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Abstract

The identification of causal effects of marketing campaigns (advertisements, discounts, promotions,
loyalty programs) require the collection of experimental data. Such data sets frequently suffer from
limited sample sizes due to constraints (time, budget) which can result in imprecise estimators and
inconclusive outcomes. At the same time, companies passively accumulate observational data which
oftentimes cannot be used to measure causal effects of marketing campaigns due to endogeneity
issues. In this paper we show how estimation uncertainty of causal effects can be reduced by
combining the two data sources by employing a self-regulatory weighting scheme that adapts to
the underlying bias and variance. We also introduce an instrument-free exogeneity test designed to
assess whether the observational data is significantly endogenous and experimentation is necessary.
To demonstrate the effectiveness of our approach, we implement the combined estimator for a real-
life data set in which returning customers were awarded with a discount. We demonstrate how the
indecisive result of the experimental data alone can be improved by our weighted estimator, and
arrive to the conclusion that the loyalty discount has a notably negative effect on net sales.
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1 Introduction

Recent digitalisation has shifted decision-making in businesses from expert-driven judgement to data-
driven methods. Additionally, increasing opportunities in data collection have allowed firms in digital
marketing to passively accumulate fine-grained data of customer decisions such as online purchases
and ad click-through rates. The aim of much quantitative marketing research is to measure the
causal effect of product and marketing design choices like discounts, prices, advertising campaigns,
promotions, product recommendations, new product features, etc. The use of observational data
sets is problematic for measuring causal effects, as such data may suffer from endogeneity issues that
originate from omitted variables, simultaneity and measurement errors in the variables. All such issues
may lead to a bias in the estimator of the causal impact (Lewis et al. 2011). Literature reviews on
endogeneity issues, their sources, implications and remedies in marketing research are presented in
Rutz and Watson (2019), Papies et al. (2017), Ebbes et al. (2022).

A well-designed experimental data set is much less prone to endogeneity issues (Kohavi et al. 2009,
2020). Major companies such as Facebook (Gordon et al. 2019), Microsoft (Li et al. 2015) and Amazon
(Cui et al. 2019) have executed experiments to measure causal effects of design choices on consumer
decisions. The main challenge with experimental data is that it is often limited in scale, as the
design and execution of experiments are commonly considered expensive and operationally inefficient
(Gluck 2011). Furthermore, marketing budgets are limited in practice and obtaining large enough
data sets would require a lot of commitment and patience (Campbell et al. 2022). Finally, firms may
be confronted with ethical questions when they offer different prices or promotions to similar customer
groups for an extended periods of time while, at the same time, they may run the risk of harming
customer satisfaction (Nunan and Di Domenico 2022). These considerations are especially relevant for
small-to-medium businesses. Hence, for such companies it is challenging to acquire experimental data
sets with large enough sample sizes. As a result, there is no convincing evidence for the (in)effectiveness
of the marketing campaign since these small data sets typically do not have enough power to measure
an effect.

While observational and small experimental data sets individually have their drawbacks, combining
them can potentially be highly beneficial. In this paper, we propose a method of combining the two
data sources, using a weighted average of the separate estimates of the causal impact. The weight is
self-regulatory as it adapts to the bias-variance trade-off present in the data. For instance, when the
observational data produces a largely biased estimate due to endogeneity, the experimental estimate
is then relatively more reliable and the weight will favor the latter estimate. Conversely, whenever the
experimental sample size is small and the corresponding estimate is relatively less efficient, the weight
will now favor the experimental estimate less. After introducing this new estimation method and
analysing its asymptotic properties, we propose a test for exogeneity to formally assess the presence
of endogeneity in the observational data. The proposed test is similar to the Durbin-Wu-Hausman
test (see Durbin (1954), Wu (1973) and Hausman (1978)). However, in contrast, our exogeneity test
does not rely on instrumental variables, but exploits the exogeneity of the experimental data. This
test can prove to be useful in practice, as a rejection implies that experimentation might indeed be
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necessary to obtain an unbiased result.

To illustrate our method we consider an experimental-observational data set from a Dutch phone
repair company (ThePhoneLab) that is interested in the effect of a loyalty discount scheme based on
an annual allowance for returning customers. This eligibility procedure induces customers to be self-
selected into treatment. Such a scheme is likely giving rise to endogeneity due to omitted variables.
Therefore, to be able to measure the true impact of the discount, an experiment has been conducted
for a short time period in which customers were randomly selected to be eligible for the discount.
The resulting experimental estimate has suffered from a large variance and has led to an inconclusive
result about the effect of the discount on total net sales. When applying our proposed estimation and
testing procedures to this case, we conclude that there is in fact a significant negative effect. More
specifically, while the company was not able to measure the effect of the discount using experimental
data only, our method has established that the discount was in fact harmful. The discount scheme did
not provide sufficient incentives to customers to buy more than the cost of the discount. This case has
also demonstrated that our method is straightforward and simple, and it can be implemented without
relying on complicated statistical methods.

The remainder of the paper is structured as follows. In Section 2 we review the relevant literature.
In Section 3 we introduce the estimator, discuss its asymptotic properties and propose the exogeneity
test. In Section 4 we show the MSE reduction by means of a simulation study, as well as a power and
size analysis of the exogeneity test. Section 5 demonstrates the use of the estimator in the loyalty
discount application, followed by the conclusion in Section 6.

2 Literature Review and Research Contribution

The advantages of combining observational and experimental data have already been widely discussed
and explored in the recent literature within various frameworks. For example, Cooper and Yoo (2013),
Fernandez Loria and Provost (2020) and Gasse et al. (2021) integrate the two data sources into machine
learning algorithms to establish causal relationships. Athey et al. (2020) and Rosenman et al. (2023)
use experimental and observational data to identify (long-term) treatment effects. Rosenman et al.
(2023) also apply a shrinkage weight to combine observational and experimental estimators, which in
their case contain the treatment effects of each strata. Our context is a more general regression set
up and we combine the estimators of both data sources directly by means of a data-driven weighting
scheme. This current research project is closely related to Gui (2024) who considers a general regression
framework. Although this paper focuses on a generalised method of moments (GMM) approach, with
an extra moment condition associated with an imperfect (potentially endogenous) instrument for the
observational data, it also discusses reducing the variance by weighing the (bias-corrected) estimators
according to a scheme that minimises a mean squared error (MSE) criterion. In our research project,
we adopt a similar estimation strategy but combine multivariate estimates without bias-correction.
We show that the resulting weights adjust automatically to the existing variance and bias present in
the data. Furthermore, we investigate the asymptotic properties and provide a simulation study to
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analyse small-sample behavior.

We draw on the statistical literature (Green and Strawderman 1991, Judge and Mittelhammer 2004,
Mittelhammer and Judge 2005) for our weighting scheme. Although these papers proposed the weigh-
ing of estimates to combine any type of estimate, the weighing method has also been used for combining
experimental and observational estimates specifically Rosenman et al. (2023). However, the Stein-like
(SL) weight considered in these works typically jumps to 0 when the two estimates have values close to
each other, implying in this setting that the experimental data is excluded altogether. This case can
even occur if there is a bias in the observational estimator, as the large variance of the experimental
estimator can still initiate the zero weight. In such cases it would be quite harmful to rely on the
observational data alone. Therefore, we consider an alternative weight that is less sensitive and never
fully eliminates an estimator. This weight is more conservative than the SL weight, and hence does
not favor the observational data on the outset, and it shows an improved MSE performance in cases
where endogeneity is considerably present.

The relevance of our proposed exogeneity test is shown in the work of Gordon et al. (2019) where it is
investigated for various relevant data sets whether the measured causal effect of digital advertising is
different when based on experimental or observational data. In their research it is concluded that for
the majority of cases there is a significant bias in the observational data. Our proposed simple test
provides a quick method for detecting endogeneity by considering the scaled difference between the
observational and experimental estimates.

3 Modeling Framework, Estimation and Testing

We consider a regression modeling framework and assume that y, the data variable of interest, is
generated by the linear regression model1 as given by

yi = α+ β′0xi + εi, (1)

where yi is the i-th realisation for variable y, α is the unknown intercept or constant, β0 is the unknown
k × 1 parameter vector of interest, xi is a vector of k regressors, εi is the disturbance term that is
identically and independently distributed with mean zero and variance σ2. We distinguish between
the experimental and observational data sets by indexing the data and corresponding estimators by
their respective sample sizes. The experimental data set is based on sample size N and is denoted by
yNi for i = 1, . . . , N , that is generated by (1) with exogeneous regressors XN = (xN1 , . . . ,x

N
N )′ so that

E[εNi |xNi ] = 0. Based on this data set we obtain the experimental estimator, denoted by β̂N , by means
of estimating the model in (1) with ordinary least squares (OLS). We define the observational data set
with sample size T analogously by yTi for i = 1, . . . , T , and is generated by the same model (1), but

1The data generating process can be more complex. For example, the model can include nonlinear functions of the
regressors. It requires the use of appropriate nonlinear (least squares) variance estimators rather than ordinary least
squares estimators in our current discussion. Our method only requires the estimators themselves and their variance
matrices.
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with endogeneous regressors XT = (xT1 , . . . ,x
T
T )′ in the sense that E[εTi |xTi ] 6= 0. The observational

estimator is denoted as β̂T . We are particularly interested in the case where T � N.

3.1 The Causal Observational Shrinkage Estimator

The Causal-Observational Shrinkage Estimator (COSE) is defined as the linear combination of the
experimental and observational estimators with some weight λ ∈ [0, 1], that is

β̃NT (λ) = λβ̂N + (1− λ)β̂T . (2)

We aim to find an estimator that minimises the quadratic risk, also referred to as mean squared error
(MSE). The MSE provides a way to take into account both bias and variance and is defined for some
estimator β̂ as

MSE(β̂) = E‖β̂ − β0‖2 = bias2 + variance.

To allow for a larger variety of estimation techniques, we do not make distributional assumptions on
the errors, and only require that the estimators are asymptotically normal and have some estimable
variance matrix, as formalised in Assumptions 1 and 2. We denote the limiting bias of the observational
estimator as γ0, which is possibly equal to zero. In the case of OLS estimators and independently
normally distributed errors, ΣN in Assumption 1 is simply ΣN = σ2 (X ′NXN )

−1
, which is estimated

by Σ̂N = s2 (X ′NXN )
−1

with s2 = e′NeN /N − k and where eN is the vector of residuals of the
experimental regression.

Assumption 1. The k-dimensional experimental estimator is unbiased and distributed with some

variance matrix β̂N ∼ (β0,ΣN ), and is asymptotically normally distributed with
√
N(β̂N − β0)

d−→
N (0,Σ0) where Σ0 = plim

N→∞
NΣ̂N .

Assumption 2. The (potentially) biased k-dimensional observational estimator is distributed with
some variance matrix β̂T ∼ (β0 + γT ,ΦT ) where the bias γT → γ0 as T → ∞ for some γ0 ∈ R.

We also assume it is asymptotically normally distributed
√
T (β̂T − β0 − γ0)

d−→ N (0,Φ0), where
Φ0 = plim

T→∞
T Φ̂T .

Judge and Mittelhammer (2004) show that by minimising the MSE of β̃NT (λ) with respect to the
weight λ, we get an optimal weight that is an expression of the bias and variances of the estimators.
In general terms, we have

λ∗ = 1− tr(ΣN )

tr(ΣN ) + tr(ΦT ) + γ ′TγT
. (3)
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This weight is infeasible, as it contains the true unknown expressions of ΣN , γT and ΦT . They show
that a feasible estimator of this weight is given by

λ̂SL = 1− tr(Σ̂N )∥∥∥β̂N − β̂T∥∥∥2 , (4)

since the denominator is in expectation equal to the denominator of the optimal weight in (3), i.e.
E‖β̂N − β̂T ‖2 = tr(ΣN ) + tr(ΦT ) + γ ′TγT . It turns out that with normally distributed error terms
and under the optimal weight λ∗, the MSE of the weighted estimator is never worse than the MSE of
the base estimator whenever the number of regressors k ≥ 5 (Judge and Mittelhammer 2004).

After plugging the estimators into the estimated weight λ̂SL, the dominance of the finite-sample MSE
of the COSE cannot be guaranteed. However, an approximation provides an insight in how this
dominance is plausible. The finite sample MSE can be expanded up to first order, and the resulting
approximation has a strictly lower MSE. More specifically, we have

MSE(β̃NT (λ̂SL)) ≈ tr (ΣN )×

(
1− tr (ΣN )

E‖β̂N − β̂T ‖2

)
. (5)

It is clear that the last term on the right-hand side of equation (5) (which is strictly smaller than
1) brings about a smaller risk than the experimental estimator with a constant risk of MSE(β̂N ) =
tr (ΣN ). However, in practice the behavior of the λ̂SL weight is erratic whenever the point estimates
are close together, such that ‖β̂T − β̂N‖2 is near 0. The near zero difference in the denominator causes
the fraction to become excessively large, leading to a highly negative value of λ̂SL. Since it does not
naturally fall in the [0,1] interval, a common solution is to force any negative number to 02. So instead
of λ̂SL we consider min{0, λ̂SL}, in line with Judge and Mittelhammer (2004) and Rosenman et al.
(2023).

The zero weight due to similar point estimates could occur when i) observational data is (nearly)
exogeneous, or ii) due to the large variance of the experimental estimator which could incidentally
produce a value close to the observational estimator. In setting i) it is acceptable to put all weight on
the observational data since it is unbiased. However, in setting ii) it would be harmful to rely solely
on observational data when there is in fact a large bias present. In empirical research, we are faced
with a one-off estimation problem, we cannot know which of the two cases is the underlying force that
results in the zero weight. Furthermore, the zero SL weight that occurs when the observational data
is exogenous is actually undesirable. In the extreme case where the observational data is drawn from
the same distribution as the experimental data, the variances are identical. This leads to an optimal
weight of λ∗ = 0.5 since γT = 0 and ΣN = ΦT . It also makes intuitive sense that each is weighed
equally, as both estimators are reliable, and taking both into account yields a lower overall variance.

2This estimator is actually closely related to the James-Stein (JS) estimator (Stein 1956, James and Stein 1961) that
shrinks an estimator towards zero, which is proven to reduce the MSE. It is a well known that the positive-part JS
estimator that rules out negative weights, is an improvement of the regular JS estimator (Anderson 1984).
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It would be appropriate that as more data becomes available, the estimated weight also converges to
the optimal 0.5. But, even in the limit, λ̂SL will jump to 0 due to the zero denominator. Also in more
moderate cases, where the design matrices are similar due to γ0 = 0 and N = T , the optimal weight
will be near 0.5 while the SL weight often excludes the experimental data altogether.

In an attempt to resolve these issues, we consider the equally valid, more conservative estimator

λ̂C = 1− tr(Σ̂N )

tr(Σ̂N ) + tr(Φ̂T ) + ‖β̂N − β̂T ‖2
(6)

which also appears in Mittelhammer and Judge (2005). However, we highlight the value of this
weight in the context of combining experimental and observational data. Most importantly, it is less
sensitive to nearly equal point estimates β̂N and β̂T , meaning it is less likely to exclude the valuable
experimental data. Furthermore, it is naturally bounded within the [0, 1] interval and in the case of
equal datasets yields the value of 0.5 rather than 0.

3.2 Asymptotic Properties

We investigate the limiting properties of the COSE in equation (6) under the nonrestrictive Assump-
tions 1 and 2 that both estimators are asymptotically normally distributed and are consistent for the
true parameter β0 and pseudo-true parameter (β0 + γ0) respectively.

We show in Proposition 1 that the causal-observational shrinkage estimator always converges to the
true unknown parameter β0, as the experimental sample size increases, for both the SL and the
conservative weight. This is a direct result of the MSE minimising weights, that automatically adjust
to 1 when the observational data is biased and as enough experimental data comes available (N →∞),
meaning that the COSE converges to the reliable and efficient estimator β̂N . The consistency result
even holds when there is no bias in the observational data (γ0 = 0) and is valid for any growth rate of
T relative to N , whether it is fixed (α = 0), grows faster (α > 1), equally fast (α = 1) or even slower
(α < 1) than N . Proofs are given in the Appendix.

Proposition 1 (Consistency). Let T grow relative to N by the relation T = cNα for some constant
c and α ≥ 0. Let the limiting bias γ0 be any value including zero. Then, under Assumptions 1 and 2
the causal-observational shrinkage estimator is consistent for β0, i.e.

β̃NT

(
λ̂
)

p−→ β0 as N →∞ (7)

for both λ̂SL, λ̂C .

Remark 1. Note that Proposition 1 includes as a special case our large-observational-small-experimental
scenario of interest, where N is not only a small fraction of T (large c), but possibly also diverges to
infinity at a rate arbitrarily slower than T (α > 1). The proposition even includes the case of a large
experiment where T is fixed (α = 0) and only N grows to infinity.
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Denote the limiting distribution of the experimental estimator byD := lim
N→∞

√
N(β̂N−β0)

d
= N (0,Σ0).

Proposition 2 states that with a non-zero limiting bias COSE has the same limiting distribution D,
regardless of how fast the observational and experimental datasets increase relative to each other
(T fixed, same rate, T increasing faster or slower) as a result of a vanishing weight. The weight
vanishes, as the experimental estimator with a large sample size is highly efficient, and including the
biased observational data would only increase the MSE. This shows the self-regulatory behaviour of
the weights, that provide the optimal minimum MSE in the limit. Although one would expect that
scaling the biased COSE by

√
N will make the term explode, this does not happen as the squared

norm in the denominator of the weight will grow faster hence reducing the weight to zero more rapidly
than the scaled estimator can blow up.

Proposition 2 (Asymptotic Distribution non-zero bias). Let the limiting bias γ0 6= 0, for some
γ0 ∈ R and T = cNα, for some constant c and α ≥ 0. Then, under Assumptions 1 and 2

√
N
(
β̃NT

(
λ̂
)
− β0

)
d−→ D as N →∞ (8)

for both λ̂SL, λ̂C .

Although in most practical cases observational data will be endogeneous and yield a biased estimator
as is considered in Proposition 2, it is important to investigate the asymptotic properties when there is
no endogeneity. Proposition 3 shows that the weights are random in the limit when the observational
estimator is unbiased.

Proposition 3 (Asymptotic weights: zero bias). Let the sample sizes be directly proportional3 (T =
cN for some constant c > 0) and let the observational data be exogenous (γT = 0∀T ). Then, under
Assumptions 1 and 2 the estimated weights are random in the limit, i.e.

λ∗ −→ 1− tr(Σ0)

tr(Σ0) + 1
c tr(Φ0)

, (9)

λ̂SL
d−→ 1− tr(Σ0)

‖ζ‖2
, (10)

λ̂C
d−→ 1− tr(Σ0)

tr(Σ0) + 1
c tr(Φ0) + ‖ζ‖2

(11)

where ζ ∼ N
(

0,Σ0 +
1

c
Φ0

)
(12)

as N →∞.
3We consider the case where the sample sizes both diverge to infinity (T = N → ∞) together, since then both

estimators have non-zero weight rather than one being excluded asymptotically. Furthermore, in this case the limiting
weights have the most intuitive interpretation, as the optimal approach is to weigh the estimators proportionally to their
limiting variances. Whenever T grows faster than N , the limiting term tr(Φ0) will be eliminated from the (optimal)
weight(s), and analogous derivations and observations can be made.
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Note that the random weights do not affect the consistency of the weighted estimator (the case γ0 = 0
is included in Proposition 1). These random weights in the limit expression of COSE do however give
rise to a non-standard asymptotic distribution. Therefore no analytical expression can be derived, so
we turn to simulations to investigate its characteristics. In Figures 1 and 2 we plot the histograms
of the weights and the COSE based on simulated data using a data generating process (DGP) that
is further described in Section 4 (with ρ = 0, σ = 1). The random limiting behaviour of the weights
formalised in Proposition 3 is clearly visible. The SL weight has a very nonstandard distribution,
with a large peak at 0 and a rather uniform distribution over the rest of the points. This confirms
our earlier observation that the SL weight often yields 0 when endogeneity is absent, fully excluding
the experimental data. The conservative weight on the other hand seems to follow a more standard
distribution, although its majority of the density is above the optimal weight. This is in line with the
limiting expression that contains the estimate of the squared bias that converges to a squared mean-
zero normal random variable, which introduces an extra near-zero yet strictly positive value. That
results in a weight that is more conservative towards the experimental estimator. In practice however,
this is desirable, as in applied work the true level of endogeneity is unknown to the researcher. Our
weight does not only weigh the data in an efficient way but also takes an unknown yet possible bias
into account, whether actually present or not.

Although both weights produce vastly different limiting distributions, this does not translate into a
different limiting behaviour of the COSE itself when weighted with both weights, which is attributed
to the fact that both datasets are exogenous. The variance of the weighted estimator is smaller than
the experimental estimator alone, even in the limiting case (N = T = 10, 000) since the weights ensure
both datasets are included. This variance reduction is most prominently visible in the MSE plots in
Figure 3 that we consider in Section 4.

In summary, these propositions show the self-regulatory behaviour of the weights. When a bias
in the observational data is present, COSE converges to the trustworthy and efficient experimental
estimator when the experimental sample size grows. When there is no bias, it is beneficial to include
both estimators for a minimum overall variance, which is ensured by the random asymptotic weights.
Consistency for the true parameter holds for all cases (endogeneity, no endogeneity, for all possible
relationships between the two sample sizes), meaning that the COSE will converge to the true value
when sample sizes increase.

3.3 Exogeneity Test

We introduce the instrument-free exogeneity test that can be used in our framework to formally test
for exogeneity of the observational sample. Classic exogeneity tests require valid instruments, such as
it is the case for the Durbin-Wu-Hausman test (Durbin 1954, Wu 1973, Hausman 1978), in which the
difference between OLS and IV estimators is considered. In our setting we do not need instrumental
variables, but we make use of the exogenous nature of the experimental data instead. Under the
null hypothesis of exogeneity, both estimators are unbiased. This ensures that the pivotal statistic as
proposed in Proposition 4, has a Chi-squared distribution under the null hypothesis as N,T →∞.
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Figure 1: Distributions of λ∗, λ̂SL, λ̂C for exogenous observational data.

Figure 2: Distributions of β̂N , β̃NT (λ̂SL) and β̃NT (λ̂C) for exogenous observational data.

Proposition 4 (Exogeneity Test). Let T = cNα, for c ∈ N, α > 0. Then, under the null hypothesis
of exogeneity, (

β̂T − β̂N
)′ [

Φ̂T + Σ̂N

]−1 (
β̂T − β̂N

)
d−→ χ2

k as N →∞. (13)

Whereas under the alternative the test statistic(
β̂T − β̂N

)′ [
Φ̂T + Σ̂N

]−1 (
β̂T − β̂N

)
−→∞ as N →∞. (14)

Note that the result holds irrespective of how fast T grows with respect to N , as it holds for all α > 0.4

4We can also consider the case where N,T ∈ N (corresponding to α = 0), but then we need to assume Gausian errors
so that the estimators are also normally distributed in finite sample.

10



Under the alternative, the asymptotic bias in β̂T ensures that the statistic explodes. The power and
size of this test will be investigated in Section 4.2.

4 Simulation Study

In this section we show the superiority of COSE in terms of quadratic risk and we investigate the
performance of the exogeneity test. Without further specifying the source of endogeneity (omitted
variables, measurement error or simultaneity), we simulate the endogeneous data where the first of
k = 5 regressors, that is x1T , is correlated with the error term, while the rest is exogenous and
independent of all others. We increase the level of endogeneity by varying correlation ρ between the
first regressor and the error term from ρ = 0 (no endogeneity) to ρ = 0.9 (extremely correlated). We
generate

XT =
[
ιT x1T x2T x3T x4T

]
(15)

xi,1T
xi,2T
xi,3T
xi,4T
εiT

 ∼ N
([
ι4
0

]
,

[
I4 c(σ, ρ)

c(σ, ρ)′ σ2

])
(16)

for i ∈ {1, . . . , T}, where c(σ, ρ) = (σρ, 0, 0, 0)′. The experimental data matrix XN is simulated in
similar fashion, but with ρ = 0.

4.1 MSE Performance Relative to Experimental Estimator

Taking β0 = (−.3,−.2, .2,−.1, .1)′, we estimate the OLS estimators β̂N , β̂T and the weighted estima-
tors β̃NT (λ̂) for different weights λ̂SL, λ̂C , λ∗ are evaluated for M = 10, 000 simulations. In Figure 3 we
depict the MSE of the weighted estimator relative to the MSE of β̂N , the directly available alternative
experimental estimator. On the x-axis we put various values of ρ that control the level of endogeneity
and for each of these, we have different values of the variance of the error term σ = σεN = σεT where
σ ∈ {1, 10}. In Figure 4 we present the average weights along with a box and whisker plot to show the
distribution of the simulated values (medians in red). The top row is for λ̂SL, the bottom for λ̂C . We
only concentrate on the cases where T is larger than or equal to N , to reflect the small experimental
sample situation often encountered in real-life settings.

From Figure 3 we learn that with the theoretically optimal weight λ∗ (OPT) we can make very large
MSE improvements and the weighted estimator never performs worse than the experimental estimator.
On the other hand, the estimated weights λ̂ bring in some variance and finite sample bias, which leads
to a higher MSE, but is in the majority of the cases still an improvement over the experimental
estimator. The error variance does not have a visible influence on the MSE performance as is evident
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Figure 3: MSE of COSE relative to β̂N for different values of endogeneity (ρ). Each value
of ρ has two dots representing different levels of standard deviation of the error, for σ = 1 and σ = 10
respectively.

from the step-like course of the curve. In general, the higher the level of endogeneity, the smaller
the improvements get, and the larger the observational data set, the higher the gain for lower levels
of endogeneity (up to a 60% decrease relative to the experimental estimator for ρ = 0.1). The more
conservative behaviour of the conservative weight is visible through the fact that it does not reach the
possible improvements of the SL weight for lower levels of endogeneity, but simultaneously does not
produce a MSE much larger than that of the experimental estimator, in contrast to the SL weight.

The self-regulatory adjustment of the weight is clearly visible in Figure 4. The higher the level of
endogeneity, the less weight is put on the observational estimator. Also as variances (relatively)
decrease, for example when T grows, the weights adapt. The same re-adjustment is apparent when
N increases, with the unbiased estimator becoming more precise while the weight gets closer to 1 and
the possible (optimal) improvements in MSE decline.

Between the weights λ̂SL and λ̂C , the conservative weight is visibly more stable judging by the box
plots. The range of the conservative weights evaluated on the simulated data is much smaller, while
the SL weight often attains very different values when evaluated on different simulated data sets with
the same underlying data generating process. Although the average of the SL weight is in many cases
closer to the optimal weight, it is often composed of many zero’s (median is near zero) and outlying
values near one. This is due to its randomness in the denominator that occurs when the estimators
are close together which is most evident for low endogeneity (ρ = 0.1). The resulting weight becomes
highly negative and is then cut off at 0, meaning all weight is put on the efficient observational
estimator.

In practice, we will not know whether the two estimators being close together was produced by a
coincidental draw of the sampling distribution or by a weak level of endogeneity. For example, for
N = 15, T = 100, ρ = 0.3, half of the times the SL weight is zero, while there is a considerable
amount of endogeneity. Consequently, all weight is put on the observational estimator while an
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Figure 4: Boxplots of estimated weights

unbiased estimator is available. Therefore, the more stable behaviour of the conservative weight is
desirable in practice. It might overestimate the weight on the experimental data (around 0.52 rather
than the optimal 0.23), but it will not fully eliminate the experimental estimator. Ultimately in
practical applications it is more intuitive to include experimental data rather than throw it all away.
Besides, note that in this simulation study we observe its performance while knowing the exact level
of endogeneity ρ. In practice it is unknown, which promotes the use of a conservative approach that
harnesses against possible misjudgements even more.

To sum up these observations, the conservative weight is less sensitive than the SL weight, producing
more reliable results in a one-off estimation. The SL approach often underestimates the weight,
or fully excludes the experimental data, while the conservative approach is more cautious in that
respect. Besides, MSE performance is comparable if not favorable for the conservative approach.
The SL weight might attain a lower MSE for low levels of endogeneity, but in practice the level of
endogeneity is unknown and we cannot truly know whether a case at hand is such a setting in which
SL provides the best performance on average.
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4.2 Power and Size Exogeneity Test

We now analyse the power and size of the instrument-free exogeneity test. Table 1 contains the size of
the test for σ = 1 and ρ = 0 (observational data is exogenous) at a significance level of α = 5%, where
the data was generated with the linear DGP as described in Section 4.1. The proposed Chi-squared
test is slightly too strong for small N , but has appropriate size once N increases.

Table 1: Size exogeneity test (α = 5%)

χ2

T = 100 T = 10 000

N = 15 0.117 0.136
N = 100 0.054 0.061
N = 10 000 0.062 0.050

Figure 5 shows the power of the exogeneity test for various samples sizes, as ρ increases under the null
hypothesis of exogeneity. Power increases are most prominent when both T and N increase, as then a
small difference between estimators explodes when scaled by small variances leading to a large value
of the test statistic. Low levels of endogeneity are only picked up once N is large. However, a common
situation would be one where T = 10000, N = 100, in which at ρ = 0.4 the rejection rate is already
0.96. Hence, we conclude from these power plots that in our large-T -small-N setting, a non-rejection
is most likely indicating that endogeneity is non-existent or low at most.

Figure 5: Power of the Exogeneity Test
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5 Empirical Application: Loyalty Discount

We illustrate our method in an empirical study based on a dataset of the Dutch phone repair service
company ThePhoneLab, that is interested in identifying the effect of a discount on their customer’s
purchase behaviour. For a long time only frequent users received a discount, as every year customers
that used the service in the past year were sent discount codes. This qualification procedure gives
rise to endogeneity, as customers (possibly unknowingly) are self-selected into treatment. The ”loyal”
group of active customers potentially consists of mostly ”clumsy” customers, individuals that value
technology more highly, and people with other unobserved characteristics which might lead to higher
average sales in the first place, while their frequent visits simultaneously lead to more discounts.
The correlation between receiving the discount and these unobserved characteristics leads to a bias
in the measurement of the discount effect on sales by comparing the outcomes between both groups
directly. To circumvent a misleading result, an A/B test was executed in which only loyal customers
were considered. Some were randomly excluded from receiving the discount, allowing for reliable
measurement of the discount effect.

Several studies have investigated the effects of promotions on sales, for example whether long-term
effects differ between frequent and occasional customers (Lim et al. (2005), Reimer et al. (2014)). In
these studies the most sensitive group to price promotions differs across different types of products
(perishable, non-perishable goods, digital music products) and ThePhoneLab would like to investigate
the effect of discounts on their repair service based on the short-term experiment they executed. In
particular, we measure the effect of a discount on both net sales and number of sold products for
the average customer. Given that the number of experimental observations is much smaller than the
observational ones, we show that experimentation alone is not enough to measure a significant effect,
and by including the observational data we provide a more accurate measurement of said effect.

5.1 Empirical Model

The empirical model aims to describe sales (si) as a function of the discount Di (1 if received, 0 if
otherwise), additional observed control variables Xi, and true loyalty Li (1 if truly loyal, 0 otherwise),
that is

si = β0 + β1Di + β2Xi + β3Li + ui, (17)

for i = 1, . . . , T , where βj is a regression coefficients (j = 0, . . . , 3) and ui is the normally distributed
error term. Our prime interest is β1 which measures the effect of providing the discount5. The true

5Note that we are interested in the effect of the discount on the average customer, not on loyal people. Using
experimentation, this can clearly be done by giving random customers (loyal and non-loyal) a discount and evaluating
the Average Treatment Effect (ATE). However, for the company in question the only available record of giving out any
discounts is by providing them only to (part of the) loyal customers. Thus, to make claims about the effect on the average
customer in the experimental data set which is comprised of loyal customers, we subject to the implicit assumption that
the effect is the same for loyal and non-loyal customers.
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loyalty term Li represents all unobserved characteristics that contribute to the frequent use of the
service. The issue here is that next to Li being unobserved, during the observational period it is
correlated with Di, leading to a omitted variable bias in the estimate of β1. If we could find a proxy
for loyalty, denoted L̃i, by flagging a customer as loyal based on their purchase behaviour, we could
control for it. However, such a variable is likely to be perfectly correlated with the treatment in the
observational data as loyal customers were given the discount, leaving β1 unidentified. Note that
during the experimental period, treatment is uncorrelated with Li, as among those that were entitled
to the discount, a certain percentage was randomly excluded from actually receiving it. In this case,
omitting Li will not lead to such a bias and we get a consistent estimate for β1.

In many settings, perhaps more information would be available that could be exploited to estimate
the causal effect in the observational data using quasi-experimental methods. For example, if the
discounts were given after a certain variable (e.g. number of purchases) crossed a threshold, regression
discontinuity design could be applied. Although in this case the actual treatment was based on
some decision rule, in this dataset there is no such threshold variable that consistently determines
treatment throughout the whole time period. Alternatively, one could consider the difference-in-
differences estimator if the discounts were given out at the same time for all treated individuals.
In the application at hand the discounts were given at different points in time, although evenly
spaced over the interval, hence we do not know the pre-treatment period of the untreated. Finally,
if valid instruments were be available, a two-stage-least-squares estimator could give an unbiased
estimate of the causal effect. In absence of any such additional variables or design characteristics, we
simply continue with an OLS estimate that most likely suffers from the omitted variable bias as our
observational estimator. However, even if such a quasi-experimental method would be applicable, we
would use the quasi-experimental estimate instead, as there always remains some uncertainty about
whether the appropriate assumptions (e.g. parallel trends, exclusion restriction) are satisfied and thus
whether the estimator is truly unbiased. If the assumptions are in fact satisfied, we deal with two
unbiased estimators, which our simulation study shows will still lead to a lower MSE.

5.2 Data

For each individual customer in the dataset we accumulate total net sales (sales minus discounts)
in Euros and number of products sold within both observational and experimental periods, for
those who received the discount (discount given=1) and those who did not receive the discount
(discount given=0). In the experimental data we only accumulate all post-treatment sales, since we
know the exact date when an individual received the discount (treatment) or was actively excluded
(non-treatment). In the observational data, we do not observe such a pre- or post-treatment date, so
we aggregate sales for each individual over the entire observational time period. Other available char-
acteristics are gender and ZIP code. The latter allows the creation of an urbanity index (1= urban, 5
= rural) and average home property value in the area. In the observational sample around 11% of the
customers were flagged as loyal and all received the discount, whereas in the experimental sample all
were flagged as loyal, but 68% of them eventually received the discount. The observational sample size
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is considerably larger than the experimental sample size (T = 14, 236 and N = 110), mostly due to
the fact that in the experimental data set we only consider the loyal group, while in the observational
data all customers during that period are taken into account. Furthermore, the experiment was only
run for a couple of months, while the observational data was accumulated over many years.

5.3 Results

In Table 2 we present the estimation results of OLS regressions applied to the empirical model in
equation (17) (where Li is omitted) using the observational and experimental data, for two different
dependent variables. In the first column we observe that the observational data suggests that the
discount provides incentives to customers to buy more products as the coefficient is highly significant
and positive, although relatively small. We do however suspect that this result is biased since customers
self-select into receiving the discount during this observational period. To formally investigate this,
we evaluate the exogeneity test and observe in Table 3 that we can indeed reject the null hypothesis
of exogeneity of the observational data. We therefore turn to a more reliable estimator, and discover
that the experimental results give a smaller and non-significant effect, suggesting that the discount
may not encourage customers to purchase more products. This non-signficance could be a result of
the near-zero coefficient, but the large increase in variance due to the small sample size also plays a
role, which manifests in large standard errors and a non-rejection for the F-test of overall significance.

To investigate if the discount really does not affect the quantity of products sold even when the
influence of the large variance is mitigated, we consult our COSE estimates in Table 4. We include the
estimated weight, the weighted COSE coefficients with both SL and consistent weights and bootstrap
confidence intervals, alongside the original experimental estimator. Considering the coefficient of
discount given, we still have an insignificant effect of the discount after weighing the observational
and experimental results with weights accounting for the apparent bias and variances that are present.
The estimated SL and consistent weights are similar (0.51 and 0.67), both putting most weight on
the experimental estimator. This is in line with the result of the exogeneity test that is strongly
rejected, as one should be less comfortable with putting a lot of weight on the observational estimator,
given it is suspected to be biased. It leads to an insignificant COSE coefficient in agreement with the
experimental estimator.

We established that the discount does not stimulate customers to buy more products. It is expected
that the issuing of discount codes is harmful to net sales as it costs more than it yields. This suspicion
appears to be confirmed by the OLS results for total net sales in Table 2. The observational
data yields a highly significant negative value, implying a negative effect of the discount on net
sales. However, the rejection6 of the exogeneity test in Table 3 suggests we should not trust these
observational results. Consulting the experimental data instead, we actually find an even larger
negative coefficient of the discount, indicating that the observational data understates the effect on

6Since a rejection would indicate the presence of endogeneity, we recommend taking a high significance level is a
conservative approach that is sceptical of the exogenous nature of observational data.
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Table 2: OLS regression results loyalty discount for observational and ex-
perimental samples.

Dependent variable number of products total net sales

Obs. Exp. Obs. Exp.

constant 1.184∗∗∗ 1.026∗∗∗ 107.120∗∗∗ 122.156∗∗∗

(0.013) (0.082) (2.665) (28.423)

discount given 0.044∗∗∗ 0.016 −7.621∗∗∗ −20.852

(0.012) (0.053) (2.220 ) (17.402)

gender female −0.019∗∗ 0.004 2.000 −0.915

(0.008) (0.051) (1.410) (16.608)

urbanity index −0.009∗∗∗ 0.004 −1.331∗∗∗ 4.424

(0.003) (0.029) (0.507) (9.866)

property valuation 0.000∗∗∗ 0.000 0.011∗ 0.0393

(0.000) (0.000) (0.006) (0.045)

% discount given 11.5 % 68.8 % 11% 68.2%

sample size1 T = 15 195 N = 151 T = 14 236 N = 110

F-test joint significance (p-val) 0.00∗∗∗ 0.869 0.00∗∗∗ 0.709

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01
1Sample sizes differ for different dependent variables due to outlier removal.

Table 3: Exogeneity test for loyalty discount
data

χ2 statistic p-value
number of products 29.182 0.0000∗∗∗

total net sales 10.924 0.0529∗

net sales. However, we cannot make such a claim with certainty since the experimental result is
insignificant. In this case, the insignificance can most likely be attributed to the small sample size, as
the standard errors are substantial and the joint F-test is again insignificant.

Although we have a strong suspicion that the discount has a negative effect on total net sales, the large
variance due to limited experimental data leaves the evidence as inconclusive. To clarify the current
ambiguity of the results, we again turn to our method as it compromises between the two sides of the
bias-variance trade-off. From the results in Table 4 we can conclude that our estimator indeed provides
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Table 4: Weighted estimator regression results. For both regressions we compare the ex-
perimental estimator to COSE, reporting estimated weights λ̂SL, λ̂C and the corresponding COSE
coefficient with these estimated weights. We report 95% confidence intervals for this coefficient for
COSE obtained with a case bootstrap, while for β̂N the CI is based on its asymptotic distribution.
Significance of the coefficients is based on the bootstrapped confidence intervals.

number of products total net sales

β̃TN (λ̂) Exp. COSE(SL) COSE(C) Exp. COSE(SL) COSE(C)

constant 1.026∗∗∗ 1.104∗∗∗ 1.078∗∗∗ 122.155∗∗∗ 107.120∗∗∗ 110.660∗∗∗

[0.86, 1.19] [0.87, 1.20] [0.87, 1.20] [65.8, 178.5] [95.9, 154.0] [86.0, 158.1]

discount

given

0.0162 0.030 0.025 −20.852 −7.620∗∗ −10.736∗

[−0.09, 0.12] [−0.04, 0.09] [−0.05, 0.1] [−55.4, 13.6] [−37.8,−2.4] [−41.4, 2.3]

gender

female

0.004 −0.008 −0.004 −0.915 2.000 1.314

[-0.10, 0.10] [ -0.06, 0.08] [-0.07, 0.08] [-33.8, 32.0] [-15.9, 12.8] [-20.6, 18.7]

urbanity

index

0.004 −0.003 −0.001 4.424 −1.331 0.024

[-0.05, 0.06] [-0.03, 0.06] [-0.04,0.06] [-15.1, 23.9] [-4.4, 7.2] [-6.7, 10.3]

property

val

0.000 0.000 0.000 0.039 0.011 0.017

[-0.00, 0.00] [-0.00, 0.00] [-0.00, 0.00] [-0.05 0.1] [-0.02, 0.05] [-0.03, 0.08]

λ̂ 1 0.506 0.672 1 0 0.235

Note: ∗ p < 0.1; ∗∗ p < 0.05; ∗∗∗ p < 0.01

such significant negative coefficients for both types of weights. The COSE estimator tells us there is in
fact a significant cost to be paid by awarding discounts to customers. We have found that giving out
discounts does not lead to a significant increase in the amount of products a customer buys, which is
the main driver of this negative impact on net sales. A word of caution is appropriate however when
it comes to the significance of the estimates, that are evaluated using a bootstrap procedure presented
is analyzed the Appendix. The weighted estimator has a finite sample bias through the introduction
of the biased observational data, which potentially manipulates A significance finding. Nevertheless,
compared to the unbiased experimental estimator, the observational estimator turns out to be biased
towards zero. So, although the COSE is a biased estimator, it is not the reason for its significance.
In fact, despite its bias towards zero it remains significant as it takes over a smaller variance from the
observational estimator. Accounting for this bias would probably lead to a higher level of significance.
Therefore we do not suppose it is likely that this finding is incidental. In Appendix B we show that
the bootstrap procedure provides a good estimate of the finite sample distribution by performing a
Monte Carlo study based on the original data.
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Moreover, this application clearly illustrates the advantage of the conservative weight over the SL
weight. We obtain an estimated weight λ̂SL = 0, meaning the experimental data is fully excluded,
as a result of a huge variance and a relatively small difference between the two estimators which
results in a negative weight (-2.35) if not truncated at 0. Excluding the experimental data and fully
relying on the observational result is quite a bold measure, since the exogeneity test indicates that the
observational data is likely to be endogenous. The zero weight results in a bootstrapped confidence
interval that is based on the small variance observational estimator alone, resulting in almost half the
volume (51% for discount given) of the experimental confidence interval, and leads to a significant
result. The conservative weight however does take the experimental data into account with λ̂C = 0.23.
This gives a slightly wider confidence interval (a 37% decrease in volume for discount given) but
still leads to a significantly negative result. This is clearly apparent in Figure 6 that contains the
distribution of the bootstrapped weighted estimator. This distribution is clearly asymmetric with
mostly negative support.

Figure 6: Bootstrap distributions of COSE with SL and C weights. These bootstrap his-
tograms are for the weighted estimates of discount given (β̃TN,1(λ̂)) in particular.

This empirical study highlights both the drawbacks of experimentation and the strengths of our
method. With observational data one might yield highly significant intuitive results, but this does not
measure the true effect of the intervention by the company as it understates the actual effect in this
case. At the same time, the small sample size of the experimental data leads to larger variances of
the estimates that drown out the significance of the effect, leading to an ambiguous outcome. But our
method shows that combining the already available experimental and otherwise useless observational
data can help to circumvent this problem. Based on our proposed weighted estimator, we have been
able to conclude that the discount has a significant negative effect on total net sales.
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6 Conclusion

In this study we have reviewed a useful method for practitioners for combining observational and
experimental data to uncover causal estimates with more precision than the experimental estimator
itself. We have shown in a simulation study that large MSE improvements can be made when including
the observational data with a self-regulatory weight that balances the bias and variance appropriately.
Our proposed alternative conservative weight keeps both experimental and observational data sets
active which is useful in the one-off estimation exercises that are done in practice. Furthermore, we
have introduced an exogeneity test that can determine whether one is indeed dealing with endogenous
data. In an application to loyalty discounts we have shown its advantages. Our proposed weighted
estimator was conclusive whereas experimental data alone gave rise to ambiguous outcomes due to the
small sample size. Using our method we have established a significant negative effect of the discount
on total net sales, while the number of sales have not been significantly affected by the discount.

Our approach is straightforward to implement for practitioners, without the need for a exhaustive
understanding of statistics. It is crucial that marketing researchers and data analysts are equipped
with accessible, understandable and inexpensive methods that address endogeneity, since it is an
intricate issue and large scale marketing decisions might be based on the modelling of data relations
that suffer from this phenomenon. However, fully eliminating endogeneity while also collecting large
enough sample sizes is a great challenge. Taking these practical considerations in mind, we provide a
solution that reduces overall estimation risk.

Our proposed method is more widely applicable than we have set out in this study. Although we
set off with a linear model with normally distributed errors, the method can straightforwardly be
extended with its relience on other estimators (nonlinear least squares, logistic, maximum likelihood
estimators for different distributions). One could even consider combining different types of estimators
on each dataset, or replacing the experimental estimator by an IV estimator when strong instruments
are available. Eventually, the weight only requires the estimators themselves together with consistent
estimates of the variance matrices. However, the same MSE improvements cannot always be guaran-
teed for nonlinear extensions in particular, since the variance matrix often needs to be evaluated at
the estimator, which brings about extra variance in the estimated weight and the resulting COSE,
making it harder to be a competitive alternative to the experimental estimator. Nevertheless, there
will always be MSE reductions for the optimal weight whichever estimators are employed.
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Appendix A: Proofs

Proof of Proposition 1
We write the two estimators as

β̃TN (λ̂SL) = β̂N +
tr(Σ̂N )∥∥∥β̂N − β̂T∥∥∥2 (β̂T − β̂N )

β̃TN (λ̂C) = β̂N +
tr(Σ̂N )

tr(Σ̂N ) + tr(Φ̂T ) +
∥∥∥β̂N − β̂T∥∥∥2 (β̂T − β̂N ).

First consider the case of a nonzero limiting bias (γ0 6= 0) and an increasing sample size T (α > 0).
Then,

plim
N→∞

β̃TN (λ̂SL) = plim
N→∞

β̃TN (λ̂C) = plim
N→∞

β̂N +
0

γ ′0γ0

γ0 = β0.

Even when the sample size T does not grow (α = 0), we get consistency since plim
N→∞

β̃TN (λ̂SL) =

β0 + 0
γ′TγT

γT and plim
N→∞

β̃TN (λ̂C) = β0 + 0
tr(Φ̂T )+γ′TγT

γT .
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Now consider the case in which the observational estimator is consistent itself (γ0 = 0). We can then
write

β̃TN (λ̂SL) = β̂N +
N tr(Σ̂N )∥∥∥√N(β̂N − β0)−

√
N(β̂T − β0)

∥∥∥2 (β̂T − β̂N ).

Considering the limiting behaviour of each element using stochastic order notation for α > 0, we get
(β̂T − β̂N ) = op(1) due to the zero limit bias. By Assumptions 1 and 2, N tr(Σ̂N ) = Op(1),

√
N(β̂N −

β0) = Op(1) and
√
N(β̂T − β0) = N (1−α)/2√T (β̂T − β0) = N (1−α)/2Op(1). We then get

plim
N→∞

β̃TN (λ̂SL) = plim
N→∞

β̂N +
Op(1)

Op(1) +Op(N (1−α))
op(1) = β0

for all α > 0. A similar calculation can be done for λ̂C , albeit with an extra Op(N
1−α) term in the

denominator. Also there, the convergence to β0 is driven by the vanishing difference between the two
estimators and is even accelerated by an exploding denominator when 0 < α < 1.
In the specific case of α = 0, (β̂T − β̂N ) = Op(1), but consistency is guaranteed for both weights due
to a dominating Op(N) term in the denominator of the fraction.

Proof of Proposition 2
Regardless of α, β̂T − β̂N = Op(1). For α > 0, β̂T − β̂N

p−→ γ0 as N → ∞ with T = cNα, while

for fixed T ∈ N (α = 0), we have β̂T − β̂N '
N→∞

β̂T − β0 which is Op(1) by Assumption 2. First

considering λ̂SL∗ ,

√
N
(
β̃TN (λ̂SL∗ )− β0

)
=
√
N(β̂N − β0) +

√
N tr(Σ̂N )∥∥∥β̂N − β̂T∥∥∥2 (β̂T − β̂N )

=
√
N(β̂N − β0) +

√
NOp

(
1
N

)
‖Op(1)‖2

Op(1)

=
√
N(β̂N − β0) +Op

(
1√
N

)
d→ D

as N →∞. Similarly, for λ̂C∗ ,

√
N
(
β̃TN (λ̂C∗ )− β0

)
=
√
N(β̂N − β0) +

√
N tr(Σ̂N )

tr(Σ̂N ) + tr(Φ̂T ) +
∥∥∥β̂N − β̂T∥∥∥2 (β̂T − β̂N )

=
√
N(β̂N − β0) +

Op (1)

Op

(
1√
N

)
+Op

(√
N
T

)
+
√
N ‖Op(1)‖2

Op(1)

=
√
N(β̂N − β0) +Op

(
1√
N

)
d→ D
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as N →∞.

Proof of Proposition 3
Let T = cN , γT = 0 and define ζ ∼ N (0,Σ0+ 1

cΦ0). When we multiply numerators and denominators
with N , we get

1− λ∗ =
N tr(ΣN )

N tr(ΣN ) + 1
cT tr(ΦT )

−→ tr(Σ0)

tr(Σ0) + 1
c tr(Φ0)

as N →∞

1− λ̂SL =
N tr(Σ̂N )∥∥∥√N(β̂N − β̂T )

∥∥∥2 d−→ tr(Σ0)

‖ζ‖2
as N →∞

1− λ̂C =
N tr(Σ̂N )

N tr(Σ̂N ) + 1
cT tr(Φ̂T ) +

∥∥∥√N(β̂N − β̂T )
∥∥∥2 d−→ tr(Σ0)

tr(Σ0) + 1
c tr(Φ0) + ‖ζ‖2

as N →∞,

using Assumptions 1 and 2 and by recognising the joint convergence in distribution of all terms in the
fractions and applying the continuous mapping theorem. Although the rational function f(x) = 1

x2

that is discontinuous at zero seems to invalidate this last step, the continuous mapping theorem states
that as long as the probability is zero at discontinuous points (P[ζ = 0] = 0, which is clearly the case
with continuous distributions), the result holds.

Proof of Proposition 4
We multiply and divide the test statistic by

√
NT , so that we can use the asymptotic distributions

from Assumptions 1 and 2. Under the null hypothesis of exogeneity,[
Φ̂T + Σ̂N

]−1/2 (
β̂T − β̂N

)
=
[
NT Φ̂T + TNΣ̂N

]−1/2 (√
N
√
T (β̂T − β)−

√
T
√
N(β̂N − β)

)
d−→ [NΦ0 + TΣ0]

−1/2N (0, NΦ0 + TΣ0) as N →∞
∼ N (0, Ik)

by Slutsky’s Theorem. The test statistic is the inner product of this term, which yields the χ2

distribution. Under the alternative hypothesis,[
Φ̂T + Σ̂N

]−1/2 (
β̂T − β̂N

)
d−→ [NΦ0 + TΣ0]

−1/2N
(√

NTγ0, NΦ0 + TΣ0

)
−→∞ as N →∞.
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Appendix B: Bootstrap Performance

Bootstrap Procedure

The bootstrap procedure we implement for the application is rather straightforward. It is based
on resampling whole rows of the data matrix, to ensure that the potential endogenous relationship
between y and X is maintained.

Step 1. For each bootstrap iteration b, resample from the experimental data N observations with
replacement denoted by yNi,b and XN

i,b.
In similar fashion, resample the observational data with replacement.

Step 2. With these experimental and observational bootstrap data sets, estimate the OLS estima-

tors β̂
(b)

N , β̂
(b)

T and the variances Σ̂
(b)
N and Φ̂

(b)
T .

Step 3. Using the estimated quantities in Step 2, calculate λ̂SL (b) and λ̂C (b) and the corresponding
COSE β̃NT (λ̂SL (b)) and β̃NT (λ̂C (b)).

Step 4. Repeat Steps 1-3 B times.

Step 5. Take the empirical quantiles from the resulting bootstrap distribution.

Bootstrap Validity

The bootstrap procedure described above is nonparametric, since it simply resamples data rows and
estimating weighted estimator B times. To see whether the bootstrap distribution indeed gives a
good estimate of the estimator distribution, we perform a Monte Carlo study based on the data. In
particular, we generate data with the same characteristics as in the original data. Since correlation
between the original regressors is negligible, we draw independent categorical variables with the same
class distribution as in the original data for all but the property value, which we draw from a normal
with the same mean and variance. Then we construct the total net sales data points by multiplying
each with the OLS estimates obtained before. The observational OLS estimator is biased, but does
provide the best fit, meaning that it is appropriate for generating similar outcomes. More specifically,
for the experimental dataset we construct simulated values of total net sales s̃i by

s̃i = X̃iβ̂N + ũi i = 1, . . . , N, (18)

where ũi ∼ N(0, σ̂2u) and N = 110 like in the original data. The observational data is drawn analo-
gously. Using this simulated data set, we estimate the COSE for both SL and C weights and compare
the distributions with those of the bootstrapped values in the application.

With M = B = 10 000 (bootstrap) simulations, we confirm a similarity between the two distributions
with a Kolmogorov–Smirnov test statistic of 0.03 and a p-value of 0.000 for both weights. The
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similarity is also visible in Fig. 7 and in the quantiles in Table 5. Most importantly, the quantiles that
determine the significance of the results in the application (5% for SL, 10% for C), are also negative
in the simulated distribution.

Figure 7: Bootstrap vs. simulated distributions of COSE with SL and C weights. These
bootstrap histograms are for the weighted estimates of discount given (β̃TN,1(λ̂)) in particular.

Table 5: Similarity of bootstrap and simulated distributions: quantiles and
Kolmogorov-Smirnov test results. Relevant quantiles in application denoted in bold.

0.01 0.05 0.1 0.90 0.95 0.99 KS stat. KS p-val

SL
boot -45.02 -30.99 -23.63 -4.97 -3.81 0.34

0.0352 0.000***
sim -46.76 -33.73 -26.08 -4.93 -3.57 4.01

C
boot -48.17 -35.90 -29.48 -4.31 -1.07 6.94

0.0331 0.000***
sim -49.71 -38.03 -31.28 -3.64 0.14 10.06
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