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Abstract

Simple games in partition function form are used to model voting
situations where a coalition being winning or losing might depend on
the way players outside that coalition organize themselves. Such a
game is called a plurality voting game if in every partition there is
at least one winning coalition. In the present paper, we introduce a
power index for this class of voting games and provide an axiomatic
characterization. This power index is based on equal weight for every
partition, equal weight for every winning coalition in a partition, and

∗Corresponding author.
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equal weight for each player in a winning coalition. Since some of
the axioms we develop are conditioned on the power impact of losing
coalitions becoming winning in a partition, our characterization heav-
ily depends on a new result showing the existence of such elementary
transitions between plurality voting games in terms of single embed-
ded winning coalitions. The axioms restrict then the impact of such
elementary transitions on the power of different types of players.

JEL Classification: C71, D62, D72

Keywords: axiomatization, power index, plurality game, winning coali-
tion

1 Introduction

In a simple game in partition function form, a worth is assigned to every
so-called embedded coalition being a pair consisting of a coalition and a
partition that contains this coalition. The worth is one (respectively zero) if
the corresponding coalition is winning (respectively losing) in the partition.
We call such a game a plurality game if in every partition, there is at least
one coalition that wins in that partition. So, in this case, winning does
not necessarily mean that the coalition has a majority and can pass a bill,
but simply that it is the strongest in a given coalitional configuration as
represented by the partition.
Plurality games were introduced in van den Brink et al. (2021) and can

be used to analyze parliamentary situations where (i) several (coalitions of)
parties can consider themselves as the winner after a parliamentary election,
and (ii) whether a coalition of parties considers itself as winning or losing
might depend on the way that other parties organize themselves in coalitions.
To illustrate (i), usually the biggest party after an election declares itself the
winner. However, if this party does not belong to the ideological (e.g. left or
right wing) majority then also a majority consisting of ideological opponents
might consider themselves as winner. To illustrate (ii), whether the biggest
party is a winner or not might depend on whether the ideological opposing
parties form a coalition or not.
We assume plurality games to be monotonic, both with respect to a coali-

tion as well as to a certain type of externalities regarding other coalitions.
Specifically, we assume that (i) a winning coalition cannot become losing
when it grows, and (ii) there are negative externalities of other coalitions
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growing in the sense that bigger outside coalitions give ‘more resistance’and
thus such coalitions becoming bigger cannot turn a losing coalition into a
winning one. This reflects that in a finer partition, there is ‘less resistance’
against the winning coalition.
Whereas in van den Brink et al. (2021) the focus is mainly on the repre-

sentability of these games by party weights, the current paper studies power
distributions in plurality voting games. Specifically, we introduce and axiom-
atize a power index for this class of games. In the formulation of our axioms,
we utilize the power impact of losing embedded coalitions becoming winning
in a partition; that is, our axiomatization heavily depends on a new result
describing elementary transitions between plurality voting games in terms
of single embedded winning coalitions. Specifically, we show that in every
plurality voting game with at least one losing embedded coalition, there is
always a losing embedded coalition that can be turned into a winning one
without affecting the monotonicity of the game.
The rest of the paper is organized as follows. In the next section we in-

troduce the basic ingredients of plurality games as a special class of simple
games in partition function form. Section 3 starts with the formal defini-
tion of a power index and presents the mentioned useful result (Proposition
1) concerning transitions between plurality games in terms of single win-
ning embedded coalitions. These transitions are correspondingly used as to
formulate our five axioms uniquely characterizing the proposed power in-
dex (Theorem 1). We conclude with some final remarks in Section 4. The
Appendix contains all proofs.

2 Setup

We consider a finite set N of players. Each non-empty subset is called a
coalition. A collection π of coalitions is a coalition structure if π is a par-
tition of N , i.e., if all coalitions in π are non-empty, pair-wise disjoint,
and their union is N . We denote by P the set of all partitions (coali-
tion structures) of N . For π ∈ P and i ∈ N , the notation π(i) stands
for the coalition in π containing player i. The partition πa ∈ P with
πa(i) = {i} for each i ∈ N , is called the atomistic partition. The no-
tation

(
T1, T2, . . . , Tk, π

a
−
)
stands for the partition of N consisting of the

coalitions T1 to Tk and all players in N \ (T1 ∪ T2 ∪ . . . ∪ Tk) being sin-
gletons. When, for instance, k = 1 and T1 = {i, j, `}, we slightly abuse
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notation and write
(
ij`, πa−

)
instead of

(
{i, j, `} , πa−

)
. A pair (S; π) con-

sisting of a non-empty coalition S ⊆ N and a partition π ∈ P with S ∈
π is called an embedded coalition. The set of all embedded coalitions is
E =

{
(S; π) ∈

(
2N \ {∅}

)
× P | S ∈ π

}
. For partition π ∈ P and set of

players S ⊂ N , we denote by πS = {T ∩ S | T ∈ π : T ∩ S 6= ∅} the par-
tition of S induced by π. Further, we will often write {T1, . . . , Tk, πS} for
{T1, . . . , Tk, S1, . . . , Sp} if πS = {S1, . . . , Sp}.
A simple game in partition function form is a pair (N, v), where the

partition function v : E → {0, 1} is such that v (N ; {N}) = 1. An embedded
coalition (S; π) ∈ E is called winning in the game (N, v) if and only if
v (S; π) = 1. Otherwise, it is called losing. We sometimes say that coalition
S is winning in partition π when (S; π) is a winning embedded coalition. The
set of all winning embedded coalitions in the game v is denoted by EW (v),
while Eπ

W (v) = {S ∈ π : (S; π) ∈ EW (v)} stands for the set of all coalitions
which are winning in π.
This game form allows to model externalities of coalition formation. For

instance, it can be that a coalition contained in two partitions π and π′ is
winning in π but losing in π′. Since the player set N is fixed, we often write
a simple game in partition function form (N, v) by its partition function v.
We use the following notion of inclusion, borrowed from Alonso-Meijide et
al. (2017): For (S ′; π′) , (S; π) ∈ E, we say that (S ′; π′) is weakly included in
(S; π), denoted by (S ′; π′) ⊆ (S; π), if (i) S ′ ⊆ S, and (ii) for each T ∈ π\{S},
there exists T ′ ∈ π′ with T ⊆ T ′. A game v is then defined as monotonic if
(S ′; π′) , (S; π) ∈ E with (S ′; π′) ⊆ (S; π) implies v (S ′; π′) ≤ v(S; π). This
monotonicity notion reflects (i) a nonnegative effect when a coalition grows,
and (ii) an idea of negative externalities when players outside a coalition form
larger coalitions. In particular, it implies that when a coalition is winning
in a partition, then it is winning in every finer partition that contains this
coalition. In other words, the idea expressed here is that in a finer partition
there is ‘less resistance’against the winning coalition. Clearly, a winning
coalition can become losing in a coarser partition since other players forming
coalitions might give a ‘stronger resistance’against the winning coalition, or
make the winning coalition more likely to ‘break down’.
We call a simple game in partition function form v a plurality game if (i)

it is monotonic, and (ii) for each π ∈ P we have v(S; π) = 1 for at least one
S ∈ π. We assume that the player set N is fixed and of size1 n ≥ 3, and

1Notice that, when n = 2, whether an embedded coalition is winning or losing in a
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identify a plurality game by its partition function. The set of all plurality
games on the player set N is denoted by GN .

3 Axioms on power indices and characteriza-
tion result

A power index for plurality games is a mapping f : GN → Rn+ satisfying
Σi∈Nfi(v) = 1 for each v ∈ GN . We interpret the real number fi(v) ∈ [0, 1]
as the power of player i in the game v.
The axioms we introduce in this section concern implications when the

only difference between two plurality games is a single winning embedded
coalition. Hence, the first question we have to answer is if for every plurality
game that has at least one losing embedded coalition, there is a losing embed-
ded coalition such that turning it into a winning one, we still have a plurality
game; specifically, monotonicity requires that the new winning coalition is
also winning against ‘less resistance’. Our first result whose proof is relegated
to the Appendix, answers this question in the positive.

Proposition 1 Let v ∈ GN be such that |EW (v)| < |E|. Then there exist
(S; π) ∈ E \ EW (v) and v′ ∈ GN such that EW (v′) = EW (v) ∪ {(S; π)}.
In other words, starting from any plurality game in which not all em-

bedded coalitions are winning, there is always a path of games leading to
the unique game in which all embedded coalitions are winning; along such a
path, each next game differs from its direct predecessor only by one winning
embedded coalition.
Let us now introduce the requirements we impose on a power index by

using the following additional notation. For (S; π) ∈ E, any two games
v, v′ ∈ GN with EW (v′) = EW (v) ∪ {(S; π)}, and any T ⊆ N , we set
4f
i (v, v

′) = fi(v
′) − fi(v) and 4f

T (v, v′) = Σi∈T4f
i (v, v

′). That is, 4f
i (v, v

′)
displays the change in the power of player i ∈ N (as measured by f) when a
single embedded coalition which is losing in v becomes winning in v′. Corre-
spondingly, 4f

T (v, v′) stands for the change in the power of coalition T . For
S, T ∈ π, we finally set 4f

ST (v, v′) = 4f
S(v, v′) − 4f

T (v, v′) saying how far
apart are the power change in S and the power change in T when S becomes
the new winning coalition in the partition π.

partition is in a trivial way independent of how the rest of the players are organized. This
is the reason for considering only plurality games with at least three players.
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We are ready now to present our axioms.

Unanimity (U): For all v ∈ GN : EW (v) = E implies fi(v) = fj(v) for all
i, j ∈ N .
Internal Impact (II): For all v, v′ ∈ GN : EW (v′) = EW (v) ∪ {(S; π)} implies
4f
i (v, v

′) = 4f
j (v, v

′) for all i, j ∈ T ∈ Eπ
W (v′).

External Impact (EI): For all v, v′ ∈ GN : EW (v′) = EW (v)∪{(S; π)} implies
4f
Q(v, v′) = 4f

R(v, v′) for all Q,R ∈ Eπ
W (v).

Null Impact (NI): For all v, v′ ∈ GN : EW (v′) = EW (v) ∪ {(S; π)} implies
4f
i (v, v

′) = 0 for all i ∈ H ∈ π \ Eπ
W (v′).

Power Difference (PD): For all v, v′ ∈ GN : EW (v′) = EW (v) ∪ {(S; π)}
implies ΣT∈EπW (v)4

f
ST (v, v′) = 1

|P| .

Unanimity requires equal power in case all embedded coalitions are win-
ning in the corresponding game and thus, it can be seen as a weak symmetry
axiom.
Internal Impact requires that a losing embedded coalition becoming win-

ning (i) has the same impact on the powers of the players in that winning
coalition and (ii) for each other winning coalition in the corresponding par-
tition (i.e., the partition that contains this new winning coalition) it also has
the same impact on the power of the players inside each such winning coali-
tion. Part (i) can be seen as some kind of Myerson (1977a) fairness applied
to this game model2. Part (ii) of this axiom extends this idea also to players
in other winning coalitions in the corresponding partition since also from the
perspective of each of them the situation changed in a ‘symmetric’way.
External Impact requires that the impact of a losing embedded coalition

becoming winning is the same for each other winning coalition in the corre-
sponding coalition in the sense that the sum of the powers of all players in
each such winning coalition changes by the same amount. This can also be
seen as a kind of fairness as above, but then applied on the coalition level.
Null Impact is a rather strong axiom that requires that a losing embedded

coalition becoming winning has no effect on the powers of the players in losing

2Myerson (1977a)’s fairness is introduced for communication graph games and requires
that breaking a link between two players in a communication graph has the same impact
on the payoff of these two players. Notice that we apply fairness to a coalition that might
contain more than two players, and in this respect our axiom looks more similar to the
fairness in Algaba et al. (2001) applied with respect to union stable systems where a link
(called support) might contain more than two players.
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coalitions in the corresponding partition. Although using a similar argument
as the fairness criteria mentioned above it seems reasonable that within each
such losing coalition the changes in power are the same, requiring the effect
to be zero is an extreme case. However, if we consider the partition as a
coalition structure (cf. Aumann and Drèze 1974 and Owen 1977) isolated
from the rest, then a ’null’agent is powerless whatever is the configuration
of winning coalitions in the coalition structure.
Finally, Power Difference is a balance axiom in the style of the collusion

neutrality axioms for TU-games in Haller (1994) and Malawski (2002). They
speak about a pairwise power difference axiom, where a certain change in
the game (collusion of players) does not change the sum of the payoffs of
the two players involved. We consider changes in the ‘game’in the sense of
losing embedded coalitions becoming winning in their partitions. A similar
requirement as that of collusion neutrality would require that the sum of
the powers of the new winning coalition and each other winning coalition
in that partition would be zero. In our context this is, however, a very
strong requirement. Therefore, we modify this requirement in two ways:
first, we weaken this idea by requiring the sum of these power differences to
be constant and second, this constant is not zero, but 1

|P| , reflecting an equal
importance of the partitions.
For i ∈ N and v ∈ GN , let Pvi = {π ∈ P : π(i) ∈ Eπ

W (v)} be the set of all
partitions π, where player i belongs to a winning coalition in π. We define
the power index f ∗ such that, for each v ∈ GN and i ∈ N ,

f ∗i (v) =
1

|P|
∑
π∈Pvi

1

|Eπ
W (v)| · |π(i)| . (1)

This index assumes equal weight/importance for every partition, and thus
1
|P| is allocated over the players in every partition. In any partition, this
number is (i) equally allocated over the winning coalitions in the partition
(recall that in a plurality game there is at least one winning coalition in every
partition), and (ii) the power allocated to a winning coalition in a partition
is equally allocated over the players in that winning coalition.
In order to show that f ∗ is a power index, fix v ∈ GN and observe that,

due to E{N}W (v) = {N}, the lowest value f ∗i (v) can take for i ∈ N is when
player i belongs to a winning coalition only in the partition {N}; hence, in
such a case, we have f ∗i (v) = 1

n·|P| > 0.
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On the other hand,∑
i∈N

f ∗i (v) =
∑
i∈N

1

|P|
∑
π∈Pvi

1

|Eπ
W (v)| · |π(i)|

=
1

|P|
∑
π∈P

∑
i∈N,π∈Pvi

1

|Eπ
W (v)| · |π(i)|

=
1

|P|
∑
π∈P

∑
S∈EπW (v)

1

|Eπ
W (v)|

=
1

|P|
∑
π∈P

1 =
1

|P| · |P| = 1

and thus, f ∗ is indeed a power index.
We have the following characterization result.

Theorem 1 A power index f satisfies U, II, EI, NI, and PD if and only if
f = f ∗.

The proof of Theorem 1 is relegated to the Appendix.

4 Conclusion

The study of plurality voting games combines ideas from the analysis of
simple games (cf. Shapley 1962) and insights from the general literature
on partition function form games initiated by Thrall (1962) and Thrall and
Lucas (1963)3. Specifically, the present paper contributes to the strand of
literature devoted to power indices in simple games and to values for games
in partition function form. Within this strand of literature, the focus is pre-
dominantly on extending the Shapley value to games with externalities (e.g.,
Myerson 1977b; Albizuri et al. 2005; Macho-Stadler et al. 2007; McQuillin
2009; Dutta et al. 2010; Grabisch and Funaki 2012) and different power
indices to the class of simple games with externalities (e.g., Bolger 1986;
Alonso-Meijide et al. 2017). In contrast to the mentioned works, the axioms
we utilize in the present paper are not based on players’movements from one
coalition to another within a partition but rather consider the direct impact
on power of losing embedded coalitions becoming winning in a partition. The

3We refer the reader to Lucas and Marcelli (1978) for a study of general properties of
partition function form games and to Koczy (2018) for a detailed literature survey.
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formulation of such axioms is based on a new result showing that in every
plurality voting game with at least one losing embedded coalition, there is
always a losing embedded coalition that can be turned into a winning one
without affecting the monotonicity of the game.
An interesting question for future research is to provide axiomatizations

of power indices for so-called decisive plurality games, being games such that
every partition contains exactly one winning coalition. This is challenging
since we cannot just turn one losing coalition into a winning one without
destroying the decisiveness of the game. So, we can look for axioms where
the replacement of the winning coalition in one partition by another coalition
in the same partition will have enough bite.

5 Appendix: Proofs

5.1 Proof of Proposition 1

We start by introducing the notion of a useful embedded coalition and show
in Lemma 1 the existence of at least one such coalition in a game v ∈ GN
for the case when

∣∣Eπa

W (v)
∣∣ ≤ n − 1 (i.e., when there is at least one losing

singleton coalition in the atomistic partition πa). In Lemma 4 we show this
for the case when

∣∣Eπa

W (v)
∣∣ = n (i.e., when all singleton coalitions are winning

in πa). Such coalitions for the mentioned cases are then used in Lemma 2
and in Lemma 5 as to determine the corresponding elementary transitions
between two plurality games and complete the proof.
For v ∈ GN with

∣∣Eπa

W (v)
∣∣ ≤ n − 1, we call an embedded coalition(

T ;
(
T, πa−

))
s-useful if the following two conditions hold:

(1) v
(
T ;
(
T, πa−

))
= 0, and

(2) v
(
T ∪ {j} ;

(
T ∪ {j} , πa−

))
= 1 for each j ∈ N \ T .

That is, T is a losing coalition when all other players are singletons and
it becomes winning in the corresponding new partition when a player from
N \T joins T . For v ∈ GN , Lks(v) is the set of all s-useful embedded coalitions(
T ;
(
T, πa−

))
with |T | = k. Notice that k ∈ {1, 2, . . . , n− 1}, the reason being

that N is winning in the unique partition containing it (due to v ∈ GN) and
thus, the embedded coalition (N ; (N)) with |N | = n cannot be s-useful.

Lemma 1 Let v ∈ GN with
∣∣Eπa

W (v)
∣∣ ≤ n − 1. Then there exists k ∈

{1, 2, . . . , n− 1} such that Lks(v) 6= ∅.
Proof. Observe first that

∣∣Eπa

W (v)
∣∣ = n− 1 implies L1s(v) 6= ∅. As to see it,
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let {i} be the unique losing coalition in πa. By v ∈ GN and v
(
j;
(
j, πa−

))
= 1

for each j ∈ N \ {i}, v
(
ij;
(
ij, πa−

))
= 1 holds for each j ∈ N \ {i} and thus,

L1s(v) = {(i; πa)} follows.
Suppose now that

∣∣Eπa

W (v)
∣∣ < n − 1 and Lks(v) = ∅ holds for each

k ∈ {1, 2, . . . , n− 2}. We show that Ln−1s (v) 6= ∅. For this, fix i ∈ N
such that v

(
i;
(
i, πa−

))
= 0 and notice that L1s(v) = ∅ implies the existence

of ki ∈ N \ {i} such that v
(
iki;
(
iki, π

a
−
))

= 0.4 By L2s(v) = ∅, there exists
`i ∈ N \ {i, ki} such that v

(
iki`i;

(
iki`i, π

a
−
))

= 0. Repeating the argument
for each k ∈ {3, . . . , n− 2} leads to the existence of some j ∈ N such that
v (N \ {j} ; (N \ {j} , {j})) = 0. By v ∈ GN , v (N ; (N)) = 1 follows. We
have then (N \ {j} ; (N \ {j} , {j})) ∈ Ln−1s (v).

Lemma 2 Let v ∈ GN be such that
∣∣Eπa

W (v)
∣∣ ≤ n − 1. Then there exist

(S; π) ∈ E \ EW (v) and v′ ∈ GN such that EW (v′) = EW (v) ∪ {(S; π)}.
Proof. Let v ∈ GN be as above. By Lemma 1, there exists k ∈ {1, 2, . . . , n− 1}
such that Lks(v) 6= ∅. Let k∗ be the smallest integer such that Lk∗s (v) 6= ∅.
Fix an embedded coalition

(
T ;
(
T, πa−

))
∈ Lk∗s (v) and set (S; π) :=

(
T ; πa−

)
.

Let us show that EW (v′) = EW (v) ∪
{(
T ;
(
T, πa−

))}
implies v′ ∈ GN .

Suppose that this is not the case. Then there exist two embedded coali-
tions (R′; π′) and (R; π) with (R′; π′) ⊆ (R; π) such that v′ (R′; π′) > v′(R; π)
holds. The latter inequality implies that, in the game v′, R′ is winning in π′

and R is losing in π. It follows from the way in which v′ was constructed
that EW (v) ⊂ EW (v′), and thus v′(R; π) = 0 implies v(R; π) = 0. By
v ∈ GN and (R′; π′) ⊆ (R; π), v(R′; π′) = 0 follows. Since the only losing
embedded coalition in v which is winning in v′ is

(
T ; πa−

)
, it must be that

(R′; π′) =
(
T ;
(
T, πa−

))
.

Observe that
(
T ;
(
T, πa−

))
= (R′; π′) ⊆ (R; π) =

(
R;
(
R, πN\R

))
implies

T ⊆ R and πN\R = πaN\R. We now show that in each of the two cases T = R
and T ⊂ R we reach a contradiction.
(1) T = R implies (R′; π′) = (R; π) which is in contradiction to v′ (R′; π′) >

v′(R; π).
(2) T ⊂ R leads to v′(T∪{i} ;

(
T ∪ {i} , πa−

)
) = v

(
T ∪ {i} ;

(
T ∪ {i} , πa−

))
=

1 for each i ∈ R \ T by construction and
(
T ;
(
T, πa−

))
∈ Lk∗s (v). Repeatedly

applying the fact that v ∈ GN , we get v′
(
R;
(
R, πa−

))
= 1. By (R; π) =(

R;
(
R, πa−

))
, we have a contradiction to v′(R′; π′) = 1 and v′ (R′; π′) >

v′(R; π).

4Notice that n = 3 would imply v (N ; ({N})) = 1 and thus, (iki; (iki, `)) ∈ L2s(v) with
` being the third player in the game v would directly follow.
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We have the following helpful result.

Lemma 3 If v ∈ GN is such that, for each D ⊆ N , all coalitions in
(
D, πa−

)
are winning in v, then EW (v) = E.

Proof. Suppose not, i.e., there is an embedded coalition (S; π) such that
S 6= N and v(S; π) = 0. By the definition of a plurality game, v(T ; π) = 1
for some T ∈ π. Take i ∈ S and notice that, by the monotonicity of v,
v({i} ; (N \ {i} , {i})) = 0 follows. Thus, we have a contradiction to {i}
being a winning coalition in (N \ {i} , {i}).
Consider v ∈ GN with

∣∣Eπa

W (v)
∣∣ = n and fix D ⊂ N . An embedded

coalition
(
T ;
(
D,T, πa−

))
is D-useful if the following two conditions hold:

(1) v
(
T ;
(
D,T, πa−

))
= 0, and

(2) v
(
T ∪ {j} ;

(
D,T ∪ {j} , πa−

))
= 1 for each j ∈ N \ (D ∪ T ).

In other words, T is a losing coalition when all players from N \ (D ∪ T ) are
singletons and it becomes winning in the corresponding new partition when
a player from N \ (D ∪ T ) joins T . For v ∈ GN , we collect in the set LmD(v)
all D-useful embedded coalitions

(
T ;
(
D,T, πa−

))
with |T | = m. Notice that

m ∈ {1, 2, . . . , n− |D|}, the reason being that the largest coalition that can
be losing in a partition containing the coalition D is N \D (of size n− |D|).
Lemma 4 Let v ∈ GN be such that

∣∣Eπa

W (v)
∣∣ = n and EW (v) 6= E. Then

there exist D ⊂ N and m ∈ {1, 2, . . . , n− |D|} such that LmD(v) 6= ∅.
Proof. Observe that, by v ∈ GN and

∣∣Eπa

W (v)
∣∣ = n, v

(
T ;
(
T, πa−

))
= 1 holds

for each T ⊂ N . By EW (v) 6= E and Lemma 3, there exist D ⊂ N and i ∈ N
such that

(
i;
(
D, i, πa−

))
is a losing embedded coalition in v (and, of course,(

D; (D, πa−
)
) is a winning embedded coalition in v).

If {i} is the only losing singleton coalition in
(
D, πa−

)
, then L1D(v) 6= ∅.

As to see it, notice that by v ∈ GN , v
(
ij;
(
D, ij, πa−

))
= 1 holds for each

j ∈ N \ (D ∪ {i}) and thus, L1D(v) =
{(
i;
(
D, i, πa−

))}
follows.

Suppose now that there are at least two losing singleton coalitions in(
D, πa−

)
and LmD(v) = ∅ holds for each m ∈ {1, 2, . . . , n− |D| − 2}. We show

that either Ln−|D|−1D (v) 6= ∅ or Ln−|D|D (v) 6= ∅. For this, fix i ∈ N such
that v

(
i;
(
D, i, πa−

))
= 0 and notice that L1D(v) = ∅ implies the existence of

ki ∈ N \ (D ∪ {i}) such that v
(
iki;
(
D, iki, π

a
−
))

= 0. By L2D(v) = ∅, there
exists `i ∈ N \ (D ∪ {i, ki}) such that v

(
iki`i;

(
D, iki`i, π

a
−
))

= 0. Repeat-
ing the argument for each m ∈ {3, . . . , n− |D| − 2} leads to the existence
of some j ∈ N such that v (N \ (D ∪ {j}) ; (D,N \ (D ∪ {j}) , {j})) = 0. If
v (N \D; (D,N \D)) = 1, then (N \ (D ∪ {j}) ; (D,N \ (D ∪ {j}) , {j})) ∈
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L
n−|D|−1
D (v) follows. Otherwise, if v (N \D; (D,N \D)) = 0, then (N \D; (D,N \D)) ∈

L
n−|D|
D (v) trivially holds due to N \ (D ∪ (N \D)) = ∅ and the definition of
a D-useful embedded coalition.

Lemma 5 Let v ∈ GN be such that
∣∣Eπa

W (v)
∣∣ = n and EW (v) 6= E.

Then there exist (S; π) ∈ E \ EW (v) and v′ ∈ GN such that EW (v′) =
EW (v) ∪ {(S; π)}.
Proof. Let v ∈ GN be as above. By Lemma 4, there exist D ⊂ N and
m ∈ {1, 2, . . . , n− |D|} such that LmD(v) 6= ∅. Let m∗ be the smallest integer
such that Lm

∗
D (v) 6= ∅. Fix an embedded coalition

(
T ;
(
D,T, πa−

))
∈ Lm∗D (v)

and set (S; π) :=
(
T ;
(
D,T, πa−

))
. Let us show that EW (v′) = EW (v) ∪{(

T ;
(
D,T, πa−

))}
implies v′ ∈ GN .

Suppose this is not the case. Then there exist two embedded coalitions
(R′; π′) and (R; π) with (R′; π′) ⊆ (R; π) such that v′ (R′; π′) > v′(R; π)
holds. The latter inequality implies that, in the game v′, R′ is winning in π′

and R is losing in π. It follows from the way in which v′ was constructed
that v′(R; π) = 0 implies v(R; π) = 0 since EW (v) ⊂ EW (v′). By v ∈ GN
and (R′; π′) ⊆ (R; π), v(R′; π′) = 0 follows. Since the only losing embed-
ded coalition in v which is winning in v′ is by construction

(
T ;
(
D,T, πa−

))
,

we conclude that (R′; π′) =
(
T ;
(
D,T, πa−

))
should be the case. Observe

that
(
T ;
(
D,T, πa−

))
= (R′; π′) ⊆ (R; π) =

(
R;
(
R, πN\R

))
implies T ⊆ R

and πN\R ∈
{
πaN\R,

(
D, πaN\(R∪D)

)}
. There are three possible cases to be

considered.
(1) πN\R = πaN\R. As explained above, v

′(R; π) = 0 implies v(R; π) = 0;
that is, we have v(R;

(
R, πa−

)
) = 0. However, by v ∈ GN and

∣∣Eπa

W (v)
∣∣ = n,

v(R;
(
R, πa−

)
) = 1 should hold, a contradiction.

(2) T = R and πN\R =
(
D, πaN\(R∪D)

)
. In this case (R′; π′) = (R; π)

follows, a direct contradiction to v′ (R′; π′) > v′(R; π).

(3) T ⊂ R and πN\R =
(
D, πaN\(R∪D)

)
. By construction, v′(T∪{i} ;

(
T ∪ {i} , D, πa−

)
) =

v
(
T ∪ {i} ;

(
T ∪ {i} , D, πa−

))
= 1 holds for each i ∈ R \ T . Repeatedly ap-

plying the fact that v ∈ GN , we get v′
(
R;
(
R,D, πa−

))
= 1. By (R; π) =(

R;
(
R,D, πa−

))
, we have a contradiction to v′(R′; π′) = 1 and v′ (R′; π′) >

v′(R; π).
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5.2 Proof of Theorem 1

We show first that the power index f ∗ as defined in Section 3 (see (1)) satisfies
our five axioms.

Unanimity Let v ∈ GN be such that EW (v) = E. Notice that in such a
case and for each i ∈ N , we have Pvi = P. Clearly then, the number of
times each player belongs to a coalition of a given size in a partition is the
same. In other words, U is satisfied with f ∗i (v) = 1

n
for each i ∈ N (due to

Σi∈Nf
∗
i (v) = 1).

In order to show that f ∗ also satisfies the other four axioms, suppose the
games v, v′ ∈ GN are such that EW (v′) = EW (v) ∪ (S; π∗).

Internal Impact For each i ∈ T ∈ Eπ∗
W (v) we have

f ∗i (v) =
1

|P|
∑
π∈Pvi

1

|Eπ
W (v)| · |π(i)| =

1

|P|
∑

π∈Pvi \{π∗}

1

|Eπ
W (v)| · |π(i)|+

1

|P|
1

|Eπ∗
W (v)| · |T |

and

f ∗i (v′) =
1

|P|
∑
π∈Pv′i

1

|Eπ
W (v′)| · |π(i)| =

1

|P|

 ∑
π∈Pvi \{π∗}

1

|Eπ
W (v)| · |π(i)| +

1

|Eπ∗
W (v′)| · |T |


=

1

|P|

 ∑
π∈Pvi \{π∗}

1

|Eπ
W (v)| · |π(i)| +

1

(|Eπ∗
W (v)|+ 1) · |T |

 .

Hence,

4f∗

i (v, v′) = f ∗i (v′)− f ∗i (v) (2)

=
1

|P|

(
1

(|Eπ∗
W (v)|+ 1) · |T | −

1

|Eπ∗
W (v)| · |T |

)
.

We have further for each i ∈ S that

f ∗i (v) =
1

|P|
∑
π∈Pvi

1

|Eπ
W (v)| · |π(i)| =

1

|P|
∑

π∈Pvi \{π∗}

1

|Eπ
W (v)| · |π(i)|
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and

f ∗i (v′) =
1

|P|
∑
π∈Pv′i

1

|Eπ
W (v′)| · |π(i)|

=
1

|P|

 ∑
π∈Pvi \{π∗}

1

|Eπ
W (v)| · |π(i)| +

1

|Eπ∗
W (v′)| · |S|


=

1

|P|

 ∑
π∈Pvi \{π∗}

1

|Eπ
W (v)| · |π(i)| +

1

(|Eπ∗
W (v)|+ 1) · |S|

 .

Hence,

4f∗

i (v, v′) = f ∗i (v′)− f ∗i (v) (3)

=
1

|P| · |S| · (|Eπ∗
W (v)|+ 1)

.

We conclude from (2) and (3) that 4f∗

i (v, v′) is independent of i for each
player i belonging to a winning coalition in the partition π∗ and thus, II is
satisfied.

External Impact Take T ∈ Eπ∗
W (v) and notice that in view of (2) we have

4f∗

T (v, v′) =
∑
i∈T
4f∗

i (v, v′)

=
|T |
|P|

(
1

(|Eπ∗
W (v)|+ 1) · |T | −

1

|Eπ∗
W (v)| · |T |

)
=
|T |
|P| ·

∣∣Eπ∗
W (v)

∣∣− ∣∣Eπ∗
W (v)

∣∣− 1

(|Eπ∗
W (v)|+ 1) · |Eπ∗

W (v)| · |T |

=
−1

|P| · (|Eπ∗
W (v)|+ 1) · |Eπ∗

W (v)| ,

i.e., 4f∗

T (v, v′) is independent of T . We conclude that EI is satisfied.

Null Impact Take i ∈ T ∈ π∗ \ EW (v′). We have

f ∗i (v) =
1

|P|
∑
π∈Pvi

1

|Eπ
W (v)| · |π(i)| =

1

|P|
∑

π∈Pvi \{π∗}

1

|Eπ
W (v)| · |π(i)|
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and

f ∗i (v′) =
1

|P|
∑
π∈Pv′i

1

|Eπ
W (v′)| · |π(i)| =

1

|P|
∑

π∈Pv′i \{π∗}

1

|Eπ
W (v′)| · |π(i)|

=
1

|P|
∑

π∈Pvi \{π∗}

1

|Eπ
W (v)| · |π(i)| .

Hence,
4f∗

i (v, v′) = f ∗i (v′)− f ∗i (v) = 0

holds and thus, NI is satisfied.

Power Difference In view of (2) and (3), we have∑
T∈Eπ∗W (v)

4f∗

ST (v, v′) =
∣∣Eπ∗

W (v)
∣∣ · 4f∗

S (v, v′)−
∑

T∈Eπ∗W (v)

4f∗

T (v, v′)

=
|S| ·

∣∣Eπ∗
W (v)

∣∣
|P| · |S| · (|Eπ∗

W (v)|+ 1)
+

∣∣Eπ∗
W (v)

∣∣
|P| · (|Eπ∗

W (v)|+ 1) · |Eπ∗
W (v)|

=
1

|P| · (|Eπ∗
W (v)|+ 1)

·
(∣∣Eπ∗

W (v)
∣∣+ 1

)
=

1

|P|

as required for the fulfillment of PD.

Suppose now that f satisfies the above axioms. To show that the power
index is uniquely determined, consider v ∈ GN and let us proceed by induc-
tion on the cardinality of the set EW (v) of winning embedded coalitions in
v.

Initialization: Suppose |EW (v)| = |E|. By U and the definition of a power
index, fi(v) = 1

n
for each i ∈ N follows.

Induction Hypothesis: Suppose that the power index is uniquely determined
for each v∗ ∈ GN with |EW (v∗)| > |EW (v)|.
By Proposition 1, there exists v′ ∈ GN such that EW (v′) = EW (v) ∪

{(S; π)} for some (S; π) ∈ E \ EW (v). Observe that, by |EW (v′)| > |EW (v)|
and the Induction Hypothesis, the power vector f(v′) is uniquely determined.
In what follows, we show that f(v) is uniquely determined as well.
For this, and w.l.o.g., let π = {S1, . . . , Sk−1, Sk, Sk+1, . . . , SK} with v (S`; π) =

1 for each ` ∈ {1, . . . , k − 1}, Sk = S, and v (S`; π) = 0 for each ` ∈
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{k + 1, . . . , K}. Notice then that fi(v′)−fi(v) = 0 holds for each i ∈ ∪K`=k+1S`
due to NI. That is, the exact determination of any such fi(v) directly follows
from the fact that fi(v′) has already been fixed.
For each T ⊆ N , set fT (v) := Σi∈Tfi(v) and fT (v′) := Σi∈Tfi(v

′). Notice
further that, by PD we have

1

|P|

=
k−1∑
`=1

((fS(v′)− fS(v))− (fS`(v
′)− fS`(v)))

= (k − 1) · (fS(v′)− fS(v))−
k−1∑
`=1

(fS`(v
′)− fS`(v))

= (k − 1) · (fS(v′)− fS(v))−
k−1∑
`=1

fS`(v
′) +

k−1∑
`=1

fS`(v)

= (k − 1) · (fS(v′)− fS(v))−
k−1∑
`=1

fS`(v
′) +

(
1− fS(v)−

K∑
`=k+1

fS`(v)

)
,

where the last equality follows from the definition of a power index. Thus, we
can exactly determine fS(v) due to (1) f(v′) being already fixed by the Induc-
tion Hypothesis, and (2) fS`(v) being also fixed for each ` ∈ {k + 1, . . . , K}
by NI as shown above.
Observe further that axiom EI requires the difference fQ(v′)−fQ(v) to be

the same for each Q ∈ {S1, . . . , Sk−1} and thus, fQ(v) is uniquely determined
as well. Finally, II requires for each Q ∈ {S1, . . . , Sk−1} the total power
differences fi(v′)− fi(v) to be the same for each i ∈ Q. Since f(v′) is known
by the Induction Hypothesis, we conclude that f(v) is uniquely determined.
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