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Abstract

This paper introduces the family of Dynamic Kernel models. These models ap-
proximate the predictive density function of a time series through a weighted av-
erage of kernel densities possessing a dynamic bandwidth. A general specification
is presented and several particular models are studied in detail. We propose an M -
estimator for model parameters and derive its asymptotic properties under a misspec-
ified setting. A consistent density estimator is also introduced. Monte Carlo results
show that the new models effectively track the time-varying distribution of several
data generating processes. Dynamic Kernel models outperform extant kernel-based
approaches in tracking the predictive distribution of GDP growth.

Keywords: Time-varying density function; time-varying parameter models; M estimation;
density forecasts.
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1 Introduction

Random phenomena can be fully characterized through their probability distribution. As

a result, density forecasts are widely employed in natural and social sciences such as cli-

matology (Campbell and Diebold, 2005), epidemiology (Liu et al., 2021), and econometrics

(Elliott and Timmermann, 2016). For instance, fiscal and monetary authorities increas-

ingly rely on density forecasts of GDP growth (Adrian et al., 2019), inflation (Lopez-Salido

and Loria, 2024), and the unemployment rate (Kiley, 2022).

Motivated by this growing interest in density forecasts, we introduce a method to track

the predictive distribution of the real-valued time series Y = {Yt; t ∈ Z}. In particular,

we use an approach inspired by Kernel Density Estimation (KDE) to model the density

function of Yt+1| Ft, for Ft a sigma-field containing all past information on Y . In KDE,

the unconditional density of Y is modeled as an average or kernel functions, which are

centred around past values of Y and possess a share a scale component called bandwidth

(see Rosenblatt, 1956 for a seminal reference). Since we focus on predictive rather than

unconditional densities, modifications are required to handle the conditioning information

set Ft. Harvey and Oryshchenko (2012) and Jeon and Taylor (2012) include past informa-

tion in KDE by weighting the kernel functions through exponentially decaying weights and

treat the bandwidth as a static parameter. In this way, the two methods approximate the

predictive density with a mixture of kernel densities sharing a time-invariant scale term.1

As is common in time series analysis, mixture weights assign more importance to densi-

ties centred around more recent values of Y . Unfortunately, neither approach can handle

random variables whose distributional properties change abruptly over time.

As a first contribution, this paper develops a family of kernel-based models to track and

1Throughout the paper, the term approximate refers to studying a density of interest without assuming
correct specification of the model-based density.
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predict the time-varying density of Yt+1| Ft. These models extend the idea of Harvey and

Oryshchenko (2012) and Jeon and Taylor (2012) by introducing more general weighting

schemes and by treating the bandwidth as a time-varying parameter. Using more flexible

weights makes model-based densities more responsive to new information on Y , thereby

allowing our models to handle more rapidly changing processes. This is also facilitated

by the use of a dynamic bandwidth, which allows our density estimator to quickly adapt

to changes in the shape of the target density. In contrast, a static bandwidth implies a

constant smoothness of the density estimator, which can be overly restrictive when the

shape of the true density changes rapidly. As far as model-based distributional properties

are concerned, we show that a fixed bandwidth entails similar dynamics for all predictive

moments of Y . This could be problematic when, for instance, the predictive mean changes

smoothly over time while the conditional variance is rapidly varying. The use of a dynamic

bandwidth solves this issue, and also allows researchers to incorporate stylized facts of the

data in kernel-based models (this is done by specifying an appropriate dynamics for the

bandwidth, as discussed with examples in Section 2). Because the new models are designed

for time-varying conditional distributions, we call the resulting family: Dynamic Kernel

models. Statistical properties are studied in detail and we derive closed-form expressions for

predictive moments. One-step ahead quantiles are easily obtained by inverting model-based

distribution functions.

The second contribution concerns estimation and inference within Dynamic Kernel

models. Model parameters are estimated by maximizing an objective function based on

model-implied densities. To allow for potential misspecification of these densities, we de-

rive asymptotic properties of the resulting M -estimator relative to the minimizer of the

Kullback-Leibler divergence between the true and the model-based probability measures.
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Additionally, we introduce a consistent estimator of the density process that is closest, in

Kullback-Leibler terms, to the true ones. These contributions also apply to the approach

of Harvey and Oryshchenko (2012), which is a particular case of our class of models and

for which no asymptotic theory has been provided yet.2

Dynamic Kernel models are related to but different from other kernel-based approaches

for predictive densities. Indeed, the semi-parametric GARCH models of Drost and Klaassen

(1997) and Sun and Stengos (2006), and the semi-parametric score-driven model of Blasques

et al. (2016) use a kernel density estimator for the density of the innovation terms in an

observation-driven location-scale model.3 Hao et al. (2018) consider a similar method for

stochastic volatility models. All these approaches rely on the time-varying location and

scale, and obtain the distribution of interest as a by-product of the location-scale structure.

Conversely, we start from a kernel structure on the density of interest and obtain dynamic

distributional properties as a consequence of this approximating functional form. Because

standard kernel density estimators are a mixture of densities, our family of models is also

related to dynamic mixture models such as the Mixture Autoregressive (MAR) model

of Wong and Li (2000), its heteroskedastic counterpart by Wong and Li (2001), and its

Student’s t version by Wong et al. (2009).

Simulations show that Dynamic Kernel models outperform the approach of Harvey and

Oryshchenko (2012) when tracking predictive distributions under several data generating

processes. An empirical illustration involving US real GDP growth validates these numeri-

cal results. In particular, coverage tests from Kupiec (1995) and Christoffersen (1998) show

that Dynamic Kernel models improve the goodness-of-fit of the estimated time-varying

2Wang et al. (2018) and Garcin et al. (2023) propose alternative M -estimators for the methodology of
Harvey and Oryshchenko (2012). While empirically relevant, our estimator is consistent for the minimizer
of the Kullback-Leibler divergence, thus being optimal in an information-theoretic sense.

3Engle and Gonzalez-Rivera (1991) considers a semi-parametric ARCH model based on a non-parametric
estimator of the innovations’ density. While they focus on the discrete maximum penalized likelihood
estimator of Scott et al. (1980), a kernel density estimator could be also used here.
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quantiles compared with the approach of Harvey and Oryshchenko (2012). Similar results

hold for the predictive mean and variance, as implied by residuals analysis. Density forecast

results are equally good and remark the importance of a time-varying bandwidth.

The rest of the paper is structured as follows: Section 2 introduces Dynamic Kernel

models; Section 3 presents an M -estimator for model parameters and a consistent density

estimator; Sections 4 and 5 concern an application to tracking and predicting the distribu-

tion of US GDP growth; Section 6 concludes the paper. Assumptions for the asymptotic

analysis, derivations and useful mathematical expressions are in Appendices A, B, C and

F. Appendix D details a Monte Carlo analysis, while Appendix E reports further empirical

results. All these appendices are in the supplementary material.

2 Dynamic Kernel models

We consider a real-valued, strictly stationary and ergodic (SE) process Y := {Yt; t ∈ Z} de-

fined over the probability space (Ω,F , P ), and that generates the filtration F = {Ft; t ∈ Z}

for Ft := σ (Yt−s, s ≥ 0). Let F 0
t+1|t (y) := P (Yt+1 ≤ y| Ft), with F 0

t+1|t ∈ C0 (R), and

f 0
t+1|t (y) := d

dy
F 0
t+1|t (y) denote the true distribution and density functions of Yt+1| Ft, re-

spectively. For any y ∈ R, we propose to approximate f 0
t+1|t(y) with the function

ft+1|t (y) =
1

ht+1

∞∑
i=0

ωiK
(
y − yt−i
ht+1

)
, (1)

where yt denotes a realization of Yt,
1

ht+1
K
(
y−yt−i
ht+1

)
is a kernel density centred in yt−i,

the positive weights {ωi; i ∈ N} sum to one, and {ht; t ∈ Z} is the almost surely (a.s.)

positive bandwidth process. As in traditional kernel density estimation, ht+1 controls the

smoothness of ft+1|t: higher values of ht+1 imply greater dispersion of the kernel densities

K (·) around past values of Y or, equivalently, a smoother ft+1|t. Because the density
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of interest, i.e. f 0
t+1|t, is time-varying even when Y is stationary, the required degree of

smoothness may change over time. This is particularly true when the shape of f 0
t+1|t

changes frequently, in which case the bandwidth must adapt quickly. Sections 2.3 and 4.3

further discuss the benefits of a time-varying bandwidth when studying predictive moments

implied by (1). Predictive densities are consistently estimated without requiring ht+1 → 0

(either a.s. or in probability) as t→∞. This difference with standard KDE is due to our

focus on predictive rather than unconditional densities, and is further stressed in Section

3.2, which introduces a consistent density estimator based on (1).

2.1 The choice of the weighting scheme

This paper considers the four weighting schemes reported in Table 1. As is common in

time series analysis, we choose weights that assign more importance to kernels centered

around more recent values of Y . EWMA weights are those employed by Harvey and

Oryshchenko (2012); larger values of the parameter θ imply a slower, yet always exponen-

tial, convergence to zero. Gamma weights are based on the standard Gamma function

Γ (·) and on the upper incomplete Gamma function with truncation parameter λi, i.e.

Γ (·;λi) (see Abramowitz and Stegun, 1964 for a discussion of these functions). Because

Γ (k;λ i) /Γ (k) = O
(
exp {−λ i} ik−1

)
, these weights eventually decay exponentially fast

but allow for different behaviors when i is relatively small. When k = 1 and λ = −log (θ)

for θ ∈ (0, 1), the i-th Gamma and EWMA weights coincide. Hence, Gamma weights gen-

eralize EWMA ones to allow for more flexibility with respect to i.4 Figure 1a shows these

weights for different values of k when λ = 2. If k = 1 (black solid line), we observe the

exponential decay of EWMA weights. As k gets larger: (i) more importance is attached

4In the contexts of volatility and quantiles modeling, Li and Zhu (2020) and Zhu (2023) provide other
generalizations of EWMA weights. Future research may employ these generalizations to our framework.
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Table 1: Weighting schemes considered in this paper.

Name ωi Parameters Decay rate

EWMA (1− θ) θi θ ∈ (0, 1) Exponential ∀ i ≥ 0
Gamma a1Γ (k;λi) /Γ (k) λ > 0, k > 0 Exponential as i→∞
Hyperbolic a2 (1 + i)−θ θ > 1 Hyperbolic ∀ i ≥ 0

Flexible hyperbolic a3 (1 + λi)−θ θ > 1, λ > 0 Hyperbolic ∀ i ≥ 0

Note: a1, a2, and a3 are strictly positive constants ensuring that
∑∞

i=0 ωi = 1, e.g. a2 =(∑∞
i=0 (1 + i)−θ

)−1
. Γ (·) is the standard Gamma function and Γ (·;λi) the upper incomplete

Gamma function with truncation parameter λi.
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(a) Gamma weights, k ∈ {1, 2, 3, 4}; λ = 2.
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(b) Gamma weights, λ ∈ {1, 2, 3, 4}; k = 4.
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(c) Hyperbolic weights, θ ∈ {1.5, 2, 2.5, 3}.
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(d) Flexible hyperbolic weights, λ ∈
{0.5, 1, 1.5, 2} and θ = 1.5.

Figure 1: Upper panels: Gamma weights for different values of k (Panel a) and λ (Panel
b). Lower panels: hyperbolic (Panel c) and flexible hyperbolic (Panel d) weights.

to older information, as implied by the black solid line being eventually dominated by all

the others; (ii) the decay is not always exponential. Figure 1b shows Gamma weights for

different values of λ when k = 4; larger values of λ entail a faster decay. Hyperbolic

7



weights exhibit a power-law relation with i, thus resembling coefficients of long memory

filters (see Baillie, 1996, among others). Higher values of θ entail a faster convergence

to zero, as shown in Figure 1c. Flexible hyperbolic weights possess the same power-law

behavior but offer more flexibility through the parameter λ. Figure 1d shows that smaller

values of λ imply a slower, yet always hyperbolic, decay.

2.2 The choice of the bandwidth process

We model the time-varying bandwidth through an observation-driven approach, i.e. ht+1

is measurable with respect to Ft. Moreover, we assume that ht is supported on the convex

set H ⊂ R+ and write ht+1 = φ (ht, εt), where εt :=
(
Yt − µ̂t|t−1

)
is the one-step ahead

predictive error based on the predictive mean µ̂t|t−1 (discussed in Section 2.3). The function

φ : H × R → H is time-invariant; its choice is discretionary and allows researchers to

incorporate empirical features of the data in the model.

Because ht+1 is a scale component for the kernel densities, we specify φ(·) starting from

conditional heteroskedasticity models. An example is the GARCH-like recursion:

h2
t+1 = h̄+ βh2

t + αε2
t , (2)

for h̄ > 0, α > 0 and β ≥ 0. While similar, equation (2) differs from the GARCH(1,1)

model of Bollerslev (1986) in that the innovation term ε2
t is not a function of h2

t under (2),

while ε2
t = h2

t z
2
t for zt

ı.i.d.∼ N(0, 1) in GARCH(1,1). Under (2), differently signed predictive

errors have the same impact on h2
t+1 whenever their magnitudes coincide. To allow for an

asymmetric response of h2
t+1, we consider the recursion:

h2
t+1 = h̄+ βh2

t + [α + γ1 (εt < 0)] ε2
t , (3)
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for h̄ > 0, β ≥ 0, α ≥ 0 and γ ≥ 0 with α + γ > 0. This dynamics is based on the GJR

model of Glosten et al. (1993) and we call it GJR-like. The additional term γ1 (εt < 0) ε2
t is

beneficial whenever the (true) predictive distribution of Y responds differently to differently

signed predictive errors. For instance, negative values of εt may have a larger impact on

the variance of Yt+1| Ft than positive ones (as in the leverage effect of Black, 1976 for stock

returns). In this case, we expect a significantly positive estimate of γ, so that h2
t+1 is more

sensitive to negative than to positive values of εt (recall that a larger bandwidth implies

more disperse kernel densities and, ceteris paribus, a higher predictive variance).

Under (2) and (3), h2
t+1 is an unbounded function of εt. Hence, the bandwidth can

become arbitrarily large after a sizeable predictive error. Among others, Creal et al. (2013)

and Harvey (2013) showed that this is undesirable when tracking time-varying parame-

ters. Thus, we also consider a specification where the log-bandwidth
{
h̄t := log (ht) ; t ∈ Z

}
evolves as:

h̄t+1 = h̄+ βh̄t + αut + γ sgn (−εt) (ut + 1) , (4)

with sgn (−εt) = 21 (εt < 0) − 1 and ut :=
(ν+1)ε2t
ν+ε2t

− 1 , so that −1 ≤ ut < ν for ν >

0. Because ut has bounded support, h̄t+1 is a bounded function of εt, making the log-

bandwidth process robust to outliers in the predictive error. Moreover equation (4) allows

for a leverage behavior similar to (3). 5 Note that ut mimics the innovation term of the

Beta-t-EGARCH model of Harvey and Chakravarty (2008) and Harvey (2013), which is a

Dynamic Conditional Score (DCS) model whose innovation term is based on the derivative

of a Student’s t log-density with respect to its scale parameter.6 This is why we refer to

5While alternative methods for incorporating asymmetric responses in DCS scale models are discussed by
Harvey and Chakravarty (2008) and Harvey and Lange (2017), our approach is closer to that of Harvey and
Sucarrat (2014). Despite their different specifications, all these models successfully incorporate asymmetric
responses in DCS models for the scale.

6Clearly, ut is not related to the derivative of log(ft|t−1) with respect to ht in our case. This decoupling
between the score-based innovation term and the model-based predictive density is also present in the
quasi-score driven approach by Blasques et al. (2023).
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the dynamic in (4) as DCS-EGARCH.

In practice, we choose the optimal combination of weights, bandwidth and kernel density

based on empirical performances of the model. As illustrated in Sections 4 and 5, we

consider information criteria, model diagnostics, and density forecasts results. Because ht

does not (and need not, see also Remark 3.1) shrink to zero under (2) - (4), the choice

of K (·) is likely to impact the empirical performances of Dynamic Kernel models (this is

confirmed by the Monte Carlo analysis of Appendix D).

Proposition 2.1 shows that the stochastic recurrence equations in (2) to (4) admit an

a.s. unique SE solution under the next assumption. Its proof is reported in Appendix B

and relies on results due to Brandt (1986). Notably, inspection of the proof shows that no

moment condition is required for the DCS-EGARCH specification.

Assumption 1. {Yt; t ∈ Z} is SE with E
[
|Yt|δ

]
<∞ for a δ > 0 such that

∑∞
i=0 ω

δ
i <∞.

Exponential weights always satisfy the summability condition while δ > 1 is required

for hyperbolic ones.

Proposition 2.1. Under Assumption 1: i) If 0 < β < 1, the a.s. unique SE solution to

equation (2) is:

h2
t+1 =

h̄

1− β
+ α

∞∑
s=0

βsε2
t−s;

ii) If 0 < β < 1, the a.s. unique SE solution to equation (3) is:

h2
t+1 =

h̄

1− β
+
∞∑
s=0

βs [α + γ1 (εt−s < 0)] ε2
t−s;

iii) If |β| < 1, the a.s. unique SE solution to equation (4) is:

h̄t+1 =
h̄

1− β
+
∞∑
s=0

βs [αut−s + γ sgn (−εt−s) (ut−s + 1)] .
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Before moving on with the exposition, it is important to remark that the presence of

indicators makes φ (·) not everywhere C2 in εt under (3) and (4). Since εt depends on

parameters of the weighting scheme, models based on (3) and (4) are not C2 over the

parameter space. To simplify estimation and inference, we replace the function 1 (x < 0)

with the smooth analog G (x) =
(
1 + exp

(
−x
c

))−1
, for c > 0 a smoothing parameter

selected a priori, such that G (x)→ 1 (x < 0) almost everywhere as c→ 0. Note that the

same problem and solution are discussed by Zakoian (1994) for threshold heteroskedastic

models, and by van Dijk et al. (2002) for smooth transition autoregressive models. Finally,

Proposition 2.1 still holds when 1 (εt < 0) is replaced by G (εt) in (3) and (4), and in the

corresponding solutions.

2.3 Predictive moments

The mixture structure in (1) allows us to derive closed form expressions for the predictive

moments of Y . To do it, we parametrize K (·) so that 1
ht+1
K
(
y−yt−i
ht+1

)
is the density of a

random variable with mean yt−i and variance h2
t+1. This reparametrization is unnecessary

if one is not interested in predictive moments and may impose unnecessary constraints on

the parameter space. As an example, equation (5) shows ft+1|t (y) when K (·) is either a

Gaussian (ft+1|t,g) or a Student’s t kernel (ft+1|t,T ) with ν > 2 degrees of freedom:

ft+1|t,g (y) =
1

ht+1

√
2π

∞∑
i=0

ωi exp

{
−(y − yt−i)2

2h2
t+1

}
,

ft+1|t,T (y) =
1

ht+1

√
π (ν − 2)

Γ
(
ν+1

2

)
Γ
(
ν
2

) ∞∑
i=0

ωi

(
1 +

(y − yt−i)2

h2
t+1 (ν − 2)

)− ν+1
2

.

(5)

While the densities in (5) already imply a skewed predictive distribution, skewed kernels can

also be considered, e.g. the Skew-Normal density of Azzalini (1985) with suitably adjusted
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parameters. Power-law tails can be accommodated through the Student’s t kernel or the

Skewed Student’s t one of Azzalini and Capitanio (2003). Proposition 2.2 reports formulas

for the one-step ahead predictive mean and variance (while expressions for higher order

moments can be derived , they entail a more cumbersome notation and depend on the

chosen kernel). In its statement, EP̂ and VarP̂ denote the expected value and variance

taken under model-based probability measure
(
P̂
)

, which is not assumed to coincide with

the true probability measure P . The proposition is a particular case of Proposition C.1,

which contains expressions for the k-step ahead mean and variance, and that we report in

Appendix C.1 along with its proof.

Proposition 2.2. If 1
ht+1

∫
R yK

(
y−yt−i
ht+1

)
dy = yt−i and 1

ht+1

∫
R(y − yt−i)2K

(
y−yt−i
ht+1

)
dy =

h2
t+1:

µ̂t+1|t := EP̂ [Yt+1| Ft] =
∞∑
i=0

ωiyt−i; (6)

σ̂2
t+1|t := VarP̂ [Yt+1| Ft] = ĥ2

t+1|t +
∞∑
i=0

ωiy
2
t−i − µ̂2

t+1|t, (7)

where ĥ2
t+1|t := EP̂

[
h2
t+1

∣∣Ft].
µ̂t+1|t is a convex linear combination of all past values of Y , which is similar to the result

of Koopman and Harvey (2003) for unobserved component models. The predictive variance

has a two-component structure: the first one is the one-step ahead squared bandwidth ĥ2
t+1|t

(available in closed form for all specifications of Section 2.2), while the second one is not a

function of the bandwidth as it is given by
{∑∞

i=0 ωiy
2
t−i − µ̂2

t+1|t

}
.7 In practice, the second

component controls the time-varying level of the variance, while the first one drives short-

7Equation (27) resembles the one-step ahead predictive variance of the heteroskedastic Mixture Autore-
gressive (MAR) model of Wong and Li (2001): this is expected given the mixture structure in Equation
(1). Note also the analogy with the original MAR model of Wong and Li (2000) when ht+1 is fixed.
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term fluctuations around this level (see the discussion in Section 4.3). When the bandwidth

is fixed, i.e. ht+1 ≡ h > 0 for any t ∈ Z, parameters of the weighting scheme control

how past observations impact all predictive moments, i.e. all time-varying distributional

properties. This could be overly restrictive, especially in the case of substantial differences

in the dynamics of different moments, e.g. the (true) predictive mean changes smoothly

over time while the variance is more rapidly varying. Moreover, we can use bandwidth

dynamics as those of Section 2.2 to impose a structure on the relation between predictive

errors and predictive moments, e.g. using leverage terms to impose asymmetric responses,

which can then be tested empirically. Finally, the fixed bandwidth h is also the lower bound

of σ̂2
t+1|t (note that

∑∞
i=0 ωiy

2
t−i − µ̂2

t+1|t > 0 a.s. at any point in time). This could result in

further modeling challenges, as h needs to provide the optimal degree of smoothing at any

point in time, while also allowing σ̂2
t+1|t to become sufficiently small, if required.

3 Estimation

We collect model parameters into the vector θ ∈ Θ ⊂ Rd and partition it as: θ =

(θ′K,θ
′
ω,θ

′
h)
′
, for θK ∈ ΘK ⊂ RdK , θω ∈ Θω ⊂ Rdω and θh ∈ Θh ⊂ Rdh with

Θ = Θk × Θω × Θω. θK collects the parameters of K, e.g. θK = ν for a Student’s t

kernel; parameters of the weights are grouped into θω, e.g. θω = (k, λ) for Gamma weights,

while θh contains those of the bandwidth process, e.g. θh =
(
h̄, α, β

)
for the GARCH case.

Let us consider the generic element of the SE sequence of model-based densities:

ft+1|t (y;θ) =
1

ht+1 (θ)

∞∑
i=0

K
(
y − Yt−i
ht+1 (θ)

;θK

)
ωi (θω) ,

when evaluated at y ∈ R. The sequence {ht (θ) ; t ∈ Z} is the SE bandwidth process based

on the parameter hypothesis θ. In particular, it depends on θh through the function φ (·)
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and on θω through the predictive error εt (θω) = (Yt −
∑∞

i=0 ωi (θω)Yt−1−i).

Because we assume that Dynamic Kernel models only approximate the density of in-

terest, we carry out inference under a misspecified setting, thereby establishing asymptotic

properties with respect to a pseudo-true parameter value θ∗. As customary in M -estimation

of time-varying parameter models (see Blasques et al., 2018, 2023, among others), we define

θ∗ as the minimizer of the expected Kullback-Leibler divergence between the true and the

model based probability measure, viz.

θ∗ := arg min
θ∈Θ

E
[
KL

(
f 0
t+1|t (Yt+1) , ft+1|t (Yt+1;θ)

)]
, (8)

for f 0
t+1|t (Yt+1) the true predictive density function evaluated at Yt+1. Assumption 1 and the

next two conditions ensure existence of θ∗ (we denote by K (x; ·) the function K evaluated

at x ∈ R for any value of θK).

Assumption 2. The parameter space Θ is compact.

Assumption 3. K (·;θK), ht (θ), ω (θω) ∈ C2 (Θ); K (x; ·) ∈ C2 (R) ,K (x; ·) > 0, ∀x ∈ R.

After observing a sample y0:T = {y0, . . . , yT} from Y , we construct a sequence of pseudo-

densities
{
f̂1|0, . . . , f̂T |T−1

}
and use them to define the M -estimator:

θ̂T := arg max
θ∈Θ

T−1∑
t=m

ϕ̂t+1 (θ) , (9)

for

ϕ̂t+1 (θ) := log
{
f̂t+1|t (Yt+1;θ)

}
= log

{
1

ĥt+1 (θ)

t∑
i=0

K

(
Yt+1 − yt−i
ĥt+1 (θ)

;θK

)
ωi (θω)

}
, (10)

where
{
ĥt (θ) ; t = 1, . . . , T

}
is the bandwidth process recovered from y0:T and initialized
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at the arbitrary value ĥ1 ∈ H. This initial value makes the sequence non SE. While

f̂t+1|t (y;θ) > 0 for any y ∈ R, the fact that
∑t

i=0 ωi < 1 implies
∫
R f̂t+1|t (y;θ) dy < 1.

This is why we call these functions pseudo-densities. Section 3.2 describes a (consistent)

proper density estimator based on the sample y0:T . Finally, the sum in (9) starts at t = m

because we discardm observations to start the procedure. m can be a function of the sample

size, i.e. m = m (T ), in which case asymptotic properties of θ̂T (see the next section) hold

as long as
√
T −m (T ) = O

(
T 1/2

)
, e.g. m (T ) = bTαc or m (T ) = bαT c for α ∈ (0, 1).8

3.1 Asymptotic properties of the M-estimator

The objective function in (9) is not an SE sequence. To study the asymptotic properties

of θ̂T , we introduce the estimator

θT := arg max
θ∈Θ

T−1∑
t=m

ϕt+1 (θ) ,

where

ϕt+1 (θ) := log

{
1

ht+1 (θ)

∞∑
i=0

K
(
yt+1 − yt−i
ht+1 (θ)

;θK

)
ωi (θω)

}
, (11)

so that θT is based on the SE counterpart of the objective function in (9). While empirically

infeasible, we derive the asymptotic properties of θT and then establish conditions such that

they hold for θ̂T . Theorem 1 states the strong consistency of θ̂T for θ∗, while its asymptotic

distribution is presented in Theorem 2. Both theorems are proved in Appendix C, while

Appendix A reports the assumptions. These are presented at a high-level, i.e. involving

model components such as the weights and the bandwidth, and can be verified under more

8The objective function in (9) can be modified to prevent spikes in the gradient when f̂t+1|t (Yt+1;θ)
is infinitesimal. For instance, small values can be trimmed as in Fermanian and Salanie (2004). However,
selecting which observations to trim is non trivial, as an excessive trimming hampers the quality of param-
eter estimates (see Monte Carlo results in Fermanian and Salanie, 2004). Because of these difficulties, we
defer the study of trimmed estimators to future work.
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primitive conditions, e.g. restrictions on Θ, once a model has been specified. We provide

these more primitive conditions for all bandwidth processes of Section 2 in Appendix B. As

detailed in Appendices A and C, primitive conditions are milder, and some assumptions

can also be discarded, under exponentially decaying weights. Moment conditions can be

substantially relaxed when ht is either constant or a.s. bounded. The latter is the case for

the DCS-EGARCH specification in (4), as well as under other DCS-based dynamics.

Theorem 1. Under Assumptions 1 to 6, θ̂T
a.s.→ θ∗ as T →∞.

Theorem 2. Under Assumptions 1 to 11 and as T → ∞:
√
T
(
θ̂T − θ∗

)
d−→ N (0,Σ)

for Σ := Q−1VQ−1, where: Q = E [∇2ϕt (θ∗)] and

V = lim
T→∞

1

T −m
E

[(
T−1∑
t=m

∇ϕt (θ∗)

)(
T−1∑
t=m

∇ϕt (θ∗)

)′]
.

3.2 A consistent density estimator

To construct a proper estimator of the density of interest, we introduce the sequence{
f̃1|0, . . . , f̃T |T−1

}
with generic element:

f̃t+1|t (y;θ) :=
1

h̃t+1 (θ)

t∑
i=0

K
(
yt+1 − yt−i
h̃t+1 (θ)

;θK

)
ω̃i,t (θω) , (12)

when evaluated at y ∈ R. The collection of weights ω̃t = {ω̃0,t, . . . , ω̃t,t} is (deterministi-

cally) time-varying and such that
∑t

i=0 ω̃i,t (θω) = 1 at any point in time. We define these

weights so that ω̃i,t → ωi for any i ∈ N as t→∞, e.g. ω̃i,t = 1−θ
1−θt+1 θ

i when ωi = (1− θ) θi.

The predictive error based on ω̃t and y0:t is ε̃t+1 (θω) := Yt+1−
∑t

i=0 ω̃i,t (θω) yt−i, and we

use it to construct the sequence
{
h̃t (θ) ; t ∈ N

}
where h̃t+1 (θ) = φ

(
h̃t (θ) , ε̃t (θω)

)
, for

φ (·) as in Section 2.2, and that is initialized at the arbitrary value h̃1 ∈ H. Proposition 3.1
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establishes that if θ̂T
a.s.−→ θ∗ then we can use the sequence

{
f̃1|0, . . . , f̃T |T−1

}
to consistently

estimate the predictive densities that are closest, in Kullback-Leibler terms, to the true ones.

Its proof is reported in Appendix C and relies on assumptions presented in Appendix A.

Proposition 3.1. Under Assumptions 1 to 6 and 12,
∣∣∣f̃T+1|T

(
y; θ̂T

)
− fT+1|T (y;θ∗)

∣∣∣ p→ 0

as T →∞ and for any y ∈ R.

Remark 3.1. Differently from standard kernel density estimation, Proposition 3.1 does

not require that h̃t+1 (θ) → 0 (either a.s. or in probability) as t → ∞. On the other

hand, we need that sup
θ∈Θ

∣∣∣h̃t (θ)− ht (θ)
∣∣∣ p→ 0 as t → ∞ and at a certain rate discussed

in the proof. Similar conditions are pervasive in the asymptotic analysis of time-varying

parameter models (see Francq and Zakoian, 2019 among others).

4 Empirical illustration

4.1 Data, model specifications and preliminary results

This section studies how well different Dynamic Kernel models can track the predictive

density of US real GDP growth. In particular, we consider quarter-on-quarter growth rate

of US real GDP between Q1:1947 and Q4:2019. Figure 2 shows this time series.

1960 1980 2000 2020

−2

0

2

4

Figure 2: Quarter-on-quarter growth rate of US real GDP between Q1:1947 and Q4:2019.

As a starting point, we estimate thirty-two Dynamic Kernel models based on the four

weighting schemes of Section 2.1, the three bandwidth processes of Section 2.2 and a

17



Table 2: Estimation results, values of objective function and BIC.

Gaussian – Objective function Student’s t – Objective function
GARCH GJR DCS Fixed GARCH GJR DCS Fixed

EWMA 326.23 319.71 318.33 335.82 324.84 319.61 324.69 331.81
Gamma 321.75 316.22 315.29 332.65 321.57 316.24 322.78 329.44
Hyperbolic 322.37 319.53 318.47 333.32 322.36 319.57 325.20 332.15
F-Hyperbolic 321.97 318.09 315.33 332.01 321.70 318.01 323.03 330.12

Gaussian – BIC Student’s t – BIC
GARCH GJR DCS Fixed GARCH GJR DCS Fixed

EWMA 337.44 333.73 335.14 341.42 338.85 336.43 344.31 340.22
Gamma 335.77 333.04 334.91 341.06 338.39 335.86 345.21 340.66
Hyperbolic 333.58 333.55 335.29 338.92 336.37 336.38 344.82 340.56
F-Hyperbolic 335.98 334.91 334.95 340.42 338.52 337.64 345.45 341.33

Note: The optimal model according to the BIC is in bold font. Column headers refer to which
bandwidth is being specified, with: GARCH refers to equation (2), GJR is for equation (3), DCS
for equation (4), and Fixed for a fixed bandwidth.

constant bandwidth as in Harvey and Oryshchenko (2012). We consider both Gaussian

and Student’s t kernels, and initialize the estimation procedure with m = 20 observations.

The upper (lower) panels of Table 2 report values of the objective function (Bayesian

Information Criterion, BIC) for all specifications. In all but two cases, the BIC is higher

when a Student’s t kernel is adopted. Hence, Gaussian models are preferred for this time

series. Under Gaussian kernels: i) EWMA weights always provide a worse fit to the data;

ii) using a fixed bandwidth is the worst choice irrespectively of the weighting scheme.

Thus, departing from the specification of Harvey and Oryshchenko (2012) is desirable in

this analysis. A combination of Gamma weights and GJR bandwidth returns the optimal

model according to the BIC (Machado, 1993 shows that the BIC consistently selects the

pseudo-optimal model in M-estimation settings like ours).
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Figure 3: Left panel: estimated weights for the twenty most recent observations. Right
panel: estimated logarithmic weights for the fifty most recent observations.

4.2 The impact of different weighting schemes

To understand the impact of different weights, we consider Gaussian Dynamic Kernel

models based on a fixed bandwidth and on the weights of Table 1. The left panel of

Figure 3 shows estimates of the weights for the twenty most recent observations.9 The

first estimated weight is much smaller under EWMA weights (black solid line) than under

the other ones. Because this is the weight attached to the most recent information on

Y , models based on EWMA weights will be less responsive to new information on GDP

growth. The right panel contains the logarithm of the first fifty estimated weights. Gamma

weights (red dashed line) first decrease at a slower than exponential rate and eventually

become an exponentially decreasing function of the lags, thus showing the flexibility of

these weights. Figure 4 plots the one-step ahead mean under these four specifications.

Attention is restricted to the time period Q1:2000 to Q4:2019 to better appreciate the

impact of the Dot-com bubble and of the Great Financial Crisis. Results are qualitatively

identical when considering the whole dataset as well as other bandwidths. Large changes

in µ̂t+1|t take more time to reabsorb under EWMA weights than under other weighting

9Precisely, Figure 3a reports the first twenty elements of {ω̃0,T , . . . , ω̃T,T }, i.e. the time-varying weights
of Section 3.2 for the last observation of the sample.
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Figure 4: One-step ahead predictive mean under different weighting schemes and a fixed
bandwidth. All time series refer to the quarter-on-quarter growth rate of US real GDP
between Q1:2000 and Q4:2019.

schemes. This is a consequence of failing to timely incorporate new information on Y into

the predictive mean. Such drawback hinders the fit of EWMA-based specifications, as

unexpectedly negative (positive) values of Y lead EWMA-based models to underestimate

(overestimate) subsequent realizations of Y for a substantial amount of time.

Figure 5 further studies these results by plotting the time-varying deciles of the one-

step ahead distribution of GDP growth. That is, we consider quantiles for probability

levels τ = 10%,...,90% that we extract by numerically solving the equation F̂t+1|t (x) = τ ,

for τ ∈ (0, 1) and F̂t+1|t (·) the estimated conditional c.d.f. of Y . We carry out this exercise

using a fixed bandwidth and either EWMA (left panel) or hyperbolic (right panel) weights.

Deciles based on EWMA weights behave more smoothly than those based on hyperbolic

ones. As in Figure 4, spikes are quicker to reabsorb when more importance is attached

to more recent information. Hence, moving from EWMA to hyperbolic weights makes the

entire distribution more sensitive to new information on Y .
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(b) Hyperbolic weights.

Figure 5: Time-varying deciles of the conditional distribution of US real GDP growth using
EWMA (left panel) or hyperbolic (right panel) weights and a fixed bandwidth. The sample
runs from Q1:1952 to Q4:2019.

4.3 The effect of different bandwidth processes

To study how different bandwidth dynamics influence Dynamic Kernel models, we use

EWMA weights and consider the four bandwidth specifications of Table 2. Similar results

were obtained using the other weighting schemes.

Figure 6 shows the one-step ahead predictive variance implied by these four models.

As for the predictive mean, we focus on the sample Q1:2000 to Q4:2019 for the sake of

illustration. The fixed-bandwidth specification (black solid line) returns a much smoother

variance process than the others. In particular, shocks do not have a great impact on the

process and their effect reabsorbs slowly. This suggests that a time-varying bandwidth is

necessary to obtain a more responsive variance process.10 The red solid (green dashed)

vertical line denotes the observation date for the smallest (largest) value of εt in this

subsample. These lines are instrumental to understand the role of the leverage parameter

γ in (3) and (4). Indeed, the GARCH-based variance (red dashed line) always increases

10Unreported results showed that the sample auto-correlation function of h2t decays much faster than
that of

∑∞
i=0 ωiY

2
t−i − µ̂2

t+1|t. This result and the discussion of Figure 6 suggest that the latter is a level
component for the predictive variance process while the former captures short term fluctuations.
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Figure 6: One-step ahead predictive variance under EWMA weights and different band-
width processes. All time series refer to quarter-on-quarter growth rate of US real GDP
between Q1:2000 and Q4:2019.

1960 1980 2000 2020

−3

−2

−1

0

1

2

3

4

(a) Fixed bandwidth.
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(b) GARCH bandwidth.

Figure 7: Time-varying deciles of the conditional distribution of US real GDP growth using
either a fixed (left panel) or a GARCH (right panel) bandwidth and EWMA weights. The
sample runs from Q1:1952 to Q4:2019.

after a large value of ε2
t . Conversely, large spikes cluster after particularly negative values

of εt under the other dynamics. Finally, the presence of ν tames the spike under the DCS

specification (light-blue dash-dotted line) during the Great Financial Crisis. This is not

the case for the one based on the GJR bandwidth (blue dotted line), which increase much

more than the DCS one.

Figure 7 repeats the same analysis of Figure 5, this time considering EWMA weights

with either a fixed (left panel) or a GARCH bandwidth (right panel). Time-varying deciles

vary more rapidly when the bandwidth is dynamic, thus confirming that a dynamic band-
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Table 3: Empirical rejection frequencies for unconditional and conditional coverage tests.

Unconditional coverage Conditional coverage
GARCH GJR DCS Fixed GARCH GJR DCS Fixed

EWMA 0.152 0.101 0.051 0.263 0.323 0.323 0.141 0.283
Gamma 0.222 0.182 0.121 0.414 0.202 0.152 0.121 0.263
Hyperbolic 0.212 0.232 0.283 0.384 0.202 0.192 0.131 0.253
F-Hyperbolic 0.212 0.202 0.121 0.313 0.182 0.121 0.101 0.263

Note: Tests are run for J = 99 one-step ahead quantiles at probability levels: 1%, 2%, . . . , 99%.

width makes the whole distribution more sensitive to new information on Y .

4.4 Model diagnostics

We carry out model diagnostics through the unconditional coverage (UC) and conditional

coverage (CC) tests of Kupiec (1995) and Christoffersen (1998), respectively. Further

results based on residual analysis are in Appendix E.

Given τj ∈ (0, 1), both tests consider the sequence of quantile violations
{
zj,t|t−1; t ∈ Z

}
where zj,t|t−1 = 1

(
Yt ≤ qj,t|t−1

)
for qj,t|t−1 the model-based τj-quantile of Yt| Ft−1. If qj,t|t−1

is correctly specified, violations form an i.i.d. sequence of Bernoulli random variables with

success probability τj. The UC test considers the null hypothesis of correct coverage,

i.e. E [zj,t] = τj, while the CC test looks at a composite null of correct coverage and

independence of the quantile violations. We test the two null hypotheses for J = 99

equally spaced probability levels between 1% and 99% at significance level 5%. For both

tests, we report empirical rejection frequencies across probability levels in Table 3, i.e.∑J
j=1 1 (pj ≤ 0.05) /J for pj the p-value of one of the tests for the τj− quantile.

Given a bandwidth process, EWMA weights always return the highest rejection fre-

quencies for the CC test and the lowest ones for the UC test. Hence, problems with the
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CC test arise from a lack of independence in quantile violations. This is likely due to

the slowly-varying behavior of EWMA-based quantiles. Given a weighting scheme, models

with a dynamic bandwidth provide better coverage than those based on a static one. Thus,

departing from the approach of Harvey and Oryshchenko (2012) implies more accurate

coverages for most of the cases. Figure 8 reports p-values for unconditional (upper panels)

and conditional (lower panels) coverage tests. Left panels consider EWMA weights and

different bandwidths, while right ones fix the bandwidth to the DCS one and compare

p-values across different weighting schemes. Rejections of the two null hypotheses cluster

around probability levels between sixty and ninety percent and are more frequent with a

static bandwidth.

5 Density predictions

We now employ Dynamic Kernel models to predict the density of quarter-on-quarter growth

rate of US real GDP. We split the sample of Section 4 into two parts and proceed with an

expanding window estimation-forecasting approach. The first part runs from Q1:1947 to

Q1:1980 while the second one covers the remaining portion of the sample.

The focus is on density predictions that we asses with the weighted continuous ranked

probability score (wCRPS) of Gneiting and Ranjan (2011). At time t+ 1 this error metric

is given by:

wCRPSt+1 :=

∫
R
w (u)

(
F̂t+1|t (u)− 1 {yt+1 ≤ u}

)2

du,

for w : R → R+ a weighting function which assigns more importance to certain regions

of the support of the distribution. Table 4 reports the weighting functions proposed by

Gneiting and Ranjan (2011) and used in our analysis. Column headers display the empha-

sized region of the support. We consider a Gaussian kernel and all weights and bandwidth
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(a) Unconditional coverage, EWMA weights
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(c) Conditional coverage, EWMA weights
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Figure 8: p-values for unconditional (upper panels) and conditional (lower panels) coverage
tests based on J = 99 one-step ahead quantiles for at probability levels: 1%, 2%, . . . , 99%
(the horizontal axis). Left panels consider EWMA weights and compare p-values across the
four bandwidth specifications (see legends). Right panels use the DCS-EGARCH band-
width and compare p-values across different weights (see legends). Red dashed lines denote
the 5% level of significance.

processes of Section 4. These models are compared with the heteroskedastic MAR of Wong

and Li (2001) that we specify based on K = 2 components, each of them being an auto-

regressive process of order two with ARCH(1) conditional variance.11 Figure 9 plots the

average (over time) wCRPS of each Dynamic Kernel model as a fraction of the same metric

for the MAR. Values below one (the horizontal line) indicate that a Dynamic Kernel model

is outperforming the benchmark. For all regions, there is at least one kernel-based model

that improves upon the MAR. Results are particularly promising when one emphasizes

11This is the MAR that delivers the best density forecasts across nine possible specifications. In particu-
lar, we consider mixtures of K = 2 AR(p) processes for p = 0, 1, 2. For each of these processes, we consider
conditional variances that are either constant (the original MAR by Wong and Li, 2000), or ARCH(q) with
q = 1, 2 (as in Wong and Li, 2001). Results on these other models are available upon request.
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Table 4: Weighting functions for the wCRPS.

Uniform Center Tails Right tail Left tail

w(u) 1 φ(u) 1− φ(z)/φ(0) Φ (u) 1− Φ(u)

Note: φ (·) and Φ (·) denote the density and cumulative distribution functions of a standard
Gaussian, respectively.

either the right tail or both tails at once. Regardless of the bandwidth process, EWMA

weights (black dots) yield the less accurate forecasts for any region of interest. Gamma

(purple down-pointing triangles), hyperbolic (red squares) and flexible hyperbolic (blue

triangles) weights consistently return very similar performances. In particular, the optimal

model outperforms those based on Gamma weights by at most 1.4% for the left tail and

by no more than 0.1% for the other regions. Hence, we can find Dynamic Kernel models

that provide reliable density forecasts and for which the asymptotic analysis holds under

less restrictive conditions . Table 5 reports the previous results along with p-values for

the test of equal forecasts accuracy of Diebold and Mariano (1995) in parentheses. These

are based on testing the null hypothesis of equal accuracy between forecasts implied by

a Dynamic Kernel model and by the benchmark (similar results hold when running the

model confidence set procedure of Hansen et al., 2011 at the 90% confidence level). The

table also presents results for a non-parametric approach where standard kernel density

estimation is applied to the (expanding) estimation sample, and the resulting estimator is

used as one-step ahead predictive density (this is also one of the benchmarks considered by

Jeon and Taylor, 2012; see also Aıt-Sahalia and Lo, 2000 for a financial application of this

approach).12 Predictions based on standard kernel density estimation are always signifi-

12We avoid reporting comparisons with Jeon and Taylor (2012) as their approach is more suitable when
the conditioning information set is spanned by past and present information on some covariates, and
not by past information on the variable of interest (a similar argument holds for other conditional KDE
approaches, e.g. that of Izbicki and Lee, 2016). Nevertheless, we tried implementing their approach with
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Figure 9: wCRPS for sixteen Dynamic Kernel models. For each bandwidth process,
black dots refer to EWMA weights, purple down-pointing triangles to Gamma weights,
red squares to hyperbolic weights and blue triangles to flexible hyperbolic ones. Results
are reported as a fraction of the same error metric for the MAR benchmark.

cantly less accurate than those implied by Dynamic Kernel models. The MAR benchmark

is consistently outperformed when the emphasis is either on both tails or just on the right

one, especially when we move away from EWMA weights; this holds at least at the 5%

level of significance. Rejections of the null of equal forecast accuracy are also possible when

no particular region is emphasized at levels of significance 10% and 5%. Finally, using a

dynamic rather than a fixed bandwidth always improves forecasting results (unreported

results showed that these gains are significant for all weighting schemes and emphasized

regions).

the latest value of GDP growth as covariate; results are available upon request. We had to use only one
covariate due to the high computational cost: the procedure requires estimating N+2 parameters by cross-
validation, for N the number of covariates (doing it within our expanding window analysis and considering
only fifteen values for each parameter already required three hours on a cluster of sixteen cores).

27



Table 5: Density prediction results.

Uniform Center Tails
GARCH GJR DCS Fixed GARCH GJR DCS Fixed GARCH GJR DCS Fixed

EWMA 1.001 0.993 0.992 1.026 1.026 1.020 1.024 1.056 0.945 0.933 0.919 0.961
(0.969) (0.823) (0.803) (0.372) (0.413) (0.502) (0.481) (0.078) (0.091) (0.044) (0.025) (0.199)

Gamma 0.973 0.969 0.959 0.989 0.996 0.991 0.986 1.014 0.922 0.919 0.899 0.935
(0.208) (0.163) (0.095) (0.582) (0.870) (0.683) (0.590) (0.510) (<0.001) (0.002) (<0.001) (0.001)

Hyperbolic 0.969 0.963 0.953 0.987 0.986 0.979 0.975 1.004 0.930 0.927 0.905 0.951
(0.128) (0.081) (0.025) (0.492) (0.521) (0.339) (0.244) (0.851) (0.001) (0.002) (<0.001) (0.008)

F-Hyperbolic 0.967
(0.103)

0.961
(0.067)

0.953
(0.045)

0.984
(0.386)

0.986
(0.517)

0.980
(0.363)

0.975
(0.317)

1.003
(0.881)

0.925
(<0.001)

0.919
(0.001)

0.903
(<0.001)

0.942
(0.001)

Kernel 1.105 1.098 1.120
(<0.001) (0.001) (<0.001)

Right tail Left tail
GARCH GJR DCS Fixed GARCH GJR DCS Fixed

EWMA 0.975 0.965 0.966 1.001 1.057 1.055 1.048 1.080
(0.427) (0.256) (0.323) (0.969) (0.094) (0.085) (0.156) (0.013)

Gamma 0.951 0.944 0.935 0.968 1.022 1.020 1.011 1.036
(0.025) (0.021) (0.013) (0.102) (0.335) (0.368) (0.667) (0.101)

Hyperbolic 0.949 0.944 0.934 0.971 1.011 1.004 0.995 1.023
(0.017) (0.012) (0.003) (0.122) (0.632) (0.863) (0.814) (0.263)

F-Hyperbolic 0.945
(0.008)

0.938
(0.005)

0.932
(0.007)

0.965
(0.055)

1.014
(0.568)

1.011
(0.663)

0.998
(0.937)

1.026
(0.235)

Kernel 1.110 1.094
(<0.001) (0.016)

Note: Results are reported as the average wCRPS with respect to the same quantity for the benchmark MAR. The type of wCRPS is reported
as title of each panel. p-values for the Diebold and Mariano test of equal forecast accuracy against the benchmark are in parentheses.
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6 Conclusions and further lines of research

This paper introduces the family of Dynamic Kernel models. These models generalise and

improve upon extant approaches to kernel density estimation for time series data. An M -

estimator for model parameters is proposed and its asymptotic properties are derived under

a misspecified setting. The optimal, in Kullback-Leibler terms, sequence of model-based

densities can be consistently estimated from the data. An empirical illustration shows that

the new models reliably track the predictive distribution of US real GDP growth.

The paper can be extended in several ways. First, multiple-component exponential

models may be devised. As suggested by Granger (1980), these models mimic hyperbolic

ones while simplifying estimation and inference on model parameters. Covariates can be

included in Dynamic Kernel models either through the bandwidth process or through the

weighting scheme. The fit in the tails can be improved by letting the bandwidth vary

across different regions of the support as in variable bandwidth kernel density estimation

(see the review by Markovich 2008). Finally, the paper can be extended to multivariate

distributions, with bivariate ones already sufficing for predictive systemic risk measures

such as the CoVaR of Adrian and Brunnermeier (2016) and the SRISK of Brownlees and

Engle (2017).
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SUPPLEMENTARY MATERIAL

A Notation and assumptions

This appendix reports and discusses the assumptions required for the asymptotic analysis

of Section 3. The following notation is employed throughout the whole supplementary

material: ‖x‖Θ := sup
θ∈Θ
‖x (θ)‖ for any function x (θ) and norm ‖·‖; ‖v‖ := max

i=1,...,n
|vi| for

any v ∈ Rn; ‖A‖ := max
i=1,...,m

∑n
j=1 |Ai,j| for any A ∈ Rm×n; Ki,t (θ) := K

(
Yt−Yt−1−i

ht(θ)
;θK

)
,

dx := d
d x

and dx∇KK (x;θK) is a vector of RdK whose i-th entry is the derivative with

respect to x of the i-th entry of ∇KK (x;θK).13 Positive finite scalars are denoted by

c0, c1, c2, . . . and their values may change from line to line. We use the notations Xt
a.s.−→ 0

and Xt = oa.s.(1) interchangeably, and similarly for Xt = op(1) and Xt = o(1).

Assumption 4. There exists D > 0 such that
∣∣h−1
t

∣∣
Θ
≤ D <∞, a.s. ∀t ∈ Z.

Assumption 5. i) E [|Yt|] < ∞; ii) There exists γ > 1 such that tγ
∣∣∣ĥt − ht∣∣∣

Θ

a.s.−→ 0 as

t→∞; iii) ∀θ ∈ Θ, E

[
K
(
Yt+1−Yt
ht+1(θ)

;θK

)−1
]
<∞.

Assumption 6. E [ϕt (θ∗)] > E [ϕt (θ)] for any θ ∈ Θ such that θ 6= θ∗.

We show that the bandwidth processes of Section 2 satisfy Assumptions 4 and 5 (ii) in

Appendix B. Assumption 5 (iii) can be relaxed when using exponentially decaying weights.

Indeed, existence of a positive logarithmic moment for K
(
Yt−Yt−1

ht+1(θ)
;θK

)−1

suffices in this

case (see Remark C.3 in Appendix C). The latter condition is implied by E [Y 2
t ] <∞ when

K (·) is Gaussian and by E
[
|Yt|δ

]
<∞ for some δ > 0 in the Student’s t case. Assumption

6 ensures that the objective function has an identifiable unique maximizer. As discussed

in Pötscher and Prucha (1997) this condition may be violated in a misspecified context.

13For instance, if θK = (ξ, ν)
′

for some real-valued parameters ξ and ν we have that dx∇KK (x;θK) =
(dx∂ξK (x;θK) , dx∂νK (x;θK))

′
.
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When this condition is not satisfied, consistency of θ̂T can be established with respect to

the set of minimizers of the Kullback-Leibler divergence in (8). This result follows from

Lemma 4.2 in Pötscher and Prucha (1997) after noting that ϕt (θ) has regular level sets

under Assumption 3 (Definition 4.1 in Pötscher and Prucha, 1997).

To study the asymptotic distribution of θ̂T , we introduce the gradient and the Hessian

matrix of ϕt (θ):

∇ϕt (θ) =


∇Kϕt (θ)

∇′ωϕt (θ)

∇hϕt (θ)

 , ∇2ϕt (θ) =


∇2
KKϕt (θ) ∇2

Kωϕt (θ) ∇2
Khϕt (θ)

∇2
ωKϕt (θ) ∇2

ωωϕt (θ) ∇2
ωhϕt (θ)

∇2
hKϕt (θ) ∇2

hωϕt (θ) ∇2
hhϕt (θ)

 ,

where ∇K and ∇2
KK denote the gradient and the Hessian of ϕt (θ) with respect to θK,

respectively. A similar notation holds for the remaining entries of ∇ϕt (θ) and ∇2ϕt (θ).

The next assumptions allow us to derive the asymptotic distribution of θ̂T .

Assumption 7. θ∗ belongs to the interior of Θ.

Assumption 8. (i) There exists δ > 0 such that E
[
‖∇Klog {Ki,t (θ∗)}‖2+δ

]
<

∞, E
[
|dxlog {Ki,t (θ∗)}|8+δ

]
< ∞, E

[
‖∇ht (θ∗)‖4+δ

]
< ∞,

E

[
K
(

Yt+1−Yt
ht+1(θ

∗
)
;θ∗K

)−(2+δ)
]
<∞ and E

[
|Yt|8+δ

]
<∞;

(ii) ∀θ ∈ Θ,
∑∞

i=0 ‖∇ωωi (θω)‖ = S <∞.

We use Assumption 8 to show that E
[
‖∇ϕt (θ∗)‖2+δ

]
<∞ for some δ > 0 (Lemma C.2

in Appendix C.3); this condition is required apply a central limit theorem (CLT) for near

epoch dependent (n.e.d.) sequences, e.g. Theorem 10.2 in Pötscher and Prucha (1997).

The moment condition on ‖∇ht (θ∗)‖ is implied by that on Yt for all bandwidth processes

of Section 2. The same holds for the moment restrictions on the derivatives of Ki,t (θ) when
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the latter is either Gaussian or Student’s t. All weighting schemes of Section 2.1 satisfy

Assumption 8 (ii).

Assumption 9. (i) ∀ (x,θ) ∈ R × Θ, there exist ŨK > 0 and ÛK > 0 such that:

‖∇2
KKK (x;θK)‖ < ŨK and

∣∣∣ d2dx2K (x;θK)
∣∣∣ < ÛK;

(ii) ∀θ ∈ Θ: E
[
‖∇Klog {Ki,t (θ)}‖2] < ∞, E

[
|dxlog {Ki,t (θ)}|8

]
< ∞,

E

[
K
(
Yt+1−Yt
ht+1(θ)

;θK

)−2
]
<∞ and E

[
‖∇ht (θ)‖4] <∞;

(iii) ∀θ ∈ Θ,
∑∞

i=0 ‖∇2
ωωωi (θω)‖ = S2 <∞;

(iv) ∀θ ∈ Θ, E
[
‖∇2ht (θ)‖2

]
<∞;

(v) E [∇2ϕt (θ∗)] is negative definite.

Points (i) - (iv) give conditions for E [‖∇2ϕt‖Θ] < ∞ (Lemma C.3 in Appendix C.3),

so that the strong uniform law of large numbers of Rao (1962) applies to the Hessian

process. Point (i) holds for various kernel densities such as the Student’s t, and the skewed

Gaussian and Student’s t of Azzalini (1985) and Azzalini and Capitanio (2003), respectively;

considerations made for Assumption 8 hold also for points (ii) - (iv) of Assumption 9.

Assumption 10. (i) There exists γ > 2 such that: tγ
∣∣∣ĥt − ht∣∣∣

Θ

a.s.−→ 0 as t→∞;

(ii) For any (x,θ) ∈ R×Θ, there exist UK > 0 and ŬK > 0 such that: ‖∇KK (x;θK)‖ <

UK and ‖dx∇KKi,t (θ)‖ < ŬK. Moreover, E [h2
t (θ)] <∞ for any θ ∈ Θ;

(iii) There exists π > 1/2 such that tπ
∑∞

i=t |ωi|Θ → 0 and tπ
∑∞

i=t ‖∇ωωi‖Θ → 0, as

t→∞.

(iv) There exist γ̃ > 1/2 such that tγ̃
∥∥∥∇ĥt −∇ht∥∥∥2

Θ

a.s.−→ 0 as t→∞
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Assumption 10 allows us to show that θ̂T and θT are asymptotically equivalent in

probability. Hence, they share the same asymptotic distribution. Point (i) strengthens

Assumption 5 (ii) and we discuss its validity for the bandwidth processes of of Section 2 in

Appendix B. Considerations made for Assumption 9 (i) hold also for point (ii), while all the

bandwidths of Section 2 have finite second moment under Assumption 8 (i). All weighting

schemes of Section 2 satisfy point (iii) under the same conditions required for consistency

(see Assumption 13 in Appendix B). The same appendix shows that all bandwidth processes

satisfy point (iv). When considering the bandwidths of Section 2 along with exponentially

decaying weights, points (i), (ii) and (iv) become redundant, and we can show that the two

estimators are asymptotically equivalent almost surely (see Remark C.4 in Appendix C).

Assumption 11. The sequence {∇ϕt (θ∗) ; t ∈ Z} is near epoch dependent of size −1 with

respect to a φ-mixing process of size r/(r − 1) for some r > 2.

Assumption 11 is a condition on the memory properties of ∇ϕt (θ∗) and it allows us to

use a CLT for n.e.d. sequences. This kind of CLT is needed since ∇ϕt (θ∗) may not to be a

martingale difference sequence under the measure P due to misspecification of the model.

The next assumption is instrumental to prove Proposition 3.1. We establish its validity

for the bandwidths of Section 2 in Appendix B.

Assumption 12. There exists γ̃ > 0 such that tγ̃
∣∣∣h̃t − ht∣∣∣

Θ

a.s.−→ 0 as t→∞.

B Properties of the bandwidth processes

This appendix studies the properties of the bandwidth processes of Section 2. All properties

are established over the probability space (Ω,F , P ) and we omit mentioning it in what

follows. The appendix also contains two additional assumptions with respect to the main

body: Assumption 13 is a condition on the decay rate of weights {ωi; ∈ Z} that is required
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for convergence towards the a.s. unique SE solution of the bandwidth processes in Section

2; Assumption 15 is a similar condition for the time-varying weights of Section 3.2. Both

assumptions are not necessary for the general asymptotic theory of Section 3 and are only

required to show that the bandwidths of Section 2 have the desired asymptotic behavior.

Lemma B.1. Under Assumption 1, the sequence ε = {εt; t ∈ Z} is SE.

Proof. The t-th element of ε is given by εt = Yt −
∑∞

i=0 ωiYt−1−i =
∑∞

l=0 χlYt−l for

χl = 1 (l = 0) − 1 (l > 0)ωl−1, whence
∑∞

l=0 χl < ∞. Thus, εt is a measurable map of

contemporaneous and past values of the SE sequence Y , so that ε is itself SE by Proposi-

tion 4.3 in Krengel (1985).

B.1 Proof of Proposition 2.1

We start from the GARCH-like case. Lemma B.1 and Proposition 4.3 in Krengel (1985)

imply that
{
h̄+ αε2

t ; t ∈ Z
}

is an SE sequence. Because 0 < β < 1, Theorem 1 in Brandt

(1986) gives us that

h2
t+1 =

h̄

1− β
+ α

∞∑
s=0

βsε2
t−s

is the a.s. unique SE solution of h2
t+1 = h̄+αε2

t +βh2
t as long as E

[
log+

(
h̄+ αε2

t

)]
<∞ for

x+ = max (x, 0). Since E
[(
h̄+ αε2

t

)ρ]
<∞ for some ρ > 0 implies E

[
log+

(
h̄+ αε2

t

)]
<∞

studying finiteness of this power moment suffices. When ρ ∈ (0, 1), the cr-inequality implies

that E
[(
h̄+ αε2

t

)ρ] ≤ h̄ρ + αρE
[
ε2ρ
t

]
, where εt =

∑∞
l=0 χlYt−l as in Lemma B.1. Hence,

E
[
(|εt|ρ)2

]
≤ E

{( ∞∑
l=0

|χl| |Yt−l|

)ρ}2


≤ E

( ∞∑
l=0

|χl|ρ |Yt−l|ρ
)2
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=
∞∑
l=0

|χl|2ρ E
[
|Yt−l|2ρ

]
+ 2

∞∑
l=1

∞∑
k=0

|χk|ρ |χk+l|ρ E [|Yt−k|ρ |Yt−k−l|ρ] ,

=
∞∑
l=0

|χl|δ E
[
|Yt−l|δ

]
+ 2

∞∑
l=1

∞∑
k=0

|χk|δ/2 |χk+l|δ/2 E
[
|Yt−k|δ/2 |Yt−k−l|δ/2

]
,

where we defined δ := 2ρ and the upper bound is finite under Assumption 1.

The proof for point (ii) is equivalent after noting that h̄ + ε2
t [α + γ1 (εt < 0)] is the

generic element of an SE sequence (Lemma B.1 and Proposition 4.3 in Krengel, 1985) and

E
[(
h̄+ ε2

t [α + γ1 (εt < 0)]
)ρ] ≤ h̄ρ + (αρ + γρ)E

[
ε2ρ
t

]
. For point (iii), Lemma B.1 and

Proposition 4.3 in Krengel (1985) imply that
{
h̄+ αut + γsgn (−εt) (ut + 1) ; t ∈ Z

}
is an

SE sequence. Moreover,

∣∣h̄+ αut + γsgn (−εt) (ut + 1)
∣∣ ≤ ∣∣h̄∣∣+ |α| |ut|+ |γ| |sgn (−εt)| |(ut + 1)|

≤
∣∣h̄∣∣+ |α| max(1, ν) + |γ| (max(1, ν) + 1) ,

a.s. at any point in time (from the main body, −1 < ut < ν so that |ut| < max(1, ν) a.s.

and for any t ∈ Z.). Thus, the random variable at the left hand side has finite positive

logarithmic moment so that

h̄t+1 =
h̄

1− β
+
∞∑
s=0

βs [αut−s + γ sgn (−εt−s) (ut−s + 1)]

is the a.s. unique SE solution to (4) as long as |β| < 1.
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B.2 Validity of Assumptions 4 and 5 (ii)

Assumptions 4 and 5 (ii) are verified for the smooth processes:

h2
t+1 (θ) = h̄+ βh2

t (θ) + αε2
t (θω) ; (13)

h2
t+1 (θ) = h̄+ βh2

t (θ) + {α + γG (εt (θω))} ε2
t (θω) ; (14)

h̄t+1 (θ) = h̄+ βh̄t (θ) + αut (θ) + γ {2G (εt (θω))− 1} (ut (θ) + 1) , (15)

where G (x) =
(
1 + exp

{
−x
c

})−1
.

Proposition B.1. Under Assumptions 1, 2 and 3 there exists D > 0 such that
∣∣h−1
t

∣∣
Θ
≤

D <∞ a.s. for any ht (θ) based on (13) to (15).

Proof. The a.s. unique SE solutions of (13) and (14) imply that:

ht+1 (θ) ≥

√
h̄

1− β
,

almost surely. Taking the suprema of the reciprocals, which are finite under Assumption

2, concludes the proof.

The a.s. unique SE solution to (15) entails:

|log (ht+1 (θ))| ≤
∣∣∣∣ h̄

1− β

∣∣∣∣+
∞∑
s=0

|β|s |αut−s + γ {2G (εt−s)− 1} (ut−s + 1)|

≤
∣∣∣∣ h̄

1− β

∣∣∣∣+ |α|
∞∑
s=0

|β|s |ut−s|+ |γ|
∞∑
s=0

|β|s |ut−s + 1|

<

∣∣∣∣ h̄

1− β

∣∣∣∣+
|α|

1− |β|
max(1, ν) +

|γ|
1− |β|

(max(1, ν) + 1)

≤ sup
θ∈Θ

{∣∣∣∣ h̄

1− β

∣∣∣∣+
|α|

1− |β|
max(1, ν) +

|γ|
1− |β|

(max(1, ν) + 1)

}
,

a.s. and where the supremum is finite thanks to Assumption 2. Thus, the bandwidth
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process is a.s. bounded and the statement holds.

To verify Assumption 5 (ii), we consider the smooth bandwidth processes recovered

from the sample y0:T as in Section 3:

ĥ2
t+1 (θ) = h̄+ βĥ2

t (θ) + αε̂2
t (θω) ; (16)

ĥ2
t+1 (θ) = h̄+ βĥ2

t (θ) + {α + γG (ε̂t (θω))} ε̂2
t (θω) ; (17)

ˆ̄ht+1 (θ) = h̄+ βˆ̄ht (θ) + αût (θ) + γ {2G (ε̂t (θω))− 1} (ût (θ) + 1) , (18)

where ε̂t (θω) :=
(
Yt −

∑t−1
i=0 ωi (θω)Yt−1−i

)
and ût (θ) =

(ν+1)ε̂2t(θω)
ν+ε̂2t(θω)

−1. Showing that these

processes satisfy Assumption 5 (ii) requires an assumption on the weighting scheme as well

as a result on the limit behaviour of |ε̂t − εt|Θ. The latter is established under the next

assumption. Note that this condition is always satisfied by exponentially decaying weights,

while θ > 3 is required in the hyperbolic case.

Assumption 13. There exists π > 2 such that tπ
∑∞

i=t |ωi|Θ → 0 as t→∞.

Lemma B.2. Under Assumptions 1, 2, 3 and 13, there exists δ > 2 such that

tδ |ε̂t − εt|Θ
a.s.−→ 0, as t→∞.

Proof. Observe that:

|ε̂t − εt|Θ ≤
∞∑
i=t

|ωi|Θ |Yt−1−i| ,

where the upper bound is a.s. finite from Assumptions 1 and 13. Hence, Assumption 13

implies tδ |ε̂t − εt|Θ
a.s.−→ 0 for some δ > 2 following arguments as in the proof of Lemma 8

in Robinson and Zaffaroni (2006).

Lemma B.2 implies |ε̂t − εt|Θ ≤ C (1 + t)−δ for any t ∈ N and where C is a positive

and a.s. finite random variable. We can now state and prove the desired result.
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Proposition B.2. Under Assumptions 1, 2, 3, 5 (i) and 13:

(i) If 0 < β < 1, there exists γ > 1 such that tγ
∣∣∣ĥt − ht∣∣∣

Θ

a.s.−→ 0, as t → ∞ for ht and

ĥt as in (13) and (16), respectively.

(ii) If 0 < β < 1 and E [Y 2
t ] < ∞, there exists γ > 1 such that tγ

∣∣∣ĥt − ht∣∣∣
Θ

a.s.−→ 0, as

t→∞ for ht and ĥt as in (14) and (17), respectively.

(iii) If |β| < 1, there exists γ > 1 such that tγ
∣∣∣ĥt − ht∣∣∣

Θ

a.s.−→ 0, as t → ∞ for ht and ĥt

as in (15) and (18), respectively.

Proof. For point (i) we have that

ĥ2
t (θ) = h̄

1− βt

1− β
+ βt−1ĥ2

1 + α
t−1∑
s=0

βt−sε̂2
s (θω) ,

so that: ∣∣∣ĥ2
t − h2

t

∣∣∣
Θ
≤ βt−1

u

∣∣∣ĥ2
1 − h2

1

∣∣∣+ αu

t−1∑
s=0

βt−su

∣∣ε̂2
s − ε2

s

∣∣
Θ

for αu := |α|Θ and βu := |β|Θ. The first term converges to zero exponentially fast, whence

multiplying it for tγ has no influence on its limit behaviour. For the second one, the mean

value theorem yields

t−1∑
s=0

βt−su

∣∣ε̂2
s − ε2

s

∣∣
Θ
≤ 2

t−1∑
s=0

βt−su |ε̆s|Θ |ε̂s − εs|Θ ,

where ε̆s (θω) = αεs (θω) + (1− α) ε̂s (θω) for α ∈ (0, 1). Thus, |ε̆s|Θ ≤ |εs|Θ + |ε̂s − εs|Θ
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so that

tγ
t−1∑
s=0

βt−su

∣∣ε̂2
s − ε2

s

∣∣
Θ
≤ 2tγ

t−1∑
s=0

βt−su |εs|Θ |ε̂s − εs|Θ + 2tγ
t−1∑
s=0

βt−su |ε̂s − εs|2Θ

≤ 2tγC
t−1∑
s=0

βt−su (1 + s)−δ |εs|Θ + 2tγC̃
t−1∑
s=0

βt−su (1 + s)−2δ ,

for some δ > 2 from Lemma B.2 (see the remark right after the Lemma). Assumption 5

(i) implies E [|εs|Θ] <∞, whence Borel Cantelli Lemma entails that the upper bound goes

to zero a.s. if
∑∞

t=1 t
γ
∑t−1

s=0 β
t−s (1 + s)−δ <∞. For the generic term of the outer sum we

have that tγ
∑t−1

s=0 β
t−s (1 + s)−δ ≤ O (tγβt) +O

(
tγ−δ

)
, so that the sum over t converges as

long as δ > γ + 1. Because δ > 2, we can find a γ > 1 such that δ > γ + 1. Thus we have

shown that tγ
∣∣∣ĥ2
t+1 − h2

t+1

∣∣∣
Θ

a.s.−→ 0 for some γ > 1 as t → ∞. Applying the mean value

theorem to f (x) =
√
x:

∣∣∣∣√ĥ2
t+1 −

√
h2
t+1

∣∣∣∣
Θ

≤

∣∣∣∣∣∣ 1

2
√
h̆2
t+1

∣∣∣∣∣∣
Θ

∣∣∣ĥ2
t+1 − h2

t+1

∣∣∣
Θ
≤ D

∣∣∣ĥ2
t+1 − h2

t+1

∣∣∣
Θ

for h̆t (θ) a mean value between ht (θ) and ĥt (θ) and where the second inequality is due

to Assumption 4. This concludes the proof of point (i).

For point (ii) we have that

∣∣∣ĥ2
t − h2

t

∣∣∣
Θ
≤ βt−1

u

∣∣∣ĥ2
1 − h2

1

∣∣∣+ αu

t−1∑
s=0

βt−su

∣∣ε̂2
s − ε2

s

∣∣
Θ

+ γu

t−1∑
s=0

βt−su

∣∣G (ε̂s) ε̂
2
s −G (εs) ε

2
s

∣∣
Θ
,

where the proof for (i) implies that we only have to show convergence of the last term.

Applying the mean value theorem to f(x) = G(x)x2:

∣∣G (ε̂s)) ε̂
2
s −G (εs (θω)) ε2

s

∣∣
Θ
≤
∣∣dxf(x)|x=ε̆s

∣∣
Θ
|ε̂s − εs|Θ ,
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where ∣∣dxf(x)|x=ε̆s

∣∣
Θ

=
∣∣2G(ε̆s)ε̆s +G′(ε̆s)ε̆

2
s

∣∣
Θ
< 2 |ε̆s|Θ +

∣∣ε̆2
s

∣∣
Θ

(4c)−1,

for ε̆s (θω) a mean value between εs (θω) and ε̂s (θω) and where G′ (x) < (4c)−1 for any

x ∈ R. Since, ε̆2
s ≤ ε2

s+(ε̂s − εs)2+2 |εs|Θ |ε̂s − εs|Θ , we can proceed as in the proof of point

(i) but under the more restrictive condition that E [Y 2
t ] <∞, which entails E [ε2

t (θω)] <∞.

For point (iii) we start from

∣∣∣ˆ̄ht − h̄t (θ)
∣∣∣
Θ
≤ βt−1

u

∣∣∣ˆ̄h1 − h̄1

∣∣∣+ (αu + γu)
t−1∑
s=0

βt−su |ûs − us|Θ + 2γu

t−1∑
s=0

βt−su |G (ε̂s)−G (εs)|Θ

+ 2γu

t−1∑
s=0

βt−su |G (ε̂s) ûs −G (εs)us|Θ ,

and apply a mean value argument based on f(x) = (ν+1)x2

ν+x2
− 1, g(x) = G(x) and H(x) =

G(x)f(x). Because these functions have bounded derivatives, Lemma B.2 implies existence

of a γ > 1 such that tγ
∣∣∣ˆ̄ht − h̄t∣∣∣

Θ

a.s.−→ 0. Combining the mean value theorem with the fact

that h̄t (θ) has a bounded support we get the desired convergence for ĥt (θ) = exp
(

ˆ̄ht (θ)
)

.

Remark B.1 (Convergence under exponentially decaying weights). The convergences in

Lemma B.2 and Proposition B.2 all take place exponentially fast under exponentially de-

caying weights. That is, there exists δ > 1 such that δt |ε̂t − εt|Θ
a.s.−→ 0, as t → ∞ and

similarly for the bandwidth processes. Moreover, E [|Yt|ρ] < ∞ for some ρ > 0 suffices for

these exponentially fast almost sure (e.a.s.) convergences. Indeed, one can show that if

|ε̂t − εt|Θ
e.a.s.−→ 0 and E [|Yt|ρ] <∞, then the following results hold:

∣∣ε̂2
t − ε2

t

∣∣
Θ

e.a.s.−→ 0;
∣∣G (ε̂t) ε̂

2
t −G (εt) ε

2
t

∣∣
Θ

e.a.s.−→ 0; |ût − ut|Θ
e.a.s.−→ 0;

|G (ε̂t) ût −G (εt)ut|Θ
e.a.s.−→ 0; |G (ε̂t)−G (εt)|Θ

e.a.s.−→ 0.
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B.3 Validity of Assumption 10 (i) and (iv)

Assumption 10 (i) strengthens Assumption 5 (ii) by requiring γ > 2 instead of γ > 1

in the convergence condition tγ
∣∣∣ĥt − ht∣∣∣

Θ

a.s.−→ 0. This stricter condition is satisfied by

strengthening Assumption 13 as follows:

Assumption 14. There exists π > 3 such that tπ
∑∞

i=t |ωi|Θ → 0 as t→∞.

This stronger condition suffices for the next lemma, whose proof is identical to that of

Lemma B.2 and is therefore omitted.

Lemma B.3. Under Assumptions 1, 2, 3 and 14, there exists δ > 3 such that

tδ |ε̂t − εt|Θ
a.s.−→ 0, as t→∞.

Using Lemma B.3 instead of Lemma B.2 in the proof of Proposition B.2 entails the

desired quicker convergence, i.e. Assumption 10 (i). Proving the validity of Assumption

14 (iv) requires new arguments as it involves dealing with the gradient of the bandwidth

process. Hence, we report its proof in detail.

Proposition B.3. Under Assumptions 1 to 10 (iii) and 14:

(i) If 0 < β < 1, there exists γ̃ > 1/2 such that tγ̃
∥∥∥∇ĥt −∇ht∥∥∥

Θ

a.s.−→ 0 as t→∞ for ht

and ĥt as in (13) and (16), respectively.

(ii) If 0 < β < 1, there exists γ̃ > 1/2 such that tγ̃
∥∥∥∇ĥt −∇ht∥∥∥

Θ

a.s.−→ 0 as t→∞ for ht

and ĥt as in (14) and (17), respectively.

(iii) If |β| < 1, there exists γ̃ > 1/2 such that tγ̃
∥∥∥∇ĥt −∇ht∥∥∥

Θ

a.s.−→ 0 as t → ∞ for ht

and ĥt as in (15) and (18), respectively.
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Proof. For point (i) we have that:

∥∥∥∇ĥt −∇ĥt∥∥∥
Θ

=

∥∥∥∥∥∇ĥ2
t

ĥt
− ∇h

2
t

ht

∥∥∥∥∥
Θ

≤ D
∣∣∣ĥt − ht∣∣∣

Θ

∥∥∇h2
t

∥∥
Θ

+D
∥∥∥∇ĥ2

t −∇h2
t

∥∥∥
Θ
, (19)

where the expression for ∇h2
t (θ) (see (20) to (22) below) implies that

tγ̃
∣∣∣ĥt − ht∣∣∣

Θ
‖∇h2

t‖Θ = oa.s.(1) under Assumptions 8 (i) and 10 (i) for some γ̃ > 1/2 using

Borel Cantelli Lemma. For the second term we have that

∥∥∥∇ĥ2
t −∇h2

t

∥∥∥
Θ
≤
∣∣∣ĥ2

1 − h2
1

∣∣∣ ∥∥∇βt−1
∥∥
Θ

+

∥∥∥∥∥∇
{
α

t−1∑
s=0

βt−s
(
ε̂2
s − ε2

s

)}∥∥∥∥∥
Θ

,

so that

∣∣∣∂αĥ2
t − ∂αh2

t

∣∣∣
Θ
≤

t−1∑
s=0

βt−su

∣∣ε̂2
s − ε2

s

∣∣
Θ

; (20)

∣∣∣∂βĥ2
t − ∂βh2

t

∣∣∣
Θ
≤ t
∣∣∣ĥ2

1 − h2
1

∣∣∣ βt−2
u + αu

t−1∑
s=0

(t− s) βt−s−1
u

∣∣ε̂2
s − ε2

s

∣∣
Θ

; (21)

∥∥∥∇ωĥ
2
t −∇ωh

2
t

∥∥∥
Θ
≤ αu

t−1∑
s=0

βt−su

∥∥∇ωε̂
2
s −∇ωε

2
s

∥∥
Θ
, (22)

for αu and βu as in the proof of Proposition B.2, and where ∂α := ∂/∂α and simi-

larly for the other derivatives. The same steps as in the proof of Proposition B.2 im-

ply that tγ̃
∣∣∣∂αĥ2

t − ∂αh2
t

∣∣∣
Θ

= oa.s.(1) for some γ̃ > 1/2. Similar passages imply that

αut
γ̃
∑t−1

s=0 (t− s) βt−s−1
u |ε̂2

s − ε2
s|Θ = oa.s.(1) as long as tδ |ε̂t − εt|

a.s.−→ 0 for some δ > 3/2,

which is the case from Lemma B.2. Hence, tγ̃
∣∣∣∂βĥ2

t − ∂βh2
t

∣∣∣
Θ

= oa.s.(1)
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For (22) we have that

∥∥∇ωε̂
2
s −∇ωε

2
s

∥∥
Θ
≤ 2 {|εs|Θ ‖∇ωε̂s −∇ωεs‖Θ + ‖∇ωεs‖Θ |ε̂s − εs|Θ + |ε̂s − εs|Θ ‖∇ωε̂s −∇ωεs‖Θ}

≤ 2

{
|ε̂s|Θ

∞∑
i=s

‖∇ωωi‖Θ |Ys−1−i|+

(
∞∑
t=0

‖∇ωωi‖θ |Ys−1−i|

)
s−δC

+ s−δC

∞∑
i=s

‖∇ωωi‖Θ |Ys−1−i|

}

where we have used the fact that ∇ωεs (θ) =
∑∞

i=0∇ωωi (θ)Ys−1−i (and similarly for

∇ωε̂s (θ)) and the existence of some δ > 3 and C ∈ (0,∞) a.s. such that |ε̂s − εs|Θ ≤ s−δC

for every t following Lemma B.3. Following the same steps as in the proof of Proposition

B.2, we have that tγ̃
∥∥∥∇ωĥ

2
t −∇ωh

2
t

∥∥∥
Θ

= oa.s.(1) for some γ̃ > 1/2 as long as there exists

some π̃ > 3/2 such that sπ̃
∑∞

i=s ‖∇ωωi‖Θ = oa.s.(1). The latter holds under Assumption

14 for all weighting schemes that we consider. Hence, we have shown point (i) of the propo-

sition. The remaining points can be shown using similar arguments and by considering the

same points in the proof of Proposition B.2. Hence, we omit their proofs.

B.4 Validity of Assumption 12

We verify Assumption 12 for the processes in (13) to (15) and for their initialized counter-

parts

h̃2
t+1 (θ) = h̄+ βh̃2

t (θ) + αε̃2
t (θω) ; (23)

h̃2
t+1 (θ) = h̄+ βh̃2

t (θ) + {α + γG (ε̃t (θω))} ε̃2
t (θω) ; (24)

˜̄ht+1 (θ) = h̄+ β˜̄ht (θ) + αũt (θ) + γ {2G (ε̃t (θω))− 1} (ũt (θ) + 1) , (25)

for ε̃t (θω) as in Section 3.2 and ũt (θ) =
(ν+1)ε̃2t(θω)
ν+ε̃2t(θω)

− 1.
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Before proceeding, note that we can write ωi (θω) = c (θω) ai (θω) and ω̃i,t (θω) =

ct (θω) ai (θω), for c (θω) := [
∑∞

i=1 ai (θω)]
−1

and ct (θω) :=
[∑t

i=1 ai (θω)
]−1

. Hence, the

difference between time-varying and time-invariant weights reads

|ω̃i,t (θω)− ωi (θω)| = |ct (θω)− c (θω)| ai (θω) ,

for i = 0, . . . , t. The next Assumption and Lemma are required to verify Assumption 12.

Assumption 15. There exists π̃ > 2 such that tπ̃ |ct − c|Θ → 0 as t→∞.

Exponentially decaying weights always satisfy Assumption 15 while hyperbolically de-

caying ones do it as long as θ > 3.

Lemma B.4. Under Assumptions 1, 2, 3, 5 (i) and 15, there exists δ̃ > 1 such that

tδ̃ |ε̃t − εt|Θ
a.s.−→ 0 as t→∞.

Proof. Observe that:

|ε̃t − εt|Θ ≤ |ct−1 − c|Θ
t−1∑
i=0

|ai|Θ |Yt−1−i|+
∞∑
i=t

|ωi|Θ |Yt−1−i|

where the second term goes to zero a.s. as in the proof of Lemma B.2. For the first one,

Assumption 15 implies

|ct−1 − c|Θ
t−1∑
i=0

|ai|Θ |Yt−1−i| ≤ t−π̃K

t−1∑
i=0

|ai|Θ |Yt−1−i| ,

for some π̃ > 2 and scalar K > 0. Hence, the random variable
∑∞

t=1 t
δ̃−π̃∑t−1

i=0 |ai|Θ |Yt−1−i|

is integrable so that tδ̃ |ct − c|Θ
∑t−1

i=0 |ai|Θ |Yt−1−i|
a.s.−→ 0 as t → ∞ by Borel Cantelli

lemma.
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Proposition B.4. Under Assumptions 1, 2, 3, 5 (i) and 15:

(i) If 0 < β < 1, there exists γ̃ > 0 such that tγ̃
∣∣∣h̃t − ht∣∣∣

Θ

a.s.−→ 0 as t→∞ for ht and h̃t

as in (13) and (23), respectively.

(ii) If 0 < β < 1 and E [Y 2
t ] < ∞, there exists γ̃ > 0 such that tγ̃

∣∣∣h̃t − ht∣∣∣
Θ

a.s.−→ 0 as

t→∞ for ht and h̃t as in (14) and (24), respectively.

(iii) If |β| < 1, there exists γ̃ > 0 such that tγ̃
∣∣∣h̃t − ht∣∣∣

Θ

a.s.−→ 0 as t→∞ for ht and h̃t as

in (15) and (25), respectively.

Proof. All points can be shown using arguments equivalent to those of Proposition B.2 but

replacing Lemma B.2 with Lemma B.4.

C Derivations

C.1 k-step ahead predictive moments

Proposition C.1 extends Proposition 2.2 in the main body to the general forecast horizon

k > 0. As for the one-step ahead case, similar expressions could be derived for higher order

moments at the cost of a more cumbersome notation and kernel-specific formulas.

Proposition C.1. If 1
ht+1

∫
R yK

(
y−yt−i
ht+1

)
dy = yt−i and 1

ht+1

∫
R(y − yt−i)2K

(
y−yt−i
ht+1

)
dy =

h2
t+1:

µ̂t+k|t := EP̂ [Yt+k| Ft] =
∞∑
i=0

g(k) (ωi) yt−i; (26)

σ̂2
t+k|t := VarP̂ [Yt+k| Ft] =

k−1∑
s=0

g(s) (ω0) ĥ2
t+k−s|t +

∞∑
i=0

g(k) (ωi) y
2
t−i − µ̂2

t+k|t, (27)

51



where ĥ2
t+k|t := EP̂

[
h2
t+k

∣∣Ft] and the functions g(k) (·) are given by the difference equation

g(1) (ωi) = ωi,

g(k) (ωi) = g(k−1) (ω0)ωi + g(k−1) (ωi+1) , if k > 1,

(28)

with g(k) (ωi) > 0 for any i ∈ N and k ≥ 1, and
∑∞

i=0 g
(k) (ωi) = 1 for any k ≥ 1.

Proof. The proof proceeds by induction with respect to the forecast horizon k > 0. Let us

start from µ̂t+k|t := EP̂ [Yt+k| Ft] =: EP̂t [Yt+k]. When k = 1, (1) implies that

EP̂t [Yt+1] =

∫
R
y

1

ht+1

∞∑
i=0

ωiK
(
y − yt−i
ht+1

)
dy

=
∞∑
i=0

ωi

∫
R
y

1

ht+1

K
(
y − yt−i
ht+1

)
dy

=
∞∑
i=0

ωiyt−i,

where the last equality is due to the definition of the kernel functions (see the statement

of Proposition C.1). Let us assume that µ̂t+k|t is given by (26) and (28) in the main body;

this will be our induction hypothesis. The law of iterated expectation entails

EP̂t [Yt+k+1] = EP̂t
[
EP̂t+1 [Yt+k+1]

]
= EP̂t

[
∞∑
i=0

g(k) (ωi)Yt+1−i

]

= g(k) (ω0)EP̂t [Yt+1] +
∞∑
i=1

g(k) (ωi) yt+1−i

= g(k) (ω0)
∞∑
i=0

ωiyt−i +
∞∑
j=0

g(k) (ωj+1) yt−j

=
∞∑
i=0

{
g(k) (ω0)ωi + g(k) (ωi+1)

}
yt−i

=
∞∑
i=0

g(k+1) (ωi) yt−i,
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where we used the induction hypothesis between the first and the second line, the result

for k = 1 between the third and the fourth line, and the change of index j = i− 1 between

the fourth and the fifth line. Since the desired expression holds for k = 1 and because the

induction hypothesis implies the thesis for any k > 1, the proof for µ̂t+k|t is concluded.

Moving to σ̂2
t+k|t := VarP̂ [Yt+k| Ft], if k = 1 we have that

σ̂2
t+1|t = EP̂t

[
Y 2
t+1

]
− µ̂2

t+1|t

=

∫
R
y2

∞∑
i=0

ωi
1

ht+1

K
(
y − yt−i
ht+1

)
dy − µ̂2

t+1|t

= ĥ2
t+1|t +

∞∑
i=0

ωiy
2
t−i − µ̂2

t+1|t,

where the third line is due to the definition of the the kernel densities. Let us assume that

(27) and (28) hold for σ̂2
t+k|t; again, this will be our induction hypothesis. For σ̂2

t+k+1|t we

have that

σ̂2
t+k+1|t = EP̂t

[
Y 2
t+k+1

]
− µ̂2

t+k+1|t

= EP̂t
[
EP̂t+1

[
Y 2
t+k+1

]]
− µ̂2

t+k+1|t

= EP̂t

[
k−1∑
s=0

g(s) (ω0) ĥ2
t+1+k−s|t+1 +

∞∑
i=0

g(k) (ωi)Y
2
t+1−i

]
− µ̂2

t+k+1|t

=
k−1∑
s=0

g(s) (ω0) ĥ2
t+1+k−s|t +

k∑
i=0

g(k) (ωi)EP̂t
[
Y 2
t+1−i

]
− µ̂2

t+k+1|t

=
k−1∑
s=0

g(s) (ω0) ĥ2
t+1+k−s|t + g(k) (ω0)

{
ĥ2
t+1|t +

∞∑
i=0

ωiy
2
t−i

}

+
k∑
i=1

g(k) (ωi) y
2
t+1−i − µ̂2

t+k+1|t

=
k∑
s=0

g(s) (ω0) ĥ2
t+1+k−s|t +

∞∑
i=0

{
g(k) (ω0)ωi + g(k) (ωi+1)

}
y2
t−i − µ̂2

t+k+1|t
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=
k∑
s=0

g(s) (ω0) ĥ2
t+1+k−s|t +

∞∑
i=0

g(k+1) (ωi) y
2
t−i − µ̂2

t+k+1|t,

where we used the law of iterated expectations between the first and the second line, the

induction hypothesis between the second and the third line, and the result for k = 1

between the fourth and the fifth line. Since the desired expression holds for k = 1 and

because the induction hypothesis implies the thesis for any k > 1, the proof for σ̂2
t+k|t is

completed.

Finally, ωi > 0 implies g(k)(ωi) > 0 for any i ∈ N and k > 0. Summing both sides of

(28) over i and noting that
∑∞

i=0 ωi = 1 gives us
∑∞

i=0 g
(k) (ωi) =

∑∞
i=0 g

(k−1) (ωi) for any

k > 1. Because
∑∞

i=0 g
(1) (ωi) = 1, we have

∑∞
i=0 g

(k)(ωi) = 1 for any k > 0.

Remark C.1. The expression for the k-step ahead variance is particularly relevant when

ĥ2
t+k|t is available in closed form. While this is the case for the GARCH-like approach,

the presence of indicators based on asymmetrically distributed innovations (i.e. εt) makes

closed forms unavailable under the GJR and the DCS-EGARCH dynamics. Nevertheless,

k-step ahead predictions of these bandwidths can be obtained by numerical integration or

simulation.

C.2 Proof of Theorem 1 (consistency)

The following lemma is instrumental to the consistency proof.

Lemma C.1. Under Assumptions 1 to 5 (i)-(ii),
∣∣∣f̂t|t−1 (y)− ft|t−1 (y)

∣∣∣
Θ

a.s.→ 0 for any

y ∈ R as t→∞.

Proof. Let us introduce xi,t (θ) := (y − Yt−1−i) /ht (θ), x̂i,t (θ) := (y − Yt−1−i) /ĥt (θ) and
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∆t(y) :=
∣∣∣f̂t|t−1 (y)− ft|t−1 (y)

∣∣∣
Θ

. Then we can write

∆t(y) ≤

∣∣∣∣∣ 1

ĥt

t−1∑
i=0

ωiK (x̂i,t)−
1

ht

t−1∑
i=0

ωiK (xi,t)

∣∣∣∣∣
Θ

+

∣∣∣∣∣ 1

ht

∞∑
i=t

ωiK (xi,t (θ))

∣∣∣∣∣
Θ

=: At(y) +DKD
∞∑
i=t

|ωi|Θ ,
(29)

where DK :=

∣∣∣∣sup
x∈R
K (x)

∣∣∣∣
Θ

< ∞ thanks to Assumptions 2 - 3 and the fact that∫
RK (x;θK) dx < ∞ for any θK. The same assumptions also imply DKD

∑∞
i=t |ωi|Θ → 0

as t→∞. For At(y) we apply the mean value theorem to the function g : H → R+

g(h) =
1

h

t−1∑
i=0

ωiK
(
y − Yt−1−i

h

)
,

to get

At(y) ≤
∣∣∣ĥt − ht∣∣∣

Θ

∣∣∣h̆−2
t

∣∣∣
Θ

t−1∑
i=0

|ωi|Θ

∣∣∣∣K (x̆i,t)−
1

h̆t
K′ (x̆i,t) (y − Yt−1−i)

∣∣∣∣
Θ

≤

(
D2DK +D3MK

∞∑
i=0

|ωi|Θ |y − Yt−1−1|

)∣∣∣ĥt − ht∣∣∣
Θ

=: vt(y)
∣∣∣ĥt − ht∣∣∣

Θ

for h̆t (θ) a point on the segment joining ht (θ) and ĥt (θ), and x̆i,t (θ) :=

(y − Yt−1−i) /h̆t (θ). Note that we have also used the fact thatK (x; ·) ∈ C2 (R) and bounded

implies existence of MK :=

∣∣∣∣sup
x∈R
K′ (x)

∣∣∣∣
Θ

under Assumption 2.

Proposition 4.3 in Krengel (1985) based on Assumption 1, and Assumption 5 (i) imply

that {vt(y); t ∈ Z} is SE with finite first moment for any y ∈ R. At the same time,

Assumption 5 (ii) entails that for almost any ω ∈ Ω there exists a time tN (ω) such that

tγ
∣∣∣ĥt − ht∣∣∣

Θ
< 1 for any t ≥ tN (ω). Hence, At(y) ≤ t−γvt(y) eventually and a.s., and
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where the upper bound converges to zero a.s. using Borel-Cantelli Lemma. Equation (29)

implies that we have shown the desired convergence for any y ∈ R.

Remark C.2 (Convergence under exponentially decaying weights). From Remark B.1,

γt
∣∣∣ĥt − ht∣∣∣

Θ

a.s.−→ 0 for some γ > 1 under exponentially decaying weights. Hence, we can

find γ̆ > 1 such that γ̆t
∣∣∣f̂t|t−1(y)− ft|t−1(y)

∣∣∣
Θ

a.s.−→ 0, as t → ∞, for any y ∈ R and under

the milder condition E [|Yt|ρ] <∞.

Proof of Theorem 1. We first show that
∣∣∣(T −m)−1∑T

t=m+1 ϕ̂t − E [ϕt]
∣∣∣
Θ

a.s.−→ 0 as

T → ∞, for ϕ̂t (θ) and ϕt (θ) as defined in (10) and (11), respectively. Then, we ver-

ify that θ∗ is the identifiable unique maximizer of E [ϕt (θ)].

For the first point, let us fix m = 0 without loss of generality and write

∣∣∣∣∣T−1

T∑
t=1

ϕ̂t − E [ϕt]

∣∣∣∣∣
Θ

≤ 1

T

T∑
t=1

|ϕ̂t − ϕt|Θ +

∣∣∣∣∣ 1

T

T∑
t=1

ϕt − E [ϕt]

∣∣∣∣∣
Θ

. (30)

For the first term, the mean value theorem yields

|ϕ̂t − ϕt|Θ ≤

∣∣∣∣∣ 1

f̆t|t−1 (Yt)

∣∣∣∣∣
Θ

∣∣∣f̂t|t−1 (Yt)− ft|t−1 (Yt)
∣∣∣
Θ

<
1

α

∣∣∣∣ 1

ft|t−1 (Yt)

∣∣∣∣
Θ

∣∣∣f̂t|t−1 (Yt)− ft|t−1 (Yt)
∣∣∣
Θ
,

≤ 1

α

∣∣∣∣∣∣ ht

ω0K
(
Yt−Yt−1

ht

)
∣∣∣∣∣∣
Θ

∣∣∣f̂t|t−1 (Yt)− ft|t−1 (Yt)
∣∣∣
Θ

where f̆t|t−1 (θ;Yt) = αft|t−1 (θ;Yt) + (1− α) f̂t|t−1 (θ;Yt) for α ∈ (0, 1) so that
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f̆t|t−1 (θ;Yt) > αft|t−1 (θ;Yt). Looking at the proof of Lemma C.1, we see that

|ϕ̂t − ϕt|Θ ≤
1

α

∣∣∣∣∣∣ ht

ω0K
(
Yt−Yt−1

ht

)
∣∣∣∣∣∣
Θ

∣∣∣ĥt − ht∣∣∣
Θ

1

h̆t

(
DDK +D2MK

∞∑
i=0

|ωi|Θ |y − Yt−1−i|

)

+
1

α

∣∣∣∣∣∣ DK

ω0K
(
Yt−Yt−1

ht

)
∣∣∣∣∣∣
Θ

∞∑
i=t

|ωi|Θ

≤

∣∣∣ĥt − ht∣∣∣
Θ∣∣∣K (Yt−Yt−1

ht

)∣∣∣
Θ

(
c1 + c2

∞∑
i=0

|ωi|Θ |y − Yt−1−i|

)
+ c3

∣∣∣∣∣∣ 1

K
(
Yt−Yt−1

ht

)
∣∣∣∣∣∣
Θ

∞∑
i=t

|ωi|Θ

where we used the fact that h̆t ≥ βht for some β ∈ (0, 1). From the proof of Lemma

C.1,
∣∣∣ĥt − ht∣∣∣

Θ
(c1 + c2

∑∞
i=0 |ωi|Θ |y − Yt−1−i|) = oa.s.(1) , while

∑∞
i=t |ωi|Θ = o(1) by con-

struction. Moreover,

∣∣∣∣K (Yt−Yt−1

ht

)−1
∣∣∣∣
Θ

is an SE sequence with finite first moment from

Assumption 5 (iii). Hence, Toeplitz Lemma (see Theorem 1.1 in Linero and Rosalsky,

2013) implies that T−1
∑T

t=1 |ϕ̂t − ϕt|Θ
a.s.−→ 0 as T →∞.

For the second term in (30), note that ϕt (θ) forms an SE sequence of continuous

functions on the compact set Θ. Hence, for any θ ∈ Θ, |ϕt (θ)| ≤
∣∣log

(
ft|t−1 (Yt)

)∣∣
Θ
<

∞ a.s. where the upper bound is integrable from Assumption 5 (iii).14 Thus, this term

converges to zero almost surely from the uniform law of large numbers of Rao (1962).

Point (ii) is a consequence of Assumption 6 after noting that E [ϕt (θ)] is continuous

over the compact space Θ.

Remark C.3 (Consistency under exponentially decaying weights). Under exponentially

14In particular,

log
(
ft|t−1 (Yt;θ)

)
= log+

(
ft|t−1 (Yt;θ)

)
−log−

(
ft|t−1 (Yt;θ)

)
= log+

(
ft|t−1 (Yt;θ)

)
+log+

(
1

ft|t−1 (Yt;θ)

)
,

so that
∣∣log

(
ft|t−1 (Yt;θ)

)∣∣ ≤ log+
(
ft|t−1 (Yt;θ)

)
+ log+

(
1

ft|t−1(Yt;θ)

)
where x+ = max(x, 0) and x− =

−x+. Assumptions 3 and 4 imply boundedness of the first quantity while the second one has finite
expectation under Assumption 5 (ii).
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decaying weights, E

[
log+

(
K
(
Yt−Yt−1

h2t+1(θ)
;θK

)−1
)]

< ∞ suffices for θ̂T
a.s.−→ θ∗. Indeed,∣∣∣f−1

t|t−1 (y)
∣∣∣
Θ

∣∣∣f̂t|t−1 (y)− ft|t−1 (y)
∣∣∣
Θ

e.a.s.−→ 0 as t → ∞ under this milder condition thanks

to Lemma 2.1 in Straumann and Mikosch (2006). This e.a.s. convergence is enough for

1
T−m

∑T
t=m+1 |ϕ̂t − ϕt|Θ

a.s.−→ 0, as T →∞.

C.3 Proof of Theorem 2

The proof of of Theorem 2 requires three intermediate results.

Lemma C.2. Under Assumptions 1, 3, 4 and 8, E
[
‖∇ϕt (θ∗)‖2+δ

]
<∞.

Proof. We prove the lemma for each of the three sub-vectors of ∇ϕt (θ∗). To improve

readability, we suppress the dependence of ft|t−1 (θ;Yt) on Yt. From the expression in

Appendix F we have that

‖∇Kϕt (θ)‖ ≤ 1∑∞
i=0 ωi (θω)Ki,t (θ)

∞∑
i=0

ωi (θω) ‖∇KKi,t (θ)‖

=
1∑∞

i=0 ωi (θω)Ki,t (θ)

∞∑
i=0

ωi (θω)Ki,t (θ) ‖∇Klog {Ki,t (θ)}‖ ,

where Ki,t (θ) := K
(
Yt−Yt−1−i

ht(θ)
;θK

)
and we used the fact that ∇KKi,t (θ) =

Ki,t (θ)∇Klog {Ki,t (θ)} . Let us define the random variable

ξi,t (θ) :=
ωi (θω)Ki,t (θ)∑∞
i=0 ωi (θω)Ki,t (θ)

,

which is such that ξi,t (θ) ∈ (0, 1) a.s. and
∑∞

i=0 ξi,t (θ) = 1 for any θ ∈ Θ and t ∈ Z. Thus,

E
[
‖∇Kϕt (θ)‖2+δ

]
= E

( ∞∑
i=0

ξi,t (θ) ‖∇Klog {Ki,t (θ)}‖

)2+δ
 ,
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where the right hand side is finite as long as E
[∑∞

i=0 ξ
2+δ
i,t (θ) ‖∇Klog {Ki,t (θ)}‖2+δ

]
<∞.

Since ξi,t (θ) < ξ2+δ
i,t (θ) by definition, we have that

E

[
∞∑
i=0

ξi,t (θ)2+δ ‖∇Klog {Ki,t (θ)}‖2+δ

]
< E

[
∞∑
i=0

ξi,t (θ) ‖∇Klog {Ki,t (θ)}‖2+δ

]

<
∞∑
i=0

E [ξi,t (θ)]
(
E
[
‖∇Klog {Ki,t (θ)}‖(2+δ)(1+δ̃)

])1/(1+δ̃)

,

where we applied Hölder’s inequality with Hölder’s conjugates
(

1 + δ̃
)

and 1+δ̃
δ̃

for δ̃ > 0.

Hence, Assumption 8 (i) and
∑∞

i=0 ξi,t (θ) ≡ 1 imply E
[
‖∇Kϕt (θ)‖2+δ

]
<∞.

Assumptions 3, 4 and 8 (ii), and the expression for ∇ωϕt (θ) imply

‖∇ωϕt (θ)‖ ≤ D ‖∇ωht (θ)‖+D2 ‖∇ωht (θ)‖
∞∑
i=0

ξi,t (θ) |Yt − Yt−1−i| |dxlog {Ki,t (θ)}|

+
DKS

ω0K0,t (θ)
,

for ξi,t (θ) as before and where we used the fact that dxKi,t (θ) = Ki,t (θ) dxlog {Ki,t (θ)}

for dxlog {Ki,t (θ)} := d
dx

log {K (x;θK)} when evaluated at x = Yt−Yt−1−i

ht(θ)
.

Taking powers and applying a Hölder’s argument we get

‖∇ωϕt (θ)‖2+δ ≤ 31+δ

D4+δ ‖∇ωht (θ)‖2+δ

(
∞∑
i=0

ξi,t (θ) |Yt − Yt−1−i| |dxlog {Ki,t (θ)}|

)2+δ

+ ‖∇ωht (θ)‖2+δ +
D2+δ
K S2+δ

ω2+δ
0 K2+δ

0,t (θ)

}
.

Using the same steps as in the proof for ∇Kϕt (θ), Assumption 8 (i) implies that the

upper bound has finite expectation when θ = θ∗. An identical approach shows that

E
[
‖∇hϕt (θ∗)‖2+δ

]
<∞. Thus we have proven the lemma.

Lemma C.3. Under Assumptions 1, 2, 3, 4, 8 and 9 (i)-(iv), E [‖∇2ϕt‖Θ] <∞.
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Proof. The proof proceeds by considering each of the blocks defining the Hessian matrix.

For the sake of readability, we omit Yt from the arguments of ft|t−1 (Yt,θ). Before starting,

it is convenient to recall that ‖xy′‖ ≤ ‖x‖ ‖y‖n for any x ∈ Rm and y ∈ Rn.

Let us consider ∇2
KKϕt (θ). From the expressions in Appendix F we get:

∥∥∇2
KKϕt (θ)

∥∥ ≤ 1

|ω0 (θ)K0,t (θ)|Θ

∞∑
i=0

ωi (θω)
∥∥∇2
KKKi,t (θ)

∥∥+ ‖∇Kϕt (θ)‖2 dK,

where both terms are integrable under Assumption 9 (i) – (ii) and following the proof of

Lemma C.2.

For ∇2
Kωϕt (θ) we have:

∥∥∇2
Kωϕt (θ)

∥∥ ≤ dω ‖∇Kϕt (θ)‖ ‖∇ωϕt (θ)‖+
dω

ft|t−1 (θ)

1

ht (θ)

∞∑
i=0

‖∇KKi,t (θ)‖ ‖∇ωωi (θ)‖

+
dω

ft|t−1 (θ)

‖∇ωht (θ)‖
h3
t (θ)

∞∑
i=0

ωi (θω) ‖dx∇KKi,t (θ)‖ |Yt − Yt−1−i|

+
dω

ft|t−1 (θ)

‖∇ωht (θ)‖
h2
t (θ)

∞∑
i=0

ωi (θω) ‖∇KKi,t (θ)‖

=: At (θ) +Bt (θ) + Ct (θ) +Dt (θ) .

Proceeding as in the proof of Lemma C.2, Assumption 9 (ii) implies E [At (θ)] < ∞. For

Bt (θ) we note that

Bt (θ) ≤ c0

K0,t (θ)

∞∑
i=0

‖∇Klog {Ki,t (θ)}‖ ‖∇ωωi (θω)‖ ,

where the upper bound is integrable from Assumptions 8 (ii) and 9 (ii). For Ct (θ), first
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note that

‖dx∇KKi,t (θ)‖ =
∥∥K′i,t (θ)∇Klog {Ki,t (θ)}+Ki,t (θ) dx∇Klog {Ki,t (θ)}

∥∥
≤
∣∣K′i,t (θ)

∣∣ ‖∇Klog {Ki,t (θ)}‖+Ki,t (θ) ‖dx∇Klog {Ki,t (θ)}‖

= Ki,t (θ) {|dxlog {Ki,t (θ)}| ‖∇Klog {Ki,t (θ)}‖+ ‖dx∇Klog {Ki,t (θ)}‖}

so that

Ct (θ) ≤ c0 ‖∇ωht (θ)‖
∞∑
i=0

ξi,t (θ) |Yt − Yt−1−i| |dxlog {Ki,t (θ)}| ‖∇Klog {Ki,t (θ)}‖

+ c0 ‖∇ωht (θ)‖
∞∑
i=0

ξi,t (θ) |Yt − Yt−1−i| ‖dx∇Klog {Ki,t (θ)}‖

=: C1,t (θ) + C2,t (θ) .

For C1,t (θ), repeated use of Hölder’s inequality yields (omitting powers outside of the

expectations, for the sake of readability)

E [C1,t (θ)] < E
[
‖∇ωht (θ)‖4] ∞∑

i=0

{
ξi,t (θ)E

[
|Yt − Yt−1−i|8+δ

]
E
[
|dxlog {Ki,t (θ)}|8

]
E
[
‖∇Klog {Ki,t (θ)}‖2,]}

where the right hand side is finite thanks to Assumptions 8 (i) and 9 (ii). A similar

argument entails E [C2,t (θ)] <∞. Moving on to Dt (θ) we get

Dt (θ) ≤ c0
‖∇ωht (θ)‖∑∞

i=0 ωi (θω)Ki,t (θ)

∞∑
i=0

ωi (θω)Ki,t (θ) ‖∇Klog {Ki,t (θ)}‖

= c0 ‖∇ωht (θ)‖
∞∑
i=0

ξi,t (θ) ‖∇Klog {Ki,t (θ)}‖
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so that E [Dt (θ)] < ∞ from Assumption 9 (ii). Hence, E [‖∇2
Kωϕt (θ)‖] < ∞. The proof

for ∇2
Khϕt (θ) is identical and we omit it. For ∇2

ωωϕt (θ) we get

∥∥∇2
ωωϕt (θ)

∥∥ ≤ dω ‖∇ωϕt (θ)‖2 +
1

ft|t−1 (θ)

‖∇2
ωωht (θ)‖
h2
t (θ)

∞∑
i=0

ωi (θω)
∣∣K′i,t (θ)

∣∣ |Yt − Yt−1−i|

+
2dω

ft|t−1 (θ)

‖∇ωht (θ)‖
h2
t (θ)

∞∑
i=0

‖∇ωωi (θω)‖Ki,t (θ)

+
1

ft|t−1 (θ)

‖∇2
ωωht (θ)‖
h2
t (θ)

∞∑
i=0

ωi (θω)Ki,t (θ)

+
1

ft|t−1 (θ)

∞∑
i=0

‖∇2
ωωωi (θω)‖
ht (θ)

Ki,t (θ)

+
2dω

ft|t−1 (θ)

‖∇ωht (θ)‖
h3
t (θ)

∞∑
i=0

‖∇ωωi (θω)‖
∣∣K′i,t (θ)

∣∣ |Yt − Yt−1−i|

+
4dω

ft|t−1 (θ)

‖∇ωht (θ)‖2

h4
t (θ)

∞∑
i=0

ωi (θω)
∣∣K′i,t (θ)

∣∣ |Yt − Yt−1−i|

+
dω

ft|t−1 (θ)

‖∇ωht (θ)‖2

h5
t (θ)

∞∑
i=0

ωi (θω)
∣∣K′′i,t (θ)

∣∣ |Yt − Yt−1−i|2

+
2dω

ft|t−1 (θ)

‖∇ωht (θ)‖2

h3
t (θ)

∞∑
i=0

ωi (θω)Ki,t (θ) ,

for K′′i,t (θ) := d2

d x2
K (x;θK) evaluated at x = Yt−Yt−1−i

ht(θ)
. All these terms can be shown to

have finite expectation under Assumptions 8 and 9 (i)-(iv). The proofs always rely on

arguments already seen and therefore are omitted. Showing E [‖∇2
ωhϕt (θ)‖] < ∞ and

E [‖∇2
hhϕt (θ)‖] < ∞ implies writing an upper bound similar to that for ‖∇2

ωωϕt (θ)‖.

Hence, both properties can be shown using similar arguments as before.

All the previous results hold for any θ ∈ Θ. Moreover, ϕt (θ) ∈ C2 (Θ) for Θ compact.

Hence, ‖∇2ϕt‖Θ exists finite and has finite first moment. This concludes the proof.

Lemma C.4. Under Assumptions 1 to 10, 1√
T−m

∥∥∥∑T
t=m+1 (∇ϕt −∇ϕ̂t)

∥∥∥
Θ

p→ 0.

62



Proof. Without loss of generality, assume that m = 0 and write

1√
T

∥∥∥∥∥
T∑
t=1

∇ϕt −
T∑
t=1

∇ϕ̂t

∥∥∥∥∥
Θ

≤ 1√
T

T∑
t=1

‖∇ϕt −∇ϕ̂t‖Θ

≤ 1√
T

T∑
t=1

(H1,t +H2,t +H3,t) ,

for

H1,t :=

∥∥∇ft|t−1

∥∥
Θ

α̃2

∣∣∣f 2
t|t−1

∣∣∣
Θ

∣∣∣ft|t−1 − f̂t|t−1

∣∣∣
Θ

H2,t :=

∣∣∣∣ 1

ft|t−1

∣∣∣∣
Θ

∥∥∥∇ft|t−1 −∇f̂t|t−1

∥∥∥
Θ

H3,t :=

∣∣∣∣∣ 1

α̃2f 2
t|t−1

∣∣∣∣∣
Θ

∣∣∣ft|t−1 − f̂t|t−1

∣∣∣
Θ

∥∥∥∇ft|t−1 −∇f̂t|t−1

∥∥∥
Θ
,

where the term
∣∣∣α̃2f 2

t|t−1

∣∣∣
Θ

is due to a mean value argument as in the proof of Theorem 1.

From the proof of Lemma C.1, Assumption 10 (i) implies existence of some α > 1 such that

tα
∣∣∣ft|t−1 − f̂t|t−1

∣∣∣
Θ

= oa.s.(1). Because the random variable
∣∣∣ft|t−1 − f̂t|t−1

∣∣∣
Θ

has bounded

support, there exists a positive scalar c0 such that
∣∣∣ft|t−1 − f̂t|t−1

∣∣∣
Θ
≤ t−αc0 for any t, so

that

H1,t ≤ c0t
−α

∥∥∇ϕt|t−1

∥∥
Θ∣∣ft|t−1

∣∣
Θ

,
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whence

P

{
T−1/2

T∑
t=1

H1,t > ε

}
≤ P

{
T−1/3

T∑
t=1

H
2/3
1,t > ε2/3

}

≤ c1

T 1/3

T∑
t=1

t−2α/3E

[∥∥∇ϕt|t−1

∥∥2/3

Θ∣∣ft|t−1

∣∣2/3
Θ

]

≤ c1

T 1/3

T∑
t=1

t−2α/3
(
E
[∥∥∇ϕt|t−1

∥∥2

Θ

])1/3
(
E

[
1∣∣ft|t−1

∣∣
Θ

])2/3

≤ c2

T 1/3

∫ T

1

t−2α/3dt

≤ c3

T 1/3
T 1−2α/3,

where we used Hölder’s inequality between the second and the third line, and the fact

that
∑T

t=1 t
−2α/3 ≤

∫ T
t
t−2α/3dt = c4

(
T 1−2α/3 − 1

)
along with Assumptions 9 (ii) and

10 (ii) between the third and the fourth one. Note that the upper bound converges

to zero since α > 1, whence 1√
T

∑T
t=1H1,t = op(1). We study the limit behaviour of

P
{

1√
T

∑T
t=1 H2,t > ε

}
separately for each entry of ∇ft|t−1 (θ). For ∇Kft|t−1 (θ) we have

that

∥∥∥∇Kft|t−1 −∇Kf̂t|t−1

∥∥∥
Θ
≤

∥∥∥∥∥ 1

ht

∞∑
i=t

ωi∇KK (xi,t)

∥∥∥∥∥
Θ

+

∥∥∥∥∥ 1

ht

t−1∑
i=0

ωi∇KK (xi,t)−
1

ĥt

t−1∑
i=0

ωi∇KK (x̂i,t)

∥∥∥∥∥
Θ

≤ UKD

∞∑
i=t

|ωi|Θ +

(
D2UK +D3ŬK

∞∑
i=0

|ωi|Θ |Yt − Yt−1−i|

)∣∣∣ĥt − ht∣∣∣
Θ

= c0

∞∑
i=t

|ωi|Θ + vt

∣∣∣ĥt − ht∣∣∣
Θ
,

for xi,t (θ) and x̂i,t (θ) as in the proof of Lemma C.1, vt := (c1 + c2

∑∞
i=0 |ωi|Θ |Yt − Yt−1−i|),

and we used a mean value expansion of g(h) = 1
h

∑t−1
i=0 ωiK

(
Yt−Yt−1−i

h

)
. Thus, we get that

1√
T

T∑
t=1

1∣∣ft|t−1

∣∣
Θ

∥∥∥∇Kft|t−1 −∇Kf̂t|t−1

∥∥∥
Θ
≤ c1√

T

T∑
t=1

t−π∣∣ft|t−1

∣∣
Θ

+
C√
T

T∑
t=1

t−γ
vt∣∣ft|t−1

∣∣
Θ

, (31)
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where Assumptions 10 (i) – (iii) imply
∣∣∣ĥt − ht∣∣∣

Θ
≤ t−γC for some γ > 2 and an a.s.

positive and finite random variable C, and
∑∞

i=t |ωi|Θ ≤ t−πc0 for some π > 1/2. For the

first term, Markov inequality entails

P

{
c1√
T

T∑
t=1

t−π∣∣ft|t−1

∣∣
Θ

> ε

}
<

c2√
T

T∑
t=1

t−πE

[
1∣∣ft|t−1

∣∣
Θ

]
≤ c3√

T
T 1−π,

where we used Assumptions 9 (ii) and 10 (ii), and the relation
∑T

t=1 t
−π ≤

∫ T
1
t−πdt to get

an upper bound that converges to zero when π > 1/2. For the second term in (31), we see

that

P

{
1√
T

T∑
t=1

t−γ
vt∣∣ft|t−1

∣∣
Θ

> ε

}
≤ P

{
1

T 1/4

T∑
t=1

t−γ/2
v

1/2
t∣∣ft|t−1

∣∣1/2
Θ

> ε1/2

}

<
c0

T 1/4

T∑
t=1

t−γ/2E

[
v

1/2
t∣∣ft|t−1

∣∣1/2
Θ

]

≤ c1

T 1/4
T 1−γ/2,

where we used Cauchy-Schwarz inequality, Assumptions 8 (i) and 9 (ii), and the previous

relation between sums and integrals to derive the upper bound. The latter converges to

zero under Assumption 10 (i), so that 1√
T

∑T
t=1

1

|ft|t−1|Θ

∥∥∥∇Kft|t−1 −∇Kf̂t|t−1

∥∥∥
Θ

= op(1).

For ∇ωft|t−1 (θ) we can write

∥∥∥∇ωft|t−1 −∇ωf̂t|t−1

∥∥∥
Θ
≤

∥∥∥∥∥ 1

ht

∞∑
i=t

K (xi,t)∇ωωi

∥∥∥∥∥
Θ

+

∥∥∥∥∥∇ωht
h2
t

∞∑
i=t

ωiK (xi,t)

∥∥∥∥∥
Θ

+

∥∥∥∥∥∇ωht
h3
t

∞∑
i=t

ωiK′ (xi,t) (Yt − Yt−1−i)

∥∥∥∥∥
Θ

+

∥∥∥∥∥ 1

ĥt

t−1∑
i=0

K (x̂i,t)∇ωωi −
1

ht

t−1∑
i=0

K (xi,)∇ωωi

∥∥∥∥∥
Θ

+

∥∥∥∥∥∇ωĥt

ĥ2
t

t−1∑
i=0

ωiK (x̂i,t)−
∇ωht
h2
t

t−1∑
i=0

ωiK (xi,t)

∥∥∥∥∥
Θ

+

∥∥∥∥∥
t−1∑
i=0

ωi (Yt − Yt−1−i)

{
∇ωĥt

ĥ3
t

K′ (x̂i,t)−
∇ωht
h3
t

K′ (xi,t)

}∥∥∥∥∥
Θ
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= At +Bt + Ct +Dt + Et + Ft.

We examine one term at a time starting from At:

P

{
1√
T

T∑
t=1

1∣∣ft|t−1

∣∣
Θ

At > ε

}
≤ P

{
c0√
T

T∑
t=1

1

|ω0K0,t|Θ

}

≤ c1√
T

T∑
t=1

t−πE
[

1

|K0,t|Θ

]
≤ c2√

T
T 1−π,

thanks to Markov inequality, and Assumptions 8 (ii) and 9 (ii). The upper bound converges

to zero under Assumption 10 (iii). A similar proof based on the same assumptions shows

that 1√
T

∑T
t=1

1

|ft|t−1|Θ
Bt = op(1).

For Ct, the same arguments as in the proof of Lemma B.2 imply

1∣∣ft|t−1

∣∣
Θ

∥∥∥∥∥∇ωht
h3
t

∞∑
i=t

ωiK′ (xi,t) (Yt − Yt−1−i)

∥∥∥∥∥
Θ

≤ c0
‖∇ωht‖Θ∣∣ft|t−1

∣∣
Θ

∞∑
i=t

|ωi|Θ |Yt − Yt−1−i|

≤ c0
‖∇ωht‖Θ
|ω0K0,t|Θ

t−π,

so that

P

{
1√
T

T∑
t=1

1∣∣ft|t−1

∣∣
Θ

Ct > ε

}
≤ P

{
1√
T

T∑
t=1

c0
‖∇ωht‖Θ
|K0,t|Θ

t−π > ε

}

≤ c1√
T

T∑
t=1

t−πE
[
‖∇ωht‖Θ
|K0,t|Θ

]
≤ c2√

T
T 1−π,

where we used Cauchy-Schwarz inequality along with Assumption 9 (ii). For Dt we have
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that:

1∣∣ft|t−1

∣∣
Θ

Dt ≤
1∣∣ft|t−1

∣∣
θ

∣∣∣ĥt − ht∣∣∣
Θ

t−1∑
i=0

‖∇ωi‖Θ

∣∣∣∣K (x̆i,t)

h̆2
t

+
K′ (x̆i,t)
h̆3
t

(Yt − Yt−1−i)

∣∣∣∣
Θ

≤ 1∣∣ft|t−1

∣∣
Θ

∣∣∣ĥt − ht∣∣∣
Θ∣∣∣h̆t∣∣∣

Θ

t−1∑
i=0

‖∇ωi‖Θ (c0 + c1 |Yt − Yt−1−i|)

≤ c0

|ω0K0,t|Θ

∣∣∣ĥt − ht∣∣∣
Θ

t−1∑
i=0

‖∇ωi‖Θ (c1 + c2 |Yt − Yt−1−i|) ,

≤ c3Ct
−γ

|K0,t|Θ

∞∑
i=0

‖∇ωi‖Θ (c1 + c2 |Yt − Yt−1−i|)

where the first inequality is due to a mean value expansion around h̆t (θ) = αht (θ) + (1−

α)ĥt (θ) for some α ∈ (0, 1), the fact that h̆t (θ) ≥ αht (θ) to move from the second to the

third line, and Assumption 10 (i) to obtain the last upper bound for C ∈ (0,∞) a.s. and

some γ > 2. Let vt :=
∑∞

i=0 ‖∇ωi‖Θ (c1 + c2 |Yt − Yt−1−i|), so that

P

{
1√
T

T∑
t=1

t−γ

|K0,t|Θ
vt > ε

}
≤ c0√

T

T∑
t=1

t−γE
[

vt
|K0,t|Θ

]
≤ c1√

T
T 1−γ,

where we used Markov and Caquchy-Schwarz inequality along with Assumptions 8 and 9

(ii). Hence we get 1√
T

∑T
t=1

1

|ft|t−1|Θ
Dt = op(1). Moving to Et we see that

Et ≤ ‖∇ωht‖Θ

∣∣∣∣∣ 1

ĥ2
t

t−1∑
i=0

ωiK (x̂i,t)−
1

h2
t

t−1∑
i=0

ωiK (xi,t)

∣∣∣∣∣
Θ

+
∥∥∥∇ωĥt −∇ωht

∥∥∥
Θ

∣∣∣∣∣ 1

ĥ2
t

t−1∑
i=0

ωiK (x̂i,t)

∣∣∣∣∣
Θ

≤ c0
‖∇ωht‖Θ
|ht|Θ

∣∣∣ĥt − ht∣∣∣
Θ

∞∑
i=0

|ωi|Θ (c1 + c2 |Yt − Yt−1−i|) + c3

∥∥∥∇ωĥt −∇ωht

∥∥∥
Θ∣∣∣ĥt∣∣∣

Θ

≤ c0C
‖∇ωht‖Θ
|ht|Θ

t−γvt + c3C̃t
−γ̃
∣∣∣∣htĥt
∣∣∣∣
Θ

1

|ht|Θ

thanks to a mean value argument similar to that for Dt, and where the last upper bound is
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due to Assumption 10 (i) – (iv) for C and C̃ two a.s. positive and finite random variables.

The above upper bound implies that:

1∣∣ft|t−1

∣∣
Θ

Et ≤
c0C

|K0,t|Θ
‖∇ωht‖Θ t

−γvt +
c3C̃

|K0,t|Θ
t−γ̃
(
Ct−γ + 1

)
= c0CE1,t + c3C̃CE2,t + c3C̃CE3,t,

where we used the fact that Assumption 10 (i) implies
∣∣∣ht
ĥt

∣∣∣
Θ
≤ (Ct−γ + 1) for C and γ as

before. For E1,t we get that

P

{
1√
T

T∑
t=1

E1,t > ε

}
≤ P

{
1

T 1/4

T∑
t=1

E
1/2
1,t > ε1/2

}

≤ c0

T 1/4

T∑
t=1

t−γ/2E

[
‖∇ωht‖1/2 v1

t /2

|K0,t|1/2Θ

]

≤ c1

T 1/4
T 1−γ/2,

where we applied Markov and Cauchy-Schwarz inequalities (the latter repeatedly)

along with Assumptions 8 (i) and 9 (ii). This upper bound entails c0C√
T

∑T
t=1E1,t =

op(1). Similar passages imply that c3C√
T

∑T
t=1E2,t = op(1) and c3CC̃√

T

∑T
t=1E3,t =

op(1), so that 1√
T

∑T
t=1

1

|ft|t−1|Θ
Et = op(1). Similar steps also imply that

1√
T

∑T
t=1

1

|ft|t−1|Θ
Ft = op(1) under Assumptions 8 (i), 9 (ii) and 10. Hence,

we showed that 1√
T

∑T
t=1

1

|ft|t−1|Θ

∥∥∥∇ωft|t−1 −∇ωf̂t|t−1

∥∥∥
Θ

= op(1). The proof for

1√
T

∑T
t=1

1

|ft|t−1|Θ

∥∥∥∇hft|t−1 −∇hf̂t|t−1

∥∥∥
Θ

is identical and we omit it. Thus, we get that

1√
T

∑T
t=1H2,t = op(1).

For H3,t =

∣∣∣∣ 1
α2f2

t|t−1

∣∣∣∣
Θ

∣∣∣ft|t−1 − f̂t|t−1

∣∣∣
Θ

∥∥∥∇ft|t−1 −∇f̂t|t−1

∥∥∥
Θ

we note that∣∣∣ 1
α2ft|t−1

∣∣∣
Θ

∣∣∣ft|t−1 − f̂t|t−1

∣∣∣
Θ

= oa.s.(1) using Borel Cantelli lemma. Hence,there exists
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a random variable C ∈ (0,∞) a.s. such that:

H3,t ≤
∣∣∣∣ C

ft|t−1

∣∣∣∣
Θ

∥∥∥∇ft|t−1 −∇f̂t|t−1

∥∥∥
Θ

= CH2,t.

Thus, 1√
T

∑T
t=1 H3,t = op(1) and we have shown the lemma.

Remark C.4 (Convergence of the score under exponentially decaying weights). Remark

C.3 and Assumption 5 (ii) imply
∣∣∣ 1

f̂t|t−1
− 1

ft|t−1

∣∣∣
Θ

e.a.s.−→ 0 as t → ∞ under exponentially

decaying weights. Similarly,
∥∥∥∇f̂t|t−1 −∇ft|t−1

∥∥∥
Θ

e.a.s.−→ 0 as t → ∞ under this setting.

Since this property is implied by Remark B.1, Assumption 10 (i, iii, iv) is redundant in

this case. Lemma TA.14 in Blasques et al. (2022) then implies that ‖∇ϕt −∇ϕ̂t‖Θ
e.a.s.−→ 0

so that Lemma C.4 holds almost surely rather than in probability.

Proof of Theorem 2. We first derive the asymptotic distribution of θT and then show

that it coincides with that of θ̂T . Let us define the function

ϕT (θ) :=
1

T −m

T∑
t=m+1

ϕt (θ)

so that θT := arg max
θ∈Θ

ϕT (θ). As before, assume m = 0 without loss of generality. A mean

value expansion of ∇ϕT (θ) yields

∇ϕT (θT )−∇ϕT (θ∗) = ∇2ϕT

(
θ̃
)

(θT − θ∗) ,

for θ̃ a mean value between θT and θ∗. Since ∇ϕT (θT ) = 0 by definition, we have that

√
T (θT − θ∗) = −

(
∇2ϕT

(
θ̃
))−1√

T∇ϕT (θ∗) .

Lemma C.2 and Assumption 11 allow us to apply the central limit theorem for near epoch
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dependent from Pötscher and Prucha (1997), so that
√
T∇ϕT (θ∗)

d→ N (0, V ) as T →

∞ and for V as in the main body. Lemma C.3 and the fact that θT
a.s.−→ θ∗ imply:

∇2ϕT

(
θ̃
)

a.s.−→ E [∇2ϕt (θ∗)], where the limit is negative definite from Assumption 9 (v).

Combining these results we get
√
T (θT − θ∗)

d→ N (0,Σ) , for Σ as in the main body.

Let us now consider the function

ϕ̂T (θ) :=
1

T −m

T∑
t=m+1

ϕ̂t (θ)

so that θ̂T := arg max
θ∈Θ

ϕ̂T (θ). Again, let m = 0. A mean value expansion of ∇ϕT (θ)

yields:

∇ϕT (θT )−∇ϕT
(
θ̂T

)
= ∇2ϕT

(
θ
) (

θT − θ̂T

)
,

for θ a mean value between θT and θ̂T , and where ∇ϕT (θT ) = ∇ϕ̂T
(
θ̂T

)
= 0. Thus,

√
T
(
∇ϕ̂T

(
θ̂T

)
−∇ϕT

(
θ̂T

))
= ∇2ϕT

(
θ
)√

T
(
θT − θ̂T

)
,

where ∇2ϕT
(
θ
) a.s.−→ E [∇2ϕT (θ∗)] from Lemma C.3 and Theorem 1. Lemma C.4 implies

√
T
∥∥∥∇ϕ̂T (θ̂T)−∇ϕT (θ̂T)∥∥∥ p−→ 0,

so that
√
T
∥∥∥θT − θ̂T

∥∥∥ p→ 0 and the two estimators share the same asymptotic distribution.

C.4 Proof of Proposition 3.1

Lemma C.5 shows that the difference between ft+1|t (y;θ) and f̃t+1|t (y;θ) converges to zero

in probability, uniformly over Θ, and for any y ∈ R as t→∞. This result is instrumental
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for Proposition 3.1 and its proof is similar to that of C.1.

Lemma C.5. Under Assumptions 1, 3, 4, 5 (i) and 12,
∣∣∣f̃t+1|t (y)− ft+1|t (y)

∣∣∣
Θ

p→ 0 as

t→∞ and for any y ∈ R.

Proof. Let us define the quantities xi,t (θ) := (y − Yt−1−i) /ht (θ), x̃i,t (θ) :=

(y − Yt−1−i) /h̃t (θ) and ∆t(y) :=
∣∣∣f̃t|t−1 (y)− ft|t−1 (y)

∣∣∣
Θ

. Then we have

∆t(y) ≤
t−1∑
i=0

∣∣∣∣ωihtK (xi,t)−
ω̃i,t−1

h̃t
K (x̃i,t)

∣∣∣∣
Θ

+
∞∑
i=t

∣∣∣∣ωihtK (xi,t)

∣∣∣∣
Θ

≤
t−1∑
i=0

∣∣∣∣ωihtK (xi,t)−
ωi

h̃t
K (x̃i,t)

∣∣∣∣
Θ

+DKD
′
∞∑
i=t

|ωi|Θ +
t−1∑
i=0

∣∣∣∣ωih̃tK (x̃i,t)−
ω̃i,t−1

h̃t
K (x̃i,t)

∣∣∣∣
Θ

=: At(y) +Bt + Ct(y),

where At
p→ 0 for any y and Bt → 0 as t → ∞ following similar steps as in the proof of

Lemma C.1. For Ct we have that

Ct(y) ≤ DKD |ct−1 − c|Θ
t−1∑
i=0

|ai|Θ ,

for ct−1 (θω), c (θω) and ai (θω) as in Section B.4, and where the upper bound converges to

zero in probability under Assumption 15.

Proposition 3.1 readily follows by combining Lemma C.5 with a continuity argument

as in the proof of Proposition 3.2 in Blasques et al. (2018). Hence, we omit its proof.

D Monte Carlo analysis

In this section, we carry out a Monte Carlo analysis to study how effectively Dynamic

Kernel models can predict one-step ahead distributions under different data generating
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processes (DGP). We simulate data from the model:

yt = ρyt−1 + σtzt, zt
i.i.d.∼ D,

σ2
t = ω + α (yt−1 − µt−1)2 + βσ2

t−1,

(32)

where (ρ, ω, α, β) = (0.8, 0.05, 0.2, 0.7) and D is a distribution with zero mean and unit

variance. In particular, we consider the cases where D is: Gaussian, Student’s t with ν = 4

degrees of freedom, and Skew-t as in Fernández and Steel (1998) with skewness parameter

ξ = 0.9 and ν = 4 degrees of freedom (these values imply that innovations are left skewed

and fat-tailed). We consider M = 1000 Monte Carlo samples of length T = 2000 and

split each sample into two sub-samples of equal length. Models are estimated on the first

T1 = 1000 observations and density forecasts are made for the remaining points in time.

For each DGP, we estimate two Dynamic Kernel models based on EWMA weights,

a GARCH-like bandwidth and either a Gaussian or a Student’s t kernel. Experiments

with other weighting schemes and bandwidth dynamics returned very similar results.15

As in Engle (2002) and Koopman et al. (2016) (among others), we first study how well

we can predict a time-varying parameter of interest. Because the interest is in predictive

distributions, we consider the mean absolute error (MAE) for a set of one-step ahead

quantiles. That is, we look at

MAEj =
1

T2

T∑
t=T1+1

∣∣q̂j,t|t−1 − q0
j,t|t−1

∣∣ ,
where q̂j,t|t−1

(
q0
j,t|t−1

)
is the estimated (true) one-step ahead predictive quantile for proba-

bility level τj ∈ (0, 1). We consider probability levels τj = 1%, 10%, 20%, . . . , 80%, 90%, 99%

15For hyperbolically decaying weights, estimates θ were always above five: a clear hint that exponential
weights sufficed for this DGP. Similarly, leverage parameters in the GJR and in the DCS case were always
negligible. Hence, we opted for the more parsimonious GARCH-like dynamics.
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Table 6: Monte Carlo results, Mean Absolute Errors.

Gaussian data generating process
Kernel/τ 1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

Gaussian 0.621 0.756 0.858 0.935 0.982 0.998 0.981 0.933 0.857 0.755 0.619
Student’s t 0.645 0.751 0.854 0.932 0.982 0.999 0.981 0.931 0.852 0.749 0.644

Student’s t data generating process
Kernel/τ 1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

Gaussian 0.633 0.715 0.801 0.877 0.947 0.979 0.946 0.876 0.801 0.715 0.630
Student’s t 0.546 0.567 0.662 0.796 0.927 0.987 0.926 0.794 0.660 0.567 0.546

Skew-t data generating process
Kernel/τ 1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

Gaussian 0.837 0.737 0.842 0.915 0.968 0.981 0.928 0.847 0.775 0.713 0.698
Student’s t 0.521 0.601 0.693 0.814 0.931 0.987 0.930 0.789 0.642 0.552 0.517

Note: Average MAEs across M = 1000 Monte Carlo samples. The DGP is that in (32) with
Gaussian, Student’s t and Skew-t innovations. Results are reported as a fraction of the average
MAE for the approach of Harvey and Oryshchenko (2012). Models are estimated over T1 = 1000
observations and quantiles are predicted for the subsequent T2 = 1000 points in time.

and present results in Table 6. In all cases, we show the average MAE across Monte Carlo

samples. Numbers are reported with respect to the approach of Harvey and Oryshchenko

(2012) based on a Gaussian kernel function. For the Gaussian DGP (upper panel), there is

no benefit in using a Student’s t kernel instead of a Gaussian one. Introducing a dynamic

bandwidth improves upon the approach of Harvey and Oryshchenko (2012) for all prob-

ability levels of interest. The improvement is more sizeable when we consider probability

levels below (above) 20% (80%), i.e. in the tails of the distribution. The central and the

lower panels suggest that using a Student’s t kernel is useful when the DGP is fat-tailed, i.e.

in the Student’s t and Skew-t cases, especially for the tails of the predictive sdistribution.

Adopting a dynamic bandwidth is also relevant for these fat-tailed DGPs.

To understand the goodness-of-fit of our models, we consider unconditional and condi-
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Table 7: Monte Carlo results, empirical rejection frequencies of coverage tests.

Gaussian data generating process
Coverage Kernel/τ 1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

Unconditional Gaussian 0.085 0.061 0.026 0.006 0.003 0.003 0.002 0.009 0.028 0.049 0.067
Unconditional Student’s t 0.087 0.061 0.021 0.007 0.002 0.002 0.001 0.008 0.031 0.043 0.080
Conditional Gaussian 0.046 0.073 0.064 0.047 0.048 0.048 0.050 0.058 0.059 0.064 0.033
Conditional Student’s 0.039 0.074 0.068 0.048 0.052 0.050 0.056 0.056 0.058 0.066 0.040

Student’s t data generating process
Coverage Kernel/τ 1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

Unconditional Gaussian 0.424 0.620 0.876 0.786 0.280 0.007 0.292 0.787 0.878 0.654 0.422
Unconditional Student’s t 0.098 0.053 0.037 0.015 0.006 0.004 0.006 0.015 0.036 0.061 0.096
Conditional Gaussian 0.287 0.569 0.821 0.725 0.305 0.113 0.296 0.705 0.815 0.591 0.307
Conditional Student’s t 0.053 0.072 0.079 0.072 0.067 0.060 0.052 0.076 0.069 0.080 0.065

Skew-t data generating process
Coverage Kernel/τ 1% 10% 20% 30% 40% 50% 60% 70% 80% 90% 99%

Unconditional Gaussian 0.701 0.406 0.842 0.894 0.693 0.073 0.058 0.630 0.892 0.835 0.153
Unconditional Student’s t 0.212 0.065 0.033 0.042 0.049 0.082 0.064 0.046 0.045 0.140 0.150
Conditional Gaussian 0.563 0.373 0.792 0.823 0.601 0.138 0.140 0.580 0.847 0.770 0.092
Conditional Student’s t 0.121 0.090 0.099 0.094 0.103 0.124 0.130 0.087 0.080 0.140 0.083

Note: The nominal size is 5%, and the DGP is that in (32) with Gaussian, Student’s t and
Skew-t innovations. The number of Monte Carlo samples is M = 1000. Results are presented for
models based on a Gaussian or on a Student’s t kernel. Models are estimated over T1 = 1000
observations and quantiles are predicted for the subsequent T2 = 1000 points in time.

tional coverage tests for the previous eleven quantiles (see Section 4.4 in the main body for

a discussion of these tests). Tests are performed at the 5% level of significance. Table 7

reports empirical rejection frequencies for the null hypotheses of correct unconditional or

conditional coverage. In particular, each entry is obtained as 1
M

∑M
m=1 1 (pj,m < 0.05) for

pj,m the p-value of the test for the j-th quantile over the m-th sample. Results based on

the method of Harvey and Oryshchenko (2012) were always worse than those based on our

models and we do not report them.

As in Table 6, the Gaussian and the Student’s t kernel perform similarly under the
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Gaussian GDP. The conditional coverage seems to be particularly good, with empirical

rejection frequencies being very close to the nominal size. The Gaussian kernel provides

poor coverage when the DGP is fat-tailed, as we can see from the central panel of Table

7. Using a Student’s t kernel drastically improves the goodness-of-fit of the predicted

distributions, as we implied by empirical rejection frequencies being much closer to 5%.

Adding skewness further hampers results based on Gaussian kernels. Models based on

Student’s t density still provide a good unconditional coverage for probability levels between

ten and eighty percent. The conditional coverage is satisfying for all quantiles of interest,

as we can see from empirical rejection frequencies always being lower than 14%.

E Further empirical results

E.1 Further results on model diagnostics

In this section, we carry out model diagnostics in the form of residual analysis, thus com-

plementing the results of Section 4.4 in the main body. To do it, we study the sample

auto-correlation function (acf) of standardized residuals ε̂t :=
(
Yt − µ̂t|t−1

)
/σ̂t|t−1 and of

their squares. Both processes are uncorrelated at any lead or lag when µ̂t|t−1 and σ̂t|t−1 are

correctly specified. Figure 10 shows the sample acf for ε̂t implied by EWMA (upper-left

panel), Gamma (upper-right panel), hyperbolic (lower-left panel) and flexible hyperbolic

(lower-right panel) weights. Results are based on a GJR bandwidth and are robust with re-

spect to this modelling choice. Red dashed lines are (non-parametric) 95% confidence bands

for non-linear processes as detailed by Francq and Zaköıan (2009). While residuals based

on EWMA weights exhibit significantly positive first and second order auto-correlations,

no such result is observable for hyperbolically decaying weights. Gamma weights improve

upon EWMA ones but still imply some statistically significant auto-correlation at lag two.
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(b) Gamma.
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(d) Flexible hyperbolic.

Figure 10: In clockwise order: sample auto-correlation functions of standardized residuals
implied by EWMA, Gamma, flexible hyperbolic and hyperbolic weights with GJR-like
bandwith process. Red dashed lines are 95% confidence bands for non-linear processes as
in Francq and Zaköıan (2009).

Sample acf of ε̂2
t are in Figure 11. They are based on four models with hyperbolically

decaying weights and different bandwidth processes. The heteroskedasticity in the data is

not properly captured with a fixed bandwidth. Indeed, sample auto-correlations in Panel

(d) are larger than those in the other panels. The null hypothesis of no auto-correlation

is rejected for some lags. Conversely, a dynamic bandwidth returns serially uncorrelated

squared residuals for any bandwidth process. Identical conclusions hold for the other

weighting schemes.
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(a) GARCH.
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(c) DCS-EGARCH.
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(d) Fixed.

Figure 11: In clockwise order: sample auto-correlation functions of squared standardized
residuals implied by hyperbolic weights with GARCH, GJR, fixed and DCS-EGARCH
bandwidths. Red dashed lines are 95% confidence bands for non-linear processes as in
Francq and Zaköıan (2009).

F Score and Hessian of Dynamic Kernel models

Consider the SE sequence {ϕt (θ) ; t ∈ Z}, with generic element

ϕt (θ) := log

{
1

ht (θ)

∞∑
i=0

ωi (θω)K (xi,t (θ) ;θK)

}
,

for xi,t (θ) := (Yt − Yt−1−i) /ht (θ). Let us partition the score as

∇ϕt (θ) = (∇′Kϕt (θ) ,∇′ωϕt (θ) ,∇′hϕt (θ))
′
,
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where ∇Kϕt (θ) denotes the gradient with respect to θK and similarly for the remaining

sub-vectors. We then have that

∇iϕt (θ) =
1

ft|t−1 (θ;Yt)
∇ift|t−1 (θ;Yt) ,

for i ∈ {K, ω, h} and

∇Kft|t−1 (θ) =
1

ht (θ)

∞∑
i=0

ωi (θω)∇KK (xi,t (θ) ;θK) ;

∇ωft|t−1 (θ) =− ∇ωht (θ)

h2
t (θ)

{
∞∑
i=0

ωi (θω)

[
K (xi,t (θ) ;θK) +K′ (xi,t (θ) ;θK)

(Yt − Yt−1−i)

ht (θ)

]}

+
1

ht (θ)

∞∑
i=0

K (xi,t (θ) ;θK)∇ωωi (θω) ;

∇hft|t−1 (θ) =− ∇hht (θ)

h2
t (θ)

{
∞∑
i=0

ωi (θω)

[
K (xi,t (θ) ;θK) +K′ (xi,t (θ) ;θK)

(Yt − Yt−1−i)

ht (θ)

]}
,

where we omitted the dependence on Yt. Doing similarly for the Hessian matrix we get

∇2
i,jϕt (θ) =

1

ft|t−1 (θ)
∇2
ijft|t−1 (θ)− 1

f 2
t|t−1 (θ)

∇ift|t−1 (θ)∇′jft|t−1 (θ) ,

for i ∈ {K, ω, h}, similarly for j and

∇2
KKft|t−1 =

1

ht

∞∑
i=0

ωi∇2
KKK (xi,t) ;

∇2
Kωft|t−1 =

∞∑
i=0

{
∇KK (xi,t)

∇′ωωi
ht
− ωi

[
∇KK (xi,t) + (∇KK (xi,t))

′ Yt − Yt−1−i

ht

]
∇′ωht
h2
t

}

∇2
Khft|t−1 = −

{
∞∑
i=0

ωi

[
∇KK (xi,t) + (∇KK (xi,t))

′ (Yt − Yt−1−i)

ht

]}
∇′hht
h2
t

;

∇2
ωωft|t−1 =

∇ωht∇′ωht
h3
t

{
∞∑
i=0

ωi

[
2K (xi,t) + 4K′ (xi,t)

(Yt − Yt−1−i)

ht
+K′′ (xi,t)

(Yt − Yt−1−i)
2

h2
t

]}
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− ∇
2
ωωht
h2
t

{
∞∑
i=0

ωi

[
K (xi,t) +K′ (xi,t)

(Yt − Yt−1−i)

ht

]}
+

1

ht

∞∑
i=0

K (xi,t)∇2
ωωωi

− 2

{
∞∑
i=0

∇′ωωi
[
K (xi,t) +K′ (xi,t)

(Yt − Yt−1−i)

ht

]}

∇2
ωhft|t−1 =

∇ωht∇′hht
h3
t

{
∞∑
i=0

ωi

[
2K (xi,t) + 4K′ (xi,t)

(Yt − Yt−1−i)

ht
+K′′ (xi,t)

(Yt − Yt−1−i)
2

h2
t

]}

−

{
∞∑
i=0

∇ωωi

[
K (xi,t) +K′ (xi,t)

(Yt − Yt−1−i)

ht

]}
∇′hht
h2
t

− ∇
2
ωhht
h2
t

{
∞∑
i=0

ωi

[
K (xi,t) +K′ (xi,t)

(Yt − Yt−1−i)

ht

]}

∇2
hhft|t−1 =

∇hht∇′hht
h3
t

{
∞∑
i=0

ωi

[
2K (xi,t) +K′ (xi,t)

(Yt − Yt−i−1)

ht
+ .K′′ (xi,t)

(Yt − Yt−1−i)
2

h2
t

]}

− ∇
2
hhht
h2
t

{
∞∑
i=0

ωi

[
K (xi,t) +K′ (xi,t)

(Yt − Yt−1−i)

ht

]}
,

where we have omitted the dependences on θ to improve readability and (∇KK (xi,t))
′ is

shorthand notation for d
d x
∇KK (x)

∣∣
x=xi,t

, with the derivative being taken w.r.t. to x for

each entry of ∇KK.
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