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Abstract

This paper introduces a novel dynamic factor model designed to capture

common locally explosive episodes, also known as common bubbles, within

large-dimensional, potentially non-stationary time series. The model lever-

ages a lower-dimensional set of factors exhibiting locally explosive behavior to

identify common extreme events. Modeling these explosive behaviors allows

to predict systemic risk and test for the emergence of common bubbles. The

dynamics of the explosive factors are modeled using mixed causal non-causal

models, a class of heavy-tailed autoregressive models that allow processes to

depend on their future values through a lead polynomial. The paper estab-

lishes the asymptotic properties of the model and provides sufficient conditions

for consistency of the estimated factors and parameters. A Monte Carlo sim-

ulation confirms the good finite sample properties of the estimator, while an

empirical analysis highlights its practical effectiveness. Specifically, the model

accurately identifies the common explosive component in monthly stock prices
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of NASDAQ-listed energy companies during the financial crisis in 2008 and

predicts its evolution significantly outperforming alternative forecasting meth-

ods. This new approach offers a powerful tool for detecting common bubbles

and predicting their evolution, providing relevant insights for policymakers and

investors.

Key words: observation-driven filter, non-stationary time-series, mixed causal non-

causal models, dynamic factor models.

1 Introduction

Speculative bubbles — defined as rapid, unsustainable price surges followed by sharp

declines — pose a significant threat to economic stability. These locally explosive

episodes occur in various domains, as financial markets, real estate and commodity

prices. When such bubbles propagate simultaneously across multiple time series, they

can become a critical source of instability for investors, governments, and consumers.

Indeed, many recent financial crises can be traced back to such common bubbles.

Therefore, accurately predicting and modeling the development of these shared ex-

plosive episodes is crucial for safeguarding against economic and financial instability.

This paper introduces a novel dynamic factor model designed to capture common

bubbles in high-dimensional time series vectors. By allowing high-dimensional time

series to be driven by a smaller set of unobserved factors, some of which experience

explosive episodes, this model captures the onset and propagation of common ex-

treme events. Modeling the explosive dynamics of these factors the model allows

to assess systemic risk, offering early detection of common bubbles and measures to

evaluate shared vulnerabilities. The proposed dynamics for the explosive factors al-

low to disentangle the common unobserved components in their fundamental value

and bubble elements. This novel approach is particularly suited for non-stationary

settings like stock and commodity prices and large macroeconomic datasets, where

traditional models for common bubbles fall short.

This paper extends the two-stage estimation procedure from Barigozzi et al. (2021) to

account for explosive factor dynamics, providing theoretical results for the asymptotic

behaviour of the estimated factors and parameters. It also explores the performance of

Principal Component Analysis (PCA) for heavy-tailed processes with only two finite

moments, establishing convergence rates using the framework of Davis and Resnick
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(1986) and Davis et al. (2014). Monte Carlo simulations confirm the reliability of

this estimation procedure, showing good finite-sample properties for both the PCA

estimates and maximum likelihood parameter estimates. An empirical application to

NASDAQ-listed energy stocks demonstrates the model’s ability to model explosive

dynamics in high-dimensional data by successfully identifying a significant common

bubble during the 2008 financial crisis. Furthermore, the application showcases the

model’s forecasting capability during explosive episodes and the possibility to test

for the presence of a common bubble during the 2008 crisis, relying on the testing

framework of Blasques et al. (2024).

The existing literature provides two main approaches for detecting and model-

ing bubbles in univariate settings. The first focuses on testing for the presence of a

bubble analyzing global, and more recently, local non-stationarity within the process

under study. For instance, Diba and Grossman (1988) proposes the use of unit root

and cointegration tests to detect such explosive non-stationarity in the data. How-

ever, bubbles appear mostly as short-lived episodes and their repetitive expansion

and collapse may render the time series globally stationary (Evans, 1991). The mis-

match between global and local non-stationarity is addressed by Phillips et al. (2011),

Phillips et al. (2015) and Phillips and Shi (2018) who develop supremum tests on re-

cursive right-side unit root test statistics. These tests focus on local non-stationarities

within a time series, allowing to identify the start and end date of explosive bubble

events. Empirical studies following this approach find evidence of bubbles in the NAS-

DAQ index, the U.S. housing price index, the price of crude oil (Phillips et al., 2011;

Phillips and Yu, 2011), commodity (Etienne et al., 2014; Gutierrez, 2013) and real

estate prices (Chen and Funke, 2013; Yiu and Jin, 2012). The testing procedures just

described assess the presence of a bubble,they do not model the process itself, making

it impossible to determine the bubble dynamics and perform any forecast. The sec-

ond approach models bubbles using mixed causal non-causal autoregressive (MAR)

models. This class of models characterizes a process through a forward-looking au-

toregressive specification with heavy-tailed innovations (Lanne and Saikkonen, 2011;

Gouriéroux and Zaköıan, 2013). The future-driven dynamics provided by these non-

causal models enable a buildup towards a future extreme shock, generating bubble

episodes. The MAR framework has been applied to model and forecast financial bub-

bles across a wide range of processes displaying explosive behaviors, such as Nickel

(Hecq and Voisin, 2021), NASDAQ (Gouriéroux and Zaköıan, 2017), Bitcoin (Hencic
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and Gouriéroux, 2015), and various commodity prices (Fries and Zakoian, 2019).

Recently, the issue of modelling common bubbles has caught more attention in the

literature. The MAR framework extends naturally to multivariate settings through

non-causal vector autoregressive models, as shown by Lanne and Saikkonen (2013).

Common bubbles can then be modeled by allowing the non-causal matrix polynomial

to be of reduced-rank as in Cubadda et al. (2023). A similar approach has been

explored by Gourieroux and Jasiak (2017) and Davis and Song (2020), who relies

on a backward looking representation with roots that are allowed to be explosive.

These explosive roots identify common unobserved non-causal components, that can

generate common bubbles. The limitation of multivariate MAR models is that this a

class of stationary models, conflicting with the inherent non-stationarity of processes

that generally experience bubbles, forcing researchers to rely on detrending techniques

(Hecq and Voisin, 2023). Moreover, multivariate MAR processes are not scalable to

high-dimensional contexts. Estimating a multivariate MAR model and using it to

forecast is computationally problematic even for relatively small sample sizes, greatly

limiting the applicability of this framework. A different perspective from outside the

MAR literature in the context of common bubbles comes from Chen et al. (2022),

that allow a high-dimensional time series to be driven by several factors, some of

which are assumed to be driven by an autoregressive process with explosive roots.

Their method focuses on testing for the presence of an explosive root and provides no

insight in the dynamics of the factors. Although conceptually similar to the model

presented in this paper, their approach does not allow to model or forecast the explo-

sive dynamics and the evolution of the overall system during an explosive episode.

This paper introduces a novel dynamic factor model capturing how common ex-

treme events propagate through a system, by modeling common factors as mixed

causal non-causal processes. This framework is the first creating a bridge between

the literature on dynamic factor models and the MAR literature. The proposed

model presents two main improvements with respect to multivariate MAR models.

First, the stationarity requirement in MAR models — often violated by the nature

of the data — is relaxed, thanks to the flexibility of the proposed approach. Second,

the feasibility issues for estimation and forecasting in high dimensions faced by the

multivariate MAR are solved through the dimensionality reduction of the non-causal

dynamics offered by the factor structure. Finally, while being designed to detect and

model common bubbles, the model also accommodates idiosyncratic components that
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may experience their own locally explosive episodes, providing a comprehensive view

of both shared and individual bubbles within the data.

The paper is organized as follows: Section 2 presents the Dynamic Factor model

with common explosive dynamics, establishing the model’s properties and discussing

the relevant assumptions. Section 3 outlines the estimation strategy and the asymp-

totic properties of the estimators. Section 4 examines the finite sample properties of

our estimator through a Monte Carlo simulation, and Section 5 presents an applica-

tion to monthly stock prices in the energy sector.

2 The Model

This section discusses the proposed non-stationary mixed causal non-causal (MAR)

factor model, first introducing mixed causal non-causal models in general and then

then describing the novel factor model specification and the relevant assumptions.

Mixed causal non-causal models are a class of autoregressive models that allows the

process to depend on its future, rather than only on its past. This feature allows these

processes to exhibit locally explosive patterns. For a univariate time series {zt}t∈Z a

MAR(l, s) process depends on l lags, and s leads, and, following Lanne and Saikkonen

(2011) specification, has the form:

ψ(L−1)ϕ(L)zt = εt,

with L−1zt = zt+1, ψ(z) = 1−ψ1z−...−ψszs, ϕ(z) = 1−ϕ1z−...−ϕlzl, respectively
the non-causal (forward looking) and causal (backward looking) polynomials, and εt

are iid innovations from a non-gaussian distribution. Like AR models, MAR have an

infinite MA representation,

zt =
∞∑

h=−∞

φhεt+h.

The dependence on the future, through the forward looking polynomial, and the non-

gaussianity allow the process to generate explosive episodes. Under the assumption,

ϕ(z) = 0 for |z| > 1 and ψ(z) = 0 for |z| > 1,

{zt}t∈Z is a stationary and ergodic process by Lanne and Saikkonen (2011).
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Let us now introduce the proposed non-stationary MAR factor model. Consider

yt = (y1,t, ..., yn,t)
′ a n-dimensional vector of time series. Assume that the series in

this vector share r common factors:

yt = Λft + vt, (1)

where ft = (f1,t, ..., fr,t)
′ is the r × 1 vector of common factors and Λ is the

n × r matrix of loadings. Moreover, vt = (v1,t, ..., vn,t) is the vector of idiosyncratic

components. The novelty of the proposed approach lies in allowing any of the ft,

and vt, to experience explosive dynamics. The next section describes the modeling

of these dynamics in details.

Common Factors

Let the common factors ft in (1) be represented as,

∆ft = Γ(L)εt, (2)

with Γ(L) =
∑∞

h=−∞ ΓhL
−h being a two-sided sum of r × q matrices, with q ≤ r

and εt a q−dimensional vector of iid noise.

Assumption 1

1. εt = (ε1,t, ..., εq,t) is a vector of strong noise, εt is independent of εt+k for all

k ̸= 0 and Eεt = 0, Eεtε′t = Ir.

2. The matrix polynomial Γ(L) is such that
∑∞

h=−∞ h|Γi,h| ≤ M2 < ∞ for all i

and for Γi,h the 1× q row of Γh. Finally, Γh is a diagonal matrix for all h < 0.

Assumption 1 extends the non-stationary common factors assumption by Barigozzi

et al. (2021) to factors with mixed causal non-causal dynamics. The common factors

ft are allowed to be I(1), coherently with what observed in the factor literature

(Barigozzi et al., 2021) and in the mixed causal non-causal literature (Hecq and

Voisin, 2023; Blasques et al., 2023). Assumption 1, however, allows also factors to be

stationary, not restricting the model only to the non-stationary setting.

The common factors described in (2) can be divided in two categories, the the purely

causal factors and the non-causal factors. The second category includes the factors

that do not show any type of anticipative behavior and exhibit a more standard
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backward-looking dynamic. The second ones are the factors that exhibit explosive

behaviors and are driven by a forward-looking dynamics. Define,

∆fi,t =
∞∑
h=0

Γi,hεt−h, (3)

a purely causal (backward-looking) factor, and,

∆fi,t =
∞∑

h=−∞

Γi,hεt−h, (4)

a factor exhibiting non-causal (forward-looking) dynamics, or equivalently an ex-

plosive factor. A factor with purely backward looking dynamics is defined as a factor

for which Γi,h = 0 for all h < 0 in model (2). At this stage, the number of both the

causal and non-causal factors is assumed to be known. The identification strategy for

the different types of factor will be presented in a later section.

Assumption 1.2 restricts the non-causal structure allowed for our model. In most

scenarios the common factors describe few sizeable locally-explosive episodes implying

a simple non-causal structure. In general one or at most two factors with non-causal

dynamics are expected.

Remark 1 While the common factors are assumed to follow (2), this is not the pro-

posed estimating equation. As discussed in Hecq and Voisin (2023) the first differences

of a process with non-causal dynamics lose their anticipative behavior and result in a

series of spikes. This makes important to model the non-stationary part of the pro-

cess if we want to estimate a MAR process in a I(1) setting. For this reason (2) is a

representation assumption.

Let us discuss the estimating equations for the factors. If {fi,t}t∈Z is a common explo-

sive factor as in (4), let us assume it follows a MAR process with a stochastic trend

with exogenous variables. This is an extension of the model proposed in Blasques

et al. (2023) designed to allow for interaction between the factors. The proposed

specification is the following,

fi,t = µi,t + zi,t +
∑
j ̸=i

ϕij(L)fj,t,

µi,t+1 = µi,t + βiεi,t−s, ψi(L
−1)ϕi(L)zi,t = εi,t,

(5)
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where {µi,t}t∈Z is the stochastic trend component, {zi,t}t∈Z is the bubble com-

ponent and the term
∑

j ̸=i ϕij(L)fj,t drives the dependence between factors. The

stochastic trend component {µi,t}t∈Z has a random walk structure where βi drives

the strength of the update. The lag t − s, with s the order of the lead polynomial

ψi(·), ensures that the right hand side of the update equation for the stochastic trend

includes only terms up to time t. The bubble component {zi,t}t∈Z follows a univariate

MAR process, with ψi(L
−1) and ϕi(L) the non-causal and causal polynomials respec-

tively.

For what concerns the causal factors, the model described in (3) allows for any ARIMA

and, under the assumptions in Barigozzi et al. (2020), VECM specification. This is

not surprising as the specification in (3) falls in the setting of Barigozzi et al. (2021)

under Assumption 1. Since the focus of this paper is on modelling common bubbles

and the risk connected with this type of extreme events, the dynamic of the causal

factors will be left unspecified for the rest of the paper and only the relevant assump-

tions for the correct estimation of the factors and their parameters will be discussed.

The remainder of the section describes features and assumptions relevant for the

proposed factor specification and its estimation. The potential lower rank q ≤ r of

{εt}t∈Z in (2) is important because it allows for flexible specifications of the factor

dynamics. A lower dimension of the error vector is coherent with the reduced rank

static representation from a dynamic factor model, as in Bai and Ng (2007), allowing

for dynamic propagation of the explosive episodes.

Remark 2 The dimension q ≤ r of εt, potentially lower than the factors, is crucial

to allow for a dynamic factor structure. In a stationary setting, for simplicity of the

representation, we can have:

yt = λ1ft + ...+ λpft−p + vt

=
[
λ1 . . . λp

]
ft + vt,

with ft = (ft, ..., ft−p)
′ a stationary MAR(1, 1) factor:Ip −

ψ . . . 0
...

. . . 0

0 . . . 0

L−1


Ip −

ϕ . . . 0

1
. . . 0

0 . . . 0

L


 ft
...

ft−p

 =

1...
0

 εt.
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Note that this factor specification allows the model to capture explosive events poten-

tially distributed over time. By doing so it is possible to identify leading processes

that experience the bubble first and understand the temporal dynamics of the bubble

diffusion.

The next assumptions discusses the necessary elements for the estimation of the

presented common factors structure.

Assumption 2

1. εt = (ε1,t, ..., εq,t) belongs to a distribution with regularly varying tail probability

with index α > 2.

2. The covariance matrix Σ∆f = E
[
∆ft∆f ′

t

]
is a diagonal matrix of rank r with

distinct elements on the diagonal.

Assumption 2.1 requires the errors to follow an heavy-tailed distribution, differently

from similar models in the literature, see Barigozzi et al. (2021). The assumption

implies that, if εit has regularly varying tail probability with index α,

P (|εit| > x) = x−αL(x),

with L(x) a slowly varying function. Moreover note that E|εit|n = ∞ for n > α. This

implies that Assumption 2.1 requires only the variance to be finite. The heavy tail

assumptions is crucial for non-causal models. Any mixed causal non-causal process,

or purely non-causal, has a purely causal representation, for example a MAR(1,1)

process can be represented as an AR(2) where the errors are an all-pass process, see

Fries and Zakoian (2019). Being able to disentangle the two is a challenge that the

researcher always faces in the MAR literature as these are equivalent up to second

order moments. This can be achieved only under non-gaussianity assumption (Lanne

and Saikkonen, 2011). Moreover the extreme values in the tail of the distribution are

what drives the bubble dynamics, as these events generate from a build up towards

a sizeable shock. Generally assumptions on the errors of the common factors require

at least four moments, see Barigozzi et al. (2021) and Bai (2004). An exception is

Barigozzi et al. (2024) where for a similar non-stationary factor structure driven by

a distribution in the domain of attraction of a stable law no moment is required for

the convergence of PCA estimates. While a similar approach could be used in the

setting presented by this paper, the second stage estimation, following Blasques et al.
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(2023), requires at least two moments so the setting is restricted to α > 2.

For what concerns the loadings the following structure is assumed:

Assumption 3 The loadings matrix Λ is such that Λ′Λ −→ Ir as n −→ ∞ and ||λi|| ≤
C <∞ for all i.

The estimation strategy for the factor dynamics in a non-stationary setting follows

a block strategy. The models for the non-stationary factors that show non-causal

dynamics are estimated univariately using an extension of the MAR model with a

stochastic trend (MARST) from Blasques et al. (2023). The advantage of the MARST

model is the possibility to jointly estimate the non-stationary and the non-causal

components of the explosive factors. Such a model falls in the setting considered by

Assumption 1.

Proposition 1 Let fi,t follow a MAR process with a stochastic trend with exogenous

variables as defined in (5). Then ∆fi has a double sided infinite MA representation

compatible with Assumption 1.1 and 1.2.

Note that the approach to model common non-causal dynamics is coherent with the

models considered in Cubadda et al. (2023) and Gourieroux and Jasiak (2017). The

mixed causal non-causal VAR specifications considered by these authors allow to

represent the non-causality through dependence on a lower dimensional process, re-

spectively through a reduced rank of the non-causal matrix coefficient in Cubadda

et al. (2023) and through a decomposition around the explosive roots of the VAR

coefficient in Gourieroux and Jasiak (2017). The proposed approach has the advan-

tage of extending to non-stationary high dimensional settings and allowing also for

idiosyncratic non-causal dynamics.

Idiosyncratic Components

Similarly, the idiosyncratic components vit, for i = 1, ..., n, are modeled accounting

for potential non-stationarity and idiosyncratic bubbles.

∆vit =
∞∑

h=−∞

ψihηit, for all i = 1, ..., n. (6)

Then we assume:
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Assumption 4

1. ηt = (η1t, ..., ηnt) is a vector of strong noise, in other words ηt is independent of

ηt+k for all k ̸= 0 and Eηt = 0, Eηtη′
t = Ση. Moreover E

[
|ηit|a|ηit|b

]
< ∞ with

a+ b = 4.

2. Ση is positive definite and maxj
∑n

i=1

∣∣E[ηitηjt]∣∣ < M.

3.
∑∞

h=−∞ h|ψih| <∞ for all i.

4. εit and ηjs are independent for all i = 1, ..., r, j ∈ N and t, s = 1, ..., T.

The points in Asssumption 4 are in line with what assumed by Barigozzi et al. (2021).

The model in (6) is coherent with some of the idiosyncratic component being I(1) and

presenting locally explosive behaviors. The first assumption tightens the moment con-

dition we imposed on the common factors requiring at least four moments. This is a

limit on the idiosyncratic bubbles that such a model can generate. However this is

coherent with what observed in practice. In multivariate settings the most relevant

locally explosive episodes usually spread across series and become common episodes.

The second assumption limits the amount of cross-sectional correlation that the model

can accommodate.

3 Parameter Estimation

The model is estimated using a two-stage procedure. In the first stage, the common

factors and the loadings are estimated through PCA on the first differences of the

data. In the second stage the non-causal and the purely causal part of the factors

are estimated by Maximum Likelihood. The non-causal and the backward-looking

components of the factors are estimated separately, this allows the estimation to take

into account non-stationarity and non-causality jointly. The next section describes

the estimation procedure assuming that the number of common factors, r, and of the

non-causal factors, are known, and then discusses how to estimate these quantities.

First stage estimation

Consider the first differences of the data,
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∆yt = Λ∆ft +∆vt.

Since the loadings Λ are the same as in the non-stationary representation of the

model in (1), these can be estimated through PCA on the differenced model following

Barigozzi et al. (2021). The loadings estimator Λ̂ is defined by,

Λ̂ =
√
nQ̂∆y,

with Q̂∆y the r × n matrix of standardized eigenvectors corresponding to the the

first r eigenvalues of the sample covariance matrix of the first differenced data Σ̂∆y.

The factors estimate is then defined as,

f̂t =
1

n
Λ̂yt.

Proposition 2 Define ϑ = max
(
T−δ, n−1

)
with δ ≤ (α−2)/α such that E|εt|α <∞.

Under assumptions 1-4 there is a r × r diagonal matrix S with entries of 1 and −1

such that the PCA estimate Λ̂ of the loadings are,∣∣∣∣Λ̂− SΛ
∣∣∣∣ = Op(ϑ).

Moreover define the estimated factors f̂t =
1
n
Λ̂yt then,

1√
T

∣∣∣∣f̂t − Sft
∣∣∣∣ = Op(ϑ).

The proof for Proposition 2 follows Barigozzi et al. (2021). The main difference

comes from the different convergence rate obtained by allowing for heavy-tailed dis-

tributions. The proof relies on the result of convergence for the covariance of infinite

MA processes with errors with regularly varying tail distributions from Davis and

Resnick (1986). The absence of moments up to the fourth order influences how fast

the sample covariance matrix Σ̂∆y converges1. Note that if the innovations εt have

regularly varying tail probability with index α ≥ 4, then δ = 1/2, redirecting to the

same setting as Barigozzi et al. (2021). While there exists results in the literature for

heavy tailed non-stationary factors, see Barigozzi et al. (2024), this paper is the first,

up to the knowledge of the author, in following this approach to establish consistence

of the factors and loadings estimates.

1As shown in Lemma 2.
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Identifying the number of explosive factors

So far, the number of common factors r and of the non-causal factors has assumed to

be known. This section presents results on the estimation of these two quantities, the

estimation of the number of non-stationary factors and the identification of explosive

factors.

The first step is to identify the number of common factors. For this purpose it is

possible to rely on the standard methodology in the factor literature, see Bai and Ng

(2002) and Onatski (2009).

The second step is to estimate the number of non-stationary factors. Given a consis-

tent estimate of the spectral density of ∆yt and the corresponding eigenvalues ν̂∆yj (χ),

for j = 1, ..., r, the number of non-stationary factors m̂ can be estimated as,

m̂ = arg min
h=1,...,mmax

[
log

( n∑
j=h+1

ν̂∆yj (0)

)
+ hp(n, T )

]
,

for p(n, T ) some penalty term, as proposed by Barigozzi et al. (2021).

Finally the last step is to estimate the number of the explosive factors. Davis and

Song (2020) suggest to use BIC to identify the number of lags p and then analyze the

roots of the estimated polynomial to see how many roots are outside the unit circle

corresponding to a number of non-causal components. This approach, however, is

available only for the stationary setting. If the common factors are non-stationary we

need a different approach. The methodology proposed by this paper is to use factor

by factor BIC to identify the factors presenting non-causal dynamics. Note that while

it may be intuitive to fit the model on the first differences, in the case of non-causal

dynamics the first differences lead to sever underestimation of the total order p. This

is due to the fact that while it is possible to express the model as a mixed causal non-

causal ARIMA, the most appropriate representation of these stationary processes is

that of a fundamental value stochastic trend plus a bubble component. To estimate

the correct total number of lags k this paper proposes using a BIC approach on a

local level model plus AR(k) model. The procedure showed to perform really well in

estimating the true k in a simulation study.

Once p is established it is possible to estimate all combination of MARST(r, s)

models such that r+ s = p and select the best combination, similarly to what is done

in the stationary setting. Another possible evaluation for the model specification is

the extreme clustering approach proposed by Fries and Zakoian (2019). Any misspec-

ification of the (r, s) order, for example fitting a MAR(1,1) on a process that is purely
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non-causal MAR(0,2), leads to the errors being not iid anymore. Fries and Zakoian

(2019) suggest testing for extremes clustering in the residuals, as only the correct

specification has a representation with iid noise. Finally the last possible approach,

to be developed in a further stage, is to rely on the higher-order cumulants. Spectrum

and bispectrum of the factors carry information about non-causality as shown in Hecq

and Velasquez Gaviria (2024). The problem of this approach is that it requires the

innovation that drives the process to have at least three moments.

Second stage estimation

The parameters of the dynamic specification of the factors and the idiosyncratic com-

ponents are estimated by Maximum Likelihood in the second stage. The parameters of

the models for the factors that present non-causal dynamics are estimated separately

from the ones of the purely causal factors. Estimating non-causal factors separately

allows the model to address non-causality and non-stationarity jointly. Consistency

of the MLE estimator is shown under the previous result of consistency of the factors

estimates. Defining θi,0, γj,0 the true parameter vectors for respectively the i − th

factor and the j − th indiosyncratic component,

Theorem 1 Under assumptions 1-4 the MLE θ̂i of the parameters for the i-th com-

mon factor model, for i = 1, ..., r, are consistent estimators of the true parameter

vectors θi,0:

||θ̂i − θi,0||
p−→ 0, as n, T −→ ∞.

Moreover the MLE γ̂j for the j−th idiosyncratic component model is consistent

for the true parameter vector γj,0

||γ̂j − γj,0||
p−→ 0, as n, T −→ ∞.

Theorem 1 ensures that the parameters driving the factor dynamics can be estimated

consistently. This result guarantees the possibility to model, forecast and test the non-

causal dynamics of the explosive factors, that is the ultimate goal of this paper. The

proof for Theorem 1 follows the same steps of Blasques et al. (2023) while ensuring

that the estimation of factors does not influence the consistency result.
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Remark 3 Theorem 1 does not require the model to be correctly specified. The only

requirements are the ones from assumptions 1-3, that is being able to estimate consis-

tently the factors. This means that the explosive factor could have a different dynamic

for the stochastic trend while still maintaining its ability to identify the non-causal

dynamics.

Remark 4 The proposed approach focuses on the setting with non-stationary explo-

sive factor. It is important to note that the approach remains valid if the common

factors are stationary or if the explosive factors are stationary. The challenge rises by

trying to combine non-stationarity and non-causal dynamics. In a stationary setting

one can rely on the estimation procedures available in the MAR literature, see the

AML of Lanne and Saikkonen (2013) and Davis and Song (2020) or the GCov of

Gourieroux and Jasiak (2017).

The settings highlighted in remarks 3 and 4 will be part of the simulation study

in the next section.

4 Simulation Study

This section evaluates the performance of the proposed model for factors and pa-

rameters estimation, with specific focus on common MAR process parameters. The

simulation study presents N -dimensional vector of time series yst , for s = 1, ..., 200,

of length T generated by the model,

yt = Λft + vt,

for different values of N, T 2. The factors are defined according to the following four

specifications,

• Single Stationary Common Factor. The system is driven by a single sta-

tionary explosive factor,

f 1
t =

(
ϕ(L)−1ψ(L−1)−1

)
εt, εt ∼ t(ν).

2Appendix D presents examples of the generated samples for the different data generating pro-

cesses.
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• Single Non-Stationary Common Factor. The system is driven by a single

non-stationary explosive factor,

f 2
t = µt + zt

µt+1 = µt + βξt, ψ(L−1)ϕ(L)zt = εt

ξt ∼ N(0, σ) εt ∼ t(ν).

• Two Common Factors. The system is driven by a stationary explosive factor

and by a factor with random walk dynamics,

f 3
t =

(
f1,t,f2,t

)′
,

f1,t = f1,t−1 + ε1,t, ϕ(L)ψ(L−1)f2,t = ε2,t

εi,t ∼ t(ν), for i = 1, 2.

• Two Common Factors. The system is driven by a non-stationary explosive

factor and by a factor with random walk dynamics,

f 4
t =

(
f1,t,f2,t

)′
f1,t = f1,t−1 + ε1,t, f2,t = µt + zt

µt+1 = µt + βξt, ψ(L−1)ϕ(L)zt = ε2,t

ξt ∼ N(0, σ), εi,t ∼ t(ν) for i = 1, 2.

The idiosyncratic components vt are divided uniformly into three data generating

processes, defined as,

vj,t =


ηj,t ∼ N(0, σj)

vj,t−1 + ηj,t, ηj,t ∼ N(0, σj)

µj,t + zj,t,

with,

µj,t = µj,t−1 + ξj,t ∼ N(0, σj)

ψj(L)ϕj(L)zj,t = ηj,t, ηj,t ∼ t(νj).

Note that the non-stationary explosive dynamics is simulated as a MAR process

with Gaussian random walk stochastic trend. The choice of a misspecified data gen-

erating process for the non-stationary explosive factor is motivated by the will to
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create a more realistic setting and to showcase the performance of the model in case

of incorrect specification.

The RMSE for the estimated factors and loadings is presented, respectively

RMSEfj =

√√√√ T∑
i=1

(
f̂i,j − fi,j

)2
, and RMSEΛj

=

√√√√ N∑
i=1

(
λ̂i,j − λi,j

)2
,

where fj and Λj are respectively the true j-th factor and the j-th column of

the true loading matrix Λ. Table 1 reports the results for the first data generating

process, a single explosive common factor, both in its non-stationary MARST(1,1)

specification and the stationary MAR(1,1).

Stationary Explosive Factor

N = 25 N = 50 N = 100

RMSE T = 250 T = 500 T = 250 T = 500 T = 250 T = 500

Loadings 0.64 0.61 0.32 0.17 0.18 0.11

Factor 1.44 1.41 0.77 0.62 0.45 0.41

Non-Stationary Explosive Factor

N = 25 N = 50 N = 100

RMSE T = 250 T = 500 T = 250 T = 500 T = 250 T = 500

Loadings 0.27 0.24 0.17 0.11 0.12 0.08

Factor 1.00 0.95 0.63 0.58 0.41 0.39

Table 1: RMSE for the Loadings and Factor estimates for the single common explosive

factor data generating process, both in its stationary and non-stationary specification.

The results in Table 1 higlight that the estimates have the desired properties of getting

closer to the true values as N and T grow. In Table 2 the second stage estimates

of the causal and non-causal parameters associated with these factor estimates are

reported.

17



Estimated Parameters for the Explosive Factor

T = 250 T = 500 T = 1000

ϕ̂ ψ̂ ϕ̂ ψ̂ ϕ̂ ψ̂

Stationary 0.69 0.80 0.70 0.79 0.70 0.80

(0.03) (0.02) (0.01) (0.01) (0.01) (0.01)

Non Stationary 0.61 0.82 0.65 0.81 0.66 0.81

(0.07) (0.06) (0.04) (0.04) (0.02) (0.03)

Table 2: Mean and standard deviation of second stage estimates for the causal (ϕ)

and non-causal (ψ) parameters for a MAR/MARST model with ϕ0 = 0.7, ψ0 = 0.8.

An interesting side effect of the MARST maximum likelihood estimation procedure

that is clear from Table 2 is an attenuation of the causal parameter estimate ϕ̂.

That is due to an identification issue between the trend and the causal component

introduced in the estimation procedure by the misspecification. This may sound as

a problem, but it is actually in line with what happens for the alternatives in the

MAR literature as shown in Blasques et al. (2023) and Hecq and Voisin (2021). More

importantly what an econometrician needs for forecasting, see Lanne et al. (2012),

Gourieroux and Jasiak (2016), and testing, see Blasques et al. (2024), is actually the

purely non-causal component, obtained by filtering out the total backward looking

component ( trend plus causal component), making the identification issue irrelevant.

For this reason, as it is possible to see from Table 2, the non-causal component, and

consequently the estimates of the non-causal parameter ψ̂ do not suffer from this

issue. To avoid any confusion, and being agnostic about correct specification, the

total backward-looking component will be reported in the application and it will be

referred to as pseudo-fundamental value fvt for the rest of the paper,

fvt = µ̂t + ϕ̂(L)
(
f̂t − µ̂t

)
. (7)

Now the second data generating process is discussed. In Table 3 the RMSE of the

factors and loadings estimates are reported.
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Stationary Explosive Factor

N = 25 N = 50 N = 100

RMSE T = 250 T = 500 T = 250 T = 500 T = 250 T = 500

Loadings1 0.19 0.17 0.14 0.11 0.11 0.08

Factor1 0.90 0.87 0.62 0.38 0.43 0.26

Loadings2 1.11 1.08 0.86 0.25 0.46 0.16

Factor2 1.71 1.66 1.18 0.47 0.62 0.30

Non-Stationary Explosive Factor

N = 25 N = 50 N = 100

RMSE T = 250 T = 500 T = 250 T = 500 T = 250 T = 500

Loadings1 0.14 0.12 0.11 0.08 0.08 0.06

Factor1 0.86 0.85 0.60 0.38 0.42 0.27

Loadings2 1.14 1.06 0.90 0.25 0.45 0.16

Factor2 1.72 1.65 1.21 0.48 0.62 0.30

Table 3: RMSE for the Loadings and Factor estimates for the two common factors

data generating process, the first one exhibiting explosive dynamics both in its sta-

tionary and non-stationary specification, the second one featuring a random-walk

dynamics.

The results in Table 3 highlight that the estimates have the desired properties of

getting closer to the true values as N and T grow, and have good results already

for relatively small samples. In Table 4 the second stage estimates of the causal and

non-causal parameters associated with these factor estimates are reported. As it is

possible to see these estimates behave similarly to the case for a single common factor.

Estimated Parameters for the Explosive Factor

T = 250 T = 500 T = 1000

ϕ̂ ψ̂ ϕ̂ ψ̂ ϕ̂ ψ̂

Stationary 0.70 0.79 0.70 0.79 0.70 0.80

(0.03) (0.04) (0.02) (0.02) (0.01) (0.01)

Non Stationary 0.59 0.83 0.65 0.82 0.64 0.82

(0.09) (0.06) (0.04) (0.04) (0.02) (0.03)

Table 4: Mean and standard deviation of second stage estimates for the causal (ϕ)

and non-causal (ψ) parameters for a MAR/MARST model with ϕ0 = 0.7, ψ0 = 0.8.
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5 Application

In this section the proposed model is applied to monthly price of 61 stocks of com-

panies listed in the energy sector from the NASDAQ 3. The data consist of 353

observations spanning the period from October 1994 to February 2024. Figure 1

gives an overview of the data.

Figure 1: Monthly price of stocks from the energy sector.

Figure 2 shows the data scaled, to avoid any scale effect, highlighting the co-

movement experienced between 2008 and 2009 and its pervasiveness through all the

series of the sample. The proposed application has been considered also for the log of

the data and the results are qualitatively the same in terms of factor estimates and

explosiveness of the underlying components.

Figure 2: Detail of the period between 2005 and 2011 for the scaled series.

3The data are obtained through yfinance API.
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The first step in the estimation is to estimate the common factors and determine

r̂ the number of common factors. The number of factors is estimated to be r̂ = 5,

using the methodology from Alessi et al. (2010). The standard methodology from

Bai and Ng (2002) seemed to overestimate the number of common factors selecting

always r̂ = rmax, probably due to the relatively small sample size. Moreover the

factors are all identified as non-stationary common trends according to the procedure

of Barigozzi et al. (2021).

The second step is then to identify which of the factor exhibit explosive dynamics,

identifying the causal and non-causal orders of the factors according to procedure

previously described. The model selection steps identify only two factors as having

non-causal dynamics. The remainder of the section focuses on the first explosive fac-

tor, that is responsible for the sizeable explosive episode in 2008.

The explosive common factor

This section concentrates on the first explosive common factor, showcasing a fore-

casting exercise of the common explosive dynamics and testing for the emergence of

a common bubble relying on the methodology from Blasques et al. (2024). Figure 3

shows the explosive factor fitted by the first stage estimation.

Figure 3: The first explosive factor fitted from the first stage of the estimation procedure.

The total order of the causal and non-causal polynomials selected by model se-

lection for this estimated factor is p̂ = 5. Different orders of the MARST model are
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fitted to determine the causal and potential non-causal order of the MAR part of the

process.

Likelihood AIC BIC

MAR(1,4) - 332.74 683.91 718.70

MAR(2,3) -326.36 670.73 705.53

MAR(3,2) - 331.29 680.58 715.38

MAR(4,1) -327.03 672.06 706.68

Table 5: Likelihood and Information Criteria for Model Selection. The results high-

light the MAR(2, 3) as the preferred specification.

The model selection step suggests that a MAR(2, 3) is the most appropriate model.

Figure 4 shows the estimated factor, fitted pseudo-fundamental value and filtered

purely non-causal process for the period that goes from the start of the sample until

2016.

The pseudo-fundamental value, that is defined in (7) as the total backward look-

ing component, represents the value at which the bubble collapses after the crash.

The purely non-causal process reverts sharply to the unconditional mean after an

explosive episode, letting the total process collpase to its pseudo-fundamental value.

What distinguishes the fitted pseudo-fundamental value by its theoretical counter-

part (the true fundamental value) is that the proposed quantity includes part of the

bubble through the causal part of the process. In other words, after the crash of a

bubble, also the pseudo-fundamental value goes through a deflation process, but this

is predictable as it happens at deterministic rate, more specifically the rate of the

causal polynomial ϕ(L).

To test formally the predictive ability of such a model in the context of an explosive

episodes a Diebold Mariano test is performed on the one step ahead out of sample

predictive density4. The pseudo-out-of-sample test sample consists of 16 observations

that go from May 2008, coinciding with the beginning of the bubble, to October 2009,

after the crash. To test predictive performance interval forecasts are used, using the

Brier Score as test score5. As an alternative model an heavy tailed random walk is

4The predictive density for the MAR model was produced using the simulation based approach

of Lanne and Saikkonen (2013).
5More details on the testing procedure in the Appendix C, and for visual analysis of the predictive
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Figure 4: The estimated factor with non-causal dynamics and the pseudo-fundamental value

for the estimated model (top), the filtered purely non-causal process (bottom).

used as outcome of the model selection steps for an ARIMA(p, 1, q). The MARST

model significantly outperforms the alternative in the test sample as shown in Table

6.

Models Brier Score

Model Score Test Statistic

MARST 0.79 ·
Random Walk 1.01 -1.83

Table 6: Event Prediction Scores and Test Statistics against Heavy Tailed Random

Walk.

densities see figure (9).

23



The second part of the section revolves around testing for the emergence of a

common bubble. The framework from Blasques et al. (2024) can be used on the

fitted purely non-causal component of the process to test if the observed data at time

t is compatible with a bubble of given size at an horizon t + h. By doing so the

model is found to be able to identify the common episode as a bubble quite early in

its development, as shown in Figure 5.

Figure 5: The higlighted observations are the ones that are compatible with a sizeable

explosive epsiode at a short horizon.

Figure 5 highlights the observations that are tested to be significantly compatible

with a sizeable bubble happening at short range. The start of the bubble is being

identified as at risk of an explosive episodes around 10 months before the crash of

the bubble. This shows the empirical relevance of the proposed approach, that can

provide valuable insights on the systemic risk in the considered dataset.

The Idiosyncratic Components

Finally, concerning the idiosyncratic components, it is relevant to understand how

much of the explosive episodes is explained by common factors and how much is left

to idiosyncratic bubbles. In Figure 6 two out of the individual series yit and their

corresponding estimated v̂it are presented.

Figure 6 shows two different cases, in the left figure the explosive episodes are

mainly idiosyncratic and the filtered component still shows a non-causal dynamic. In

the right figure most of the explosive episodes are the common bubbles captured by

the common factors and the filtered component shows no relevant sign of explosive
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Figure 6: The figure shows the comparison between the original processes yit and the

estimated idiosyncratic processes v̂it for PTEN (top) and DVN (bottom) prices.

episodes.

6 Conclusions

This paper introduces a novel dynamic factor model that permits factors to exhibit

locally explosive behavior, effectively capturing both common and idiosyncratic ex-

plosive episodes in a high-dimensional, non-stationary environment. This model is

designed to address non-causal dynamics within non-stationary factors, but it is not

restricted to the non-stationary setting. The paper explores the theoretical properties

of the model and develops a method to estimate the unknown parameters, with a fo-

cus on the parameter of the non-causal model driving the potential common extreme

events. Unlike existing models for common bubbles, the proposed approach is specif-
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ically designed for non-stationary processes and high-dimensional settings, enabling

the detection and modeling of both common and idiosyncratic bubbles. The empiri-

cal application demonstrates that this method can reliably forecast during periods of

high uncertainty, such as common explosive episodes, and serves as an effective tool

in testing for the emergence of common bubbles.
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A Proofs

Proof of Proposition 1

First of all we check what happens if we take the first differences of our stochastic

trend. We have:

∆µi,t = βiεi,t−s.

Then if we consider the bubble component:

ϕi(L)ψi(L
−1)∆zi,t = ∆εi,t.

The first difference of the considered explosive common factor will be,

Φi(L)∆ft = ϕi(L)βiεi,t−s + ψi(L
−1)−1∆εi,t,

with Φi(L) a 1×r causal polynomial vector that drives dependence across factors.

Then, stacking these processes in a matrix we get,

Φ(L)∆ft = C(L)εt,

withCi(L) the i-th row ofC(L) is such thatCi(L) = ϕi(L)βiL
s+ψi(L

−1)−1(1−L)
if the i-th factor is an explosive factor. Then,

∆ft = Φ(L)−1C(L)εt,

= Γ(L)εt.

The two-sided nature of the infinite sum in Γ(L) is ensured by ψi(L
−1)−1 inside

the polynomial Ci(L).

Proof of Proposition 2

This proof follows the proof of Lemma 1 in Barigozzi et al. (2021), taking into

account the different rate of convergence introduced by the heavy tails of the process

obtained in Lemma 2. Define,
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Σ̂∆y = T−1

T∑
t=1

∆yt∆y′
t, Σ∆y = E

[
∆yt∆y′

t

]
,

respectively the sample covariance matrix of ∆yt and the true covariance matrix.

Moreover define and σ∆
i,j the generic element on the i-th row j-th column of Σ∆y.

Moreover define also,

ζt = Λft, and ∆ζt = Λ∆ft.

Notice that we can express,

Σ∆y
ij = Σ∆ζ + Σ∆v

ij

= λiΣ
∆fλj + Σ∆v

ij .

with λi the i-th row of the loadings matrix, Σ∆f = E
[
∆ft∆f ′

t

]
and Σ∆v

ij =

E
[
∆vi,t∆vj,t

]
.

According to Lemma 2 we have that:

∣∣∣∣∣∣∣∣Σ̂∆y

n
− Σ∆ζ

n

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣Σ̂∆y

n
− Σ∆y

n

∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣Σ̂∆v

n

∣∣∣∣∣∣∣∣
≤ 1

n
max
j

n∑
i=1

∣∣Σ̂∆y
ij − Σ∆y

ij

∣∣+ ν∆v1

n

= Op

(
T−δ)+ c2

n

= Op

(
T−δ)+Op

(
n−1

)
= Op(max

(
T−δ, n−1

))
.

Following Barigozzi et al. (2021) define hi a n-dimensional vector with i-th entry

1 and all the other entries equal to 0. Then we have:

∣∣∣∣∣∣∣∣ h′
i√
n

(
Σ̂∆y − Σ∆ζ

)∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣ h′
i√
n

(
Σ̂∆y − Σ∆y

)∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣ h′
i√
n
Σ∆v

∣∣∣∣∣∣∣∣
≤ 1√

n
max
j

∣∣Σ̂∆y
ij − Σ∆y

ij

∣∣+ ∣∣∣∣∣∣∣∣µ∆v
1√
n

∣∣∣∣∣∣∣∣
= Op

(
max

(
T−δ, n−1/2

))
,

(8)

where we used Lemma 1 for the boundedness of the eigenvalues of Σ∆v. Note also

that:
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∣∣∣∣∣∣∣∣ h′
i√
n
Σ∆v

∣∣∣∣∣∣∣∣ =
√√√√ 1

n

n∑
j=1

(
Σ∆v
ij

)2
=

√√√√ 1

n

n∑
j=1

(
ΛiΣ∆fΛ′

j

)2 ≤ C <∞,

using the boundedness of the loadings and of the eigenvalues of the factors.

For what concerns the convergence of the eigenvalues, defining ν∆fi the i − th

eignenvalue of the matrix Σ∆f using Weyl’s inequality we have for i = 1, ..., r :∣∣∣∣∣∣∣∣ ν̂∆yin − ν∆ζi
n

∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣Σ∆y

n
− Σ∆ζ

n

∣∣∣∣∣∣∣∣ = Op(max
(
T−δ, n−1

))
. (9)

Using the lower bound established for the eigenvalues of Σ∆ζ

n
by Lemma 1 and (9)

we can establish a lower bound also for the r-th eigenvalue of the sample covariance

matrix, that is:

ν̂∆yr
n

≥ c1 +Op(max
(
T−δ, n−1

))
. (10)

If we define N∆ζ and N̂∆y the diagonal matrices of the first r eigenvalues of

respectively Σ∆ζ and Σ∆y. By the previously established bounds we know that N∆ζ

is invertible and that N̂∆y will be invertible with probability 1 as n and T grow to

infinity. Moreover we have that:∣∣∣∣∣∣∣∣(N∆ζ

n

)−1∣∣∣∣∣∣∣∣ = n

λ∆ζr
≤ C,

and, ∣∣∣∣∣∣∣∣(N∆ζ

n

)−1

−
(
N̂∆y

n

)−1∣∣∣∣∣∣∣∣ ≤
√√√√ r∑

i=1

( n

ν∆ζi
− n

ν̂∆yi

)2
≤

r∑
i=1

n

∣∣∣∣ ν̂∆yi − ν∆ζi
ν̂∆yi ν∆ζi

∣∣∣∣
≤

rmaxi
∣∣ν̂∆yi − ν∆ζi

∣∣
n
(
c1 +Op(max

(
T−δ, n−1

))) ,
where in the last line we used the lower bounds from Lemma 2 and (10) for the

eigenvalues of the two matrices. Then:

∣∣∣∣∣∣∣∣(N∆ζ

n

)−1

−
(
N̂∆y

n

)−1∣∣∣∣∣∣∣∣ ≤ Op(max
(
T−δ, n−1

))
.
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Moreover from the identification constraint in Assumption 1.2 we have that Σ∆f

is diagonal with values on the diagonal equal to E
[
∆f 2

it

]
= ν∆ζi /n, finite and bounded

away from zero for i = 1, ..., r. from Lemma 1. Recall also that by Assumption 2 we

have that Λ′Λ/n = Ir for any n ∈ N.

This allows us, using Lemma 1 of an upper and lower bound and Assumption 1.4

of distinct values on the diagonal of Σ∆f , to conclude that also the first r eigenvalues

of the covariance matrix of ∆ζt are distinct such that there are constants kj, kj for

j = 1, ..., r − 1 kj > kj+1 and:

kj ≤
ν∆ζi
n

≤ kj, for j = 1, ..., r..

Moving now to the eigenvectors we have that definingw∆ζ
j and ŵ∆y

j the normalized

eigenvectors corresponding to the j-th largest eigenvalue of respectively Σ∆ζ and

Σ̂∆y we can again use the same approach in Barigozzi et al. (2021), then defining

s = sign(ŵ∆y
j w∆f

j ) and ν∆ζ0 = ∞:

||ŵ∆y
j − sw∆ζ

j || ≤ 23/2
∣∣∣∣Σ̂∆y − Σ∆ζ

∣∣∣∣
min

(
|ν∆ζj−1 − ν∆ζj |, |ν∆ζj+1 − ν∆ζj |

) .
Given the previously established difference between the eigenvalues of Σ∆ζ it is

possible to establish a lower bound for the quantity at the denominator such that:

|ν∆ζj−1 − ν∆ζj | ≥ n
(
kj−1 − kj) > 0

|ν∆ζj+1 − ν∆ζj | ≥ n
(
kj+1 − kj) > 0

Then for the n× r matrices of normalized eigenvectors, respectively of the covari-

ance matrix of ∆y, Ŵ∆y =
(
ŵy

1 , ..., ŵ
y
r

)
and of ∆ζt, W

∆ζ =
(
ŵf

1 , ..., ŵ
f
r

)
. Then

by the previous results defining S a diagonal matrix with sj as j-th element on the

diagonal, such that:

||Ŵ∆y −W∆fS|| ≤

√√√√ r∑
j=1

||ŵ∆y
j − sw∆ζ

j || = Op(max
(
T−δ, n−1

))
.

The estimator for the loadings Λ is defined as,

Λ̂ =
√
nŴ∆y.
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Note that by this definition we have,

∣∣∣∣Λ̂− Λ√
n

∣∣∣∣ = Op(max
(
T−δ, n−1

))
.

We can define λ̂i =
√
nh′

iŴ
∆y and λi =

√
nh′

iW
∆ζ . Note that W∆ζ is the

matrix of normalized eigenvalues of ∆ζ, then Σ∆ζW
∆ζS = W∆ζSM∆ζ . Then we

have,

∣∣∣∣λ̂i − λS
∣∣∣∣ = ∣∣∣∣√nh′

iŴ
∆y −

√
nh′

iW
∆ζS

∣∣∣∣
=

∣∣∣∣∣∣∣∣ h′
i√
n

(
Σ̂∆yŴ

∆y
(
N̂∆y/n

)−1 − Σ∆ζW
∆ζS

(
N∆ζ/n

)−1
)∣∣∣∣∣∣∣∣

≤
∣∣∣∣∣∣∣∣ h′

i√
n

(
Σ̂∆y − Σ∆ζ

)∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣(N∆ζ/n
)−1

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣ h′
i√
n
Σ∆ζ

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣(N̂∆y/n
)−1 −

(
N∆ζ/n

)−1

∣∣∣∣∣∣∣∣
+
∣∣∣∣Ŵ∆y −W∆ζS

∣∣∣∣ ∣∣∣∣∣∣∣∣ h′
i√
n
Σ∆ζ

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣(N∆ζ/n
)−1

∣∣∣∣∣∣∣∣+ op(max(1/
√
n, 1/

√
T )

= Op(max
(
T−δ, n−1

))
.

Now moving to the factors, we define:

f̂t =
(
Λ̂′Λ̂

)−1
Λ̂′ft =

Λ̂′ft
n

.

This implies the final point of the proposition:

1√
T

∣∣∣∣f̂t − Sft
∣∣∣∣ = ∣∣∣∣Λ̂Λ

n
ft − Sft +

Λ̂vt
n

∣∣∣∣
≤

∣∣∣∣Λ̂Λ
n

− S
∣∣∣∣ · ∣∣∣∣ ft√

T

∣∣∣∣+ ∣∣∣∣Λ̂vt
n

∣∣∣∣
= Op

(
max

(
T−δ, n−1/2

))
.

Proof of Theorem 1

We will prove this theorem only for the MAR model with a stochastic trend as

the other specifications are similar and simpler. The proof of this theorem requires a

number of steps. First of all we need uniform invertibility and moments conditions for
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the filter. Then we can focus on the Maximum Likelihood estimation properties. The

proof follows Blasques et al. (2023) in showing consistency of the estimator taking

into account that the filter is applied to an estimate of the underlying process. Recall

that the true process {ft}t∈Z is defined as a MAR(r, s) process with a stochastic trend:

The filtered process can be defined as:

ft = µt + ψ(L−1)−1ϕ(L)−1εt, εt ∼ tν

µt = µt−1 + αεt−s.

Define the unfeasible prediction error:

g̃t(θ) = ft − µ̃t(θ).

By Proposition 2 of Blasques et al. (2023) we know that:

sup
θ∈Θ

∣∣g̃t(θ)− gt(θ)
∣∣ e.a.s.−−−→ 0.

We also know that such a prediction error can be unfolded to obtain, in vector

form:

g̃t+1(θ) =
t−k∑
r=0

A(θ)rC(θ) + A(θ)t−kg̃k(θ) +
t−k∑
r=0

A(θ)rBt+1. (11)

Define now the feasible prediction error:

ĝt(θ) = f̂t − µ̂t(θ),

where f̂t is the first stage estimate of the common factor and µ̂t(θ) is the non-

stationary filter that depends on this estimate. Note that also this process can be

unfolded as:

ĝt+1(θ) =
t−k∑
r=0

A(θ)rC(θ) + A(θ)t−kĝk(θ) +
t−k∑
r=0

A(θ)rB̂t+1, (12)

where the only non zero component of B̂t+1 and Bt+1 are respectively ∆f̃t and

∆ft, with g̃k(θ), ĝk(θ) depending on the initialization that can be treated as constant.

Then:

36



sup
θ∈Θ

∣∣∣∣g̃t+1(θ)− ĝt+1(θ)
∣∣∣∣ ≤ K

t−k∑
r=0

ρr sup
θ∈Θ

∣∣∣∣B̂t+1−Bt+1

∣∣∣∣+Kρt−k sup
θ∈Θ

∣∣∣∣g̃k(θ)− ĝk(θ)
∣∣∣∣.

Now note that by Proposition 2 we have:

∣∣∣∣∆f̂t − S∆ft
∣∣∣∣ = ∣∣∣∣Λ̂Λ

n
∆ft − S∆ft +

Λ̂∆vt
n

∣∣∣∣
≤

∣∣∣∣Λ̂Λ
n

− S
∣∣∣∣ · ∣∣∣∣∆ft

∣∣∣∣+ ∣∣∣∣Λ̂vt
n

∣∣∣∣
= Op

(
max

(
T−δ, n−1/2

))
.

Then as θ −→ ∞ where θ = max
(
T−δ, n−1/2

)
we have:

|∆f̂t −∆ft|
p−→ 0.

This implies that:

sup
θ∈Θ

∣∣∣∣g̃t(θ)− ĝt(θ)
∣∣∣∣ p−→ 0, as δ −→ ∞.

Moreover we have that:

sup
θ∈Θ

∣∣∣∣ĝt(θ)− gt(θ)
∣∣∣∣ p−→ 0, as δ −→ ∞.

Moreover define the residuals based on the prediction errors as:

εt(θ) = ϕ(L)ψ(L−1)gt(θ).

Then we have that:

sup
θ∈Θ

∣∣ε̂t(θ)− εt(θ)
∣∣ p−→ 0, as δ −→ ∞.

This concludes the uniform invertibility section. From Proposition 3 of Blasques

et al. (2023) we have that the under Assumption 1.1:

E|gt(θ)|n <∞.

Now we can follow the approach in Blasques et al. (2022) building on the classical

consistency argument using uniform convergence of the criterion function and the
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identifiable uniqueness of the true parameter vector θi,0. We note first that the log-

likelihood takes the form,

L̂T (θ) =
1

T − k

T−s∑
t=r

l̂t(θ) =
1

T − k

T−s∑
t=r

log f(ψ(L−1)ϕ(L)ĝt(θ)),

where we have k = r+s and l̂t(θ) is the log-likelihood contribution of the observation

at time t and ĝt(θ) = f̂t − µ̂t(θ) as defined before. Recall also:

log f(ε̂t(θ)) = log

(
Γ(ν+1

2
)

Γ(ν
2
)

(
1 +

ε̂t(θ)
2

ν

)− ν+1
2
)
, (13)

and filtered residuals are defined as ε̂t(θ) = ψ(L−1)ϕ(L)ĝt(θ). We further let LT (θ)

denote the log-likelihood with the limit sequence εt(θ),

LT (θ) =
1

T − k

T−s∑
t=r

lt(θ) =
T−s∑
t=r

l(εt(θ),γ).

To prove uniform convergence we note that using the triangle inequality,

sup
θ∈Θ

∣∣L̂T (θ)− L∞(θ)
∣∣ ≤ sup

θ∈Θ

∣∣L̂T (θ)− LT (θ)
∣∣+ sup

θ∈Θ

∣∣LT (θ)− L∞(θ)
∣∣, (14)

with,

sup
θ∈Θ

∣∣L̂T (θ)− LT (θ)
∣∣ ≤ 1

T

T∑
t=1

sup
θ∈Θ

∣∣l̂t(θ)− lt(θ)
∣∣.

Then by the mean value theorem:

l̂t(θ)− lt(θ) =
ν + 1

2

[
log

(
ν + ε̂t(θ)

2
)
− log

(
ν + εt(θ)

2
)]

=
ν + 1

2(ν + ε̃t(θ)2)

(
ε̂t(θ)

2 − εt(θ)
2
)
,

where ε̃ is a point between ε̂ and ε. Since ε̃t(θ)
2 is always positive and we assumed

ν ≥ 1 we have ν+1
2(ν+ε̃t(θ)2)

≤ 1. Hence,

sup
θ∈Θ

∣∣l̂t(θ)− lt(θ)
∣∣ ≤ sup

θ∈Θ

∣∣ε̂t(θ)2 − εt(θ)
2
∣∣.

Since {εt}t∈Z is SE, E log |εt(θ)| < ∞ and supθ∈Θ
∣∣ε̂t(θ) − εt(θ)

∣∣ p−→ 0 by Lemma

TA.17 of Blasques et al. (2017) we have that supθ∈Θ
∣∣ε̂t(θ)2 − εt(θ)

2
∣∣ p−→ 0. This

implies,

sup
θ∈Θ

∣∣l̂t(θ)− lt(θ)
∣∣ p−→ 0.
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For what concerns the second term in (14) we have that {lt(θ)}t∈Z defined as

lt(θ) = log f(εt(θ)) is a stationary and ergodic sequence by Proposition 4.3 Krengel

(1985) being a measurable function of {εt(θ)}t∈Z that is an SE sequence. Moreover:

E sup
θ∈θ

|l(εt(θ), γ)| = E sup
θ∈θ

∣∣∣∣ log(Γ(ν+1
2
)

Γ(ν
2
)

(
1 +

εt(θ)
2

ν

)− ν+1
2
)∣∣∣∣

≤ c0 + E sup
θ∈θ

∣∣∣∣ log((1 + ε(θ)2

ν

)− ν+1
2
)∣∣∣∣

≤ c0 + c1E sup
θ∈θ

∣∣∣∣ log (1 + εt(θ)
2

ν

)∣∣∣∣
= c0 + c1E sup

θ∈θ

∣∣εt(θ)∣∣δ <∞.

for some δ < 1. Then we can apply a uniform law of large numbers such that:

sup
θ∈Θ

∣∣LT (θ)− L∞(θ)
∣∣ p−→ 0, as T −→ ∞. (15)

For what concerns identifiable uniqueness we have follows by noting that L(θ)

exists for every θ ∈ Θ, by C2. To show uniqueness of the maximizer θ0 we need that

for any θ ∈ Θ, θ ̸= θ0 we have L(θ) < L(θ0). We first show that l
(
εt(θ0),γ0) =

l
(
εt(θ),γ) almost surely if and only if θ = θ0. We know that εt(θ0) = εt almost surely

for all t. We also know εt is Student’s t distributed so it has a non-zero density on all

R. Hence it is enough to show that l(h+ ε;γ) = l(ε;γ0) can hold with probability 1

if and only if h = 0 and γ = γ0. By the definition of l(·), for any γ1,γ2, this requires,

log

(
Γ(ν1+1

2
)

Γ(ν1
2
)
√
πν1σ2

1

(
1 +

(x+ h)2

σ2
1ν1

)− ν1+1
2

)
= log

(
Γ(ν2+1

2
)

Γ(ν2
2
)
√
πν2σ2

2

(
1 +

x2

σ2
2ν2

)− ν2+1
2

)
.

for all x ∈ R. Clearly l(h+ ε;γ) = l(ε;γ0) almost surely for all t requires h = 0 and

γ1 = γ2.

We now need to prove that given that θ = (α, ω,Ψ,γ) is such that γ = γ0 we can

conclude that gt(θ) = gt(θ0) = vt almost surely if and only if (α, ω,Ψ) = (α0, ω0,Ψ0).

Suppose this is not the case and that gt(θ) = vt almost surely for some t, than it

must hold for all t ∈ Z. Then we would have,
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gt+1(θ) = gt(θ)− ω − αϕ(L)ψ(L−1)vt−s +∆yt+1

= gt(θ)− vt −
(
ω − ω0

)
− α

∞∑
h=−∞

ρhεt+h + α0εt−s + vt+1

= gt(θ)− vt + ω0 − ω + α0εt−s − α
∞∑

h=−∞

ρhεt+h + vt+1.

Since by hypothesis gt(θ) = vt for all t then we must have,

ω0 − ω = α0εt−s − α
∞∑

h=−∞

ρhεt+h, almost surely for all t.

Now if ω ̸= ω0 it means that the right-hand side must be a non-zero constant.

But the right-hand side expression is a non degenerate function of {εt}t∈Z that is ̸= 0

almost surely for all t for all θ ∈ Θ if α ̸= α0 and Ψ ̸= Ψ0. This means that it must

be that ω = ω0. Then since the right-hand side is non zero with probability one we

can have gt+1(θ) = vt+1 if and only if α = α0 and Ψ ̸= Ψ0.

Now that we showed that l
(
εt(θ0),γ0) = l

(
εt(θ),γ) almost surely if and only if

θ = θ0 we can use an argument on the lines of the one used in Blasques et al. (2022)

using some of the arguments from Breid et al. (1991) to conclude the proof of C3.

We will rely on a mean value expansion around θ0. Recall that unfolding our limit

prediction error process we have:

gt(θ) =
∞∑

i=−∞

γizt, (16)

with zt = δ + ∆yt. Moreover recall ζi the coefficient of the i-th element of the

polynomial ψ(L−1)ϕ(L). Then consider Θ as a compact set satisfying Assumption

1-3 such that:

sup
θ∈Θ

|ζi − ζi,0| ≤ Cϵ

sup
θ∈Θ

|γi| ≤ C|d|i

sup
θ∈Θ

|γi − γ0,i| ≤ Cϵ|d|i

sup
θ∈Θ

|δ − δ0| ≤ Cϵ,
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with |d| < 1. This allows us to conclude that:

sup
θ∈Θ

∣∣gt(θ)− gt(θ0)
∣∣ ≤ ∞∑

i=−∞

sup
θ∈Θ

∣∣γi − γ0,i
∣∣ · (∣∣∆yt∣∣+ ∣∣δ0∣∣)+ ∞∑

i=−∞

sup
θ∈Θ

∣∣γi∣∣ · sup
θ∈Θ

∣∣δ − δ0
∣∣

≤ ϵ
(
C0 + C1

∞∑
i=−∞

|d|i
∣∣zt∣∣)

sup
θ∈Θ

∣∣εt(θ)− εt(θ0)
∣∣ = sup

θ∈Θ

∣∣ϕ(L)ψ(L−1)gt(θ)− ϕ0(L)ψ0(L
−1)gt(θ0)

∣∣
≤ ϵ

(
C0 + C1

k∑
i=1

∣∣gt−i(θ0)
∣∣+ C2

∞∑
i=−∞

|d|i
∣∣zt∣∣).

Moreover following Breid et al. (1991) we can write:

εt(θ) = εt(θ) + εt(θ0)− εt(θ0),

with:

εt(θ0)− ϵKt ≤ εt(θ) ≤ εt(θ0) + ϵKt.

Note that the second derivatives of the log likelihood function, avoiding the repe-

titions in the cross derivatives, will be:

∂l2(ε(θ∗))

∂θi∂θj
=



∂2εt(θ)
∂ϕi∂ϕj

h(εt(θ)) +
∂εt(θ)
∂ϕi

∂εt(θ)
∂ϕj

h′(εt(θ))

∂2εt(θ)
∂ϕi∂ψj

h(εt(θ)) +
∂εt(θ)
∂ϕi

∂εt(θ)
∂ψj

h′(εt(θ))

∂2εt(θ)
∂Πi∂Πj

h(εt(θ)) +
∂εt(θ)
∂Πi

∂εt(θ)
∂Πj

h′(εt(θ))

∂2εt(θ)
∂Πi∂ϕj

h(εt(θ)) +
∂εt(θ)
∂Πi

∂εt(θ)
∂ϕj

h′(εt(θ))

∂εt(θ)
∂Ψi

h(εt(θ)) + σ−1 ∂εt(θ)
∂Ψi

h′(εt(θ))

σ−1εt(θ)h(εt(θ)) + σ−2εt(θ)
2h′(εt(θ)) + 1.

Note that similarly to what has been done at the beginning of the Proof for

Theorem 1 for the filtered prediction error, all the first and second derivatives of

εt(θ) can be written as unfoldable and converging SREs. Unfolding these expression

it is possible to show these expressions as infinite sums of the underlying zt as in (16)

with the same sequence of coefficients {γi}t∈Z.

41



Then we have:

sup
θ∈Θ

∣∣∣∣∂εt(θ)∂θi
− ∂εt(θ0)

∂θi

∣∣∣∣ ≤ ϵCZt

sup
θ∈Θ

∣∣∣∣∂2εt(θ)∂θi∂θj
− ∂2εt(θ0)

∂θi∂θj

∣∣∣∣ ≤ ϵCZt,

where Zt is such that E|Zt|n < ∞ with n such that E|εt|n < ∞. Now that we

defined bounds on these given quantities we can use the same approach as Breid et al.

(1991) to conclude the proof. Here we define a mean value expansion in θ0 of our

expected likelihood difference.

E
[
l(εt(θ),θ)− l(εt(θ0),θ0)

]
= E

[ k∑
i=1

∂l(ε(θ0)

∂θi

(
θi − θi,0) +

k∑
i=1

k∑
j=1

∂l2(ε(θ0)

∂θi∂θj

(
θi − θi,0

)(
θj − θj,0

)
+

k∑
i=1

k∑
j=1

(
∂l2(ε(θ∗))

∂θi∂θj
− ∂l2(ε(θ0)

∂θi∂θj

)(
θi − θi,0

)(
θj − θj,0

)]
.

(17)

From now on we will provide an argument for the derivative taken with respect

to i ≤ r but the same argument holds for the non-causal part. Note that using

εt(θ0) = εt we have:

E
[
∂l(ε(θ0))

∂θi

(
θi − θi,0)

]
= E

[
E
[
∂l(ε(θ0))

∂θi

(
θi − θi,0)

∣∣∣∣Ft−1

]]
= 0.

For what concerns the third term we have:

E
[ k∑
i=1

k∑
j=1

∂l2(εt(θ0)

∂θi∂θj

(
θi − θi,0

)(
θj − θj,0

)]
= −

(
θi − θi,0

)′I(θ0)
(
θi − θi,0

)
.

Finally for the last term we can apply a similar reasoning as what it is done in

Breid et al. (1991). We have:
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E sup
θ

∣∣∣∣∂εt(θ∗)

∂ϕi

∂εt(θ
∗)

∂ϕj
h′(εt(θ

∗)) +
∂2εt(θ

∗)

∂ϕi∂ϕj
h(εt(θ

∗))

− ∂εt(θ0)

∂ϕi

∂εt(θ0)

∂ϕj
h′(εt(θ0))−

∂2εt(θ0)

∂ϕi∂ϕj
h(εt(θ0))

∣∣∣∣
≤E sup

θ

∣∣∣∣∂εt(θ∗)

∂ϕi

∂εt(θ0)

∂ϕj
h′(εt(θ0))−

∂εt(θ0)

∂ϕi

∂εt(θ0)

∂ϕj
h′(εt(θ0))

∣∣∣∣
+ E sup

θ

∣∣∣∣∂εt(θ∗)

∂ϕi

∂εt(θ
∗)

∂ϕj
h′(εt(θ0))−

∂εt(θ
∗)

∂ϕi

∂εt(θ0)

∂ϕj
h′(εt(θ0))

∣∣∣∣
+ E sup

θ

∣∣∣∣∂εt(θ∗)

∂ϕi

∂εt(θ
∗)

∂ϕj
h′(εt(θ

∗))− ∂εt(θ
∗)

∂ϕi

∂εt(θ
∗)

∂ϕj
h′(εt(θ0))

∣∣∣∣
+ E sup

θ

∣∣∣∣∂2εt(θ∗)

∂ϕi∂ϕj
h(εt(θ0))−

∂2εt(θ0)

∂ϕi∂ϕj
h(εt(θ0))

∣∣∣∣
+ E sup

θ

∣∣∣∣∂2εt(θ∗)

∂ϕi∂ϕj
h(εt(θ

∗))− ∂2εt(θ
∗)

∂ϕi∂ϕj
h(εt(θ0))

∣∣∣∣
= c1 + c2 + c3 + c4 + c5.

Then,

c1 ≤ ϵCE
∣∣Zt∂εt(θ0)

∂ϕj
h′(εt(θ0))

∣∣ −→ 0, as ϵ −→ 0.

Note that E
∣∣Zt ∂εt(θ0)∂ϕj

h′(εt(θ0))
∣∣ <∞ as ∂εt(θ0)

∂ϕj
and h′(εt(θ0)) are independent and

it is possible to split the infinite past and future elements in Zt such that all the

elements in the expectation are bounded by E|εt|2 <∞.

By a similar argument also c2 −→ 0 as ϵ −→ 0. Moreover as in Breid et al. (1991) we

can split,

h′(x) = h1(x)− h2(x),

with hi(·) non-decreasing functions such that:

hi(x) = O(|x|k), as |x| −→ ∞

with k such that E|εt|2+k < ∞. Note also that the same operation is possible for

h(x). With this definition we can define:
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Xi,t =



hi

(
εt(θ0)−εCKt

σ0−ϵ

)
− hi

(
εt(θ0)+εCKt

σ0+ϵ

)
, if εt(θ0) + εCKt¿0

hi

(
εt(θ0)−εCKt

σ0+ϵ

)
− hi

(
εt(θ0)+εCKt

σ0−ϵ

)
, if εt(θ0) + εCKt¡0

hi

(
εt(θ0)−εCKt

σ0−ϵ

)
− hi

(
εt(θ0)+εCKt

σ0−ϵ

)
, otherwise.

Then we can bound:

E sup
θ∈Θ

c3 ≤ E sup
θ∈Θ

∂εt(θ
∗)

∂ϕi

∂εt(θ
∗)

∂ϕj

(
X1,t +X2,t

)
.

Using the moment bounds it is possible to show that this expected value is finite,

then by dominated convergence we have that c3 −→ 0 as ε −→ 0. We can apply the

same approach to c4 and c5 so that we showed that the difference between the second

derivatives in the last term of (17) goes to zero with ϵ for i, j ≤ k. The reasoning

is similar for other elements of the second derivative of the score as argued in Breid

et al. (1991), hence we have that:

E
[ k∑
i=1

k∑
j=1

(
∂l2(ε(θ∗))

∂θi∂θj
− ∂l2(ε(θ0))

∂θi∂θj

)(
θi − θi,0

)(
θj − θj,0

)]
−→ 0, for ϵ −→ 0.

so that there is a ε > 0 such that for all θ ∈ Θ such that θ ̸= θ0 we have:

L(θ)− L(θ0) = E
[
l(εt(θ),γ)− l(εt(θ0),γ0)

]
< 0.

Moreover assumption 2 ensures that θ is a compact set and the uniform conver-

gence result showed in part i) implies the continuity of the limit criterion function

L(θ). These two results combined with the uniqueness of the maximizer imply the

result. □

B Lemmas

Lemma 1 Define ν∆yi , ν∆ζi , ν∆vi the i-th eigenvalue of the covariance matrices of re-

spectively the first differences processes ∆yt,∆ζt = Λ∆ft and ∆vt. Then:

1. 0 < c1 ≤
ν∆ζ
i

n
≤ c1 <∞, for i = 1, ..., r and n ≥ n.

2. ν∆v1 ≤ c2 <∞.
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3. c3 ≤
ν∆y
j

n
≤ c3 for i = 1, ..., r and n ≥ n and ν∆yr+1 ≤ c4 <∞ for all n ∈ N.

Proof

The proof of this Lemma follows the proof of Lemma D.2 in Barigozzi et al. (2021).

Define Σ∆f = E
[
∆ft∆f ′

t

]
, Σ∆ζ = E

[
∆ζt∆ζ ′

t

]
, Σ∆v = E

[
∆vt∆v′

t

]
and Σ∆y =

E
[
∆yt∆y′

t

]
.

1)Note that we can write Σ∆f = Q∆fN∆fQ∆f ′ withN∆f the matrix of eigenvalues

and Q∆f the r × r matrix of normalized eigenvectors. We can also define a matrix

n × r as L = ΛQ∆f
(
N∆f

)1/2
. Under Assumption 2 we have that there is an n big

enough such that for all n > n we have:

L′L

n
= N∆f , (18)

as we have Λ′Λ/n = Ir while Q
∆f ′Q∆f = Ir by definition. Now by Assumption 1

we have that all eigenvalues of Σ∆f are finite and positive, in other words:

0 < c1 ≤ ν
∆f

i ≤ c1 <∞. (19)

Then for all n > n:

Σ∆ζ

n
=

Λ
′
Σ∆fΛ

n
=

Λ
′
Q∆fN∆fQ∆f ′Λ

n
=
LL′

n
.

Then the non-zero eigenvalues of the covariance matrix of
Σ∆ζ

n
are the same as the

ones of Σ∆f by (18). Then the lemma follows by (19).

2) Note that we can write in vector form the model for the idiosyncratic processes

in 6 as:

∆vt =
∞∑

h=−∞

Chηi,t+h.

Then,

ν∆v1 =
∣∣∣∣Σ∆v

∣∣∣∣ ≤ ∞∑
h=−∞

∣∣∣∣Ch∣∣∣∣2∣∣∣∣Ση
∣∣∣∣.

Under Assumption 3.3 we have that:
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sup
i=1,...,n

∞∑
h=−∞

ψ2
ih ≤ K.

Moreover we have that by 3.2:

1

n

n∑
j,i=1

∣∣E[ηitηjt]∣∣ ≤ max
j

n∑
i=1

∣∣E[ηitηjt]∣∣ = ∣∣∣∣Ση
∣∣∣∣

1
≤M.

The Lemma statement follows from the inequality
∣∣∣∣Ση

∣∣∣∣ ≤ ∣∣∣∣Ση
∣∣∣∣
1
, such that,

ν∆v1 ≤
∞∑

h=−∞

∣∣∣∣Ch∣∣∣∣2∣∣∣∣Ση
∣∣∣∣ ≤ K

∣∣∣∣Ση
∣∣∣∣
1
≤ KM = c2.

3) To prove the final part note that under the independence assumption between

the innovations of the common factors and of the idiosyncratic components (Assump-

tion 3.4) we have,

Σ∆y = Σ∆ζ + Σ∆v.

Then using Weyl’s inequality and the previous results we have that for n ≥ n, for

j = 1, ..., r we have an upper bound:

ν∆yi
n

≤ ν∆ζi
n

+
ν∆v1

n
≤ c1 +

ν∆v1

n
≤ c1 +

c2
n
,

and a lower bound,

ν∆yi
n

≥ ν∆ζi
n

+
ν∆vn
n

≥ c1 +
ν∆vn
n

≥ c1.

On the other hand for j = r + 1 we have that rank(Σ∆ζ) = r, then:

ν∆yr+1 ≤ ν∆ζr+1 + ν∆v1 ≤ ν∆v1 ≤ c2.

Lemma 2 Define Σ̂∆y
ij the generic element on the i−th row, j−th column of Σ̂∆y the

sample covariance matrix of ∆yt, then we have:∣∣Σ̂∆y
ij − Σ∆y

ij

∣∣ = Op

(
T−δ), for δ ∈ (0, 1/2]
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Proof The proof of this lemma follows the proof of Lemma D.3 in Barigozzi

et al. (2021), using the fact that the convergence of the covariance of infinite MA

processes with regularly varying tail distributions has a known convergence rate by

Davis and Resnick (1986). Under Assumption 1.2 we can represent the process ∆ft

as the infinite two sided MA process:

∆ft =
∞∑

h=−∞

Γhεt+h,

with ||Γh|| decaying at a geometric rate as h −→ ∞. Then we have,

E
[
∆ft∆f ′

t

]
= E

[( ∞∑
h=−∞

Γhεt+h

)( ∞∑
h=−∞

Γhεt+h

)′]

=
∞∑

h=−∞

ΓhE
[
εtε

′
t

]
Γ′
h

=
∞∑

h=−∞

ΓhΓ
′
h = Σf ,

where we used 1 for the independence over time of the innovations of the common

factors, the fact that E
[
εtε

′
t

]
= Ir and the square summability of the coefficient

matrices, then Σf is well defined. Now we have,

∣∣∣∣Σ̂∆f − Σ∆f

∣∣∣∣ ≤ max
j

r∑
i=1

∣∣Σ̂∆f
ij − Σ∆f

ij

∣∣.
Note that for i ̸= j we have:

(
Σ̂∆f
ij − Σ∆f

ij

)2
=

1

T 2

T∑
t,s

(
∆fj,t∆fi,t − Σ∆f

ij

)(
∆fj,s∆fi,s − Σ∆f

ij

)
=

1

T 2

T∑
t,s

(
∆fj,t∆fi,t∆fj,s∆fi,s −

(
Σ∆f
ij

)2)
=

1

T 2

T∑
t,s

q∑
d,d′,l,l′

( ∞∑
h,m,n,r=−∞

ζjd,hζid′,mζjl,nζil′,rεd,t+hεd′,t+mεl,s+nεl′,s+r

)
,
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as by Assumption 1.4, Σ∆f is a diagonal matrix. Then,

1

T 2

T∑
t,s

q∑
d,d′,l,l′

( ∞∑
h,m,n,r=−∞

ζjd,hζid′,mζjl,nζil′,rεd,t+hεd′,t+mεl,s+nεl′,s+r

)

=
1

T 2

T∑
t=1

q∑
d=1

( ∞∑
h=−∞

∞∑
r=−∞

ζjd,hζid,hζjd,rζid,rε
4
d,t+h

)

+
1

T 2

T∑
t=1

q∑
d,l=1

( ∞∑
h=−∞

∞∑
m=−∞

∞∑
r=−∞

ζjd,hζid,hζjd,mζil,rε
3
d,t+hεl,t+r

)

+
1

T 2

T∑
t=1

q∑
d,l=1

( ∞∑
h,m,r,s=−∞

ζjd,hζjd,mζil,rζil,sε
2
d,t+hε

2
l,t+r

)

+
1

T 2

T∑
t=1

q∑
d,l=1

( ∞∑
h,m,r,s=−∞

ζjd,hζid,mζjl,rζil,sε
2
d,t+hε

2
l,t+r

)

+
1

T 2

T∑
t,s=1

q∑
d,l=1

( ∞∑
h=−∞

∞∑
r=−∞

ζjd,hζid,hζjl,rζil,rε
2
d,t+hε

2
l,s+r

)

+
1

T 2

T∑
t,s

q∑
d̸=d′ ̸=l ̸=l′

( ∞∑
h,r,m,n=−∞

ζjd,hζid′,pζjd,qζid′,rεd,t+hεd′,t+mεd,s+nεd′,s+r

)
+G

= A+B + C +D + E + F +G,

with H a remainder component of combinations of terms that go to zero by inde-

pendence between the errors. Note that,

E
[
∆fit∆fjt

]
= E

[ q∑
d,l

∞∑
h,k

ζid,hζjl,kεd,t−hεl,t−k

]

= E
[ q∑
d=1

∞∑
h=−∞

ζid,hζjd,hε
2
d,t−h

]

=

q∑
d=1

∞∑
h=−∞

ζid,hζjd,hE
[
ε2d,t−h

]
=

q∑
d=1

∞∑
h=−∞

ζid,hζjd,h = 0,

due to Assumption 2.2, for all i, j = 1, ..., r. This means that ζid,hζjd,h = 0 for all
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i, j = 1, ..., r, d = 1, ..., q, h = −∞,∞.

1

T 2

T∑
t=1

q∑
d=1

( ∞∑
h=−∞

∞∑
r=−∞

ζjd,hζid,hζjd,rζid,rε
4
d,t+h

)
= 0,

that is A = 0. If ∆fit and ∆fjt would depend by the same underlying shock, then

Σ∆f
ij would not be diagonal. Note also that,

1

T 2

T∑
t,s=1

q∑
d,l=1

( ∞∑
h=−∞

∞∑
m=−∞

∞∑
r=−∞

ζjd,hζid,hζjd,mζil,rε
3
d,t+hεl,s+r

)
= 0

1

T 2

T∑
t=1,s ̸=t

q∑
d,l=1

( ∞∑
h=−∞

∞∑
r=−∞

ζjd,hζid,hζjl,rζil,rε
2
d,t+hε

2
l,s+r

)
= 0,

for the same reason. For the rest of the proof we can start from the remainder

term, since εi,t is an i.i.d sequence with a bounded second moment and independent

from εj,s for all j ̸= i and all s then we have that:

1

T 2

T∑
t,s

q∑
d,d′

( ∞∑
h,r=−∞

∑
m ̸=q,n̸=p

ζjd,hζid′,pζjd,qζid′,rεd,t+hεd′,t+mεd,s+nεd′,s+r

)
p−→ 0.

Then we have that F = op(1). The same holds for component G. For the same

reasoning, using the square summability of the coefficients of the inifinite MA repre-

sentation of the process we have that:

1

T

T∑
t=1

q∑
d,l=1

( ∞∑
h,m,r,s=−∞

ζjd,hζjd,mζil,rζil,sε
2
d,t+hε

2
l,t+r

)
p−→ q2KE

[
ε2d,t]E

[
ε2l,t] =M <∞.

Then we have that C = Op(1/T ) and the same is true for D. Then for i ̸= j∣∣Σ̂∆f
ij −Σ∆f

ij

∣∣ = Op

(
1/
√
T
)
. These passages are simplified without taking into account

the sum of the q errors, as the convergence results does not change. Now we take

into account the terms such that i = j. We know that by Theorem 2.2 in Davis and

Resnick (1986) under Assumption 1.1, we have:

T

a2T

(
Σ̂∆f
ii − Σ∆f

ii

) d−→
(
S − α

α− 2

)∣∣∣∣ ∞∑
h=−∞

ζ2h

∣∣∣∣α/2,
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where S is a stable random variable with index α/2 and aT is a regularly varying

sequence with index 1/α. This means that:

P

(
T

a2T

∣∣Σ̂∆f
ii − Σ∆f

ii

∣∣ > x

)
= x−α/2L(x).

and aT = T 1/αL(T ), with L(·) a slowly varying function. Then
∣∣Σ̂∆f

ii − Σ∆f
ii

∣∣ ≈
Op

(
T− 2−α

α

)
. This means that:

∣∣∣∣Σ̂∆f − Σ∆f

∣∣∣∣ = Op

(
T−δ), with 0 < δ ≤ 1/2 defined as δ ≤ (2− α)/α.

In a similar way we have that Σ∆v is well defined, moreover defining Σ∆v
ij its i, j-th

element, we have:

E
∣∣∣∣∣∣∣∣T−1

T∑
t=1

∆vi,t∆vj,t − Σ∆v
ij

∣∣∣∣∣∣∣∣2
≤ 1

T 2

r∑
i,j=1

E
[ ∞∑
t,s=1

(
∆vi,t∆vj,t − Σ∆v

ij

)(
∆vi,s∆vj,s − Σ∆v

ij

)]

≤ 1

T 2
E
[ ∞∑
t,s=1

(
∆vi,t∆vj,t∆vi,s∆vj,s −

(
Σ∆v
ij

)2)]
.

Now recalling that ∆vi,t =
∑∞

h=−∞ ξi,hηi,t+h, we have:

∞∑
s,t=1

E
[
∆vi,t∆vj,t∆vi,s∆vj,s

]
=

∞∑
s,t=1

∞∑
h,m,n,q=−∞

E
[
ξi,hηi,t+hξj,mηj,t+mξi,nηi,s+nξj,qηi,s+q

]
≤ K4

∞∑
s,t=1

E
[
ηi,tηj,tηi,sηi,s

]
= K4

∞∑
s,t=1

(
E
[
η2i,tη

2
j,t

]
+ E

[
η4i,t

]
+ E

[
η2i,t]E

[
η2j,t

]])
.

Then:

E
∣∣∣∣∣∣∣∣T−1

T∑
t=1

∆vi,t∆vj,t − Σ∆v
ij

∣∣∣∣∣∣∣∣2 ≤ K4

T 2

∞∑
t,s=1

E
[
η2i,tη

2
j,t

]
+
K4

T 2

∞∑
t,s=1

E
[
η4i,t

]
− K4

T 2

∞∑
t,s=1

E
[
η2i,t

]2
≤ K4

T 2

∞∑
t,s=1

E
[
η2i,t+hη

2
j,t+h

]
≤ cK4

T
= O

( 1
T

)
,
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where we used the Assumption 1 of the independence of the innovation of the id-

iosyncratic components, the existence of their fourth moment and the square summa-

bility of the coefficients. Combining the previous results and the fact that we have

bounded loadings we have that:

∣∣Σ̂∆y
ij − Σ∆y

ij

∣∣ = Op

(
T−δ),

uniformly over i, j.

C Testing Procedure for Multimodal Predictive

Densities

We use the Brier score, from Brier (1950), is computed as,

BS =
T∑
t=1

(pt − ot)
2,

where pt is the probability of our event and ot is the realization of that event (1 if it

happens, 0 otherwise). The range of this score is between 0 and 1. We now consider

the multicategory Brier score defined as,

BS =
1

T

T∑
t=1

R∑
r=1

(pt,r − ot,r)
2,

where the r represents the different events and they must be such that
∑R

r=1 pt,r = 1

for all t and ot,r = 1 only for one r and it is 0 for the others. The range of this score

is between 0 and 2. This multicategory score allows us to compare interval forecast.

Since we are interested in prediction during a bubble (so we want to correctly address

sharp increases and crashes) we consider as category movements that are within or

outside the range of one standard deviation of a baseline Gaussian random walk. Our

categories will then be,

pt,r =


1∆yt<−σrw if r = 1

1|∆yt|<σrw if r = 2

1∆yt>σrw if r = 3.

(20)
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With these scores we can create a Diebold Mariano test statistic. The test statistic

for the multicategory Brier score will be,

dt =
R∑
r=1

(pm,rt − om,rt)
2 −

R∑
r=1

(pi,rt − oi,rt)
2

DM =
√
T
d

σd
.

where σd =
√
γ̂(0) + 2

∑k
i=1wiγ̂(i), with k is of the same order as the square root of

the test sample size and wi = 1− i/k.
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D Simulation Plots

(a) Single stationary explosive common fac-

tor.

(b) Single non-stationary explosive common

factor.

Figure 7: Example of simulated samples from a data generating process with a single

common factor.

(a) Stationary explosive common factor. (b) Non-stationary explosive common factor.

Figure 8: Example of simulated samples from a data generating process with two common

factors, one of the two with explosive dynamics and the other as a random walk.
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E Application Plots

(a) Growth of the Bubble (b) Predictive densities comparison

(c) Crash of the Bubble (d) Predictive densities comparison

Figure 9: The figure shows the situation a we face at time T , going respectively into the

peak and the crash at time T + 1. The predictive density of the MAR model will correctly

assess that the process is experiencing a bubble and that there will be a crash.

54


	Introduction
	The Model
	Parameter Estimation
	Simulation Study
	Application
	Conclusions
	Proofs
	Lemmas
	Testing Procedure for Multimodal Predictive Densities
	Simulation Plots
	Application Plots

