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Abstract
We propose a robust semi-parametric framework for persistent time-varying extreme
tail behavior, including extreme Value-at-Risk (VaR) and Expected Shortfall (ES). The
framework builds on Extreme Value Theory and uses a conditional version of the Gen-
eralized Pareto Distribution (GPD) for peaks-over-threshold (POT) dynamics. Unlike
earlier approaches, our model (i) has unit root-like, i.e., integrated autoregressive dy-
namics for the GPD tail shape, and (ii) re-scales POTs by their thresholds to obtain a
more parsimonious model with only one time-varying parameter to describe the entire
tail. We establish parameter regions for stationarity, ergodicity, and invertibility for
the integrated time-varying parameter model and its filter, and formulate conditions
for consistency and asymptotic normality of the maximum likelihood estimator. Using
four exchange rate series, we illustrate how the new model captures the dynamics of
extreme VaR and ES.

Keywords: dynamic tail risk, integrated score-driven models, extreme value theory.

JEL classification: C22, G11.
∗Author information: Enzo D’Innocenzo, University of Bologna, Department of Economics, Piazza

Antonio Scaravilli 2, 40122 Bologna, Italy, enzo.dinnocenzo2@unibo.it. André Lucas, Vrije Univer-
siteit Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands, a.lucas@vu.nl. Bernd
Schwaab, Financial Research, European Central Bank, Sonnemannstrasse 22, 60314 Frankfurt, Germany,
bernd.schwaab@ecb.europa.eu. Xin Zhang, Research Division, Sveriges Riksbank, SE 103 37 Stockholm,
Sweden, xin.zhang@riksbank.se. We thank Alessandro Tenderini for excellent research assistance. The
views expressed in this paper are those of the authors and do not necessarily reflect the views or policies of
the European Central Bank or Sveriges Riksbank.

1



1 Introduction

For reliable inference on extreme tail behavior, Extreme Value Theory (EVT) is statistics’

favorite approach. It allows the researcher to infer the distribution’s extreme tail scale,

shape, quantiles, and expectiles by focusing only on the tail area and abstracting from

the density’s center; see, for example, Balkema and de Haan (1974), Pickands (1975), Hill

(1975), and Davidson and Smith (1990) for early key contributions, Embrechts et al. (1997),

Coles (2001), de Haan and Ferreira (2006), and McNeil et al. (2010, Ch. 7) for textbook

treatments, and Rocco (2014) for a survey. The key insights of EVT have by now been

extended from the i.i.d. cross-sectional setting to time series applications; see, for example,

Chavez-Demoulin et al. (2005), Chavez-Demoulin and Embrechts (2010), Einmahl et al.

(2016), Hoga (2017), Massacci (2017), de Haan and Zhou (2021), and D’Innocenzo et al.

(2024). This is particularly useful if EVT is applied for risk and capital buffer determination

in finance and economics, for instance, for the calculation of a predictive density’s 99.9%

Value-at-Risk (VaR) or Expected Shortfall (ES). Such measures may change rapidly under

changing market circumstances and distress.

This paper concentrates on modeling the time variation in the extreme tails of conditional

loss distributions. Thus far, models for the dynamics of extreme tail behavior have had

to deal with at least three major challenges: First, time variation in tail behavior requires

dynamic models for the tail’s starting point, its shape, and its scale, all of which are important

ingredients for the computation of high distribution quantiles. A joint dynamic model for all

these three ingredients quickly becomes quite complex, however, and one would benefit from

an approach that reduces the number of time-varying parameters to be modeled. Second,

a model for the dynamics of extreme tail behavior should ideally only concentrate on the

distribution’s tail area and avoid making assumptions about the behavior of the center of

the distribution. Finally, empirical estimates of continuously changing tail shapes typically

indicate that such time variation is a highly persistent phenomenon (see, e.g., Massacci,
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2017; de Haan and Zhou, 2021; D’Innocenzo et al., 2024) with autoregressive dynamics that

often have (near) ‘unit root’ like behavior. This finding seems at odds with the typical

stationarity or mean-reverting assumptions made in the same papers. Thus far, a theory

for so-called ‘integrated’ models for tail risk dynamics seems to be lacking. Though results

are available for integrated volatility models (such as iGARCH, see e.g. Li et al., 2018

and Francq and Zakoian, 2019) and particular location models (Blasques et al., 2022), no

results are available for the behavior of integrated models for shape parameters. In such a

challenging setting, it is natural to ask: can time variation in a time series’ extreme tail still

be estimated consistently? Can VaR and ES at high confidence levels be estimated simply

and reliably? And does standard likelihood inference still apply or is it affected if tail shape

dynamics are highly persistent, i.e., integrated? Despite its practical relevance for fields such

as financial economics and actuarial sciences as well as its theoretical importance, a tractable

comprehensive framework to address such first-order questions is currently missing.

It is here that the current paper makes its main contribution. We propose a novel robust,

semi-parametric, and dynamic framework with ‘integrated’ (i.e., persistent) time variation

in tail fatness for long univariate time series. The framework builds on results from the EVT

literature and uses a conditional Generalized Pareto Distribution (GPD) to approximate

the tail beyond a given threshold. The time-varying tail shape in our model is driven by

the score of the GPD density; see Creal et al. (2013) and Harvey (2013). As a result, the

model is observation-driven in the terminology of Cox (1981) and its time-varying parameter

is perfectly predictable one step ahead. In addition, the log-likelihood function is known

in closed form and allows for parameter estimation and inference via standard maximum

likelihood methods. Score-driven dynamics are known to be optimal in the sense of Blasques

et al. (2015).

Our approach is different from previous EVT studies (including D’Innocenzo et al., 2024)

in at least two important ways. First, we do not apply the limiting GPD result from EVT

to the peaks-over-thresholds (POTs), but to scaled POTs, where the scaling is done by the
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threshold value. This stands in sharp contrast to – virtually all – earlier applications that

typically focus on unscaled POTs (see, for example, McNeil et al., 2010, Ch. 7, Christoffersen,

2012, Ch. 6, Andersen et al., 2013, Hoga (2017), and Massacci, 2017). The use of scaled POTs

has been remarkably under-explored in risk management, yet has an important advantage:

the limiting GPD approximation is now characterized by a single shape parameter and no

longer needs both a tail shape and tail scale parameter. The resulting statistical model is

parsimonious and much simpler to study theoretically and empirically.

Second, our model deviates from previous approaches in that we consider an integrated

score-driven filtering equation for the time-varying shape parameter. Empirically, when

studying for instance daily or intra-daily financial data, estimates of the autoregressive pa-

rameter for the tail shape dynamics are often indistinguishably close to unity, implying

highly persistent dynamics (see, e.g., Massacci (2017) and D’Innocenzo et al., 2024). We

study the asymptotic properties of such an integrated model in detail, including stationar-

ity and ergodicity properties of the model and the filter, and consistency and asymptotic

normality of the model’s static parameters. This extends the work on integrated models

for higher-order moments from the volatility case (for instance, Jensen and Rahbek, 2004;

Francq and Zakoïan, 2012; Francq and Zakoian, 2019) to the EVT setting.

To obtain the time-varying thresholds for scaling, we adapt the recent approach of Patton

et al. (2019), which elicits VaR and ES simultaneously in a semi-parametric way, concen-

trating only on tail observations and not making assumptions about the center of the dis-

tribution. The method is therefore extremely useful for estimating threshold values less far

out in the tails, such as at 90% or 95% confidence levels. The method faces more challenges

for more extreme quantiles. It is here that our dynamic EVT-based GPD approximation

perfectly complements the approach of Patton et al. (2019), as our approach is precisely

geared towards modeling the extreme tail quantiles.

We obtain two theoretical results. First, we show that under mild regularity conditions

the tail shape parameter and the data are asymptotically stationary and ergodic. Moreover,
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we characterize the invertibility region for the tail shape filter. Interestingly, while the tail

shape parameter has integrated dynamics and no finite unconditional mean to revert to,

the ratio of the true and the estimated tail shape parameter is well-behaved, asymptotically

stationary and ergodic, and has a finite unconditional first moment. We also show that the

intercept in the DGP for the time-varying tail shape needs to be strictly positive to rule out

degenerate limiting behavior of the tail shape. Second, we show that the maximum likeli-

hood estimator for the model’s static parameters is strongly consistent and asymptotically

normally distributed under mild regularity conditions, despite the integrated dynamics. We

confirm the theoretical findings in simulation experiments.

We illustrate the model using several exchange rate examples. First, we consider daily

log-returns for the Euro (EUR) and Russian Ruble (RUB) viz-a-viz the U.S. dollar (USD).

The adverse right tail is the relevant tail for any firm such as a typical financial intermedi-

ary, which obtains revenues or holds assets in local currency and has financed its operations,

at least in part, through foreign currency (USD) liabilities. We find that both tail shape

parameters vary significantly over time, taking values between approximately 0.2 and 0.5

for EUR/USD and between approximately 0.2 and 1.3 for RUB/USD. These values imply

a maximum number of conditional moments in the range 2–5 for EUR/USD, and 0.8–5

for RUB/USD. Market risk estimates for EUR/USD, such as VaR and ES at a 99% con-

fidence level, spike during the global financial crisis between 2008 and 2009 and the euro

area sovereign debt crisis between 2010 and 2012. By contrast, market risk estimates for

RUB/USD increase markedly following Russia’s war of aggression against Ukraine starting

in 2014 and 2022. These are higher than the increases after the outbreak of Covid-19 in

2020, but lower than those following the so-called Ruble crisis of 1998.

Second, we consider hourly log-returns for Bitcoin (BTC/USD) and Ether (ETH/USD).

Both time series include the so-called “second crypto winter” of 2022. Again, we find that the

tail shape parameters vary significantly over time. The adverse left tail’s shape parameter

varies between 0.3 and 0.6 for BTC and ETH, implying the existence of between 1 up to 3
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conditional moments, depending on the period, and thus the presence of extremely fat tails.

Tail market risk estimates responded strongly to the collapse of the Terra/Luna cryptocur-

rency in May 2022 (see, e.g. Uhlig, 2022), the collapse of the cryptocurrency intermediary

FTX in June 2022, and the collapse of crypto intermediary Celsius in November 2022.

The four papers closest to ours are Massacci (2017), Patton et al. (2019), de Haan and

Zhou (2021), and D’Innocenzo et al. (2024). de Haan and Zhou (2021) propose a fully

non-parametric approach to estimating a continuously-changing extreme value index locally

from independent but non-identically distributed POTs. Our paper is different in that we

adopt a semi-parametric perspective, using a parametrized, integrated filtering recursion to

recover persistent time variation in the tail’s shape. Massacci (2017) and D’Innocenzo et al.

(2024) both study score-driven approaches to filtering the extreme tail’s scale and shape.

Our paper is different in two important ways, in that we propose a particularly parsimonious

statistical model (featuring only a single time-varying parameter), and focus on the case of

integrated time variation in the tail. Finally, unlike Patton et al. (2019), our tail VaR and

ES dynamics explicitly account for fat tail shape beyond a threshold as emerging from EVT.

Our score-driven dynamics contain weights for extreme observations, which are absent in the

elicitable score functions of Patton et al. (2019). The resulting dynamics in our model are

more robust, particularly for the ES. Formulated differently, our approach and that of Patton

et al. (2019) complement each other. Whereas Patton et al. (2019) provide an appropriate

semi-parametric framework to estimate time-varying thresholds less far out in the tails, our

approach enables the identification of time variation in risk measures in the extreme tails

beyond these thresholds.

Section 2 presents the statistical model. Section 3 discusses the asymptotic properties

of the model and of the maximum likelihood estimator. Section 4 studies the model’s per-

formance in simulation experiments. Section 5 applies the model to different exchange rate

returns. Section 6 concludes. Proofs and additional results are provided in a web appendix.
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2 Statistical model

2.1 A scaled conditional EVT framework

Consider a random variable Xt, such as an asset price or return. We are interested in

describing the conditional extreme tail behavior of Xt. We do this by adopting an Extreme

Value Theory (EVT) perspective. This allows us to only concentrate on the conditional tail

behavior of Xt, leaving any changes in the center of the distribution unmodeled as these

are not relevant for our prime objective: estimating the extreme conditional quantiles of Xt.

For our main result, we formulate a conditional version of the Pickands-Balkema-de Haan

Peaks-Over-Threshold (POT) theorem. This theorem describes the behavior of Xt in the far-

out tail area, i.e., for Xt values above some high (possibly time-varying) threshold value τt.

Following Theorem 1.2.5 of de Haan and Ferreira (2006), the conditional extremal behavior

of a random variable Xt that lies in the domain of attraction of a (heavy-tailed) Fréchet law

with tail shape ft > 0, can be described by

lim
τt→∞

P
(
Xt > τt + τt ft xt | Xt > τt, Ft−1

)
= (1 + ft xt)

−1/ft ,

for xt > 0, ft ∈ Ft−1, and Ft−1 = {X1, . . . , Xt−1} denoting the conditioning set. We refer

to the reciprocal of the tail shape, 1/ft, as the tail index. Distributions that satisfy this

condition comprise most fat-tailed distributions used in economics and finance, such as the

Student’s t distribution, the (generalized) Pareto distribution, the log-gamma distribution,

the F distribution, and many more (for further discussion, see e.g. Johnson et al., 1994,

Embrechts et al., 1997, and McNeil et al., 2010, Ch. 7.3.)

We define the scaled POTs Yt as Yt = (Xt − τt) /τt ⇔ Xt = τt + τt Yt. Substituting Yt

into the above limiting result and defining yt = ftxt, we obtain
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lim
τt→∞

P
(
Yt > yt | Yt > 0, Ft−1

)
= lim

τt→∞
P
(
τt + τt Yt > τt + τt yt | τt + τt Yt > τt, Ft−1

)
= lim

τt→∞
P
(
Xt > τt + τt yt | Xt > τt, Ft−1

)
= (1 + yt)

−1/ft , (1)

which yields the generalized Pareto distribution (GPD) as a limiting approximation for the

conditional distribution P(Yt > yt | Yt > 0, Ft−1) of the extreme tail of the scaled POTs Yt.

The advantage of using scaled POTs Yt = (Xt − τt)/τt rather than their unscaled coun-

terparts (Xt − τt) is that it considerably simplifies the resulting expression for the distri-

bution function in (1) for the extreme tails compared to, for instance, Massacci (2017) or

D’Innocenzo et al. (2024). In particular, the expression in (1) is characterized by only one

time-varying conditional tail shape parameter ft, rather than by both a tail shape and tail

scale parameter as in earlier papers. This simplification proves particularly helpful when de-

riving the asymptotic properties of the model and the maximum likelihood estimator later.

2.2 Filtering the conditional tail shape parameter ft

We expect the tail shape to possibly change gradually over time. Therefore, we introduce

score-driven dynamics for ft as in Creal et al. (2013), with ft+1 = ω+βft+αst, where st is the

inverse information scaled derivative of the log predictive GPD tail density. Transforming

the cdf expression in (1) into a conditional pdf p(yt | Ft−1) = f−1
t (1 + yt)

−f−1
t −1 for yt > 0,

we obtain the following expression for the scaled score,

∇t =
∂
(
− ln(ft)−

(
f−1
t + 1

)
ln (1 + yt)

)
∂ft

=
1

f 2
t

ln (1 + yt)−
1

ft
,

It−1 = E
[
∇2

t

∣∣ Ft−1

]
= f−2

t , st = I−1
t−1 ∇t = ln(1 + yt)− ft.
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In this paper, we are particularly interested in filtering the tail shape parameter ft from the

data using an integrated score-driven filtering equation,

ft+1 = ω + ft + α st, (2)

i.e., a model where we have set β, the coefficient in front of ft on the right-hand side of (2),

equal to unity rather than a value inside the unit interval as is commonly done in previous

literature. Note that if f1, ω > 0 and 0 < α < 1, then ft is non-negative for all t ∈ N

by construction. With a slight abuse of notation, we only change the value of ft if a POT

materializes. It is then, and only then, that we obtain information about the tail shape

behavior of Yt and thus Xt. In all other cases, we only obtain information about the center

of the distribution of Xt, which is irrelevant for the time variation in the extreme quantiles.

We use the terminology integrated score-driven model similarly as in the integrated

GARCH (iGARCH) literature. Whereas iGARCH models have been well-studied (see, e.g.,

Francq and Zakoian, 2019, and references therein), integrated score-driven models have thus

far received hardly any attention. This is remarkable given the fact that empirical estimates

of β for score-driven models are often quite close to unity. In a recent paper, Blasques et al.

(2022) study an integrated score-driven filter in the particular setting of a time-varying lo-

cation model for a mixture of two normals. Properties of integrated score-driven models

for time-varying parameters beyond the location-scale setting, however, are to the best of

our knowledge absent from the current literature. Integrated tail shape dynamics and thus

a slowly time-varying tail shape ft make perfect empirical sense, however, particularly for

longer time spans of highly frequent data such as daily or intra-daily data.

The presence of an intercept ω in (2) when ft has a unit autoregressive coefficient may

seem strange at first sight. It is not always standard (see, for example, the ZD-GARCH

models studied in Li et al., 2018), but has been shown to be important before in a time-

varying volatility setting (see e.g. Francq and Zakoïan, 2012; Francq and Zakoian, 2019).
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We show in Section 3 that a non-zero intercept ω > 0 is crucial if one wishes to interpret

the score-driven tail shape model as a data generating process: without it, convergence of

ft to its stationary and ergodic limit always results in degenerate, thin-tailed tail behavior

with ft = 0 for all t.

Given the observation-driven nature of the filtering equation (2), an explicit expression

is available for the likelihood function. Estimates of the model’s static parameters can then

be obtained by standard maximum likelihood methods. We gather all the model’s static

parameters in a parameter vector θ = (ω, α). To write down the likelihood function, we

only use the POT observations, i.e., the observations with Xt > τt or Yt > 0. Let T ⋆ denote

the number of POTs in the sample. We can then write the maximum likelihood estimator

(MLE) θ̂T as

θ̂T = argmax
θ∈Θ

L̂T (θ), L̂T (θ) =
1

T ⋆

∑
yt>0

ℓ̂t(θ), (3)

ℓ̂t(θ) = − ln f̂t(θ)−

(
1 +

1

f̂t(θ)

)
ln(1 + yt),

where we use the slightly more precise notation f̂t(θ) to denote the filtered outcomes as a

function of the static parameters,

f̂t+1(θ) = ω + f̂t(θ) + α
(
ln(1 + yt)− f̂t(θ)

)
, (4)

evaluated at some θ inside the parameter space Θ and initialized at some f̂1 > 0, and where

f̂t(θ) only changes upon the realization of a POT yt > 0.

2.3 Filtering extreme Value-at-Risk and Expected Shortfall

Evaluated at their maximum likelihood estimates, the filtered values f̂t(θ̂T ) can be used to

compute familiar risk quantities like extreme tail VaR or extreme tail ES using the GPD
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approximation; see, for instance, McNeil and Frey (2000), McNeil et al. (2010) and Rocco

(2014). For an extreme quantile with a tail probability γ < (1 + τt)
−1/f̂t(θ̂T ) lying beyond a

high threshold τt > 0, we can estimate the VaR and ES by

VaRγ(xt | Ft−1) = τt ·
(

γ

nt/t

)−f̂t(θ̂T )

, (5)

ESγ(xt | Ft−1) =
VaRγ(xt | Ft−1)

1− f̂t(θ̂T )
, (6)

where nt is the number of POTs up to time t, such that nt/t estimates the tail probability

P(Xt > τt). The expressions (5) and (6) differ from those in, for instance, McNeil et al.

(2010) and D’Innocenzo et al. (2024) owing to the use of scaled POTs Yt = (Xt − τt)/τt

rather than their unscaled counterparts (Xt − τt); see Web Appendix C for derivations. In

particular, our expressions only require the estimation of the tail shape parameter f̂t(θ̂T ),

and not of any auxiliary tail scale.

Given the straightforward formulation of the filter for ft(θ) in (4), (5)–(6) directly yield

our desired filtered extreme risk measures. These filtered VaR and ES estimates differ in

an important way from those in Patton et al. (2019). Whereas the approach of Patton

et al. (2019) is very useful for less extreme quantiles, the current EVT-based filtering model

with integrated dynamics has important advantages for capturing time variation farther

out in the tail. A major advantage of the elicitation function used by Patton et al. (2019)

for characterizing the tail quantile and expectile is that it does not hinge on any (possibly

incorrect) distributional assumptions. At the same time, the approach comes with a similar

limitation for risk assessment as historical simulation has compared to EVT-based methods:

historical simulation cannot capture the extreme tail shape beyond the highest realization;

see, for instance, McNeil et al. (2010). A similar risk exists for the time variation in VaR

and ES using Patton et al. (2019) at extreme quantiles: there, only few POTs are available

(if any at all), resulting in only few changes in the dynamic VaR and ES estimates using

their approach.
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We still consider the methodology of Patton et al. (2019), or one similar to it, as key to

our analysis, but only for the determination of the (less extreme) thresholds τt; see Sections

2.4 and 5. Its advantages are (i) its reliance on very few distributional assumptions, and (ii)

its use of much higher exceedance probabilities (10% or 5%) and thus the occurrence of a

sizable number of POTs to capture the time variation in the thresholds τt. Beyond these ‘less

extreme’ thresholds τt, however, we exploit the shape of the EVT-based GPD of our current

paper to go much deeper into the tail. The latter has two advantages. First, we lean on the

theoretical insight that the POTs of fat-tailed distributions (i.e., that lie in the domain of

attraction of a Fréchet law) are themselves fat-tailed. Using the score-driven dynamics in

(4), this information is directly exploited when filtering the tail shape values from the data,

resulting in a milder impact of extreme exceedances on the tail shape. Second, we can use

all the observed POTs at these less extreme exceedance levels for filtering the time-varying

tail shape and thus the extreme ES. As a result, our filtered extreme ES values based on the

GPD EVT approximation may vary much more over time compared to when they would

have been estimated directly using Patton et al. (2019).

Both features are illustrated in Figure 1 using a small simulation experiment for a high

99.9% confidence level. We simulate a large sample of T = 100, 000 observations from a

standard Student’s t distribution with an inverse degrees of freedom that follows a sinusoidal

pattern between ν = 3 and ν = 15, and a matching time-varying scale such that the (non-

extreme) true 5% VaR has a different pattern over time, non-synchronous with the sinusoidal

pattern for ν. Panel (a) provides the true ES, the ES as estimated using Patton et al. (2019)

and labeled PZC from now on, and the ES using the EVT-based methodology proposed in

this paper. The EVT approach here bases its 5% tail area thresholds τt on Patton et al.

(2019). Note that we cast our EVT-based VaR and ES to the negative outcome space to

make them comparable to those of Patton et al.As expected, the dynamics of the EVT-based

approach follow the true ES dynamics much more closely in terms of the up and downward

movements. For the extreme 99.9% quantiles, there are simply too few POTs to induce
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sufficient time variation in the original approach of Patton et al. (2019). This causes that

approach to exhibit large jumps followed by quick reversals to an ‘equilibrium level’ closer to

zero. This is even clearer if we focus on a shorter interval (Panel (b)): the PZC curve only

jumps occasionally, as expected, and then geometrically converges to its upper bound. By

contrast, the EVT-based curve behaves much more smoothly, and follows the true extreme

ES more closely by extrapolating the behavior of the 5% tail observations into the extreme

0.1% tail area. The pattern for the VaR is very similar (Panel (d)).

Figure 1’s Panel (c) reports the News Impact Curve (NIC) associated with each method.

The robustness feature of the new EVT-based approach is readily apparent. The NIC for

the VaR (not shown) looks very similar. The parameters used for the NIC are the ones

estimated for the simulated data, and the curves are shifted vertically to both start in the

origin. The NIC of PZC for extreme quantiles is flat until the (extreme) 99.9% VaR is

exceeded. Only upon an exceedance of the extreme VaR, the ES reacts linearly and quite

steeply to data. This results in the sharp peaks down and subsequent exponential reversals

seen in Figure 1’s Panels (b) and (d). The EVT approach is based on the less extreme 5%

quantiles of PZC. Therefore, the EVT approach’s extreme ES reacts much earlier to data,

namely to the PoTs exceeding the less extreme τt. It also reacts in a milder, concave way.

The concave reaction follows from the core of the EVT’s NIC expression, which reduces to

C · |xt|c for c = α log(γτ/γ) and for some C that does not depend on xt, and where γτ is

the tail probability of τ ; see Web Appendix A for a derivation. As long as c < 1, the EVT

approach reacts to extreme POTs in a concave, robust way to the data: it acknowledges that

outliers may occur deep into the tail area if ft is high. As a result, ft reacts less strongly to

such outliers, resulting in a more stable pattern for extreme VaR and ES (Panels (a), (b),

and (d)). For typical empirical estimates (Section 5), α is estimated at a low value, such that

the inequality c < 1 is easily satisfied and the robustness of the EVT approach is achieved.
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Figure 1: News Impact Curves (NIC) and EVT-based versus PZC filtering
results at 99.9%
Panels (a), (b), (d): Time series plots of the 99.9% ES and VaR for the PZC method of Patton
et al. (2019) and the EVT-based methodology proposed in this section. The thresholds τt for the
EVT approach are here based on Patton et al. (2019), but using the 5% tail. The results for the
EVT approach (τ , VaR, and ES) are made negative to make them comparable to the PZC results.
Data are simulated from a unit scale Student’s t distribution with time-varying inverse degrees
of freedom ν−1

t that moves sinusoidal between 0.067 (ν = 15) and 0.4 (ν = 2.5) and a 5% VaR
that moves in a triangular way from -3 up to -1 and down to -3 again. Panel (a) shows the results
for the full sample of T = 100, 000 observations; panels (b) and (d) zoom in on a data segment
to better visualize the patterns. Panel (c) plots the news impact curve associated with each method.

(a) ES dynamics: full sample (b) ES dynamics: zoomed in

(c) NIC of ES (d) VaR dynamics: zoomed in

2.4 Time-varying thresholds τt

A substantial number of time series models are available to estimate the thresholds τt.

Suitable models include, among others, the CaViaR model of Engle and Manganelli (2004),

the joint model for VaR and ES of Patton et al. (2019), and the score-driven models of

Catania and Luati (2023) and D’Innocenzo et al. (2024).

Unless indicated otherwise, we estimate the time-varying thresholds τt using a score-

driven model similar to D’Innocenzo et al. (2024) and Patton et al. (2019). The model’s
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implied VaRs turn out to have good coverage in the illustrations of Section 5, and its pa-

rameters are straightforward to estimate. In our specification,

τt+1 = ωτ + aτ1 ·
(
1{xt > τt} − (1− κ)

)
+ aτ2 ·

(
1{xt > τt} − (1− κ)

)
(xt − τt) + bττt, (7)

with ωτ ≡ (1 − bτ ) · q̂κ, and where 1{A} is the indicator function for the event A, q̂κ is

the (observed) unconditional κ-quantile of xt, aτ1 > 0, aτ2 > 0, and 0 < bτ < 1 are three

parameters to be estimated, and (1−κ) is a sufficiently small tail probability corresponding

to the dynamic quantile τt, such as, for example, 10% or 5%. Note that E[1{xt > τt} |

Ft−1, θ
τ ] = (1−κ). The threshold τt+1 responds to quantile exceedances in an intuitive way:

the next quantile value τt+1 receives a positive shock of aτ1κ if xt > τt, i.e., if the previous

quantile was exceeded, and a negative shock of −aτ1(1 − κ) otherwise. Following Patton

et al. (2019), the presence of aτ2 > 0 implies that the adjustment is stronger if the threshold

exceedance (xt − τt) is larger. If a2 = 0, then (7) reduces to the model used in D’Innocenzo

et al. (2024). For 0 < bτ < 1, the empirical unconditional quantile q̂κ serves as a long-term

attractor for (7).

The parameters aτ1, aτ2, and bτ in (7) cannot be estimated using (3). Another objective

function is needed for this. Given we only need the threshold value τt and not the ES in

this step, we use a simpler objective function than that of Patton et al. (2019), which can be

used to elicit the threshold together with the ES. In particular, we use the standard tick-loss

function that is also used for quantile regression (Koenker, 2005, Ch. 3). The optimization

problem can then be formulated as

min
{aτ1 , aτ2 , bτ}

1

T

T∑
t=1

ρκ (xt − τt) ⇐⇒ min
{aτ1 , aτ2 , bτ}

1

T

T∑
t=1

(xt − τt)
(
κ− 1{xt < τt}

)
⇐⇒ max

{aτ1 , aτ2 , bτ}

1

T

T∑
t=1

(xt − τt)
(
(1− κ)− 1{xt > τt}

)
, (8)

where ρκ(ut) = ut

(
κ− 1{ut < 0}

)
, and τt evolves as in (7). Engle and Manganelli (2004)
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and Catania and Luati (2023) also use this objective function, albeit in different dynamic

contexts. In practice, we estimate all thresholds τt via (8) using a similar numerical approach

as Patton et al. (2019, Appendix C) before maximizing (3). All our results are conditional

on the time-varying thresholds τt. The effects of this two-step approach are studied through

simulations in Section 4.

3 Asymptotic behavior

This section studies the asymptotic properties of the model (1) and (4). We first derive

conditions for stationarity and ergodicity of the model and the model-implied filter. These

can then be used to establish the consistency and asymptotic normality of the maximum

likelihood estimator for the model’s static parameters.

We first define two random variables, namely a standard uniform ut ∼ U(0, 1), and a

standard unit exponential ϵt = − ln(1 − ut) ∼ Exp(1). Define G(yt | ft) = 1 − (1 + yt)
−1/ft

as the expression for the tail GPD approximation from (1). We let ft(θ0) denote the true

time-varying tail shape parameter in the DGP as characterized by the true static parameter

vector θ0. We show later that ft(θ0) is the unique stationary and ergodic limit of its initialized

counterpart f̂t(θ0) from (4), initialized at f̂1.

Using these definitions, we obtain

G(yt | ft(θ0)) = ut = 1− (1 + yt)
−1/ft(θ0) ⇐⇒ 1

ft(θ0)
ln(1 + yt) = − ln(1− ut) = ϵt, (9)

and thus

ft+1(θ0) = ω0 + ft(θ0) + α0

(
ln(1 + yt)− ft(θ0)

)
= ω0 +

(
1 + α0 (ϵt − 1)

)
ft(θ0). (10)

We make the following assumptions.
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Assumption 1. {ϵt}t∈Z is an independent and identically distributed (IID) noise sequence

where each ϵt has a unit exponential distribution.

Assumption 2. The parameter space satisfies Θ = {θ | 0 < ω ≤ ω ≤ ω̄ < ∞, 0 < α ≤ α ≤

ᾱ < 1}, and the true value θ0 ∈ int(Θ).

Both assumptions are mild and quite standard. Assumption 1 postulates that we can

generate the non-linear time series dynamics for the tail shape model by feeding an IID noise

process to the inverse cdf of the GPD to obtain realizations of yt. These realizations then

feed into the next tail shape parameter via the recursion (10). Assumption 2 is standard

and establishes that the parameter space is compact and that the true parameter lies in

its interior. Again, the restrictions on the parameter space are unsurprising: ω > 0 and

0 < α < 1 jointly ensure that the tail shape parameter remains non-negative for all values

of t. We now obtain the following theorem, which establishes (i) stationarity and ergodicity

of the data yt and of the uninitialized true time-varying parameter ft(θ0); (ii) invertibility of

the filter f̂t(θ) started at f̂1 and evaluated at a generic value θ ∈ Θ; and (iii) the existence

of appropriate moments to establish the consistency of the maximum likelihood estimator

later on. All proofs are found in Web Appendices A and B.

Theorem 1. Under Assumptions 1–2:

(i) the model is stationary and ergodic, i.e., there exists a unique stationary and ergodic

solution ft(θ0) and yt to (9) and (10); moreover, there exists some small r > 0 such

that E|ft(θ0)|r < ∞ and E
∣∣ln(1 + yt)

∣∣r < ∞;

(ii) if E ln+ ln(1+yt) < ∞, then the model-implied filter is invertible, i.e., f̂t(θ) as generated

by (4) and initialized at f̂1 converges to a unique stationary and ergodic solution ft(θ)

uniformly over Θ;

(iii) the ratio process ẑft (θ) = ft(θ0)/f̂t(θ) converges to a unique stationary and ergodic

solution zft (θ) = ft(θ0)/ft(θ). Moreover, zft (θ) and 1/zft (θ) have finite n-th order
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moment, uniformly over Θ, for any n > 0.

Given the model’s structure, the two simple Assumptions 1 and 2 suffice to obtain sta-

tionarity and ergodicity of the time-varying tail shape in the DGP. Interestingly, the result

also gives rise to the following corollary.

Corollary 2. Under Assumptions 1 and 2:

(i) if ω0 = 0, the stationary and ergodic solution for ft(θ0) satisfies ft(θ0) = 0 for all t;

(ii) for ω0 > 0, the stationary solution for ft(θ0) does not have a finite first moment.

The non-zero intercept ω0 in the DGP is thus needed to obtain a non-degenerate limiting

behavior of ft(θ0). The intuition for this is immediately clear from the recursion (10), which

is a contracting autoregression of order one with a random coefficient. Following Bougerol

(1993), Theorem 1 establishes that it has a stationary and ergodic solution. Filling out

ft(θ0) = 0, we can see that this obviously is a candidate solution in case ω0 = 0. The

corollary then follows immediately from the uniqueness of the stationary and ergodic limit,

as shown by Straumann and Mikosch (2006). By taking unconditional expectations of the left

and middle part of (10) for ω0 > 0, and using the fact that the scaled score has conditional

expectation zero, we have E[ft+1(θ0)] = ω0 + E[ft(θ0)]. It then also follows directly that

ft(θ0) cannot have a finite mean if ω0 > 0.

The second part of Theorem 1 establishes the invertibility of the filter under a log+-log-

moment condition, which is very weak. As the first part of the theorem already established

that the data generated by the model is stationary and ergodic and that ln(1 + yt) has a

small moment r, the filter is invertible at the DGP. Invertibility, however, holds for generic

stationary and ergodic yt with a log+-log-moment, meaning that it continues to hold if the

model is mis-specified. Also note that f̂t(θ) does not have a finite first unconditional moment

at the DGP, as it is driven by the innovation α ln(1 + yt) = αft(θ0)ϵt, where ϵt has a unit

exponential distribution. The first part of the theorem already implied that ft(θ0) does not

have a first moment.
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Finally, the third part of Theorem 1 considers the scaled process ẑft (θ) = ft(θ0)/f̂t(θ).

This process has finite moments and inverse moments of arbitrary large order, even though

ft(θ) and f̂t(θ) do not, neither at θ0 nor at θ ∈ Θ\θ0. The interest in the process ẑft (θ) stems

from considering the centralized log-likelihood function under correct specification,

Q̂T (θ) = L̂T (θ)− LT (θ0) =
T∑
t=1

Q̂t(θ)

=
T∑
t=1

− ln f̂t(θ)− (1 + f̂t(θ)
−1) ln(1 + yt) + ln ft(θ0) + (1 + ft(θ0)

−1) ln(1 + yt)

=
T∑
t=1

ln
ft(θ0)

f̂t(θ)
− ft(θ0)

f̂t(θ)
ϵt + ϵt =

T∑
t=1

ln ẑft (θ) − ϵt

(
ẑft (θ)− 1

)
. (11)

We also define QT (θ) = LT (θ) − LT (θ0), and define Qt(θ) similar to Q̂t(θ), but with f̂t(θ)

replaced by its stationary and ergodic limit ft(θ). As the maximizer of L̂T (θ) is the same as

that of Q̂T (θ), the properties of ẑft (θ) can be used to derive the properties of the MLE. In

particular, (11) clarifies that consistency results can be obtained if a first moment exists for

ẑft (θ). This is precisely what the last part of Theorem 1 establishes. Though ft(θ0) does not

have a finite first moment for ω0 > 0, the normalized process ẑft (θ) = ft(θ0)/f̂t(θ) has finite

moments up to arbitrary (positive) order.

We can now establish the following result for the maximum likelihood estimator of the

model’s static parameters using the integrated, score-driven filter.

Theorem 3. Under Assumptions 1–2, the MLE is strongly consistent, θ̂T
a.s.→ θ0 and asymp-

totically normally distributed with
√
T
(
θ̂T − θ0

)
→ N

(
0 , I(θ0)−1

)
for T → ∞, where

I(θ0) = −E
[
∂2Qt(θ0)/∂θ∂θ

⊤] denotes the non-singular Fisher information matrix.

Theorem 3 allows for an inferential framework for the key filtering parameter α if the

model is correctly specified. Note that the correct specification immediately follows from

the EVT perspective and the limiting result in (1) as long as the original data lie in the

domain of attraction of a Fréchet law. This is much weaker than in usual settings, where the
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assumption of correct specification might be deemed overly restrictive. Still, we can allow

for some form of mis-specification due to for instance the use of finite thresholds τ̂t in the

following way. The main arguments in the proof of Theorem 3 continue to hold as long

as F (yt) = 1 − (1 + yt)
−1/ft(θ0) = 1 − exp(−ϵt) for some IID {ϵt}t∈Z that is not necessar-

ily unit exponentially distributed as in the correctly specified case, but still has E[ϵt] = 1

and E[ϵ4t ] < ∞. The result of Theorem 3 then needs to be slightly adapted by replacing

the asymptotic covariance matrix I(θ0)−1 by its usual sandwich form I(θ0)−1J (θ0)I(θ0)−1,

where J (θ0) = E
[
(∂Qt(θ0)/∂θ) (∂Qt(θ0)/∂θ)

⊤] denotes the expected outer product of gra-

dients. The simulation Section 4 investigates even more severe forms of mis-specification and

shows that the asymptotic normality approximation with the sandwich covariance matrix

continues to give adequate results for inference in such settings.

4 Simulation study

4.1 Simulation design

This section investigates the performance of our dynamic EVT model in a controlled setting.

We focus on the quality of the estimates of α and ω and the adequacy of the asymptotic nor-

mal approximation. The simulation study involves three settings (three sets of experiments).

In all three settings, we generate draws xt from a mixture distribution. With probability κ,

we draw from a standard Gaussian GARCH(1,1) with parameters (0.01, 0.07, 0.92)′. The pa-

rameters are chosen close to the values found by estimating a Gaussian GARCH(1,1) model

for the EUR/USD exchange rates used in the next section. With probability 1−κ, we draw

a tail observation as xt = τt exp (ftϵt), where τt is the correct quantile from the underlying

standard Gaussian GARCH(1,1) that is used for generating the observations from the center

of the distribution, ft is the tail shape, and ϵt is a standard unit exponential random variable.

In settings 1 and 2, we let the time-varying tail shape be generated by the model from
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Section 2 using ω = 1.5 ·10−5, and α = 0.01 in line with parameters found for the BTC/USD

and ETH/USD exchange rates in the empirical illustrations of Section 5. The difference

between the first two settings is that we use the true thresholds τt in the first setting and

the estimated thresholds τ̂t based on Section 2.4 in the second experiment. This allows us

to study the effect of the estimation of the thresholds on the results.

In setting 3, we let the logarithm of the time-varying tail shape parameter be generated

by a autoregressive model of order 1, with the following state equation:

log(ft) = −0.01 + 0.99 · log(ft−1) + 0.06 · ηt−1,

where {ηt}t∈Z is an IID noise sequence where each ηt has a standard Gaussian distribution.

The model is thus mis-specified, and we investigate whether the model can still reliably track

the true time-varying parameter ft and whether the estimated α̂ still behaves well compared

to the correctly specified setting; see the discussion after Theorem 3. In this setting our filter

is still invertible, but the estimator of the static parameters only converges to a pseudo-true

value. The latter is chosen such that the mis-specified filtered model matches the unknown

DGP as closely as possible (compare Blasques et al., 2015).

In all three settings, we consider the performance of the models estimated with and

without the intercept parameter ω. This allows us to investigate the effect of including or

excluding this parameter, which is typically estimated (very) close to zero. We consider

four different sample sizes: T ∈ {5000, 10000, 25000, 50000} and 1 − κ = 10% observations

coming from the tail. Sample sizes in our empirical illustrations are between about 6000

and 40000, matching the simulation setup. Together with the two different specifications

(with and without ω), this yields a total of 3 × 4 × 2 = 24 simulation experiments. Each

experiment is repeated S = 1, 000 times.
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Figure 2: Simulation results for scenarios 1 and 2
Kernel density estimates of the distribution of the MLE for scenarios 1 and 2. In scenario 1, the
true thresholds τt are used, denoted by τt in the subfigure heading. In scenario 2 the estimated
thresholds are used, denoted as τ̂t. We present results for estimated ω̂ as well as for ω̂ fixed at zero
(denoted as ω̂ = 0). The POTs have a GPD distribution with the correctly specified tail shape
dynamics using the model from Section 2. Kernel density estimates are provided for α̂ and for its
t-statistic using S = 1, 000 simulations.

(a) α̂ (ω̂ free, τt) (b) α̂ (ω̂ = 0, τt) (c) α̂ (ω̂ free, τ̂t) (d) α̂ (ω̂ = 0, τ̂t)

(e) tα̂ (ω̂ free, τt) (f) tα̂ (ω̂ = 0, τt) (g) tα̂ (ω̂ free, τ̂t) (h) tα̂ (ω̂ = 0, τ̂t)

4.2 Simulation results

Figure 2 presents the results for the first two sets of experiments. We clearly see that the

sample size matters for the results. If the sample size is too small (1−κ = 10% of T = 5000),

the parameter α̂ is regularly estimated on the edge of the parameter space, i.e., at zero, if α

and ω are estimated jointly. As the model has integrated dynamics, a non-zero ω combined

with an α of zero results in a trending pattern for the tail shape parameter ft. If the number

of observations is too small, it is apparently difficult for the model to distinguish between a

trending ft and an integrated random ft. The effect is obviously inherited by the t-statistic

of α̂, as seen in the lower panel. As the sample size grows, the additional peak at 0 shrinks

and the distribution of α̂ and of its t-statistic becomes more and more normal.

If ω is fixed at zero in the model (second column of figures compared to the first column),
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the results appear very similar to the setting with estimated ω (first column of figures). For

smaller samples, the estimator of α even appears to behave in a more stable way, collapsing

to the edge of the parameter space less often compared to the setting with estimated ω. This

suggests that, for practical purposes, ω may be set to zero (or an arbitrarily small positive

number) during estimation without much of an effect on the estimated α. This is convenient,

as it further simplifies the estimation problem to estimating a single parameter α, akin to

the estimation of the single smoothing parameter in a RiskMetrics model for time-varying

volatility.

Comparing the first versus the third column of graphs, or the second versus the fourth,

we see that the effect of using estimated (τ̂t) rather than true (τt) thresholds only has a mild

effect on the distribution of α̂. For small sample sizes, the effect of α̂ collapsing to the edge

of the parameter space are more severe when the thresholds are estimated. As in the case

of true thresholds τt, however, these degenerate cases disappear quickly as the sample size

increases. If ω̂ is fixed at zero rather than estimated, we again see that the behavior of α̂

is more stable in small samples, without seriously affecting its behavior in large samples.

Again, fixing ω̂ to zero (or some small number) may be preferable from a stability point of

view, particularly if the sample is not overly large.

Figure E.1 in the Appendix presents the results for scenario 3 where the dynamics for

the tail shape are fully mis-specified in the model compared to the DGP. The results are

consistent with the previous findings. For small sample sizes, the model has sometimes

difficulty in finding a non-zero α̂ if α̂ is estimated jointly with ω̂, though less drastic than in

Figure 2. For larger sample sizes, the problem disappears. The problem is less pronounced

if ω̂ is fixed at zero rather than estimated, similar as in scenarios 1 and 2. The bottom

panels in Figure E.1 in the appendix give the fit of the filter to the true time-varying tail

shape parameter ft(θ0) and show that the model fits the true, unobserved process ft(θ0)

quite well, despite mis-specification. Note that the filtered parameter f̂t(θ̂) differs in at least

three ways from the true parameter dynamics: it uses the estimated θ̂, it is initialized, and
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most importantly, it uses the incorrect score-driven dynamics for a DGP that is actually a

pure autoregression for log(ft(θ0)). Despite this severe mis-specification, the filter still tracks

the salient dynamics of the true ft(θ0). Results are similar for the other sample sizes.

The simulation experiments thus lead to two main suggestions. First, the asymptotic

distributional results seem to hold up in finite samples and the filtered tail shape parameter

tracks the true tail shape dynamics quite well, whether the model is correctly specified or

not. Second, fixing ω to zero or some other small number during estimation may simplify

the model and estimation problem even further without visibly affecting the distributional

results for α̂ in large samples, and stabilizing them in small samples. We exploit these

findings in the empirical analysis in the next section.

5 Empirical illustrations

5.1 EUR/USD and RUB/USD exchange rates

To illustrate our approach, we obtain end-of-day prices for the Euro (EUR) and the Russian

Ruble (RUB) viz-a-viz the U.S. dollar (USD) as two easily available time series from Eikon

(formerly Thomson/Reuters). The EUR/USD currency pair is extremely liquid, as both

the euro area and the United States are comprised of large, developed, and market-oriented

economies. By contrast, the RUB/USD currency pair is much less liquid, pointing to a

relatively less-developed and less market-oriented economy. The RUB/USD currency pair

became particularly illiquid following wars of aggression by Russia against Ukraine in 2014

and early 2022, and the subsequent economic sanctions. The EUR/USD time series spans

the period January, 4 1999 to December, 1 2023, yielding 6,500 daily observations. The

RUB/USD data range from January 2, 1996 to September 6, 2023, yielding 7,222 daily

observations. We consider log-returns xt = 100 × (ln st − ln st−1), where st is the spot

exchange rate in units of local currency, before applying our methodology. We focus on
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Table 1: Parameter estimates
Parameter estimates for the dynamic EVT model. The first illustration considers EUR/USD
and RUB/USD daily exchange rate log-returns. The second illustration considers BTC/USD and
ETH/USD hourly cryptocurrency log-returns. Standard error estimates are in round brackets,
and p-values are in square brackets.

First illustration Second illustration
EUR/USD RUB/USD BTC/USD ETH/USD

α 0.034 0.039 0.008 0.011
(0.016) (0.020) (0.003) (0.004)
[0.03] [0.05] [0.03] [0.02]

T 6501 7223 41193 41258
T ∗ 638 720 2057 2058
loglik -158.764 -657.267 -1377.416 -1190.192
AIC 319.527 1316.535 2758.831 2384.384

the right tail of the exchange rate returns. The right tail is the relevant tail for any firm

that holds assets, or obtains revenues, in local currency and has financed these assets, at

least in part, through USD liabilities. Large non-US financial institutions typically fit this

description.

We rely on the time variation in the thresholds τt to accommodate time variation in

any parameters describing the center of the distribution. The threshold process τt evolves

according to (7) with (1− κ) = 10%. It is initialized using the 90% empirical quantile of xt

over the first two years of data, and then evolves dynamically using the approach presented

in Section 2.4, where we fix bτ close to one to impose further smoothness. The process for

the dynamic tail shape parameter ft is initialized at f̂1, for which we use the maximum

likelihood estimate of a static GPD tail shape model from an early subsample (1996–1997

for RUB/USD, January to March 1999 for EUR/USD). In line with the simulation outcomes

from Section 4, we fix ω = 10−7 to a small positive number to stabilize the estimates of α that

govern the magnitude of the tail shape dynamics. We estimate α by maximum likelihood.

Table 1’s first two columns present the results. Both for the EUR/USD and RUB/USD, the

estimates of α are small and positive and comparable in size.
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The top panels in Figure 3 present EUR/USD and RUB/USD log-returns. Thresholds τt

are reported at the 90% confidence level, while VaR and ES are plotted at the more extreme

99% confidence level. If one wants to obtain even more extreme risk quantiles, this is easily

done using (5)–(6) at the expense of obtaining a less well-scaled plot. The time variation

in extreme market risks is visible from both top panels. The variation is particularly large

for the RUB/USD rate, and especially around the Russian financial crisis and the collapse

of LTCM in Fall 1998; see also the discussion further below. Also, note that we cannot plot

the ES for the RUB/USD rate over the entire sample period given that ft is estimated to be

above one repeatedly in the first half of the sample. If the tail index 1/ft falls below one,

the first conditional moment of xt (and therefore the ES) no longer exists.

The middle panels in Figure 3 present filtered estimates of ft along with 95% confidence

bands based on the methodology of Blasques et al. (2016) and are conditional on the esti-

mated thresholds τ̂t. The tail shape parameter varies between approximately 0.2 and 0.5

for EUR/USD and 0.2 and 1.3 for RUB/USD. Values of ft > 0.5 imply that the second

moment of the one-day-ahead predictive density does not exist. While second moments have

always existed for the EUR/USD rate, they have rarely, if ever, existed for the RUB/EUR

rate between 1996 and 2008. Maximal tail fatness for the Ruble is observed during the 1998

Russian financial crisis, sometimes also referred to as the Ruble crisis. The confidence bands

around ft suggest that it is reasonably precisely estimated and that it is far from zero (the

thin-tailed Gumbel case). The confidence bands are asymmetric, owing to the parameter

restriction 0 < α < 1, which we have imposed during estimation via re-parameterization.

The bottom left panel in Figure 3 provides zoomed-in estimates of extreme EUR/USD

market risks during the global financial crisis between 2008 and 2009 and the euro area

sovereign debt crisis between 2010 and 2012. We observe rapidly rising extreme foreign

exchange rate risks following the bankruptcy of Lehman Brothers on September 15, 2008

(first vertical line); the euro area sovereign debt crisis, to which the European Central Bank

(ECB) responded with sovereign bond purchases within its Securities Markets Programme
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Figure 3: Exchange rate log-returns, tail shape, and extreme risks
Top panels: EUR/USD (left) and RUB/USD (right) daily log-returns (× 100). We focus on the
adverse right tail, corresponding to a depreciation of the local currency viz-a-viz the U.S. dollar.
Thresholds τt are reported at a 90% confidence level. VaR and ES are plotted at an extreme 99%
confidence level. Middle panels: filtered tail shape parameter ft with asymmetric 95% confidence
band. Bottom panels: Zoomed-in extreme risks with key events.

(announced on May 10th, 2010; second vertical line); and preceding the ECB’s announcement

on September 6th, 2012 of its Outright Monetary Transactions program (third vertical line),

following then-ECB president Mario Draghi’s speech vowing to do “whatever it takes” to

preserve the integrity of the euro area. 99% VaR and ES increased markedly following the

first event, remained elevated around the second event, increased towards the third event,
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Table 2: VaR violation rates
VaR coverage rates and p-value for the nominal coverage test of Kupiec (2000). Top and bot-
tom panels consider VaR at non-extreme (90% and 95%) and more extreme (99%) confidence levels.

First illustration Second illustration
EUR/USD RUB/USD BTC/USD ETH/USD

τ̂t = VaR0.9
t τ̂t = VaR0.95

t

Violation rate 9.81% 9.96% 4.99% 4.99%
p-value 0.62 0.93 0.91 0.95

VaR0.99
t VaR0.99

t

Violation rate 0.72% 0.97% 1.04% 1.02%
p-value 0.02 0.79 0.43 0.71

and gradually declined afterwards.

The bottom right panel in Figure 3 provides zoomed-in estimates of extreme market risks

following Russia’s invasions of Ukraine in 2014 and 2022 (the first and third vertical line,

respectively). We observe heightened exchange rate volatility and unprecedented extreme

tail risks following both events, both taking about two years to return down to their long-

term levels. Extreme tail risks exert pressure on any firm with domestic assets and USD

liabilities, and particularly so if debt ratios are high. The 99% VaR and ES in 2014 and

2022 are higher than in 2020 (following the outbreak of Covid-19, second vertical line), but

lower than in 1998 (the Ruble crisis), though the latter took a shorter time to return to is

long-term lower levels.

Columns 2 and 3 in Table 2 report EUR/USD and RUB/USD VaR violation percentages

and p-values to test whether the violation rates coincide with the nominal rates. The VaR

estimates are considered at a conventional (top panel, 90%) and a more extreme (bottom

panel, 99%) confidence level. For 90% VaR, the VaR violation rates are close to 10%, and

both tests are passed safely at conventional significance levels. For 99% VaR, the VaR

violation rate is close to 1%, and both tests are passed at the 0.01 significance level. The

statistical model adequately captures the relevant market risk dynamics in the extreme tail.
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Web Appendix D presents our empirical results when Patton et al. (2019)’s joint model

of ES and VaR is used to obtain the thresholds τ̂t. The extreme market risk estimates are

approximately similar. The thresholds inferred using (7) have slightly better VaR violation

rates, possibly owing to its single-focused (VaR) objective function (8).

5.2 Cryptocurrency exchange rates

We obtain hourly prices for Bitcoin (BTC) and Ether (ETH) in USD from Coinbase. The

BTC time series ranges from May, 15 2018 to January, 25 2023, yielding 41,192 observations.

The ETH data range from May 15, 2018 to January 28, 2023, yielding 41,257 observations.

To model the left tail of cryptocurrency returns, we consider negative log-returns xt =

−100× (ln st − ln st−1), where st is the price of either BTC or ETH in USD. The left tail is

the economically relevant tail for an investor that holds cryptocurrency.

As for the EUR/USD and RUB/USD rates, we again rely on the time variation in the

thresholds τt to accommodate time variation in any of the parameters describing the center

of the distribution. Given the higher number of observations, we use (1−κ) = 5% to estimate

the thresholds τt and initialize τ̂1 and f̂1 using the first half year of data. Table 1 last two

columns present our estimates of α. The estimate α̂ is positive, and statistically significantly

different from zero at the 5% confidence level, for both BTC and ETH.

Figure 4 visualizes the tail risk outcomes. The top panels present BTC’s and ETH’s

log-returns and the 95% thresholds τt. We also plot the 99% VaR and ES, but more extreme

confidence percentages are easily computed via (5)–(6). There is clear time variation in

extreme market risks. This is also underlined by the plots of ft in the middle panels of

Figure 4. The tail shape parameter varies between approximately 0.3 and 0.6 for both

BTC and ETH, though their dynamics and the time points of their peaks and troughs

are substantially different. This implies that the second moment of the one-hour-ahead

predictive density exists most, but not all of the time. In particular, in the first part of the
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Figure 4: Cryptocurrency log-returns, tail shape, and extreme risks
Top panels: Bitcoin/USD (left) and Ether/USD (right) hourly log-returns (× 100). Thresholds τt
are reported at a 95% confidence level. VaR and ES are plotted at an extreme 99% confidence
level. The thresholds τt, VaR, and ES are mirrored at the horizontal axis to correspond to
log-returns (instead of log-losses). Middle panels: filtered tail shape parameter ft with asymmetric
95% confidence band. Bottom panels: Zoomed-in extreme risks with key events.

sample, the tail risk of both cryptocurrencies seems to be very large. Also towards the end

of the sample, ft moves towards 0.5 where the second moment fails to exist. The confidence

bands around ft suggest that the tail shape parameter is precisely estimated. In particular,

the tail parameter seems to be far from zero, the thin-tailed Gumbel case.

The bottom panels in Figure 4 provide zoomed-in estimates of extreme market risks
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during the so-called “second crypto winter” of 2022, with vertical lines indicating three key

events. VaR and ES at the 99% confidence level are particularly volatile during 2022. Both

market risk measures respond strongly to the collapse of the Terra/Luna cryptocurrency

on May 10th, 2022 (first vertical line), see e.g. Uhlig (2022); the collapse of FTX, a major

cryptocurrency intermediary and shadow bank on June 13th, 2022 (second vertical line);

and the collapse of Celsius, another cryptocurrency intermediary and shadow bank on Nov

11th, 2022 (third vertical line). ES 99% approximately tripled around each of these events,

before reverting to more “normal” levels later on.

Columns 4 and 5 of Table 2 report BTC and ETH VaR violation rates and tests. The VaR

estimates are considered at a non-extreme (top panel, 95%) and a more extreme (bottom

panel, 99%) confidence level. For both 95% and 99% VaR, the violation rates are very close

to 5% and 1% nominal levels, respectively, and the tests for nominal coverage are passed

safely at conventional significance levels.

6 Conclusion

We introduced a robust semi-parametric modeling framework for studying persistent time

variation in tail parameters for long univariate time series. To this end, we modeled the time

variation in the shape parameter of the Generalized Pareto Distribution, which approximates

the tail of most heavy-tailed densities found in economics and finance. By re-scaling the

peaks-over-thresholds by their respective thresholds, we obtained a new single factor model

to capture the time variation in extreme tails.

By endowing the time variation in the tail parameter with integrated score-driven dy-

namics, we obtained a simple filter for extreme tail risk that required only one or two static

parameters to be estimated from the data. In this way, the paper complements standard

well-known and widely used integrated filters for price volatility with a similar filter for the

extreme tail risk. Given its reliance on Extreme Value Theory (EVT), the filter is less prone
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to over-react to incidental large asset returns, thus augmenting less robust semi-parametric

filters for Expected Shortfall such as the one of Patton et al. (2019), and insensitive to

changes in the center as opposed to the tails of the distribution by only reacting to the

Peaks-over-Threshold (PoT) observations; compare Massacci (2017).

As a theoretical contribution, we established parameter regions for stationarity, ergod-

icity, and invertibility of the filter process, and considered conditions for consistency and

asymptotic normality of the maximum likelihood estimator of the model’s static parame-

ters. This complements the emerging literature on score-driven volatility filters with unit

coefficient (integrated) dynamics and the existing literature on iGARCH filters with results

for integrated dynamics for time-varying parameters describing higher-order properties of the

distribution. The ease of the method’s applicability and its implications were illustrated by

studying the time variation in the tails of regular and cryptocurrency exchange rate returns

over both quiet and turbulent times.
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Web Appendix to
“Joint extreme Value-at-Risk and Expected Shortfall

dynamics with a single integrated tail shape parameter”
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Web Appendix A: Proofs

NIC for the EVT-based VaR

Let the conditional exceedance probability of τt be equal to γτ , and let 0 < γ < γτ denote

our extreme tail probability. Consider modeling the right-hand extreme tail. For a given

values of ft = f and τt = τ , we have

ft+1 = ω + f + α
(
ln(1 + yt)− f

)
,

V aRt+1 = τ ·
(

γ

γτ

)−ft+1

= τ ·
(

γ

γτ

)−ω−(1−α)f−α ln(1+yt)

= τ

(
γ

γτ

)−ω−(1−α)f

·
(

γ

γτ

)−α ln(1+yt)

= C ·
(

γ

γτ

)−α ln(1+yt)

= C · exp

(
ln

(
γ

γτ

))−α ln(1+yt)

= C · exp

(
−α ln(1 + yt) ln

(
γ

γτ

))

= C · exp
(
ln(1 + yt)

)−α ln(γτ/γ)
= C · (1 + yt)

−α ln(γτ/γ)

= C ·
(
xt/τ

)α ln(γτ/γ)
= C̃ · x−α ln(γτ/γ)

t ,

for xt exceeding the threshold τ , i.e., xt > τ > 0. The shape of the news impact curve for

the VaR based on the EVT approach is thus concave as long as α ln(γτ/γ) < 1. Note that

for the plots in Section 2.3 we have re-cast our EVT approach to the extreme left-hand tail

to make it directly comparable to the approach of Patton et al. (2019).

Preliminary results
Lemma A.1. Under Assumptions 1 and 2, the inequality

E
[
ln |1 + α (ϵ− 1)|

]
< 0,
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is always satisfied.

Proof. For b = α/(1− α) > 0, we have

E
[
ln |1 + α (ϵ− 1)|

]
= ln(1− α) +

∫ ∞

0

ln(1 + bx)e−xdx

= ln(1− α)−
[
ln(1 + bx)e−x

]∞
0
+

∫ ∞

0

b

1 + bx
e−xdx

= ln(1− α) +

∫ ∞

0

b

1 + bx
e−xdx

= ln(1− α) + e1/b
∫ ∞

1/b

e−x

x
dx

= ln(1− α)− eα
−1−1 Ei

(
1− α−1

)
< 0,

for 0 < α < 1, where Ei(z) = −
∫∞
−z

t−1 e−t dt denotes the exponential integral.

Proof of Theorem 1

Since ln(1 + yt) = ft(θ0)ϵt, we can write the score-driven filter as

f̂t+1(θ) =ω + f̂t(θ) + α
(
ln(1 + yt)− f̂t(θ)

)
=ω + f̂t(θ) + α

(
ft(θ0)ϵt − f̂t(θ)

)
=ω + (1− α) f̂t(θ) + αϵtft(θ0),

When evaluating the process above at the true parameter vector θ0, we note that the unob-

served process {ft+1(θ0)}t∈ satisfies

ft+1(θ0) =ω0 + (1− α0 + α0ϵt) ft(θ0).

Note that both f̂t(θ) and ft(θ0) are embedded in the stochastic recurrence equations (SREs)

of the form f̂t+1(θ) = ϕ̂(f̂t(θ), yt, θ) and ft+1(θ0) = ϕ(ft(θ0), ϵt, θ0), respectively.
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Part (i): To prove stationarity and ergodicty (SE) of ft(θ0), we apply Theorem 3.1 of

Bougerol (1993). We first check the log-moment condition, which is easily satisfied since

E
[
ln+
∣∣ϕ(f̄1, ϵt, θ0)∣∣] ≤ E

[
lnω0 + ln

(
1 +

(1− α0 + α0ϵt)

ω0

f̄1

)]

= lnω0 + E
[
(1− α0 + α0ϵt)

ω0

f̄1

]
= lnω0 +

1

ω0

f̄1 < ∞,

for all f̄1 ∈ (0,∞), where we have used the fact that ϵt is IID exponentially distributed with

unit mean following Assumption 1. The contraction condition of Bougerol (1993) follows

directly, as

E

sup
f̄

ln

∣∣∣∣∣∂ϕ(f̄ , ϵt, θ0)∂f̄

∣∣∣∣∣
 = E

[
ln
∣∣1 + α0(ϵt − 1)

∣∣] < 0,

for α0 ∈ (0, 1) using Lemma A.1 above. Hence, all the conditions of Theorem 3.1 of Bougerol

(1993) are satisfied and we conclude that an SE solution ft(θ0) exists and that any initialized

sequence converges exponentially fast almost surely (e.a.s.) to this unique SE limit. Given

yt = exp(ft(θ0)ϵt) − 1, it follows immediately that yt is SE by Proposition 4.3 of Krengel

(1985).

The existence of moments follows from Lemma 2.4 of Straumann and Mikosch (2006).

The almost sure SE representation of ft(θ0) equals

ft(θ0) = ω0

∞∑
i=0

i−1∏
j=0

(
1 + α0(ϵt−j − 1)

)
> 0. (A.1)

Note that E
[
(1 + α0(ϵt − 1))q

]
< ∞ for any finite q > 0 given that ϵt has a unit exponential

distribution. Following to Lemma 2.4 of Straumann and Mikosch (2006), there exists an

0 < η < 1 and a sufficiently small 0 < r ≤ q such that E[(1 + α0(ϵt − 1))r] = η and thus
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E[
∏i−1

j=0(1 + α0(ϵt−j − 1))r] = ηi. Using this, we obtain

E[ft(θ0)r] = ωr
0

∞∑
i=0

E

i−1∏
j=0

(
1 + α0(ϵt−j − 1)

)r = ωr
0

∞∑
i=0

ηi < ∞.

As ln(1 + yt) = ft(θ0)ϵt, this also directly establishes the existence of a log-moment for

ln(1 + yt) and thus proves the first part of the theorem.

Part (ii): To prove that the filter f̂t(θ) is SE, we again apply Theorem 3.1 of Bougerol

(1993). The existence of a log-moment is ensured because

E

[
ln+ sup

θ∈Θ

∣∣∣ϕ̂(f̄1, yt, θ)∣∣∣] ≤ C + ln+ sup
θ∈Θ

ω + ln+ sup
θ∈Θ

(1− α) + ln+ f̄1 + sup
θ∈Θ

αE
[
ln+ ln (1 + yt)

]
< ∞,

for any f̄1 ∈ (0,∞), and where C is a finite constant. The last inequality follows from the

assumed log+ moment for ln(1+yt) and is automatically satisfied via part (i) of the theorem

if the model is correctly specified.

To establish the contraction property, note that

E

sup
θ∈Θ

sup
f̄

ln

∣∣∣∣∣∂ϕ̂(f̄ , yt, θ)∂f̄

∣∣∣∣∣
 = E

[
sup
θ∈Θ

ln (1− α)

]
= sup

θ∈Θ
ln (1− α) < 0,

as 0 < α ≤ α ≤ ᾱ < 1. We can now use Theorem 3.1 of Bougerol (1993) and conclude that

f̂t(θ) is asymptotically SE, and converges e.a.s. to a unique SE limit ft(θ), i.e., supθ∈Θ |f̂t(θ)−

ft(θ)|
e.a.s.→ 0.

This establishes the second part of the theorem.
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Part (iii): First note that f̂t(θ) ≥ ωf , and thus

sup
θ∈Θ

∣∣∣∣∣ 1

f̂t(θ)
− 1

ft(θ)

∣∣∣∣∣ ≤ ω2
f · sup

θ∈Θ

∣∣∣f̂t(θ)− ft(θ)
∣∣∣ e.a.s.−−−→ 0.

It then follows directly from Lemma 2.1 of Straumann and Mikosch (2006) that ẑft (θ)
e.a.s.−−−→

zft (θ) uniformly over θ ∈ Θ if E[ln+ ft(θ0)] < ∞. The latter follows immediately from Part

(i) above.

The boundedness of the moments follows along the same lines as Lemma A3 of Francq

and Zakoïan (2012) by replacing their a(ηt) = βFZ + αFZη
2
t for IID ηt with zero mean, unit

variance, and P (η2t = 1) < 1, by our 1 − α + αϵt for IID unit exponential ϵt, such that

0 < βFZ = 1 − α < 0 and αFZ = α, where βFZ and αFZ denote the parameters in the

parameterization of Francq and Zakoïan (2012). Similarly, the boundedness of the inverse

moment follows directly along the lines of Lemma 6 of Lee and Hansen (1994).

Proof of Theorem 3

Consistency: We show consistency by verifying the conditions in Theorem 3.4 of White

(1994) with respect to the sequence {Q̂T (θ)}T∈N as defined in equation (11). Specifically:

(i) The parameter space Θ is compact; (ii) {Q̂T (θ)}T∈N is a sequence of random functions

continuous on Θ almost surely; (iii) Q̂T (θ) = T−1
∑T

t=1 Q̂t(θ) → Q̄(θ) := E
[
Qt(θ)

]
as

T → ∞ almost surely; and (iv) {Q̄(θ) : Θ 7→ R} has an identifiably unique maximizer

θ0 ∈ Θ, that is, Q̄(θ0) > Q̄(θ) ∀θ 6= θ0.

Condition (i) holds by assumption, whereas (ii) trivially follows by continuity of {ẑft (θ)}t∈N

and {zft (θ)}t∈Z. Furthermore, from Theorem 1 we obtain that E
[
supθ∈Θ

∣∣∣Q̂t(θ)
∣∣∣] < ∞ and

E
[
supθ∈Θ

∣∣Qt(θ)
∣∣] < ∞. Theorem 1 also ensures that the process {ẑft (θ)}t∈N converges e.a.s.

to its stationary and ergodic limit {zft (θ)}t∈Z. We thus have

sup
θ∈Θ

∣∣∣Q̂t(θ)−Qt(θ)
∣∣∣ ≤ sup

θ∈Θ

∣∣∣ln ẑft (θ)− ln zft (θ)
∣∣∣− ϵt · sup

θ∈Θ

∣∣∣ẑft (θ)− zft (θ)
∣∣∣ .
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By the mean value theorem, there exist an intermediate point f̂ ⋆
t (θ) between f̂t(θ) and ft(θ)

such that, using Lemma 2.1 of Straumann and Mikosch (2006), we obtain that

sup
θ∈Θ

∣∣∣ln ẑft (θ)− ln zft (θ)
∣∣∣ = sup

θ∈Θ

∣∣∣ln f̂tθ)− ln ft(θ)
∣∣∣ = sup

θ∈Θ

∣∣∣∣ 1

f ⋆
t (θ)

∣∣∣∣ sup
θ∈Θ

∣∣∣f̂t(θ)− ft(θ)
∣∣∣

≤ 1

ωf

sup
θ∈Θ

∣∣∣f̂t(θ)− ft(θ)
∣∣∣ e.a.s.−−−→ 0, ,

Since E [ϵt] = 1 by Assumption 1, we can again apply Lemma 2.1 of Straumann and Mikosch

(2006) to get

ϵt · sup
θ∈Θ

∣∣∣ẑft (θ)− zft (θ)
∣∣∣ e.a.s.−−−→ 0.

It thus follows that

sup
θ∈Θ

∣∣∣Q̂t(θ)−Qt(θ)
∣∣∣ e.a.s.−−−→ 0, (A.2)

with E
[
supθ∈Θ

∣∣Qt(θ)
∣∣] < ∞. Let QT (θ) =

∑T
t=1 ln z

f
t (θ)− ϵt (z

f
t (θ)− 1) be the SE limit of

Q̂T (θ). Now, from the triangle inequality

sup
θ∈Θ

∣∣∣∣ 1T Q̂T (θ)− Q̄(θ)

∣∣∣∣ ≤ sup
θ∈Θ

∣∣∣∣ 1T Q̂T (θ)−QT (θ)

∣∣∣∣+ sup
θ∈Θ

∣∣∣∣ 1TQT (θ)− Q̄(θ)

∣∣∣∣ .
The first term on the RHS vanishes almost surely using Lemma 2.1 of Straumann and

Mikosch (2006) and (A.2). For the second term, we can apply the ULLN for stationary and

ergodic sequences of Rao (1962). As a result, we have

lim
T→∞

1

T

T∑
t=1

Q̂t(θ) = Q̄(θ) = 1 + E
[
ln zft (θ)− zft (θ)

]
, (A.3)

almost surely. For the last equality we have used the fact that ϵt is independent of zft (θ) and

E [ϵt] = 1, as implied by Assumption 1.

Furthermore, Q̄(θ) ≤ 0 with equality if and only if zft (θ) = 1 almost surely, because
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log(z) − z + 1 ≤ 0 for any z ∈ R+, with equality only for z = 1. Note that zft (θ0) = 1.

This in turn implies that Q̄(θ0) = 0. We conclude the consistency proof by showing that

if zft (θ) = zft (θ0) = 1 almost surely for every t, then it must be that ω = ω0 and α0 = α.

To show this, note that it suffices to show that the implication holds for ft(θ) = ft(θ0).

Therefore, let ft(θ) = ft(θ0) almost surely for every t. We then have that

0 = ft+1(θ)− ft+1(θ0)

= (ω − ω0) +
(
ft(θ)− ft(θ0)

)
− αft(θ) + α0 ft(θ0) + (α− α0) ϵtft(θ0)

= (ω − ω0) + (α− α0) (ϵt − 1) ft(θ0),

almost surely. Obviously, from Assumption 1, ϵt is an Ft-measurable random variable with

a non-degenerate distribution, and from Theorem 1 ft(θ0) also has a non-degenerate distri-

bution. As a result, the equality only holds almost surely if both α = α0 and ω = ω0.

The strong consistency of the MLE θ̂T in (3) is then guaranteed by noting that all the

conditions of Theorem 3.4 in White (1994) are satisfied.

Asymptotic normality: Next, by strong consistency of the MLE θ̂T , we obtain that, for

large enough T the following Taylor expansion is allowed:

∇θQ̂T (θ̂T ) = ∇θQ̂T (θ0) +∇θθQ̂T (θ
⋆)
(
θ̂T − θ0

)
, (A.4)

where Q̂T (θ) =
∑T

t=1 Q̂t(θ) and |θ⋆ − θ0| <
∣∣∣θ̂T − θ0

∣∣∣. It is easy to see that since the MLE

θ̂T is the maximizer of Q̂T (θ) and θ0 ∈ int(Θ) by Assumption 2, we have ∇θQ̂T (θ̂T ) = 02,

and hence we can rewrite (A.4) as

1

T
∇θθQ̂T (θ

⋆)
(
θ̂T − θ0

)
= − 1

T
∇θQ̂T (θ0). (A.5)
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To prove the asymptotic normality of the MLE θ̂T we verify the conditions given in The-

orem 6.2 of White (1994). In particular, we let (Ω,F ,P) be a complete probability space,

and verify that: (i) The parameter space Θ is a compact subset of R2 with non-empty

interior, (ii) the random function Q̂T (θ) : Ω × Θ 7→ R is continuously differentiable of

order 2 on Θ almost surely, (iii) The MLE θ̂T : Ω 7→ Θ is F -measurable and strongly con-

sistent, i.e. θ̂T
a.s.→ θ0 where θ0 ∈int(Θ); (iv) the score vector satisfies T−1/2∇θQT (θ0) ⇒

N
(
02,E

[
∇θQt(θ0)∇θQt(θ0)

⊤]); (v) the uniform stochastic convergence of the Hessian ma-

trix, that is, supθ∈Θ

∥∥∥ 1
T
∇θθQ̂T (θ)−∇θθQ̄(θ)

∥∥∥ a.s.→ 0, where ∇θθQ̄(θ) = E
[
∇θθQt(θ)

]
is fi-

nite; (vi) the limit ∇θθQ̄(θ) evaluated at the true parameter vector θ0 satisfies −Q̄(θ0) =

−E
[
∇θθQt(θ0)

]
= I(θ0), where I(θ0) is the Fisher’s information matrix.

Obviously, (i)–(iii) are directly implied by Assumptions 1 and 2.

For (iv) it suffices to prove that {∇θQt(θ0)}t∈Z is a stationary and ergodic zero-mean mar-

tingale difference process with respect to the filtration {Ft}t∈N with Ft = σ{ϵt, ϵt−1, ϵt−2, . . . }.

In fact, note that

E
[
∇θQt(θ0)

∣∣∣ Ft−1

]
= ∇θzft (θ0)

(
1

zft (θ0)
− E

[
ϵt|Ft−1

])
= 02, (A.6)

which clearly follows from Assumption 1, the fact that ∇θzft (θ) are Ft−1-measurable, and

that zft (θ0) = 1 for all t.

Moreover, we can also prove that ∇θQt(θ0) is square-integrable since we clearly have

zft (θ0) = 1, and therefore ∇θzft (θ0) = −∇θ(1/zft (θ0)) and

E
[
∇θQt(θ0)∇θQt(θ0)

⊤
]
= E

∇θzft (θ0)∇θzft (θ0)
⊤

(
1

zft (θ0)
− ϵt

)2


= E
[
∇θzft (θ0)∇θzft (θ0)

⊤
]

= E

∇θ

(
1

zft (θ0)

)
∇θ

(
1

zft (θ0)

)⊤
 < ∞,

Appendix pg. 9



as implied by Assumption 1 together with Lemma B.2. Therefore, we are allowed to apply

the CLT for square-integrable martingales of Billingsley (1961) in order to obtain

T−1/2 ∇θQT (θ0) ⇒ N
(
02,E

[
∇θQt(θ0)∇θQt(θ0)

⊤
])

.

Next, we focus on (v) and prove the uniform stochastic convergence of the Hessian matrix.

From the triangle inequality

sup
θ∈Θ

∥∥∥∥ 1T∇θθQ̂T (θ)−∇θθQ̄(θ)

∥∥∥∥ ≤ sup
θ∈Θ

∥∥∥∥ 1T∇θθQ̂T (θ)−
1

T
∇θθQt(θ)

∥∥∥∥
+ sup

θ∈Θ

∥∥∥∥ 1T∇θθQT (θ)−∇θθQ̄(θ)

∥∥∥∥ , (A.7)

where {∇θθQt(θ)}t∈Z is stationary and ergodic and ∇θθQ̄(θ) = E
[
∇θθQt(θ)

]
where, by

Lemma B.3, E
[
supθ∈Θ

∥∥∇θθQt(θ)
∥∥] exists.

Hence, from the ULLN of Rao (1962) for stationary and ergodic sequences,

sup
θ∈Θ

∥∥∥∥ 1T∇θθQT (θ)−∇θθQ̄(θ)

∥∥∥∥ a.s.−−→ 0.

Now, from Theorem 1 and Lemma B.1 together with continuity arguments, we obtain

sup
θ∈Θ

∥∥∥∇θθQ̂t(θ)−∇θθQt(θ)
∥∥∥ e.a.s.−−−→ 0.

Combining these results, we conclude that (A.7) vanishes almost surely, that is

sup
θ∈Θ

∥∥∥∥ 1T∇θθQ̂T (θ)−∇θθQ̄(θ)

∥∥∥∥ a.s.−−→ 0.

Moreover, by the strong consistency of the MLE, and the fact that θ 7→ ∇θθQ̄(θ) is con-

tinuous, to complete the proof, we only need to verify (vi) and show that ∇θθQ̄(θ0) is
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non-singular. By applying the law of iterated expectations and Assumption 1, we get that

E
[
∇θθQt(θ0)

]
= E

∇θθzft (θ0)

(
1

zft (θ0)
− ϵt

)
−∇θzft (θ0)∇θzft (θ0)

⊤ 1

zft (θ0)
2


= E

[
E
[
∇θθzft (θ0) (1− ϵt)−∇θzft (θ0)∇θzft (θ0)

⊤
∣∣∣ Ft−1

]]
= −E

[
∇θzft (θ0)∇θzft (θ0)

⊤
]
,

since zft (θ0), ∇θzft (θ0) and ∇θθzft (θ0) are Ft−1-measurable, zft (θ0) = 1 for all t, and E [ϵt] = 1.

Note that the process {∇θzft (θ0)}t∈Z can be written as

∇θzft+1(θ) = ∇θ

(
ft+1(θ0)

ft+1(θ)

)
= − ft+1(θ0)

ft+1(θ)2
∇θft+1(θ)

= − ft+1(θ0)

ft+1(θ)2

(
∇θω +

(
∇θα

) (
ft(θ0)ϵt − ft(θ)

)
+ (1− α)∇θft(θ)

)
=

(
ft+1(θ0)

ft+1(θ)

)2 (
ft(θ0)

ft+1(θ0)

) (
wt(θ) + (1− α)∇θzft (θ)

)
, (A.8)

wt(θ) =
(
−1/ft(θ0) , (1/zft (θ))− ϵt

)⊤
,

where ft(θ0)/ft+1(θ0) = 1/(1 + α0(ϵt − 1) + ω0/ft(θ0)). Since {∇θzt(θ0)}t∈Z are stationary

and ergodic, if ∇θθQ̄(θ) were singular, then ∃λ ∈ R2\{02} such that λ⊤∇θzft (θ0) = 02

almost surely ∀t ∈ Z. This is obviously ruled out by the functional form of (A.8) and

the unit exponential distributional form of ϵt and, therefore, it must be that λ⊤∇θzft (θ0) =

02 ⇐⇒ λ = 02 and thus, ∇θθQ̄(θ0) is non-singular. In conclusion, we note that the Fisher’s

information equality E
[
∇θQt(θ0)∇θQt(θ0)

⊤] = −E
[
∇θθQt(θ0)

]
= I(θ0) follows by standard

arguments.

Appendix pg. 11



Web Appendix B: Technical lemmas

We define the operators ∇θ = ∂
∂θ

and ∇θθ = ∂2

∂θ∂θ⊤
. In addition, we denote the score vector

by ∇θQt(θ) =
(
∇ωQt(θ),∇αQt(θ)

)⊤ ∈ R2, and the Hessian matrix

∇θθQt(θ) =

∇ωωQt(θ) ∇ωαQt(θ)

∇ωαQt(θ) ∇ααQt(θ)

 ∈ R2×2.

It is important to note that differentiating the log-likelihood difference Qt(θ) is equivalent

to differentiating ℓ̂t(θ) as defined in (3) since ℓt(θ0) does not depend on θ. Define zf,inv
t (θ) =

1/zft (θ). The elements of the score vector are given by

∇θQt(θ) =
(
zft (θ)

−1 − ϵt

)
∇θzft (θ) =

(
ϵt − zf,inv

t (θ)
) ∇θzf,inv

t (θ)

zf,inv
t (θ)2

, (B.1)

and

∇θθQt(θ) =
(
zft (θ)

−1 − ϵt

)
∇θθzft (θ)−

∇θzft (θ)∇θzft (θ)
⊤

zft (θ)
2

=
(
ϵt − zf,inv

t (θ)
)(∇θθzf,inv

t (θ)

zf,inv
t (θ)2

− ∇θzf,inv
t (θ)∇θzf,inv

t (θ)⊤

zf,inv
t (θ)3

)

− ∇θzf,inv
t (θ)∇θzf,inv

t (θ)⊤

zf,inv
t (θ)2

,

(B.2)

where the first derivative processes ∇θzf,inv
t (θ) = −zft (θ)

2 ∇θzft (θ) are defined as ∇θzf,inv
t (θ) =(

∇ωzf,inv
t (θ),∇αzf,inv

t (θ)
)⊤

∈ R2, where

∇θzf,inv
t+1 (θ) =

∇ωzf,inv
t+1 (θ)

∇αzf,inv
t+1 (θ)

 =


∇ωft+1(θ)

ft+1(θ0)

∇αft+1(θ)

ft+1(θ0)

 =
∇θft+1(θ)

ft+1(θ0)
, (B.3)
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and

∇θft+1(θ) = ϕθ
t

(
ft(θ),∇θft(θ), ϵt, θ

)
=

 1

ft(θ0)ϵt − ft(θ)

+ (1− α)∇θft(θ). (B.4)

For the second derivative processes ∇θθzf,inv
t (θ), we have

∇θθzf,inv
t+1 (θ) =

∇θθft+1(θ)

ft+1(θ0)
= ft+1(θ0)

−1

∇ωωft+1(θ) ∇ωαft+1(θ)

∇ωαft+1(θ) ∇ααft+1(θ)

 , (B.5)

∇θθft+1(θ) = ϕθθ
t

(
ft(θ),∇θft(θ),∇θθft(θ), ϵt, θ

)

= ∇θ⊤


 1

ft(θ0)ϵt − ft(θ)

+ (1− α)∇θft(θ)


= −

 0 ∇ωft(θ)

∇ωft(θ) 2∇αft(θ)

+ (1− α)∇θθft(θ). (B.6)

Similar derivations hold for the initialized counterparts ẑf,inv
t+1 (θ) = f̂t+1/ft+1(θ0).

The following Lemma shows that the derivative processes ∇θzf,inv
t (θ) and ∇θθzf,inv

t (θ) of

the ratio process {zf,inv
t (θ)}t∈Z are also asymptotically stationary and ergodic with bounded

log-moments.

Lemma B.1. Under the conditions of Theorem 1,

sup
θ∈Θ

∥∥∥∇θẑf,inv
t (θ)−∇θzf,inv

t (θ)
∥∥∥ e.a.s.−−−→ 0,

sup
θ∈Θ

∥∥∥∇θθẑf,inv
t (θ)−∇θθzf,inv

t (θ)
∥∥∥ e.a.s.−−−→ 0,

for stationary and ergodic derivative processes ∇θzf,inv
t (θ) and ∇θθzf,inv

t (θ).
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Proof of Lemma B.1

We note that ∇θf̂t+1(θ) is a function of both the filter f̂t(θ) and its derivative ∇θf̂t(θ). To

establish the stationarity and ergodicity, we verify the conditions given in Theorem 2.10 of

Straumann and Mikosch (2006) for perturbed stochastic recurrence equations (SREs).

It is immediate to see that the conditions S.1 and S.2 stated in Theorem 2.10 of Strau-

mann and Mikosch (2006) are the same as the log-moment and the contraction condition in

Theorem 3.1 of Bougerol (1993), and these are clearly implied by Theorem 1, since the map-

ping function ϕθ
t

(
f̂t(θ),∇θf̂t(θ), ϵt, θ

)
has finite log-moment and the contraction condition

is satisfied because 0 < α < α < ᾱ < 1. We then only have to check condition S.3 of Strau-

mann and Mikosch (2006), that ensures that the perturbed and unperturbed SRE converge

sufficiently fast for the difference between their asymptotic solutions to vanish exponentially

fast.

The condition follows by showing that

sup
θ∈Θ

∥∥∥∥ϕθ
t

(
f̂t(θ),∇θf̄1(θ), ϵt, θ

)
− ϕθ

t

(
ft(θ),∇θf̄1(θ), ϵt, θ

)∥∥∥∥ e.a.s.−−−→ 0,

where ∇θf̄1(θ) is some fixed starting point for the derivative recursion. It is straightforward

to see that the norm is given by

sup
θ∈Θ

∥∥∥∥∥∥∥
 0

f̂t(θ)− ft(θ)


∥∥∥∥∥∥∥ e.a.s.−−−→ 0.

As ∇θẑf,inv
t (θ) = ∇θf̂t(θ)/ft(θ0), the first result now follows immediately.

The second result follows along the same lines, but now using the SRE defined by

ϕθθ
t (ft(θ),∇θft(θ),∇θθft(θ)) in (B.6) and using the e.a.s. convergence of both f̂t(θ) and

∇θf̂t(θ) to their SE limits.

Next we introduce another lemma that provides a suitable number of bounded moments
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for the derivatives of the ratio process {zf,inv
t (θ)}t∈Z, i.e., {∇θzf,inv

t (θ)}t∈Z and {∇θθzf,inv
t (θ)}t∈Z.

As it is clear from equations (B.1) and (B.2), this is a necessary step to ensure that the score

vector of the log-likelihood is a martingale difference sequence with bounded and constant

variance-covariance matrix and, further, that the empirical mean of the negative Hessian

matrix converges almost surely to a positive-definite constant matrix.

Lemma B.2. Under the conditions of Theorem 1, the derivatives processes {∇θzf,inv
t (θ)}t∈Z

and {∇θθzf,inv
t (θ)}t∈Z have n uniformly bounded moments ∀n > 0, that is

E

[
sup
θ∈Θ

∥∥∥∇θzf,inv
t (θ)

∥∥∥n] < ∞, E

[
sup
θ∈Θ

∥∥∥∇θθzf,inv
t (θ)

∥∥∥n] < ∞.

Proof of Lemma B.2

Consider the SRE (B.3), then we have
∥∥∥∇θzf,inv

t (θ)
∥∥∥ =

∥∥∇θft(θ)/ft(θ0)
∥∥, and

∥∥∥∥∥∇θft+1(θ)

ft(θ0)

∥∥∥∥∥ ≤ (1− α)t

∥∥∥∥∥∇θf̄1(θ)

ω0

∥∥∥∥∥+
t∑

i=0

(1− α)i

∥∥∥∥∥∥∥
 1

ω0

ϵt−ift−i(θ0)
ft(θ0)

− ft−i(θ)
ft(θ0)


∥∥∥∥∥∥∥ ,

so that, for t sufficiently large, we get∥∥∥∥∥∇θft+1(θ)

ft(θ0)

∥∥∥∥∥ ≤ C +
∞∑
i=0

(1− α)i
∥∥∥∥ϵt−ift−i(θ0)

ft(θ0)

∥∥∥∥+ ∞∑
i=0

(1− α)i
∥∥∥∥ft−i(θ)

ft(θ0)

∥∥∥∥ .
Since Theorem 1 implies that E

[
log+

∣∣ϵtft(θ0)∣∣] ≤ log 2 + E
[
log+ |ϵt|

]
+ E

[
log+

∣∣ft(θ0)∣∣] <
∞ and E

[
log+

∣∣ft(θ)∣∣] < ∞, then by Lemma 2.2 of Berkes et al. (2003) and using the

exponential decay of the weights (1−α), it holds that
∑t

i=0 (1− α)i
∥∥ϵt−ift−i(θ0)

∥∥ < ∞ and∑t
i=0 (1− α)i

∥∥ft−i(θ)
∥∥ < ∞ with probability one.

Next, we also note that by Assumption 1 it clearly holds that E
[
|ϵt|r

]
< ∞ for some

sufficiently small r > 0, whereas in Theorem 1 we already proved that E
[∣∣ft(θ0)∣∣r] < ∞.

From this, it follows that E
[
supθ∈Θ

∣∣ft(θ)∣∣r] < ∞, because, for t sufficiently large and the
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strict stationarity of
{
ft(θ)

}
t∈Z, we have

ft+1(θ) =ω + (1− α) ft(θ) + α ln(1 + yt) = ω + (1− α) ft(θ) + αϵtft(θ0)

=
ω

α
+

∞∑
i=0

(1− α)i ϵt−ift−i(θ0), (B.7)

so that, for all δ > 0, an application of the Markov’s and Chauchy-Schwartz inqualities yields

P

sup
θ∈Θ

∞∑
i=0

(1− α)i ϵt−ift−i(θ0) > δ

 ≤ δ−r/2E
[
|ϵ0|r

]
E
[∣∣f0(θ0)∣∣r] sup

θ∈Θ

∞∑
i=0

(1− α)i < ∞.

Moreover, using the almost sure representation in (B.7), we have∥∥∥∥∥∇ω

(
ft+1(θ)

ft+1(θ0)

)∥∥∥∥∥ =

∥∥∥∥∇ωft+1(θ)

ft+1(θ0)

∥∥∥∥ =
∥∥∥(α ft+1(θ0)

)−1
∥∥∥ ≤ ‖αω0‖−1 , (B.8)

and, using ϵtft(θ0) ≤ α−1
0 ft+1(θ0),

∥∥∥∥∇αft+1(θ)

ft+1(θ0)

∥∥∥∥ =

∥∥∥∥∥− ω
α2 +

∑∞
i=0 (1− α + i α) (1− α)i−1 ϵt−ift−i(θ0)

ft+1(θ0)

∥∥∥∥∥

≤ ω

α2 ω0

+

∥∥∥∥∥
∑∞

i=0 (1− α + i α) (1− α)i−1 ϵt−ift−i(θ0)

ω0 +
∑∞

i=0(1− α)iϵt−ift−i(θ0)

∥∥∥∥∥

=
ω

α2 ω0

+

∥∥∥∥∥
∑∞

i=0 (1− α + i α) (1− α)i−1 ln(1 + yt−i)

ω0 +
∑∞

i=0(1− α)i ln(1 + yt−i)

∥∥∥∥∥ . (B.9)

The rest of the proof now follows along the same lines as Lemma 5.2 in Berkes et al. (2003).

A similar argument proves the result for the second derivative process {∇θθzf,inv
t (θ)}t∈N.

Lemma B.3. Under the conditions of Theorem 1, the Hessian processes {∇θθzf,inv
t (θ)}t∈Z

has a uniformly bounded moment, that is

E

[
sup
θ∈Θ

∥∥∥∇θθQt(θ)
∥∥∥] < ∞.
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Proof of Lemma B.3

Using equation (B.2), together with a combination of Hölder and Minkowsky inequalities,

we obtain

E

[
sup
θ∈Θ

∥∥∥∇θθQt(θ)
∥∥∥]

≤

E

[
sup
θ∈Θ

∥∥∥ϵt − zf,inv
t (θ)

∥∥∥2]
1/2

E

sup
θ∈Θ

∥∥∥∥∥∇θθzf,inv
t (θ)

zf,inv
t (θ)2

− ∇θzf,inv
t (θ)∇θzf,inv

t (θ)⊤

zf,inv
t (θ)3

∥∥∥∥∥
2



1/2

+ E

sup
θ∈Θ

∥∥∥∥∥∇θzf,inv
t (θ)∇θzf,inv

t (θ)⊤

zf,inv
t (θ)2

∥∥∥∥∥


≤C ×

(E [ϵ2t ])1/2 +
E

[
sup
θ∈Θ

∣∣∣zf,inv
t (θ)

∣∣∣2]
1/2



×


E

sup
θ∈Θ

∥∥∥∥∥∇θθzf,inv
t (θ)

zf,inv
t (θ)2

∥∥∥∥∥
2



1/2

+

E

sup
θ∈Θ

∥∥∥∥∥∇θzf,inv
t (θ)∇θzf,inv

t (θ)⊤

zf,inv
t (θ)3

∥∥∥∥∥
2



1/2


+ C × E

sup
θ∈Θ

∥∥∥∥∥∇θzf,inv
t (θ)∇θzf,inv

t (θ)⊤

zf,inv
t (θ)2

∥∥∥∥∥
 .

By Assumption 1 we clearly have that E
[
ϵ2t
]
= 1 whereas by Theorem 1(iii) it holds that

E
[
supθ∈Θ

∣∣∣zf,inv
t (θ)

∣∣∣n] = E
[
supθ∈Θ

∣∣∣1/zft (θ)∣∣∣n] < ∞ for any n > 0. Furthermore, in Lemma

B.2 we proved that the derivative processes satisfy E
[
supθ∈Θ

∥∥∥∇θzf,inv
t (θ)

∥∥∥n] < ∞ and

E
[
supθ∈Θ

∥∥∥∇θθzf,inv
t (θ)

∥∥∥n] < ∞ for any n > 0, and therefore, by combining all these results,

we infer that E
[
supθ∈Θ

∥∥∇θθQt(θ)
∥∥] < ∞, thus concluding the proof of the Lemma.
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Web Appendix C: Derivation of market risk measures

To derive the one-step-ahead VaR, we note that

G(xt) = 1−G(xt) = P(Xt > xt) = P(Xt > τt)P(Xt > xt|Xt > τt)

= P(Xt > τt)P(Xt > xt|(Xt − τt)/τt > 0) = G(τt)F (yt),

where the third equality sign uses a standard conditioning argument, and yt = (xt − τt)/τt.

We can use this result to obtain VaRγ(Xt | Ft−1, θ) = qγt (Xt) by setting

G(xt) = G(τt)F (yt) = γ

⇐⇒ nt

t
(1 + yt)

−1/ft = γ

⇐⇒ 1 + τ−1
t (qγt (Xt)− τt) =

(
γ

nt/t

)−ft

⇐⇒ qγt (Xt) = τt

(
γ

nt/t

)−ft

,

where nt/t serves as an estimator of G(τt). This expression coincides with the expression

given in the main text.

The Expected Shortfall ESγ(Xt) is given by

ESγ(Xt) =
1

γ

∫ 1

1−γ

qst (Xt)ds

=
VaRγ(xt | Ft−1, θ)

1− ft
,

which is derived by moving constant terms in front of the integral and noting that

∫ 1

1−γ

(1− s)−ftds = γ1−ft

1− ft

for ft < 1.
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Web Appendix D: PZC (2019) thresholds

This section presents our empirical results when Patton et al. (2019) (PZC)’s joint model

of ES and VaR is used to obtain the thresholds τt. Table D.1 reports the model’s static

parameter estimates. Table D.2 reports VaR violation rates. Figures D.1 and D.2 plot the

four exchange rate log-returns, tail shape parameters, and the corresponding extreme risk

measures.

Table D.1: PZC (2019) parameter estimates
Parameter estimates for the dynamic EVT model. The first illustration considers EUR/USD
and RUB/USD daily exchange rate log-returns. The second illustration considers BTC/USD and
ETH/USD hourly cryptocurrency log-returns. Standard error estimates are in round brackets,
p-values are in square brackets.

First illustration Second illustration
EUR/USD RUB/USD BTC/USD ETH/USD

α 0.007 0.027 0.005 0.004
(0.005) (0.014) (0.002) (0.002)
[0.12] [0.05] [0.02] [0.07]

βτ 0.996 0.997 0.995 0.989
γτ 0.009 0.023 0.007 0.010
bτ -0.979 -0.562 -1.479 -1.958
aτ -0.691 -0.329 -0.815 -1.170
T 6501 7223 41193 41258
T ∗ 640 786 2217 2211
loglik -124.503 -496.864 -1493.521 -1161.735
AIC 251.006 995.728 2989.043 2325.469
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Table D.2: PZC (2019) VaR violation rates
VaR violation rates and p-values for the Kupiec (2000) test that this rate coincides with the
nominal rate. Top and bottom panels consider VaR estimates and their violation rates at
conventional non-extreme (90% and 95%) and more extreme (99%) confidence levels.

First illustration Second illustration
EUR/USD RUB/USD BTC/USD ETH/USD

τ̂t = VaR0.9
t τ̂t = VaR0.95

t

VaR violations 9.84% 10.88% 5.38% 5.36%
p-value 0.68 0.01 0.00 0.00

VaR0.99
t VaR0.99

t

VaR violations 0.49% 0.84% 1.06% 1.00%
p-value 0.00 0.17 0.26 0.98
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Figure D.1: Exchange rate log-returns, tail shape, and extreme risks
Top panels: EUR/USD (left) and RUB/USD (right) daily log-returns (× 100). We focus on the
adverse right tail, corresponding to a depreciation of the local currency viz-a-viz the U.S. dollar.
Thresholds τt are reported at a 90% confidence level. VaR and ES are plotted at an extreme 99%
confidence level. Middle panels: filtered tail shape parameter ft with asymmetric 95% confidence
band. Bottom panels: Zoomed-in extreme risks with key events.
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Figure D.2: Cryptocurrency log-returns, tail shape, and extreme risks
Top panels: Bitcoin/USD (left) and Ether/USD (right) hourly log-returns (× 100). Thresholds τt
are reported at a 95% confidence level. VaR and ES are plotted at an extreme 99% confidence
level. The thresholds τt, VaR, and ES are mirrored at the horizontal axis to correspond to
log-returns (instead of log-losses). Middle panels: filtered tail shape parameter ft with asymmetric
95% confidence band. Bottom panels: Zoomed-in extreme risks with key events.
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Web Appendix E: Extra simulation results

Figure E.1: Simulation results scenario 3
Top panels show kernel density estimates of the distribution of the MLE for α̂ for scenario 3 (i.e., a
Gaussian AR(1) for the true log(ft), such that the model’s tail shape dynamics are mis-specified),
using estimated thresholds τ̂t. The kernel density estimates are based on S = 1, 000 simulations.
Lower panels show the fit of the filtered f̂t(θ̂) to the true ft(θ0) in a typical simulation run for two
of the sample sizes. Note that the number of POTs is about 1− κ = 10% of the sample size given
the mixture setup of the DGP.

(a) α̂ (ω̂ free, τ̂t) (b) α̂ (ω̂ = 0, τ̂t)

(c) fit of filter (T = 5000) (d) fit of filter (T = 25000)
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