

TI 2024-060/III
Tinbergen Institute Discussion Paper

PyTimeVar: A Python Package for
Trending Time-Varying Time Series
Models

Mingxuan Song1
Bernhard van der Sluis2

Yicong Lin3

1 Vrije Universiteit Amsterdam

2 Erasmus Universiteit Rotterdam

3 Vrije Universiteit Amsterdam and Tinbergen Institute

Tinbergen Institute is the graduate school and research institute in economics of
Erasmus University Rotterdam, the University of Amsterdam and Vrije Universiteit
Amsterdam.

Contact: discussionpapers@tinbergen.nl

More TI discussion papers can be downloaded at https://www.tinbergen.nl

Tinbergen Institute has two locations:

Tinbergen Institute Amsterdam
Gustav Mahlerplein 117
1082 MS Amsterdam
The Netherlands
Tel.: +31(0)20 598 4580

Tinbergen Institute Rotterdam
Burg. Oudlaan 50
3062 PA Rotterdam
The Netherlands
Tel.: +31(0)10 408 8900

mailto:discussionpapers@tinbergen.nl
https://www.tinbergen.nl/

PyTimeVar: A Python Package for Trending
Time-Varying Time Series Models∗

Mingxuan Song
Vrije Universiteit Amsterdam

Bernhard van der Sluis
Erasmus Universiteit Rotterdam

Yicong Lin
Vrije Universiteit Amsterdam and Tinbergen Institute

Abstract

Time-varying regression models with trends are commonly used to analyze long-term
tendencies and evolving relationships in data. However, statistical inference for parameter
paths is challenging, and recent literature has proposed various bootstrap methods to
address this issue. Despite this, no software package in any language has yet offered
the recently developed tools for conducting inference in time-varying regression models.
We propose PyTimeVar, a Python package that implements nonparametric estimation
along with multiple new bootstrap-assisted inference methods. It provides a range of
bootstrap techniques for constructing pointwise confidence intervals and simultaneous
bands for parameter curves. Additionally, the package includes four widely used methods
for modeling trends and time-varying relationships. This allows users to compare different
approaches within a unified environment.

Keywords: time-varying, bootstrap, nonparametric estimation, boosted Hodrick-Prescott fil-
ter, power-law trend, score-driven, state-space.

1. Introduction

In this paper, we introduce a Python package that offers state-of-the-art estimation and sta-
tistical inference methods for time series regression models with flexible trends and/or time-
varying coefficients. These models have gained widespread use in recent empirical research
across various fields, including climate and financial studies (see, e.g., Ang and Kristensen

∗Corresponding author: Department of Econometrics and Data Science, Vrije Universiteit Amsterdam, De
Boelelaan 1105, 1081 HV, Amsterdam, the Netherlands. E-mail address: yc.lin@vu.nl.

https://orcid.org/0000-0002-9206-4137
mailto:yc.lin@vu.nl

2 Time-Varying Models in Python

2012; Guo, Wu, and Yu 2017; Friedrich, Beutner, Reuvers, Smeekes, Urbain, Bader, Franco,
Lejeune, and Mahieu 2020a; Kapetanios, Millard, Petrova, and Price 2020; Anand, Paul,
and Nair 2023; Ren and Lucey 2023; Umlandt 2023). However, there is a notable lack of
integrated packages that support comprehensive analysis within these models. Our proposed
Python package, PyTimeVar, addresses this gap by offering two key contributions: (1) It in-
troduces a recently developed nonparametric estimation approach, accompanied by various
theoretically justified bootstrap-assisted methods for both pointwise and simultaneous infer-
ence (Bühlmann 1998; Zhou and Wu 2010; Friedrich, Smeekes, and Urbain 2020b; Friedrich
and Lin 2024; Lin, Song, and van der Sluis 2024). This is important for practitioners, as
constructing both pointwise and simultaneous intervals is highly challenging using estab-
lished asymptotic approximations. While bootstrap methods have been shown to provide
accurate empirical coverage, current empirical studies often rely on a naive wild bootstrap,
overlooking necessary steps to correct asymptotic bias and account for more complex time
series dynamics; see discussions in Friedrich and Lin (2024) and Lin et al. (2024), and the
references therein. PyTimeVar enables users to obtain both confidence intervals and bands,
allowing for the evaluation of time variations and assessment of parameter evolution over a
specific period using six carefully implemented bootstrap methods; (2) It also incorporates
four alternative, widely-used methods for trend analysis and modeling time-varying relation-
ships: the boosted Hodrick-Prescott (bHP) filter (Phillips and Shi 2021; Biswas, Sabzikar,
and Phillips 2024; Mei, Phillips, and Shi 2024), power-law trend models (Robinson 2012; Lin
and Reuvers 2024), state-space models (Durbin and Koopman 2012), and score-driven (GAS)
models (Harvey 2013; Creal, Koopman, and Lucas 2013), including robust t-GAS models
(Harvey and Luati 2014; D’Innocenzo, Luati, and Mazzocchi 2023). This integration allows
users to easily compare results across various popular methods tailored to our trending time-
varying regression framework, all within a single environment, without adjusting existing
packages or switching between programming languages for comparative analysis.

Although no package currently exists that specifically focuses on recent bootstrap-assisted
inference methods for time-varying models, some packages in both Python and R offer partial
functionalities similar to ours. Below, we discuss these existing packages and their limitations
concerning nonparametric time-varying models. In Python, the KernelReg class in statsmod-
els supports local linear regressions, similar to those considered here. However, it neither
focuses on time-varying models nor provides inference on time-varying coefficient curves. An-
other Python package, orbit, proposed by Ng, Wang, Chen, Yang, and Smyl (2020), includes
the kernel-based time-varying regression (KTR) class, which allows for the examination of
time-varying coefficients. However, this package primarily focuses on Bayesian forecasting
methods using state-space models, rather than inference on time-varying coefficients. In R,
the tvReg package (Casas and Fernandez-Casal 2019) offers several classes of time-varying
nonparametric models, making it the closest in focus to ours. However, it only provides
pointwise confidence intervals using a naive wild bootstrap method, without considering si-
multaneous inference or alternative methods for modeling time variations. Additionally, the
tvem package (Dziak, Coffman, Li, Litson, and Chakraborti 2023) focuses on P-spline-based
estimation methods for time-varying coefficient models, but similarly, it only provides point-

Journal of Statistical Software 3

wise intervals without incorporating more recent inference techniques.
Moreover, while no package is available for power-law trend analysis to the best of our
knowledge, there are numerous references for the other methods we consider, across vari-
ous environments. Here, we discuss only the most relevant packages to ours. The website
https://zhentaoshi.github.io/Boosted_HP_filter/index.html provides comprehensive
functionalities of the boosted Hodrick-Prescott filter in Julia, Matlab, Python, R, and Stata.
For the Kalman smoother, Python offers implementations through the statsmodels (Seabold
and Perktold 2010) and pykalman (Duckworth and Balatsko 2024) libraries, while R users
can utilize the kalmanfilter package Hubbard (2024). For score-driven models, an R package
is provided by Ardia, Boudt, and Catania (2019). Additional code for score-driven models
in various applications is available on the website www.gasmodel.com. The packages men-
tioned above are potentially of general use. As previously noted, our package unifies these
methods for trending time-varying models, as comparative methods of the nonparametric,
bootstrap-assisted approach, but does not aim to be an all-encompassing solution.
The package is available on PyPI at https://pypi.org/project/PyTimeVar. This pa-
per uses PyTimeVar version 1.0.0 and Python version 3.11.5. The documentation of our
package is available at https://pytimevar.readthedocs.io/en/latest/. Finally, the lat-
est (development) version of the PyTimeVar package is available on GitHub at https:
//github.com/bpvand/PyTimeVar. It is important to note that our package relies on several
standard Python libraries, including numpy, pandas, matplotlib, scipy, time, statsmodels,
os, and tqdm. These packages are automatically installed when the PyTimeVar package is
invoked from PyPI, if not already present.
The remainder of this paper is structured as follows. Section 2 introduces the methods
included in our package. The detailed implementation of our package is covered in Section 3.
Section 4 illustrates the package using a real-life dataset. Section 5 concludes.

2. The methodological framework

We first present the models under consideration (Section 2.1), followed by a discussion of
the main estimation and inference framework in our software package (Sections 2.2 - 2.3).
Section 2.4 introduces alternative methods available in the PyTimeVar package. Our focus is
on the practical aspects rather than the technical details. For technical discussions, we refer
interested readers to the corresponding references provided in the contexts.

2.1. The set-up

Consider the following time series regression model with a flexible trend and time-varying
coefficients:

yt = β0,t +
d∑

j=1
βj,txj,t + ut = β⊤

t xt + ut, t = 1, . . . , n, d ≥ 0, (1)

where yt represents the dependent variable, xt = (1, x1,t, . . . , xd,t)⊤ is a vector of explanatory

https://zhentaoshi.github.io/Boosted_HP_filter/index.html
www.gasmodel.com
https://pypi.org/project/PyTimeVar
https://pytimevar.readthedocs.io/en/latest/
https://github.com/bpvand/PyTimeVar
https://github.com/bpvand/PyTimeVar

4 Time-Varying Models in Python

variables, and ut denotes the error term. Additionally, βt := (β0,t, β1,t, . . . , βd,t)⊤ is a (d + 1)-
dimensional vector of coefficients that varies over time to capture dynamic relationships.
When d = 0, we write (βt, xt) = (β0,t, 1). In this case, Model (1) only contains a deterministic
trending component. In practice, we observe the data Dn :=

{
(yt, xt), t = 1, . . . , n

}
. Model

(1) is extensively used in empirical research due to its interpretability and potential robustness
to model misspecification (see, e.g., Ang and Kristensen 2012; Friedrich et al. 2020b; Ren and
Lucey 2023). The time-dependent parameters βj,t, j = 1, . . . , d, in Model (1) can be estimated
using multiple approaches. Given the limited availability of software packages that implement
nonparametric local kernel estimation and recent resampling methods, we primarily focus on
these techniques. Alternative approaches are partially covered in Section 2.4 to facilitate
convenient comparisons for practitioners.

2.2. Local linear kernel estimation

A popular nonparametric approach assumes that βt = β(τt), where τt = t/n and β(·) =(
β0(·), . . . , βd(·)

)⊤ : [0, 1] → Rd+1 is a vector of smooth, deterministic functions (e.g., Cai 2007;
Cai, Li, and Park 2009; Zhou and Wu 2010; Phillips, Li, and Gao 2017; Li, Phillips, and Gao
2020; Nishi 2024). The literature commonly advocates using the local linear kernel method to
estimate the unknown vector of functions β(·), as it exhibits smaller boundary bias compared
to local constant estimation and performs similarly to higher-order local polynomials. For a
detailed treatment, see Li and Racine (2007, Chapter 2.4).
Note that the data Dn are observed discretely at times t = 1, . . . , n. The fundamental idea
behind a local (linear) kernel estimator is to use this discrete information to approximate β(τ)
for every τ ∈ (0, 1). Specifically, using a first-order Taylor approximation, for any τ ∈ (0, 1),
we have:

β(τt) ≈ β(τ) + β(1)(τ)(τt − τ).

where β(1)(·) =
(
β

(1)
0 (·), . . . , β

(1)
d (·)

)⊤, and β
(1)
j (·), j = 0, . . . , d, is the first-order derivative of

βj(·). Model (1) can then be approximated as

yt ≈ β(τ)⊤xt + β(1)(τ)⊤(τt − τ)xt + ut = zt(τ)⊤θ(τ) + ut, (2)

where zt(τ) =
(
x⊤

t , τt−τ
h x⊤

t

)⊤
and θ(τ) =

(
β(τ)⊤, hβ(1)(τ)⊤

)⊤
. For τ ∈ (0, 1), it is intuitive

that the data points near ⌊nτ⌋ should be given higher weights compared to those farther
from this point when estimating β(τ). Therefore, the local linear estimator (LLE) of θ(τ)
minimizes the following weighted sum of squares:

θ̂(τ) = argmin
θ(τ)

n∑
t=1

(
yt − zt(τ)⊤θ(τ)

)2
K

(
τt − τ

h

)
, ∀τ ∈ (0, 1), (3)

where K(·) is a kernel function and h ↓ 0 is a bandwidth. Let Z(τ) =
(
z1(τ), . . . , zn(τ)

)⊤,
y = (y1, . . . , yn)⊤, and Kh(τ) = diag

[
K
(τ1−τ

h

)
, . . . , K

(
τn−τ

h

)]
. A closed-form expression of

the estimator is then available as follows:

θ̂(τ) =
(

β̂(τ)
hβ̂(1)(τ)

)
=
(
Z(τ)Kh(τ)Z(τ)⊤

)−1
Z(τ)Kh(τ)y. (4)

Journal of Statistical Software 5

Implementing (4) requires selecting the kernel function K(·) and the bandwidth parameter
h > 0. It is well known that nonparametric methods are typically less sensitive to the choice
of K(·) and more influenced by the selection of h. A large value of h will produce an overly
smooth estimated curve, while a small value will lead to a wiggly estimate. The comprehen-
sive simulation study by Friedrich and Lin (2024) highlights that bandwidth selection has
a substantial impact on statistical inference and introduces the data-driven leave-(2l + 1)-
out local modified-cross-validation (LMCV-l) method, where l is a nonnegative integer. The
LMCV method combines the modified cross-validation proposed by Chu and Marron (1991)
with the local cross-validation by Vieu (1991) and has consistently performed well across
various simulation scenarios, see Lin et al. (2024). We provide two alternative bandwidth
selection methods: the Akaike information criterion (AIC, Cai 2007) and the generalized
cross-validation (GCV, Craven and Wahba 1978) (see Friedrich and Lin 2024, Section 4.1
for details). The local linear estimation, along with a variety of commonly used kernel func-
tions and bandwidth selection methods, is implemented in the ‘LocalLinear’ class of the
PyTimeVar package.

2.3. Bootstrap-assisted inference

To quantify estimation uncertainty in these models, both pointwise confidence intervals and
simultaneous bands are useful in empirical studies. Pointwise intervals evaluate whether βj(τ),
j = 0, . . . , d, significantly deviates from zero at a specific time point τ . Simultaneous bands
assess whether the coefficient curve differs from zero over a given compact interval G, where
G ⊂ [0, 1]. This helps to infer the overall movement of the curve.

Asymptotic approximations of β̂(·) under general conditions – potentially allowing for nonlin-
ear dependence structures and nonstationarity – are established in Zhou and Wu (2010) and
Lin et al. (2024). Therefore, asymptotic methods for constructing confidence intervals and
bands are possible. However, as discussed in Friedrich and Lin (2024), asymptotic methods
often suffer from slow convergence and depend on nuisance parameters, such as asymptotic
bias and long-run variance, which are difficult to estimate in practice and require careful
selection of tuning parameters. As a result, multiple residual-based bootstrap methods have
been developed to address these limitations. When used carefully, residual-based bootstrap
methods can automatically replicate asymptotic distributions.

In the PyTimeVar package, the function confidence_bands() in the ‘LocalLinear’ class
implements five fixed-design residual-based bootstrap methods: local blockwise wild boot-
strap (LBWB), wild bootstrap (WB), sieve bootstrap (SB), sieve wild bootstrap (SWB),
and autoregressive wild bootstrap (AWB). Additionally, it includes a multiplier bootstrap
(MB) method that necessitates the estimation of nuisance parameters. Unlike residual-based
methods, the MB method does not involve resampling from the regression residuals. Since
the regressors are not resampled, making it a fixed-design approach, these bootstrap meth-
ods generally accommodate quite flexible dynamics of regressors. However, the error process
must satisfy certain requirements for each bootstrap scheme to be theoretically valid. With
the exception of WB and SB, all methods account for serial dependence and heteroskedas-

6 Time-Varying Models in Python

Table 1: Comparison of the bootstrap methods for different error processes

LBWB (default) WB SB SWB AWB MB

Serial correlation ✔ ✔ ✔ ✔ ✔

Heteroskedasticity ✔ ✔ ✔ ✔ ✔

ticity in error processes (see Table 1 for a summary). Among these methods, the LBWB
accommodates nonstationary regressors and errors with a wide range of nonlinear depen-
dence structures (Lin et al. 2024). It has been shown to perform consistently well across
various practical scenarios and is therefore set as the default method in the package.

Local blockwise wild bootstrap

The local blockwise wild bootstrap (LBWB), recently proposed by Lin et al. (2024), ac-
commodates the dynamics of regressors and error processes that are only locally stationary,
encompassing a wide range of nonstationary processes with nonlinear dependence. It is based
on the moving block bootstrap method proposed by Kunsch (1989) and captures the under-
lying dependence structure of {ut, t ∈ Z} by resampling overlapping blocks of oversmoothed
regression residuals local to each specific time point. These residuals are obtained using an
oversmoothed bandwidth h̃ > h; see Line 2 in Algorithm 1, Section 3. This step is crucial for
nonparametric models as it helps to capture asymptotic bias, as demonstrated by Friedrich
et al. (2020b) and Friedrich and Lin (2024). The choice of h̃ generally has minimal impact on
the performance of the bootstrap methods, and thus PyTimeVar sets it following established
practices, as recommended by Friedrich and Lin (2024), namely h̃ = Ch5/9 for some constant
C > 0. The user can specify the value of C, otherwise C = 2 is set. As demonstrated in
Lin et al. (2024), the LBWB provides accurate empirical coverage and performs more ro-
bustly than other common bootstrap methods across various simulation settings. The block
length ℓ is automatically determined by PyTimeVar based on the sample size and bandwidth,
following the rule used in Lin et al. (2024).

Wild bootstrap

The wild bootstrap (WB) is widely used in empirical studies similar to Model (1) due to its
simplicity (see, e.g., Uddin, Mishra, and Smyth 2020; Awaworyi Churchill, Inekwe, Ivanovski,
and Smyth 2020; Ren and Lucey 2023) and is known for its robustness against various forms
of heteroskedasticity (Davidson and Flachaire 2008). It directly multiplies each of the over-
smoothed regression residuals, as done in the LBWB, with a “wild” component that is an
independent and identically distributed (i.i.d.) random variable with mean zero and vari-
ance one. Since these wild components are independent, serial correlation in error processes
is disrupted in the bootstrapped world. Thus, the WB does not address serial correlation
in errors. When there is strong evidence that errors are not serially correlated, the WB is
recommended, as it generally produces shorter confidence intervals and bands compared to
methods like the LBWB. Following standard practice, we use i.i.d. standard normal variables

Journal of Statistical Software 7

to generate the wild components.

Sieve bootstrap

The sieve bootstrap (SB), as studied in Bühlmann (1998) and Friedrich and Lin (2024), is
primarily used to address serial correlation in errors. The SB method involves fitting the over-
smoothed residuals from the time-varying model with an AR(p) model and then resampling
the recentered residuals from the estimated AR(p) model. The fundamental idea is that any
purely deterministic and strictly stationary process with a zero mean can be approximated
by an AR(∞) process, regardless of its linear dependence features (Kreiss, Paparoditis, and
Politis 2011). While the SB method captures serial correlation, its applicability is limited to
strictly stationary error processes. The SB method may be limited for more general classes
of locally stationary processes because these processes are better approximated by AR pro-
cesses with slowly increasing order and time-varying coefficients (Ding and Zhou 2023), rather
than those with time-constant coefficients. In line with Bühlmann (1998, Section 5.1.1) and
Friedrich and Lin (2024, Section 4.2), PyTimeVar uses the AIC as the default criterion to
select the lag length p, but other common information criteria (BIC and HQIC) are available
and can be specified by the user.

Sieve wild bootstrap

The sieve wild bootstrap (SWB) combines the wild bootstrap (WB) and sieve bootstrap (SB)
methods, accommodating both serially correlated and heteroskedastic errors. This approach
has been adopted for various applications, such as unit root testing (see, e.g., Cavaliere and
Taylor 2009; Smeekes and Taylor 2012; Huang, Leng, Liu, and Peng 2020) and bias correction
in dynamic panels (Chudik, Pesaran, and Smith 2023). In the SWB, each oversmoothed
residual obtained from the AR(p) model is further multiplied by a “wild” component similar
to the WB. Again, the wild components are generated using i.i.d. standard normal variables.
As expected, the additional randomness results in the SWB yielding higher empirical coverage
than the SB, albeit with a slightly larger empirical length, as shown in the simulation study
by Lin et al. (2024).

Autoregressive wild bootstrap

The autoregressive wild bootstrap (AWB) was originally proposed by Smeekes and Urbain
(2014) for multivariate unit root tests, with further discussion in Smeekes and Wilms (2023).
Recently, Friedrich et al. (2020a) and Friedrich et al. (2020b) have applied the AWB to trend
analysis of atmospheric ethane abundance. Further advancement in the AWB for nonpara-
metric large panels is covered by Lin, van der Sluis, and Friedrich (2023). The AWB generates
wild components using an AR(1) process and then multiplies these wild components directly
with the oversmoothed regression residuals. This approach captures the serial correlation
and heteroskedasticity of the error dynamics, mimicking the long-run variance of the limiting
distribution of β̂(τ), where τ ∈ (0, 1). The AR(1) coefficient, denoted as γ ∈ (0, 1), serves as
a crucial tuning parameter in the AWB, analogous to the block length ℓ in the LBWB. As

8 Time-Varying Models in Python

discussed by Smeekes and Urbain (2014, p. 8) and Lin et al. (2023, Remark 1), the tuning
parameter γ functions similarly to a kernel in estimating long-run variances and can be re-
lated to the block length ℓ in the LBWB. We adopt the conventional formula to express γ as
a function of ℓ, as recommended by Smeekes and Urbain (2014) and Friedrich et al. (2020b).

Multiplier bootstrap based on long-run covariance matrix estimation

As discussed in Lin et al. (2024), the aforementioned bootstrap methods are residual-based,
relying on careful resampling designs to accurately capture the dynamics of error processes.
The nuisance parameters are automatically accounted for by the bootstrap without requiring
additional estimation. In contrast, the multiplier bootstrap (MB) proposed by Zhou and Wu
(2010) necessitates correcting asymptotic bias using a jackknife estimator, followed by obtain-
ing consistent estimates of asymptotic long-run covariance matrices to correctly mimic the
asymptotic distribution. This approach is similar to the simulation-based method proposed
in Lin and Reuvers (2024). Similar ideas have also been considered in various settings, see,
for instance, Wu and Zhou (2017), Li and Zhao (2019), Karmakar, Richter, and Wu (2022),
and Gao, Peng, Wu, and Yan (2024). Note that the MB relies on a powerful Gaussian ap-
proximation result, accommodating a wide range of nonlinear, nonstationary processes with
serial correlation and heteroskedasticity. However, the empirical coverage accuracy of the MB
heavily depends on an accurate estimation of the long-run covariance matrices, which reflect
the dependence structure. As reported by Friedrich and Lin (2024) and Lin et al. (2024),
the MB can exhibit severe undercoverage when τ ∈ (0, 1) is near the boundaries or when n

is small, due to the inherent challenges in estimating long-run covariance matrices in these
scenarios. Despite these challenges, the theoretical robustness of this approach makes it a
valuable option in PyTimeVar for practitioners seeking benchmark analysis.

Constructing bootstrap-based confidence intervals and bands

As mentioned, both pointwise confidence intervals and simultaneous confidence bands are
crucial for making empirical conclusions. The MB method produces simultaneous bands that
are therefore also valid pointwise. For the residual-based bootstrap methods, (1 − α)-level
pointwise confidence intervals can be easily constructed as shown in Algorithm 3 (Section
3), while obtaining simultaneous bands requires further consideration. Here, we follow the
three-step procedure initially proposed by Bühlmann (1998) and commonly employed (see,
e.g., Friedrich et al. 2020b; Friedrich and Lin 2024; Lin et al. 2023, 2024). The function
confidence_bands() returns both intervals and bands and displays these automatically in a
figure if plots=True.

2.4. Alternative estimation methods

For convenient comparison, we include several additional methods relevant to Model (1):
the boosted Hodrick-Prescott (bHP) filter, power-law model, state-space model, and score-
driven model. As mentioned in the Introduction, these methods may be available in various
programming languages, and interested readers with more advanced analytical needs are

Journal of Statistical Software 9

Table 2: Comparison of the different estimation methods

LLE bHP power-law state-space score-driven

Trend analysis ✔ ✔ ✔ ✔ ✔

Time-varying relationship ✔ ✔ ✔

referred to the corresponding references listed there. Here, we focus on basic constructions
to facilitate comparison and to unify the evaluation of different popular approaches. Note
that the bHP filter and power-law model are designed solely for extracting trending patterns,
meaning it applies only when d = 0 in Eq. (1). In contrast, the state-space and score-driven
models support both trend analysis and regression with time-varying coefficients, similar to
the local linear estimation discussed in Section 2.2. An overview of these methods is provided
in Table 2.

Boosted HP filter for trend analysis

For d = 0, meaning xt = 1, the model simplifies to yt = β0,t + ut, where β0,t represents the
long-run trend and ut captures short-run fluctuations, often interpreted as cyclical compo-
nents in macroeconomic analysis. To estimate the long-run trend, an alternative nonpara-
metric approach is the Hodrick-Prescott (HP) filter, which is widely used in macroeconomics
for analyzing business cycles. The HP estimate of β0,t is obtained by solving the following
minimization problem:

β̂HP
0,t = argmin

β0,t

{
n∑

t=1
(yt − β0,t)2 + λ

n∑
t=2

(
∆2β0,t

)2}
, λ ≥ 0, (5)

where ∆2β0,t = ∆β0,t − ∆β0,t−1 = β0,t − 2β0,t−1 + β0,t−2, and ∆β0,t = β0,t − β0,t−1 The sec-
ond term in the equation penalizes the smoothness of the estimated trend. The parameter λ

controls this smoothness: as λ → ∞ the trend becomes linear, while as λ → 0, the trend con-
tains short-run fluctuations. Therefore, choosing an appropriate λ is crucial. While various
optimization criteria are available for tuning parameters in other nonparametric methods,
in macroeconomic literature, the tuning parameter is typically selected through empirical
experimentation alone. Common practice sets, for instance, λ = 1, 600 for quarterly data,
irrespective of sample size. This choice may leave substantial trend dynamics in the residuals
ûHP

t = yt − β̂HP
0,t . To overcome this issue, we recommend the method of boosted HP filter

proposed by Phillips and Shi (2021), Biswas et al. (2024), and Mei et al. (2024), which can be
called using the ‘BoostedHP’ class in the PyTimeVar package. The bHP filter combines the
HP filter with L2-boosting. The boosting process involves iteratively refining the predictor
(or learner) to remove leftover trend elements. Initially, we fit a simple learner to the data,
compute the residuals, and then iteratively update the learner using these residuals until a
stopping criterion is met. The articles mentioned above show that the resulting estimator
successfully recovers various underlying trend dynamics as the number of iterations increases
with the sample size. Two types of stopping criteria are considered in PyTimeVar. The first

10 Time-Varying Models in Python

involves an ADF unit root test to determine whether additional iterations are needed to ade-
quately extract the trend component from the residuals. The second type employs information
criteria to balance the tradeoff between the sample fit and the number of iterations.

Power-law trend model

The bHP filter discussed above is highly flexible for estimating trends. However, empirical
analyses, such as trend analysis in climatic studies, often require structural interpretations of
the trending behavior, such as the growth rate of greenhouse gases or temperature (Mudelsee
2019). In such cases, a parametric approach can be useful. For this reason, we incorporate a
recently developed model introduced by Robinson (2012) and Lin and Reuvers (2024), referred
to as the power-law trend model, for trend analysis in the PyTimeVar package. The basic
idea is as follows: if the trend component β0,t is sufficiently smooth, it can be approximated
using polynomial basis functions, where the polynomial powers are nonnegative integers. To
increase flexibility, however, one could allow for noninteger powers, treat them as unknown,
and let the data determine their values. Specifically, for t = 1, . . . , n, the power-law model
imposes a parametric structure on β0,t as

β0,t =
p∑

i=1
τi tγi , p ∈ Z+, (6)

where τ := (τ1, τ2 . . . , τp)⊤ and γ := (γ1, γ2, . . . , γp)⊤ are vectors of unknown parameters to be
estimated. Note that γi for i = 1, . . . , p are not required to be integers. As mentioned, allowing
for unknown trend powers provides more flexibility compared to conventional polynomial basis
functions with integer powers. For identification, we assume that γ ∈ Γ ⊂ Rp, where

Γ =
{

(γ1, γ2, . . . , γp)⊤ : −1/2 < γL ≤ γ1; γj − γj−1 ≥ δ, j = 2, . . . , p; γp ≤ γU < ∞
}

,

for some [γL, γU] ⊂ (−1/2, ∞) and δ > 0. Following Robinson (2012) and Lin and Reuvers
(2024), we estimate (γ, τ) though nonlinear least squares (NLS):

(
γ̂, τ̂

)
= argmin

(θ,τ)∈Θ×Rp

1
2

n∑
t=1

(
yt −

p∑
i=1

τi tγi

)2

. (7)

The function PowerLaw() implements the NLS estimation described above. In practice, the
number of power-law trends, p, must be specified. Currently, no theoretical guidance exists
for selecting this parameter. Users are advised to visually inspect the data’s trending behavior
and select the smallest p that sufficiently describes the data. The default is set to p = 2 in
the package.

State-space model

State-space representations offer an alternative approach for extracting trend patterns and
time-varying relationships (Durbin and Koopman 2012). The primary tools in this framework
are the Kalman filter and smoother. Notably, there are some state-space specifications in

Journal of Statistical Software 11

which the Kalman filter can reproduce the HP filter (see, e.g., Harvey and Trimbur 2008, and
references therein). The state equation of the general univariate linear Gaussian state-space
model can be expressed as:

βt+1 = T βt + Rηt, ηt ∼ N (0, Q), (8)

where βt is an unobserved vector, known as the state vector within the context of the state-
space model and defined as in (1). The matrices T and R are assumed to be specified by
the user, with the default setting being identity matrices. The observation equation remains
identical to (1). Additionally, the error terms ut and ηt are assumed to be Gaussian, serially
uncorrelated, and independent of each other at all time points. The variances of ut and ηt,
namely, σ2

u and Q, respectively, can either be specified by the user or estimated through
maximum likelihood estimation if not provided. The Kalman filter and smoother recursions
presented in Algorithm 5 and 6 form the core methodological framework. These recursions
facilitate the update of the system’s state estimates as new observations are incorporated,
thereby refining the knowledge of the system. We refer to Durbin and Koopman (2012) for
more details. The ‘Kalman’ class implements both the Kalman filter and smoother in the
linear Gaussian state-space representation.

Score-driven model

Another popular approach to modeling time variations is score-driven models, often referred
to as generalized autoregressive score (GAS) models, independently proposed by Creal et al.
(2013) and Harvey (2013). The main difference between state-space and score-driven models
is that in score-driven models, {βt} is perfectly predictable one step ahead (see Eq. (9) below)
given past information. In contrast, in state-space models, {βt} cannot be predicted given past
information, as ηt in Eq. (8) is independent of previous observations. For comprehensive sum-
maries, see Harvey (2022) and Artemova, Blasques, van Brummelen, and Koopman (2022a,b).
In a score-driven framework, parameters can be estimated using standard maximum likeli-
hood (ML) techniques, regardless of whether ut in Eq. (1) is Gaussian (see Blasques, van
Brummelen, Koopman, and Lucas 2022 for theoretical analysis). However, for non-Gaussian
ut, the standard Kalman filter recursions fail. In such cases, other estimation techniques like
simulated ML based on importance sampling or particle filtering can be employed, though
these methods are more challenging and computationally intensive. An additional advantage
of score-driven models over state-space models is their robustness to model mis-specifications.
Specifically, even if the true dynamics of {βt} follow a state-space form and the density of ut

is mis-specified, the path of {βt} can still be consistently estimated. An extensive comparison
between these two approaches can be found in Koopman, Lucas, and Scharth (2016), with
theoretical justification provided by Beutner, Lin, and Lucas (2023).
The fit() function in our ‘GAS’ class allows users to choose between N -GAS, i.e., Gaussian
GAS, and t-GAS models, depending on whether the density of ut is specified as N (0, σ2

u) or
t(0, σ2

u, ν), where σu > 0 is the scale parameter and ν > 0 is the degree of freedom. The t-GAS
model has the advantage of being robust to outliers and performing more stably, making it
a popular choice (see, e.g., Harvey and Luati 2014; Gasperoni, Luati, Paci, and D’Innocenzo

12 Time-Varying Models in Python

2023; D’Innocenzo et al. 2023; Zou, Lin, and Lucas 2024). As ν → ∞, the construction of
t-GAS reduces to N -GAS.
Specifically, the score-driven approach assumes

βt+1 = ω + Bβt + Ast, st = St∇t, ∇t =
∂ log p

(
yt | xt, βt, γ

)
∂βt

, (9)

where ω, B, A are static parameters to be estimated and are collected in the vector γ >, St =
S(βt, Dt, γ) is a scaling matrix, and Dt represents the data available up to time t, as defined in
Section 2.1. Following common practice, let B = diag(B0, . . . , Bd) and A = diag(A0, . . . , Ad)
be diagonal matrices, and collect all static parameters in γ =

(
δ⊤, ω⊤, B0, . . . , Bd, A1, . . . , Ad

)⊤,
where δ = σu for N -GAS and δ = (ν, σu)⊤ for t-GAS. Let Γ be a convex subset of Rdim(γ).
The vector of static parameters γ can be estimated through ML:

γ̂ = argmax
γ∈Γ

L(γ) = argmax
γ∈Γ

1
n

n∑
t=1

log p
(
yt | xt, βt, γ

)
. (10)

3. An Introduction to the PyTimeVar package

The proposed package, PyTimeVar, includes five classes that cater to different approaches as
introduced in the previous section. In Section 3.1, we introduce the ‘LocalLinear’ class, which
implements local linear estimation and bootstrap-assisted inference. Section 3.2 presents the
‘BoostedHP’ class, designed for the boosted HP filter method to extract deterministic trending
patterns. Section 3.3 provides an overview of the ‘PowerLaw’ class, which implements the
power-law method for parametric trend analysis. Section 3.4 covers the ‘Kalman’ class, which
is built around Kalman filtering and smoothing based on state-space representations. In
Section 3.5, we introduce the ‘GAS’ class, which implements the score-driven approach. An
overview of the package’s functionalities is provided in Tables 3 and 4. Additional detailed
algorithms for implementing the methods are provided in the appendix A.
We illustrate the package’s functionalities with a running example. For this, we use the
’temperature’ dataset, which contains average yearly temperature changes across different
world regions and can be accessed directly from the package. More details on the available
datasets from our package will introduced in Section 3.6. Here, we utilize the global average
data with the following code:

>>> from PyTimeVar.datasets import temperature
>>> import numpy as np
>>> data = temperature.load(regions=['World'],
... start_date='1961', end_date='2023')
>>> vY = data.values
>>> mX = np.ones_like(vY)
>>> # set seed
>>> np.random.seed(123)

Journal of Statistical Software 13

3.1. Local linear kernel estimation and bootstrap-assisted inference

We begin by introducing the functionalities for local linear estimation in the package, followed
by an overview of bootstrap-assisted inference.

Implementation of local linear kernel estimation

The PyTimeVar provides the ‘LocalLinear’ class to estimate time-varying trends and coef-
ficients. The usage instructions are as follows:

>>> from PyTimeVar import LocalLinear
>>> model = LocalLinear(vY=vY, mX=mX)
>>> betaHatLLR = model.fit()

No bandwidth or selection method is specified.

==
Optimal bandwidth selected by individual method:
- AIC method: 0.4286
- GCV method: 0.4286
- LMCV-0 method: 0.0600
- LMCV-2 method: 0.1150
- LMCV-4 method: 0.0600
- LMCV-6 method: 0.0600
==
Optimal bandwidth used is the avg. of all methods: 0.1920
==
Note: (1) For constructing confidence intervals/bands using the
residual-based bootstrap method, the avg. bandwidth of all
methods 0.1920 is used; (2) For constructing confidence intervals/bands
using the MB method, the GCV bandwidth 0.4286 is used.

Key parameters include the response variable, stacked in the vector vY, and the regressor
matrix mX (or a vector of ones for trend analysis). Several parameters are optional to the
‘LocalLinear’ class. First, the bandwidth parameter h can be set by the user via the h
parameter; if not specified, an optimal bandwidth will be selected by averaging across all
implemented bandwidth selection methods as suggested in Friedrich and Lin (2024). The user
can specify the bandwidth selection method using the bw_selection parameter. Available
options include LMCV-l (specified as lmcv_l, e.g., bw_selection= ’lmcv_2’ for bandwidth
selected by LMCV-2), as well as GCV (bw_selection= ’gcv’) and AIC (bw_selection=
’aic’). To average across all methods (denoted as AVG hereafter), namely LMCV-l for
l = 0, 2, 4, 6, GCV, and AIC, users can specify bw_selection=’all’. Note that for residual-
based bootstrap methods, Friedrich and Lin (2024) and Lin et al. (2024) recommend using
either the default or LMCV-6 methods. For the non-residual-based multiplier bootstrap

14 Time-Varying Models in Python

proposed by Zhou and Wu (2010), GCV is the recommended approach. Therefore, we suggest
users follow these guidelines. We allow the users to specify the lower and upper bound for
the bandwidth selection using parameters LB_bw and UB_bw, respectively. The default lower
bound is set to LB_bw = 0.06. The default upper bound is set to UB_bw=0.2 for LMCV, and
to UB_bw=0.7 for the AIC and GCV. Second, different kernel function options can be chosen,
including Epanechnikov (default), Gaussian, quartic, triangular, tricube, and uniform.
The following example employs the local linear estimation with the LMCV-8 bandwidth
selection method with the Gaussian kernel.

>>> model2LLR = LocalLinear(vY=vY, mX=mX, kernel='Gaussian',
... bw_selection='lmcv_8')
>>> beta_hat_model2 = model2LLR.fit()

- LMCV-8 method: 0.0750
Optimal bandwidth used is lmcv_8: 0.0750
==
Note: For constructing confidence intervals/bands using the MB method,
a GCV bandwidth is recommended.

We refer interested readers to Table 4 for an overview of all available function options. More-
over, estimation results can be obtained using model.fit(). The model.summary() function
provides a table summarizing key results such as the selected data-driven bandwidth. In the
running example, the summary is as follows.

>>> model.summary()

Local Linear Regression Results
==
Kernel: epanechnikov
Bandwidth selection method: AVG
Bandwidth used for estimation: 0.1920
Number of observations: 63
Number of predictors: 1
==
Beta coefficients (shape: (1, 63)):
Use the 'plot_betas()' method to plot the beta coefficients.
==
Use the 'confidence_bands()' method to obtain the confidence bands and plots.
You can choose out of 6 types of Bootstrap to construct confidence bands:
SB, WB, SWB, MB, LBWB, AWB
==
Use the 'plot_residuals()' method to plot the residuals.

Journal of Statistical Software 15

Figure 1: Estimated trend using local linear estimation (blue line) compared with the data
(black line) for the temperature dataset. The x-axis represents the time ratio ranging from
[0.4, 0.8].

We offer visualizations of the estimates through the functions: (1) plot_betas(tau), which
plots the estimated coefficients βt over time; (2) plot_predicted(tau), which compares the
true data with the fitted values; and (3) plot_residuals(tau), which displays the residuals.
The parameter tau allows users to “zoom in” on the graphs by specifying the ratio of the
sample time period for visualization. It should be provided as a list containing two elements:
the first element indicating the starting point and the second element defining the endpoint.
If not specified, the figures show the results over the full interval (0, 1). The example below
shows the estimated trend compared to the actual data over the time interval [0.4, 0.8] for
the temperature example using the plot_predicted() function, with the outputs displayed
in Figure 1.

>>> model.plot_predicted(tau=[0.4, 0.8])

Implementation of bootstrap-assisted inference

For inference, we offer six bootstrap methods as described in Section 2. These methods are
divided into two categories: (1) for residual-based bootstrap, with detailed steps outlined
in Algorithm 1, which also uses Algorithm 3 from Appendix A.1 to construct pointwise
intervals and simultaneous bands; (2) and for the non-residual-based multiplier bootstrap,
the procedure is described in Algorithm 2.
Several comments on Algorithm 1 are as follows. First, Line 2 uses a larger bandwidth h̃

for the bootstrap methods to capture asymptotic bias (Friedrich and Lin 2024). We follow
the recommendation of Friedrich and Lin (2024), setting h̃ = Ch5/9, where h is the same
bandwidth used in the local linear estimation described earlier. The constant C can be user-
defined; otherwise, we set C = 2. Second, for the block length in the LBWB mentioned
in Line 5, we use ℓ = ⌊4.5(nh)1/4⌋, as suggested by the theory. Third, for selecting the lag

16 Time-Varying Models in Python

Algorithm 1: Multiple residual-based bootstrap algorithms
1 for t ∈ {1, . . . , n} do
2 Estimate Model (1) using a larger bandwidth h̃ than h, obtain the estimates β̃(τt),

and compute the residuals ût = yt − β̃(τt)⊤xt;
3 end
4 if LBWB then
5 Create a collection U =

{
Ui, i = 1, . . . , n − ℓ + 1

}
, where each Ui =

(
ûi, . . . , ûi+ℓ−1

)
is

a block of residuals with a block length ℓ < n;
6 for b ∈ {1, . . . , B} do
7 for i ∈ {1, . . . , ⌈n/ℓ⌉} do
8 Let Ui =

{
Uiℓ−2ℓ+1, . . . , Uiℓ+1

}
∩ U . Select randomly one block Uπ(i) from Ui,

where π(i) ∈ {iℓ − 2ℓ + 1, iℓ − 2ℓ + 2, . . . , iℓ + 1} ∩ {1, . . . , n − ℓ + 1}; Obtain
U∗

i = ξ∗
i Uπ(i) with ξ∗

i
i.i.d.∼ N (0, 1);

9 end
10 Generate bootstrap innovations u∗

1, . . . , u∗
n by laying out U∗

1 , . . . , U∗
N ;

11 Compute y∗
t = β̃(τt)⊤xt + u∗

t , with
{
(y∗

t , xt)
}
, and obtain the bootstrap estimator

β̂∗(·) using h;
12 end
13 else if SB then
14 Fit an AR(p) model to {ût} with p selected by some criterion. Compute

ε̂t = ût −
∑p

i=1 ϕ̂iût−i;
15 for b ∈ {1, . . . , B} do
16 Recenter ε̂t to get ε̃t, then resample {ε̃t} with replacement to form {ε∗

t };
17 Obtain u∗

t = ∑p
i=1 ϕ̂iu

∗
t−i + ε∗

t ;
18 Then follow Line 11;
19 end
20 else if SWB then
21 Follow the same as from Lines 14 - 19, whereas Line 16 is replaced by: Simulate

ε∗
t = ν∗

t ε̂t with ν∗
t

i.i.d.∼ N (0, 1);
22 else if WB then
23 for b ∈ {1, . . . , B} do
24 Simulate u∗

t = ν∗
t ût with ν∗

t
i.i.d.∼ N (0, 1);

25 Then follow Line 11;
26 end
27 else if AWB then
28 for b ∈ {1, . . . , B} do
29 Simulate ξ∗

t with ξ∗
t = γξ∗

t−1 + ν∗
t with ν∗

1 , . . . , ν∗
n

i.i.d.∼ N (0, 1 − γ2) and
ξ∗

1 ∼ N (0, 1), where γ is needed to be chosen. Obtain u∗
t = ξ∗

t ût;
30 Then follow Line 11;
31 end
32 end
33 for j ∈ {0, . . . , d} do
34 Compute q̂j,α(τ) = inf

{
u ∈ R : P∗(β̂∗

j (τ) − β̃j(τ) ≤ u
)

≥ α
}
;

35 end
36 Implement Algorithm 3 to construct pointwise intervals and simultaneous bands.

Journal of Statistical Software 17

Algorithm 2: Multiplier bootstrap algorithm by Zhou and Wu (2010)
1 Determine an appropriate bandwidth h for estimating β̂(·);
2 Let hJ = 2h and construct the jackknife estimator β̂J(·) = 2β̂hJ/

√
2(·) − β̂hJ(·);

3 for b ∈ {1, . . . , B} do
4 Generate Gaussian vectors νt

i.i.d.∼ N (0, Id+1) and compute sup0≤τ≤1 |µhJ(τ)|, where
µhJ(τ) = (nhJ)−1∑n

t=1 νtK
∗
(

τt−τ
hJ

)
, and K∗(x) = 2

√
2K
(√

2 x
)

− K(x);
5 end
6 Calculate the estimated (1 − α)-th quantile of sup0≤τ≤1 |µhJ(τ)|, denoted as q̂1−α;
7 for t ∈ {1, . . . , n} do
8 Obtain M̂(τt) = Sn,0(τ∗

t), where Sn,0(τ) = (nh)−1∑n
t=1 xtx

⊤
t K

(
τt−τ

h

)
and

τ∗
t = max {h, min (τt, 1 − h)};

9 Let γn = λn + (m + 1)/n, where (m, λn) =
(
⌊n2/7⌋, n−1/7);

10 if τt ∈ [γn, 1 − γn] ⊂ (0, 1) then
11 Compute Λ̂(τt) = ∑n

i=1 ω(τt, τi)∆i, where ω(τt, τi) = K
(

τi−τt
λn

)
/
∑n

i=1 K
(

τi−τt
λn

)
,

∆i = QiQ
⊤
i /(2m + 1), Qi = ∑m

j=−m xi+j ûi+j , and ûi = yi − β̂(τi)⊤xi;
12 else if τt ∈ [0, γn] then
13 Λ̂(τt) = Λ̂(γn);
14 else
15 Λ̂(τt) = Λ̂(1 − γn);
16 end
17 Construct the (d + 1)-dimensional column vector σ̂(τt) by extracting the diagonal

elements of the square matrix Σ̂(τt) =
(
M̂−1(τt)Λ̂(τt)M̂−1(τt)

)1/2
;

18 end
19 Construct (1 − α)-th level simultaneous bands of β(·) as β̂J(·) ± σ̂(·)q̂1−α.

length p in Line 14, the options include AIC (default), BIC, and HQIC. Fourth, in Line 29, the
tuning parameter γ for the AWB can be specified by the user. Otherwise, γ is set according
to the recommendations of Smeekes and Urbain (2014) and Smeekes and Wilms (2023), using
γ = 0.011/ℓ, where ℓ is the same block length used for the LBWB. Lastly, Line 34 computes
the 100α-th percentile of the B centered bootstrap statistics β̂∗

j (τ)− β̃j(τ), where P∗ denoting
the probability measure conditional on the original samples. The user is allowed to specify B

and α using parameters B and alpha respectively, with defaults B = 1, 299 and α = 0.05.
We now discuss the multiplier bootstrap procedure as outlined in Algorithm 2. Following the
recommendation by Zhou and Wu (2010), we use the generalized cross-validation (GCV) to
select a data-driven bandwidth in Line 1. In Line 2, the jackknife bias-corrected estimator
β̂J(·) is used to eliminate second-order bias. This is a crucial distinction from the residual-
based bootstrap in Algorithm 1, where asymptotic bias is automatically accounted for. The
terms β̂hJ/

√
2(·) and β̂hJ(·) in Line 2 refer to local linear estimators, as detailed in Section

2.2, with bandwidths hJ/
√

2 and hJ, respectively. According to Zhou and Wu (2010), the

18 Time-Varying Models in Python

Figure 2: Estimated coefficient curve (black line) using local linear estimation, along with
pointwise confidence intervals (gray area) and simultaneous confidence bands (red dotted line)
for the temperature dataset. The x-axis represents the time ratio t/n, ranging from [0, 1].

performance of the MB is relatively insensitive to the tuning parameters mentioned in Line
9, so we adhere to their rule-of-thumb provided in Section 4.4 of their work. Lines 7 through
18 construct an estimator for the long-run covariance matrix, as discussed on p. 8.
Bootstrap-assisted confidence pointwise intervals and simultaneous bands can be obtained
using the function model.confidence_bands(). In Figure 2, we display the resulting LBWB
confidence intervals and bands under the default settings:

>>> S_LB, S_UB, P_LB, P_UB = model.confidence_bands(bootstrap_type='LBWB',
... Gsubs=None, plots=True)

All parameters in confidence_bands() are optional. Recall from Section 2.3 that both
pointwise confidence intervals and simultaneous confidence bands can be constructed. When
constructing confidence bands, the parameter Gsubs allows one to specify the subsets of [0, 1]
over which simultaneity is applied. For instance, to choose the interval [0.4, 0.6], one can
use confidence_bands(Gsubs=[(int(0.4*n), int(0.6*n))]). If Gsubs is not specified,
the resulting simultaneous confidence bands will provide simultaneous coverage over the full
sample [0, 1]. Note that the longer the subsets to be covered simultaneously, the wider the
simultaneous bands typically become. Therefore, we recommend that users specify the in-
tervals, as this can lead to more informative results and clearer interpretations. The six
bootstrap methods available for bootstrap_type include LBWB (default), SB, SWB, WB,
AWB and MB. If the boolean parameter plots=True, the model.confidence_bands() func-
tion generates plots of the pointwise confidence intervals and simultaneous confidence bands
alongside the estimated coefficients. The output variables S_LB and S_UB store the lower and
upper simultaneous bands, respectively, while P_LB and P_UB contain the lower and upper
pointwise intervals, respectively, for further analysis.

Journal of Statistical Software 19

3.2. Implementation of the boosted HP filter

In the ‘BoostedHP’ class, the function fit() is used to implement the boosted HP filter for
trend extraction. The details of the bHP method are provided in Algorithm 4 (Appendix
A.2). The function can be applied as follows:

>>> from PyTimeVar import BoostedHP
>>> bHPmodel = BoostedHP(vY=vY, dLambda=1600, iMaxIter=100)
>>> bHPtrend, bHPresiduals = bHPmodel.fit(
... boost=True, stop='adf', dAlpha=0.05, verbose=False)

The minimum required input is bHPmodel.fit(vY), where vY is the vector of the dependent
variable. The smoothing parameter dLambda can be manually specified; otherwise, the default
value λ = 1600 will be used as in Phillips and Shi (2021). Additionally, the maximum number
of iterations for the boosting algorithm is set to 100 by default. The function bHPmodel.fit()
includes the parameter boost, a Boolean that indicates whether to boost the original HP filter.
If set to False, the standard HP filter is used. It returns the estimated trends for each boosting
iteration along with the corresponding residuals. Additionally, the stopping criteria for the
algorithm, as discussed in Section 2.4.1, can be specified using the stop parameter. The
available options are ’adf’ (default), ’bic’, ’aic’, and ’hq’, with the ADF unit root test
being the default method. The parameter dAlpha sets the significance level for the stopping
criterion, which is applicable only when using the ADF unit root test. The parameter verbose
is a Boolean that controls whether a progress bar is displayed during execution. Additional
details about the model can be accessed through bHPmodel.summary(), which includes the
selected parameters, the information criteria values at each iteration, and the estimated trend
from the bHP filter.

>>> bHPmodel.summary()

Boosted HP Filter Results
==
Stopping Criterion: adf
Max Iterations: 100
Iterations Run: 1
==
Lambda: 1600
Alpha: 0.05
Information Criteria Values: [3.54412124e-12]
==

The function bHPmodel.plot(tau) plots the original series and the trend component. The
parameter tau (default: (0, 1)) follows the same approach as demonstrated in Section 3.1.1.
An example output is given below in Figure 3.

>>> bHPmodel.plot()

20 Time-Varying Models in Python

Figure 3: Estimated trend using the boosted HP (blue line) compared with the data (black
line) for the temperature dataset. The x-axis represents the time ratio t/n, ranging from
[0, 1].

3.3. Implementation of the power-law model

The ‘PowerLaw’ class implements the power-law model and includes three functions: fit()
for calculating the power-law trend, summary() for displaying the fitted model’s equation, and
plot() for visualizing the fitted power-law trend. The minimum input for the ‘PowerLaw’
instant is the data vector vY. The parameter n_powers can be specified to set the number of
powers used to determine the trend, with the default value set to n_powers=2 if not provided.
The fit() function returns the estimated trend and parameter vector. An illustration of the
‘PowerLaw’ class with a single power for the temperature dataset is shown in Figure 4.

>>> from PyTimeVar import PowerLaw
>>> PwrLaw = PowerLaw(vY=vY, n_powers=1)
>>> pwrTrend, pwrGamma = PwrLaw.fit()
>>> PwrLaw.summary()
>>> PwrLaw.plot()

Power-Law Trend Results:
==============================
yhat= 0.001 t^1.848

As shown in Eq. (7), determining the optimal parameters for the power-law model is a
nonlinear optimization problem. In the package, we address this by first concentrating out
θ to obtain an optimizer τ (θ). Then, we compute the optimal values of θ by minimizing
the sum of squared residuals. We start the optimization process by fixing θ as a vector
(0, 1, . . . , n_powers − 1). The user is allowed to set the initial values using the parameter
vgamma0. Since we make use of the scipy.optimize.minimize() function, we allow the user
to specify the same optimization options as in scipy.optimize.minimize(). These options

Journal of Statistical Software 21

Figure 4: Estimated trend using the power-law model (blue line) compared with the data
(black line) for the temperature dataset. The x-axis represents the time ratio t/n, ranging
from [0, 1].

include maxiter to specify the maximum number of iterations and the boolean parameter
disp to indicate whether convergence messages are required. Furthermore, we provide users
the option to specify bounds for parameter optimization. For example, the code below shows
how to use these options when the user sets n_powers=2, specifies the first power as zero,
searches for the second power law within the interval [0.1, 5], limits the iterations to a maxi-
mum of 1,000, and disables the display of convergence messages.

>>> vgamma0 = np.arange(0, 0.1, 0.05)
>>> options = {'maxiter': 1E3, 'disp': False}
>>> bounds = ((0,0),(0.1, 5),)
>>> auxPwr = PowerLaw(vY, n_powers=2, vgamma0=vgamma0,
... bounds=bounds, options=options)

3.4. Implementation of the state-space model

The ‘Kalman’ class implements the Kalman filter and smoother based on Algorithms 5 and
6. Algorithm 5 assumes initially that β1 ∼ N (b1, P1), where b1 and variance P1 are known.
To initialize the model users can specify the scalar σu, vector b1, and matrices T , R, Q,
and P1, as well as an optional matrix of regressors mX. If a regressor matrix is not provided,
the regressors will be set to a scalar xt = 1. If Q and/or σu are not specified, they will be
estimated using maximum likelihood estimation. By default, T is set as an identity matrix,
R and P1 are set to the scalar 1, and b1 is initialized as a zero vector. Users can choose
to compute filtered state estimates, one-step-ahead predictions, or smoothed estimates using
the function Kalman.fit(option), where option can be ’filter’ (default), ’predictor’,
’smoother’, or ’all’. The case of Kalman.fit(’all’) automatically provides the filter,
predictor, and smoother together. An example with the temperature dataset is provided
below.

22 Time-Varying Models in Python

Figure 5: Estimated trend using the Kalman smoother (blue dashed), predictor (orange solid),
and filter (green dash-dot), compared with the data (black solid) for the temperature dataset.
The x-axis represents the time ratio t/n, ranging from [0, 1].

>>> from PyTimeVar import Kalman
>>> kalmanmodel = Kalman(vY=vY)
>>> [kl_filter, kl_predictor, kl_smoother] = kalmanmodel.fit('all')

We provide two types of outputs. First, users can retrieve the specification of the linear
Gaussian state-space model using the summary() function. Second, the plot() function
enables users to visually display the estimated filter, predictions, and/or smoother alongside
the data points. When all methods are applied (i.e., when Kalman.fit(’all’) is called),
users can choose whether to plot the fitted estimates – filter, predictor, and smoother – in
a single figure or separately, using the boolean parameter individual. By default, we set
individual=False and thus the estimates are plotted in a single figure. The following code
provides an example using the temperature dataset. The resulting plot is shown in Figure 5.

>>> kalmanmodel.plot(individual=False)

3.5. Implementation of the score-driven model

Users can choose between N -GAS and t-GAS models. The implementation of GAS estimation
is detailed in Algorithm 7 in Appendix A.4. As indicated in Eq. (9), the spectral norm
of B = diag(B0, . . . , Bd) should be strictly less than 1 to ensure a strictly stationary and
ergodic solution. Consequently, the bound constraints for Bj are suggested to be set within
(−1, 1) for j = 0, . . . , d. In our package, the bounds for the static parameter vector γ

are set automatically, unless specified by the user in the optional parameter bounds. The
package allows users to specify bound constraints for all parameters. More technical details
are available in Appendix A.4.
The ‘GAS’ class implements the score-driven models described above. To obtain the estimated
trend for temperature data and the estimated parameters for the N -GAS model, for instance,

Journal of Statistical Software 23

Figure 6: Estimated trend using N -GAS models (blue line) compared with the data (black
line) for the temperature dataset. The x-axis represents the time ratio t/n, ranging from
[0, 1].

we use the GAS.fit() function as follows:

>>> from PyTimeVar import GAS
>>> N_gasmodel = GAS(vY=vY, mX=mX, method='gaussian', niter=10)
>>> N_GAStrend, N_GASparams = N_gasmodel.fit()

Similar to LocalLinear(), the vector vY denotes the response variable, while mX represents the
regressor matrix (or a vector of ones for trend analysis). The argument vgamma0 is optional.
If specified, it provides the initial estimate for the parameter vector γ0. The structure and
dimensionality of γ0 depend on the chosen method. For the N -GAS model, γ0 should be set
as γ0 =

(
σu,0, ω⊤

0 , B0, . . . , Bd, A0, . . . , Ad

)⊤. For the t-GAS model, γ0 should include an initial
value for the degree of freedom ν, i.e., γ0 =

(
ν0, σu,0, ω⊤

0 , B0, . . . , Bd, A0, . . . , Ad

)⊤. If vgamma0
is not provided, the function fit() will compute an initial vector for γ0 automatically. The
optional parameter options specifies the optimization settings, following the same usage as
in the ‘PowerLaw’ class. To avoid the potential risk of convergence to local optima, we use
the basin-hopping optimization algorithm proposed by Wales and Doye (1997), implemented
in Python by scipy. Users can achieve this by setting niter to be a positive integer.
Since the t-GAS model is known for its robustness to outliers, it is used as the default option
if no specific method is provided. The estimated matrix of time-varying coefficients is saved
in GAS.betas, while the estimated values of γ are stored in GAS.params. Moreover, each
estimated time-varying coefficient will be plotted with the call of the function GAS.plot() as
follows, and the resulting plot is demonstrated in Figure 6.

>>> N_gasmodel.plot()

3.6. Empirical datasets

24 Time-Varying Models in Python

In addition to the methods described above, our package offers a diverse set of datasets for
practical exercises in trend analysis and time-varying regressions. These datasets provide rich
temporal insights across various domains:

(i) Monthly U.S. inflation rate data from 01/02/1947 to 01/08/2024 (n = 931), calculated
as the log-difference of seasonally adjusted Consumer Price Index, sourced from https:
//fred.stlouisfed.org/series/CPIAUCSL.

(ii) Daily USD index data from 20/01/1986 to 06/09/2024 (n = 9, 879), sourced from https:
//www.wsj.com/market-data/quotes/index/DXY/historical-prices.

(iii) Yearly global average temperature data from 1961 to 2023 (n = 63), along with ad-
ditional temperature data from specific regions, sourced from https://www.fao.org/
faostat/en/#home.

(iv) Yearly CO2 emission data for 19 early industrialized countries from 1900 to 2017 (n =
118), sourced from https://data.ess-dive.lbl.gov/portals/CDIAC.

(v) Financial herding data from China (sourced from Ren and Lucey 2023).

Further information on the available datasets can be found in the online documentation at
https://pytimevar.readthedocs.io/en/latest/PyTimeVar.datasets.html.

4. Illustrative examples

In this section, we illustrate the functionalities of our package using the financial herding data
from China as investigated in Ren and Lucey (2023) and Lin et al. (2024). Specifically, we
adopt the following model to study time-varying herding effects across different time periods
(Ren and Lucey 2023):

CSADm,t = γ0(t/n) + γ1(t/n)Rm,t

+ γ2(t/n)|Rm,t| + γ3(t/n)R2
m,t + γ4(t/n)CSADm,t−1 + εt. (11)

Here, CSADm,t = N−1∑N
i=1 |Ri,t − Rm,t| represents the cross-sectional absolute deviation of

returns (CSAD), where Ri,t is the return of stock i at time t, and Rm,t denotes the average
market return across N stocks at time t.

4.1. Trending patterns

We begin by examining the trend patterns in the measure CSADm,t across different ap-
proaches. To visualize the estimated trends using local linear estimation, we utilize the
LocalLinear() and fit() functions from the ‘LocalLinear’ class. For trend extraction, mX
is set as a column vector of ones, and the bandwidth is selected using the LMCV-6 with
the Epanechnikov kernel, resulting in h = 0.14. Given the selected bandwidth, the code for
performing the local linear estimation is shown below:

https://fred.stlouisfed.org/series/CPIAUCSL
https://fred.stlouisfed.org/series/CPIAUCSL
https://www.wsj.com/market-data/quotes/index/DXY/historical-prices
https://www.wsj.com/market-data/quotes/index/DXY/historical-prices
https://www.fao.org/faostat/en/#home
https://www.fao.org/faostat/en/#home
https://data.ess-dive.lbl.gov/portals/CDIAC
https://pytimevar.readthedocs.io/en/latest/PyTimeVar.datasets.html

Journal of Statistical Software 25

Table 3: Overview of the functions provided in PyTimeVar

Class Function Description

‘LocalLinear’

fit() fit the model by local linear estimation and return estimated coefficients betahat
summary() print a summary of local linear regression results, including bandwidth, number of

observations, and beta coefficients
plot_betas() plot estimated coefficients curve over a normalized x-axis specified by the parameter

tau. If tau is not provided, the curve is plotted over a normalized x-axis ranging
from 0 to 1. The tau parameter follows the same usage across all plot() functions

plot_predicted() plot true data against fitted values over a time interval specified by the parameter
tau (default: (0, 1))

plot_residuals() plot residuals over a time interval specified by the parameter tau (default: (0, 1))
confidence_bands() construct and plot bootstrap confidence intervals/bands for βt. The following pa-

rameters can be specified:
• bootstrap_type: bootstrap method (string), including ’LBWB’ (default),

’SB’, ’SWB’, ’MB’, ’AWB’, and ’WB’.
• alpha: significance level (float, optional) for constructing the confidence in-

tervals/bands (default: 0.05)
• gamma: tuning parameter only used in ’AWB’(float, optional)
• ic: information criterion for a data-driven selection of lag length in ’SB’ and

’SWB’ (string, optional, default: ’AIC’)
• Gsubs: a list of tuples indicating subsample ranges for constructing confidence

intervals/bands (optional, default: full sample)
• Chtilde: tuning parameter for the oversmoothing parameter h̃ used in all

residual-based bootstrap (float, default: 2)
• B: number of bootstrap iterations (integer). The default for the residual-

bootstrap methods is 1,299, and 3000 for the MB.
• plots: whether or not to plot results (boolean flag, default: False).

‘BoostedHP’

fit() fit by bHP filter and return trend estimates and residuals. The following parameters
can be specified:

• boost: whether or not to use the boosting (boolean flag, default: True)
• stop: stopping criterion, including ’adf’ (default), ’bic’, ’aic’, and ’hq’
• dAlpha: significance level for the stopping criterion ’adf’ (float, default: 0.05)
• verbose: whether or not to display progress (boolean flag, default: False)

summary() print a summary of bHP filter results, including stopping criterion, iterations run,
λ, and α

plot() plot true data against estimated trend over a time interval specified by the parameter
tau (default: (0, 1))

‘PowerLaw’

fit() fit by power-law model and return trend estimates and parameter estimates
summary() print prediction equation
plot() plot true data against estimated trend over a time interval specified by the parameter

tau (default: (0, 1))

‘Kalman’

fit() compute the Kalman filtered states, one-step ahead predicted states or
smoothed states, according to the specified option, including ’filter’ (default),
’predictor’, ’smoother’, and ’all’

summary() print a summary of the state-space model specifications, including the values of
matrices H, Q, R and T

plot() plot estimates against true data. The following parameters can be specified:
• tau: the time interval for plots (default: (0, 1))
• individual: whether to plot the estimated results from the Kalman filter,

predictor, and smoother in a single plot when Kalman.fit(’all’) is called
(boolean flag, default: False)

‘GAS’
fit() fit score-driven model, according to the specified method (’gaussian’ or ’student’)
plot() plot estimated coefficients against true data over a time interval specified by the

parameter tau (default: (0, 1))

26 Time-Varying Models in Python

Table 4: Overview of the class constructors in the ‘LocalLinear’, ‘BoostedHP’, ‘PowerLaw’,
‘Kalman’, and ‘GAS’ classes

Class/Constructor Arguments

‘LocalLinear’/LocalLinear()

• vY: dependent variable vector
• mX: regressor matrix
• h: bandwidth for regression (float, optional)
• kernel: kernel (string) used in estimation; possible choices include

epanechnikov(default), ’gaussian’, ’uniform’ ’triangular,
’quartic’, and ’tricube’

• bw_selection: bandwidth selection method (string, optional);
possible choices include ’all’ (default), ’aic’, ’gcv’, ’lmcv_l’

• LB_bw: lower bound for data-driven bandwidth (float, optional,
default: 0.06)

• UB_bw: upper bound for data-driven bandwidth (float, optional,
default: 0.2 for lmcv_l; 0.7 for aic and gcv)

‘BoostedHP’/BoostedHP()

• vY: dependent variable vector
• dLambda: smoothing parameter (float, default: 1600)
• iMaxIter: maximum number of iterations for boosting (integer,

default: 100)

‘PowerLaw’/PowerLaw()

• vY: dependent variable vector
• n_powers: the number of powers (integer, default: 2)
• vgamma0: initial value vector (default: [0, 1, ...,

n_powers-1])
• options: stopping criteria (dict, default: {’maxiter’: 5E5})

‘Kalman’/Kalman()

• vY: dependent variable vector
• mX: regressor matrix (optional)
• R: transition correlation matrix (optional)
• T: transition matrix (optional)
• Q: transition covariance matrix (optional)
• sigma_u: observation noise variance (optional)
• b_1: initial state mean vector (optional).
• P_1: initial state covariance matrix (optional).

‘GAS/’GAS()

• vY: dependent variable vector
• mX: regressor matrix
• method: method (string) to estimate GAS model; possible choice

include ’student’ and ’gaussian’ (default: ’student’)
• vgamma0: initial parameter vector (optional)
• bounds: parameter space (list, optional)
• options: stopping criteria for optimization (dict, optional, de-

fault: {’maxfun’: 5E3})
• niter: the number of basin-hopping iterations for the optimization

function scipy.optimize.basinhopping() (integer, default: 10)

Journal of Statistical Software 27

>>> from PyTimeVar import LocalLinear
>>> from PyTimeVar.datasets import herding
>>> herd_data = herding.load(start_date='2015-01-05',
... end_date='2022-04-29')
>>> vY = herd_data[['CSAD_AVG']].values
>>> mX = np.ones_like(vY)
>>> LLr_model = LocalLinear(vY=vY, mX=mX, h=0.14)
>>> LLr_trend = LLr_model.fit()

Additionally, the functions BoostedHP(), Kalman(), GAS(), along with their respective fit()
functions from the ‘BoostedHP’, ‘Kalman’, and ‘GAS’classes, are used to estimate the trend
with the Boosted HP filter (with the ADF stopping criterion), Kalman smoother, and t-GAS
model. The code for each of these methods is provided below.

>>> from PyTimeVar import BoostedHP
>>> bHPmodel = BoostedHP(vY=vY, dLambda=1600, iMaxIter=100)
>>> bHPtrend, bHPresiduals = bHPmodel.fit(boost=True, stop='bic',
... dAlpha=0.05, verbose=False)

>>> from PyTimeVar import Kalman
>>> kalmanmodel = Kalman(vY=vY, mX=mX)
>>> Kalmansmooth_trend = kalmanmodel.fit('smoother')

>>> from PyTimeVar import GAS
>>> gasmodel = GAS(vY=vY, mX=mX, method='student')
>>> tGAStrend, tGASparams = gasmodel.fit()

We compare the trend estimates from the local linear estimation with those from the three
alternative methods mentioned above. Figure 7 displays the data CSADm,t along with the es-
timated trends from these four approaches. All methods effectively capture the trend pattern,
with the local linear estimator providing the smoothest results as expected.

4.2. Time-varying herding effects

Next, we focus on illustrating our main tool, the local linear estimation combined with
bootstrap-assisted inference. To demonstrate its usage, we replicate the empirical study
of Lin et al. (2024), originally studied by Ren and Lucey (2023), applying the nonparametric
approach to Eq. (11). Our primary focus is on the coefficient curve of γ3 from Eq. (11), which
serves as an indicator of local herding behavior. In addition to the full sample simultaneous
confidence bands, we examine two subsets of the full sample to explain the usage when Gsubs
are required: G1, the period preceding the first break date, and G6, the period following the
fifth break date. Similar to identifying trending patterns, the ‘LocalLinear’ class provides
the functions fit() and confidence_bands() to estimate time-varying herding effects and
construct confidence bands using local linear estimation and bootstrap methods. The LBWB

28 Time-Varying Models in Python

Figure 7: Estimated trends using local linear estimation (red solid), boosted HP filter (orange
dashed), Kalman smoother (blue pentagonal), and t-GAS models (green square) compared
with the data (black solid) for the herding dataset. The x-axis represents the time ratio t/n,
ranging from [0, 1].

method is selected for bootstrap due to its superior performance as found in Lin et al. (2024).
We perform 1, 299 bootstrap replications. Additionally, the bandwidth is set to 0.0975, and
the Epanechnikov kernel is used, following the recommended choices from Lin et al. (2024).
The following code implements the procedures described above.

>>> from PyTimeVar.datasets import herding
>>> PyTimeVar import LocalLinear
>>> vY, mX = herding.load(data_replication=True)
>>> breakindex_1 = 284
>>> breakindex_5 = 1459
>>> LLr_model = LocalLinear(vY=vY, mX=mX, h=0.0975)
>>> LLr_betahat = LLr_model.fit()
>>> residuals = LLr_model.plot_residuals()
>>> S_LB_full, S_UB_full, P_LB_full, P_UB_full = LLr_model.confidence_bands(
... plots=True)
>>> S_LB_G1, S_UB_G1, P_LB_G1, P_UB_G1 = LLr_model.confidence_bands(
... plots=True,
... Gsubs=[(0, breakindex_1)])
>>> S_LB_G6, S_UB_G6, P_LB_G6, P_UB_G6 = LLr_model.confidence_bands(
... plots=True,
... Gsubs=[(breakindex_5, len(vY))])

We set the argument plots=True in the confidence_bands function to display the LBWB

Journal of Statistical Software 29

(a) Residuals from Eq. (11) (b) Intervals and full-sample bands

(c) Intervals and bands based on subsample G1 (d) Intervals and bands based on subsample G6

Figure 8: The estimated γ3(·) using local linear estimation, along with the 95%-level confi-
dence intervals and bands, obtained using the LBWB bootstrap.

confidence band plots and specify the required subsets in Gsubs. The lower and upper bounds
of the bootstrap-assisted simultaneous bands are saved in S_LB and S_UB, respectively, while
the pointwise intervals are stored in P_LB and P_UB, respectively. The replication results are
presented in Figure 8, which shows the simultaneous confidence bands for γ̂3(·) for the full
sample, G1, and G6. These are detailed in Figure 8b, Figure 8c, and Figure 8d, respectively.
Additionally, the residuals from Eq. (11) are displayed in Figure 8a. In Appendix A.5,
we apply additional bootstrap methods as in Figure 8b. The observed patterns show no
qualitative differences in this example.

5. Conclusion

30 Time-Varying Models in Python

Time-varying regression models have been widely employed to study trends and evolving re-
lationships in empirical research. We developed a Python package, PyTimeVar, which offers
recently introduced nonparametric estimation and bootstrap-assisted inference methods. The
package includes six advanced bootstrap techniques for constructing pointwise confidence in-
tervals and simultaneous bands. Currently, no other software package provides equivalent
functionality. In addition, PyTimeVar encompasses other popular parametric and nonpara-
metric methods for modeling trends and time-varying relationships, including the boosted
Hodrick-Prescott filter, power-law model, state-space model, and score-driven model. These
methods have been specifically tailored for time-varying regression models in the package, en-
abling users to easily compare different approaches without the need to adapt general-purpose
packages or switch to another programming language for additional methods.
Future work will focus on expanding the package to include additional models for trend
analysis and time-varying relationships. The package is built for extensibility, allowing for
easy integration of new features. Furthermore, extending the package to handle missing data
would be a valuable enhancement.

Acknowledgments
We thank Siem Jan Koopman for his valuable suggestions during the preparation of this
package. We also thank Henry de Vries, Ignace De Vos, Simeon Klumperbeek, and Chenhui
Wang for testing the package.

References

Anand B, Paul S, Nair AR (2023). “Time-varying effects of oil price shocks on financial stress:
Evidence from India.” Energy Economics, p. 106703.

Ang A, Kristensen D (2012). “Testing conditional factor models.” Journal of Financial
Economics, 106(1), 132–156.

Ardia D, Boudt K, Catania L (2019). “Generalized autoregressive score models in R: The
GAS package.” Journal of Statistical Software, 88, 1–28.

Artemova M, Blasques F, van Brummelen J, Koopman SJ (2022a). “Score-driven models:
Methodology and theory.” In Oxford Research Encyclopedia of Economics and Finance.
Oxford University Press.

Artemova M, Blasques F, van Brummelen J, Koopman SJ (2022b). “Score-driven models:
Methods and applications.” In Oxford Research Encyclopedia of Economics and Finance.
Oxford University Press.

Awaworyi Churchill S, Inekwe J, Ivanovski K, Smyth R (2020). “The Environmental Kuznets
Curve across Australian states and territories.” Energy Economics, 90, 104869. doi:
https://doi.org/10.1016/j.eneco.2020.104869.

https://doi.org/https://doi.org/10.1016/j.eneco.2020.104869
https://doi.org/https://doi.org/10.1016/j.eneco.2020.104869

Journal of Statistical Software 31

Beutner E, Lin Y, Lucas A (2023). “Consistency, distributional convergence, and optimality
of score-driven filters.” Tinbergen Institute Discussion Paper, 2023-051/III.

Biswas E, Sabzikar F, Phillips PCB (2024). “Boosting the HP filter for trending time series
with long-range dependence.” Econometric Reviews, 0(0), 1–39. doi:10.1080/07474938.
2024.2380704.

Blasques F, van Brummelen J, Koopman SJ, Lucas A (2022). “Maximum likelihood estimation
for score-driven models.” Journal of Econometrics, 227(2), 325–346. doi:https://doi.
org/10.1016/j.jeconom.2021.06.003.

Bühlmann P (1998). “Sieve bootstrap for smoothing in nonstationary time series.” Annals of
Statistics, 26(1), 48 – 83.

Cai Z (2007). “Trending time-varying coefficient time series models with serially correlated
errors.” Journal of Econometrics, 136(1), 163–188.

Cai Z, Li Q, Park JY (2009). “Functional-coefficient models for nonstationary time series
data.” Journal of Econometrics, 148(2), 101–113.

Casas I, Fernandez-Casal R (2019). “tvReg: Time-varying coefficient linear regression for
single and multi-equations in R.” Available at SSRN 3363526.

Cavaliere G, Taylor AMR (2009). “Heteroskedastic time series with a unit root.” Econometric
Theory, 25(5), 1228–1276.

Chu CK, Marron JS (1991). “Comparison of two bandwidth selectors with dependent errors.”
Annals of Statistics, 19(4), 1906–1918.

Chudik A, Pesaran MH, Smith RP (2023). “Pooled Bewley estimator of long run relationships
in dynamic heterogenous panels.” Econometrics and Statistics.

Craven P, Wahba G (1978). “Smoothing noisy data with spline functions.” Numerische
Mathematik, 31(4), 377–403. ISSN 0945-3245. doi:10.1007/BF01404567. URL https:
//doi.org/10.1007/BF01404567.

Creal D, Koopman SJ, Lucas A (2013). “Generalized autoregressive score models with ap-
plications.” Journal of Applied Econometrics, 28(5), 777–795. doi:https://doi.org/10.
1002/jae.1279.

Davidson R, Flachaire E (2008). “The wild bootstrap, tamed at last.” Journal of Economet-
rics, 146(1), 162–169.

Ding X, Zhou Z (2023). “AutoRegressive approximations to nonstationary time series with
inference and applications.” Annals of Statistics, 51(3), 1207–1231.

D’Innocenzo E, Luati A, Mazzocchi M (2023). “A robust score-driven filter for multivariate
time series.” Econometric Reviews, 42(5), 441–470.

https://doi.org/10.1080/07474938.2024.2380704
https://doi.org/10.1080/07474938.2024.2380704
https://doi.org/https://doi.org/10.1016/j.jeconom.2021.06.003
https://doi.org/https://doi.org/10.1016/j.jeconom.2021.06.003
https://doi.org/10.1007/BF01404567
https://doi.org/10.1007/BF01404567
https://doi.org/10.1007/BF01404567
https://doi.org/https://doi.org/10.1002/jae.1279
https://doi.org/https://doi.org/10.1002/jae.1279

32 Time-Varying Models in Python

Duckworth D, Balatsko M (2024). pykalman: An implementation of the Kalman Filter,
Kalman Smoother, and EM algorithm in Python. Python package version 0.9.7, URL
https://pypi.org/project/pykalman/.

Durbin J, Koopman SJ (2012). Time series analysis by state space methods. 2nd edition.
Oxford University Press (Oxford). doi:10.1093/acprof:oso/9780199641178.001.0001.

Dziak JJ, Coffman DL, Li R, Litson K, Chakraborti Y (2023). tvem: Time-Varying Effect
Models. doi:10.32614/CRAN.package.tvem. R package version 1.4.1, URL https://
CRAN.R-project.org/package=tvem.

Friedrich M, Beutner E, Reuvers H, Smeekes S, Urbain JP, Bader W, Franco B, Lejeune B,
Mahieu E (2020a). “A statistical analysis of time trends in atmospheric ethane.” Climatic
Change, 162, 105–125.

Friedrich M, Lin Y (2024). “Sieve bootstrap inference for linear time-varying coefficient
models.” Journal of Econometrics, 239(1), 105345. doi:https://doi.org/10.1016/j.
jeconom.2022.09.004.

Friedrich M, Smeekes S, Urbain JP (2020b). “Autoregressive wild bootstrap inference for
nonparametric trends.” Journal of Econometrics, 214(1), 81–109.

Gao J, Peng B, Wu WB, Yan Y (2024). “Time-varying multivariate causal processes.” Journal
of Econometrics, 240(1), 105671.

Gasperoni F, Luati A, Paci L, D’Innocenzo E (2023). “Score-driven modeling of spatio-
temporal data.” Journal of the American Statistical Association, 118(542), 1066–1077.

Guo H, Wu C, Yu Y (2017). “Time-varying beta and the value premium.” Journal of Financial
and Quantitative Analysis, 52(4), 1551–1576.

Harvey A, Trimbur T (2008). “Trend estimation and the Hodrick-Prescott filter.” Journal of
the Japan Statistical Society, 38(1), 41–49.

Harvey AC (2013). Dynamic models for volatility and heavy tails: with applications to finan-
cial and economic time series, volume 52. Cambridge University Press.

Harvey AC (2022). “Score-driven time series models.” Annual Review of Statistics and Its
Application, 9(1), 321–342.

Harvey AC, Luati A (2014). “Filtering with heavy tails.” Journal of the American Statistical
Association, 109(507), 1112–1122.

Huang H, Leng X, Liu X, Peng L (2020). “Unified inference for an AR process regardless
of finite or infinite variance GARCH errors.” Journal of Financial Econometrics, 18(2),
425–470.

https://pypi.org/project/pykalman/
https://doi.org/10.1093/acprof:oso/9780199641178.001.0001
https://doi.org/10.32614/CRAN.package.tvem
https://CRAN.R-project.org/package=tvem
https://CRAN.R-project.org/package=tvem
https://doi.org/https://doi.org/10.1016/j.jeconom.2022.09.004
https://doi.org/https://doi.org/10.1016/j.jeconom.2022.09.004

Journal of Statistical Software 33

Hubbard A (2024). kalmanfilter: Kalman filter. doi:10.32614/CRAN.package.
kalmanfilter. R package version 2.1.1, URL https://CRAN.R-project.org/package=
kalmanfilter.

Kapetanios G, Millard S, Petrova K, Price S (2020). “Time-varying cointegration with an
application to the UK Great Ratios.” Economics Letters, 193, 109213. ISSN 0165-1765.
doi:https://doi.org/10.1016/j.econlet.2020.109213.

Karmakar S, Richter S, Wu WB (2022). “Simultaneous inference for time-varying models.”
Journal of Econometrics, 227(2), 408–428.

Koopman SJ, Lucas A, Scharth M (2016). “Predicting time-varying parameters with
parameter-driven and observation-driven models.” Review of Economics and Statistics,
98(1), 97–110.

Kreiss JP, Paparoditis E, Politis DN (2011). “On the range of validity of the autoregressive
sieve bootstrap.” Annals of Statistics, 39(4), 2103 – 2130. doi:10.1214/11-AOS900.

Kunsch HR (1989). “The jackknife and the bootstrap for general stationary observations.”
Annals of Statistics, pp. 1217–1241.

Li D, Phillips PC, Gao J (2020). “Kernel-based inference in time-varying coefficient cointe-
grating regression.” Journal of Econometrics, 215(2), 607–632.

Li Q, Racine JS (2007). Nonparametric Econometrics: Theory and Practice. Princeton
University Press.

Li X, Zhao Z (2019). “A time varying approach to the stock return–inflation puzzle.” Journal
of the Royal Statistical Society Series C: Applied Statistics, 68(5), 1509–1528.

Lin Y, Reuvers H (2024). “Cointegrating polynomial regressions with power law trends.”
Tinbergen Institute Discussion Paper, 2022-092/III.

Lin Y, Song M, van der Sluis B (2024). “Bootstrap inference for linear time-varying coefficient
models in locally stationary time series.” Journal of Computational and Graphical Statistics.
doi:https://doi.org/10.1080/10618600.2024.2403705. Forthcoming.

Lin Y, van der Sluis B, Friedrich M (2023). “Bootstrapping trending time-varying coefficient
panel models with missing observations.” Tinbergen Institute Discussion Paper, 23-079/III.

Mei Z, Phillips PC, Shi Z (2024). “The boosted Hodrick-Prescott filter is more general than
you might think.” Journal of Applied Econometrics. doi:https://doi.org/10.1002/jae.
3086.

Mudelsee M (2019). “Trend analysis of climate time series: A review of methods.” Earth-
science reviews, 190, 310–322.

Ng E, Wang Z, Chen H, Yang S, Smyl S (2020). “Orbit: Probabilistic forecast with exponential
smoothing.” 2004.08492.

https://doi.org/10.32614/CRAN.package.kalmanfilter
https://doi.org/10.32614/CRAN.package.kalmanfilter
https://CRAN.R-project.org/package=kalmanfilter
https://CRAN.R-project.org/package=kalmanfilter
https://doi.org/https://doi.org/10.1016/j.econlet.2020.109213
https://doi.org/10.1214/11-AOS900
https://doi.org/https://doi.org/10.1080/10618600.2024.2403705
https://doi.org/https://doi.org/10.1002/jae.3086
https://doi.org/https://doi.org/10.1002/jae.3086
2004.08492

34 Time-Varying Models in Python

Nishi M (2024). “Estimating time-varying parameters of various smoothness in linear models
via kernel regression.” arXiv preprint arXiv:2406.14046.

Phillips PC, Li D, Gao J (2017). “Estimating smooth structural change in cointegration
models.” Journal of Econometrics, 196(1), 180–195.

Phillips PC, Shi Z (2021). “Boosting: Why you can use the HP filter.” International Economic
Review, 62(2), 521–570.

Ren B, Lucey B (2023). “Herding in the Chinese renewable energy market: Evidence from
a bootstrapping time-varying coefficient autoregressive model.” Energy Economics, 119,
106526.

Robinson PM (2012). “Inference on Power Law Spatial Trends.” Bernoulli, 18, 644–677.

Seabold S, Perktold J (2010). “Statsmodels: Econometric and statistical modeling with
Python.” SciPy, 7(1).

Smeekes S, Taylor AMR (2012). “Bootstrap union tests for unit roots in the pres-
ence of nonstationary volatility.” Econometric Theory, 28(2), 422–456. doi:10.1017/
S0266466611000387.

Smeekes S, Urbain JP (2014). “A multivariate invariance principle for modified wild boot-
strap methods with an application to unit root testing.” doi:https://doi.org/10.26481/
umagsb.2014008. Maastricht University Research Papers, RM/14/008.

Smeekes S, Wilms I (2023). “bootUR: An R package for bootstrap unit root tests.” Journal
of Statistical Software, 106, 1–39.

Uddin MM, Mishra V, Smyth R (2020). “Income inequality and CO2 emissions in the G7,
1870-2014: Evidence from non-parametric modelling.” Energy Economics, 88, 104780. ISSN
0140-9883. doi:https://doi.org/10.1016/j.eneco.2020.104780.

Umlandt D (2023). “Score-driven asset pricing: Predicting time-varying risk premia based
on cross-sectional model performance.” Journal of Econometrics, 237(2), 105470.

Vieu P (1991). “Nonparametric Regression: Optimal Local Bandwidth Choice.” Journal
of the Royal Statistical Society: Series B (Methodological), 53(2), 453–464. doi:https:
//doi.org/10.1111/j.2517-6161.1991.tb01837.x.

Wales DJ, Doye JP (1997). “Global optimization by basin-hopping and the lowest energy
structures of Lennard-Jones clusters containing up to 110 atoms.” Journal of Physical
Chemistry A, 101(28), 5111–5116.

Wu W, Zhou Z (2017). “Nonparametric inference for time-varying coefficient quantile regres-
sion.” Journal of Business & Economic Statistics, 35(1), 98–109.

https://doi.org/10.1017/S0266466611000387
https://doi.org/10.1017/S0266466611000387
https://doi.org/https://doi.org/10.26481/umagsb.2014008
https://doi.org/https://doi.org/10.26481/umagsb.2014008
https://doi.org/https://doi.org/10.1016/j.eneco.2020.104780
https://doi.org/https://doi.org/10.1111/j.2517-6161.1991.tb01837.x
https://doi.org/https://doi.org/10.1111/j.2517-6161.1991.tb01837.x

Journal of Statistical Software 35

Zhou Z, Wu WB (2010). “Simultaneous Inference of Linear Models with Time Varying
Coefficients.” Journal of the Royal Statistical Society. Series B (Statistical Methodology),
72, 513–531.

Zou X, Lin Y, Lucas A (2024). “Closing the gap between state-space and score-driven models:
An application to modeling implied volatility surface dynamics.” Working Paper.

36 Time-Varying Models in Python

A. Additional algorithms

A.1. Pointwise confidence intervals and simultaneous confidence bands

Algorithm 3: (1 − α)-level pointwise intervals and simultaneous bands
1 if Pointwise confidence intervals then
2 for j ∈ {0, . . . , d} do
3 for τ ∈ (0, 1) do
4 compute I∗

j,α(τ) =
[
β̂j(τ) − q̂j,1−α/2(τ), β̂j(τ) − q̂j,α/2(τ)

]
;

5 end
6 end
7 else if Simultaneous confidence bands then
8 for τi ∈ (0, 1) do
9 Obtain Ui(h) = [τi − ah, τi + bh]⋂[0, 1], G = ⋃m

i=1 Ui(h);
10 end
11 for j ∈ {0, . . . , d} do
12 for αp ∈ [1/B, α] do
13 for τ ∈ G do
14 Compute q̂j,1−αp/2(τ) and q̂j,αp/2(τ);
15 end
16 end
17 Compute α̂s = argminαp∈[1/B,α]

∣∣∣P∗(q̂j,αp/2(τ) ≤ β̂∗
j (τ) − β̃j(τ) ≤ q̂j,1−αp/2(τ),

∀τ ∈ G
)

− (1 − α)
∣∣∣;

18 for τ ∈ G do
19 Compute IG∗

j,α̂s
(τ) =

[
β̂j(τ) − q̂j,1−α̂s/2(τ), β̂j(τ) − q̂j,α̂s/2(τ)

]
.

20 end
21 end
22 end

Line 17 in Algorithm 3 states that α̂s is determined based on:

#
{

β̂∗
j (τ) − β̃j(τ) ∈

[
q̂j,α̂s/2(τ), q̂j,1−α̂s/2(τ)

]
, ∀τ ∈ G

}
B

≈ 1 − α,

where #E counts the number of times the event E appears in the bootstrap samples.

A.2. Algorithm for boosted HP filter

Algorithm 4 outlines the steps for implementing the boosted HP filter.

Journal of Statistical Software 37

Algorithm 4: Boosted HP filter
1 Set m = 1 and compute HP filter estimates {β̂

(m)
0,t } from {yt};

2 repeat
3 Compute residuals û

(m)
t = yt − β̂

(m)
0,t , t = 1, . . . , n;

4 Fit HP filter to residuals {û
(m)
t }, resulting in estimates {β̃

(m+1)
0,t };

5 Update β̂
(m+1)
0,t = β̂

(m)
0,t + β̃

(m+1)
0,t and set m = m + 1;

6 until Stopping criterion is met;

A.3. Algorithm for state-space models

Table 5: Dimensions of parameters in state-space models and Kalman filter and smoother

State-space models Kalman filter and smoother

scalar (d + 1) × 1 (d + 1) × (d + 1) scalar (d + 1) × 1 (d + 1) × (d + 1)

yt xt T vt bt Pt

ut βt R ft kt Vt

σu ηt Q rt Nt

bt|t Pt|t
β̂t

For a clear overview, the dimensions of the quantities in the state-space model, as well as
those used in the Kalman filter and smoother, are summarized in Table 5. The algorithms
for implementing the Kalman filter and smoother are provided in Algorithms 5 and 6 below.

Algorithm 5: Kalman filter
1 Initialize b1, P1;
2 for t ∈ {1, . . . , n} do
3 vt = yt − x⊤

t bt;
4 ft = x⊤

t Ptxt + σu;
5 kt = T Ptxtf

−1
t ;

6 bt|t = bt + Ptxtf
−1
t vt;

7 bt+1 = T bt|t;
8 Pt+1 = T PtT

⊤ + RQR⊤ − ktftk
⊤
t ;

9 end
10 return filtered states

bfilt = (b1|1, b2|2, . . . , bn|n) and
predicted states
bpred = (b2, b2, . . . , bn+1).

Algorithm 6: Kalman smoother
1 Set rn = 0, Nn = 0;
2 for t ∈ {n, n − 1, . . . , 1} do
3 Lt = T − ktx

⊤
t ;

4 rt−1 = xtf
−1
t vt + L⊤

t rt;
5 Nt−1 = xtf

−1
t x⊤

t + L⊤
t NtLt;

6 b̂t = bt + Ptrt−1;
7 Vt = Pt − PtNt−1Pt;
8 end
9 return smoothed states

b̂ = (b̂1, b̂2, . . . , b̂T).

A.4. Algorithm for score-driven models

38 Time-Varying Models in Python

Algorithm 7: Score-driven model
1 Set initial values β0 using 10% of the data, define lower bounds γL and upper bounds γU

for γ;
2 if t-GAS then
3 Extend bounds γL and γU to account for t-distribution parameters;
4 end
5 if N -GAS then
6 Maximize L(γ; β0) with respect to γ and obtain the maximizer γ̂ =

(
σ̂u, ω̂⊤, B̂, Â

)⊤,
where L is constructed as in Algorithm 8;

7 Set β̂1 = β0;
8 for t ∈ {1, . . . , n} do
9 Compute the scaled density score ŝt = xt

(
yt − β̂⊤

t xt
)
;

10 Update β̂t+1 = ω̂ + B̂β̂t + Âŝt;
11 end
12 else if t-GAS then
13 Maximize L(γ; β0) with respect to γ and obtain the maximizer

γ̂ =
(
ν̂, σ̂u, ω̂⊤, B̂, Â

)⊤, where L is constructed as in Algorithm 8;
14 Follow Lines 7 - 11 except the scaled density score in Line 9 should be replaced by the

following: ŝt = (1 + ν)−1(3 + ν)(1 + ν−1)
[
1 + ν−1

(
yt − β̂⊤

t xt

σu

)2]−1

xt
(
yt − β̂⊤

t xt
)
.

15 end

We provide further details on implementing score-driven models. Algorithm 7 outlines the
steps for applying both N -GAS and t-GAS models. For N -GAS models, assuming ut

i.i.d.∼
N (0, σ2

u) in Eq. (1), we have ∇t = σ−2
u xt

(
yt−β⊤

t xt
)
, and set St = σ2

u, leading to ŝt = St∇t =
xt
(
yt − β̂⊤

t xt
)

in Line 9 (Algorithm 7). Similarly, for t-GAS, assuming ut
i.i.d.∼ t(0, σ2

u, ν) in

Eq. (1), we have ∇t = (1 + ν−1)
[
1 + ν−1

(
yt−β⊤

t xt

σu

)2]−1
σ−2

u xt
(
yt − β⊤

t xt
)
. By setting

St = (1 + ν)−1(3 + ν)σ2
u, we obtain ŝt in Line 14.

Moreover, Algorithm 8 constructs the log-likelihood function required in Algorithm 7. For
N -GAS, we have log p

(
yt | xt, βt, γ

)
∝ − log σu − 1

2

(
yt−β⊤

t xt

σu

)2
, and for t-GAS, log p

(
yt |

xt, βt, γ
)

= log Γ
(

(ν+1)/2
)

√
πν Γ

(
ν/2
) − log σu − ν+1

2 log
[
1 + ν−1

(
yt−β⊤

t xt

σu

)2]
.

Journal of Statistical Software 39

Algorithm 8: Construct likelihood (lh) function
1 Set βcurrent = β0 and lh = 0;
2 if N -GAS then
3 for t ∈ {1 . . . n} do

4 Update lh = lh +
(

yt − β⊤
currentxt

σu

)2

;

5 Compute st = xt(yt − β⊤
currentxt);

6 Update βcurrent = ω + Bβcurrent + Ast;
7 end
8 lh = − log σu − 0.5 · lh/n;
9 else if t-GAS then

10 for t ∈ {1 . . . n} do

11 Update lh = lh +
(

yt − β⊤
currentxt

σu

)2

;

12 Compute

st = (1 + ν)−1(3 + ν)(1 + ν−1)
[
1 + ν−1

(
yt − β⊤

currentxt

σu

)2]−1

xt(yt − β⊤
currentxt);

13 Update βcurrent = ω + Bβcurrent + Ast;
14 end
15 lh = −0.5(ν + 1) · lh/n + log Γ((ν + 1)/2) − log Γ(ν/2) − 0.5 log(πν) − log σu;
16 end
17 return lh.

(a) SB (b) SWB

Figure 9: 95%-level pointwise intervals (shaded) and simultaneous bands (red dashed lines)
using different bootstrap methods for the herding effects example in Section 4.2

40 Time-Varying Models in Python

A.5. Additional empirical results

(c) WB (d) AWB

Figure 9: Continuation of Figure 9

	Introduction
	The methodological framework
	The set-up
	Local linear kernel estimation
	Bootstrap-assisted inference
	Local blockwise wild bootstrap
	Wild bootstrap
	Sieve bootstrap
	Sieve wild bootstrap
	Autoregressive wild bootstrap
	Multiplier bootstrap based on long-run covariance matrix estimation
	Constructing bootstrap-based confidence intervals and bands

	Alternative estimation methods
	Boosted HP filter for trend analysis
	Power-law trend model
	State-space model
	Score-driven model

	An Introduction to the PyTimeVar package
	Local linear kernel estimation and bootstrap-assisted inference
	Implementation of local linear kernel estimation
	Implementation of bootstrap-assisted inference

	Implementation of the boosted HP filter
	Implementation of the power-law model
	Implementation of the state-space model
	Implementation of the score-driven model
	Empirical datasets

	Illustrative examples
	Trending patterns
	Time-varying herding effects

	Conclusion
	Additional algorithms
	Pointwise confidence intervals and simultaneous confidence bands
	Algorithm for boosted HP filter
	Algorithm for state-space models
	Algorithm for score-driven models
	Additional empirical results

