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Abstract

Researchers may want to know whether an observed statistical relationship is ei-

ther meaningfully negative, meaningfully positive, or small enough to be considered

practically equivalent to zero. Such a question can not be addressed with standard null

hypothesis significance testing, nor with standard equivalence testing. Three-sided test-

ing (TST) is a procedure to address such questions, by simultaneously testing whether

an estimated relationship is significantly below, within, or above predetermined small-

est effect sizes of interest. TST is a natural extension of the standard two one-sided

tests (TOST) procedure for equivalence testing. TST offers a more comprehensive de-

cision framework than TOST with no penalty to error rates or statistical power. In this

paper, we give a non-technical introduction to TST, provide commands for conduct-

ing TST in R, Jamovi, and Stata, and provide a Shiny app for easy implementation.

Whenever a meaningful smallest effect size of interest can be specified, TST should

be combined with null hypothesis significance testing as a standard frequentist testing

procedure.
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1 Introduction

In standard null hypothesis significance testing (NHST), we test whether a given statistical

relationship exists by assessing whether we can reject the null hypothesis (H0) that this

relationship does not exist. If H0 is rejected, we conclude that the relationship of interest is

not zero. A problem with standard NHST is that we can only ever reject H0; we can never

accept it. Put differently, standard NHST never lets us conclude that the relationship of

interest is zero. This is because statistically insignificant results are ambiguous in standard

NHST. Large p-values can signal precisely measured null relationships or large relationships

that are imprecisely measured. Standard NHST makes no distinction between these cases.

This limitation of standard NHST leads to two substantial problems. First, researchers

commonly misinterpret statistically insignificant results as evidence that the relationship of

interest is negligibly small, even when the chance of a meaningfully large, noisily estimated

relationship is high (Greenland et al. 2016; Aczel et al. 2018; Gates & Ealing 2019; Fitzgerald

2024). Second, researchers who are only familiar with standard NHST have no method to

formally test the hypothesis that a relationship is null, which they may often want to do.

To provide just a few examples, we may want to test whether a drug has no negative side

effects, whether a new treatment works as well as existing treatments, whether a replication

result is equivalent to the original study result, whether two populations are similar on some

attribute, etc. None of these predictions can be tested with standard NHST.

A remedy to this situation is the frequentist two one-sided tests (TOST) procedure

for equivalence testing (see Lakens, Scheel, & Isager 2018). The TOST procedure allows

researchers to test whether an estimate of a relationship is smaller than the ‘smallest effect

size of interest (SESOI)’ for that relationship. In this procedure, a relationship is considered

to be ‘practically equal to zero’ if it can be significantly bounded both (1) above ∆L and

(2) below ∆U using one-sided tests, where ∆L and ∆U are the lower and upper SESOI

bounds (respectively). For example, under the TOST procedure, we would conclude that the

upper pink estimate in Figure 1 is practically equal to zero, whereas we would not reach

this conclusion for the middle blue or bottom orange estimates. The TOST procedure gives

researchers a method to distinguish imprecise estimates of potentially large relationships
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Note: Estimates are presented alongside 100 × (1 − α)% confidence intervals and TOST p-values. ∆L and
∆U represent the lower and upper SESOI bounds (respectively). The red H0 regions are more extreme than
the SESOI, whereas the H1 region is closer to zero than the SESOI.

Figure 1: Examples of the Two One-Sided Test of Equivalence

from precise estimates of trivially small relationships.

However, the TOST procedure has its own limitation: in TOST, it is not possible to

accept the hypothesis that the relationship of interest is large enough to care about – i.e.,

that it is more extreme than the SESOI. Put differently, the TOST procedure does not

distinguish between estimates that significantly exceed the SESOI (e.g., the middle blue

estimate in Figure 1) and estimates whose relationship with the SESOI is uncertain (e.g.,

the lower orange point estimate in Figure 1).

A common but flawed solution to this problem is to combine standard NHST with the

TOST procedure (e.g., see Campbell & Gustafson 2018). This allows us to test both whether

the relationship of interest is different from zero and whether it is smaller than the SESOI.

However, this procedure does not actually test if the relationship is large enough to care

about. Even a combination of standard NHST and equivalence testing approaches cannot

tell us whether there is significant evidence that a relationship is larger than its SESOI. For

example, the bottom orange estimate in Figure 1 is significantly different from zero and not

significantly smaller than the SESOI, but it obviously does not indicate strong evidence for a

relationship larger than the SESOI. Consequently, it is not safe to assume that a significant

standard NHST result plus a statistically insignificant TOST result indicates evidence for a

practically large relationship.

To obtain significant evidence that a relationship is larger than its SESOI, we need
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minimum-effects tests (see Murphy & Myors 1999). Such procedures can test for inferiority,

assessing whether a relationship is at least as negative as its lower SESOI bound (see Figure

2A). They can also test for superiority, assessing whether a relationship is at least as positive

as its upper SESOI bound (see Figure 2C).

In practice, we may often want to test for superiority, inferiority, and equivalence all at

the same time. Fortunately, there is a formal procedure that lets us conduct all three tests

simultaneously while controlling error rates across all tests, known as the three-sided testing

(TST) procedure. TST is simply a combination of TOST and minimum-effects tests. It was

initially developed in the field of medical statistics (Goeman, Solari, & Stijnen 2010), and was

recently proposed as a default testing approach for economic relationships (Fitzgerald 2024),

but the relevance of TST is not restricted to these fields. TST is a uniform improvement over

the TOST procedure in any setting where researchers wish to test statistical equivalence,

permitting the same power for equivalence testing while simultaneously allowing researchers

to test for significant evidence that relationships are bounded outside of their SESOIs. TST

thus gives researchers a comprehensive testing framework to assess the practical significance

of their estimates.

2 What Is the Three-Sided Testing Procedure?

The TST procedure tests three mutually exclusive hypotheses, all of which are related to

the same relationship of interest, and each of which should lead to a meaningfully different

conclusion if accepted:

1. HInf: Relationship of interest < ∆L (inferiority)

2. HEq: ∆L ≤ Relationship of interest ≤ ∆U (equivalence)

3. HSup: ∆U < Relationship of interest (superiority)

∆L and ∆U refer to the lower and upper SESOI bounds, respectively. In words, we are

testing whether the relationship is less than the lower SESOI bound, greater than the upper

SESOI bound, or bounded by these two bounds. These hypotheses can be tested separately
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Note: ∆L and ∆U represent the lower and upper SESOI bounds (respectively). Panel A indicates hypotheses
for an inferiority test. Panel B indicates hypotheses for an equivalence test, such as the TOST procedure.
Panel C indicates hypotheses for a superiority test. Panel D indicates hypotheses for the TST procedure.

Figure 2: Hypotheses for (Constitutent Tests of) the Three-Sided Testing Approach

using a two-sided test against the lower SESOI bound to test inferiority (Figure 2A), a TOST

procedure to test for equivalence (Figure 1), and a two-sided test against the upper SESOI

bound to test for superiority (Figure 2C). Though the inferiority and superiority hypotheses
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are technically one-sided, two-sided tests on these hypotheses are required to control error

rates from simultaneous tests on all three hypotheses (Goeman, Solari, & Stijnen 2010; see

also Section 3.2).

The TST procedure simply entails running all the tests listed above at once, and then

using the combined result of all tests to make an overall inference about the practical sig-

nificance about the effect (see Figure 2D). For a more technical introduction to TST, see

Goeman, Solari, & Stijnen (2010). In this paper, we present an identical formulation of the

original TST procedure, combining a TOST procedure, an inferiority test, and a superior-

ity test to make the procedure more easily understandable for researchers who are already

familiar with the TOST procedure for equivalence testing.

2.1 Example: Behavioral Research on Sales Tactics

Suppose we do research for a services company. The company sells service packages to clients,

offering small, medium, or large packages (increasing in price). Company leadership has

noticed that some branches attempt to anchor clients on purchasing the medium package

by telling clients that the medium package is the most popular purchase. There is debate

amongst company leadership as to whether this sales tactic is a good idea. Anchoring clients

on the medium package will increase sales if this tactic draws clients away from purchasing

the small package or no package at all, but will decrease sales if the medium package instead

substitutes for the large package, or if the anchoring tactic discourages purchases of any

package at all.

The company runs an experiment to assess the effects of the anchoring tactic in sales

pitches. Company branches are randomized into a treatment group that uses the anchoring

tactic and a control group that does not. The company decides that any difference in branch-

level monthly sales less than $10,000 is practically equal to zero, and consequently that any

difference in such sales exceeding $10,000 is practically meaningful.

The company’s official stance on the anchoring tactic will depend on the practical sig-

nificance of the tactic’s impact on sales. If the tactic leads to a loss in revenue larger than

-$10,000 per month, then the company will conclude that sales pitches with anchoring are

inferior to pitches without anchoring, and will ban use of the anchoring tactic in sales pitches
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across all branches. If the effect is significantly bounded between -$10,000 and $10,000 per

month, then the company will conclude that the tactic’s effect is practically equal to zero,

and will allow branches to freely choose whether or not to use the tactic. If the tactic’s effect

is significantly greater than $10,000 per month, then the company will conclude that the

sales tactic is superior, and will mandate its use in sales pitches throughout the company. If

none of these conclusions can be reached with statistical significance, then the company will

continue the experiment, collecting data until significant conclusions can be reached.

3 How to Conduct and Interpret Three-Sided Testing

In what follows, we will first present two identical methods for conducting TST. The meth-

ods can be applied to any statistical estimate for which (1) a standard error/confidence

interval can be computed and (2) test statistics can be reasonably assumed to be Student

t- or normally-distributed. We will then give examples of how to conduct TST in practice

using the ShinyTST app (https://jack-fitzgerald.shinyapps.io/shinyTST/). In Online Ap-

pendices A and B, we also show how to conduct TST in R and Jamovi (respectively). These

supplementary files can easily be adapted to fit different datasets and specifications.

3.1 Specifying a Smallest Effect Size of Interest

The first step in TST is to specify a meaningful SESOI. Just as in equivalence testing,

specifying an SESOI is the most challenging aspect of TST. A thorough guide to SESOI

specification is outside the scope of this paper (see Fitzgerald 2024 for further discussion),

but we will briefly offer some advice and relevant references to the interested reader.

First, there is a growing consensus that using Cohen’s benchmark values to justify the

SESOI is not advisable (Funder & Ozer 2019; Bakker et al. 2019). Instead, if benchmark

values must be used, benchmarks based on the actual distribution of effect sizes in your own

research field are a better alternative (e.g., see Richard, Bond, & Stokes-Zoota 2003; Gignac

& Szodorai 2016; Brydges 2019; Lovakov & Agadullina 2021; Nordahl-Hansen et al. 2024).

However, even empirically informed benchmarks are relatively weak SESOIs. Within fields,

there can be large variation in what effect sizes are considered interesting depending on the
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specific research topic, the variables in question, the research design used, etc.

A better starting point would be to consult existing literature on SESOI justification

and effect size interpretation. Lakens, Scheel, & Isager (2018) provide a useful overview of

objective and subjective SESOI justification strategies. Funder & Ozer (2019) provide a good

introduction to effect size interpretation in general, though we recommend disregarding their

proposed benchmark values unless you can justify how they relate to effect sizes in your own

field. Beyond these, several insightful discussions of SESOI justification are worth consulting,

including discussions on anchor-based methods (Anvari & Lakens 2021), eliciting SESOIs

from surveys on expert/stakeholder judgments (Fitzgerald 2024), guidelines for effect size

interpretation in intervention research (Kraft 2020; Peetz et al. 2024), and mechanisms that

amplify and counteract the practical importance of a relationship (Anvari et al. 2023).

Finally, it may be helpful to study practical examples of how other researchers have

justified their SESOI in equivalence testing applications. Equivalence testing primers such as

Lakens (2017) and Lakens, Scheel, & Isager (2018) have been cited in hundreds of published

papers that provide practical examples of how SESOIs are set in applied research settings.

We recommend interested readers to search the citing articles for examples of how SESOIs

are set in practice.

3.2 Three-Sided Testing Using One-Sided Tests

The first way to conduct TST is by obtaining p-values from the four constituent tests involved

in TST, and then interpreting the joint test result. In the statistical software of your choice,

for any relationship you wish to test, run all four of the one-sided tests that make up the

inferiority, superiority, and equivalence tests specified in Figure 2A-C. Let µ represent the

relationship of interest. Then the four relevant one-sided tests are as follows:

1. Inferiority. H0 : µ ≥ ∆L. HA : µ < ∆L.

2. Lower-bound equivalence test. H0 : µ < ∆L. HA : µ ≥ ∆L.

3. Upper-bound equivalence test. H0 : µ > ∆U . HA : µ ≤ ∆U .

4. Superiority. H0 : µ ≤ ∆U . HA : µ > ∆U .
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Running these four tests will yield four one-sided p-values. We combine all four results to

form one overall conclusion about the relationship of interest based on the TST procedure.

Suppose that we set a significance level of α = 5%. The procedure will yield one of the

following four conclusions concerning the relationship of interest:

1. Practically significant and negative. If the one-sided inferiority test statistic is

significant at level α/2 (i.e., 2p < 0.05 or p < 0.025), then treat the relationship as

inferior to the lower SESOI bound. The equivalence and superiority tests will yield

insignificant results.

2. Practically equal to zero. If both of the two one-sided tests for equivalence are

significant at level α (i.e., p < 0.05), then treat the relationship as if it is no further

from zero than the SESOI. The inferiority and superiority tests will yield insignificant

results.

3. Practically significant and negative. If the one-sided superiority test statistic is

significant at level α/2 (i.e., 2p < 0.05 or p < 0.025), then treat the relationship as

superior to the upper SESOI bound. The inferiority and equivalence tests will yield

insignificant results.

4. Inconclusive. In all other cases, remain uncertain about the practical significance of

the relationship.

Notice that even though we have set a significance level of 5%, the α threshold that we

consider for the inferiority and superiority tests is half that, set at 2.5%. This is necessary to

adjust for multiple hypothesis testing. If our relationship of interest is truly bounded between

∆L and ∆U , then it is possible to make two Type I errors: one where we mistakenly conclude

that the relationship is bounded above ∆U , and one where we mistakenly conclude that

it is bounded below ∆L. Because the TST procedure involves simultaneous tests both for

inferiority and for superiority, a simple Bonferroni correction across these two tests – which

halves the effective α for these tests – effectively controls the size of the test at our nominal

significance level (Goeman, Solari, & Stijnen 2010). An identical method is to double the
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one-sided p-values for the inferiority and superiority tests, which is the method employed in

existing statistical software.1

No multiple comparison corrections are required for the lower- and upper-bound equiva-

lence tests, because TOST already requires that both one-sided tests are significant at level α

before estimates are deemed practically equal to zero (see Berger & Hsu 1996). Even though

the inferiority and superiority tests in TST must be conducted at significance level α/2 to

control TST’s error rates, we can still safely conduct TST’s equivalence test at significance

level α. This is a useful property of TST, as it implies that TST can allow researchers to aug-

ment TOST with minimum effects testing for inferiority and superiority without sacrificing

any power or error rate control for the equivalence test.

3.3 Three-Sided Testing Using Confidence Intervals

An identical procedure for conducting TST is to compute two confidence intervals (CIs) for

the relationship of interest – one at 100(1− 2α)% confidence and one at 100(1− α)% confi-

dence. We can then inspect where these intervals fall relative to the upper and lower SESOI

bounds. Assuming α = 5%, the wider 95% CI is used to evaluate whether the inferiority

and superiority tests yield significant results, and the 90% CI is used to assess whether the

equivalence test yields significant results.

To start, compute the 100(1 − 2α)% CI and 100(1 − α)% CI for an estimate of your

relationship of interest. Then compare the upper and lower CI bounds with the upper and

lower SESOI bounds. As in Section 3.2, this CI-based procedure will yield one of the following

four conclusions about the relationship of interest (assuming α = 5%).

1. Practically significant and negative. If the 100(1 − 2α)% CI (i.e., the 95% CI)

falls entirely below the lower SESOI bound, then treat the relationship as inferior to

the lower SESOI bound.

2. Practically equal to zero. If the 100(1 − α)% CI (i.e., the 90% CI) falls entirely

within the SESOI bounds, then treat the relationship as if it is no further from zero

1Of course, for inferiority/superiority tests that produce p > 0.5, this adjusted p-value is mechanically
set to p = 1.
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than the SESOI.

3. Practically significant and positive. If the 100(1−2α)% CI (i.e., the 95% CI) falls

entirely above the upper SESOI bound, then treat the relationship as superior to the

upper SESOI bound.

4. Inconclusive. If none of the above conditions hold, then remain uncertain about the

practical significance of the relationship.

Figure 3 illustrates this CI procedure. For the equivalence test, what matters is that the

entire 90% CI falls within the HEq region. For example, under TST, we would conclude that

the third estimate from the top in Figure 3 is practically equal to zero even though the 95%

CI overlaps with the SESOI bounds. In contrast, inferiority and superiority tests are only

significant if the entire 95% CI falls outside the SESOI bounds. For instance, looking to the

fifth estimate in Figure 3, its 95% CI crosses the lower SESOI threshold, meaning that we

cannot conclude at a 5% significance level that this estimate is inferior to ∆L.

3.4 Three-Sided Testing Using the ShinyTST Application

To enable as many readers as possible to apply TST in their own data analyses, we have

developed a stand-alone application that can produce TST results for most statistical esti-

mates. The ShinyTST app requires four inputs and has two optional inputs. Required inputs

include an estimate (e.g., a mean difference or a correlation coefficient), the standard error

of that estimate, the SESOI (in the same units as the estimate), and the significance level

α. Optional inputs include the degrees of freedom of the test (which are required for exact

tests, rather than asymptotically approximate tests) and a power target (which is used to

set power-adjusted CIs).2 Based on this input, the calculator computes 90% CIs, 95% CIs,

TST test statistics and p-values, and provides an appropriate conclusion based on the test

results. ShinyTST is available online at https://jack-fitzgerald.shinyapps.io/shinyTST/. In

2Whereas the half-width of an ordinary 100(1−α)% CI is given by the standard error times the two-sided
critical value at significance level α, the half-width of a 100(1−α)% power-adjusted CI at 100(1−β)% power
is given by the minimal detectable effect size at 100(1− β)% power given the estimate’s standard error (see
Bloom 1995).
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Figure 3: Illustration of how different test results should be interpreted in TST at a signif-
icance level of α = 5%. Estimates are plotted alongside 90% CIs (thicker bands) and 95%
CIs (thinner bands).

this section, we will demonstrate how to use ShinyTST and interpret the results it provides

through several applied examples.

Consider again our experiment on anchoring tactics in sales pitches. Based on the ob-

served results in our experiment, we want to decide if sales pitches using the anchoring tactic

yield inferior, equivalent, or superior revenue when compared to sales pitches that do not

use the tactic. We can conduct TST in the ShinyTST app to help us make this decision.

3.4.1 Example 1: A Practically Significant Estimate

Suppose that in our experiment, we observe that branches employing the anchoring tactic

make $18,000 more in monthly sales than branches in the control group, with a standard
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Figure 4: ShinyTST example for an estimate of 18,000, standard error of 3000, and SESOI
of 10,000.

error of $3000. Our significance level is 5%, and as aforementioned, our SESOI bounds are

±$10, 000. Figure 4 displays where to input these parameters in ShinyTST, as well as the

resulting output.

Following the TST procedure, we would conclude that this estimate is superior to our

SESOI. The “Relevant test” output tells us that the relevant test to look at in this case is

the superiority test, as the observed estimate is more positive than the upper SESOI bound.

The color of the “Relevant test” output signals which reported confidence interval is relevant

for drawing a conclusion. In this case, the red-colored 95% CI is the relevant one, and we can

see both in the numeric output and the accompanying graph that the lower 95% CI bound

is greater than the upper SESOI bound of $10,000. I.e., the entire 95% CI falls above the

SESOI. Accordingly, the test p-value falls below α. Note that ShinyTST has already doubled
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the superiority test’s one-sided p-value, so we do not need to multiply p or divide α by two

in this case. This same functionality is provided in this paper’s companion tst command in

R and tsti command in Stata. As reported in the output, these results indicate that “The

estimate is practically significant and positive.” In other words, in this example, sales pitches

using the anchoring tactic appear to be superior to pitches that do not use the anchoring

tactic to a practically significant degree.

3.4.2 Example 2: An Estimate Practically Equal to Zero

Now suppose instead that branches employing the anchoring tactic make $4500 more in

monthly sales than branches in the control group, keeping everything else as before. This

is a small estimate (in the scale of our company), but is it precise enough that we can

confidently rule out practically meaningful differences in monthly sales? Figure 5 displays

the TST results for this estimate.

In this case, we would conclude that the estimate is practically equal to zero. I.e., the esti-

mated effect is significantly bounded within ±$10, 000. The “Relevant test” output indicates

that the blue-colored 90% CI is the relevant CI for this test (because the point estimate is

within the SESOI bounds). This 90% CI falls entirely within the SESOI bounds. The p-value

output now displays the p-value of the equivalence test, which is accordingly beneath 5%.

As reported in the output, this indicates that “The estimate is practically equal to zero.” In

other words, sales pitches using the anchoring tactic appear to yield practically equivalent

revenue to sales pitches that do not use the anchoring tactic.

3.4.3 Example 3: Inconclusive Results

Now suppose we observe that treated branches make $15,500 less in sales than control

branches. This estimate is more negative than our lower SESOI bound, but is it estimated

precisely enough that we should ban usage of the anchoring tactic? Figure 6 displays the

TST results for this estimate.

In this case, we arrive at an inconclusive result. As in Figure 4, the “Relevant test” output

indicates that the red-colored 95% CI is relevant for this estimate, as the estimate is more

negative than the lower SESOI bound. The p-value output now displays the (adjusted) p-
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Figure 5: ShinyTST example for an estimate of 4500, standard error of 3000, and SESOI of
10,000.

value of the inferiority test, which exceeds 5%. Accordingly, the 95% CI intersects one of the

SESOI bounds (specifically, the lower bound). As reported in the output, given a significance

threshold of α = 5%, these results indicate that “The practical significance of the estimate

is inconclusive.”

Finally, suppose instead that treated branches make $7500 less in monthly sales than

branches in the control group. As in Example 2, this estimate is smaller in magnitude than

the SESOI. But is it precisely bounded enough that we should give branches free reign to

use the anchoring tactic at will? Figure 7 displays TST results for this estimate.

This case also yields an inconclusive result. As in Figure 5, the “Relevant test” output

indicates that the blue-colored 90% CI is relevant for this estimate because the estimate is

between the SESOI bounds. This estimate’s 90% CI intersects one of the SESOI bounds,
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Figure 6: ShinyTST example for an estimate of -15,500, standard error of 3000, and SESOI
of 10,000.

and the TST p-value accordingly exceeds 5%. In both this case and the case displayed in

Figure 5, results are inconclusive. In both cases, this implies that we should continue the

experiment and collect more data until sufficiently certain conclusions can be reached about

the relative efficacy of the anchoring tactic.

3.5 Three-Sided Testing in R, Jamovi, and Stata

Some researchers prefer statistical software to point-and-click applications. We therefore sup-

plement the ShinyTST app and the tutorials in this paper with examples of how to conduct

TST in both R and Jamovi in Online Appendices A and B (respectively). These examples

work with data from a case similar to that discussed in Section 3.4.1, and respectively utilize

the tst command in the eqtesting R package (Fitzgerald 2024) and the TOSTER module
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Figure 7: ShinyTST example for an estimate of -7500, standard error of 3000, and SESOI of
10,000.

in Jamovi (Lakens 2017; Caldwell 2022).3 We direct readers more familiar with Stata to the

tsti command, which can be downloaded from https://github.com/jack-fitzgerald/tsti.

4 Reporting Three-Sided Testing Results

When reporting TST results, include the following information:

1. Which test is relevant: inferiority, equivalence, or superiority? This informa-

tion is automatically provided by the ShinyTST app, the tst command in R, and the

tsti command in Stata, but this can also be inferred directly by examining the point

estimate’s relationship with the SESOI bounds.

3The eqtesting R package can be downloaded from GitHub at https://github.com/jack-
fitzgerald/eqtesting.
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2. What is the TST p-value? If the superiority (inferiority) test is the relevant test,

then this is two times the one-sided p-value of the superiority (inferiority) test. p-values

reported by the ShinyTST app, the tst R command, and the tsti Stata command are

already adjusted and do not need to be doubled. If the equivalence test is the relevant

test, then the TST p-value is the larger of the two one-sided p-values for the equivalence

tests. The TOST p-value reported by the ShinyTST app, the tst R command, and

the tsti Stata command is the larger of these two equivalence testing p-values.

3. What are the bounds of the 100(1−2α)% and 100(1−α)% confidence intervals?

This can be textually reported with two sets of CI bounds, and visually reported using

double-banded confidence intervals such as those produced by the ShinyTST app.

4. What is the conclusion of the test? Interpret whether the estimate is practically

significant and negative, practically equivalent to zero, practically significant and pos-

itive, or whether the TST results are inconclusive.

In addition to visualizing double-banded confidence intervals of the form in Figures 4-7,

the TST results in Section 3.4.1 could be reported as follows:

We conduct three-sided testing to assess whether there is significant evidence that

the anchoring tactic’s effect on branch-level sales is more extreme than ±$10,000

per month, which is the smallest effect size of interest in this setting. Our ex-

perimental results imply that the anchoring tactic increases branch-level sales

by $18,000 per month (90% CI: [$13,065.44, $22,934.56], 95% CI: [$12,120.11,

$23,879.89]). The superiority test is the relevant test under TST, which yields

an adjusted p-value of 0.008 (see Isager & Fitzgerald 2024). The anchoring sales

tactic therefore yields significantly more than $10,000 in additional revenue for

company branches, implying that the anchoring tactic increases sales to a prac-

tically significant degree.
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5 Power Analysis and Sample Size Planning for Three-

Sided Testing

Best practices for computing necessary sample sizes for sufficient power in TST differ from

best practices for computing power and sample sizes for equivalence testing or minimum-

effect testing. Unlike these tests, the TST procedure tests several hypotheses at once. Conse-

quently, having sufficient a priori power for conclusive TST results requires having sufficient

power for all tests. Our recommendations for computing sample sizes for sufficient power thus

differ depending on whether you expect to obtain an estimate larger or smaller in magnitude

than the SESOI. Online Appendix C provides interested readers with a comprehensive guide.

6 Combining TST With NHST

If we expect the SESOI to change in the future, then it may be worth combining TST with

standard NHST. Returning to our experiment on anchoring sales tactics, the company’s

SESOI for branch-level sales may increase over time as the company grows in size. Likewise,

the smallest practically meaningful change in branch-level sales may decline in periods when

the company experiences financial distress. It thus may be useful to record whether the

anchoring tactic has some nonzero effect on sales to inform future experiments and policies.

To combine TST and standard NHST, simply add a two-sided test against zero to the

TST procedure outlined in this paper. Figure 8 shows how this alteration augments the TST

procedure. This effectively partitions the HEq region in Figure 2D into two parts: H0− (effect

sizes greater than ∆L but less than zero) andH0+ (effects greater than zero but less than ∆U).

As a result, combining TST and standard NHST does not require additional multiple testing

corrections, and can thus be performed with no loss to statistical power or error rate control

(see Goeman, Solari, & Stijnen 2010). Whether the additional nuance afforded by standard

NHST is of any interest must be for the individual scientist to decide. If the justification

for the SESOI is strong, then it is not as interesting to know if the effect is different from

zero. In such cases, TST should replace standard NHST as the default frequentist testing

procedure. Even if TST and standard NHST results are reported together, the TST results
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Figure 8: A partitioning of the parameter space permitting a combination of TST and stan-
dard NHST. Estimates are displayed along with 100(1 − 2α)% CIs (thicker bands) and
100(1−α)% CIs (thinner bands). Four meaningful test regions can be rejected. H− and H+

are both rejected if the 90% CI is bounded between ∆L and ∆U . If the 95% CI is entirely
bounded below H0+ (above H0−), then H0+ (H0−) is rejected. In cases like the top green
estimate, we may not be able to conclude whether the effect is smaller or larger than ∆, but
we can establish the direction of the effect (negative in this case). Partitioning the parameter
space in this way does not reduce power for the equivalence test; e.g., the third orange esti-
mate is still significantly bounded between ∆L and ∆U despite the fact that its 100(1−2α)%
CI crosses zero.

should take precedence in the results and discussion.

7 Conclusion

Whenever we can specify a meaningful SESOI, TST is a superior testing procedure com-

pared with both standard NHST and TOST procedures. TST allows us to detect significant

evidence that a relationship is practically significant or practically null, and allows us to test

more meaningful predictions than standard NHST (see also Meehl 1967; Lakens 2022). Re-

searchers should therefore strongly consider TST as their default frequentist test procedure
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if they can specify a meaningful SESOI.
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Online Appendix

A Three-Sided Testing in R

Supplementary material SM1 (https://osf.io/rfyas) contains R script that demonstrates three

ways to conduct TST. First, one can conduct four one-sided tests in base R. Second, one

can compare the 100(1− 2α)% and 100(1−α)% CIs of an estimate with its SESOI bounds.

Third and finally, one can use the tst function in the eqtesting R package (Fitzgerald

2024). This is an R-based version of the ShinyTST app.

B Three-Sided Testing in Jamovi

Supplementary material SM2 (https://osf.io/ncxvg) provides a Jamovi file that contains the

same simulated data as the R script, and a TST analysis conducted using Jamovi’s TOSTER

module (version 1.4.1). In the Jamovi file, the “Results” pane contains two identical TOST

independent sample t-test analyses. In the first analysis, the “Hypothesis” parameter is

set to “Equivalence Test”, which will run the TOST procedure for the difference between

groups. The 90% CI is given in the “Effect Sizes” table, and can be visualized with the

“Plot Effect Sizes” parameter. In the second analysis, the “Hypothesis” parameter is set to

“Minimal Effects Test”, which will run an inferiority test (“TOST Lower” in the “TOST

Results” table) and a superiority test (“TOST Upper” in the “TOST Results” table) for the

difference between groups. In this analysis the “Alpha level” parameter is set to 0.025 so

that 95% CIs are computed in the table and plots.

C Examples of Power Analysis for TST

In what follows, we assume that you have a good a priori expectation of the effect size that

you will find in your main study. Such an expectation can be formed from previous studies,

pilot experiments, or expert predictions, among other resources.
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C.1 Case 1: The Expected Effect Size Is Larger Than the Smallest

Effect Size of Interest

Returning to our hypothetical anchoring experiment, suppose that you expect to find a

positive effect of $15,000 per month. Because this effect is larger in magnitude than our

upper SESOI bound of $10,000, you should be prepared to detect a practically significant

effect size of at least $15,000 with sufficient power. Suppose we want to have at least 80%

power to detect such an effect at a 5% significance level. To calculate the required sample size

for a superiority test in R, use the base power.t.test function with the delta parameter

set to the effect size you want to power for minus the upper SESOI bound:

s e s o i = 10000

e f f e c t = 15000

min s i z e ps = power . t . t e s t ( d e l t a = e f f e c t − s e s o i ,

s i g . l e v e l = 0 .05 ,

power = 0.80 ,

type = ' two . sample ' ,

a l t e r n a t i v e = ' two . s ided ' )$n

A similar procedure can be used if you expect the relationship to be negative. If you be-

lieve the anchoring tactic’s effect will be less than the lower SESOI bound – say, -$15,000

per month – then calculate the required sample size for the inferiority test. In R, use the

power.t.test function with delta set to abs(effect - sesoi), as power.t.test cannot

handle negative effect size values:

s e s o i = −10000

e f f e c t = −15000

min s i z e ps = power . t . t e s t ( d e l t a = abs ( e f f e c t − s e s o i ) ,

s i g . l e v e l = 0 .05 ,

power = 0.80 ,

type = ' two . sample ' ,

a l t e r n a t i v e = ' two . s ided ' )$n

2



Though these procedures give you the necessary sample size to have 80% power to detect

practically significant effects, this sample size is not necessarily large enough to guarantee

sufficient power for the equivalence test if the relationship you end up estimating happens to

be smaller in magnitude than the SESOI. This is important because if you commit to TST,

then you commit to performing an equivalence test if the estimated relationship is smaller in

magnitude than the SESOI, and so you should be prepared to perform this equivalence test

with sufficient power. At the very least, you should have enough observations to conclude

that an estimate of zero is practically equivalent to zero. To calculate the required sample

size for such an equivalence test in R, use the power t TOST function in the TOSTER package

(see Lakens & Caldwell 2024):

s e s o i = 10000

e f f e c t = 0

l ibrary (TOSTER)

min s i z e eq = power t TOST( de l t a = e f f e c t ,

low eqbound = −s e s o i ,

high eqbound = se so i ,

alpha = 0 .05 ,

power = 0.80 ,

type = ' two . sample ' )$n

However, in practice, this approach may leave you with insufficient power for the equivalence

testing component of TST. This is because estimated relationships are virtually never ex-

actly zero. Because you need more power to obtain significant equivalence test results when

estimated relationships are further away from zero, having exactly 80% power to conclude

that an estimate of zero is practically equivalent to zero necessarily means having less than

80% power to conclude that a nonzero estimate is practically equivalent to zero.

An alternative approach is to compute (sufficient sample sizes for) ‘safeguard power’ (see

Perugini, Gallucci, & Costantini 2014). This approach obtains enough power to conduct

equivalence testing in the event that your expected a priori effect size is an outlier, and the

true relationship of interest is in fact a significant distance away from this a priori expectation
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in the direction of zero. To make this concrete, suppose that your pilot experiment yields an

estimated a priori effect size expectation of $15,000 per month, but that the lower bound

of the pilot estimate’s 95% confidence interval is $5000 per month. In the same vein, you

could imagine that the median expert prediction of the anchoring tactic’s impact on sales

is $15,000 per month, but that the fifth percentile of predictions for the effect is $5000 per

month. In such a case, you can obtain the ‘safeguard sample size’ that would be necessary

to conclude that such an effect size is practically equivalent to zero by changing the effect

parameter in the previous code from 0 to 5000.

This ‘safeguard power’ approach is only feasible if the ‘safeguard effect size’ is smaller

in magnitude than the SESOI. This is because under TST, it is impossible to conclude

that a relationship that is larger in magnitude than the SESOI is practically equivalent

to zero. Obtaining sufficient sample size to attain such safeguard power always requires at

least as many observations as a sample size determination approach that does not attain

safeguard power. Regardless of which method is used to compute the necessary sample

size for a sufficiently-powered equivalence test, the necessary sample size needed to ensure

sufficient power for TST when the expected relationship is larger in magnitude than the

SESOI is simply the larger of the two necessary sample sizes for the equivalence test and the

superiority/inferiority test.

min s i z e = max(c (min s i z e ps , min s i z e eq ) )

min s i z e

C.2 Case 2: The Expected Effect Size Is Smaller Than the Small-

est Effect Size of Interest

For this case, suppose that we expect to obtain an estimate of $4000 per month. Because

this relationship is smaller in magnitude than our SESOI of $10,000 per month, we begin

our power calculations by ensuring that we have 80% power to conclude that our expected

estimate of $4000 per month is significantly bounded beneath a size of $10,000 per month:

s e s o i = 10000
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e f f e c t = 4000

l ibrary (TOSTER)

min s i z e eq = power t TOST( de l t a = e f f e c t ,

low eqbound = −s e s o i ,

high eqbound = se so i ,

alpha = 0 .05 ,

power = 0.80 ,

type = ' two . sample ' )$n

However, it could be the case that our estimated relationship ends up being larger in

magnitude than the SESOI. Committing to TST requires us to perform superiority/inferi-

ority tests if this occurs. We should thus be prepared to conduct such a test with sufficient

power if necessary.

As in Case 1, we can compute necessary sample sizes to obtain sufficient power for

superiority/inferiority tests in this case by computing sufficient sample sizes for safeguard

power. In this setting, this insures against the prospect that your expected effect size is

unrepresentatively small, and the true relationship is significantly further away from zero.

For example, suppose that a pilot study yields an estimate of $4000 per month, but that the

outer bound of that pilot estimate’s 95% confidence interval is $14,000 per month. We can

similarly imagine that the median expert prediction of the relationship is $4000 per month,

but that the 95th percentile of expert predictions for the relationship is $14,000 per month.

In either setting, we can assess necessary sample size for the superiority test as follows:

s e s o i = 10000

e f f e c t = 14000

min s i z e ps = power . t . t e s t ( d e l t a = e f f e c t − s e s o i ,

s i g . l e v e l = 0 .05 ,

power = 0.80 ,

type = ' two . sample ' ,

a l t e r n a t i v e = ' two . s ided ' )$n
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We can similarly obtain sample sizes if the worst tail risk is a negative effect size. In such a

case, make the same adjustment in Case 1 for an inferiority test to ensure that power.t.test

can handle the negative values:

s e s o i = −10000

e f f e c t = −14000

min s i z e ps = power . t . t e s t ( d e l t a = abs ( e f f e c t − s e s o i ) ,

s i g . l e v e l = 0 .05 ,

power = 0.80 ,

type = ' two . sample ' ,

a l t e r n a t i v e = ' two . s ided ' )$n

In cases where researchers have extremely strong priors that the relationship of interest

will be smaller in magnitude than the SESOI, researchers may have reasonable justification

to compute minimal required sample sizes for sufficient equivalence testing power without

regard for sufficient superiority/inferiority testing power. This is because similarly to Case

1, the ‘safeguard power’ augmentation to sample size determination under TST when the

expected relationship is smaller in magnitude than the SESOI is only feasible if the ‘safeguard

effect size’ is larger in magnitude than the SESOI. Under TST, it is impossible to conclude

that an effect size smaller in magnitude than the SESOI is superior/inferior to the SESOI, so

if no ‘safeguard effect size’ larger in magnitude than the SESOI can be specified, then there

is no benchmark effect size for which to assess the power of superiority/inferiority tests.

This divergence in practice between Case 1 and Case 2 emerges because zero is a ‘spe-

cial number’ for the TST framework discussed in this paper. By construction, zero bench-

marks all thresholds used for TST, and TST always involves an equivalence test that as-

sesses whether the estimate is practically equivalent to zero. However, there is no similarly-

privileged nonzero number for TST. Therefore, zero can always be used as a benchmark effect

size for computing power for equivalence testing, but there is no similar ‘fallback’ effect size

for assessing power in superiority/inferiority testing.

We thus recommend the following decision rule for determining minimal required sample

sizes for TST when the expected relationship is smaller in magnitude than the SESOI. If you
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can establish some ‘safeguard effect size’ larger in magnitude than the SESOI, then compute

the necessary sample size to detect the tail effect size with sufficient power using superi-

ority/inferiority testing, compute the necessary sample size to conclude that the expected

effect size is practically equal to zero with sufficient power, and then collect the larger of

these two necessary sample sizes. If you are extremely certain that the estimated relationship

will be smaller in magnitude than the SESOI, then simply collect the necessary sample size

to conclude that your expected relationship is practically equivalent to zero with sufficient

power. In R, this recommendation can be implemented using the following code.

i f ( exists ( min s i z e p s ) ) {

min s i z e = max(c (min s i z e ps , min s i z e eq ) )

}

else {

min s i z e = min s i z e eq

}
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