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Abstract

We introduce a nonlinear semi-parametric model that allows for the robust filtering

of a common stochastic trend in a multivariate system of cointegrated time series.

The observation-driven stochastic trend can be specified using flexible updating

mechanisms. The model provides a general approach to obtain an outlier-robust

trend-cycle decomposition in a cointegrated multivariate process. A simple two-

stage procedure for the estimation of the parameters of the model is proposed. In

the first stage, the loadings of the common trend are estimated via ordinary least

squares. In the second stage, the other parameters are estimated via Gaussian

quasi-maximum likelihood. We formally derive the theory for the consistency of

the estimators in both stages and show that the observation-driven stochastic trend

can also be consistently estimated. A simulation study illustrates how such robust

methodology can enhance the filtering accuracy of the trend compared to a linear

approach as considered in previous literature. The practical relevance of the method

is shown by means of an application to spot prices of oil-related commodities.

Key words: consistency; cycle; non-stationary time series; two-step estimation; vector

autoregression.
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1. Introduction

We introduce a semi-parametric model that can be used for outlier-robust filtering of the

common stochastic trend of multiple time series variables from a cointegrated system.

The most widely used method for modeling cointegrated time series is the vector error

correction model (Johansen, 1995). In this framework, the unobserved common trend

or trends that are driving the cointegrated time series can be constructed as a linear

combination of past residuals. In case one or more time series under consideration contain

outliers, the constructed trend will be severely impacted. This is undesirable, as the trend

represents the long-term expectation of the time series. The trend should therefore not be

impacted by temporary spikes. In a vector error correction model, the underlying common

trends are not explicitly modeled and, hence, robustifying the trends against outliers is

difficult; see also the discussions in Lucas (1997) and Franses and Lucas (1998).

We propose a nonlinear multivariate observation-driven common trend model which

explicitly contains a dynamic specification for the common trend while it still can be

formulated as a vector error correction model. The common trend specification enables

us to straightforwardly robustify the trend filter. In particular, we propose to use a

trend filter that allows for new information to impact the trend in a nonlinear manner,

for instance, by means of quasi-score or flexible cubic spline functions that transform the

residuals. We consider a semi-parametric specification, in the sense that we do not have to

assume a particular distribution for the innovations of the model. To keep the asymptotic

theory tractable and contained, we consider the setting where a single common trend

drives k unit root time series, such that the cointegrating rank is k−1. The methodology

can however be extended to allow for more common trends driving the time series.

Our proposed observation-driven common trend model also relates to other multi-

ple time series models, including the common level model (Durbin and Koopman, 2012,

Chapter 3.3.2) or the more general multivariate unobserved component models (Harvey,

1989, Chapter 8). Such models are not observation-driven but parameter-driven in the

classification of Cox (1981), as the time-varying components are driven by their own in-

dependent innovations. A special case of the former type of model is the single latent

common trend model introduced by Chang et al. (2009). This model can be shown to be

equivalent to the linear Gaussian version of our model. Chang et al. (2009) demonstrate

that their model, and therefore also our model, can be rewritten as an infinite-order vec-

tor error correction model. In the same way as for the more general state space models

mentioned above, parameter estimation and filtering for this model rely on Kalman filter

methods. However, in the case of non-Gaussian innovations or nonlinear updates, the

Kalman filter is no longer applicable and thus it cannot deliver the log likelihood func-
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tion. There exist different solutions for this, but they all require modifications which are

rather involved, both conceptually and computationally. These results can therefore not

be straightforwardly generalized in nonlinear settings. The proposed model in this paper

is observation-driven, since the trend component is driven by past observations. A con-

venient consequence is that the (quasi) log likelihood can be constructed in closed-form

and the filtering of the trend is simple, even if the model is nonlinear.

Our model enables the decomposition of a multivariate time series into a common

trend and a transitory vector process with the aim to distinguish between long-term or

permanent movements (trend) and temporary fluctuations around the trend (cycle). Such

trend-cycle decompositions are, for example, used to judge whether the current value of

a time series is above or below its forecasted long-term growth path. Common ways of

extracting trends and cycles are via the canonical decomposition of autoregressive mov-

ing average (ARMA) models of Beveridge and Nelson (1981) or directly via unobserved

components models (Harvey, 1985; Clark, 1987). Originally, such decompositions were

mainly applied to univariate macro-economic time series variables at yearly or quarterly

frequencies, such as gross domestic product. However, when applied to data observed at a

higher frequency with a display of occasional erratic behaviour, it can be beneficial to use

a robust filter for the long-term trend (Blasques et al., 2024b). Multivariate extensions

of trend-cycle decompositions have earlier been considered (Ariño and Newbold, 1998;

Murasawa, 2015) but not in the context where a single common trend is imposed or with

an outlier-robust trend.

We consider a two-stage procedure for parameter estimation, similar to that of Engle

and Granger (1987). In the first stage, the loadings of the common trend are estimated

using ordinary least squares. In the second stage, the remaining parameters are estimated

using Gaussian quasi-maximum likelihood (QML) with the first-stage estimator “plugged

into” the quasi log likelihood. The first-stage estimator is shown to be super-consistent.

The theoretical properties of the second-stage estimator rely on the invertibility of the

nonlinear trend filter, for which we find a sufficient contraction condition, which can be

feasibly verified in many settings of practical interest. Once filter invertibility is estab-

lished, we show consistency of the second-stage QML estimator and we prove that the

trajectory of the stochastic trend can be consistently extracted. The filtering ability of

the model is explored in a Monte Carlo simulation study. This experiment demonstrates

that in the presence of outliers, our robust methodology is able to filter an underlying

trend more accurately than a linear trend filter. Finally, we present the results of an em-

pirical study where a set of spot prices of oil commodities are analysed. This multivariate

analysis of weekly energy prices includes the extraction of the common long-term trend

which is of key importance for economic policy makers and investors alike.
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The contributions of this paper are relative to the following earlier work. When the

innovations of our common trend model are drawn from a certain distribution and we

use the score corresponding to this distribution for the updating of the common trend,

then our model resembles the score-driven model as advocated by Creal et al. (2013) and

Harvey (2013). In particular, our model can be regarded as a multivariate generalisation

of the univariate stationary score-driven conditional location model of Harvey and Luati

(2014) and its non-stationary counterpart studied by Blasques et al. (2024a). Blazsek

et al. (2021) also consider a related non-stationary score-driven model, but they do not

thoroughly develop the asymptotic theory for maximum likelihood estimation.  Lasak

and Lont (2020) consider a fractional vector error correction model with a score-driven

cointegration vector, variance and cointegration degree parameter, while the location (or

trend) is not score-driven. Other models that bear resemblance to ours are score-driven

dynamic factor models, such as those proposed by Creal et al. (2014) and Artemova

(2023), but they do not allow for non-stationarity.

In light of the earlier work, our current study provides two key novelties. First, we ex-

tend the literature on non-stationary observation-driven conditional location models to a

multivariate setting. The asymptotic theory of the (quasi) maximum likelihood estimator

in the current context is more challenging than the univariate setting in Blasques et al.

(2024a). In the univariate case, the (quasi) log likelihood contributions are stationary in

the limit. This property does not hold for to the multivariate case, unless the (quasi) log

likelihood is evaluated at the true loading vector. Hence, we cannot straightforwardly

apply standard theorems to obtain consistency and asymptotic normality. Second, we

provide a complete theoretical treatment of consistency for a nonlinear observation-driven

conditional location model with both long-run and short-run dynamics. For instance,

Blasques et al. (2024a) discuss a model with both long-run and short-run dynamics, but

only present a complete theoretical treatment for the model with just long-run dynamics.

In the model under consideration, short-run dynamics are introduced by allowing the

innovations to be generated through a general vector autoregressive (VAR) process. This

modeling framework enables us to derive theoretical results for a given set of conditions

which can often be easily verified in empirical work.

The outline of the paper is as follows. In Section 2 we formally introduce the model and

discuss its basic properties. In Section 3 we present the two-step estimation procedure,

discuss filter invertibility, and give the asymptotic properties of the proposed estimators.

In Section 4 we discuss the results of a Monte Carlo simulation study on the filtering

performance of our model in various settings. In Section 5 we present the results of the

empirical application. Section 6 concludes. The proofs of the propositions, corollaries

and theorems can be found in the Supplementary Appendix.
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2. Model specification

We consider the observable variable yt = (y1,t, . . . , yk,t)
⊤ to be a k-dimensional time series

process given by
yt = µ+ βft + εt , t ∈ N, (1)

where µ = (µ1, . . . , µk)⊤ and β = (β1, . . . , βk)⊤ are k-dimensional vectors of unknown

parameters, ft is a non-stationary univariate stochastic trend and εt is the stationary

component of the process. We consider a vector autoregressive specification of order p,

VAR(p), for εt as given by

εt = A1εt−1 + . . . +Apεt−p + ut , {ut}t∈Z ∼ (0,Σ) , (2)

where Aj, j = 1, . . . , p, are k × k autoregressive matrices with unknown coefficients and

ut is a k-dimensional error term, which is assumed to be a strictly stationary and ergodic

(SE) martingale difference sequence (mds) with covariance matrix Σ. For ease of notation,

we also represent the VAR(p) process as εt = A(L)−1 ut, where A(L) denotes the lag

polynomial A(L) = I −A1L− . . .−ApL
p. We consider the following observation-driven

specification for the stochastic trend ft

ft+1 = ω + ft +α⊤s (A(L) [yt − µ− βft ] ; ψ) , t ∈ N, (3)

where ω is a scalar drift, α is k-dimensional coefficient vector that determines the impact

of the innovation on the underlying trend, and s(· ;ψ) : Rk → Rk is a known parametric

function that is indexed by a q-dimensional parameter vector ψ ∈ Ψ ⊂ Rq, which may

contain elements of the parameter matrix Σ. We assume that E[s(ut;ψ)|Ft−1] = 0, where

{Ft}t∈N is the filtration of sigma algebras Ft = σ(yt,yt−1, . . . ,y1). The initial value of

the process {ft} is an unknown value f1, which can be treated as a real value.

From (1)-(3), it follows that the stochastic trend ft is a random walk with drift ω and

SE mds innovations α⊤s(ut;ψ). Therefore, the elements of the observable process yt are

integrated of order one, where the non-stationarity arises from the single common factor

ft. If the function s(· ; ·) is linear in its first argument, then it can be shown that {∆yt}
is a restricted vector ARMA(p, p + 1) process. The one-step-ahead forecast function is

given by E(yt|Ft−1) = A(1)µ +A(L)βft +A1yt−1 + . . . +Apyt−p. The stationarity of

the VAR process {εt} entails that the long-term expectation of yt at time t− 1 is

lim
T→∞

E(yt+T |Ft−1) − Tωβ = µ+ βft .

A convenient aspect of the model is this immediate expression, µ+βft, of the permanent

component in a Beveridge-Nelson decomposition (Beveridge and Nelson, 1981). This

trend-cycle representation is valid in a univariate setting as discussed in Blasques et al.

(2024b), but can straightforwardly be extended to the current multivariate setting.
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The stochastic trend ft and the parameter vectors µ and β are not uniquely identified

without further restrictions. For example, by taking a shift and scale transformation of ft

and a corresponding transformation of µ and β, we obtain an observationally equivalent

process yt. In order to ensure identification, we normalize the first elements of µ and β to

µ1 = 0 and β1 = 1. This choice of the identification restriction entails that the long-term

expectation of the first element of yt is ft. Alternative identification restrictions may also

be considered. For instance, one may restrict the elements of the vector µ to sum to 0 and

those of β to sum to k, which would lead to a different interpretation of the stochastic

trend ft. From the model specification, it follows that if β does not contain zeros, {yt}
is a cointegrated process with cointegrating rank k − 1. Under the current identification

restriction, the cointegration vectors are β̃i = (−βi+1, e
⊤
i,k−1)

⊤ for i = 1, . . . , k − 1, where

ei,k denotes a k-dimensional unit vector with a one at index i, because it is clear that

β̃
⊤
i β = 0 and therefore β̃

⊤
i yt = β̃

⊤
i µ+ β̃

⊤
i εt is integrated of order zero.

The parametric function s(· ;ψ) in (3) determines the updating mechanism of ft, and

can be chosen freely by the researcher under some restrictions that shall be discussed in the

next section. The most straightforward choice is a linear function s(u;ψ) = u. In many

settings, a nonlinear function is more suitable. For instance, when a set of multivariate

observations displays outliers after which the time series reverts back to a value close to

the pre-outlier level, indicating that the underlying long-term conditional expectation ft

has not changed much. Such a situation can be described by the model in (1)-(3) and

having a fat-tailed distribution for ut and a nonlinear updating function s(· ;ψ) that

gives relatively more weight to moderate innovation values than large innovation values.

In other words, a function s(u;ψ) that has a higher slope for small values than for large

values of u. This gives updates of ft that are robust against outliers compared to linear

updates. Within our model, a large value of ut can still have a moderately large impact

on the observations for some time, depending on how persistent the VAR(p) process {εt}
is. However, in the limit the effect on εt will die out. On the other hand, for the long-term

component ft, an outlier in α⊤s(ut;ψ) will have an everlasting effect. Therefore, from

a theoretical perspective, it may be sensible to choose a nonlinear function s(· ;ψ) that

limits the effect of large values of ut.

A practical way to select s(· ;ψ) is to consider a flexible parametric function. A

convenient choice is a piecewise polynomial specification such as a natural cubic spline,

which will also be considered in the Monte Carlo study and the empirical application. An

alternative choice is to employ a quasi-score function, i.e. to consider the score function of

a flexible probability distribution in the spirit of the score-driven framework of Creal et al.

(2013) and Harvey (2013). For instance, a flexible specification that can handle extreme

observations is the score of a Gaussian mixture as considered in Blasques et al. (2024a).
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This option is also considered in the Monte Carlo study and empirical application. We

note that the resulting model is not a score-driven model as there is no distributional

assumption made on the error ut. Instead, it follows the quasi score-driven approach of

Blasques et al. (2023) where the score is used to specify the dynamics of the model in a

semi-parametric setting.

3. Estimation of the model parameters

We partition the parameter vector of the model into two sub-vectors θ = (γ⊤, ξ⊤)⊤,

which will be separately estimated in two stages. The vector γ ∈ Γ contains the first-

stage parameters
γ = (b⊤,m⊤)⊤,

where b = (β2, . . . ,βk)⊤ and m = (µ2, . . . ,µk)⊤; and the vector ξ ∈ Ξ contains the

second-stage parameters

ξ = (ω ,α⊤,ψ⊤
−1, vec(A1)

⊤, . . . , vec(Ap)
⊤, vech(Σ)⊤)⊤,

where ψ−1 ∈ Rq∗ contains the elements of ψ that are not in Σ. The vector θ takes

values in some parameter space Θ = Γ × Ξ ⊂ Rv1 × Rv2 with v1 = 2(k − 1) and v2 =

1 + k + q∗ + k2p + k(k + 1)/2. In particular cases, it suffices to consider a subset of this

vector. For instance, one may fix ω = 0 or m = 0 and remove them from the parameter

vector when it is assumed that there is no drift in the stochastic trend or that there are

no shift transformations. Furthermore, in empirical work, the VAR dynamics in {εt}
can often be assumed idiosyncratic. Then, all the matrices Aj, for j = 1, . . . , p, may be

restricted to be diagonal or scalar. The discussions and results presented below remain

applicable for all such restricted cases. However, the specific restrictions ω = 0 and ω ̸= 0

need to be treated separately as they affect the asymptotic properties of estimators.

Assume that a k-variate sequence of observations {yt}t∈N is generated by the model in

(1)-(3) based on some true parameter value θ0, and suppose that we observe T consecutive

observations from this sequence; i.e. {yt}Tt=1. We are interested in estimating the true

parameter θ0. We propose to estimate the parameter vector in two stages in the spirit of

the two-step procedure of Engle and Granger (1987). Our approach relies on a regression

step and a quasi-likelihood step that delivers a simple estimation approach with tractable

asymptotic properties.

In the first stage, we estimate b and m by regressing ỹt = (y2t, . . . , ykt)
⊤ on y1t. In

particular, we can write
ỹt = m0 + b0 y1t + vt, (4)

where vt = ε̃t−b0ε1t, ε̃t = (ε2t, . . . , εkt)
⊤, is a stationary process with mean zero, whereas

y1t has a unit root. This regression will therefore lead to a super-consistent estimator b̂T
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and a consistent estimator m̂T . In the second stage, we estimate the parameter vector ξ

by Gaussian quasi-maximum likelihood (QML) with β̂T = (1, b̂
⊤
T )⊤ and µ̂T = (0, m̂⊤

T )⊤

plugged into the equation of the quasi log likelihood. Since the sequence {ft}Tt=1 is not

directly observable, the construction of the quasi log likelihood relies on the filtered

sequence {f̂t(γ̂T , ξ)}Tt=1, with γ̂T = (m̂⊤
T , b̂

⊤
T )⊤, where for a general γ and ξ, f̂t(γ, ξ) can

be calculated using the updating equation

f̂t+1(γ, ξ) = ω + f̂t(γ, ξ) +α⊤s(A(L)[yt − µ− βf̂t(γ, ξ)];ψ) ,

where we set (y0 − µ − βf̂0), . . . , (y−p+1 − µ − βf̂−p+1) to zero and select a particular

starting value for f̂1, such as the value of the first observation, i.e. f̂1 = y1,1. Whenever

it is convenient, we use the notation f̂t(θ) ≡ f̂t(γ, ξ). The QML estimator ξ̂T (γ̂T ) is

defined as
ξ̂T (γ̂T ) = arg max

ξ∈Ξ
L̂T (γ̂T , ξ),

where L̂T (γ̂T , ξ) = 1
T

∑T
t=p+1 ℓ̂t(γ̂T , ξ) and

ℓ̂t(γ̂T , ξ) = −[A(L)(yt− µ̂T − β̂T f̂t(γ̂T , ξ))]⊤Σ−1[A(L)(yt− µ̂T − β̂T f̂t(γ̂T , ξ))]− log |Σ|.

Below we formally discuss the asymptotic properties of the first-stage estimator of the

long-run parameter γ in Section 3.1 and of the second-stage estimator of the parameter

ξ in Section 3.2.

3.1. Asymptotic properties of first stage estimates

We impose the following regularity conditions to establish the consistency and rate of

convergence of the first-stage estimator.

A1 {yt}Tt=1 is generated by the model in (1)-(3) with θ = θ0 ∈ Θ and {ut}t∈Z is an SE

mds with a finite and positive definite covariance matrix.

A2 All solutions λ of the characteristic equation |A0(λ)| = 0 are outside the unit circle.

A3 {s(ut;ψ0)} is an mds with finite second moment, i.e. E∥s(ut;ψ0)∥2 < ∞.

Condition A1 ensures that the model is correctly specified. The innovations {ut}t∈Z are

assumed to be an mds. Therefore, they must be uncorrelated but are not required to

be independent, allowing for instance GARCH dynamics. Condition A2 ensures that

the process {εt}t∈Z is SE. Condition A3 is imposed to apply a (functional) central limit

theorem to ft that is used to establish the consistency of the first-stage estimator. A

sufficient condition for A3 is that ut conditional on Ft−1 is symmetrically distributed,

and s(x;ψ0) is an odd function in x. Another sufficient condition is that {ut} is an
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independent sequence of random variables with a zero unconditional mean for s(ut;ψ0).

We also note that A3 can be relaxed to E[s(ut;ψ0)|Ft−1] being a constant, but in that

case ω is no longer identifiable as the drift. In such a case, subtracting E[s(ut;ψ)] from

s(ut;ψ) in the updating equation in (3), leads to this condition being satisfied.

The next theorem provides the rate of convergence of the ordinary least squares (OLS)

estimators b̂T and m̂T of b0 and m0, respectively, in regression model (4).

Theorem 1. Let A1-A3 hold. Then the first-stage OLS estimators b̂T and m̂T satisfy

the following properties as T → ∞:

(i) If ω0 = 0, then T (b̂T − b0) = Op(1) and T 1/2(m̂T −m0) = Op(1).

(ii) If ω0 ̸= 0, then T 3/2(b̂T − b0) = Op(1) and T 1/2(m̂T −m0) = Op(1).

These results follow from standard theory of regressions of integrated processes. The

estimator of b0 is super-consistent and its rate of convergence depends on the drift pa-

rameter ω0. We refer the reader to Section D of the Supplementary Appendix for the

asymptotic distribution of this estimator. The theory of the second-stage estimator dis-

cussed in the next section only relies on the rate of consistency of the first-stage estimators

of b0 and m0. Therefore, alternative estimators that meet this consistency requirement

can also be considered as an alternative first-stage estimator. In general, for instance, it

can be beneficial to take into account the serial dependence in the innovations v−1,t of

regression model (4) to obtain a more efficient estimator. Furthermore, even if v−1,t is

uncorrelated over time (i.e. if p = 0), vt is correlated with y1t. Due to this endogeneity,

the OLS estimator will be inefficient. In Section D of the Supplementary Appendix we

propose a modified OLS estimator as an efficient alternative. As additive outliers could

distort the OLS estimates of b0 in finite samples, another appealing option could be to

use a robust estimator for b0 instead of (modified) OLS. A possible alternative is for

instance the fully modified least absolute deviations (FM-LAD) estimator, as suggested

by Phillips (1995). Other relevant references in the context of cointegration analysis in

the presence of outliers are for instance Lucas (1997) and Franses and Lucas (1998).

3.2. Asymptotic properties of second stage estimates

3.2.1. Filter invertibility

We turn to the estimation of the short-run parameters ξ. As pointed out above, we need

to use the sequence of filtered values f̂t(θ) in the construction of the quasi log likelihood,

as the true ft is unobserved. Since we do not know the true starting value f1, it is

of key importance that the filter is invertible, which means that the filtered sequence

{f̂t(θ)}Tt=1 initialized at some f̂1 ∈ R “forgets” its starting value in the limit. Typically,
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invertibility is discussed in a stationary context, where the invertibility of the filter also

entails the convergence of the filtered sequence to an SE sequence, e.g. in Wintenberger

(2013), Blasques et al. (2018), and Blasques et al. (2022). In the current setting, this

will not be the case as {yt} is integrated of order 1. However, for γ = γ0, i.e. in b = b0

and m = m0, we will show that the differences between the true value of ft and the

filtered value f̂t(γ, ξ) converge to an SE sequence under a contraction condition. This

will be used to show consistency of the plug-in estimator ξ̂T (γ0). In fact, this result holds

whenever b = b0, even if m ̸= m0, but it is more convenient to immediately consider

γ = γ0. Also, for γ ̸= γ0 we can still formulate a condition for invertibility of the filter,

which is also crucial in our derivation of consistency of the plug-in second-stage QMLE

ξ̂T (γ̂T ).

We start by considering the filtering error in γ = γ0. Define the notation ĝt(ξ) ≡
ft − f̂t(γ0, ξ). The sequence {ĝt(ξ)}Tt=1 follows the stochastic recurrence equation (SRE):

ĝt+1(ξ) = ω0 − ω + ĝt(ξ) +α⊤
0 s(ut;ψ0) −α⊤s(A(L)[β0ĝt(ξ) + εt];ψ) ,

initialized at some value ĝ1 = f1 − f̂1. Hence, the filtering errors for γ = γ0 follow

an SRE with SE innovations, as {εt}t∈Z is SE by A2. Therefore, we can show that

{ĝt(ξ)}t∈N converges exponentially fast almost surely† (e.a.s.) to an SE limit process

under a contraction condition. We rewrite the SRE in vector form to obtain a first order

dynamical system. We do so by defining ĝt(ξ) = (ĝt(ξ), ĝt−1(ξ), . . . , ĝt−p(ξ))⊤, which

follows the SRE:

ĝt+1(ξ) = ϕt(ĝt(ξ), ξ) ,

initialized at ĝ1 = (f1−f̂1, 0, . . . , 0)⊤ and where ϕt is a random function ϕt : Rp×Ξ → Rp,

defined by

ϕt(g, ξ) =


ϕ1t(g, ξ)

g1
...

gp

 ,

with g = (g1, . . . , gp+1)
⊤ and

ϕ1t(g, ξ) = ω0 − ω + g1 +α⊤
0 s(ut;ψ0) (5)

−α⊤s(A(L)εt + β0g1 −A1β0g2 − . . .−Apβ0gp+1;ψ) .

Let ϕ
(r)
t (·, ξ) denote the r-th convolution of ϕt, i.e. ϕ

(r)
t (·, ξ) = ϕt(·, ξ) ◦ . . . ◦ ϕt−r+1(·, ξ).

Under the following regularity conditions, and an additional contraction condition, we

†We say some sequence of random variables {x̂t} converges e.a.s. to another sequence {xt} if there

exists a constant ρ > 1 such that ρt|x̂t − xt| a.s.→ 0 as t → ∞.

10



can establish invertibility of the filter. We denote by ∥·∥ the Lp-norm, ∥x∥ = (|x1|p+. . .+

|xn|p)1/p, for some p ≥ 1 when applied to some n-dimensional vector x = (x1, . . . , xn)⊤,

and the operator norm induced by the Lp-norm when applied to a matrix.

IN1 Conditions A1-A2 are satisfied.

IN2 The function s(x;ψ) satisfies the following conditions:

(i) ψ 7→ s(x ;ψ) is continuous for any x ∈ Rk.

(ii) x 7→ s(x ;ψ) is differentiable for any ψ ∈ Ψ.

(iii) x 7→ s(x;ψ) is Lipschitz continuous uniformly over ψ ∈ Ψ, i.e. there is a

K < ∞ such that supψ∈Ψ ∥s(x;ψ) − s(x∗;ψ)∥ ≤ K∥x− x∗∥ for any x,x∗ ∈ Rk.

IN3 The parameter set Θ is compact and Σ is positive definite for any θ ∈ Θ.

Condition IN2 contains regularity conditions on the function s which will be used to

derive the properties of the {ĝt(ξ)} process, where in particular the Lipschitz condition

is used to derive bounded moments of the elements of the limit process. Condition IN3

is a standard condition that is helpful in the derivation of uniform results.

The proposition below establishes convergence of {ĝt(ξ)}t∈N to an SE sequence with

two bounded moments under conditions IN1-IN3 and a contraction condition. This

in turn implies invertibility of the filtered location f̂t(θ) evaluated in β0. The proof of

the asymptotic stationarity result uses Straumann and Mikosch (2006, Theorem 2.8),

which is based on Bougerol (1993, Theorem 3.1). This proposition is a more general

version of Proposition 3.2 of Blasques et al. (2022), because here we consider a filter with

higher-order dependence.

Proposition 1. Let conditions IN1-IN3 be satisfied. Then if for some ḡ ∈ Rp+1 there

is an integer r ≥ 1 such that:

sup
ξ∈Ξ,g∈Rp+1,

εt,...,εt−p−r+1∈Rk

∥∥∥∥∥∂ϕ(r)
t (g, ξ)

∂g⊤

∥∥∥∥∥ = sup
ξ∈Ξ,

z1,...,zr∈Rk

∥∥∥∥∥
r∏

i=1

Φ(zi,γ0, ξ)

∥∥∥∥∥ < 1 , (6)

where

Φ(z,γ, ξ) =


1 −α⊤s′(z;ψ)β α⊤s′(z;ψ)A1β . . . α⊤s′(z;ψ)Apβ

Ip

0
...

0

 , (7)

with s′(z;ψ) = ∂s(z;ψ)/∂z, then

(i) ĝt(ξ) converges e.a.s. to a unique SE sequence of random variables {gt(ξ)}t∈Z uni-

formly over Ξ.

11



(ii) The filter evaluated in θ0 converges e.a.s. to the true ft: |f̂t(θ0)− ft| e.a.s.→ 0 as t →
∞ .

(iii) gt(ξ) has two bounded moments uniformly over Ξ: E supξ∈Ξ |gt(ξ)|2 < ∞.

Given the companion form of the matrix Φ(z,γ0, ξ), at least r = p + 1 iterations

are needed for these contraction conditions to hold. When s(· ;ψ) is linear, Φ(z,γ0, ξ)

is a deterministic matrix, so then the contraction condition will hold for some r, if and

only if the spectral radius of this matrix is smaller than 1 uniformly over the parameters.

When s(· ;ψ) is nonlinear and p ≥ 1, then it is less straightforward to verify whether the

contraction condition of this proposition holds for a given r. We will discuss some simple

sufficient conditions for (6) below Proposition 2. Notice that if p = 0, we have the simple

contraction condition supz,α,ψ |1 −α⊤s′(z,ψ)β0| < 1, which is easy to verify.

For b ̸= b0, the filtering errors {ft−f̂t(θ)}t∈N will not converge to an SE limit sequence,

because then the unit root does not cancel out in the filtering updates. However, we can

still establish invertibility of the filter under a stricter contraction condition. The proof

of the following proposition does not rely on the correct specification of the model, in

particular it holds regardless of the properties of {yt}t∈N.

Proposition 2. Let conditions IN1-IN3 be satisfied. Also, let the following condition

be satisfied for some integer r ≥ 1:

sup
θ∈Θ,

z1,...,zr∈Rk

∥∥∥∥∥
r∏

i=1

Φ(zi,γ, ξ)

∥∥∥∥∥ < 1 , (8)

where the function Φ is defined in (7), then the filter f̂t is uniformly invertible over Θ,

meaning that if {f̃t}t∈N is a filtered sequence initialized at some alternative starting value

f̃1 ∈ R, then supθ∈Θ |f̂t(θ) − f̃t(θ)| e.a.s.→ 0 as t → ∞ , for any f̂1, f̃1 ∈ R.

Clearly, Condition (8) is simply a stronger version of Condition (6) in Proposition 1, as

we take the supremum over θ ∈ Θ, instead of fixing γ = γ0 and just taking the supremum

over ξ ∈ Ξ. It can be verified that we must have infz∈Rk,θ∈Θα
⊤s′(z;ψ)A(1)β > 0 for

condition (8) to hold. So if s′(z;ψ) is diagonal and p = 0, then it follows that the

condition can only hold if at least one sub-function si is monotonically increasing or

decreasing in z. As we will typically use the same function for each index i = 1, . . . , k, it

follows that this function must be monotone for the proposition to apply.

The corollary below gives a simple sufficient condition for the contraction condition

of Proposition 2 to hold.
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Corollary 1. A sufficient condition for condition (8) of Proposition 2 to be satisfied for

r = p + 1 for the matrix norm induced by the L∞-norm is:

sup
z∈Rk,θ∈Θ

{
|1 −α⊤s′(z;ψ)β| + |α⊤s′(z;ψ)A1β| + · · · + |α⊤s′(z;ψ)Apβ|

}
< 1 , (9)

where s′(z;ψ) = ∂s(z;ψ)/∂z⊤.

An even simpler sufficient condition to verify is the condition in the corollary below.

Corollary 2. For each θ ∈ Θ, let s′(z;ψ) be a diagonal matrix and let the coefficient

matrices Ai be diagonal, with
∑p

i=1 |Ai,jj| < 1 for j = 1, . . . , k, where Ai,jj denotes the

j-th diagonal element of Ai. Then, for condition (9) to hold it is sufficient that

inf
z∈Rk,θ∈Θ

α⊤s′(z;ψ)β > 0 , and sup
z∈Rk,θ∈Θ

α⊤s′(z;ψ)β < 1 . (10)

This corollary shows that there will be a non-degenerate set of parameters that lead to

an invertible filter whenever the function s(· ; ·) is such that the diagonal elements of

its derivative are bounded from below by a positive constant and from above by a finite

constant. In other words, if s(x;ψ) is monotonically increasing and Lipschitz continuous

in x. The latter condition is already assumed in IN2. We discuss some choices of s(· ; ·)
that can lead to an invertible filter in the next section.

We discussed in Section 2 how the choice of s(· ; ·) has an impact on the properties

of the model. Naturally, this choice also impacts the filter. In case s(z;ψ) = z the

marginal effect of an increase in the magnitude of the prediction error on f̂t is the same

everywhere. In the presence of outliers, however, it is typically preferred to let the effect

of large prediction errors be relatively smaller. In other words, in such cases it is beneficial

to choose a function s(· ;ψ) which is relatively steep around zero and relatively flat for

large values of x. However, not all choices of s(· ;ψ) will lead to a filter for which

invertibility can be theoretically established. We already noted that s(· ;ψ) must be

monotone in most cases for the contraction condition in Proposition 2 to hold. Just as

in the univariate case (Blasques et al., 2024a), there is an additional restriction on s(· ; ·)
which is stated in the following corollary.

Corollary 3. If the limits of s(z;ψ) and ∂s(z;ψ)/∂z as ∥z∥ → ∞ exist and

lim
∥z∥→∞

∂s(z;ψ)

∂z⊤
= 0k×k for some ψ ∈ Ψ ,

then conditions (6) and thus (8) fail to hold, as this implies that there is a ξ ∈ Ξ such

that supg∈Rp+1 ∥∂ϕ(r)
t (g, ξ)/∂g⊤∥ ≥ 1 almost surely for any integer r ≥ 1.
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A proof is omitted, as this can be shown straightforwardly by the same argument

as for Corollary 1 of Blasques et al. (2024a). This result implies that the contraction

conditions of the previous section fail if s(x;ψ) converges to a constant vector as x grows

large. More precisely, it implies that we only get an invertible filter if at least one of the

elements of s(· ;ψ) diverges linearly in the limit. This means that our filter will not be

robust in the classical sense, see e.g. Calvet et al. (2015) for a formal definition of robust

filters. We can however still have some form of robustness, by having a function with a

higher slope around zero than far away from zero.

We will give a few examples of functions s for which invertibility can potentially

be shown using Proposition 2. For instance, consider the function s(· ;ψ) where each

element si(· ;ψ) for i = 1, . . . , k is the score function of the location of a finite mixture

of normals; see Blasques et al. (2024a). This quasi-score function diverges linearly in the

limit and is flexible, as the mixture of normals itself is very flexible, for instance allowing

for asymmetry. The score function that one would use in a score-driven location model

with for instance Student’s t or exponential generalized beta distribution of the second

kind (EGB2) innovations, does not diverge linearly and therefore invertibility of a filter

based on either of these functions cannot be established based on Proposition 2. As

mentioned before, another flexible option is a natural cubic spline function for a given set

of knots, where the function is linearly extrapolated beyond the outer knots, such that

invertibility can be established.

3.2.2. Consistency

Now we turn to the consistency of the estimator of ξ. We first consider the consistency

of the estimator ξ̂T (γ0) and then we extend this consistency result to ξ̂T (γ̂T ). To prove

these results, we need (subsets of) the following conditions:

C1 Define s(· ;Σ,ψ−1) ≡ s(· ;ψ). Let s and θ0 ∈ Θ be such that ω+α⊤s(ut;Σ0,ψ−1) =

ω0 +α⊤
0 s(ut;ψ0) a.s., if and only if (ω,α,ψ−1) = (ω0,α0,ψ−1,0).

C2 The conditions of Proposition 1 are satisfied.

C3 Condition A3 and the conditions of Proposition 2 are satisfied.

Condition C1 is needed for identification of θ0. Under condition C2, we have invertibility

of the filter in γ0 uniformly over Ξ by Proposition 1, and the sequence of filtering errors

will be SE in the limit. If the stronger contraction condition in C3 holds, then we have

uniform invertibility of the filter uniformly over Θ by Proposition 2. Assumption A3 is

needed to be able to distinguish between the case with and without drift in the consistency

proof of ξ̂T (γ̂T ).
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Under the conditions above, the terms of the quasi log likelihood in γ0 will be asymp-

totically stationary, such that we can prove strong consistency using standard techniques,

in a similar way as in Blasques et al. (2024a).

Theorem 2 (Consistency of ξ̂T (γ0)). Let C1 and C2 hold. Then ξ̂T (γ0) satisfies

ξ̂T (γ0)
a.s.→ ξ0 as T → ∞.

Under some additional conditions, we can show that the quasi log likelihood evaluated

in γ̂T converges in probabilty to the quasi log likelihood evaluated in γ0 as T → ∞,

uniformly over Ξ. It then follows that ξ̂T (γ̂T ) converges in probability to ξ̂T (γ0) as

T → ∞, in other words that ξ̂T (γ̂T ) is consistent.

Theorem 3 (Consistency of ξ̂T (γ̂T )). Let C1 and C3 hold. Then if either

(i) ω0 = 0 and ∥b̂T − b0∥ = op(T
−1/2),

(ii) or ω0 ̸= 0 and ∥b̂T − b0∥ = op(T
−1) ,

and ∥m̂T −m0∥ = op(1), then ξ̂T (γ̂T )
p→ ξ0 as T → ∞.

It follows that all first-stage estimators γ̂T that are consistent at an appropriate rate,

lead to a consistent estimator ξ̂T (γ̂T ). Thus, the first-stage estimator does not need to

be efficient, although efficiency could lead to a more preferable asymptotic distribution of

the plug-in estimator. Furthermore, this consistency result is not contingent on the choice

of identification scheme for β (and µ), although we present the result for the particular

identification scheme under consideration. It is also applicable under any other exact

identification scheme for β, as long as the first-stage estimator β̂T is consistent at an

appropriate rate. Notice that we do not obtain strong consistency here, because the

first-step estimator is only assumed to be weakly consistent.

It also follows from the consistency of ξ̂T (γ̂T ), together with the super-consistency of

b̂T , and the invertibility of the filter, that we can recover the true path of the time-varying

common location ft in the limit.

Proposition 3. Let the conditions of Theorem 3 be satisfied. Then, |f̂T+1(γ̂T , ξ̂T (γ̂T ))−
fT+1| p→ 0 as T → ∞ , for any initialization f̂1 ∈ R.

4. Monte Carlo study: filtering ability

To investigate the filtering ability of our modeling framework, we carry out a Monte Carlo

simulation study. We simulate samples {yt}Tt=1, where yt is three-dimensional, from the

following data generating process (DGP):
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yt = dµt + ct , where
µt+1 = µt + ηt , with {ηt}Tt=1 ∼ iid N (0, σ2

η) , and

ct+1 = Φct + ζt , with {ζt}Tt=1 ∼ iid Student’s t(0,Ω, ν) ,

where d is a three-dimensional vector of fixed parameters, µt is a scalar Gaussian random

walk initialized at zero, where the innovations ηt have variance σ2
η, and ct is a VAR(1)

process, with autoregressive coefficient matrix Φ and multivariate Student’s t innovations

ζt with mean zero, scale Ω and degrees of freedom ν. Hence, this is a parameter-driven

version of the model given in (1)-(3). We will evaluate how well our model can filter

the values of µt. We set d = (1, 1, 1)⊤ and σ2
η = 0.2. We consider two settings for Φ:

in Setting 1 we set Φ = 0 (no short-run dynamics) and in Setting 2 we set Φ = 0.6I3,

where I3 denotes the 3 × 3 identity matrix. Let C = 0.2 ι3ι
⊤
3 + 0.1 I3, where ι3 is a

column vector of ones with length 3. For the degrees of freedom parameter ν and the

scaling matrix Ω we consider three combinations: (1) ν = 5 and Ω = C (such that

Var(ζit) = 0.5), (2) ν = 5 and Ω = 1.8 C (such that Var(ζit) = 0.9) and (3) ν = 3 and

Ω = C (such that Var(ζit) = 0.9).

We consider 1000 replications for the sample sizes T = 500, 1000 and 2000, plus 20

time points which we use as a burn-in period for the filter. The filtered sequences are

initialized at the first observation of the sample y1,1. For simplicity, we set ω = 0 and

µ = 0. Furthermore, for Setting 1, we let p = 0 and for Setting 2, we let p = 1 with

a diagonal VAR specification. Furthermore, we use the following three specifications for

the function s, where Σii denotes the i-th diagonal element of the matrix Σ:

(i) a linear specification: si(x;ψ) = xi/Σii;

(ii) a nonlinear specification using splines: si(x;ψ) = g(xi/
√
Σii; τ)/

√
Σii, where g(·; τ)

is a symmetric natural cubic spline function with four knots and the parameter τ > 0

is an element of ψ. The knots k1 < k2 < k3 < k4 are located at the 2%, 25%, 75%

and 98% quantiles of the standard normal distribution. To enforce symmetry and

identification, we set g(k2; τ) = k2, g(k3; τ) = k3, g(k1; τ) = −τ and g(k4; τ) = τ ;

(iii) a nonlinear specification using the location score of a mixture of normal distributions

derived in Blasques et al. (2024a):

si(x;ψ) = g(xi/
√

Σii;ψ)/
√
Σii , where

g(z;ψ) = z

1
σ2
1
wf(z;σ1) + 1

σ2
2
(1 − w)f(z;σ2)

wf(z;σ1) + (1 − w)f(z;σ2)
, where f(z;σ) =

1

σ
exp

(
− x2

2σ2

)
,

where w ∈ (0, 1) and σ1 > σ2 > 0. To have parsimony we impose that wσ2
1 +

(1−w)σ2
2 = 1, and we use the following parametrization: ψ = (Σ11,Σ22,Σ33, τ, w),

where τ ≡ σ2
1/σ

2
2 > 1, such that σ2

2 = 1/(wτ + 1 − w) and σ2
1 = σ2

2τ . In this

simulation study, we fix w at 0.5 and only estimate τ .
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We refer to Poirier (1973) for details on how to construct a cubic spline as a system of

linear equations. Natural cubic spline functions are such that the second order derivative

is equal to zero at the outer knots, and we choose to linearly extrapolate the function

beyond the outer knots. The results are not sensitive to small changes in the knot

values. For option (ii), if τ is large enough, the function g is monotonically increasing. If

additionaly τ is smaller than k4, the function has a higher slope around zero than when

it is far away from zero, which induces filter robustness. When τ = k4, then cases (i) and

(ii) are equivalent. Hence, the function in (i) is a special case of the function in (ii).

The mixed normal quasi-score function in (iii) also tends to the linear functions as

τ → 1. This function also has a steeper slope around zero than for larger values by

construction, which leads to robustness of the filter compared to the linear case.

To have parsimony, we impose that α = α · (1, 1, 1)⊤, so that the elements of α are

equal to each other. This is the reason why we divide by Σii in case (i), as it ensures that

the variability of the innovations of the different time series is accounted for in the filter

updates. For case (ii), we scale the input of the spline function by the standard deviation

of the corresponding innovation, after which the output of the spline function is again

divided by this standard deviation. The first scaling justifies the placement of the knots

at certain quantiles of the standard normal distribution. Similarly, for case (iii), the first

scaling justifies the restriction wσ2
1 + (1 − w)σ2

2 = 1. The second scaling in (ii) and (iii)

ensures that the linear function s of (i) is a special case of these nonlinear functions.

For each of the generated samples, we estimate the parameters of the three models

described above using our two-step Gaussian QML approach, where we use the modified

OLS method discussed in Supplementary Appendix D for the first step. We evaluate

the filtering performance of our model, by comparing the filtered values β̂T f̂t+1(θ̂T )

with the ‘true’ value of the long-term component of yt, which is dµt. Notice that µt

is strictly speaking not the long-term expectation of yt, and that ideally we would com-

pare β̂T f̂t+1(θ̂T ) to the estimated long-term trend E[µt|Ft], which could be approximated

using a particle filter, but we choose to keep this simulation study simple. Our model

is misspecified, as the DGP is parameter-driven and non-Gaussian. Yet, we expect our

model based on the nonlinear functions described in points (ii) and (iii) above, to filter

the value of µt more accurately than for the linear function described in point (i), due to

their ability to be less sensitive to outliers.

Filtering results

We present the average root mean squared filtering errors (RMSE) and mean absolute

filtering errors (MAE) in Table 1. As expected, the filtering performance of the nonlinear

models is better than that of the linear model, and this difference is more pronounced
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for ν = 3 than for ν = 5, so if the tails of the noise distribution are fatter. Allowing for a

nonlinear update of the location process ft improves the filtering ability of our model in

case of fat-tailed disturbances. This effect is clearly visible for the case with and without

short-run dynamics. Between the two nonlinear models, the spline model has a smaller

average RMSE and MAE than the model that uses the mixed normal score function.

For Setting 2, the RMSE and MAE are considerably higher than for Setting 1, which is

not surprising, because the short-run dynamics complicate the tracking of the underlying

long-term location component. Notice that for Var(ζit) = 0.9, the RMSE and MAE

are lower for ν = 3 than for ν = 5, which seems counter-intuitive, but is caused by the

distribution for ν = 5 having to be ‘streched out’ more, to obtain the same variance as for

ν = 3. Under identical scaling matrices, the RMSE for ν = 5 is considerably lower than

that for ν = 3. This is caused by the variance of the noise terms ζt being proportional to

ν/(ν− 2), implying that for ν = 5 the variance is lower, which makes it easier to track µt

based on the observations. As the sample size increases, the filtering accuracy tends to

slightly decrease. As T increases, the parameters should be closer to their theoretically

optimal values, which should lead to a better filter, but on the other hand, the path

{dµt} that the filtered sequence {β̂T f̂t+1(θ̂T )} tries to trace is longer for larger T . Here,

the latter effect apparently dominates in most cases.

5. Empirical study

To demonstrate the empirical relevance of our model, we analyse three time series of prices

of commodities related to oil traded in the United States. Specifically, we consider spot

prices of West Texas Intermediate crude oil, and heating oil and gasoline traded in the New

York Harbor market‡. In order not to have day-of-the-week effects, we take the spot price

in dollars per gallon of every Friday (the end of each trading week), delivering a weekly

trivariate time series from June 6, 1986 to March 27, 2024, with length T = 1974. We take

logs of all time series and multiply by 10 for numerical purposes; the resulting data are

presented in Figure 1. This plot clearly shows non-stationarity and co-movement. This

co-movement is not surprising, because heating oil and gasoline are obtained by refining

crude oil. The level of the crude oil log prices is slightly lower than that of the other

two liquids, because unlike the others, crude oil still needs to be refined. Intuitively, the

long-term expectation of these time series should be roughly equal, taking into account

their different levels, which is why our model could be suitable for filtering the common

long-term trend of these time series. Occasionally, there are large outliers in the data.

The use of a robust filter for the long-term trend seems therefore most appropriate.

‡Data were retrieved from the website of the U.S. Energy Information Administration: www.eia.gov.
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Table 1. Monte Carlo simulation filtering results∗

Setting 1 (Φ = 0)

RMSE MAE

ν = 5 ν = 5 ν = 3 ν = 5 ν = 5 ν = 3

T V(ζit) = 0.5 V(ζit) = 0.9 V(ζit) = 0.9 V(ζit) = 0.5 V(ζit) = 0.9 V(ζit) = 0.9

500 linear 0.4430 0.5357 0.5262 0.3449 0.4197 0.3979

(0.0224) (0.0284) (0.0587) (0.0162) (0.0212) (0.0283)

spline 0.4319 0.5178 0.4680 0.3379 0.4076 0.3627

(0.0198) (0.0253) (0.0249) (0.0150) (0.0195) (0.0182)

MN 0.4330 0.5203 0.4907 0.3383 0.4090 0.3731

(0.0203) (0.0257) (0.0631) (0.0152) (0.0197) (0.0277)

1000 linear 0.4428 0.5353 0.5273 0.3444 0.4190 0.3975

(0.0157) (0.0199) (0.0409) (0.0111) (0.0146) (0.0194)

spline 0.4315 0.5171 0.4671 0.3375 0.4069 0.3616

(0.0136) (0.0175) (0.0175) (0.0104) (0.0136) (0.0126)

MN 0.4325 0.5198 0.4936 0.3377 0.4082 0.3739

(0.0140) (0.0182) (0.0473) (0.0104) (0.0136) (0.0212)

2000 linear 0.4431 0.5358 0.5301 0.3446 0.4194 0.3984

(0.0112) (0.0142) (0.0306) (0.0078) (0.0102) (0.0145)

spline 0.4319 0.5177 0.4674 0.3377 0.4073 0.3616

(0.0097) (0.0125) (0.0122) (0.0073) (0.0095) (0.0089)

MN 0.4329 0.5203 0.4993 0.3379 0.4086 0.3764

(0.0104) (0.0136) (0.0402) (0.0074) (0.0098) (0.0189)

Setting 2 (Φ = 0.6I3)

RMSE MAE

ν = 5 ν = 5 ν = 3 ν = 5 ν = 5 ν = 3

T V(ζit) = 0.5 V(ζit) = 0.9 V(ζit) = 0.9 V(ζit) = 0.5 V(ζit) = 0.9 V(ζit) = 0.9

500 linear 0.7519 0.8738 0.8606 0.6014 0.6991 0.6839

(0.0618) (0.0747) (0.0987) (0.0504) (0.0612) (0.0728)

spline 0.7338 0.8437 0.7758 0.5855 0.6741 0.6172

(0.0596) (0.0708) (0.0668) (0.0486) (0.0579) (0.0546)

MN 0.7363 0.8485 0.8023 0.5872 0.6776 0.6344

(0.0600) (0.0714) (0.0993) (0.0487) (0.0583) (0.0711)

1000 linear 0.7535 0.8753 0.8641 0.6014 0.6987 0.6849

(0.0442) (0.0536) (0.0708) (0.0361) (0.0439) (0.0524)

spline 0.7354 0.8446 0.7772 0.5853 0.6731 0.6166

(0.0428) (0.0511) (0.0489) (0.0348) (0.0417) (0.0389)

MN 0.7372 0.8490 0.8087 0.5868 0.6764 0.6371

(0.0430) (0.0515) (0.0764) (0.0350) (0.0418) (0.0545)

2000 linear 0.7566 0.8788 0.8700 0.6035 0.7009 0.6885

(0.0323) (0.0393) (0.0518) (0.0264) (0.0321) (0.0377)

spline 0.7392 0.8487 0.7803 0.5877 0.6757 0.6185

(0.0307) (0.0369) (0.0338) (0.0252) (0.0303) (0.0273)

MN 0.7408 0.8527 0.8192 0.5892 0.6788 0.6440

(0.0316) (0.0380) (0.0635) (0.0257) (0.0310) (0.0452)

∗Average root mean squared filtering error (RMSE) and mean absolute filtering error (MAE)

over 1000 replications, with standard deviations in brackets. For each replication, RMSE and

MAE are calculated for t = 1, . . . , T , based on filtering errors β̂T f̂t+1−dµt. MN stands for the

mixture of normals quasi-score. Lowest errors per DGP and T are highlighted in bold.
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Figure 1. Spot prices per gallon every Friday from June 6, 1986 to March 27, 2024, in

logs and multiplied by 10.

We proceed to estimate the parameters of the common trend model in (1)-(3), in

order to eventually filter the long-term trend of the spot prices of the three oil-associated

products. For the function s we choose the linear, cubic spline and mixed normal score

function introduced in Section 4, where for the latter we no longer restrict w = 0.5.

We consider a scalar VAR specifications for εt to enforce parsimony and because a

diagonal VAR specification leads to worse information criterion values. This simplifying

restriction does not imply that we do not allow the different time series to impact each

other, as they all affect the value of the filtered long-term trend. No drift is added, i.e. ω

is not included in the model, because including ω does not substantially improve the fit.

Empirical results

The parameters in γ are estimated using the modified OLS method discussed in Supple-

mentary Appendix D, see Table 2 for the results. The estimates of β2 and β3 are close to

one and µ2 and µ3 are both positive, as expected. These estimates are plugged into the

quasi log likelihood, which we maximize to obtain an estimate of the other parameters;

see Table 3. We burn the first 20 observations to reduce the impact of the initialization of

the filter. We consider p = 0 and p = 2 VAR lags. Adding more VAR lags does not lead

to better information criterion values. For each model, we display the optimized quasi

log-likelihood value, AIC, BIC and Takeuchi Information Criterion (TIC); see Takeuchi

(1976). The latter information criterion is included, because unlike the AIC and BIC it

is a valid information criterion under QML estimation.

For the linear and spline models with p = 0 and p = 2, it can be shown that the

conditions in Corollary 2 are satisfied, such that we have filter invertibility. Regarding

the models that use the mixed normal quasi-score, for p = 0 the invertibility of the filter

can be shown using Corollary 2, but for p = 2 the function s is non-montone, so we
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cannot show invertibility using Propositions 1 or 2. This does not mean the latter filter

is not invertible, as the conditions are sufficient, not necessary.

Allowing for an autoregressive specification for εt, that is p ≥ 1, leads to a large

improvement of the maximized quasi log-likelihood value. In other words, imposing that

εt is serially uncorrelated is too restrictive for these data, which is also indicated by the

high autocorrelation that is present in the residuals of the models with p = 0 VAR lags.

The estimated VAR dynamics are rather persistent, with autoregressive coefficients of

around 0.8 for the first lag and around 0.13 for the second lag.

For comparison, we also give the results of the parameter-driven common trend model

of Chang et al. (2009) in Table 3. The model is reparametrized such that it has a similar

identification scheme as our model, and to be able to compare the results, we also employ

the two-step procedure for this model, using the modified OLS estimates of Table 2.

Estimating the parameters jointly leads to very similar estimates and almost the same

log likelihood value. The log likelihood of the two-step estimator of the model of Chang

et al. (2009) is slightly better than that of the linear model with p = 0 lags, but the

difference is small. It can be shown that if we use the update ft+1 = ft + αβ⊤Σ−1ut,

then these two models are exactly equivalent to each other.

Furthermore, we observe that for lag order p = 2, the nonlinear models have better

information criterion values than the linear models, while for lag order p = 0 the opposite

is true. For the case p = 0, the estimate of τ for the model that uses the spline function

is relatively high, leading to a relatively less robust filter than for p = 2. For p = 0, the

estimate of τ is not significantly below k4 ≈ 2.053 at a 1% significance level, according

to a t-test, while for p = 2 it is. This is evidence that indeed the spline specification

is superior to the linear specification for p = 2 and not for p = 0. For the model with

p = 0 that uses the mixed normal quasi-score, w is relatively high and τ = σ2
1/σ

2
2 is

relatively close to 1, which also leads to a filter that approaches the linear filter. The

overall preferred model is the spline model with p = 2, as it has the best information

criterion values.

The updating functions α̂T s1(x; ψ̂T ) of the fitted models with p = 2 are plotted in

Figure 2. The robustness of the nonlinear filters is clearly visible, as the slope of the

Table 2. Parameter estimates γ̂T obtained from modified ordinary least squares estima-

tion, for log price series shown in Figure 1. Standard errors are reported in brackets.

β2 β3 µ2 µ3

1.063 1.006 2.031 2.044

(0.008) (0.008) (0.055) (0.056)
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Table 3. Parameter estimates ξ̂T (γ̂T ), with γ̂T from Table 2.

p = 0 p = 2

ξ̂T SSM linear spline MN linear spline MN

α(σ2
state) 0.218 0.192 0.207 0.195 0.028 0.039 0.024

(0.008) (0.011) (0.015) (0.010) (0.006) (0.008) (0.007)

τ 1.873 1.701 1.107 4.203

(0.184) (0.759) (0.302) (1.222)

w 0.826 0.524

(0.390) (0.230)

A1 0.794 0.806 0.805

(0.063) (0.063) (0.063)

A2 0.137 0.128 0.128

(0.043) (0.045) (0.044)

σ2
1 0.331 0.538 0.536 0.535 0.312 0.310 0.310

(0.015) (0.063) (0.063) (0.063) (0.025) (0.026) (0.026)

σ2
12 -0.190 0.045 0.044 0.045 0.217 0.214 0.214

(0.009) (0.025) (0.023) (0.023) (0.013) (0.013) (0.013)

σ2
2 0.343 0.605 0.605 0.608 0.334 0.330 0.331

(0.011) (0.097) (0.094) (0.095) (0.035) (0.034) (0.035)

σ2
13 -0.081 0.132 0.132 0.131 0.217 0.215 0.215

(0.012) (0.050) (0.049) (0.049) (0.017) (0.018) (0.018)

σ2
23 -0.248 0.007 0.008 0.008 0.208 0.206 0.206

(0.011) (0.025) (0.025) (0.025) (0.012) (0.012) (0.012)

σ2
3 0.477 0.711 0.713 0.711 0.340 0.339 0.338

(0.024) (0.065) (0.062) (0.062) (0.019) (0.020) (0.020)

L̂T -6836.96 -6837.31 -6835.40 -6835.72 -3798.43 -3788.70 -3788.43

AIC 13687.92 13688.62 13686.79 13689.44 7614.86 7597.40 7598.87

TIC 13704.37 13722.51 13727.19 13730.59 7765.45 7753.86 7752.28

BIC 13726.96 13727.67 13731.41 13739.64 7665.06 7653.17 7660.22

∗Standard errors are reported in brackets. MN stands for mixture of normals. L̂T

denotes maximized quasi log likelihood. SSM corresponds to state space model of

Chang et al. (2009) reparametrized to match the current identification scheme (so β1

is fixed at 1 and σ2
state is variance of state innovation).

nonlinear functions is higher around zero than for the linear function, while the opposite

is true for large values. So even though all three functions diverge linearly in the limit,

the level of the nonlinear functions is considerably lower for large values.

Figure 3 shows the filtered long-term trends for the models with p = 2 autoregressive

lags. The plot also shows a ‘standardized’ version of the data by subtracting the estimated

values of µi and dividing by βi. The filtered trend is more smooth than the observation
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Figure 2. Plots of α̂T s1(x; ψ̂T ) for the estimates of the models with p = 2, see Table 3.

series and whenever there is a shift in the level of the observations, the long-term trend

is usually rather conservative. Whenever the prices are increasing, the filtered trend

is typically below the observations, and vice versa in case of a prolonged decrease in

the prices. In this way, the filtered trend behaves like one would expect a long-term

component to behave. The path of the linear and nonlinear filters differ occasionally, while

the two nonlinear filters lead to virtually identical paths. The most notable differences

occur after the 2008 financial crisis and the COVID pandemic in 2020. Here, the linear

filter has a more pronounced reaction to the sudden drop in the prices than the nonlinear

filters. During such a period the robustness of the nonlinear filter makes a difference.

The filtered long-term trends can be used to perform a multivariate Beveridge-Nelson

trend-cycle decomposition on the observed series. The model yt = µ + βft+1 + ct de-

composes the observations in the trend component µ+ βft+1, and the cycle component

ct = yt −µ−βft+1. The cycle components for the models with p = 2 lags are presented

in Figure 4. The filtered cycle is persistent and can deviate from zero for a longer time,

1987 1990 1993 1996 1999 2002 2005 2008 2011 2014 2017 2020 2023

−15

−10

−5

0

5

10

15 y1t
(y2t − µ2)/β2
(y3t − µ3)/β3
f̂t linear

f̂t spline

f̂t mixture of normals

Figure 3. Filtered long-term trend using model with p = 2, see Table 3, where y1t

corresponds to crude oil, y2t to heating oil and y3t to gasoline
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for instance around the financial crisis in 2008, the COVID pandemic in 2020 and the

start of the war in Ukraine in 2022, but overall they tend to fluctuate around zero.
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Figure 4. Cycle components yt−µ̂T − β̂T f̂t+1(θ̂T ) corresponding to the long-term trend

plotted in Figure 3 for the three different time series.

6. Conclusion

We have introduced a novel robust multivariate conditional location model with a single

common stochastic trend and possible vector autoregressive dynamics for the innovations.

Our model offers a convenient way for the robust filtering of the long-term expectation of

groups of time series that are driven by a common trend. We introduce a simple two-step

estimation procedure, where in the first step we estimate the long-run parameters β and

µ via an OLS regression and in the second step we estimate the other parameters via

Gaussian QML estimation where the first-step estimates are plugged into the quasi log

likelihood. The asymptotic distribution of the first-stage estimator follows from standard

regression theory for integrated processes. We have developed sufficient conditions for

the invertibility of the filter and for the consistency of the second-stage estimator.

A natural extension is to allow for multiple stochastic trends driving the observations.

From a methodological standpoint, this is a straightforward extension but deriving the

theoretical results will be tedious. Another extension is to consider robust estimation in

the first and second stages which might benefit the empirical performance. We discuss

such possible robust alternatives to OLS in Supplementary Appendix D. Further, for
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the second estimation stage, we can postulate a distribution for the innovations and use

maximum likelihood estimation instead of Gaussian QML. Finally, instead of modeling

εt as a VAR process, we can extend the model with idiosyncratic stationary unobserved

variables for each time series variable, similar to the univariate model of Blasques et al.

(2024a), allowing for a robust update of both the long-term and short-term components.

Such an extension will further complicate the theory and we expect that relatively more

stringent conditions need to be put in place, in order to obtain such theoretical results.
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Loève, M. (1977). Probability theory. Springer-Verlag, New York.

Lucas, A. (1997). Cointegration testing using pseudolikelihood ratio tests. Econometric

Theory, 13(2):149–169.

Lütkepohl, H. (2005). New introduction to multiple time series analysis. Springer.

Murasawa, Y. (2015). The multivariate Beveridge–Nelson decomposition with I(1) and

I(2) series. Economics Letters, 137:157–162.

Newey, W. K. and West, K. D. (1994). Automatic lag selection in covariance matrix

estimation. The Review of Economic Studies, 61(4):631–653.

Park, J. Y. and Phillips, P. C. (1988). Statistical inference in regressions with integrated

processes: Part 1. Econometric Theory, 4(3):468–497.

Phillips, P. C. (1995). Robust nonstationary regression. Econometric Theory, 11(5):912–

951.

Phillips, P. C. and Durlauf, S. N. (1986). Multiple time series regression with integrated

processes. The Review of Economic Studies, 53(4):473–495.

Phillips, P. C. and Hansen, B. E. (1990). Statistical inference in instrumental variables

regression with I(1) processes. The Review of Economic Studies, 57(1):99–125.

27



Poirier, D. J. (1973). Piecewise regression using cubic splines. Journal of the American

Statistical Association, 68(343):515–524.

Rao, R. R. (1962). Relations between weak and uniform convergence of measures with

applications. The Annals of Mathematical Statistics, 33(5):659–680.

Saikkonen, P. (1991). Asymptotically efficient estimation of cointegration regressions.

Econometric Theory, 7(1):1–21.

Saikkonen, P. (1993). Estimation of cointegration vectors with linear restrictions. Econo-

metric Theory, 9(1):19–35.

Shin, Y. (1994). A residual-based test of the null of cointegration against the alternative

of no cointegration. Econometric Theory, 10(1):91–115.

Straumann, D. and Mikosch, T. (2006). Quasi-maximum-likelihood estimation in condi-

tionally heteroscedastic time series: A stochastic recurrence equations approach. The

Annals of Statistics, 34(5):2449–2495.

Takeuchi, K. (1976). The distribution of information statistics and the criterion of good-

ness of fit of models. Mathematical Science, 153:12–18.

Wald, A. (1949). Note on the consistency of the maximum likelihood estimate. The

Annals of Mathematical Statistics, 20(4):595–601.

Wintenberger, O. (2013). Continuous invertibility and stable QML estimation of the

EGARCH(1, 1) model. Scandinavian Journal of Statistics, 40(4):846–867.

28



Supplementary Appendix of

Robust Multivariate Observation-Driven Filtering for a

Common Stochastic Trend: Theory and Application

A. Proofs of main results

Proof of Theorem 1. This result follows directly from Theorem D.1 which contains the asymp-

totic distribution results for this estimator. For that Theorem we have an additional assumption

on the positive definiteness of the long-run covariance matrix of the vector (α⊤
0 s(ut;ψ0), ε

⊤
−1,t−

ε1tβ
⊤
−1,0)

⊤, but this assumption is not necessary for showing the rate of consistency of the es-

timator.

Proof of Proposition 1. This proof is follows the same approach as Proposition 3.2 of Blasques

et al. (2022), but here we consider a slightly more general case, as we have an updating function

with higher-order dependence. We start by noting that the equality in equation (6) holds by

Lemma B.1.

Part (i), SE: We can follow the same steps as the proof of Proposition TA.3 of Blasques

et al. (2022), which uses Bougerol (1993, Theorem 3.1), but then for this specific setting. Let

C(Ξ,Rp+1) denote the space of continuous Rp+1-valued functions, equipped with the sup-norm

∥h(ξ)∥Ξ = supξ∈Ξ ∥h(ξ)∥. Notice that C(Ξ,Rp+1) is a separable Banach space. Then let us

define the random map ϕ̃t(·, ·) : C(Ξ,Rp+1) × Ξ → C(Ξ,Rp+1), which is the same as ϕt with

the important difference that this mapping ϕt(·, ·) : Rp+1 ×Ξ → Rp+1. So ĝt+1(·) = ϕ̃t(ĝt(·), ·),
implying that we can view {ĝt}t∈N initialized at some ĝ1 as a sequence of random functions

taking values in C(Ξ,Rp+1). Define ϕ̃
(r)
t in the same way as ϕ

(r)
t .

We will now apply Theorem 3.1 of Bougerol (1993). We have that {ut} is an SE sequence

and under the maintained assumptions {εt} is SE, as for instance was shown in the proof of D.1.

Because due to IN2 the updating function ϕt is a continuous function of (ut, εt, . . . , εt−p) for

every (g, ξ) ∈ Rp+1×Ξ, it follows from Krengel (1985, Proposition 4.3) that the random sequence

{ϕ̃t}t∈Z is SE. Condition (C1) of Bougerol (1993, Theorem 3.1) is E log+ ∥ϕ̃t(h(·), ·)∥Ξ < ∞ for

some h ∈ C(Θ2,Rp+1), which is implied by E log+ supξ∈Ξ ∥ϕt(ḡ, ξ)∥ < ∞ for some ḡ ∈ Rp+1, as

we can then take the function h(ξ) = ḡ for any ξ ∈ Ξ. It is clear that E log+ supξ∈Ξ ∥ϕt(ḡ, ξ)∥ ≤
E supξ∈Ξ ∥ϕt(ḡ, ξ)∥ < ∞, where the expectation is finite by Lemma B.2. We can apply this

lemma for n = 1 because E∥ut∥ < ∞ as ut has a finite covariance matrix by assumption. Lastly,

condition (C2) of Bougerol (1993, Theorem 3.1) can be shown to hold using the same steps as

TA.p1



in the proof of Proposition TA.3 of Blasques et al. (2022), as for any integer s ≥ 1

sup
g1,g2∈C(Ξ,Rp+1),∥g1−g2∥Ξ>0

∥ϕ̃(s)
t (g1(·), ·)− ϕ̃

(s)
t (g2(·), ·)∥Ξ

∥g1(·)− g2(·)∥Ξ

= sup
g1,g2∈C(Ξ,Rp+1),∥g1−g2∥Ξ>0

sup
ξ∈Ξ

∥ϕ(s)
t (g1(ξ), ξ)− ϕ

(s)
t (g2(ξ), ξ)∥

∥g1(·)− g2(·)∥Ξ

≤ sup
g1,g2∈C(Ξ,Rp+1),∥g1−g2∥Ξ>0

sup
ξ∈Ξ|g1(ξ)̸=g2(ξ)

∥ϕ(s)
t (g1(ξ), ξ)− ϕ

(s)
t (g2(ξ), ξ)∥

∥g1(ξ)− g2(ξ)∥

×
(

sup
g1,g2∈C(Ξ,Rp+1),∥g1−g2∥Ξ>0

sup
ξ∈Ξ

∥g1(ξ)− g2(ξ)∥
∥g1(·)− g2(·)∥Ξ

)

≤ sup
ḡ1,ḡ2∈Rp+1,g1 ̸=g2

sup
ξ∈Ξ

∥ϕ(s)
t (ḡ1, ξ)− ϕ

(s)
t (ḡ2, ξ)∥

∥ḡ1 − ḡ2∥

≤ sup
ξ∈Ξ

sup
ḡ∗∈Rp+1

∥∥∥∥∥∂ϕ(s)
t (ḡ∗, ξ)

∂g

∥∥∥∥∥ ≡ Λ
(s)
t ,

where the final inequality follows from the mean value theorem. Note that we have from equation

(6), that we must have Λ
(r)
t < 1, from which it follows that E log Λ

(r)
t < 0. Also, it is clear from

the compactness of Ξ, the Lipschitz continuity of s(· ;ψ) assumed in IN2 and the form of

∂ϕt(g, ξ)/∂g, see (C.1), that we must have E log+ Λ
(1)
t < ∞.

It now follows from Bougerol (1993, Theorem 3.1) that we have ∥ĝt − gt∥Ξ
a.s.→ 0 as t → ∞.

The uniqueness of the SE limit sequence {gt}t∈Z and the exponentially fast convergence follows

from Straumann and Mikosch (2006, Theorem 2.8).

Part (ii), filter invertibility: This follows straightforwardly, as ĝt(θ) ≡ ft − f̂t(γ0, ξ), so

|f̂t(θ0)− ft| = |ĝt(θ0)− gt(θ0)|+ |gt(θ0)| e.a.s.→ 0 ,

as t → ∞, where the first term vanishes e.a.s. by the first result of the proposition, and where

the second term is equal to zero, because gt(θ0) = 0 almost surely, because we have

gt+1(θ0) = gt(θ0)

+α⊤
0 [s(ut;ψ0)− s(β0gt(θ0)−A1β0gt−1(θ0)− · · · −Apβ0gt−p(θ) + ut;ψ0)] ,

so it is clear that gt(θ0) = 0 a.s. for all t, is a solution to this stochastic recurrence equation,

and by the result above this solution is unique.

Part (iii), bounded moments: By the contraction condition in (6), there exists a constant

0 ≤ c̄ < 1 such that for all (ḡ1, ḡ2) and any realisation of (εt, . . . , εt−p−r+1):

sup
ξ∈Ξ

∥ϕ(r)
t (ḡ1, ξ)− ϕ

(r)
t (ḡ2, ξ)∥ ≤ sup

ξ∈Ξ
sup

ḡ∗∈Rp+1

∥∥∥∥∥∂ϕ(r)
t (ḡ∗, ·)
∂g⊤

(ḡ1 − ḡ2)
∥∥∥∥∥

≤ sup
ξ∈Ξ

sup
ḡ∗∈Rp+1

∥∥∥∥∥∂ϕ(r)
t (ḡ∗, ·)
∂g⊤

∥∥∥∥∥× ∥ḡ1 − ḡ2∥
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≤ c̄ ∥ḡ1 − ḡ2∥ ,

where the first inequality follows from the mean value theorem. The second inequality follows

from the fact that for vectors ∥·∥ is an Lp-norm and for matrices it is the operator norm induced

by this Lp-norm. Now let ḡ ∈ Rp+1, then we can bound ∥gt(·)∥Ξ as follows

∥gt(·)∥Ξ = ∥ϕ̃(r)
t−1(gt−r(·), ·)∥Ξ

≤ ∥ϕ̃(r)
t−1(gt−r(·), ·)− ϕ

(r)
t−1(ḡ, ·)∥Ξ + ∥ϕ(r)

t−1(ḡ, ·)∥Ξ

= sup
ξ∈Ξ

∥ϕ(r)
t−1(gt−r(ξ), ξ)− ϕ

(r)
t−1(ḡ, ξ)∥+ ∥ϕ(r)

t−1(ḡ, ·)∥Ξ

≤ c̄ · sup
ξ∈Ξ

∥gt−r(ξ)− ḡ∥+ ∥ϕ(r)
t−1(ḡ, ·)∥Ξ

≤ c̄ · ∥gt−r(·)∥Ξ + c̄ ∥ḡ∥+ ∥ϕ(r)
t−1(ḡ, ·)∥Ξ .

So if we unfold this recursion l steps backwards, we obtain

∥gt(·)∥Ξ ≤ (c̄)l ∥gt−lr(·)∥Ξ +
l∑

i=1

c̄i−1 ((c̄) ∥ḡ∥+ ∥ϕ(r)
t−1−ir(ḡ, ·)∥Ξ)

≤ 1 +

l∑
i=1

(c̄)i−1 (c̄ ∥ḡ∥+ ∥ϕ(r)
t−1−ir(ḡ, ·)∥Ξ) ,

where the second inequality holds almost surely for large enough l, because (c̄)l goes to zero at

an exponential rate and ∥gt−lr(·)∥Ξ is SE by the first part of the proposition and Proposition

4.3 of Krengel (1985). Now let ∥ · ∥n ≡ (E(·)n)1/n and let ∥ · ∥Ξn ≡ (E(∥ · ∥Ξ)n)1/n. Note that for

n ≥ 1, ∥ · ∥n is a norm and therefore it is sub-additive. For l large enough such that the above

inequality holds with probability one, take this norm ∥ · ∥n for n = 2 on both sides:

∥gt(·)∥Ξ2 ≤ 1 +
l∑

i=1

(c̄)i−1 (c̄ ∥ḡ∥+ ∥ϕ(r)
t−1−ir(ḡ, ·)∥Ξ2 )

≤ 1 +
c̄ ∥ḡ∥+ ∥ϕ(r)

0 (ḡ, ·)∥Ξ2
1− c̄

< ∞ ,

using that c̄ < 1 and ∥ϕ(r)
t (ḡ, ·)∥Ξ2 is constant over t by the stationarity of {εt} and it is finite by

Lemma B.2. Hence, E supξ∈Ξ(∥gt(ξ)∥)2 < ∞, which clearly also implies that E supξ∈Ξ |gt(ξ)|2 <
∞.

Proof of Proposition 2. To show the result, we rewrite the process {f̂t} in vector form such

that the updating mechanism is a first-order stochastic recurrence equation. We write f̂ t(θ) =

(f̂t(θ), f̂t−1(θ), . . . , f̂t−p(θ))
⊤, which then follows the stochastic recurrence equation:

f̂ t+1(θ) = ϕ̆t(f̂ t(θ),θ) ,
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for t = 1, 2, . . . , initialized at f̂1 = (f̂1, 0, . . . , 0)
⊤ for some f̂1 ∈ R and where ϕ̆t : Rp ×Θ → Rp

is a random function, defined by

ϕ̆t(f ,θ)

=


ω + f1 +α

⊤s(yt − µ− βf1 −A1(yt−1 − µ− βf2)− . . .−Ap(yt−p − µ− βfp+1))

f1
...

fp

 ,

with f = (f1, . . . , fp+1)
⊤ and where we set y0, . . . ,y1−p equal to zero. Furthermore, we define

f̃ t(θ) which is also defined as f̃ t+1(θ) = ϕ̆t(f̃ t(θ),θ), but then initialized at f̃1 = (f̃1, 0, . . . , 0)
⊤

for some f̃1 ∈ R. Let ϕ̆
(r)
t denote the r-th convolution of ϕ̆t(f ,θ), so ϕ̆

(r)
t (·,θ) = ϕ̆t(·,θ) ◦ · · · ◦

ϕ̆t−r+1(·,θ). Then it follows from the mean value theorem and the sub-multiplicativity of the

operator norm that

sup
θ∈Θ

∥f̂ t(θ)− f̃ t(θ)∥

= sup
θ∈Θ

∥∥∥ϕ̆(r)
t−1(f̂ t−r(θ),θ)− ϕ̆

(r)
t−1(f̃ t−r(θ),θ)

∥∥∥
≤ sup
θ∈Θ

sup
f1,f2∈Rp+1,f1 ̸=f2

∥∥∥ϕ̆(r)
t−1(f1,θ)− ϕ̆

(r)
t−1(f2,θ)

∥∥∥
∥f1 − f2∥

∥f̂ t−r(θ)− f̃ t−r(θ)∥

≤ sup
θ∈Θ,f∗∈Rp+1

∥∥∥∥∥∂ϕ̆
(r)
t−1(f

∗,θ)

∂f⊤

∥∥∥∥∥ · supθ∈Θ
∥f̂ t−r(θ)− f̃ t−r(θ)∥

≤ b · sup
θ∈Θ

∥f̂ t−r(θ)− f̃ t−r(θ)∥ ,

almost surely, where b is some constant 0 ≤ b < 1, as we have by the chain rule that:∥∥∥∥∥∂ϕ̆(r)
t (f∗,θ)

∂f⊤

∥∥∥∥∥ =

∥∥∥∥∥∂ϕ̆t(f ,θ)

∂f⊤

∣∣∣∣
f=ϕ̆

(p)
t−1(f

∗,θ)

. . .
∂ϕ̆t−p(f

∗,θ)

∂f⊤

∥∥∥∥∥ ,

where

∂ϕ̆t(f ,θ)

∂f⊤ =


1−α⊤s′(z;ψ)β α⊤s′(z;ψ)A1β . . . α⊤s′(z;ψ)Apβ

Ip

0
...

0

 ≡ Φ̆(z,θ) ,

and where z = yt −µ−βf1 −A1(yt−1 −µ−βf2)− · · · −Ap(yt−p −µ−βfp+1). So it is clear

that taking the supremum over f and yt, . . .yt−p−r+1, is equivalent to taking the supremum

over z ∈ Rk for each factor of the matrix product, by the same reasoning as in Lemma B.1. In

other words for any t ≥ r:

sup
θ∈Θ,f∗∈Rp+1,yt,...,yt−p−r−1∈Rk

∥∥∥∥∥∂ϕ̆(r)
t (f∗,θ)

∂f⊤

∥∥∥∥∥ = sup
θ∈Θ,(z1,...,zr)∈Rkr

∥∥∥∥∥
r∏

i=1

Φ̆(zi,θ)

∥∥∥∥∥ ≤ b < 1 ,
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where this number b exists because the condition in (8) holds by assumption. It is also clear

that (8) can only hold if

sup
θ∈Θ,z∈Rk

∥∥∥Φ̆(z,θ)∥∥∥ = a < ∞ , (A.1)

for some real number 1 ≤ a < ∞, because if this condition is violated, it means that not all

elements of the matrix are uniformly bounded. It follows that for any t ≥ r + 1 we can unfold

backwards the inequality we found above ⌊(t− 1)/r⌋ times, which leads to the inequality

sup
θ∈Θ

∥f̂ t(θ)− f̃ t(θ)∥ ≤ b⌊(t−1)/r⌋ sup
θ∈Θ

∥f̂ t−r⌊(t−1)/r⌋(θ)− f̃ t−r⌊(t−1)/r⌋(θ)∥ ,

≤ b⌊(t−1)/r⌋ar−1∥f̂1 − f̃1∥ ,

almost surely, where for the second inequality we unfold f̂ t−r⌊(t−1)/r⌋(θ)− f̃ t−r⌊(t−1)/r⌋(θ) back-

wards further one step at a time, applying the mean value theorem again for each step and using

the equality in (A.1). Lastly, we use that the ‘rest term’ t− r(⌊(t− 1)/r⌋)− 1 = (t− 1) mod r

is at most r − 1. We can further bound this final expression as follows:

sup
θ∈Θ

∥f̂ t(θ)− f̃ t(θ)∥ ≤ b(t−r−1)/rar−1∥f̂1 − f̃1∥

= (b1/r)t b(1−r)/rar−1∥f̂1 − f̃1∥ ,

where the first inequality holds because ⌊(t− 1)/r⌋ ≥ (t− r − 1)/r, so b⌊(t−1)/r⌋ ≤ b(t−r−1)/r as

0 ≤ b < 1. Notice that b1/r < 1 because b < 1 and r ≥ 1, so it follows that for any real number

1 < ρ < b−1/r:

ρt sup
θ∈Θ

∥f̂ t(θ)− f̃ t(θ)∥ ≤ ρt(b1/r)t b−2ar−1∥f̂1 − f̃1∥
a.s.→ 0 ,

as t → ∞, which follows from ρ·b1/r < 1 and the fact that the other terms are finite constants. In

effect, also the first elements of the vector f̂ t and f̃ t must converge to each other exponentially

fast almost surely.

Proof of Corollary 1. Note that for a matrix A = (aij), ∥A∥∞ is the maximum absolute row

sum of A: ∥A∥∞ = maxi
∑

j |aij |. We introduce the notation:
1−α⊤s′(zt)β α⊤s′(zt)A1β . . . α⊤s′(zt)Apβ

Ip

0
...

0

 ≡


a1(zt) a2(zt) . . . ap+1(zt)

Ip

0
...

0

 ,
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where we supress the dependence of ai(z) on θ for notational convenience. We want to show

that under the assumptions of the corollary we have

sup
θ∈Θ,z1,...,zp+1∈Rk

∥∥∥∥∥∥∥∥∥∥∥∥


a1(z1) . . . ap+1(z1)

Ip

0
...

0

 . . .


a1(zp+1) . . . ap+1(zp+1)

Ip

0
...

0



∥∥∥∥∥∥∥∥∥∥∥∥
∞

< 1 .

We now argue that the inequality holds because each row of the resulting matrix can be shown

to have an absolute sum smaller than 1, uniformly over z1, . . . ,zp+1. It follows from Condition

(9) that supz∈Rk,θ∈Θ
∑p+1

i=1 |ai(z)| < 1. Then, the i-th row of the product of the first i matrices

in the product is equal to (a1(zi) . . . ap+1(zi)), which clearly has an absolute sum smaller

than 1 uniformly over zi and θ, for each i = 1, . . . , p + 1. Also, it follow that for any (p + 1)-

dimensional row vector (b1(x), . . . , bp+1(x)) with an absolute sum smaller than 1 uniformly over

x and θ, with x ∈ Rmk for some m ∈ N,

(
b1(x) . . . bp+1(x)

)

a1(z) . . . ap(z) ap+1(z)

Ip

0
...

0


=
(
b1(x)a1(z) + b2(x) . . . b1(x)ap(z) + bp+1(x) b1(x)ap+1(z)

)
,

again is absolutely summable as

sup
x,z,θ

{|b1(x)a1(z) + b2(x)|+ |b1(x)a2(z) + b3(x)|+ . . .

+ |b1(x)ap(z) + bp+1(x)|+ |b1(x)ap+1(z)|}

≤ sup
x,z,θ

{
|b1(x)|

p+1∑
i=1

|ai(z)|+
p+1∑
i=2

|bi(x)|
}

≤ sup
x,θ

p+1∑
i=1

|bi(x)| < 1 .

The claim above is true since, as we have argued above, the i-th row of the product of the first

i matrices will have an absolute sum smaller than 1, so after further multiplications these rows

will remain having an absolute sum smaller than one. This leads to the product of the p + 1

matrices having a maximum absolute row sum smaller than 1 uniformly, which completes the

proof.

Proof of Corollary 2. Under the conditions of the corollary, letting s′i(z;ψ) denote the i-th

diagonal element of the matrix s′(z;ψ), there exist real numbers 0 < d < d̄ < 1 such that
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d ≤ α⊤s′(z;ψ)β =
∑k

i=1 αiβis
′
i(z;ψ) ≤ d̄ for any θ ∈ Θ and zi ∈ R. Furthermore, there must

be a real number 0 < c̄ < 1 such that
∑p

i=1 |Ai,jj | ≤ c̄ for each j = 1, . . . , k and each θ ∈ Θ.

Hence

sup
z∈Rk,θ∈Θ

{
|1−α⊤s′(z;ψ)β|+ |α⊤s′(z;ψ)A1β|+ · · ·+ |α⊤s′(z;ψ)Apβ|

}
≤ sup

z∈Rk,θ∈Θ

{
1−

k∑
i=1

αiβis
′
i(z;ψ) +

k∑
i=1

αiβis
′
i(z;ψ)|A1,ii|+ · · ·+

k∑
i=1

αiβis
′
i(z;ψ)|Ap,ii|

}

= 1− inf
z∈Rk,θ∈Θ

k∑
i=1

αiβis
′
i(z;ψ)(1− |A1,ii| − · · · − |Ap,ii|)

≤ 1− (1− c̄) inf
z∈Rk,θ∈Θ

k∑
i=1

αiβis
′
i(z;ψ)

≤ 1− (1− c̄) d < 1 ,

as 0 < 1− c̄ < 1 and 0 < d < 1. The result now follows from an application of Corollary 1.

Proof of Theorem 2. Because the parameter space Ξ is compact, it follows from standard ar-

guments, see e.g. Wald (1949), that it is sufficient to show that

(a) The criterion function converges to some continuous deterministic limit function uniformly

over Ξ: supξ∈Ξ |L̂T (γ0, ξ)− L(γ0, ξ)|
a.s.→ 0 as T → ∞.

(b) The true parameter ξ0 is the unique maximizer of the limit criterion: L(γ0, ξ) < L(γ0, ξ0)

for any ξ ∈ Ξ, ξ ̸= ξ0.

To show condition (a) holds, we first notice that by the triangle inequality:

|L̂T (γ0, ξ)− L(γ0, ξ)| ≤ |L̂T (γ0, ξ)− LT (γ0, ξ)|+ |LT (γ0, ξ)− L(γ0, ξ)| ,

where LT denotes the quasi log likelihood evaluated using the limit prediction errors gt(ξ),

i.e. based on ℓt(γ0, ξ), which is defined as ℓ̂t(γ0, ξ) but then with yt − µ0 − β0f̂t(γ0, ξ) =

yt − µ0 + β0(ĝt(ξ) − ft) = β0ĝt(ξ) + εt replaced by β0gt(ξ) + εt. Here L(γ0, ξ) will be the

expected value of ℓt(γ0, ξ0). It is shown in Lemmas B.3 and B.4, respectively, that the two

terms on the right-hand side of this inequality converge to zero almost surely uniformly over Ξ.

Lastly, condition (b) holds by Lemma B.5.

Proof of Theorem 3. For ease of exposition, we start by proving the result for the model without

the parameter µ (or equivalently, for the case where µ0 is known), such that γ only consists of

b.
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(Result 1: γ = b) For this part of the proof we will use some abuse of notation, by filling in

b in the place of γ in functions such as L̂T (γ, ξ) and f̂t(γ, ξ), such that it is clear that we do

not consider µ.

As in the proof of Theorem 2, because the parameter space Ξ is compact, it is sufficient to

show that

(a) The criterion function converges to some continuous deterministic limit function uniformly

over Ξ: supξ∈Ξ |L̂T (b̂T , ξ)− L(b0, ξ)| p→ 0 as T → ∞.

(b) The true parameter ξ0 is the unique maximizer of the limit criterion: L(b0, ξ) < L(b0, ξ0)

for any ξ ∈ Ξ, ξ ̸= ξ0.

For condition (a), we can use that by the triangle inequality:

|L̂T (b̂T , ξ)− L(b0, ξ)| ≤ |L̂T (b̂T , ξ)− L̂T (b0, ξ)|+ |L̂T (b0, ξ)− L(b0, ξ)| .

We have shown in the proof of Theorem 2 that the second term vanishes almost surely uniformly

over Ξ. By Lemma B.6, the first term also converges to zero in probability uniformly over Ξ.

Condition (b) again holds by Lemma B.5. This completes the proof for the case where µ is

excluded from the model.

(Result 2: γ = (b⊤,µ⊤)⊤) We just give a sketch of the proof, because the same approach

as for the first result can be used. The same steps can be used, such that it just remains to be

shown that

sup
ξ∈Ξ

∣∣∣L̂T (γ̂T , ξ)− L̂T (γ0, ξ)
∣∣∣ p→ 0 , (A.2)

as T → ∞. To show this, Lemma B.6 can be extended. In particular, using the same approach

as in the proof of Lemma B.8 we can write

f̂t+1(γ0, ξ)− f̂t+1(γ, ξ)

=
(
1−α⊤s′(z∗t ;ψ)β

)
(f̂t(γ0, ξ)− f̂t(γ, ξ))

+α⊤s′(z∗t ;ψ)
(
A1β(f̂t−1(γ0, ξ)− f̂t−1(γ, ξ)) + . . .

+Apβ(f̂t−p(γ0, ξ)− f̂t−p(γ, ξ))
)

+α⊤s′(z∗t ;ψ)A(L)
[
(β − β0)f̂t(γ0, ξ) + µ− µ0

]
.

We are again interested in bounding the expectation of the square of f̂t(γ0, ξ) − f̂t(γ, ξ), so if

we treat z∗t as deterministic values, it follows from the linearity of the updating equation above,

that we can decompose it as follows: f̂t(γ0, ξ)− ft(γ, ξ) = (β−β0)
⊤ĥ1t(θ) + (µ−µ0)

⊤ĥ2t(θ),

similarly as in the proof of Lemma B.8. More specifically, the definition of ĥ1t(θ) will be

virtually the same as that of ĥt(θ) of this lemma, although the values of z∗t will be different
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here and the innovation term is based on f̂t(γ0, ξ) instead of f̂t(b0, ξ). The process {ĥ2t(θ)}
will be initialized at ĥ2,1 = 0 and is updated by

ĥ2,t+1(θ) = (1−α⊤s′(z∗t ;ψ)β)ĥ2t(θ) +α
⊤s′(z∗t ;ψ)A1βĥ2,t−1(θ) + . . .

+α⊤s′(z∗t ;ψ)Apβĥ2,t−p(θ) +A(1)s′(z∗t ;ψ)
⊤α .

It then follows automatically that E supθ∈Θ ∥ĥ1t(θ)∥2 can be bounded in the same way as

E supθ∈Θ ∥ĥt(θ)∥2. It is also not hard to show that E supθ∈Θ ∥ĥ2t(θ)∥ can be bounded by

some constant c, using a similar approach as in Lemma B.8 and using that A(1)s′(z∗t ;ψ)
⊤α is

uniformly bounded by a constant as s(·,ψ) is Lipschitz continuous uniformly over ψ ∈ Ψ and

the parameter space Θ is compact. Using these results, it can then be shown that (A.2) holds in

the same way as in the proof of Lemma B.4, using the assumptions on the rate of convergence

of ∥β̂T − β0∥ and ∥µ̂T − µ0∥.

Proof of Proposition 3. It follows from the triangle inequality, and ĝt(ξ) ≡ ft − f̂t(γ0, ξ) that

|f̂T+1(γ̂T , ξ̂T (γ̂T ))− fT+1| ≤ sup
ξ∈Ξ

|f̂T+1(γ̂T , ξ)− f̂T+1(γ0, ξ)|

+ sup
ξ∈Ξ

|ĝT+1(ξ)− gT+1(ξ)|

+ |gT+1(ξ̂T (γ̂T ))− gT+1(ξ0)| ,

(A.3)

where gt(ξ0) = 0 almost surely, which follows directly from Proposition 1. We can show that

every term on the right-hand side of this inequality converges to zero in probability as T → ∞.

For the first term, we can use the extended version if Lemma B.8 that we discuss in the proof

of Theorem 3, by which we know that:

sup
ξ∈Ξ

|f̂T+1(γ̂T , ξ)− f̂T+1(γ0, ξ)| ≤ sup
θ∈Θ

|(β̂T − β0)
⊤ĥ1,t(θ)|+ sup

θ∈Θ
|(µ̂T − µ0)

⊤ĥ2,t(θ)|

≤ ∥β̂T − β0∥ · sup
θ∈Θ

∥ĥ1,t(θ)∥+ ∥µ̂T − µ0∥ · sup
θ∈Θ

∥ĥ2,t(θ)∥ ,

where the first term is the product of either an op(T
−1/2) and an Op(

√
T ) term (in case ω0 = 0),

or an op(T
−1) and an Op(T ) term (in case ω0 ̸= 0). This implies that the product converges

to zero in probability in both cases. The second term is the product of an op(1) term and

an Op(1) term. That supθ∈Θ ∥ĥ1,t(θ)∥ is either Op(
√
T ) or Op(T ), follows from Lemma B.8,

an application of Jensen’s inequality and an application of Markov’s theorem, using a similar

approach as in the proof of Lemma B.6. That supθ∈Θ ∥ĥ2,t(θ)∥ is Op(1) can be argued by

using that E supθ∈Θ ∥ĥ2t(θ)∥ is finite, as was argued in the proof of Theorem 3, and invoking

Markov’s theorem.

The second term on the right-hand side of (A.3) converges to zero exponentially fast almost

surely as T → ∞ by the result of Proposition 1.
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Finally, for the last term of the right-hand side of (A.3), we use the definition of convergence

in probability and the continuity of gt(ξ) in its argument. Define the notation Bε(ξ0) = {ξ ∈
Ξ; ∥ξ − ξ0∥ < ε} for any ε > 0. By the convergence in probability of ξ̂T (γ̂T ) to ξ0 as T → ∞,

we know that for any ε̃ > 0 and δ̃ > 0, there exists an integer Nε̃,δ̃ such that for any T > Nε̃,δ̃,

P(ξ̂T (γ̂T ) ̸∈ Bε̃(ξ0)) < δ̃. For any ε > 0, ε̃ > 0, δ̃ > 0 and T ≥ Nε̃,δ̃ we then have that

sup
s∈N

P
(
|gs(ξ̂T (γ̂T ))− gs(ξ0)| > ε

)
≤ sup

s∈N
P

(
sup

ξ∈Bε̃(ξ0)
|gs(ξ)− gs(ξ0)| > ε

)
+ P

(
ξ̂T (γ̂T ) ̸∈ Bε̃(ξ0)

)
< P

(
sup

ξ∈Bε̃(ξ0)
|gs(ξ)− gs(ξ0)| > ε

)
+ δ̃ ,

where the supremum over s after the second inequality can be dropped because of the sta-

tionarity of {gt}. Clearly, as ε̃ approaches zero, the set Bε̃(ξ0) converges to the set only

containing ξ0. So due to the continuity of gt(ξ) in its argument, the probability on the

right-hand side will go towards zero as ε̃ approaches zero. It is therefore clear that for any

choice of ε > 0 and δ > 0, there will exist some ε̃ > 0 and δ̃ > 0 small enough such that

P
(
supξ∈Bε̃(ξ0)

|gs(ξ)− gs(ξ0)| > ε
)
+ δ̃ < δ. Combining this with the inequality derived above,

it then follows that for any T ≥ Nε̃,δ̃, sups∈N P
(
|gs(ξ̂T (γ̂T ))− gs(ξ0)| > ε

)
< δ, from which it

follows that the final term on the right-hand side of (A.3) converges to zero in probability.

B. Lemmas

The proofs of these lemmas can be found in Section C of this Supplementary Appendix.

Lemma B.1. The equality in equation (6) in Proposition 1 holds.

Lemma B.2. Let the assumptions of Proposition 1 hold. Then, for any integer h ≥ 1 and for

any ḡ ∈ Rp+1, there exists a finite constant Zh such that E supξ∈Ξ ∥ϕ(h)
t (ḡ, ξ)∥2 ≤ Zh < ∞.

Lemma B.3. Let the assumptions of Theorem 2 hold. Then

sup
ξ∈Ξ

|L̂T (γ0, ξ)− LT (γ0, ξ)|
a.s.→ 0 as T → ∞ .

Lemma B.4. Let the assumptions of Theorem 2 hold. Then

sup
ξ∈Ξ

|LT (γ0, ξ)− Eℓt(γ0, ξ)|
a.s.→ 0 as T → ∞ .
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Lemma B.5. Let the assumptions of Theorem 1 hold. Then for any ξ ∈ Ξ such that ξ ̸= ξ0,

we have

Eℓt(γ0, ξ) < Eℓt(γ0, ξ0) .

Lemma B.6. Let the assumptions of Theorem 3 hold and suppose that µ is excluded from the

model. Then

sup
ξ∈Ξ

|L̂T (b̂T , ξ)− L̂T (b0, ξ)| p→ 0 as T → ∞ .

Lemma B.7. Let the assumptions of Theorem 3 be satisfied and let µ be excluded from the

model. Then there exists a finite constant b such that for any t

E sup
ξ∈Ξ

|f̂t(b0, ξ)|2 ≤

bt if ω0 = 0 ,

bt2 if ω0 ̸= 0 .
(B.1)

Lemma B.8. Let the assumptions of Theorem 3 be satisfied and suppose that µ is excluded

from the model. Then there exists a k-variate process {ĥt(θ)}t∈Z, such that f̂t(b0, ξ)− f̂t(b, ξ) ≡
(β − β0)

⊤ĥt(θ), and there exists a finite constant a, such that for any t

E sup
θ∈Θ

∥ĥt(θ)∥2 ≤

at if ω0 = 0 ,

at2 if ω0 ̸= 0 .

C. Proofs of lemmas

Proof of Lemma B.1. The derivative of ϕt with respect to g takes the form:

∂ϕt(g, ξ)

∂g⊤
=


1−α⊤s′(u;ψ)β0 α⊤s′(u;ψ)A1β0 . . . α⊤s′(u;ψ)Apβ0

Ip

0
...

0



∣∣∣∣∣∣∣∣∣∣∣∣
u=ût(g,ξ)

≡ Φ(ût(g, ξ),γ0, ξ) , (C.1)

where ût : Rp+1 ×Ξ → Rk is a random function specified as ût(g, ξ) = β0g1 + εt −A1(β0g2 +

εt−1)− . . .−Ap(β0gp+1 + εt−p). So, by the chain rule we have that∥∥∥∥∥∂ϕ(r)
t (g, ξ)

∂g⊤

∥∥∥∥∥ =

∥∥∥∥∥∂ϕt(g
∗, ξ)

∂g⊤

∣∣∣∣
g∗=ϕ

(r−1)
t−1 (g,ξ)

. . .
∂ϕt−r+1(g, ξ)

∂g⊤

∥∥∥∥∥
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=

∥∥∥∥∥
r∏

i=1

Φ(ût−i+1(ϕ
(r−i)
t−i (g, ξ), ξ),γ0, ξ)

∥∥∥∥∥ .

Therefore, it is easy to verify that taking the supremum over εt, . . . , εt−p−r+1 ∈ Rk of this

quantity boils down to taking the supremum over ût, . . . , ût−r+1 ∈ Rk , or equivalently

sup
εt,...,εt−p−r+1∈Rk

∥∥∥∥∥∂ϕ(r)
t (g, ξ)

∂g⊤

∥∥∥∥∥ = sup
z1,...,zr∈Rk

∥∥∥∥∥
r∏

i=1

Φ(zi,γ0, ξ)

∥∥∥∥∥ .

Proof of Lemma B.2. We give a proof by induction on h.

Step 1. (Base case) We first show the claim holds for h = 1. For any ḡ = (ḡ1, . . . , ḡp+1)
⊤ ∈

Rp+1 we have that

E sup
ξ∈Ξ

∥ϕt(ḡ, ξ)∥2 = E sup
ξ∈Ξ

∥∥∥∥∥∥∥∥∥∥∥∥


ϕ1t(ḡ, ξ)

ḡ1
...

ḡp



∥∥∥∥∥∥∥∥∥∥∥∥

2

,

so it is clear that it suffices to show that E supξ∈Ξ |ϕ1t(ḡ, ξ)|2 can be bounded by a finite constant.

By the definition of ϕ1t in (5) and the triangle inequality, we have the bound

|ϕ1t(ḡ, ξ)| ≤ |ḡ1|+ |α⊤
0 s(ut;ψ0)|+

∣∣∣α⊤s(β0ḡ1 + εt −A1(β0ḡ2 + εt−1)−

. . .−Ap(β0ḡp+1 + εt−p);ψ)
∣∣∣+ |ω0 − ω| . (C.2)

Now we bound the expectation of the terms on the right-hand side uniformly over Ξ. The first

term is a finite constant and the last term is also finite uniformly over Ξ by the compactness of

the parameter set. For the remaining two terms, we first bound the expectation of ∥s(zt;ψ)∥
for a general vector zt. From IN2 we have that the function s(· ;ψ) is Lipschitz continuous

uniformly on Ψ. Hence, for any zt, z̄ ∈ Rp+1, we have

sup
ξ∈Ξ

∥s(zt;ψ)∥ ≤ sup
ξ∈Ξ

∥s(zt;ψ)− s(z̄;ψ)∥+ sup
ξ∈Ξ

∥s(z̄;ψ)∥

≤ K ∥zt − z̄∥+ sup
ξ∈Ξ

∥s(z̄;ψ)∥

≤ K ∥zt∥+K ∥z̄∥+ sup
ξ∈Ξ

∥s(z̄;ψ)∥ . (C.3)

Starting with the simple term α⊤
0 s(ut;ψ0), it follows that there is a finite constant W1 such

that

E|α⊤
0 s(ut;ψ0)|2 ≤ C2ᾱn

0 E∥s(ut;ψ0)∥2

≤ C2ᾱ2
0 (DKn E∥ut∥2 +DKn∥ū∥2 +D∥s(ū;ψ0)∥2) ≤ W1 < ∞ , (C.4)
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where the first inequality holds because

|α⊤
0 s(ut;ψ0)| ≤

k∑
i=1

|αi0| · |si(ut;ψ0)| ≤ ᾱ0

k∑
i=1

|si(ut;ψ0)| ,

where ᾱ0 denotes the largest element of α0 and where we use that by norm equivalence there

exists a constant C such that
∑k

i=1 |si(ut;ψ0)| ≤ C∥s(ut;ψ0)∥ . The second inequality uses

inequality (C.3) and the Cn inequality of Loève (1977), which says that for any n ≥ 0, there

exists a constant D such that (a + b + c)n ≤ D(an + bn + cn) for any a, b, c ∈ [0,∞). The

final expression is finite, because ∥ū∥ and ∥s(ū;ψ0)∥ are finite constants and E∥ut∥2 < ∞ by

Assumption A1, as it is assumed that the covariance matrix Σ0 of ut is finite.

Using very similar arguments, if we define zt(ξ) ≡ β0ḡ1 + εt − A1(β0ḡ2 + εt−1) − . . . −
Ap(β0ḡp+1 + εt−p), we have, for any vector z̄ ∈ Rk,

E sup
ξ∈Ξ

|α⊤s(zt(ξ);ψ)|2 ≤ C2ᾱ2 E sup
ξ∈Ξ

∥s(zt;ψ)∥2

≤ C2ᾱ2 (DK2 E sup
ξ∈Ξ

∥zt(ξ)∥2 +DK2∥z̄∥2

+D sup
ξ∈Ξ

∥s(z̄;ψ)∥2) ,

where ᾱ = supξ∈Ξmaxi |αi| denotes the supremum over ξ ∈ Ξ of the largest element of the

vector α and C, K and D are the same as in (C.4). The term ∥z̄∥2 is clearly finite and

supψ∈Ψ ∥s(z̄;ψ)∥2 is finite by the continuity and uniform Lipschitz contintuity over the compact

set Ψ of the function s(·;ψ), from Assumption IN2. Finally, we there must exist a finite

constant W2 such that

E sup
ξ∈Ξ

∥zt(ξ)∥2 = E sup
ξ∈Ξ

∥β0ḡ1 + εt −A1(β0ḡ2 + εt−1)− . . .−Ap(β0ḡp+1 + εt−p)∥2

≤ D̃R2 + D̃(E∥εt∥2 + sup
ξ∈Ξ

∥A1∥2 E∥εt−1∥2+

. . .+ sup
ξ∈Ξ

∥Ap∥2 E∥εt−p∥2) ≤ W2 < ∞ ,

where D̃ is a finite constant that exists by the Cn inequality of Loève (1977), and where the

constant R contains the supremum over ξ ∈ Ξ of the deterministic part of zt(ξ), which is finite

because Ξ is compact and ḡ ∈ Rp+1. Finally E∥εt∥2 < ∞ because E∥ut∥2 < ∞ and A0(L) is

an invertible polynomial by Assumption A2.

By combining (C.2) with these results, it follows from another application of the Cn in-

equality that there must exist a finite constant Z1 such that E supξ∈Ξ ∥ϕt(ḡ, ξ)∥2 ≤ Z1 < ∞.

Step 2. (Induction Step) Say that for some integer h ≥ 1, there exists a constant Zh such

that E supξ∈Ξ ∥ϕ(h)
t (ḡ, ξ)∥2 ≤ Zh < ∞, then we can show that such a bounding constant also

exists for h+ 1. In particular, we have that ϕ
(h+1)
t (ḡ, ξ) = ϕt(ϕ

(h)
t−1(ḡ, ξ), ξ). By an application

TA.p13



of the mean value theorem to the function ϕt(·, ξ), we get that for any g† ∈ Rp+1

sup
ξ∈Ξ

∥∥∥ϕt(ϕ
(h)
t−1(ḡ, ξ), ξ)− ϕt(g

†, ξ)
∥∥∥

≤ sup
g∗∈Rp+1,ξ∈Ξ

∥∥∥∥∂ϕt(g
∗, ξ)

∂g⊤

∥∥∥∥ sup
ξ∈Ξ

∥ϕ(h)
t−1(ḡ, ξ)− g†∥

≤ K̄ sup
ξ∈Ξ

∥ϕ(h)
t−1(ḡ, ξ)− g†∥ , (C.5)

where K̄ is a finite constant. Looking at the expression of ∂ϕt(g, ξ)/∂g
⊤, it is clear that this

K̄ exists because Ξ is compact and because s(· ;ψ) is uniformly Lipschitz continuous by IN2.

More specifically, by the definition of a derivative, it is not hard to prove that for continuous

and differentiable functions s(· ;ψ), the Lipschitz continuity condition implies that the norm of

the derivative of s(· ;ψ) is uniformly bounded by a finite constant.

It follows from multiple applications of the triangle inequality to (C.5) that for any ḡ, g† ∈
Rp+1 that:

E sup
ξ∈Ξ

∥ϕ(h+1)
t (ḡ, ξ)∥ ≤ E sup

ξ∈Ξ
∥ϕt(g

†, ξ)∥+ K̄ sup
ξ∈Ξ

∥ϕ(h)
t−1(ḡ, ξ)∥+ K̄ ∥g†∥ .

So by raising both sides of the inequality to the power 2 and applying the Cn inequality, there

must exist a finite constant W̃ such that

E sup
ξ∈Ξ

∥ϕ(h+1)
t (ḡ, ξ)∥2 ≤ DK̄2 E sup

ξ∈Ξ
∥ϕ(h)

t−1(ḡ, ξ)∥2 +DK̄2 ∥g†∥2

+D E sup
ξ∈Ξ

∥ϕt(g
†, ξ)∥2 ≤ W̃ < ∞ ,

where we applied the Cn inequality to conclude that there must exist a finite constant D such

that the inequality holds. The constant W̃ exists, because

E sup
ξ∈Ξ

∥ϕ(h)
t−1(ḡ, ξ)∥2 = E sup

ξ∈Ξ
∥ϕ(h)

t (ḡ, ξ)∥2 ≤ Zh < ∞ ,

which holds by the stationarity of {ϕ(h)
t } and the induction hypothesis, ∥g†∥ is some finite

constant and finally

E sup
ξ∈Ξ

∥ϕt(g
†, ξ)∥2 ≤ Z1 < ∞ ,

which is the base case that was shown to be true in Step 1 of the proof.

Proof of Lemma B.3. It follows from Straumann and Mikosch (2006, Lemma 2.1) that xt
e.a.s.→ 0

as t → ∞, implies that T−1
∑T

t=1 xt
a.s.→ 0 as T → ∞. Hence, by the triangle inequality it suffices

to show that supξ∈Ξ |ℓ̂t(γ0, ξ)− ℓt(γ0, ξ)|
e.a.s.→ 0 as t → ∞. Under the maintained assumptions

we can apply Proposition 1, which tells us that |ĝt(ξ)−gt(ξ)| e.a.s.→ 0 as t → ∞, where {gt(ξ)}t∈Z
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is a unique SE sequence and E supξ∈Ξ |gt(ξ)|2 < ∞. Define x̂t(ξ) ≡ A(L)(β0ĝt(ξ) + εt) and let

xt(ξ) be the same, but then with ĝt(ξ) replaced by gt(ξ). Then we have that

|ℓ̂t(γ0, ξ)− ℓt(γ0, ξ)| =
∣∣∣x̂t(ξ)

⊤Σ−1x̂t(ξ)− xt(ξ)
⊤Σ−1xt(ξ)

∣∣∣
≤
∣∣∣(x̂t(ξ)− xt(ξ))

⊤Σ−1xt(ξ)
∣∣∣

+
∣∣∣(x̂t(ξ)− xt(ξ))

⊤Σ−1(x̂t(ξ)− xt(ξ))
∣∣∣

+
∣∣∣xt(ξ)

⊤Σ−1(x̂t(ξ)− xt(ξ))
∣∣∣ , (C.6)

where the inequality follows from adding and subtracting xt(ξ) on both sides of Σ−1 in the first

term and then invoking the triangle inequality. We have that

sup
ξ∈Ξ

∥x̂t(ξ)− xt(ξ)∥ = sup
ξ∈Ξ

∥A(L)β0(ĝt(ξ)− gt(ξ))∥

≤ ∥β0∥ sup
ξ∈Ξ

|ĝt(ξ)− gt(ξ)|

+ sup
ξ∈Ξ

∥A1β0∥ sup
ξ∈Ξ

|ĝt−1(ξ)− gt−1(ξ)|

+ . . .+ sup
ξ∈Ξ

∥Apβ0∥ sup
ξ∈Ξ

|ĝt−p(ξ)− gt−p(ξ)| e.a.s→ 0 ,

as t → ∞, where we use the uniform convergence result of Proposition 1, the sub-additivity of

supξ∈Ξ ∥ · ∥ and the compactness of Ξ. Now we can use that for any square symmetric matrix

B and vectors x and y of appropriate dimensions: |x⊤By| ≤ λmax(B)(x⊤x)1/2(y⊤y)1/2, where

λmax(B) is the largest eigenvalue of B. Here (x⊤x)1/2 is the Euclidean norm, so by norm

equivalence, there exists a finite constant C such that (x⊤x)1/2 ≤ C∥x∥ for any x. Hence, we

can bound the supremum of the right-hand side of (C.6) as follows:

sup
ξ∈Ξ

|ℓ̂t(γ, ξ)− ℓt(γ, ξ)|

≤ C2

(
sup
ξ∈Ξ

∣∣∣∣ 1

λmin(Σ)

∣∣∣∣
)(

2 sup
ξ∈Ξ

∥x̂t(ξ)− xt(ξ)∥ · sup
ξ∈Ξ

∥xt(ξ)∥

+ sup
ξ∈Ξ

∥x̂t(ξ)− xt(ξ)∥2
)

e.a.s→ 0 as t → ∞ ,

where we use that infξ∈Ξ λmin(Σ) > 0 because Ξ is compact and for any ξ ∈ Ξ, Σ is positive

definite by IN3. Furthermore, the first term in brackets goes to zero e.a.s. by Lemma 2.1 of

Straumann and Mikosch (2006), as it is a product of a variable that converges to zero e.a.s. and

supξ∈Ξ ∥xt(ξ)∥, which can be shown to have a bounded moment and be SE straightforwardly.

For the bounded moment, see for instance the proof of Lemma B.4, and {supξ∈Ξ ∥xt(ξ)∥} is

SE by Krengel (1985, Proposition 4.3). Finally, it is immediately clear that the second term in

brackets goes to zero e.a.s. by the continuous mapping theorem. This completes the proof.
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Proof of Lemma B.4. Here LT (γ0, ξ) denotes the average of ℓt(γ0, ξ) from t = 1 to T , where

ℓt(γ0, ξ) = −(A(L)(β0gt(ξ) + εt))
⊤Σ−1(A(L)(β0gt(ξ) + εt))− log |Σ| ,

with gt(ξ) from the SE limit sequence {gt(ξ)}t∈Z that exists by Proposition 1. Hence, the

sequence {ℓt(γ0, ·)} has elements that take values in the space of continuous functions C(Ξ,R).

It is also an SE sequence by Proposition 4.3 in Krengel (1985), because for each t it is a

continuous function of {(gt, . . . , gt−p, εt, . . . , εt−p)} which is an SE sequence. As in the proof of

Lemma TA.6 of Blasques et al. (2022) we can apply the ergodic theorem for separable Banach

spaces of Rao (1962) to {ℓt(γ0, ·)} if we can show E supξ∈Ξ |ℓt(γ0, ξ)| < ∞ . Using the notation

xt(ξ) ≡ A(L)(β0gt(ξ) + εt) and invoking the triangle inequality, we have that:

E sup
ξ∈Ξ

|ℓt(γ0, ξ)| ≤ E sup
ξ∈Ξ

∣∣∣xt(ξ)
⊤Σ−1xt(ξ)

∣∣∣+ sup
ξ∈Ξ

| log |Σ| |

≤ sup
ξ∈Θ

[
1

λmin(Σ)

]
E sup
ξ∈Θ

[
k∑

i=1

(xit(ξ))
2

]
+ sup
ξ∈Ξ

| log |Σ| | ,

≤ C1

k∑
i=1

E sup
ξ∈Θ

[
(xit(ξ))

2
]
+ C2 < ∞ ,

where λmin(Σ) denotes the smallest eigenvalue of Σ and xit(ξ) denotes the i-th element of

the vector xt(ξ). For the second inequality we use the well-known fact that for any square

symmetric matrix B and vector x of appropriate dimensions: |x⊤Bx| ≤ λmax(B)x⊤x. The

finite constants C1 and C2 exist, because by IN3 we have that Σ is positive definite for each

ξ ∈ Ξ, and Ξ is compact. Finally, the expectations are finite because by the Cn-inequality of

Loève (1977), we can bound the expectation of the square of xit by a constant times the sum

of the squares of its terms. The square of each term has a finite expectation, because (i) Ξ is a

compact set, (ii) εt has two bounded moments under the current assumptions, and (iii) gt has

two bounded moments uniformly over ξ ∈ Ξ by Proposition 1. Hence, we can apply a uniform

law of large numbers and the result follows.

Proof of Lemma B.5. We can write

Eℓt(γ0, ξ) = −E
[
(A(L)(β0gt(ξ) + εt))

⊤Σ−1(A(L)(β0gt(ξ) + εt))
]
− log |Σ| .

Notice that substituting εt = A1,0εt−1+ . . .+Ap,0εt−p+ut, and using that A(L) = I −A1L−
· · · −ApL

p, gives

A(L)(β0gt(ξ) + εt) = A(L)β0gt(ξ) + (A(L)−A0(L))εt + ut ,
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where A0(L) denotes the lag polynomial A(L) for Ai = Ai,0 for i = 1, . . . , p. Therefore, we can

rewrite

Eℓt(γ0, ξ) = −E[u⊤
t Σ

−1ut]− E
[
(A(L)β0gt(ξ) + (A(L)−A0(L))εt)

⊤Σ−1

(A(L)β0gt(ξ) + (A(L)−A0(L))εt)
]
− log |Σ| , (C.7)

which follows from

E
[
u⊤
t Σ

−1(A(L)β0gt(ξ) + (A(L)−A0(L))εt)
]
= 0 ,

which holds by the law of iterated expectations, because {ut}t∈Z is mds, and A(L)β0gt(ξ) +

(A(L) − A0(L))εt only depends on εt−1, εt−2, . . . , and the second factor clearly has a finite

expectation under the current assumptions.

The parameters ω, α, ψ−1, and A1, . . . , Ap, only occur in the second term of (C.7).

We start by investigating for which values of ξ other than ξ0 this term can potentially be

minimized. Because Σ is a positive definite matrix by assumption, this expectation can only

be non-negative. Thus any parameter vector ξ that is such that

A(L)β0gt(ξ) + (A(L)−A0(L))εt = 0 a.s. , (C.8)

will be a minimizer of this expectation. Recall that we have

gt+1(ξ) = ω0 − ω + gt(ξ) +α
⊤
0 s(ut;ψ0)−α⊤s(A(L)(β0gt(ξ) + εt);ψ)

= ω0 − ω + gt(ξ) +α
⊤
0 s(ut;ψ0)−α⊤s(A(L)β0gt(ξ) + (A(L)−A0(L))εt + ut;ψ) .

So if (C.8) holds, then it follows that we have almost surely for every t:

gt+1(ξ) = ω0 − ω + gt(ξ) +α
⊤
0 s(ut;ψ0)−α⊤s(ut;ψ) .

Hence, unless ω0 + α⊤
0 s(ut;ψ0) = ω + α⊤s(ut;ψ) almost surely, this would mean that the

prediction error process has random walk dynamics and/or a deterministic drift, which is ruled

out by the result of Proposition 1, which says {gt}t∈Z is a unique SE process, uniformly over

ξ ∈ Ξ. Thus, we must have ω0 + α
⊤
0 s(ut;ψ0) = ω + α⊤s(ut;ψ) almost surely if (C.8) holds,

in which case ξ is such that gt(ξ) = 0 almost surely.

It follows that whenever ξ is such that (C.8) holds, we must have (A(L)−A0(L))εt almost

surely. Notice that (A(L) −A0(L))εt = (A1,0 −A1)εt−1 + . . . + (Ap,0 −Ap)εt−p, where the

term (A1,0−A1)εt−1 = (A1,0−A1)(A1,0εt−2+ · · ·+Ap,0εt−p−1+ut−1) contains ut−1, which is

uncorrelated with all the other (remaining) terms in (C.8) due to the mds property of {ut}t∈Z.
Because the elements of ut have positive variance and are not perfectly correlated by Assumption

IN3, it follows that for (C.8) to be true, this ut−1 must be multiplied by zero, meaning that

we must have A1 = A10. The same argument can be used for the remanining Ai’s, from which

it follows that we must have A(L) = A0(L).
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Now we have shown that the second term of (C.7) is only maximized if ω + α⊤s(ut;ψ) =

ω0 + α
⊤
0 s(ut;ψ0) almost surely and Ai = Ai,0 for i = 1, . . . , p, such that the term is equal to

zero. The remaining two terms of the log likelihood in (C.7) only depend on Σ. It is a standard

result that Σ0 is the unique maximizer of the remaining quantity:

−tr
(
Σ−1E[utu

⊤
t ]
)
− log |Σ| = −tr

(
Σ−1Σ0

)
− log |Σ| .

Combining this with the derivations above, it follows that for ξ ∈ Ξ to be a maximizer of

Eℓt(γ0, ξ), we must have ω0 + α
⊤
0 s(ut;ψ0) = ω + α⊤s(ut;Σ0,ψ−1) almost surely, which by

Assumption C1 holds if and only if (ω,α,ψ−1) = (ω0,α0,ψ−1,0). Hence, we must have ξ = ξ0,

which indeed leads to gt(ξ) = 0 almost surely by Proposition 1. In conclusion, ξ0 is the unique

maximizer of Eℓt(γ0, ξ).

Proof of Lemma B.6. To analyse L̂T (b̂T , ξ) − L̂T (b0, ξ), it is convenient to first study the dif-

ference f̂t(b0, ξ) − f̂t(b̂T , ξ). By Lemma B.8 there is a k-variate process {ĥt(θ)}t∈Z, such that

f̂t(b0, ξ) − f̂t(b, ξ) = (β − β0)
⊤ĥt(θ) for each t, and {ĥt(θ)}t∈Z is such that there exists a

constant a such that for any t, E supθ∈Θ ∥ĥt(θ)∥2 ≤ at if ω0 = 0, and E supθ∈Θ ∥ĥt(θ)∥2 ≤ at2

if ω0 ̸= 0. The proof of this lemma is based on Lemma B.7 from which it follows that there

exists a constant b such that for any t, E supθ∈Θ |f̂t(b0, ξ)|2 ≤ bt and E supξ∈Ξ |f̂t(b0, ξ)|2 ≤ bt2,

for ω0 = 0 and ω0 ̸= 0 respectively. Next, we turn to the expression under consideration:

|L̂T (b̂T , ξ)− L̂T (b, ξ)|

=

∣∣∣∣∣ 1T
T∑
t=1

(A(L)(yt − β̂T f̂t(b̂T , ξ)))
⊤Σ−1(A(L)(yt − β̂T f̂t(b̂T , ξ)))

− 1

T

T∑
t=1

(A(L)(yt − β0f̂t(b0, ξ)))
⊤Σ−1(A(L)(yt − β0f̂t(b0, ξ)))

∣∣∣∣∣
≤
∣∣∣∣∣ 1T

T∑
t=1

(A(L)(β0f̂t(b0, ξ)− β̂T f̂t(b̂T , ξ)))
⊤Σ−1(A(L)(β0f̂t(b0, ξ)− β̂T f̂t(b̂T , ξ)))

∣∣∣∣∣
+ 2

∣∣∣∣∣ 1T
T∑
t=1

(A(L)(β0f̂t(b0, ξ)− β̂T f̂t(b̂T , ξ)))
⊤Σ−1(A(L)(β0ĝt(ξ) + εt))

∣∣∣∣∣ . (C.9)

We will show that the supremum over ξ ∈ Ξ of the two terms on the right-hand side will converge

to zero in probability. We can use that for any square symmetric matrix B and vectors x and y

of appropriate dimensions: |x⊤By| ≤ λmax(B)(x⊤x)1/2(y⊤y)1/2, where λmax(B) is the largest

eigenvalue of B. Here (x⊤x)1/2 is the Euclidean norm, so by norm equivalence, for any vector

norm ∥ · ∥, there exists a finite constant C such that (x⊤x)1/2 ≤ C∥x∥ for any x. For ease of

notation define x̂t(b̂T , ξ) ≡ β0f̂t(b0, ξ)− β̂T f̂t(b̂T , ξ). For the first term we now have

sup
ξ∈Ξ

∣∣∣∣∣ 1T
T∑
t=1

(A(L)x̂t(b̂T , ξ))
⊤Σ−1(A(L)x̂t(b̂T , ξ))

∣∣∣∣∣
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≤ sup
ξ∈Ξ

C2

λmin(Σ)

1

T

T∑
t=1

sup
ξ∈Ξ

∥∥∥A(L)x̂t(b̂T , ξ)
∥∥∥2

≤ C2KD
1

T

T∑
t=1

(
sup
ξ∈Ξ

∥∥∥x̂t(b̂T , ξ)
∥∥∥2 + sup

ξ∈Ξ
∥A1∥2 sup

ξ∈Ξ

∥∥∥x̂t−1(b̂T , ξ)
∥∥∥2

+ . . .+ sup
ξ∈Ξ

∥Ap∥2 sup
ξ∈Ξ

∥∥∥x̂t−p(b̂T , ξ)
∥∥∥2) ,

where the second inequality uses that there must be a finite number K ≡ supξ∈Ξ λmin(Σ) as

Ξ is compact and Σ is positive definite for any ξ ∈ Ξ by IN3. Furthermore, it uses the sub-

additivity and sub-multiplicativity of the matrix norm ∥ · ∥ and the fact that there exists a

constant D such that (a1+ · · ·+ap+1)
2 ≤ D(a21+ · · ·+a2p) for any a1, . . . , ap+1 numbers, by the

Cn inequality of Loève (1977). It thus suffices to show that 1
T

∑T
t=1 supξ∈Ξ ∥x̂t(b̂T , ξ)∥2 = op(1).

Notice that using the result of Lemma B.8 we can rewrite

x̂t(b̂T , ξ) = β0f̂t(b0, ξ)− β̂T f̂t(b̂T , ξ)

= (β0 − β̂T )f̂t(b0, ξ) + β̂T (f̂t(b0, ξ)− f̂t(b̂T , ξ))

= (β0 − β̂T )f̂t(b0, ξ) + β̂T (β̂T − β0)
⊤ĥt(b̂T , ξ) , (C.10)

where with a slight abuse of notation we let ĥt(b, ξ) ≡ ĥt(θ), where θ = (b⊤, ξ⊤)⊤. Using this

decomposition, we can bound

1

T

T∑
t=1

sup
ξ∈Ξ

∥x̂t(b̂T , ξ)∥2 ≤ D∥β̂T − β0∥2
1

T

T∑
t=1

sup
ξ∈Ξ

|f̂t(b0, ξ)|2

+D∥β̂T ∥2∥β̂T − β0∥2
1

T

T∑
t=1

sup
θ∈Θ

∥ĥt(θ)∥2 .

This follows from the sub-additivity of the matrix norm ∥·∥ and the Cn inequality. Furthermore,

for the second term we use that by the Cauchy-Schwarz inequality |x⊤y| ≤ ∥x∥∥y∥ for any two

vectors x and y of appropriate dimension, which implies that also |x⊤y|2 ≤ ∥x∥2∥y∥2. By

the continuous mapping theorem we furthermore have that ∥β̂T ∥2 = Op(1), because under the

current assumptions β̂T
p→ β0 as T → ∞, which is a finite and real-valued limit. Hence, to

show that the expression is op(1), it suffices to show that

T∑
t=1

sup
ξ∈Ξ

|f̂t(b0, ξ)|2 =

Op(T
2) if ω0 = 0 ,

Op(T
3) if ω0 ̸= 0 ,

and

T∑
t=1

sup
θ∈Θ

∥ĥt(θ)∥2 =

Op(T
2) if ω0 = 0 ,

Op(T
3) if ω0 ̸= 0 ,

as an assumption of the theorem is that ∥β̂T −β0∥ = op(T
−1/2) if ω0 = 0 and op(T

−1) otherwise.

Using Markov’s inequality we can straightforwardly show that indeed the sums above are Op(T
2)
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if ω0 = 0 and Op(T
3) if ω0 ̸= 0, because a random variable XT is Op(1) if for every ε > 0, there

is a kε and a Tε, such that P(|XT | > kε) < ε, for every T > Tε. By Markov’s inequality we have

P(|XT | > k) ≤ E|XT |/k, so if E|XT | ≤ C̄ < ∞ for some constant C̄ that does not depend on T ,

it is clear that XT must be Op(1). It follows from the results of Lemma B.7 that for example:

1

T 2
E

T∑
t=1

sup
ξ∈Ξ

|f̂t(b0, ξ)|2 ≤
1

T 2

T∑
t=1

bt ≤ b , if ω0 = 0 , and

1

T 3
E

T∑
t=1

sup
ξ∈Ξ

|f̂t(b0, ξ)|2 ≤
1

T 3

T∑
t=1

bt2 ≤ b , if ω0 ̸= 0 ,

and the same can be done for E
∑T

t=1 supθ∈Θ ∥ĥt(θ)∥2 using Lemma B.8 for the bounding

constant a. This implies that the first term of (C.9) is op(1).

To show that the second term of (C.9) is op(1), we can take the virtually the same route to

get the following sufficient condition:

sup
ξ∈Ξ

∥µ0 − µ∥
1

T

T∑
t=1

sup
ξ∈Ξ

∥∥∥x̂t(b̂T , ξ)
∥∥∥ (C.11)

+
1

T

T∑
t=1

sup
ξ∈Ξ

∥∥∥x̂t(b̂T , ξ)
∥∥∥ sup
ξ∈Ξ

∥β0ĝt−j(ξ) + εt−j∥ = op(1) ,

for any j = 0, 1, . . . , p . The first term of this expression is op(1) by the compactness of Ξ

and because
∑T

t=1 supξ∈Ξ

∥∥∥xt(b̂T , ξ)
∥∥∥ can be shown to be op(1). This can be shown using the

same approach as we used to show
∑T

t=1 supξ∈Ξ

∥∥∥xt(b̂T , ξ)
∥∥∥2 = op(1), but this time using that

by Jensen’s inequality E supξ∈Ξ |f̂t(b0, ξ)| ≤ (E supξ∈Ξ |f̂t(b0, ξ)|2)1/2 ≤ (bt)1/2 or ≤ (bt2)1/2

depending on the value of ω0, and the same for E supθ∈Θ ∥ĥt(θ)∥.
The second term of the left-hand side of (C.11) can be bounded as follows, using the de-

composition of x̂t(b̂T , ξ) in (C.10)

1

T

T∑
t=1

sup
ξ∈Ξ

∥∥∥x̂t(b̂T , ξ)
∥∥∥ sup
ξ∈Ξ

∥β0ĝt−j(ξ) + εt−j∥

≤
∥∥∥β̂T − β0

∥∥∥ ·
1

T

T∑
t=1

(
sup
ξ∈Ξ

|f̂t(b0, ξ)|+ ∥β̂T ∥ sup
θ∈Θ

∥ĥt(θ)∥
)(

sup
ξ∈Ξ

∥β0ĝt−j(ξ) + εt−j∥
)
.

This expression can be shown to be op(1), by again invoking Markov’s inequality, because from

Hölder’s inequality we have

E

(
sup
ξ∈Ξ

|f̂t(b0, ξ)| sup
ξ∈Ξ

∥β0ĝt−j(ξ) + εt−j∥
)

≤
(
E sup
ξ∈Ξ

|f̂t(b0, ξ)|2 E sup
ξ∈Ξ

∥β0ĝt−j(ξ) + εt−j∥2
)1/2

,
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and

E

(
sup
θ∈Θ

∥ĥt(θ)∥ sup
ξ∈Ξ

∥β0ĝt−j(ξ) + εt−j∥
)

≤
(
E sup
θ∈Θ

∥ĥt(θ)∥2 E sup
ξ∈Ξ

∥β0ĝt−j(ξ) + εt−j∥2
)1/2

.

Under the maintained assumptions, E supξ∈Ξ ∥β0ĝt−j(ξ) + εt−j∥2 can be bounded by a finite

constant for any t and j, by arguments we have adopted before repeatedly. Furthermore,

E supξ∈Ξ |f̂t(b0, ξ)|2 and E supθ∈Θ ∥ĥt(θ)∥2 can again be bounded using Lemmas B.7 and B.8,

respectively. Hence, using the same approach as for the other term, by Markov’s inequality we

have that

T∑
t=1

(
sup
ξ∈Ξ

|f̂t(b0, ξ)|+ ∥β̂T ∥ sup
θ∈Θ

∥ĥt(θ)∥
)
sup
ξ∈Ξ

∥β0ĝt−j(ξ) + εt−j∥ ,

is Op(T
3/2) if ω0 = 0 and Op(T

2) if ω0 ̸= 0, which means that if the sum is multiplied by∥∥∥β̂T − β0

∥∥∥ /T , it converges to zero in probability under the assumptions of the theorem. This

completes the proof.

Proof of Lemma B.7. Notice that for each t we can write f̂t(b0, ξ) = ft − ĝt(ξ), by the defini-

tion of ĝt(ξ). It follows from Proposition 1 that {ĝt(ξ)} converges to the unique SE {gt(ξ)}
e.a.s. uniformly over Ξ and that E supξ∈Ξ |gt(ξ)|2 < ∞. Under the current assumptions, using

the same unfolding approach as in the proof of Proposition 1, it can be shown that there is a

finite constant C such that E supξ∈Ξ |ĝt(ξ)|2 < C for any t. Furthermore, we have

E(f2
t ) = E

(
f1 + (t− 1)ω0 +

t−1∑
i=1

α⊤
0 s(ui;ψ0)

)2

= f2
1 + (t− 1)2ω2

0 +
t−1∑
i=1

E(α⊤
0 s(ui;ψ0))

2 +
t−1∑
i=1

∑
j ̸=i

E(α⊤
0 s(ui;ψ0)α

⊤
0 s(uj ;ψ0))

+ (t− 1)ω0 f1 + (t− 1)ω0

t−1∑
i=1

E(α⊤
0 s(ui;ψ0)) + f1

t−1∑
i=1

E(α⊤
0 s(ui;ψ0))

= f2
1 + (t− 1)2ω2

0 +
t−1∑
i=1

E|α⊤
0 s(ui;ψ0)|2 + 0 + (t− 1)ω0f1 + 0 + 0

= f2
1 +

[
E(α⊤

0 s(ut;ψ0))
2 + ω0 f1

]
(t− 1) + ω2

0(t− 1)2 ,

where we use that f1 is a constant and where the third equality uses that {ut} is mds and

Assumption A3 that ensures that s(ut;ψ0) is an mds. The values in front of (t − 1)k for k =

0, 1, 2 in the final equality are finite, as E(α⊤
0 s(ut;ψ0))

2 is finite under the current assumptions;

see the proof of Lemma B.2.
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Because f̂t(b0, ξ) = ft−ĝt(ξ), it is not hard to see that E supξ∈Ξ |f̂t(b0, ξ)|2 ≤ E supξ∈Ξ |ft|2+
E supξ∈Ξ |ĝt(ξ)|2. We know from the proof of Proposition 1 that E supξ∈Ξ |ĝt(ξ)|2 can be

bounded by a finite constant. Thus, it follows from the Cn inequality of Loève (1977), and

the results above that there exists a finite constant b, such that (B.1) is satisfied.

Proof of Lemma B.8. By the mean value theorem we have

f̂t+1(b0, ξ)−f̂t+1(b, ξ)

= f̂t(b0, ξ)− f̂t(b, ξ) +α
⊤
(
s(A(L)(yt − β0f̂t(b0, ξ));ψ)

− s(A(L)(yt − βf̂t(b, ξ));ψ)
)

= f̂t(b0, ξ)− f̂t(b, ξ)

+α⊤s′(z∗t ;ψ)[A(L)(βf̂t(b, ξ)− β0f̂t(b0, ξ))] ,

where s′(z;ψ) = ∂s(z;ψ)/∂z and where z∗t is some k-dimensional vector on the line segment

betweenA(L)(yt−β0f̂t(b0, ξ)) andA(L)(yt−βf̂t(b, ξ)). For notational convenience, we supress
the dependence of z∗t on the parameters and on the observations. Now we can use that

βf̂t(b, ξ)− β0f̂t(b0, ξ) = (β − β0)f̂t(b0, ξ)− β(f̂t(b0, ξ)− f̂t(b, ξ)) ,

from which it follows that

f̂t+1(b0, ξ)− f̂t+1(b, ξ)

=
(
1−α⊤s′(z∗t ;ψ)β

)
(f̂t(b0, ξ)− f̂t(b, ξ))

+α⊤s′(z∗t ;ψ)
(
A1β(f̂t−1(b0, ξ)− f̂t−1(b, ξ))

+ . . .+Apβ(f̂t−p(b0, ξ)− f̂t−p(b, ξ))
)

+α⊤s′(z∗t ;ψ)A(L)(β − β0)f̂t(b0, ξ) ,

where the lag operators in A(L) only work on f̂t(b0, ξ) and not on s′(z∗t ;ψ). Throughout

this proof we ignore that in this update, z∗t indirectly depends on past values of f̂t(b0, ξ) and

f̂t(b, ξ). This would be problematic if we were to establish the dynamic properties of the process

{f̂t(b0, ξ)−f̂t(b, ξ)}, but here we are just interested in bounding its expectation, so we can safely

ignore this dependence between z∗t and the elements of {f̂t(b0, ξ) − f̂t(b, ξ)} and treat z∗t as

deterministic (until we start taking expectations). Hence, f̂t(b0, ξ) − f̂t(b, ξ) is updated using

a linear AR(p + 1)-type update, with ‘innovation term’ α⊤s′(z∗t ;ψ)A(L)(β − β0)f̂t(b0, ξ) =

(β−β0)
⊤A(L)⊤s′(z∗t ;ψ)

⊤αf̂t(b0, ξ). It follows that we can define the k-variate process {ĥt(θ)},
such that f̂t(b0, ξ) − f̂t(b, ξ) ≡ (β − β0)

⊤ĥt(θ). In other words, define this process such that

ĥt(θ) is initialized at ĥt(θ) = 0 and for t = 1, 2, . . . , T is updated by

ĥt+1(θ) = (1−α⊤s′(z∗t ;ψ)β)ĥt(θ) +α
⊤s′(z∗t ;ψ)A1βĥt−1(θ)
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+ . . .+α⊤s′(z∗t ;ψ)Apβĥt−p(θ) +A(L)⊤s′(z∗t ;ψ)
⊤αf̂t(b0, ξ) ,

where the lag operators in A(L)⊤ only work on f̂t(b0, ξ), and not on s′(z∗t ;ψ)
⊤. So, ignoring

the dependence of z∗t on past values of ĥt(θ), ĥt(θ) is updated using a VAR(p+1) type scheme,

where all autoregressive coefficients are scalar.

Let ĥit(θ) denote the i-th element of ĥt(θ). By norm equivalence, there exists a constant

c̄, such that

E sup
θ∈Θ

∥ĥt(θ)∥2 ≤ c̄ E sup
θ∈Θ

(
k∑

i=1

|ĥit(θ)|
)2

≤ c̄ d̄

k∑
i=1

E sup
θ∈Θ

|ĥit(θ)|2 ,

where the second inequality holds for some d̄ by the Cn inequality of Loève (1977) and the

sub-additivity of the sup-norm. Hence, it suffices to show that there exists a finite constant ā

such that for any t, E supθ∈Θ |ĥit(θ)|2 ≤ ātl, with l = 1 if ω0 = 0 and l = 2 if ω0 ̸= 0.

Because in the update of ĥt the ‘autoregressive’ lags of ĥt have a scalar coefficient, it is

clear that we can study the elements of ĥt separately. Start by defining the vector ĥ
†
it(θ) =

(ĥit(θ), . . . , ĥi,t−p(θ))
⊤, such that we can write the updating scheme of ĥit(θ) as a first-order

SRE. Let ϕ̄it : Rp+1 × Θ → Rp+1 denote a random function that is such that ĥ
†
i,t+1(θ) =

ϕ̄it(ĥ
†
it(θ),θ). More specifically, we can write

ϕ̄it(h
†,θ) =


ϕ̄1,it(h

†,θ)

h†1
...

h†p

 ,

with h† = (h†1, . . . , h
†
p+1)

⊤ and

ϕ̄1,it(h
†,θ) = (1−α⊤s′(z∗t ;ψ)β)h

†
1 +α

⊤s′(z∗t ;ψ)A1βh
†
2 + . . .+α⊤s′(z∗t ;ψ)Apβh

†
p+1

+ e⊤i

(
s′(z∗t ;ψ)

⊤αf̂t(γ, ξ)−A⊤
1 s

′(z∗t ;ψ)
⊤αf̂t−1(γ, ξ)

− . . .−A⊤
p s

′(z∗t ;ψ)
⊤αf̂t−p(γ, ξ)

)
,

where ei denotes the i-th standard basis vector of Rk.

Notice that for any h̄1, h̄2 ∈ Rp+1 have

ϕ̄it(h̄1,θ)−ϕ̄it(h̄2,θ)

=


1−α⊤s′(z∗t ;ψ)β α⊤s′(z∗t ;ψ)A1β . . . α⊤s′(z∗t ;ψ)Apβ

Ip

0
...

0

 (h̄1 − h̄2)

≡ Φ̄(z∗t ,θ)(h̄1 − h̄2) ,
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and that for the r-fold convolutions of ϕ̄t, we have

ϕ̄
(r)
it (h̄1,θ)− ϕ̄

(r)
it (h̄2,θ) =

 r∏
j=1

Φ̄(z∗t−j+1,θ)

 (h̄1 − h̄2) .

By condition C3, for some r ≥ 1, a constant κ < 1 exists such that

sup
θ∈Θ,(z1,...,zr)∈Rkr

∥∥∥∥∥∥
r∏

j=1

Φ̄(zj ,θ)

∥∥∥∥∥∥ = κ < 1 . (C.12)

For this r, we unfold the recursion of ĥ
†
it(θ) backwards r times, such that we have for any

h̄ ∈ Rp+1:

sup
θ∈Θ

∥ĥ†
it(θ)∥ ≤ sup

θ∈Θ
∥ϕ̄(r)

i,t−1(ĥ
†
i,t−r(θ),θ)− ϕ̄

(r)
i,t−1(h̄,θ)∥+ sup

θ∈Θ
∥ϕ̄(r)

i,t−1(h̄,θ)∥

≤ sup
θ∈Θ

∥∥∥∥∥∥
r∏

j=1

Φ̄(z∗t−j ,θ)

∥∥∥∥∥∥ sup
θ∈Θ

∥ĥ†
i,t−r(θ)− h̄∥+ sup

θ∈Θ
∥ϕ̄(r)

i,t−1(h̄,θ)∥

≤ κ sup
θ∈Θ

∥ĥ†
i,t−r(θ)∥+ κ ∥h̄∥+ sup

θ∈Θ
∥ϕ̄(r)

i,t−1(h̄,θ)∥ ,

where we use the triangle inequality multiple times. In the second inequality we use (C.12) and

that for any q × q matrix A and q-vector v, the Lp-norm and the corresponding operator norm

have the property ∥Av∥ ≤ ∥A∥ ∥v∥. Say t ≥ r + 1, then unfolding this recursion backwards

⌊(t− 1)/r⌋ times, gives us

sup
θ∈Θ

∥ĥ†
it(θ)∥ ≤ κ⌊(t−1)/r⌋ sup

θ∈Θ
∥ĥ†

i,t−r⌊(t−1)/r⌋(θ)∥

+

⌊(t−1)/r⌋−1∑
j=0

κj(κ∥h̄∥+ sup
θ∈Θ

∥ϕ̄(r)
i,t−1−rj(h̄,θ)∥) .

We now take (E| · |2)1/2, on both sides of the inequality, which is sub-additive as it is an L2-norm

in the vector space of real-valued random variables. Then we get:(
E sup
θ∈Θ

∥ĥ†
it(θ)∥2

)1/2

≤ κ⌊(t−1)/r⌋
(
E sup
θ∈Θ

∥ĥ†
i,t−r⌊(t−1)/r⌋(θ)∥2

)1/2

+

⌊(t−1)/r⌋−1∑
j=0

κj

(
κ∥h̄∥+

(
E sup
θ∈Θ

∥ϕ̄(r)
i,t−1−rj(h̄,θ)∥2

)1/2
)

,

(C.13)

Notice that it follows from the definition of ϕ̄
(r)
i,t (h̄,θ) that we can bound supθ∈Θ ∥ϕ̄(r)

i,t (h̄,θ)∥ as

follows,

sup
θ∈Θ

∥ϕ̄(r)
i,t (h̄,θ)∥ ≤ K̄r∥h̄∥+

r∑
i=1

K̄i−1 sup
θ∈Θ

|x̂t−i+1(θ)| ,

where K̄ ≡ supθ∈Θ,z∈Rk ∥Φ̄(z,θ)∥, which is finite by (C.12) and where

x̂t(θ) ≡ e⊤i

(
s′(z∗t ;ψ)

⊤αf̂t(b0, ξ)−A⊤
1 s

′(z∗t ;ψ)
⊤αf̂t−1(b0, ξ)
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− . . .−A⊤
p s

′(z∗t ;ψ)
⊤αf̂t−p(b0, ξ)

)
.

Because clearly supθ∈Θ ∥A⊤
j s

′(z∗t ;θ)
⊤α∥ < ∞ for any j under the maintained assumptions and

by the result of Lemma B.7, an inspection of the expression above implies that if we take an

expectation, then for any fixed r and h̄ there must be a constant C such that

E sup
θ∈Θ

∥ϕ̄(r)
i,t (h̄,θ)∥2 ≤

Ct , if ω0 = 0 , and

Ct2 , if ω0 ̸= 0 .
(C.14)

Now going back to (C.13), it follows that if ω0 = 0:

(
E sup
θ∈Θ

∥ĥ†
it(θ)∥2

)1/2

≤ κ⌊(t−1)/r⌋ B +

⌊(t−1)/r⌋−1∑
j=0

κj
(
κ∥h̄∥+ C1/2(t− 1− rj)1/2

)

≤ B +
κ∥h̄∥
1− κ

+ C1/2t1/2
⌊(t−1)/r⌋−1∑

j=0

κj
(
(t− 1− rj)

t

)1/2

≤ B +
κ∥h̄∥
1− κ

+ C1/2t1/2
⌊(t−1)/r⌋−1∑

j=0

κj ≤ (Āt)1/2 ,

where we use that there must be a finite constant B, such that E supθ∈Θ ∥ĥ†
i,t−r⌊(t−1)/r⌋(θ)∥2 ≤

B. This can be shown by unfolding ĥ
†
i,t−r⌊(t−1)/r⌋(θ) backwards one step at a time until ĥi,1 = 0

is reached, which will take at most r− 1 steps, and bounding the resulting expression using the

same results we used above. For the second inequality we use that 0 ≤ κ < 1. For the third

inequality we use that t − 1 − rj < t for any index j of the sum. It follows from κ < 1 that

there exists a finite constant Ā that does not depend on t, for which the final inequality holds.

If ω0 ̸= 0, then based on (C.14) the same strategy can be used to show that for any t, the

expectation can be bounded by Āt, for some finite constant Ā. It follows that there must also

exist a finite constant ā such that E supθ∈Θ ∥ĥit(θ)∥2 can be bounded by āt or āt2 for ω0 = 0

and ω0 ̸= 0, respectively. This completes the proof.

D. Estimation of the long-run parameters

To obtain an estimate of b and m, we suggest to regress y−1,t = (y2t, . . . , ykt)
⊤ on y1t, as we

can write

y−1,t =m0 + b0y1t + v−1,t , where

v−1,t = ε−1,t − b0ε1t , and ∆y1t = ω0 + v1,t−1 +∆ε1t ,

and where ε−1,t = (ε2t, . . . , εkt)
⊤ and v1t = α

⊤
0 s(ut;ψ0). We can find the limiting distribution of

the OLS estimator form and b in the regression above based on standard theory for regressions

TA.p25



with integrated processes. Define

vt ≡

 v1t

v−1,t

 =

α⊤
0 s(ut;ψ0)

ε−1,t − b0ε1t

 .

It is clear that the expectation of vt is a vector of zeros. Let Ω denote the long-run covariance

matrix of vt:

Ω = lim
T→∞

1

T
Var

(
T∑
t=1

vt

)
= lim

T→∞

T∑
s=−T

E[vtv⊤t−s] =

ω11 Ω⊤
21

Ω21 Ω22

 ,

where we use that {vt}t∈Z is SE. The following proposition is useful for deriving the limiting

distributions of the OLS estimators for b and m.

Proposition D.1. If A1-A3 are satisfied and Ω is positive definite, then for every r ∈ [0, 1]

1√
T

[Tr]∑
t=1

vt
d→ B(r) =

B1(r)

B2(r)

 , as T → ∞ ,

where we partition B(r) = (B1(r),B2(r)
⊤)⊤ conformably with vt and where B(r) is a k-

dimensional Brownian motion with covariance matrix Ω. Also, for St =
∑t−1

i=1 v1t

1

T

T∑
t=1

v−1,tSt
d→
∫ 1

0
B1(r) dB2(r) + ∆21, as T → ∞ ,

where ∆21 =
∑∞

s=1 E[v−1,tv1,t−s] = C(A0(1)
−1 − Ik)E[utα

⊤
0 s(ut;ψ0)] with C =

(
b0 Ik−1

)
,

where In denotes an n× n identity matrix.

In Theorem D.1, we consider the limiting distribution of the OLS estimator for the param-

eters in the regression above in different scenarios. The results of this theorem are standard

results from the literature on regressions with integrated processes; see, for example, Park and

Phillips (1988).

Theorem D.1. Let A1-A3 be satisfied and assume Ω is positive definite. Then:

(i) Let ω0 = 0 and m0 = 0: then if b̂T denotes the OLS estimator of b0 in the regression

y−1,t = b0y1t + v−1,t,

T (b̂T − b0) d→
(∫ 1

0
B1(r)

2 dr

)−1(∫ 1

0
B1(r) dB2(r) + ∆21 + Γε

)
,

as T → ∞, with ∆21 as defined in Proposition D.1 and Γε = E[v−1,tε1t].

(ii) Let ω0 = 0: then if b̂T and m̂T denote the OLS estimators of b0 and m0 in the regression

y−1,t =m0 + b0y1t + v−1,t,

T (b̂T − b0) d→
(∫ 1

0
B̄1(r)

2 dr

)−1(∫ 1

0
B̄1(r) dB2(r) + ∆21 + Γε

)
, and,
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T 1/2(m̂T −m0)
d→

B2(1)−
(∫ 1

0
B1(r) dr

)(∫ 1

0
B̄1(r)

2 dr

)−1(∫ 1

0
B̄1(r) dB2(r) + ∆21 + Γε

)
,

as T → ∞, with ∆21 and Γε the same as in (i) and B̄1(r) = B1(r) −
∫ 1
0 B1(r) dr is a

demeaned Brownian motion.

(iii) Let ω0 ̸= 0 and m0 = 0: then if b̂T and m̂T denote the OLS estimators of b0 and m0 in

the regression y−1,t = b0y1t + v−1,t,

T 3/2(b̂T − b0) d→ 3

ω0

[
B2(1)−

∫ 1

0
B2(r) dr

]
= N

(
0,

3

ω2
0

Ω22

)
,

as T → ∞.

(iv) Let ω0 ̸= 0: then if b̂T and m̂T denote the OLS estimators of b0 and m0 in the regression

y−1,t =m0 + b0y1t + v−1,t,

T 3/2(b̂T − b0) d→ 12

ω0

[
1

2
B2(1)−

∫ 1

0
B2(r) dr

]
= N

(
0,

12

ω2
0

Ω22

)
, and,

T 1/2(m̂T −m0)
d→ 2

[
3

∫ 1

0
B2(r) dr −B2(1)

]
= N (0, 4Ω22) ,

as T → ∞.

These OLS estimators can be calculated equation by equation, as each regression equation

has a single regressor y1t (plus possibly an intercept). In case the regression models in (i) or

(iii) are used, while in fact m0 ̸= 0, then the resulting estimator of b is still consistent, but

at a lower rate. On the other hand, including m in the model leads to an estimator with a

larger asymptotic variance. Therefore, some care must be taken in selecting which deterministic

components are to be added to the model.

When ω0 = 0, the OLS estimator of b will be T -consistent, but inefficient due to the

endogeneity of y1t in the regression model, since we have the terms ∆21 + Γε appear in the

limiting distribution, and since B2 is correlated with B1, which causes
∫ 1
0 B1(r) dB2(r) to

be skewed (Shin, 1994). Even when εt = ut, that is when ∆21 = 0 and B2 and B1 are

independent, the term Γε remains in the limiting distribution. In Theorem D.2 we consider

a modified efficient estimator for this case. When ω0 ̸= 0, then the OLS estimator will be

T 3/2-consistent and asymptotically normal; see points (iii) and (iv) of the theorem.

Notice that for case (iii) in Theorem D.1, we can construct the standard error of the i-th

element of b̂T by taking the square root of

ŝ2i = T−33Ω̂22,ii/ω̂
2
T ,

where Ω̂22,ii is the i-th diagonal element of Ω̂22, which in turn is some consistent estimator of

the long-run variance Ω22 based on the regression residuals. For instance, Ω̂22 can be a kernel
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estimator with an appropriate bandwidth; see Andrews (1991), Newey and West (1994) and

Hansen (1992). However, these kernel estimators can be inaccurate if there are VAR dynamics

in εt, so it can be preferable to do a pre-whitening procedure before estimating the long-run

variance (Andrews and Monahan, 1992). With respect to ω̂T in the expression of ŝ2i , some

consistent estimator of ω0 can be used; for example, the estimator ω̂T that is obtained in the

second step of the estimation procedure. It follows from the above discussion and the result of

Theorem D.1, that the t-test statistic (b̂i,T − bi,0)/ŝi will be asymptotically standard normal.

For the case of (iv), the standard errors can be calculated using the same approach.

To obtain an efficient estimator, we consider the modified dynamic OLS estimator of Saikko-

nen (1991); see also Shin (1994). This modified estimator is obtained by adding leads and/or

lags of ∆y1t to the regression model, to account for the serial correlation in and between v1t+∆εt

and v−1,t. The theorem below, which follows from an application of Theorem 4.1 of Saikkonen

(1991), gives the limiting distribution of the OLS estimator of b based on the modified regression

model.

Theorem D.2. Let A1-A3 be satisfied, assume Ω is positive definite, and let ω0 = 0. Define

ṽ1t = v1t + ∆ε1,t+1 and accordingly ṽt = (ṽ1t,v−1,t). Assume the autocovariances of ṽt are

absolutely summable. Let the spectral density matrix of ṽt be continuous and bounded away

from zero (fvv(λ) ≥ aI for a > 0) and let condition (17) of Saikkonen (1991) on the absolute

summability of the fourth order cumulants be satisfied. Then consider the regression model

y−1,t = b0y1t +
∑K

j=−K πj∆y1t−j + v
∗
−1,t, with K diverging at a rate such that K3/T → 0 as

K,T → ∞ and T 1/2
∑∞

|j|>K ∥πj∥ → 0 .

(i) Let m0 = 0. Then if b̂T denotes the OLS estimator of b0 in the modified regression model

defined above,

T (b̂T − b0) d→
(∫ 1

0
B1(r)

2 dr

)−1 ∫ 1

0
B1(r) dB2·1(r) , as T → ∞ ,

where B2·1 ≡ B2 −Ω21ω
−1
11 B1, which is independent of B1.

(ii) If b̂T and m̂T denote the OLS estimator of b0 and m0 in the regression model above with

an intercept m0 included, then

T (b̂T − b0) d→
(∫ 1

0
B̄1(r)

2 dr

)−1 ∫ 1

0
B̄1(r) dB2·1(r) , and,

T 1/2(m̂T −m0)
d→

B2·1(1)−
(∫ 1

0
B1(r) dr

)(∫ 1

0
B̄1(r)

2 dr

)−1(∫ 1

0
B̄1(r) dB2·1(r)

)
,

as T → ∞, where B̄1(r) = B1(r)−
∫ 1
0 B1(r) dr is a demeaned Brownian motion and where

B2·1 is the same as in (i).
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In practice, the lag length K can, for instance, be chosen using an information criterion such as

Akaike’s information criterion (AIC) or Bayesian information criterion (BIC). We notice that

the same limiting results can be established for other modified estimators such as the semi-

parametric fully modified OLS estimator of Phillips and Hansen (1990). The appeal of the

modified estimator we consider here, is that it only requires a single estimation, unlike the fully

modified estimator. Finally, we notice that a cointegration test in the spirit of Shin (1994) can

be carried out based on the residuals of the regression models of Theorem D.1(iii)-(iv) and

Theorem D.2.

The limiting distributions of the efficient estimators in Theorem D.2 can be used for infer-

ence. For case (i), the standard error of the i-th element of b̂T can be constructed from the

square root of

s2i = Ω̂2·1,ii

(
T∑
t=1

(y1t)
2

)−1

,

where Ω̂2·1,ii is an estimate of the i-th diagonal element of Ω2·1 = Ω22−Ω21ω
−1
11 Ω

⊤
21, which can

be estimated based on the residuals of the modified regression model using a kernel estimator.

If the estimator of Ω2·1 is consistent, then this leads to a t-test statistic (b̂i,T − bi,0)/si that is
asymptotically standard normally distributed. For case (ii), the same strategy can be used to

construct the standard errors of b̂i,T , but then based on
∑T

t=1(y1t)
2 − 1

T (
∑T

t=1 y1t)
2. Similarly,

it is easy to verify that the standard errors of m̂i,T can be estimated by the square root of

s2i =
1

T
Ω̂2·1,ii

1 +
1

T

(
T∑
t=1

y1t

)2
 T∑

t=1

(y1t)
2 − 1

T

(
T∑
t=1

y1t

)2
−1 .

E. Proof of Theorems of Section D

Proof of Proposition D.1. Using the notation C :=
(
b0 Ik−1

)
, we can write v−1,t = ε−1,t −

b0ε1t = Cεt. Consider the so-called Beveridge-Nelson decomposition of εt, see for instance

Saikkonen (1993), or Lütkepohl (2005) for the multivariate version. By Assumption A2, the

lag polynomial A0(L) is invertible, so we know that εt can be represented by a vector moving

average process of infinite order: εt = A0(L)
−1ut =

∑∞
j=0Ξjut−j , for some coefficient matrices

Ξj , with Ξ0 = Ik and
∑∞

j=0 j∥Ξj∥ < ∞. It can then be verified straightforwardly that the

following decomposition is valid:

εt = A0(L)
−1ut = A0(1)

−1ut + ζt − ζt−1 ,

where

ζt =

∞∑
j=0

Djut−j , with Dj = −
∞∑

i=j+1

Ξi .
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The process {ζt}t∈Z is well-defined under the invertibility of A0(L) (see Saikkonen, 1993, p.

167). Together with the strict stationarity of {ut}t∈Z, it follows from Proposition 4.3 in Krengel

(1985), that {ζt}t∈Z is strictly stationary and ergodic. This decomposition allows us to write

the partial sums of εt as a random walk with mds innovations plus a stationary term.

Using the new notation introduced above, we can write

vt =

 α⊤
0 s(ut;ψ0)

C[A0(1)
−1ut + ζt − ζt−1]

 .

It follows that the first result of the proposition holds, by considering the following expression

for any r ∈ [0, 1]:

1√
T

[Tr]∑
t=1

vt =
1√
T

[Tr]∑
t=1

α⊤
0 s(ut;ψ0)

CA0(1)
−1ut

+
1√
T

 0

C[ζ[Tr] − ζ0]

 .

Clearly, the second term will vanish in probability as T → ∞, because it is a strictly stationary

term divided by T 1/2. Hence, we can focus on the first term. We notice that the elements of the

vector (α⊤
0 s(ut;ψ0), (CA0(1)

−1ut)
⊤)⊤ are strictly stationary under the current assumptions,

and furthermore they are mds by Assumptions A1 and A3. Also because A3 and because Σ0 is

assumed to be finite, the elements of the vector have a bounded variance. Due to the elements

of the vector being uncorrelated over time, it also follows that the long-run covariance matrix

of vt, denoted by Ω, is in fact equal to the covariance matrix of this vector, which we assume is

positive definite and which is clearly finite. Hence, we can apply Theorem 15.2.1 of Davidson

(2000), which gives us the first result of the proposition.

For the second result of the proposition, let St =
∑t−1

i=1 v1t and use the Beveridge-Nelson

decomposition of εt given above to rewrite:

1

T

T∑
t=1

v−1,tSt =
1

T

T∑
t=1

CA0(1)
−1utSt +C

1

T

T∑
t=1

(ζt − ζt−1)St ,

Recall that we just argued that for the vector (v1t, (CA0(1)
−1ut)

⊤)⊤, the conditions of Theorem

15.2.1 of Davidson (2000) are satisfied. It follows automatically, that we can also apply Theorem

15.2.3 of Davidson (2000) to this vector, from which it follows that

1

T

T∑
t=1

CA0(1)
−1utSt

d→
∫ 1

0
B1(r) dB2(r) ,

where we again use that the elements of {ut}t∈Z are uncorrelated over time. We rewrite the

second term as follows:

C
1

T

T∑
t=1

(ζt − ζt−1)St = C

(
1

T

T∑
t=1

ζtSt −
1

T

T∑
t=1

ζt−1St−1 −
1

T

T∑
t=1

ζt−1v1,t−1

)

= C

(
1

T
ζTST − 1

T

T−1∑
t=0

ζtv1,t

)
.
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The first term converges to zero in probability as T → ∞, because ζTST is OP (T
1/2), as ζT is

strictly stationary over time. The last term converges in probability to E[ζtv1,t] by the law of

large numbers for SE sequences, as it is straightforward to show that {ζtv1,t}t∈Z is SE with a

bounded moment under the current assumptions. Due to {ut}t∈Z being mds, it follows that

E[ζtv1,t] = E

 ∞∑
j=0

Djut−jα
⊤
0 s(ut;ψ0)

 = D0E[utα
⊤
0 s(ut;ψ0)]

= −(A0(1)
−1 − Ik)E[utα

⊤
0 s(ut;ψ0)] =: ∆21 .

It is not hard to see that indeed ∆21 =
∑∞

s=1 E[v−1,tv1,t−s].

Proof of Theorem D.1. (i) The OLS estimator takes the form

b̂T =

∑T
t=1 y−1,ty1t∑T

t=1 y
2
1t

= b0 +

∑T
t=1 v−1,ty1t∑T

t=1 y
2
1t

,

where y1t = f1 + St + ε1t, with St =
∑t

s=1 v1s. It follows that:

T (b̂T − b0) =
T−1

∑T
t=1 v−1,t(f1 + St + ε1t)

T−2
∑T

t=1(f1 + St + ε1t)2

d→
(∫ 1

0
B1(r)

2 dr

)−1(∫ 1

0
B1(r) dB2(r) + ∆21 + Γε

)
,

as T → ∞. As it follows from the result of Proposition D.1 and the continuous mapping

theorem for functionals that the well-known standard results of for instance Lemma 3.1 Phillips

and Durlauf (1986) and Proposition C.18 of Lütkepohl (2005) hold. From this it follows that

1

T 2

T∑
t=1

S2
t

d→
∫ 1

0
B2

1(r) dr ,

1

T

T∑
t=1

v−1,tSt
d→
∫ 1

0
B1(r) dB2(r) + ∆21 ,

1

T

T∑
t=1

v−1,tε1t
p→ E[v−1,tε1t] ≡ Γε ,

as T → ∞. The last result follows from the law of large numbers for SE sequences. The other

terms in the numerator and denominator all converge to zero in probability by applications of

standard law of large numbers and (F)CLTs.

(ii) Here the OLS estimator takes the form

b̂T =
T
∑T

t=1 y−1,ty1t −
∑T

t=1 y−1,t

∑T
t=1 y1t

T
∑T

t=1 y
2
1t − (

∑T
t=1 y1t)

2

= b0 +
T
∑T

t=1 v−1,ty1t −
∑T

t=1 v−1,t
∑T

t=1 y1t

T
∑T

t=1 y
2
1t − (

∑T
t=1 y1t)

2
.
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By again using y1t = f1 + St + ε1t, with St =
∑t

s=1 v1s, we have that

T (b̂T − b0)

=
T−1

∑T
t=1 v−1,t(f1 + St + ε1t)− (T−1/2

∑T
t=1 v−1,t)(T

−3/2
∑T

t=1(f1 + St + ε1t))

T−2
∑T

t=1(f1 + St + ε1t)2 − (T−3/2
∑T

t=1(f1 + St + ε1t))2

d→
(∫ 1

0
B̄1(r)

2 dr

)−1(∫ 1

0
B̄1(r) dB2(r) + ∆21 + Γε

)
,

as T → ∞. This follows from Proposition D.1, because together with the functional continuous

mapping theorem, it gives us

1

T 2

T∑
t=1

S2
t −

(
T−3/2

T∑
t=1

St

)2

d→
∫ 1

0
B1(r)

2 dr −
(∫ 1

0
B1(r) dr

)2

=

∫ 1

0

(
B1(r)−

∫ 1

0
B1(s) ds

)2

dr ,

as T → ∞, and

1

T

T∑
t=1

v−1,t(St + ε1t)−
(

1

T 1/2

T∑
t=1

v−1,t

)(
1

T 3/2

T∑
t=1

St

)
d→
∫ 1

0
B1(r) dB2(r) + ∆21 + E[v−1,tε1t]−B2(1)

∫ 1

0
B1(r) dr

=

∫ 1

0

(
B1(r)−

∫ 1

0
B1(s) ds

)
dB2(r) + ∆21 + Γε ,

as T → ∞. The other terms in the numerator and denominator all converge to zero in proba-

bility.

For m̂T we have that

m̂T =
1

T

T∑
t=1

y−1,t − b̂T
1

T

T∑
t=1

y1t =m0 − (b̂T − b0)
1

T

T∑
t=1

y1t +
1

T

T∑
t=1

v−1,t ,

from which it follows that:

T 1/2(m̂T −m0) =
1

T 1/2

T∑
t=1

v−1,t −
1

T 3/2

T∑
t=1

y1t · T (b̂T − b0)

d→ B2(1)−
∫ 1

0
B̄1(r) dr

(∫ 1

0
B̄1(r)

2 dr

)−1(∫ 1

0
B̄1(r) dB2(r) + ∆21 + Γε

)
,

as T → ∞, where we use the limiting distribution of T (b̂T − b0) derived above and standard

results such as T−3/2
∑T

t=1 St
d→
∫ 1
0 B1(r) dr as T → ∞.

(iii) The OLS estimator of this regression has the form:

b̂T =

∑T
t=1 y−1,ty1t∑T

t=1 y
2
1t

= b0 +

∑T
t=1 v−1,ty1t∑T

t=1 y
2
1t

.

So using that y1t = t · ω0 + f1 + St + ε1t, with St =
∑t

s=1 v1s, we have that

T 3/2(b̂T − b0) =
T−3/2

∑T
t=1 v−1,t(t · ω0 + f1 + St + ε1t)

T−3
∑T

t=1(t · ω0 + f1 + St + ε1t)2

TA.p32



d→ 3

ω0

[
B2(1)−

∫ 1

0
B2(r) dr

]
,

as T → ∞, by Proposition D.1), because have that in the denominator T−3
∑

t=1 t
2 → 3−1 and

in the numerator T−3/2
∑T

t=1 tv−1,t
d→ B2(1)−

∫ 1
0 B2(r) dr as T → ∞, and the other terms in

the numerator and denominator all converge to zero in probability, which follows from standard

results. Finally, it is not hard to show that the limit distribution is Gaussian with mean zero

and its variance can also be deduced straightforwardly.

If this regression model is used while in fact µ0 ̸= 0, then the resulting estimator b̂T will no

longer be T 3/2-consistent, but it will only be T -consistent with limiting distribution:

T (b̂T − b0) =
T−2

∑T
t=1(m0 + v−1,t)(t · ω0 + f1 + St + ε1t)

T−3
∑T

t=1(t · ω0 + f1 + St + ε1t)2
p→ m0

3

2ω0
,

as T → ∞. So having a regression model with intercept leads to a higher asymptotic variance,

but not taking into account the intercept, leads to a lower rate of consistency.

(iv) The OLS estimator of b0 of this regression has the form:

b̂T =
T
∑T

t=1 y−1,ty1t −
∑T

t=1 y−1,t

∑T
t=1 y1t

T
∑T

t=1 y
2
1t − (

∑T
t=1 y1t)

2

= b0 +
T
∑T

t=1 v−1,ty1t −
∑T

t=1 v−1,t
∑T

t=1 y1t

T
∑T

t=1 y
2
1t − (

∑T
t=1 y1t)

2
,

by again using y1t = t · ω0 + f1 + St + ε1t, with St =
∑t

s=1 v1s, we have

T 3/2(b̂T − b0) =
T−3/2

∑T
t=1 v−1,ty1t − (T−1/2

∑T
t=1 v−1,t)(T

−2
∑T

t=1 y1t)

T−3
∑T

t=1 y
2
1t − (T−2

∑T
t=1 y1t)

2

d→ 12

ω0

[
B2(1)−

∫ 1

0
B2(r) dr −

1

2
B2(1)

]
=

12

ω0

[
1

2
B2(1)−

∫ 1

0
B2(r) dr

]
,

as T → ∞, again by Proposition D.1, as we have that T−(i+1)
∑T

t=1 t
i → (i + 1)−1, so in de

denominator T−3
∑T

t=1 t
2 − (T−2

∑T
t=1 t)

2 → 3−1 − 4−1 = 12−1. Also, in the numerator

T−3/2
T∑
t=1

tv−1,t
d→ B2(1)−

∫ 1

0
B2(r) dr , and

(
T−1/2

T∑
t=1

v−1,t

)(
T−2

T∑
t=1

t

)
d→ 2−1B2(1) ,

as T → ∞.

The OLS estimator of m0 has the form:

m̂T =
1

T

T∑
t=1

y−1,t − β̂T

1

T

T∑
t=1

y1t =m0 − (b̂T − b0)
1

T

T∑
t=1

y1t +
1

T

∑
t=1

v−1,t .

So we have that:

T 1/2(m̂T −m0) = −T 3/2(b̂T − b0)
1

T 2

T∑
t=1

y1t +
1

T 1/2

T∑
t=1

v−1,t
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d→ −12

ω0

[
1

2
B2(1)−

∫ 1

0
B2(r) dr

]
· ω0

2
+B2(1)

= 6

[∫ 1

0
B2(r) dr −

1

3
B2(1)

]
,

as T → ∞, using the limiting distribution of T 3/2(b̂T − b0) and results that we also used earlier

in the proof.

Finally, it is clear that for both b̂T and m̂T the limiting distribution is Gaussian with mean

zero, and the variance can be deduced straightforwardly.

Proof of Theorem D.2. (i) This result follows directly from Theorem 4.1 of Saikkonen (1991).

Similar results as in Proposition D.1 can straightforwardly also be derived for ṽt. It is as-

sumed that the autocovariances of the process ṽt are absolutely summable, whcich implies that

condition (16) in Saikkonen (1991) is satisfied. Furthermore,

1√
T

[Tr]∑
t=1

ṽt =
1√
T

[Tr]∑
t=1

vt +
1√
T

ε1,[Tr] − ε1,0

0

 d→ B(r) ,

as T → ∞, so the limiting distribution of the partial sums of ṽt is the same as that of vt, and

the long-run covariance matrix is still equal to Ω. Hence, it follows that the result holds.

(ii) Although Theorem 4.1 of Saikkonen (1991) does not apply to models with deterministic

components, the theorem can clearly be extended to allow for this case, which will lead to the

given limiting distribution; see also Lemma 1 of Shin (1994) which considers this case but for a

single equation model.
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