ(β̃0)

φ(β̃0)
exp(−e0)EZ∼trN (µ̃0,σ̃2

0 ,−∞,0) [(Z + t1)
n] , if b0 > 0 ,

− exp(−e0)
a0

EZ∼Exp(−a0) [(t1 − Z)n] , if b0 = 0 and a0 < 0 ,

∫ ∞

tk

εn exp(−H(ε))dε =

σ̃k
Φ(−β̃k)

φ(β̃k)
exp(−ek)EZ∼trN (µ̃k,σ̃

2
k,0,∞) [(Z + tk)

n] , if bk > 0 ,

exp(−ek)
ak

EZ∼Exp(ak) [(Z + tk)
n] , if bk = 0 and ak > 0 ,

(E.2)

where µ̃0 = −a0b−1
0 , σ̃2

0 = b−1
0 and β̃0 = −µ̃0/σ̃0 = a0

√
b−1
0 and where µ̃k = −akb−1

k ,

σ̃2
k = b−1

k and β̃k = −µ̃k/σ̃k = ak

√
b−1
k .

For the first and second moment we can use that if Z ∼ trN (µ̃0, σ̃
2
0,−∞, 0):

E [Z] = µ̃0 −
φ(β̃0)

Φ(β̃0)
σ̃0 , and Var (Z) = σ̃2

0

1− β̃0φ(β̃0)

Φ(β̃0)
−
(
φ(β̃0)

Φ(β̃0)

)2
 ,

such that E
[
Z2
]
= σ̃2

0

[
1 + β̃2

0 + β̃0
φ(β̃0)

Φ(β̃0)

]
,

and if Z ∼ trN (µ̃k, σ̃
2
k, 0,∞):

E [Z] = µ̃k +
φ(β̃k)

Φ(−β̃k)
σ̃k , and Var (Z) = σ̃2

k

1 + β̃kφ(β̃k)

Φ(−β̃k)
−
(

φ(β̃k)

Φ(−β̃k)

)2
 ,

such that E
[
Z2
]
= σ̃2

k

[
1 + β̃2

k − β̃k
φ(β̃k)

Φ(−β̃k)

]
.
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E.1. Normalizing constant

We can compute the normalizing constant C using (E.1) evaluated in n = 0. The middle

integral on the right-hand side can be approximated numerically, as discussed above.

Using (E.2), it is clear that:

∫ t1

−∞
exp(−H(ε))dε =

σ̃0
Φ(β̃0)

φ(β̃0)
exp(−e0) , if b0 > 0 ,

− exp(−e0)
a0

, if b0 = 0 and a0 < 0 ,

and

∫ ∞

tk

exp(−H(ε))dε =

σ̃k
Φ(−β̃k)

φ(β̃k)
exp(−ek) , if bk > 0 ,

exp(−ek)
ak

, if bk = 0 and ak > 0 .

E.2. Expectation

Let us derive the mean µ of εt for a given spline density:

µ = E[εt] =
1

C

∫ ∞

−∞
ε exp(−H(ε; t,y))dε ,

where C denotes the normalizing constant. Based on (E.2) for n = 1 and the form of the

expectation of a truncated normal distribution, we have that:

∫ t1

−∞
ε exp(−H(ε))dε =

exp(−e0)σ̃0
[
Φ(β̃0)

φ(β̃0)
(t1 + µ̃0)− σ̃0

]
, if b0 > 0

− exp(−e0)
a0

(t1 + a−1
0 ) , if b0 = 0 and a0 < 0 ,

and

∫ ∞

tk

ε exp(−H(ε))dε =

exp(−ek)σ̃k
[
Φ(−β̃k)

φ(β̃k)
(tk + µ̃k) + σ̃k

]
, if bk > 0 ,

exp(−ek)
ak

(tk + a−1
k ) , if bk = 0 and ak > 0 .

E.3. Variance

Now let us turn to the calculation of E[ε2t ], such that we can calculate the variance of εt.

E[ε2t ] =
1

C

∫ ∞

−∞
ε2 exp(−H(ε; t,y))dε .

From (E.2) for n = 2 it follows that:

∫ t1

−∞
ε2 exp(−H(ε))dε =


exp(−e0)σ̃0

[
Φ(β̃0)

φ(β̃0)
([t1 + µ̃0]

2 + σ̃2
0)− σ̃0 (µ̃0 + 2t1)

]
,

if b0 > 0,

− exp(−e0)
a0

[
t21 + t1

2
a0

+ 2
a20

]
, if b0 = 0 and a0 < 0 ,
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∫ ∞

tk

ε2 exp(−H(ε))dε =


exp(−ek)σ̃k

[
Φ(−β̃k)

φ(β̃k)
([tk + µ̃k]

2 + σ̃2
k) + σ̃k (µ̃k + 2tk)

]
,

if bk > 0,

exp(−ek)
ak

[
t2k + tk

2
ak

+ 2
a2k

]
, if bk = 0 and ak > 0 ,

Based on the values of µ = E[εt] and E[ε2t ], we can calculate σ2 = Var(εt) = E[ε2t ]− µ2.
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