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Abstract. In this paper, we advance the network theory of aging and mortality by

developing a causal mathematical model for the mortality rate. First, we show that

in large networks, where health deficits accumulate at nodes representing health in-

dicators, the modeling of network evolution with Poisson processes is universal and

can be derived from fundamental principles. Second, with the help of two simpli-

fying approximations, which we refer to as mean-field assumption and homogeneity

assumption, we provide an analytical derivation of Gompertz law under generic and

biologically relevant conditions. We identify the parameters in Gompertz law as a

function of the parameters driving the evolution of the network, and illustrate our

computations with simulations and analytic approximations.



1. Background and challenges

1.1. Motivation. Why do we die when we get old? Traditionally, it is understood that we

eventually die of ‘old age’. In scientific terms, the mortality rate m(t) at age t describes

the probability that a person dies in a short age interval following age t, namely, for

0 < ∆ ≪ 1 the probability of death during the time interval [t, t+ ∆) given that no death

occurred during the time interval [0, t] equals m(t)∆. The seminal paper by Mitnitski,

Rutenberg, Farrell and Rockwood [13] led to a paradigm shift in the interpretation of

the age-dependency of the mortality rate (see also [3, 17, 22]). The mortality rate is

modeled by a dynamic network, in which nodes represent health indicators, the dynamic

relationship between the states of the nodes models the interdependency of the health

indicators, and death is defined as the time it takes to reach a network state in which two

carefully selected nodes, called mortality nodes, are both damaged. The model showed

a good fit to actual mortality rate data and offered a new interpretation of death as

the accumulation of damaged health indicators. However, the existing network theory

of aging and mortality depends on identifying an appropriate network structure through

numerical experiments in a trial-and-error process.

In this study, we move from simulation-based modeling to a robust and foundational

framework and derive a causal mathematical model for the mortality rate under generic

conditions. Our holy grail is to provide a mathematical derivation of Gompertz law for

m(t), which is believed to be valid when t is neither too small nor too large. Before

we state the mathematical model and identify our research question, we discuss in more

depth the interpretation of the concept of ‘node’ and ‘state of a node’. Using results

from network science, we explain why a certain network structure and a certain network

dynamics can be argued for in the model.

The results of our study advance the theoretical understanding of the age-dependency

of the mortality rate. Our analytical approach relies solely on very general structural

assumptions about the network and supports the network choice made in [13]. This

means that results that were previously derived from an ad-hoc fitting of a particular
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network structure are here derived as closed-form analytical solutions under broad and

biologically relevant conditions.

1.2. Gompertz law. Human life can be roughly divided into two periods: a phase of

initial development (ranging from birth to puberty), during which the mortality rate

decreases, followed by a phase of aging (after puberty), during which the mortality rate

increases. Figure 1 illustrates these two phases for US men in the period 2010-2019. It

indicates that the phase of aging runs from 10 to 100 years of age, and that from 40

years of age onwards the mortality rate and age are log-linearly related. This empirical

relationship, first observed and stated in 1825 by actuary Benjamin Gompertz [8], is given

by (≈ means approximately)

(1.1) m(t) ≈ α eβt, t ≥ 0,

with parameters α, β > 0, and is since referred to as Gompertz law.

Figure 1. Age-specific mortality rate for US men in the period 2010-2019. Dots
indicate data points taken from [12], [14]. The straight line shows the Gompertz
estimate m(age) = α eβ×age with α ≈ 5.8 × 10−5 and β ≈ 8.5 × 10−2, and with
age measured in years. The plot is semi-logarithmic. (The data beyond 100 years
may be less reliable because of measurement errors and selection effects.)

Figure 1 illustrates Gompertz law by showing it together with the mortality rate of US

men in the period 2010-2019. The figure indicates two overshooting phases relative to the

Gompertz law, one between birth and 10 years of age and one between 10 and 40 years

of age. Newborns are more likely to die of diseases that are far from fatal for grown-ups,
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such as gastroenteritis. An explanation is offered by health deficit models due to a lack

of redundancy, such as organ reserves [9, 19]. The lowest mortality is reached in puberty,

when the body is fully developed and aging starts to take over from growth. From a

mere physiological point of view, there is no explanation for the second overshooting

phase, after puberty. Rather, this peak likely stems from other influences, such as risk

preference, suicide, or war [20]. Note that (1.1) shows no barrier for increasing age, and

hence refutes the frequently made assumption of a bounded life time. The fact that the

sample size of all people who ever lived on earth increases continuously simply implies

that the maximum ever-observed life length will keep on rising as time proceeds [4].

The Gompertz parameters differ across sexes and across countries. On average across

countries, women face a lower α and a higher β [6], i.e., women have an initial advantage

of a lower rate of aging that men eventually catch up with when getting older. Economi-

cally advanced countries are characterised by a lower α and a higher β, i.e., a lower initial

mortality rate and a faster speed of aging [21]. A lower α can be associated with better

(initial) physiological conditions, such as nutrition. The time invariance of the Gompertz

law suggests that, correcting for country-specific and sex-specific background risk, hu-

mans share a common mechanism of aging, a common stochastic process according to

which individual bodies lose function over time and bodily failures and health deficits

accumulate.

1.3. Features of health in an aging network. Medicine as a discipline is almost as

old as mankind itself. Even though over the centuries medicine has undergone major

paradigm shifts, a body of knowledge has emerged on how to assess the health status of a

person, based on a few key health indicators such as blood pressure, sugar and cholesterol

levels, heart rate, physical mobility, etc. With the advent of modern technology, more and

more health indicators have become available. While such health indicators increase the

knowledge on the health state, their added value is limited when measurements become

more and more specific. Physicians need a small number of measurements to act on and,

through centuries of medical practice, a few central measurements have emerged. The
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fact that these measurements represent the health state of the body fairly well indicates

their predictive power.

Modelling the health indicators as nodes in a graph and their interconnectedness as

links in the graph motivates us to assume that the network is scale-free, i.e., its empirical

degree distribution approximately follows a power law. Furthermore, the hubs of the

networks should be separated from each other, so that they can serve as a proxy of the

network state in the local clusters that they dominate. This makes it reasonable to suppose

that the network is disassortative, i.e., its degrees tend to be negatively correlated. We

distinguish between mortality nodes and aging nodes. The former (small in number) are

the health indicators that play a dominant role in the cause of death, while the latter

(large in number) are the health indicators that form the overall network structure. Each

node can be in a healthy state or a damaged state.

The model allows for a more speculative interpretation by taking the graph as a repre-

sentation of the interconnectedness of physical parts of the body. In this interpretation,

the mortality nodes represent the most vital organs, and the graph structure reflects the

fact that certain physiological aspects of the body are more related to certain vital organs

than others. Dissortativeness comes into play as a way of separating the different vital

hubs as much as possible, so that if one hub is in a state of bad health, then its illness

is contained as much as possible. The similarity with security structures of computer

networks, or protocols for containing spread of diseases in infection models, is obvious.

The following assumptions (A) and questions (Q) serve as guidelines:

• A: The aging nodes and the mortality nodes serve as predictors of the overall state

of the network.

Q: Can we show that when the mortality nodes reach the damaged state, a certain

fraction of the aging nodes is damaged as well. Can we estimate this fraction?

• A: Scale-freeness and disassortativity are essential and rely on a hierarchy of health

indicators.
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Q: To what extent is the presence of hubs crucial for predictability? If we decrease

the out-degree of the hubs, then does the predictability of these hubs decrease?

The goal of the present paper is to propose a causal model that allows for a data science

approach to mortality. In Section 2 we define the basic model. In Section 3 we present

our analysis of this model. In Section 4 we illustrate the results with simulations and in

Section 5 we provide an analytical approximation of Gompertz law. Section 6 concludes.

2. Basic model

2.1. Aging-network process. We consider a graph G consisting of n nodes and certain

links between these nodes, such that for each node i the set N(i) of neighbours of i is

non-empty. Each node has a state that is either 0 (= healthy) or 1 (= damaged). A

node represents a data measurement of the body. It is conceivable that there are limit-

less measurement possibilities for the body and that these have some causal interference

structure. Since this structure is not known, we replace it by a graph. In Figure 2 this

graph is depicted, where the black nodes represent the aging nodes and the red nodes the

mortality nodes.

Figure 2. An example of a health network. The aging nodes are black, the
mortality nodes are red.

We consider a Markov process Z = (Z(t))t≥0, called the aging process on G, with

Z(t) = (Z1(t), . . . , Zn(t))
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the network state at time t, where Zi(t) ∈ {0, 1} is the state of node i at time t. The

evolution of the nodes is as follows. At time t, node i goes from the healthy state to the

damaged state, and vice versa, at rates, respectively,

(2.1) Γ+(i, t) = A+(fi(t)), Γ−(i, t) = A−(fi(t)),

where

(2.2) fi(t) =
1

|N(i)|
∑

j∈N(i)

1Zj(t)=1,

is the fraction of damaged neighbours of node i at time t, and

(2.3) A+(f) = Γ0 er+f , A−(f) =
Γ0

R
e−r−f , f ∈ [0, 1],

are two functions that play a key role throughout the sequel. Here, r+, r−,Γ0, R ∈ (0,∞)

play the role of tuning parameters. The exponential forms in (2.1) will be motivated in

Section 3.1. Think of Γ0 as the evolution rate for the network as a whole, and of R as

tuning an asymmetry between the healthy state and the damaged state. Note that Z has

time-dependent transition rates, i.e., it is a time-inhomogeneous Markov process.

We label mortality nodes by 1, 2, the aging nodes by 3, . . . , n, and define

Spredeath =
{
z ∈ {0, 1}n : (z1, z2) ∈ {(1, 0), (0, 1)}

}
,

Sdeath =
{
z ∈ {0, 1}n : (z1, z2) = (1, 1)

}
,

Sother = {0, 1}n \ (Spredeath ∪ Sdeath) =
{
z ∈ {0, 1}n : (z1, z2) = (0, 0)

}
.

Initially, all nodes are healthy, i.e.,

Z(0) = (0, . . . , 0),

and the aging process Z can move into and out of every state. The life time of the

individual terminates when Z enters Sdeath, i.e., at time

(2.4) τ = inf{t ≥ 0: Z(t) ∈ Sdeath}.
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2.2. Mortality rate. We are interested in the mortality rate at time t given by

(2.5) m(t) = lim
∆↓0

1

∆
P(τ ≤ t + ∆ | τ ≥ t) = − 1

s(t)

d

dt
s(t),

where

(2.6) s(t) = P(τ > t)

is the probability to survive up to time t. It is easily checked that Gompertz law implies

s(t) = C e−
α
β
eβt ,

with C an integration constant. In particular, the density of the lifetime distribution

equals

d

dt
(1 − s(t)) = C α eβt−

α
β
eβt .

Given that Z(t) = z ∈ Spredeath with (z1, z2) = (1, 0), the probability that within time

0 < ∆ ≪ 1 the transition to Sdeath is made before any of the aging nodes changes equals

F (z)∆ + o(∆) with

F (z) =
A+(f̂2(z))∑n

i=1 1zi=0A+(f̂i(z)) +
∑n

i=1 1zi=1A−(f̂i(z))
,

where

f̂i(z) =
1

|N(i)|
∑

j∈N(i)

1zj=1.

A similar formula holds when (z1, z2) = (0, 1) with in the numerator A+(f̂1(z)). The

mortality rate at time t therefore equals

m(t) = E
[
F (Z(t)) 1Z(t)∈Spredeath

| τ > t
]
.

Since this quantity depends on the structure of the health network and the parameters

r+, r−,Γ0, R, it is a challenging task to find out how it depends on t.

2.3. Summary. The above model has two key ingredients:
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• Choice of network structure:

– Aging graph G, scale-free and disassortative.

– Number of nodes n, degrees of the nodes N(i), i = 1, . . . , n.

• Choice of network dynamics:

– Aging dynamics Z = (Z(t))t≥0, time-inhomogeneous Markovian.

– Overall rate Γ0 and adjustment factor R.

– Damage and recovery rates r+, r−.

3. Mathematical analysis

3.1. Underlying network and Poissonisation. Below G lies a more complex and un-

observable network, controlling the health of the individual. We view G as the observable

resultant of this network at the level of health indicators, and Z as the resultant of the

dynamics through this network. In Figure 3 the additional nodes of the more complex and

unobservable network are depicted in grey (representing the ‘microscopic level’). These

additional nodes act in clusters on each single black node (representing the ‘mesoscopic

level’).

Figure 3. An example of an extended health network (compare with Figure 2).

We next argue why this choice of model is not ad hoc, but rather provides a causal

approach to mortality, capturing both robustness and universality. In particular, we

provide an explanation for why deficits and repairs accumulate at exponential rates as

in (2.1). We show that this situation arises naturally when we interpret the state of an
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aging node or a mortality node (the observable black and red nodes) as representing the

accumulated state of a large number of subnodes (the unobservable grey nodes). In other

words, each node sees a superposition of processes at the subnodes.

The following theorem, taken from [2, Theorem (3.10)], says that any superposition of

a large number of sparse point processes on R is close to a Poisson point process on R. It

does not need any assumptions on the distribution of the constituent point process other

than that these are thin and plenty.

Theorem 3.1. [Poisson] For n ∈ N, let (Mk)nk=1 be a sequence of independent point

processes on R such that, for some measure µ on R and all finite intervals I ⊂ R,

(1) limn→∞
∑n

k=1 P(Mk(I) = 1) = µ(I),

(2) limn→∞ sup1≤k≤n P(Mk(I) ≥ 1) = 0,

(3) limn→∞
∑n

k=1 P(Mk(I) ≥ 2) = 0,

where Mk(I) denotes the number of points that Mk puts inside I. Then Mn = ∪n
k=1Mk

converges weakly as n → ∞ to the Poisson point process on R with intensity measure µ.

Condition (1) guarantees that the superposition Mn has an intensity measure µn that

converges to a limiting intensity measure µ. The interest is in the situation where µ is

non-trivial, i.e., is neither zero nor infinity. Condition (2) says that the superposition is

infinitesimal, i.e., each constituent point process makes a vanishing contribution. Condi-

tion (3) says that the superposition is uniformly sparse, i.e., points do not cluster. There

is no (!) condition on the nature of the constituent point processes, which may have strong

dependencies and may be far from being Poisson themselves. It is only through the super-

position that the Poisson nature comes out in the limit, subject to the three conditions.

For the special case where, for each 1 ≤ k ≤ n, Mk is a stationary renewal process with

mean interarrival time 1/λk ∈ (0,∞), condition (1) reads limn→∞
∑n

k=1 λk = λ ∈ (0,∞),

and the limit is the Poisson point process with intensity λ, i.e., exponentially distributed

interarrival times with mean 1/λ.

We use Theorem 3.1 with the role of space R taken over by time [0,∞). In that context

the theorem says that the superposition of a large number of possibly time-dependent and
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mutually dependent clocks that ring rarely behaves like a single Poisson clock that rings

at a possibly time-dependent rate.

3.2. Mean-field and homogeneity assumptions. Now that we have set up the model,

one way to proceed would be to make simple choices for G, like a complete graph with

all the nodes connected, or a bipartite graph with the mortality nodes and the aging

nodes forming two communities in the network, or a scale-free graph with the mortality

nodes forming the hubs in the network and the aging nodes not being hubs. This is

the approached followed by [13] and the related literature discussed in the Introduction.

Here we follow a new, analytical approach, which requires only very generic structural

assumptions on the network. Results are derived by approximate computations based on

a mean-field assumption and a homogeneity assumption. These assumptions are plausible

because of the presumed hub structure of the mortality nodes. Below, whenever we write

≈ we refer to an approximation implied either by the two assumptions or by some other

simplification. It remains a mathematical challenge to provide error bounds.

We approximate the dependence of a node on the fraction of damaged neighbours of

that node, as expressed in (2.2), by the average of the nodes that are in state 1. To that

end, we put

(3.1) p̂(t) =
1

n

n∑
j=1

1Zj(t)=1, p(t) = E[p̂(t)]

and we refer to p(t) as damage fraction at time t. For n large, the Zj(t) for nodes that

are far apart are nearly independent, so that the average over the nodes acts like a law of

large numbers.

▶ We make the following mean-field assumption (compare with (2.1)–(2.3)):

Assumption (A1). The rates at time t for node i to go from healthy to damaged,

respectively, from damaged to healthy are given by

Γ+(i, t) ≈ A+(p(t)), Γ−(i, t) ≈ A−(p(t)),
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with p(t) the average fraction of damaged nodes at time t. Note that the approximate

rates do not depend on i. ♠

• We comment on Assumption (A1). If the number of nodes n is large, and the

neighbourhood N(i) of node i is large as well, then we can approximate (recall (2.2))

(3.2) fi(t) =
1

|N(i)|
∑

j∈N(i)

1Zj(t)=1 ≈ p̂(t) ≈ p(t), i = 1, 2.

Indeed, in a scale-free and disassortative network there are many nodes with high degree,

while the neighbourhoods of many nodes are large as well yet cover only a small fraction

of the nodes. The former ensures that a law of large numbers is in force, while the latter

ensures that the nodes are more or less independent of each other. Combining (2.1) with

(3.2), we approximate

(3.3)

Γ+(i, t) = A+(fi(t)) ≈ E[A+(p̂(t))] = E
[
Γ0 er+p̂(t)

]
≈ Γ0 er+E[p̂(t)] = A+(p(t)),

Γ−(i, t) = A−(fi(t)) ≈ E[A−(p̂(t))] = E
[

Γ0

R
e−r−p̂(t)

]
≈ Γ0

R
e−r−E[p̂(t)] = A−(p(t)),

where in the second approximation we bring the expectation to the exponent (later we

return to this simplification).

Remark 3.2. The health network introduced in [13] also includes so-called frailty nodes :

a small number of aging nodes that are highly connected. These frailty nodes allow for

the modelling of the so-called frailty index [18], which is of interest in health sciences.

However, due to the mean-field approximation put forward in (3.2), according to which

all nodes are treated in the same way, our approach does not allow for a closer analysis

of the frailty nodes and the frailty index.

Remark 3.3. For short times, when few nodes are damaged, the law of large numbers

that underlies the first approximation in (3.3) is less sharp than for large times, when many

nodes are damaged. In the second approximation in (3.3) we brought the expectation to

the exponent. However, by Jensen’s inequality for expectations of convex functions, we
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actually have

E
[
er+p̂(t)

]
≥ er+E[p̂(t)], E

[
e−r−p̂(t)

]
≥ e−r−E[p̂(t)],

i.e., the second approximation undershoots the two rates, in particular, the rate for a node

to become damaged.

▶ We make the following homogeneity assumption:

Assumption (A2). The states in Sother, Spredeath, Sdeath are aggregated into three single

states. The transition rates between these single states at time t are as in Figure 4. ♠

Sother Spredeath Sdeath

w w w
2A+(p(t))

A−(p(t))

A+(p(t))

2A−(p(t))
<

> >

<

Figure 4. The aggregated time-inhomogeneous Markov chain.

• We comment on Assumption (A2). The transition from Sother to Spredeath occurs

when both two mortality nodes are healthy and one of them switches to damaged. The

transition from Spredeath to Sdeath occurs when one mortality node is damaged, the other

mortality node is healthy and switches to damaged. For the reverse transitions a similar

argument applies.

▶ Combining the mean-field assumption and the homogeneity assumption, we obtain the

following.

Lemma 3.4. Under Assumptions (A1)–(A2), p(t) is the solution of the autonomous

differential equation

(3.4)
d

dt
p(t) = (1 − p(t))A+(p(t)) − p(t)A−(p(t)), p(0) = 0.
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Proof. The rate at which one of the n(1 − p(t)) healthy nodes becomes damaged equals

n times the first term, while the rate at which one of the np(t) damaged nodes becomes

healthy equals n times the second term. The difference is the net rate at which the

number of damaged nodes increases or decreases. Divide by n to get the fraction of

damaged nodes. Note that p(0) = 0 because initially all nodes are healthy. □

3.3. The approximate mortality rate. Our task is to derive the Gompertz law based

on Assumption (A1) and Assumption (A2). In this section we derive a formula for

the mortality rate. The argument proceeds in steps, listed as Lemmas 3.5–3.7 below,

leading up to Theorem 3.8. In Section 3.4 we analyse this formula for several choices of

the model parameters to get a feel for how the Gompertz law may emerge. We also derive

a formula for the damage fraction at death, stated in Theorem 3.9 below.

Lemma 3.5. For every t ≥ 0,

(3.5)

m(t) = lim
∆↓0

1

∆
P(τ ≤ t + ∆ | τ ≥ t)

= lim
∆↓0

1

∆
P
(
∃ 0 ≤ u ≤ ∆: Z(t + u) ∈ Sdeath | Z(t) ∈ Spredeath

)
× P

(
Z(t) ∈ Spredeath | Z(u) ̸∈ Sdeath, 0 ≤ u ≤ t

)
.

Proof. Abbreviate

At = {Z(u) ̸∈ Sdeath, 0 ≤ u ≤ t},

Bt = {Z(t) ∈ Spredeath},

Ct,∆ = {∃ 0 ≤ u ≤ ∆: Z(t + u) ∈ Sdeath}.

Over short time intervals, Z can only reach Sdeath by going from Spredeath to Sdeath in a

single jump. Hence, for ∆ ↓ 0,

{t ≤ τ ≤ t + ∆} ∼ At ∩Bt ∩ Ct,∆,

where ∼ means equality up to an error that vanishes with ∆ ↓ 0. Since

{τ ≥ t} = At,
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it follows that, for ∆ ↓ 0,

P(τ ≤ t + ∆ | τ ≥ t) ∼ P(At ∩Bt ∩ Ct,∆)

P(At)
=

P(At ∩ Ct,∆ | Bt)P(Bt)

P(At)

=
P(Ct,∆ | Bt)P(At | Bt)P(Bt)

P(At)
= P(Ct,∆ | Bt)P(Bt | At),

where the second equality uses the Markov property at time t. □

From the mean-field assumption we obtain the following representation of the first

factor in (3.5).

Lemma 3.6. Under Assumption (A1),

lim
∆↓0

1

∆
P
(
∃ 0 ≤ u ≤ ∆: Z(u + t) ∈ Sdeath | Z(t) ∈ Spredeath

)
≈ A+(p(t)).

Proof. The rate to jump from a predeath state to the death state is approximately

A+(p(t)), because one mortality node is damaged, the other mortality node is healthy,

and the latter needs to switch to damaged. □

From the homogeneity assumption we obtain the following representation of the second

factor in (3.5).

Lemma 3.7. Under Assumption (A2),

P
(
Z(t) ∈ Spredeath | Z(u) ̸∈ Sdeath, 0 ≤ u ≤ t

)
≈ χ(t)

with χ(t) the solution of the differential equation

(3.6)
d

dt
χ(t) = (1 − χ(t)) 2A+(p(t)) − χ(t)A−(p(t)), χ(0) = 0.

Proof. The law of the time-homogeneous Markov process Z on the set of three states

{Sother, Spredeath, Sdeath} conditional on not entering Sdeath is the same as the law of the

time-homogeneous Markov process Z′ on the set of two states {Sother, Spredeath} where the

rates to and from Sdeath are set to zero (see Figure 4). Hence χ(t) = P
(
Z′(t) ∈ Spredeath).

This probability solves (3.6), because the net rate at which χ(t) increases is the difference
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of the rates at which Z′ jumps into, respectively, jumps out of the state Spredeath. Note

that χ(0) = 0 because initially all nodes are healthy. □

Combining Lemmas 3.4–3.7, we can identify the approximate mortality rate.

Theorem 3.8. [Approximate mortality rate] Under Assumptions (A1)–(A2),

(3.7) m(t) ≈ A+(p(t))χ(t).

The solution of (3.4) tells us how p(t) grows as a function of t. Once this profile has

been determined, the solution of (3.6) tells us how χ(t) grows as a function of t. The two

together fix how m(t) grows as a function of t.

A further interesting quantity is the damage fraction at death.

Theorem 3.9. [Damage fraction at death]

(3.8) E[p̂(τ)] ≈
∫ ∞

0

dt A+(p(t)) p(t)χ(t) exp

[
−
∫ t

0

duA+(p(u))χ(u)

]
.

Proof. By (2.4), (2.6) and (3.1),

E[p̂(τ)] ≈
∫ ∞

0

p(t)P(τ ∈ dt) =

∫ ∞

0

p(t)

[
− d

dt
s(t)

]
dt.

It follows from (2.5) that

s(t) = exp

[
−
∫ t

0

m(u) du

]
and hence

− d

dt
s(t) = m(t) exp

[
−
∫ t

0

m(u) du

]
.

Use (3.7) to get the claim. □

3.4. Analysis of the approximate mortality rate. Having derived an approximate

formula for the mortality rate m(t) in terms of the differential equations in (3.4) and (3.6),

our next task is to see whether this formula produces the Gompertz law for times that

are neither too small nor too large.
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We first scale time by 1/Γ0 so as to remove the parameter Γ0. Putting

(3.9) p∗(s) = p

(
s

Γ0

)
, χ∗(s) = χ

(
s

Γ0

)
, m∗(s) = m

(
s

Γ0

)
,

and

(3.10) A∗
+(p) = er+p, A∗

−(p) =
1

R
e−r−p, p ∈ [0, 1],

we can rewrite (3.7) as

(3.11) m∗(s) ≈ Γ0A
∗
+(p∗(s))χ∗(s),

where p∗(s) and χ∗(s) solve the differential equations (recall (3.4) and (3.6))

(3.12)

d
ds
p∗(s) = (1 − p∗(s))A∗

+(p∗(s)) − p∗(s)A∗
−(p∗(s)), p∗(0) = 0,

d
ds
χ∗(s) = (1 − χ∗(s)) 2A∗

+(p∗(s)) − χ∗(s)A∗
−(p∗(s)), χ∗(0) = 0.

Note that Γ0 drops out of (3.12) because

(3.13) t =
s

Γ0

−→ d

ds
= Γ0

d

dt
,

so that a factor Γ0 can be cancelled on both sides of the differential equations. Think of

t as the ‘microscopic’ time scale on which the single nodes in the health network evolve,

and of s as the ‘macroscopic’ time scale on which the network consisting of many nodes

evolves as a whole. If Γ0 = 1
C
/year, then one unit of macroscopic time corresponds to C

years of human aging (think of C as a ‘calibration parameter’.)

Since p∗(s) and χ∗(s) are differentiable in s, they are continuous in s as well. Note

that p∗(s) is strictly increasing in s with lims→∞ p∗(s) = p†, where p† solves the equation

(1 − p†)A
∗
+(p†) = p†A

∗
−(p†), so

(3.14) p† =
A∗

+(p†)

A∗
+(p†) + A∗

−(p†)
=

1

1 + 1
R

e−(r++r−)p†
.
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Note that also χ∗(s) is strictly increasing in s with lims→∞ χ∗(s) = χ†, where χ† solves

the equation (1 − χ†) 2A∗
+(p†) = χ†A

∗
−(p†), so

(3.15) χ† =
2A∗

+(p†)

2A∗
+(p†) + A∗

−(p†)
=

2p†
1 + p†

.

It is further evident that d
ds
p∗(0) = 1 and d

ds
χ∗(0) = 2. For later use we need the following

observation.

Lemma 3.10. p∗(s) < χ∗(s) < 2p∗(s) for all s > 0.

Proof. Put

∆1(s) = χ∗(s) − p∗(s), ∆2(s) = 2p∗(s) − χ∗(s).

It follows from (3.12) that

d

ds
∆1(s) = −

[
A∗

+(p∗(s)) + A∗
−(p∗(s))

]
∆1(s) + A∗

+(p∗(s)) (1 − χ∗(s)),

d

ds
∆2(s) = −A∗

−(p∗(s)) ∆2(s) + 2A∗
+(p∗(s)) ∆1(s).

We know that ∆1(0) = 0, ∆1(s) > 0 for small s > 0, and ∆1(s) is continuous and

differentiable in s. It is impossible that ∆1(s) hits the value 0 at some s1 > 0, because

this would imply that d
ds

∆1(s1) = A∗
+(p∗(s1)) (1−χ∗(s1)) > 0. Hence ∆1(s) is everywhere

strictly positive. Similarly, we know that ∆2(0) = 0, ∆2(s) > 0 for small s > 0, and ∆2(s)

is continuous and differentiable in s. It is impossible that ∆2(s) hits the value 0 at some

s2 > 0, because this would imply that d
ds

∆2(s2) = 2A∗
+(p∗(s2)) ∆1(s2) > 0. Hence ∆2(s)

is everywhere strictly positive as well. □

Figures 5–6 show plots of p∗(s), χ∗(s) and ln[A∗
+(p∗(s))χ∗(s)] for r+ = r− ∈ {1, 2, 5}

and R = 1 (carried out with the help of the programming language R). The latter curve is

linear only for values of s that are neither too small nor too large. The range of s-values

for which the linear fit is accurate depends on the choice of the parameters. The curves

for p∗(s), χ∗(s) tend to be concave for small values of r+, r− and convex-concave for large

values of r+, r−. The curve for ln[A∗
+(p∗(s))χ∗(s)] tends to be concave for small values of

r+, r− and concave-convex-concave for large values of r+, r−.
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Figure 5. Plots of p∗(s) (= blue curve) and χ∗(s) (= red curve) for r+ = r− ∈
{1, 2, 5} and R = 1.
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Figure 6. Plots of ln[A∗
+(p

∗(s))χ∗(s)] for r+ = r− ∈ {1, 2, 5} and R = 1.

4. Simulations and numerical results

While the aging process Z is well-defined for any choice of parameters n, r+, r−,Γ0, R

with n ∈ N and r+, r−,Γ0, R ∈ (0,∞), it only provides a fair model for the mortality

rate when the parameters are chosen properly. In this section we discuss an instance

of the aging process provided in [13], where the parameters were chosen to be n = 104,

r+ = 10.27, r− = 6.5, R = 1.5 and Γ0 = 0.00113/year. For this choice of Γ0, one unit of

s corresponds to 885 years, and so [40, 100] years corresponds to s ∈ [0.045, 0.113].

Figure 7 plots the damage fraction and the mortality rate in the range between 0 to

100 years of age. For the latter, ‘observational’ means taken from the statistical data

for US men in the period 2010-2019 [14] (recall Figure 1), while ‘model’ means taken

from simulation of the network dynamics based on 106 i.i.d. samples [5, Chapter 6]. It
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is seen that lnm(t) is roughly linear over the age interval [40, 100] years, which confirms

Gompertz law numerically. The fitted line is lnm(t) ≈ −9.76 + 0.085 t, which gives

α ≈ e−9.76 ≈ 5.8 × 10−5, β ≈ 8.5 × 10−2.

Figure 7. A simulation of the damage fraction and the mortality rate for the
parameter choices in [13]. Left: The black curves are realisations of the damage
fraction, the blue curve is the average damage fraction. Right: The blue curve is
the result of simulation of the network dynamics, the green curve represents the
statistical data obtained from Figure 1.

Figure 8 shows plots of p∗(s), χ∗(s) and ln[A∗
+(p∗(s))χ∗(s)] based on (3.11)–(3.12) for

the values of r+, r−, R used in [13]. The latter curve is roughly linear on the interval

s ∈ [0.02, 0.08], but bends down on the left of this interval and bends up on the right.
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Figure 8. Plots for r+ = 10.27, r− = 6.5, R = 1.5. Left: Plots of p∗(s) (=
blue curve) and χ∗(s) (= red curve). Right: Plot of ln[A∗

+(p
∗(s))χ∗(s)].
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Figure 9 shows a plot of lnm(t) for t ∈ [40, 80] years based on (3.9) and (3.11)–(3.12)

for the values of r+, r−, R,Γ0 used in [13]. The best fitted line as the linear regression fit

is lnm(t) ≈ −10.82 + 0.059 t, which gives

α ≈ e−10.82 ≈ 2.0 × 10−5, β ≈ 5.9 × 10−2.

The value of α is about 34% of the value in Figure 1, the value of β is about 69% times

the value in Figure 1. Thus, the match is fairly good.

Remark 4.1. The linear regression fit depends on the t-interval that is chosen. For

instance, Table 1 shows the results obtained by fitting linear regression lines to the data

points on the curve lnm(t) at different time ranges.

Table 1. Properties of best fitted lines.

t-interval α β R-squared MSE

[40, 80] years ≈ 2.0 × 10−5 ≈ 5.9 × 10−2 0.99 0.00

[40, 85] years ≈ 1.6 × 10−5 ≈ 6.3 × 10−2 0.99 0.01

[40, 90] years ≈ 1.2 × 10−5 ≈ 6.8 × 10−2 0.98 0.02

[40, 95] years ≈ 7.1 × 10−6 ≈ 7.8 × 10−2 0.94 0.10

[40, 100] years ≈ 8.3 × 10−7 ≈ 1.1 × 10−1 0.67 1.89

As observed in Table 1, choosing a longer time interval decreases the value of α and

increases the value of β. However, the decrease in R-squared and the increase in the

mean-squared error MSE indicate that the fitted line is diverging from the curve. The

reason is that the curve in Figure 9 bends up. Thus, Theorem 3.8 only yields a somewhat

crude form of the Gompertz law.

Remark 4.2. A numerical estimation of E[p̂(τ)] in (3.8) based on Monte-Carlo integration

produces a value between 0.66 and 0.70 for the parameter values used in [13]. Hence,

roughly and on average, a fraction 2
3

of the nodes is damaged when death occurs.
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Figure 9. Plot of lnm(t) for t ∈ [40, 80] years, for r+ = 10.27, r− = 6.5,
R = 1.5, Γ0 = 0.00113/year (= blue curve). The best fitted line (= dashed red
line) corresponds to the Gompertz law.

5. An analytic approximation

The first differential equation in (3.12) is non-linear and does not admit a closed form

solution for every choice of the parameters. The second differential equation in (3.12) is

linear given the solution of the first and can therefore be solved explicitly:

χ∗(s) =

∫ s

0

du 2A∗
+(p∗(u)) exp

[
−
∫ s

u

dv [2A∗
+(p∗(v)) + A∗

−(p∗(v))]

]
.

Both differential equations are not hard to solve numerically, as shown in Section 4, but

it is natural to ask whether it is possible to find an analytic approximation of p∗(s), χ∗(s)

and ln[A∗
+(p∗(s))χ∗(s)]. Below we give an affirmative answer. Any formula that expresses

these quantities directly in terms of the parameters r+, r−, R, even in an approximate

form, is helpful for a better understanding of the evolution of the damage fraction and

the mortality rate.

The differential equation for p∗(s) in (3.12) can be integrated to give

s =

∫ p∗(s)

0

dλ

(1 − λ)A∗
+(λ) − λA∗

−(λ)
,
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where we use that p∗(0) = 0, noting that the integrand is integrable near λ = 0. In order

to obtain a formula for p∗(s) as a function of s, the expression needs to be inverted. We

proceed by deriving upper and lower bounds.

Lower bound: Estimate

s =

∫ p∗(s)

0

dλ e−r+λ

(1 − λ) − λ
R

e−(r++r−)λ
≤

∫ p∗(s)

0

dλ e−r+λ

(1 − λ) − λ
R

≤ 1

1 − R+1
R

p∗(s)

∫ p∗(s)

0

dλ e−r+λ =
1

1 − R+1
R

p∗(s)

1

r+

[
1 − e−r+p∗(s)

]
≤ p∗(s)

1 − R+1
R

p∗(s)
.

Inverting this inequality, we get

p∗(s) ≥ s

1 + R+1
R

s
.

Since χ∗(s) ≥ p∗(s) by Lemma 3.10, it follows from (3.11) that

m∗(s) ⪆
Γ0 s

1 + R+1
R

s
exp

[
r+s

1 + R+1
R

s

]
,

which via (3.9) becomes

(5.1) m(t) ⪆
Γ2
0 t

1 + R+1
R

Γ0 t
exp

[
r+Γ0 t

1 + R+1
R

Γ0 t

]
,

In case R+1
R

Γ0 t ≪ 1, the right-hand side simplifies to Γ2
0 t er+Γ0 t.

Upper bound: Estimate

s ≥
∫ p∗(s)

0

dλ e−r+λ =
1

r+

[
1 − e−r+p∗(s)

]
.

Inverting this inequality for s that r+s < 1, we get

p∗(s) ≤ − 1

r+
ln(1 − r+s) =

1

r+

∞∑
k=1

(r+s)
k

k
.
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Since χ∗(s) ≤ 2p∗(s) by Lemma 3.10, it follows from (3.11) that

m∗(s) ⪅
2Γ0

r+

[
∞∑
k=1

(r+s)
k

k

]
exp

[
∞∑
k=1

(r+s)
k

k

]
,

which via (3.9) becomes

(5.2) m(t) ⪅
2Γ0

r+

[
∞∑
k=1

(r+Γ0 t)
k

k

]
exp

[
∞∑
k=1

(r+Γ0 t)
k

k

]
.

In case r+Γ0 t ≪ 1, the right-hand side simplifies to 2Γ2
0 t er+Γ0 t.

The bounds in (5.1)–(5.2) show that, as long as both R+1
R

Γ0 t ≪ 1 and r+Γ0 t ≪ 1, a

fair approximation for β in the Gompertz law is

(5.3) β ≈ r+Γ0,

while α can be crudely sandwiched for t ∈ [40, 80] as

(5.4) 40 Γ2
0 ⪅ α ⪅ 160 Γ2

0.

The bounds in (5.4) are a factor 4 apart.
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Original Curve
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Figure 10. Plot of lnm(t) for t ∈ [40, 80] years for the parameter values used
in [13]. The middle curve (= blue curve) is the one in Figure 9. The bottom curve
and the top curve (= red curves) represent the numerical plot of the logarithm
of the lower bound in (5.1) and the upper bound in (5.2). The best fitted lines
(= green dashed curves) correspond to the Gompertz law.
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For the parameter values used in [13], Figure 10 compares the curve in Figure 9 with

the bounds obtained in (5.1)–(5.2). It seems that the upper bound in (5.2) is better than

the lower bound in (5.1). The slopes of the best fitted lines are 7.8 × 10−2 for the upper

bound, 2.5 × 10−2 for the lower bound, and 5.9 × 10−2 for the true curve. Thus, the

values of β obtained from the bounds are off by about 50%, which is fair but not sharp.

Interestingly, the values of lnα in the three cases differ by not more than 8%, which is

rather sharp.

For the parameter values used in [13], R+1
R

Γ0 t ≈ 0.075 and r+Γ0t ≈ 0.46 at t = 40 years.

The former is small, the latter is not, which makes the approximations in (5.3)–(5.4) a

priori questionable. The approximation in (5.3) would predict β ≈ 1.2 × 10−2, which is

below the true value by a factor of about 5. The approximation in (5.4) would predict

−9.88 ⪅ lnα ⪅ −8.50, which interval lies above the true value. The lower bound of the

interval is off by about 9%, the upper bound by about 20%. Again, the approximation of

α is better than that of β.

6. Conclusion

The main contributions of the present paper are the following.

(1) We have provided mathematical arguments to support the network description of

aging and mortality proposed in [13].

(2) We have argued that Poisson rates for the evolution of the network are universal

as long as the mechanism according to which nodes switch between healthy and

damaged is “the net result of many small influences”.

(3) With the help of two assumptions, valid for scale-free and disassortative networks,

we have shown that the Gompertz law holds in a certain sense in a certain age

range. The precise formula for the mortality rate deviates somewhat from the

Gompertz law. With the help of simulations we have shown that the approxima-

tions implied by these assumptions are fair. The size of the network plays no role

24



after these approximations have been implemented, which again underlines the

universality of the network description.

(4) We have linked the parameters in the Gompertz law to the parameters driving the

evolution of the network. For the curves in Figures 1 and 7 we have found a fair

fit with the model parameters used in [13].

(5) Our formula for the mortality rate involves the solution of two non-linear dif-

ferential equations, which are easy to handle numerically but are hard to solve

analytically. Exact bounds on the solutions of these differential equations allow

us to derive a crude analytic approximation of the mortality rate that is explicit

in the model parameters.

It is well known that the Gompertz law is not perfect. Yet, it is ubiquitous, simple and

widely regarded as a good approximation of the empirical law for the mortality rate as

a function of age [15]. The Gompertz law is known to be relevant in many species, from

yeast to fruit flies, from dogs to horses. For instance, mice accumulate health deficits

just like humans [16]. Thus, the network description of ageing via the accumulation of

health deficits in principle covers a wide range of species, with parameters varying across

species.

Acknowledgement. FdH and AP were supported by the Netherlands Organisation for

Scientific Research (NWO) through NETWORKS Gravitation Grant no. 024.002.003.

AP was also supported by the European Union’s Horizon 2020 research and innovation

programme under the Marie Sk lodowska-Curie grant agreement no. 101034253.

25



References

[1] B.A. Carnes, L.R. Holden, S.J. Olshansky, M.T. Witten, J.S. Siegel, Mortality partitions and their

relevance to research on senescence. Biogerontology 7 (2006) 183–198.
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L.M. Gutierrez Robledo, Systems biology and network pharmacology of frailty reveal novel epi-

genetic targets and mechanisms. Scientific Reports 9 (2019) 10539.

[11] C.W. Hansen, H. Strulik. How do we age? A decomposition of Gompertz law. Work in progress,

2024.

[12] Human Mortality Database (2024). Max Planck Institute for Demographic Research (Germany),

University of California, Berkeley (USA), and French Institute for Demographic Studies (France).

Available at [https://www.mortality.org] (data downloaded on January 2024).

[13] A.B. Mitnitski, A.D. Rutenberg, S. Farrell, K. Rockwood, Aging, frailty and complex networks.

Biogerontology 18 (2017) 433–446.

[14] S.L. Murphy, K.D. Kochanek, J.Q. Xu, M. Heron. National Vital Statistics Reports 63(9) (2015),

118 pages.

26



[15] S.J. Olshansky, B.A. Carnes. Ever since Gompertz. Demography 34(1) (1997) 1–15.

[16] K. Rockwood, J.M. Blodgett, O. Theou, M.H. Sun, H.A. Feridooni, A. Mitnitski, R.A. Rose,

J. Godin, E. Gregson, S.E. Howlett. A frailty index based on deficit accumulation quantifies mortality

risk in humans and in mice. Scientific reports 7(1) (2017) 43068.

[17] Rutenberg, A. D., Mitnitski, A. B., Farrell, S. G., and Rockwood, K. Unifying aging and frailty

through complex dynamical networks. Experimental Gerontology 107 (2018) 126-129.

[18] S.D. Searle, A. Mitnitski, E. Gahbauer, T. Gill, K. Rockwood. A standard procedure for creating a

frailty index. BMC Geriatrics, 8 (2008) 1–10.

[19] M.E. Sehl, F.E. Yates. Kinetics of human ageing: I. Rates of senescence between ages 30 and 70 years

in healthy people. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences

56(5) (2001) B198–B208.

[20] H. Strulik. Measuring aging. Preprint 2021. [https://api.semanticscholar.org/CorpusID:267070859].

[21] H. Strulik, S. Vollmer. Long-run trends of human aging and longevity. Journal of Population Eco-

nomics 26 (2013) 1303–1323.

[22] Taneja, S., Mitnitski, A. B., Rockwood, K., and Rutenberg, A. D. Dynamical network model for

age-related health deficits and mortality. Physical Review E 93(2) (2016) 022309.

27


	1. Background and challenges
	1.1. Motivation
	1.2. Gompertz law
	1.3. Features of health in an aging network

	2. Basic model
	2.1. Aging-network process
	2.2. Mortality rate
	2.3. Summary

	3. Mathematical analysis
	3.1. Underlying network and Poissonisation
	3.2. Mean-field and homogeneity assumptions
	3.3. The approximate mortality rate
	3.4. Analysis of the approximate mortality rate

	4. Simulations and numerical results
	5. An analytic approximation
	6. Conclusion
	References

