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Abstract

Determining a plausible number of components in a factor model is a nontrivial issue in

case of weak data, sparse model restrictions and diffuse prior information. We discuss the

issue of structural parametric identification in a static factor model and introduce orthog-

onal restrictions which imply that inference is independent of the order of the dependent

variables. Given that financial and economic relations vary over time, we propose the use of

predictive likelihoods in combination with moving window estimation in order to determine

a plausible time-varying number of factor model components. Results are presented on a

residual momentum strategy based on a time-varying latent factor model which outperforms

a standard momentum strategy using a portfolio of US industrial stocks.

*This paper is an invited comment on Frühwirth-Schnatter et al. (2024), Sparse Bayesian Factor Analysis

When the Number of Factors Is Unknown. It should not be reported as representing the views of Norges Bank.

The views expressed are those of the authors and do not necessarily reflect those of Norges Bank.

1



1 Introduction

In their interesting and mathematically elegant paper Frühwirth-Schnatter et al. (2024) discuss

the issue of determining a plausible number of latent components in a sparse factor model

(technically: determining the rank of the factor space) which is a nontrivial issue in case of

weak data, sparse model restrictions and diffuse prior information. In this context the authors

focus on the connection between the theoretical issue of parametric identification restrictions

including informative prior information and the operational issue of Bayesian Markov chain

Monte Carlo estimation. Specifically, the authors achieve identification and inference which

is independent from the ordering of the dependent variables by making use of the concept of

Unordered Generalized Lower Triangular (UGLT) structure and for estimation they introduce

a novel Markov chain Monte Carlo procedure which makes use of a reversible jump sampler.

All this in order to learn about a plausible number of latent factors with substantial posterior

probability.

We introduce two contributions to this research. We start to discuss the issue of identification

restrictions within the authors’ framework of a static factor model and present an operational

alternative to the UGLT structure by introducing orthogonal parameter restrictions. Second,

we propose the use of predictive likelihoods in combination with moving window estimation in

order to determine a plausible time-varying number of factor model components. Our motiva-

tion stems from the observation that financial and economic relations vary over time. One of

these time-varying relations is the increase in the correlations between equities during market

downturns, that is, during equity market downturns fewer latent factors are assumed to be able

to explain the same amount of variation in equity returns. We present empirical results on how

a residual momentum strategy based on a time-varying latent factor model outperforms a stan-

dard momentum strategy using a portfolio of industrial stocks. This strategy has been popular

among investors over a long time.
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2 Identification restrictions in factor models

For expository purposes we start with a basic multivariate regression model:

y′
t = x′

tB
′ + ϵ′t, ϵt ∼ NID(0,Σ), (1)

where yt is an m-vector, xt is an r-vector and B an m × r matrix. It is well-known that a

Bayesian analysis of this model using diffuse priors leads to a marginal posterior of B that is

bell-shaped and belongs to the class of matrix Student-t distributions. Determining a plausible

number of explanatory variables is a standard topic in an introductory Bayesian course. The

connection between model structure and estimation is direct: analytical as well as simulation

methods are used.

Next, consider a static factor model and adjust formula (1.1) of Frühwirth-Schnatter et al.

(2024) as:

y′
t = f ′tΛ+ ϵ′t, ft ∼ NID(0, Ir), ϵt ∼ NID(0,Σ0), Σ0 = Diag(σ2

1, . . . , σ
2
m), (2)

where ft is an r-vector and Λ an r × m matrix. The diagonal covariance matrix assumption

with respect to the disturbances ϵt implies that all cross-sectional correlation is captured by the

factors ft, in addition, cor(ft, ϵs) = 0 for ∀s, t. The vector of observations xt is replaced by a

vector of unobserved random factors ft and the matrix of coefficients B′ by a matrix Λ, labeled

factor loadings.

Let F be the T ×r matrix of factors. The identification problem of F and Λ can be seen from

the equality FΛ = FRR−1Λ for an r × r invertible (or invertible rotation) matrix R, which

has r2 free parameters. Hence, at least r2 parameter restrictions are needed for the model to be

identified. The identity covariance matrix of the ft imposes r(r+1)
2 restrictions, so an additional

r(r−1)
2 restrictions are required for identification. The transformed and/or rotated factors and

loadings still provide the same likelihood value.

We note that the key feature of factor models is that the information in the m economic

variables of interest yt can be compressed to a much lower number of r unobserved random

factors ft. Given model and data, we intend to have this information dominate prior information.
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However, given the present likelihood of the model with a diffuse prior it is clear that there does

not exist an operational estimation procedure for structural inference using Bayesian MCMC. Of

course, structural identification is not a necessary condition for forecasting, see Geweke (2007).

Next, consider the static factor model with a triangular normalization on Λ, given as:

Λ =

(
Λ

(r×r)
1 Λ

(r×(m−r))
2

)
, Λ1 =



λ11 0 . . . 0

λ21 λ22 . . . 0

...
...

. . .
...

λr1 λr2 . . . λrr


(3)

where Λ2 is unrestricted. The triangular normalization on Λ1 provides r(r−1)
2 restrictions.

Together with the restrictions on the covariance of the ft this gives parametric identification.

Combining a diffuse prior with the likelihood yields a posterior which is unbounded (for F

tending to 0), but integrable.1 Given the posterior structure and given an a priori fixed number

of factors r the corresponding MCMC method is a basic Gibbs sampler. However, the important

disadvantage is that inference depends on the ordering of the dependent variables.

As mentioned, Frühwirth-Schnatter et al. (2024) achieve inference which is independent from

the ordering of the dependent variables by making use of Unordered Generalized Lower Triangu-

lar structure. We propose to obtain this independence by making use of orthogonal normalization

on the parameters of the model. The orthogonal normalization implies that in this case no pre-

ferred ordering of the variables is imposed and, conditionally upon a largest singular value, the

region of integration of the factors and factor loadings is bounded. That is, the parametrization

FΛ can be linked to the singular value decomposition FΛ = UKV, where the rectangular T × r

matrix U is an element of the Stiefel manifold U′U = Ir and the r×m matrix V is an element

of the Stiefel manifold V′V = Im. K is a diagonal r × r matrix with positive diagonal entries

equal to the singular values of FΛ, denoted by κ = (κ1, . . . , κr)
′. The manifolds on which U

and V are defined have finite volume conditionally upon a largest singular value and the region

of integration of the factors and factor loadings is then bounded.

In order to achieve this we propose an approach that directly uses the structure of the

singular value decomposition and makes use of a lasso type shrinkage prior for regularization,

1See Bastürk et al. (2017), Section 3.3 for proofs.
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see Tibshirani (1996). As it is specified above, the singular value decomposition is not uniquely

defined. Any simultaneous permutation of the columns of U, K and V also constitutes a singular

value decomposition. A common way to avoid this ambiguity is by ordering the singular values

that occur on the diagonal of K as κ1 ≥ κ2 ≥ · · · ≥ κr ≥ 0, which is more straightforward than

devising an ordering of the columns of F and Λ. Because of this ordering each element κi+1 for

i = 1, . . . , r − 1 is bounded by κi. Only κ1 remains unbounded towards +∞. Integrability is

thus determined by the behavior of κ1.
2

A natural choice for κ1 that is consistent with the uniform prior on the simplex for κ2, . . . , κr|κ1

is the exponential distribution. Conditional on κ1, all model parameters (except the covariance

matrix Σ) are bounded to finite areas.

We conclude that given the standard form of a static factor model and using a lasso type

shrinkage prior under orthogonal normalization on the parameters of the matrix with reduced

rank, the marginal posteriors of these parameters are proper with finite first and higher order

moments and inference is independent of the ordering of the dependent variables. For a survey

on alternative identification restrictions with corresponding MCMC algorithms, see Koop et al.

(2006).

3 Learning on a plausible number of factor model components

using predictive likelihoods

We propose a ‘predictive likelihood’ approach to assess the number of factors in a factor model.

The basic idea of this approach is to split the data into two parts: a training set and a ‘hold-out’

set of data. In the first part a possible weak prior is transformed to an informative posterior

which serves as a prior for the second part of the data. This also refrains from the Bartlett

(1957) paradox occurring under diffuse priors.3 The gain in the use of ‘prior data points’ is

to obtain predictive likelihoods for the computation of reliable predictive model probabilities.

It is important to note that predictive likelihoods evaluated at different times (using moving

2If a singular value occurs more than once, then the columns of U and V corresponding to these singular
values are not uniquely defined. Any other orthonormal basis that spans the same space will also do. Although
the transformation between the matrix FΛ and its singular value decomposition (U,K, V ) is still not invertible
everywhere, this is an event with zero measure.

3Another approach is to construct a so-called imaginary sample by introducing a set of dummy observations.
It yields a pragmatic class of priors proposed by Christopher Sims (Sims, 2005).
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estimation windows) provide time-varying model probabilities. Any policy based on these model

weights will therefore be time-varying as well.

Let Mr denote the factor model with r << m factors. A predictive likelihood for model Mr

is computed by splitting the dataset as follows:

Y =

 Yt0:t1

Yt1+1:t2

 =

Y ⋆

Ỹ

 (4)

where observations from t0 to t1 are defined as the ‘training sample’ and observations from t1+1

to t2 are defined as the ‘hold-out sample’. The predictive likelihood for the hold-out sample is

then defined as:

p(Ỹ |Y ⋆,Mr) =
p(Ỹ , Y ⋆|Mr)

p(Y ⋆|Mr)
=

p(Y |Mr)

p(Y ⋆|Mr)
(5)

Choosing the size of the hold-out samples is important. If the hold-out sample is very small, the

qualities of the models may be hard to distinguish (with almost equal model probabilities), and

the results may be sensitive to just a few hold-out observations. If the hold-out sample is very

large, the results may be sensitive to the few observations in the small training sample, and the

Bartlett (1957) paradox may imply that we choose a model with too small number of factors

r. Naturally, a robustness check should be performed to see the effect of training and hold-out

sample size selection.

A simple method to estimate model probabilities is the harmonic mean estimator (Newton

and Raftery, 1994; Ardia et al., 2012), which has the advantage that it is easily estimated using

a set of draws generated from the posterior distribution of parameters θr of model Mr. The

computational steps are as follows. Calculate two marginal likelihoods for each model Mr, a

marginal likelihood for the whole sample and the second for the training sample. The full

sample marginal likelihood is given as:

p(Y |Mr) =

∫
θr

p(Y |θr,Mr)p(θr|Mr)dθr ≈

(
1

N

N∑
i=1

p(Y |θf,ir ,Mr)
−1

)−1

with posterior draws θf,ir (i = 1, . . . , N) based on the full data sample. The training sample
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marginal likelihood is given as:

p(Y ⋆|Mr) =

∫
θr

p(Y ⋆|θr,Mr)p(θr|Mr)dθr ≈

(
1

N

N∑
i=1

p(Y ⋆|θ⋆,ir ,Mr)
−1

)−1

with posterior draws θ⋆,ir (i = 1, . . . , N) based on the training sample. Next calculate predictive

likelihoods for each model Mr using (5) as:

p(Ỹ |Y ⋆,Mr) =
p(Y |Mr)

p(Y ⋆|Mr)
≈
∑N

i=1 p(Y
⋆|θ⋆,nr ,Mr)

−1∑N
i=1 p(Y |θf,nr ,Mr)−1

. (6)

From the predictive likelihoods for each model compute model probabilities for Mr for r ∈

1, . . . ,m− 1:

p(Mr|Y ) =
p(Ỹ |Y ⋆,Mr)× p(Mr)∑m−1

r′=1 p(Ỹ |Y ⋆,Mr′)× p(Mr′)
,

where p(Mr) is the prior model probability. An uninformative prior, such as p(Mr) = 1
m−1 is

easy to use in this setting. Based on the predictive likelihood calculation from a rolling window

of predictive likelihoods, an optimal model M⋆ can be chosen or Bayesian Model Averaging can

be applied.

Simulated data experiment For illustrative purposes we apply the predictive likelihood

approach for the factor model to simulated data. We consider simulated datasets with T = 100

and T = 250 observations. In order to see the effect of number of dependent variables m and

number of factors r on the predictive likelihood methodology, we consider r = 1, 2 common

factors for m = 2, 4, 10, 20 data series. For each simulation experiment, we apply the predictive

likelihood approach with different sizes of training samples, consisting of 5%, 10%, 20% and 50%

of observations. We replicate each simulation experiment 100 times.

Table 1 presents the posterior probabilities from all simulation experiments, where we report

the posterior model probabilities for different number of factors averaged over 100 simulation

experiments for each simulation setting. Posterior results are based on 4000 posterior draws,

where the first 2000 draws are burn-in draws.

The results in Table 1 indicate that the highest probabilities (indicated by boldface entries)

for each simulation experiment, indicated in rows, correspond to the true number of factors.

7



Table 1: Average posterior probabilities from 100 simulation replications with T observations,
m variables and r factors. Highest probabilities are indicated by boldface table entries.

5% training sample
T m r pr(r = 1) pr(r = 2) pr(r = 3) pr(r = 4) pr(r = 5) pr(r = 6)

100 2 1 1.00 0.00 - - - -
100 10 1 0.96 0.02 0.00 0.02 0.00 0.00
250 4 2 0.00 1.00 0.00 0.00 - -
250 20 2 0.00 1.00 0.00 0.00 0.00 0.00

10% training sample
T m r pr(r = 1) pr(r = 2) pr(r = 3) pr(r = 4) pr(r = 5) pr(r = 6)

100 2 1 1.00 0.00 - - - -
100 10 1 0.89 0.07 0.00 0.03 0.01 0.00
250 4 2 0.00 1.00 0.00 0.00 - -
250 20 2 0.00 1.00 0.00 0.00 0.00 0.00

20% training sample
T m r pr(r = 1) pr(r = 2) pr(r = 3) pr(r = 4) pr(r = 5) pr(r = 6)

100 2 1 1.00 0.00 - - - -
100 10 1 0.77 0.14 0.05 0.02 0.01 0.00
250 4 2 0.01 0.98 0.01 0.00 - -
250 20 2 0.00 0.95 0.01 0.00 0.03 0.01

50% training sample
T m r pr(r = 1) pr(r = 2) pr(r = 3) pr(r = 4) pr(r = 5) pr(r = 6)

100 2 1 1.00 0.00 - - - -
100 10 1 0.34 0.13 0.02 0.08 0.18 0.24
250 4 2 0.00 0.95 0.05 0.00 - -
250 20 2 0.00 0.88 0.02 0.02 0.01 0.07

Figure 1: Log-predictive likelihoods for different number of factors for two sets of simulated data
with T = 100 observations. The left panel corresponds to m = 2 series and r = 1 common
factor. The right panel corresponds to m = 10 series and r = 1 common factor. Each simulation
experiment is repeated 100 times, as shown in the x-axes. Predictive likelihoods are calculated
using 10 percent of the sample as the training sample.
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In most simulation studies, the posterior probability is very close to 1 for the correct model

specification. Hence the predictive likelihoods provide a clear choice of models. Comparing

the bottom panel of Table 1 with the other panels, we conclude that the predictive likelihood

approach with a smaller training sample than 50% provides more clear indications of the correct

number of factors, with posterior probabilities being closer to 1 compared to the same simulation

setting but a larger training sample (50%). Thus, the length of the training sample should not

be chosen too large compared to the total length of the sample and a sensitivity analysis with

respect to the length of the training sample will give more confidence in the results.

Figure 1 presents the details of predictive likelihoods for two sets of simulated data and for

each simulation. These data correspond to T = 100, p = 2, r = 1 on the left panel of Figure 1

and T = 100, p = 10, r = 1 on the right panel of Figure 1. For both simulation specifications, the

correct number of factors r = 1, shown by the red lines in the figure, has the highest posterior

probability in almost all simulation replications. We therefore conclude that the predictive

likelihood approach accurately detects the number of factors, even with a small sample size.

Equity momentum at work using a time-varying latent factor model Financial mo-

mentum strategies are based on the expectation that past stock winners will continue to be

winners and past stock losers will continue to be losers. Standard equity momentum strategy

ranks stocks on their recent returns, skips a short period to overcome short term reversals and

then buys stocks in the top of the ranking and short-sells stocks in the bottom of the ranking.

We emphasize that standard momentum’s risk and return vary over time.

We compare the performance of residual momentum strategies based on the residual returns

(returns in excess of what is to be expected based on the factors and factor loadings) with a

standard momentum strategy. We use monthly return data on ten industry portfolios between

1960M7 and 2015M6, shown in Figure 2. The ten industries are labeled as ‘non-durables’,

‘durables’, ‘manufacturing’, ‘energy’, ‘hi-tech’, ‘telecom’, ‘shops’, ‘health’, ‘utilities’ and the

final category ‘others’. This residual industry momentum strategy is a combination of residual

momentum (Blitz et al., 2011) and industry momentum (Moskowitz and Grinblatt, 1999).

Results are presented in Table 2. In order to allow for changes in the number of factors,

we apply the moving window estimation method as follows. Within one estimation period, the
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Figure 2: Monthly percentage returns for ten industry portfolios.

static factor model is estimated for r = 2, . . . , 5 factors, and the optimal number of factors is

chosen based on the predictive likelihoods. The moving window estimation is based on a sample

of T = 240 observations. We consider two cases for the predictive likelihood calculation with

a ‘small training sample’ and a ‘large training sample’, consisting of 10% and 20% of the full

moving window sample, respectively. We first analyze the evolution of the number of factors

through the moving windows for the two training sample percentages. Figure 3 presents the

number of factors with the highest predictive likelihood for each estimation sample under two

training sample choices, where 10% and 20% of the total sample is used as training samples.

Figure 3 shows that the model with r = 3 factors is the most frequently chosen model using

both training samples. Despite this high frequency, the optimal number of factors according to

predictive likelihoods changes substantially over time. The obtained number of factors in the

left and right panels of Figure 3 are different, in particular, at the end of the sample period.

On the one hand, this difference indicates that the training sample choice should be made with

care in order to find the appropriate number of factors. On the other hand, this variation in

the number of factors may influence the gains from a trading strategy, like momentum. For the

latter reason, we next report the gains from trading strategies using both training samples.

One would expect that the number of optimal factors varies with the performance of equity
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Figure 3: Optimal number of factors for 10 industry portfolios. The figure presents the number
of factors with highest predictive likelihood at each estimation window for two training sample
choices (10% or 20% of the estimation window). X-axes correspond to the final month in the
estimation window.
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markets, in particular fewer factors are present in the model during market declines. We have

two major market declines in our sample: 2000-2002 and 2008 where equity markets lost 56 and

38 percent, respectively. We indeed find that during the equity market losses in 2000 to 2002

the optimal number of factors was 2. For the 2008 crash we do not find a smaller number of

optimal factors. This needs to be explored in further research.

Next, we report the performance of a standard momentum strategy and compare it with a

residual momentum strategy based on the factor model. The standard strategy is a benchmark

and by definition does not depend on an underlying model. The ten industry portfolios are

sorted on their mean (residual) returns in the last 12 months. The strategy is long in the best

industry and short in the worst industry, where this position is held for 12 months. The first

investment month is July 1980, as we require 240 months since 1960 for the first estimation of

the model parameters.

In Table 2, we report the following risk and return measures for the returns of each strategy:

mean return, volatility, Sharpe ratio, largest loss encountered, maximum drawdown, all measured

in percentages, and maximum recovery period measured in months. These values are based on

the realized returns of each investment strategy.

The standard industry momentum strategy does not yield positive average returns; its aver-
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age annual return is minus 1.1 percent. The 20 percent Bayesian Factor Model scores better in

all six criteria compared to the standard industry momentum strategy.

Table 2: Risk and return characteristics of standard momentum
compared with momentum from time-varying factors.

Standard Latent Factor Models
10% 20%

mean -1.13 2.82 3.75
volatility 21.54 20.16 12.56

Sharpe ratio -0.05 0.14 0.30

Largest loss -68.52 -68.52 -20.95
Max. drawdown 135.3 68.52 35.19
Max. recovery 15 9 9

We conclude that a Bayesian latent factor model with a time-varying number of factors,

moving window estimation and a training sample of 20 percent is able to outperform a standard

momentum strategy for all criteria in this portfolio setting of ten industries. Apparently, the

model adjusts quickly to big shocks and the number of optimal factors decreases when the equity

market experiences large losses. However, more empirical work needs to be done to assess its

properties adequately, which is outside the scope of the present paper.

4 Final comments

Since the early nineteen-seventies there has been a strong tradition in Bayesian econometrics of

studying the shape and integrability of posteriors of parameters of multivariate regression models

with a reduced rank using different normalization restrictions and so-called regularization priors.

Apart from the factor model, the other models are a time series model with an unknown number

of non-stationary components and a structural instrumental variable regression model where

number and strength of instrumental variables is not known. Research in this field was started

in econometrics by Anderson and Rubin (1949) in simultaneous equations models and in 1956

by the same authors in factor models (Anderson and Rubin, 1956). Johansen (1991) treated

reduced rank in a time series model with possibly non-stationary components. A survey of the

extensive recent frequentist literature is beyond the scope of this paper. There exists also an

emerging Bayesian literature about reduced rank estimation, see Bastürk et al. (2017), Section

3 and Appendix 3.2 for details.

We end with emphasizing that the paper by Frühwirth-Schnatter et al. (2024) gave much
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food for thought. We look forward to more theoretical and empirical work on the topic by the

authors. In this context, the dynamic nature of many models in economics is relevant. It is very

natural to allow parameters of such models to move through time. The well-known Normal or

Kalman Filter is a fundamental tool for this and it helps to give identification in factor models.

Although dynamic factor models make the mathematics of identification and possible MCMC

algorithms more complex, yet, this is a promising research field. We note that the application of

static factor models using moving estimation windows and predictive likelihoods for time-varying

posterior probabilities of numbers of factors is also able to yield profitable residual momentum

strategies that outperform benchmark strategies as the standard momentum strategy.

A second topic is to extend the work by the authors to the field of forecast combinations.

Some recent work is given in Billio et al. (2013), Casarin et al. (2023), Aastveit et al. (2023),

and Aastveit et al. (2024). The predictive probabilities introduced in the present paper can be

used that framework.
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