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Abstract

This paper disentangles the added value of using high-frequency-based (realized) covariance

measures on multivariate volatility forecasting into two pillars: the realized variances and

realized correlations and quantifies the corresponding economic gains using a broad set of

portfolio performance metrics. Using state-of-the-art models based on daily returns and

realized (co)variances, we predict the conditional covariance matrix on a daily, weekly,

biweekly, and monthly frequency, both for dimensions 30 and 50. We evaluate the forecasts

statistically using various loss functions and economically by constructing Global Minimum

Variance (GMV) portfolios. Using a data set of 50 liquid U.S. stocks from 2001 to 2019, we

find that the inclusion of realized variances largely accounts for the improvement in statistical

forecast performance (between 65% and at least 78%). The results on the GMV portfolios

show that realized covariance models exhibit lower ex-post volatility but tend to produce

substantially lower ex-post mean returns compared to models with realized variances and

daily returns. Consequently, Sharpe Ratios increase roughly by 35%, leading to significant

utility gains, equivalent to up to 500 basis points per year. Combined, our results indicate

that there is no economic gain by modeling correlations dynamically, either using daily returns

or realized correlations.

Key words: multivariate volatility, high-frequency data, realized variances, realized

correlations
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1 Introduction

Modeling and forecasting the volatility of financial asset returns is a crucial element

in quantitative portfolio management. Since the development of the GARCH model

(Bollerslev, 1986), a substantial body of literature has emerged on modeling volatility using

daily returns (see Bauwens et al. (2006) for a survey). This body of work has been further

enhanced by novel approaches to estimating covariances more precisely through the use of

high-frequency (HF) data, as demonstrated by the work of Andersen et al. (2003); Barndorff-

Nielsen and Shephard (2004); Barndorff-Nielsen et al. (2011), among others. These measures

of covariances have been used to build the so-called ’realized’ covariance models, such as

the CAW (Conditional Autoregressive Wishart) model of Gourieroux et al. (2009), the

multivariate HEAVY model of Noureldin et al. (2012), the HAR-DRD model of Oh and

Patton (2016) and the multivariate volatility model of Chiriac and Voev (2011).

Typically, the statistical and economic gains of the aforementioned realized covariance

models have been tested using relatively small portfolios -ranging from 9 to 15 assets-, as

in Gorgi et al. (2018), Noureldin et al. (2012) and Archakov et al. (2024). However, their

relative performance in higher-dimension portfolios has received less attention. Notably,

Hautsch et al. (2015) address this gap by using a large portfolio (i.e. more than 50 assets)

to demonstrate the economic potential of incorporating HF-based covariances. The authors

show that Global Minimum Variance Portfolios (GMVPs) constructed with HF-based

covariance forecasts achieve significantly lower volatility than those built using models based

solely on daily returns. Additionally, they find that utility gains from using these HF-based

models are particularly substantial for highly risk-averse investors.

This paper builds on the work of Hautsch et al. (2015) by further exploring the sources

of economic and statistical gains from high-frequency (HF)-based covariance models on

medium-sized portfolios (30 to 50 assets). To quantify the benefits of HF data in multivariate

volatility forecasting, we employ several state-of-the-art models that include 1) only daily

returns, 2) daily returns and realized variances, and 3) full realized covariance matrices.

We then disentangle the contributions of realized variances and realized correlations and

introduce a broader set of economic performance metrics to evaluate the forecasts. This

comprehensive approach allows us to quantify better the specific benefits of incorporating
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HF data into multivariate volatility forecasting models.

Using daily returns and realized (co)variances based on 5-minute data of up to 50 highly

liquid U.S. stocks during the period 2001 - 2019, we estimate three types of multivariate

volatility models to forecast the conditional covariance matrix. Our first group of models

uses solely returns, such as the BEKK model of Engle and Kroner (1995) and the CCC and

(corrected) DCC-GARCH models of Bollerslev (1990) and Engle (2002); Aielli (2013). The

second group consists of models that incorporate both daily returns and realized variances,

specifically, the univariate HEAVY-GAS model of Opschoor et al. (2018), combined with

the CCC and DCC models mentioned above. Lastly, we include three different models

that focus directly on realized covariance matrices: the CAW model of Gourieroux et al.

(2009), the multivariate HEAVY-GAS-tF model by Opschoor et al. (2018) and the HAR-

DRD model of Oh and Patton (2016). Following Hautsch et al. (2015), we construct daily,

weekly, biweekly, and monthly (cumulative) forecasts of the covariance matrix for one set of

30 assets and one set with all 50 assets in our sample. We evaluate our forecasts statistically,

using the Root Mean Standard Error or Frobenius norm (RMSE), the QLIK, and the STEIN

loss functions, and economically by constructing GMVPs.

Our main result consists of two parts. First, we examine the forecasts’ statistical

performance, and we find that most of the improvement in loss functions when incorporating

HF data into the models comes from its use in modeling the variances rather than the

correlations. Around 70% of the decrease in RMSE and 91% of the STEIN function can be

attributed to using realized variances. These percentages are even higher for daily forecasts.

Notably, we observe that the value of the STEIN loss function calculated for this forecast

horizon is the lowest in the case of models that combine realized variances and daily returns.

The second part of our results focuses on economic performance metrics. Our analysis

reveals that while models incorporating the full realized covariance matrix achieve the lowest

ex-post portfolio volatility, this benefit often comes with a significant reduction in ex-post

portfolio returns compared to models using a mixed approach (combining daily returns with

realized variances only). The later set of models produces the highest Sharpe ratios, even

when accounting for various levels of transaction costs. Notably, the Sharpe ratios increase

by an average of 35% relative to the best-performing realized covariance model. These

findings remain consistent across the analyzed time horizons and hold true for portfolios
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with 30 and 50 dimensions.

We also used the utility framework proposed by Fleming et al. (2001, 2003) to examine

the potential utility gains associated with including HF data in volatility forecasting across

different levels of risk aversion. We find that the utility gains derived from using a model

that incorporates only realized variances relative to one that uses the full covariance matrix

(such as the HAR-DRD model) could be substantial, equivalent in monetary terms to an

increase of around 300 up to 500 annual basis points. Finally, we observe that modeling

correlation dynamics does not add significant value to an investor interested in minimizing

risk, regardless of their level of risk aversion. We often observe that it is even more favorable

for an investor to use a model with constant correlations that are regularly updated (for

example, by using the moving annual window) than a model that includes correlation

dynamics.

Our results are robust across three key aspects: First, we consider different portfolio

dimensions, specifically 30 and 50 assets. Second, we confirmed the robustness of our results

by varying the in-sample period length, and third, by changing the re-estimation window

length, with monthly parameter updates yielding results consistent with those obtained

from yearly updates.

Our work is closely related to the work by Halbleib and Voev (2016), who study the

performance of mixed-approach models with a focus on squared errors. Using 30 highly

liquid stocks traded on the NYSE, the authors show that a mixed specification outperforms

models using only daily returns regarding forecast precision (lower squared forecast errors).

Moreover, such specification performs at par with more computationally intensive models

based on HF data. We extend their approach by considering a larger portfolio and by

evaluating not only the forecasts’ statistical performance but also the economic impact of

using mixed frequencies by constructing GMVPs as in Hautsch et al. (2015).

The remainder of this paper is organized as follows. Section 2 discusses briefly the data

used in the paper. Section 3 provides an overview of the models included in our comparison

exercise. Section 4 lists the statistical loss functions and explains how we construct and

evaluate the GMVPs’ outcomes. Section 5 discusses the results of our empirical application.

Section 7 presents our main conclusions.
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2 Data

Our data set consists of daily realized (co)variances and daily open-to-close log returns of

50 randomly chosen highly liquid U.S. equities from various sectors from the S&P 500 index

over the period January 2, 2001, until December 6, 2019. This results in a sample of 4, 696

observations. For each stock, we observe consolidated trades (transaction prices) extracted

from the Trade and Quote (TAQ) database with a time-stamp precision of one second before

2014 and one millisecond after 2014. We first clean the high-frequency data following the

guidelines of Brownlees and Gallo (2006) and Barndorff-Nielsen et al. (2009). We then

construct Realized Covariance matrices using fixed 5-minute intervals in the returns series.

Table 1 provides an overview of 50 Tickers and their GICS sector. As Panel A indicates,

the stocks come from nine different sectors, most of them belonging to the financial industry.

Panel B shows a few abnormal observations in the constructed realized (co)variances. These

values are winsorized at a very high level (99.95 level for AIG, F, and WMB, 99.93 in the

case of MS). Most of these outliers were observed around the peak of the Global Financial

Crisis in 2008.

3 The modeling framework

A departing point for our modeling framework is the following return equation for a K × 1

vector of daily open-to-close log-returns rt = (r1t, . . . , rKt)
⊤, with t = 1, . . . , T

rt = µ+ ϵt = µ+ V
1/2
t zt, zt|Ft−1 ∼ N(0, IK), (1)

where µ, ϵt, and Vt denote a vector with constants, demeaned returns, and the conditional

covariance matrix of the return vector, respectively. Furthermore, zt is a multivariate

Normal distributed k × 1 innovation vector with unit covariance matrix Ik. Since we work

with daily data, we set µ equal to 0.

We present three different types of models for Vt. The first type includes only daily

returns. The second one uses a combination of daily returns and realized variances, and the

third models Vt directly by using realized covariance matrices.

We consider two frequently used models for Vt in equation (1) based on daily returns,

5



Table 1: Tickers, GICS sectors, and Outliers
This table provides an overview of the Tickers and corresponding sector of 50 U.S. stocks from the S&P 500
index. Panel A lists the sector, the Ticker, and the number of companies within each sector. Panel B shows
abnormal values of the daily realized variance of our sample. We list the Ticker, the date, the abnormal,
and the winsorized realized variance using a level of 99.95 (AIG, F, and WMB) and 99.93 (MS).

Panel A: Sectors and Tickers

GICS nr GICS sector # Comp Tickers
1 Capital Goods 6 AA, BA, CAT, HON, F, NOC
2 Financials 14 AXP, JPM, AIG, BAC, C, KEY, MTB

COF,USB,BBT,STI,WFC,GS,MS
3 Energy 4 GE,XOM,MUR,SLB
4 Consumer Services 5 HD, MCD, WMT, TGT, BXP
5 Consumer Non-Durables 3 KO,MO,SYY
6 Health Care 7 PFE, ABT, BAX, JNJ, LLY, THC, MMM
7 Public Utilities 5 AEP, AEE, DUK, SO, WMB
8 Technology 3 IBM,DOV,HPQ
9 Basic industries 2 PG,FLR
10 Transportation 1 LUV

Panel B: Abnormal values
Ticker date value ws value
AIG 20080915 2839 1533

20080916 5396 1533
F 20081008 481 452

20081120 1661 452
WMB 20020723 939 896

20020726 2025 896
MS 20080917 1242 720

20080918 1658 720
20081010 1407 720

namely the (scalar) BEKK-GARCH model of Engle and Kroner (1995) and the (corrected)

DCC-GARCH model of Engle (2002); Aielli (2013). The first model reads

Vt+1 = (1− A−B)Ω+ A (rt − µ)(rt − µ)⊤ +B Vt, (2)

with scalar parameters A and B and a k × k matrix-valued intercept parameter Ω. We

apply covariance targeting to estimate the intercept matrix: Ω̂ =
∑T

t=1 ϵ̂tϵ̂t
⊤.

The (corrected) cDCC model (Aielli, 2013; Engle, 2002) disentangles Vt into conditional

variances and correlations, which are then modeled separately. That is, Vt = DtRtDt with

Dt = diag(σ1t, . . . , σKt)⊤ a diagonal matrix of volatilities. In a first step, we model the
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conditional variances σ2
i,t individually using a GARCH(1,1) model (Bollerslev, 1986),

rit = µi + σituit, uit ∼ N(0, 1) (3)

σ2
i,t+1 = ωi + αiϵ

2
i,t + βiσ

2
i,t, (4)

where ϵi,t is the i-th entry of the vector ϵt. Similar to the BEKK model, we estimate ωi by

a variance targeting approach. The second step consists of modeling the (quasi) correlation

matrices Qt, which are driven by the de-volatised returns uit = ϵit/σit. The model can be

summarized as follows:

ut = D−1
t ϵt (5)

Qt+1 = (1− δ − λ)Q̄+ δ
(
Q

∗1/2
t utu

⊤
t Q

∗1/2
t

)
+ λQt (6)

Rt = Q
∗−1/2
t QtQ

∗−1/2
t (7)

where ut is a vector of de-volatized returns and Q∗
t = diag(qii,t), i = 1, . . . , K.Again, we

use correlation targeting to estimate Q̄. This model is labeled as DCC-GARCH. As a

special case of the cDCC model, we also consider the Constant Conditional Correlation

(CCC-GARCH) model of Bollerslev (1990) by setting δ and λ to zero. In this model, the

correlation dynamics are not explicitly modeled. Instead, the correlations are recalculated

regularly according to a moving window.

The second class of models introduces HF-based realized volatility measures into the

modeling framework. We considered the univariate version of the HEAVY-GAS-tF model

proposed by Opschoor et al. (2018). This score-driven model assumes fat-tailed distributions

for the returns and the realized variances and innovates the latent conditional variance by

the (sum of the) score of these distributions. This results in an updating mechanism that

is robust against incidental large returns and large values of the realized variance. The
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univariate HEAVY-GAS-tF model reads

rit = µi + σituit, uit|Ft−1 ∼ t(0, 1, ν0,i) (8)

RVi,t|Ft−1 ∼ F (σ2
i,t, ν1,i, ν2,i) (9)

σ2
i,t+1 = (1− βi)ωi + αi si,t + βi σ

2
i,t (10)

sit =
1

ν1,i + 1
σ2
i,t∇i,tσ

2
i,t

=
wit(rit − µi)

2 − σ2
i,t

ν1,i + 1

+
ν1,i

ν1,i + 1

ν1,i + ν2,i
ν2,i − 2

RVi,t(
1 +

ν1,i RVi,t

(ν2,i−2)σ2
i,t

) − σ2
i,t

 , (11)

with ∇ = ∂ log t(·)
∂σ2

i,t
+ ∂ logF (·)

∂σ2
i,t

and wit = (ν0,i + 1)/
(
ν0,i − 2 + (rit−µi)

2

σ2
i,t

)
. Note that the

(conditional) correlations are again modeled by the CCC or the cDCC models. The complete

models are then labeled as CCC(DCC)-HEAVY-GAS.

The third class of models relies on directly modeling the realized covariance matrices

RCt. The literature on this type of models has expanded rapidly in recent years (see

Archakov et al. (2024) for an overview). Our selection of models is designed to capture the

diverse approaches present in this growing body of research on high-frequency multivariate

variance forecasting. We will use the CAW model of Gourieroux et al. (2009), the

multivariate version of the HEAVY-GAS-tF model by Opschoor et al. (2018) and the HAR-

DRD model of Oh and Patton (2016) as classical benchmarks. The CAW model assumes a

conditional Wishart distribution for RCt with a latent time varying mean Vt:

RCt ∼ W(Vt, νW ) (12)

Vt+1 = (1− A−B)Ω+ ARCt +B Vt, (13)

with scalar parameters A and B and Ω an intercept matrix, estimated by the covariance

targeting approach using the sample mean of all realized covariance matrices.

The multivariate HEAVY-GAS-tF model by Opschoor et al. (2018) uses the score-driven

framework by Creal et al. (2013). It is based on two measurement equations that depend on

Vt: one for rt and another for RCt. Given these two measurement equations, the innovation
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of Vt consists of the (scaled) score: the partial derivative of the log-density w.r.t. Vt. In

sum, the model reads

rt|Ft−1 ∼ t(µ,Vt, ν0) RCt|Ft−1 ∼ F (Vt, ν1, ν2) (14)

Vt+1 = (1−B)Ω + ASt +B Vt (15)

St =
1

ν1 + 1
Vt∇Vt

=
wt(rt − µ)(rt − µ)′ − Vt

ν1 + 1

+
ν1

ν1 + 1

 ν1 + ν2
ν2 − k − 1

RCt

(
Ik +

ν1 V −1
t

RCt

ν2 − k − 1

)−1

− Vt

 , (16)

with ∇ = ∂ log t(·)
∂Vt

+ ∂ logF (·)
∂Vt

and wt = (ν0 + k)/(ν0 − 2 + (rt − µ)⊤V −1
t

(rt − µ)).

Finally, the HAR-DRD model of Oh and Patton (2016) accounts for slowly declining

autocorrelations in realized variances and correlations - i.e. the so-called long-memory

behavior - by assuming a HAR model (Corsi, 2009) for both realized quantities. More

specifically, let us first decompose the realized covariance matrix into realized variances and

realized correlations:

RCt =
√
RVt RCORRt

√
RVt, (17)

where RVt = diag(RCt) is a diagonal matrix with the realized variances on the diagonal

and RCORRt the matrix with realized correlations, obtained via RV
−1/2
t RCtRV

−1/2
t .

Then, in a first step, the (logarithm of the) individual realized variances is modeled by

the HAR model as:

logRVii,t+1 = β0,i + β1,i logRVii,t + β2,i
1

5

5∑
k=1

logRVii,t−k+1+

β3,i
1

22

22∑
k=1

logRVii,t−k+1 + ηii,t+1, (18)

with coefficients β0,i, . . . , β3,i (i = 1, . . . , K) estimated by OLS. The realized correlations are
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modeled in a second step by the following HAR model

vech(RCORRt+1) = (1− a− b− c)vech( ¯RCORR) + a vech(RCORRt)+

b
1

5

5∑
k=1

vech(RCORRt−k+1) + c
1

22

22∑
k=1

vech(RCORRt−k+1) + ξt+1,

(19)

where the coefficients (a, b, c) are again estimated by OLS.

3.1 Estimation

We apply our models to two portfolios: one with 30 randomly selected assets and the

other including all 50 assets from our sample. All model parameters are estimated by quasi

Maximum Likelihood or by the Composite Likelihood method, combined with a (co)variance

targeting method, with the exception of the parameters of the HAR-DRD model, which

are estimated by OLS. The usage of the Composite Likelihood (CL) method stems from

Pakel et al. (2021), who show that the estimated BEKK and DCC (GARCH or HEAVY-

GAS) parameters could suffer from bias. In particular, the innovation parameter a may be

biased downwards, while the persistence parameter b may tend towards one as the portfolio

dimension grows. We use the CL method to solve this issue. This method consists of

dividing the data set into bivariate pairs and maximizing the sum of the log-likelihood of

these bivariate pairs.

Table 2 lists all models and their conditional distributions and indicates which models will

be estimated via the CL method. The table shows that we use the Gaussian distribution

for univariate and multivariate returns. One could interpret this as a ‘quasi Maximum

Likelihood’ approach. In the case of the cDCC model, we follow Engle (2002) and decompose

the Gaussian likelihood into the volatility and correlation parts, which are estimated

separately. In the case of the CCC(DCC)-HEAVY-GAS models, we maximize the sum

of the log-likelihood of the Student’s t distribution and the F distribution.
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Table 2: Overview of used models and their conditional distribution
This table reports the multivariate volatility models considered in this paper. We list the model name and
its conditional distribution and indicate the cases where we use the Composite Likelihood method of Pakel
et al. (2021) instead of the maximum likelihood method.

Models Conditional Distribution Composite Likelihood

Models based on returns
BEKK Gaussian yes
CCC-GARCH Gaussian no
DCC-GARCH Gaussian yes

Models based on returns and realized variances
CCC-HEAVY-GAS t, F no
DCC-HEAVY-GAS t, F, Gaussian (DCC part) yes

Models based on realized covariances
CAW Wishart no
HEAVY-GAS t, F no
HAR-DRD no

4 Forecasting and evaluation

Once we obtain parameter estimates for all the models described above, we compute

(cumulative) h-step ahead forecasts of the conditional covariance matrix Vt. We follow

Hautsch et al. (2015) and set h equal to 1, 5, 10 and 22. This corresponds to daily, weekly,

biweekly, and monthly forecasts.

We then evaluate the statistical performance of the forecasted covariance matrices based

on proper statistical loss functions (Laurent et al., 2013), such as the RMSE, as well as the

QLIK and STEIN loss functions. All losses functions depend on the predicted Vt+1 and the

true realized covariance matrix RCt+1:

RMSEt+1 =
√

trace ((RCt+1 − Vt+1)⊤(RCt+1 − Vt+1)), (20)

QLIKt+1 = log |Vt+1|+ trace(V −1
t+1

RCt+1), (21)

STEINt+1 = trace(RCt+1V
−1

t+1
)− log

∣∣RCt+1V
−1

t+1

∣∣−K (22)

We use the Model Confidence Set (MCS) proposed by Hansen et al. (2011) to test on the

lowest average loss using a significance level of 5%. The MCS automatically accounts for

the dependence between model outcomes, given that all models are based on the same data.

Motivated by the mean-variance optimization setting of Markowitz (1952), we then
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evaluate our forecasts economically by examining the GMVPs’ performance. This portfolio

can be obtained by solving an optimization problem where an investor seeks to minimize

the 1-step-ahead portfolio volatility at time t, subject to a fully invested portfolio. The

resulting quadratic problem can be written as

minw⊤
t+1|tVt+1wt+1|t, s.t. w⊤

t+1|tι = 1, (23)

with solution

wt+1|t =
V −1

t+1|tι

ι⊤V −1
t+1|tι

. (24)

We assess the predictive ability of the different models by comparing the implied ex-post

portfolio volatility, σp,t+1 =
√
w′

t+1|tRCt+1wt+1|t, using the MCS.

Beyond the GMVP’s volatility, we also calculate several other relevant portfolio

performance metrics, such as turnover (TOt), concentration (COt), and the total short

position (SPt) for each competing model at time t. The turnover measures the portfolio’s

value bought/sold when rebalancing it to its new optimal position from t to t+1. A model

that produces more stable covariance matrix forecasts will typically produce GMVPs with

less turnover and, hence, lower transaction costs. This effect would lead to a gain in trading

strategies. The total turnover at time t is defined as

TOt =
N∑
i=1

∣∣∣∣∣wi,t+1|t − wi,t|t−1
1 + ri,t

1 +w⊤
t|t−1rt

∣∣∣∣∣ , (25)

where wi,t|t−1 is the i-th element of the weight vector wt|t−1 and ri,t the return of asset i at

time t. Following Bollerslev et al. (2018), we assume a fixed transaction cost c proportional

to the turnover rate in the portfolio. The portfolio excess return net of transaction costs for

given proportional transaction costs cTOt now reads

rp,t = w⊤
t|t−1rt − cTOt, (26)

with c equal to 0, 1 and 2% respectively.

Portfolio concentration and total portfolio short position are both measures of the

amount of extreme portfolio allocations. Less concentrated portfolios and those with fewer
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short positions could be easier and cheaper to implement, as rebalancing over time implies

lower transaction costs. Again, more stable forecasts of Vt+1 should result in less extreme

portfolio weights. The portfolio concentration is defined as

COt =

(
N∑
i=1

w2
i,t|t−1

)1/2

, (27)

while the total portfolio short position SPt is given by

SPt =
N∑
i=1

wi,t|t−1 · I[wi,t|t−1 < 0], (28)

with I[·] an indicator function that takes the value one if the i-the element of the weight

vector is lower than zero.

Finally, we use the utility-based framework of Fleming et al. (2001, 2003) to assess the

relative economic advantages of using different forecasting models. This approach has been

used by Bollerslev et al. (2018), among others, and is based on the assumption that an

investor has quadratic utility with a risk aversion parameter γ. The realized utility of the

portfolio return based on the forecasted covariances from model j equals

U(rjp,t, γ) = (1 + rjp,t)−
γ

2(1 + γ)
(1 + rjp,t)

2. (29)

Given two different models j and l, the return ∆γ that the investor with risk aversion γ

would like to give up to switch from model j to l can be obtained by solving

P∑
t=1

U(rjp,t, γ) =
P∑
t=1

U(rlp,t −∆γ, γ). (30)

We test the null-hypothesis ∆γ = 0 using the Reality Check of White (2000), based on the

stationary bootstrap of Politis and Romano (1994), using 999 bootstrap samples with an

average block length of 22 days.
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5 Results

We use a moving estimation window of 1000 observations (corresponding to roughly four

calendar years), leaving P = 3,696 observations for the out-of-sample period, starting on

December 28th, 2004. We re-estimate the models’ parameters after 250 days (one year) and

construct h-step ahead forecasts at each day t. As previously noted, we consider one set of

K = 30 assets and a set of all 50 assets in our sample. Section 5.1 explains the results on

the average loss functions, and it is followed by a discussion on the GMVP results in Section

5.2.

5.1 Statistical loss functions

Tables 6 - 7 show the average RMSE, QLIK, and STEIN loss functions across our set of

models estimated for the two portfolios. In addition, we report the p-value of the MCS using

a significance level of 5%. The models are listed in the following order: first, we present the

models using daily returns only (BEKK, CCC(DCC)-GARCH), then, the models combining

realized variances and daily returns (CCC(DCC)-HEAVY-GAS), and finally, models using

the full realized covariance matrix (CAW, HEAVY-GAS-tF, and HAR-DRD).

Both tables present a consistent pattern of results across all forecast horizons. All the

statistical loss functions exhibit a general decline when realized variances are incorporated

into the model, achieving their lowest values with models that fully integrate the realized

covariance matrix. Specifically, the HEAVY-GAS-tF model, and occasionally the HAR-

DRD model, yield the lowest values among all the models considered. This outcome aligns

with theoretical expectations, as these models utilize the most comprehensive information

available to model and forecast the realized covariance matrix.

To indicate which part of this decrease can be attributed to the inclusion of realized

variances, we first take the average values of the loss functions of models using daily returns

only, CCC(DCC)-GARCH, and that of the models incorporating the realized variances only

(CCC(DCC)-HEAVY-GAS). We then measure the contribution of the realized variances

as the reduction in the statistical loss functions when transitioning from the CCC(DCC)-

GARCH models to the CCC(DCC)-HEAVY-GAS models, relative to the difference between

the CCC(DCC)-GARCH models and the average loss function of the realized multivariate
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models (CAW, HEAVY-GAS and HAR-DRD).

Table 5 presents our first main result: a substantial portion of the reduction in statistical

loss functions associated with incorporating HF data into the models is attributable to the

introduction of realized variances. The impact is particularly significant for the RMSE and

STEIN loss functions, with reductions ranging between 61% and 78% for the first and of

at least 88% for the second. We observe that in the case of the STEIN loss function, the

value is lowest for the models that use realized covariances only (CCC(DCC)-HEAVY-GAS

model) in the daily horizon for both the 30- and 50-asset portfolios. In contrast, when

measured by the change in the QLIK loss function, the contribution of realized variances is

smaller, accounting for 55% of the decrease in the 30-asset portfolio and 49% in the 50-asset

portfolio, on average, across various forecast horizons.

5.2 Global Minimum Variance portfolio

Apart from evaluating our (cumulative) h-step ahead forecasts statistically, we also evaluate

them economically by constructing GMVPs and examining a set of economic performance

measures based on these portfolios. Tables 6 and 7 present the main results of the portfolio

exercise for dimensions 30 and 50, respectively. Each panel (A, B, C, D) considers a

different forecast horizon, ranging from daily to monthly. For each horizon, we calculated the

annualized mean portfolio return and volatility (measured by the ex-post realized portfolio

standard deviation and the standard deviation of the ex-post returns), the turnover (TO),

concentration (CO), and total short position (SP), as well as the Sharpe ratio and economic

gains in case of different transaction costs (0, 1 and 2 percent). Specifically, we report the

economic gain, expressed in annual basis points, that an investor with quadratic utility

and a particular risk aversion is willing to give up to switch from the HAR-DRD model

to the model specified in each column. Negative (positive) bold values indicate that the

investors would be significantly inclined (disinclined) to use the particular model in the

column instead of the HAR-DRD model.

Both Tables show us three important take-aways. First of all, models that use the full

realized covariance matrix produce the lowest ex-post realized portfolio standard deviation.1

1The superior performance of this type of model has been evidenced by recent work by Archakov et al.
(2024) and Gorgi et al. (2018) in portfolios with smaller dimensions.
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Table 3: Out-of-sample point forecasts (dimension 30)
This table shows the mean of the RMSE, QLIK, and STEIN loss functions based on daily,
weekly, and biweekly predictions of the covariance matrix of returns of 30 stocks according to the
following models: BEKK-GARCH, CCC(DCC)-GARCH (CCC(DCC)-GAR), CCC(DCC)-HEAVY-GAS
(CCC(DCC)-HGAS), multivariate HEAVY-GAS, CAW, and HAR-DRD (HDRD). Parameters are estimated
with a moving window of 1,000 observations and re-estimated after 250 observations. The lowest value of all
loss functions across the models is marked in bold. In addition, we report the mcs p-values based on a 5%
significance level. The p-values of the models within the model confidence set are marked in bold. Panel A,
B, C, and D show results of daily, weekly, biweekly, and monthly forecasts, respectively. The out-of-sample
period goes from January 2005 until December 2019 and contains 3,696 observations.

BEKK CCC DCC CCC DCC CAW HEAVY HDRD
GAR GAR HGAS HGAS GAS

Panel A: Daily forecasts
RMSE 35.13 34.36 33.93 29.54 29.09 27.86 28.37 26.64
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)
QLIK 53.51 34.02 35.13 31.76 32.79 30.81 30.80 30.63
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.27) (0.55) (1.00)
STEIN 43.86 39.83 39.05 37.53 37.04 42.74 38.51 39.25
mcs p-value (0.00) (0.00) (0.00) (0.06) (1.00) (0.00) (0.01) (0.00)

Panel B: Weekly forecasts
RMSE 151.84 153.65 151.85 125.63 123.05 112.61 114.02 111.47
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.01) (0.61) (0.61) (1.00)
QLIK 101.01 82.82 83.42 81.15 81.85 80.25 79.94 80.05
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.12) (1.00) (0.66)
STEIN 15.01 13.14 13.14 8.75 8.98 9.32 7.54 8.86
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)

Panel C: Biweekly forecasts
RMSE 296.68 306.43 303.68 250.04 245.01 221.57 219.95 220.75
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.98) (1.00) (0.98)
QLIK 120.84 104.37 104.73 102.62 103.10 101.96 101.42 101.46
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (1.00) (0.86)
STEIN 12.41 11.98 11.95 6.69 6.91 6.88 5.24 6.49
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)

Panel D: Monthly forecasts
RMSE 659.41 690.92 687.47 584.37 573.95 518.62 488.68 518.58
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.23) (1.00) (0.23)
QLIK 142.91 129.30 129.41 127.67 127.88 127.33 126.28 126.13
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.69) (1.00)
STEIN 10.59 12.37 12.24 6.00 6.13 6.01 4.28 5.36
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
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Table 4: Out-of-sample point forecasts (dimension 50)
This table shows the mean of the RMSE, QLIK, and STEIN loss functions based on daily,
weekly, and biweekly predictions of the covariance matrix of returns of 50 stocks according to the
following models: BEKK-GARCH, CCC(DCC)-GARCH (CCC(DCC)-GAR), CCC(DCC)-HEAVY-GAS
(CCC(DCC)-HGAS), multivariate HEAVY-GAS, CAW, and HAR-DRD (HDRD). Parameters are estimated
with a moving window of 1,000 observations and re-estimated after 250 observations. The lowest value of all
loss functions across the models is marked in bold. In addition, we report the mcs p-values based on a 5%
significance level. The p-values of the models within the model confidence set are marked in bold. Panel A,
B, C, and D show results of daily, weekly, biweekly, and monthly forecasts, respectively. The out-of-sample
period goes from January 2005 until December 2019 and contains 3,696 observations.

BEKK CCC DCC CCC DCC CAW HEAVY HDRD
GAR GAR HGAS HGAS GAS

Panel A: Daily forecasts
RMSE 62.01 59.53 58.98 51.73 50.91 49.42 51.09 46.81
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)
QLIK 121.55 61.77 64.38 57.99 60.62 56.16 56.08 56.56
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.87) (1.00) (0.21)
STEIN 191.47 185.58 180.22 177.71 173.69 210.62 185.70 188.67
mcs p-value (0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.00) (0.00)

Panel B: Weekly forecasts
RMSE 265.41 260.30 257.69 216.20 211.26 195.25 202.83 191.49
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.01) (0.27) (0.16) (1.00)
QLIK 197.93 142.87 144.61 140.18 142.25 138.44 137.83 138.63
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.21) (1.00) (0.21)
STEIN 35.83 27.86 27.91 20.03 20.68 23.17 17.99 21.61
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)

Panel C: Biweekly forecasts
RMSE 517.20 517.80 513.67 427.70 418.09 378.91 388.41 376.85
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.82) (0.62) (1.00)
QLIK 228.08 178.56 179.79 175.87 177.44 174.52 173.51 174.04
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.05) (1.00) (0.37)
STEIN 28.64 22.73 22.84 14.00 14.71 15.64 11.31 14.61
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)

Panel D: Monthly forecasts
RMSE 1149.1 1177.2 1172.0 1003.8 985.60 888.52 853.70 890.57
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.56) (1.00) (0.56)
QLIK 260.02 219.87 220.45 217.54 218.41 216.56 214.72 214.82
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.88)
STEIN 23.70 21.70 21.61 11.58 12.09 12.59 8.28 11.11
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
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Table 5: Percentage improvement in loss functions
This table shows the percentage decrease in statistical loss functions attributed to the inclusion of realized
variances. It is calculated as the reduction in the RMSE, QLIK, and STEIN average loss functions obtained
when transitioning from the CCC(DCC)-GARCH models to the CCC(DCC)-HEAVY models, relative to
the difference between the average loss function of the CCC /DCC-GARCH models and that of the realized
multivariate models, CAW, HEAVY-GAS and HAR-DRD. This analysis is conducted for daily, weekly,
biweekly, and monthly predictions of the covariance matrix of 30 and 50 stock returns. Parameters are
estimated with a moving window of 1,000 observations and re-estimated after 250 observations. An na
indicates that the average loss function of the CCC(DCC)-HEAVY-GAS models is lower than that of the
realized multivariate models. The out-of-sample period goes from January 2005 until December 2019 and
contains 3,696 observations.

RMSE STEIN QLIK
h/dim 30 50 30 50 30 50

Daily 74% 78% na na 60.0% 55%
Weekly 71% 72% 94% na 51.0% 46%
Biweekly 68% 69% 90% 94% 57.6% 49%
Monthly 61% 61% 88% 89% 51.4% 46%

Average 69% 70% 90% 92% 55% 49%

In particular, the HEAVY-GAS-tF model achieves a 9.2% reduction in ex-post realized

portfolio standard deviation compared to the CCC-HEAVY-GAS model, which relies solely

on realized variances and daily returns. In addition, it is the only model in the MCS in

almost every horizon for dimensions 30 and 50. However, when focusing on the standard

deviation of the ex-post portfolio returns, the results are somewhat less strong, with a

percentage decrease of 2.8% on average relative to the CCC-HEAVY-GAS model. Notably,

in the case of monthly forecasts, the CCC-HEAVY-GAS model delivers the lowest ex-post

portfolio volatility.

Second, when considering economic performance metrics such as the Sharpe ratio, we

observe a distinct pattern across different portfolio sizes, forecast horizons, and transaction

costs. The CCC-HEAVY-GAS model consistently achieves the highest Sharpe ratios, while

the CAW and HEAVY-GAS-tF models tend to produce the lowest. This difference is

primarily driven by the higher ex-post returns obtained with the former model. Although

turnover, concentration ratios, and short positions suggest that the CCC-HEAVY-GAS

model is more expensive to implement than any of the realized multivariate models across

all horizons (particularly the CAW and HEAVY-GAS-tF models), the difference in mean

ex-post returns from the former model is large enough to offset the additional transaction

costs, even at the highest level included in our analysis (2%).
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The utility gains obtained following Fleming et al. (2003) approach offer additional

insights into the economic trade-offs between the models included in our comparison exercise.

Tables 6 and 7 show that the utility gains for an investor using the CCC-HEAVY-GAS model

instead of the HAR-DRD model (which typically produces the highest Sharpe Ratios among

realized multivariate models) are substantial. Specifically, an investor would be willing to

pay between 270 and 500 basis points per year to switch between these models. This

advantage remains significant even when accounting for different levels of transaction costs.

Notably, we also observe that for horizons longer than one day, an investor would be better

off using the HAR-DRD model than using a model that produces lower ex-post portfolio

volatility, such as the multivariate HEAVY-GAS model, which should be less expensive

to implement (due to substantially lower turnover). Again, this result is driven by the

differences in ex-post mean returns. Put differently, our results indicate that pursuing a

GMV strategy based on a model with full realized covariance matrix does not necessarily

produce the best portfolio performance metrics.

A second finding that points in this direction is that the economic performance of the

forecasts obtained with the CCC-HEAVY-GAS models surpasses the one obtained with

the DCC-HEAVY-GAS model. The apparent irrelevance of the correlations dynamics in

these models arises due to two reasons. First, the Sharpe ratio is considerably higher for

the first model due to higher annualized returns combined with relatively similar portfolio

volatilities. Additionally, the turnover of the CCC-HEAVY-GAS models is lower than that

of the HAR-DRD model.

In addition, we note three small side results, which hold for both portfolio sizes. The

first one concerns the models using daily returns only. We notice that modeling volatilities

and correlations separately (as in the CCC-GARCH model) is better than modeling returns

jointly (as in the BEKK model). Second, despite the low turnover of the CAW and the

HEAVY-GAS-tF model relative to the HAR-DRD model, the latter model is preferred due

to higher ex-post annualized returns.2

2In an additional analysis available upon request, we observe that the CCC(DCC)-HEAVY model
(including the realized variance into the model equation of the conditional variance as in Shephard and
Sheppard (2010), while leaving the correlation models intact) performs roughly at par with the CCC-
HEAVY-GAS model. The former has a lower turnover, while the latter has higher annualized returns.
However, in the case of dimension 50, the gain in utility to switch from the HAR-DRD model to the CCC-
HEAVY-GAS model is statistically significant. At the same time, this is not significant for the CCC-HEAVY
model in the case of daily and weekly forecasts.
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In sum, we find that GMVPs built using realized covariance models exhibit the lowest

ex-post portfolio volatilities. However, the advantage of these models relative to those

using realized variances and daily returns becomes smaller when we examine other popular

volatility measures, such as the standard deviation of ex-post portfolio returns. In addition,

we observe that the latter class of models produces higher Sharpe ratios, even in the presence

of transaction costs, and generates the highest utility gains for investors with varying levels

of risk aversion. Moreover, these potential utility gains can be substantial -up to 500 basis

points a year- for an investor who wants to switch from the best-performing model using the

full realized covariance matrix (HAR-DRD) to a model that uses daily returns and realized

variances. These results are robust across different portfolio sizes. Lastly, the similarity

in ex-post portfolio volatilities between the CCC and DCC versions of the GARCH and

HEAVY-GAS models and substantially lower ex-post returns for the models that include

correlations dynamics, suggests that there are no significant economic gains from modeling

correlations dynamically, either using returns or realized correlations.

6 Robustness checks

We conducted several robustness checks to validate the reliability and consistency of our

empirical results. In line with the methodology of Hautsch et al. (2015), we focused on three

different dimensions. We have already shown in our results section that our main results

hold for different portfolio sizes(k = 30 and k = 50). In this section, we focus on assessing

the impact of varying the length of the updating and estimation windows.

Tables A.1 and A.2 in Appendix A show the average statistical loss functions and the

results on the GMVPs when re-estimating the parameters of each model on a monthly basis

(Tw = 22). Again, we observe that nearly 75% of the improvement in the RMSE and at

least 93% of the STEIN loss functions can be attributed to the use of realized variances

(Table A.5).

Consistent with our main findings, we observe that although the HEAVY-GAS-tF model

has significantly the lowest ex-post realized portfolio volatility, the CCC-HEAVY-GAS

model delivers again the highest Sharpe ratio due to the higher mean ex-post returns and

the lower turnover. Moreover, we find that an investor with quadratic utility is willing to
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Table 6: The GMV portfolio, dimension 30
This table shows portfolio statistics of the Global Minimum Variance portfolio, based on daily,
weekly, biweekly, and monthly predictions of the 30 × 30 covariance matrix, according to the
following models: BEKK-GARCH, CCC(DCC)-GARCH (CCC(DCC)-GAR), CCC(DCC)-HEAVY-GAS
(CCC(DCC)-HGAS), multivariate HEAVY-GAS, CAW, and HAR-DRD (HDRD). Parameters are estimated
with a moving window of 1,000 observations and re-estimated after 250 observations. We report the
average annualized return and standard deviation (both using the true realized covariance matrix and daily
returns), as well as the turnover (TO), portfolio concentration (CO), and short positions (SP). The lowest
portfolio volatilities are marked in bold. We also list the p-value that belongs to the model confidence set
approach (mcs) of the lowest ex-post daily volatility using the true realized covariance matrix based on a 5%
significance level. Bold p-values correspond to models that belong to the model confidence set. Finally, the
table reports the economic gains of switching from each model listed in the column to the HAR-DRD model
in annual basis points, ∆γ , for various transaction cost levels c and risk aversion coefficients γ. A bold ∆γ

significantly differs from zero at the 5% level. Panel A, B, C, and D show results of daily, weekly, biweekly,
and monthly forecasts, respectively. The out-of-sample period goes from January 2005 until December 2019
and contains 3696 observations.

BEKK CCC DCC CCC DCC CAW HEAVY HDRD
GAR GAR HGAS HGAS GAS

Panel A: Daily forecasts
Mean return 7.301 8.592 6.931 11.198 9.18 6.001 5.750 7.177
σ̂p 10.524 9.611 9.603 9.175 9.15 8.438 8.352 8.527
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 11.732 10.775 10.837 10.590 10.60 9.913 9.945 10.032
TO 0.406 0.450 0.463 0.664 0.71 0.300 0.238 0.821
CO 0.568 0.475 0.490 0.441 0.46 0.378 0.360 0.399
SP -0.651 -0.393 -0.426 -0.360 -0.40 -0.239 -0.205 -0.276
c = 0% Sharpe 0.622 0.797 0.640 1.057 0.87 0.605 0.578 0.715

∆1 6 -134 33 -396 -195 116 142
∆10 173 -64 109 -344 -141 106 134

c = 1% Sharpe 0.535 0.692 0.532 0.899 0.70 0.529 0.518 0.509
∆1 -98 -227 -57 -436 -223 -15 -5
∆10 69 -158 18 -384 -170 -26 -13

c = 2% Sharpe 0.448 0.587 0.424 0.741 0.53 0.453 0.457 0.303
∆1 -203 -321 -148 -475 -252 -146 -152
∆10 -36 -251 -72 -423 -198 -157 -160

Panel B: Weekly forecasts
Mean return 7.959 8.524 7.085 10.478 8.627 5.632 5.379 7.512
σ̂p 10.650 9.918 9.896 9.432 9.391 8.738 8.636 8.820
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 11.548 10.274 10.364 9.917 10.002 9.720 9.525 9.628
TO 0.394 0.344 0.355 0.588 0.623 0.282 0.231 0.632
CO 0.558 0.468 0.481 0.429 0.441 0.376 0.358 0.386
SP -0.627 -0.400 -0.429 -0.342 -0.370 -0.233 -0.202 -0.250
c = 0% Sharpe 0.689 0.830 0.684 1.057 0.862 0.579 0.565 0.780

∆1 -24 -95 50 -294 -108 189 212
∆10 161 -36 117 -268 -74 197 203

c = 1% Sharpe 0.672 0.813 0.666 1.027 0.831 0.565 0.552 0.747
∆1 -36 -109 36 -296 -108 171 192
∆10 149 -50 103 -270 -75 179 183

c = 2% Sharpe 0.655 0.796 0.649 0.997 0.800 0.550 0.540 0.714
∆1 -48 -124 22 -298 -109 154 172
∆10 137 -65 89 -272 -75 162 163
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(continued from previous page)

BEKK CCC DCC CCC DCC CAW HEAVY HDRD
GAR GAR HGAS HGAS GAS

Panel C: Biweekly forecasts
Mean return 8.136 8.838 7.463 9.827 8.150 5.108 4.891 6.780
σ̂p 10.663 10.165 10.145 9.530 9.490 8.900 8.789 8.973
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 12.359 10.476 10.671 9.891 10.177 9.937 9.739 9.664
TO 0.381 0.303 0.315 0.518 0.545 0.266 0.224 0.542
CO 0.547 0.470 0.483 0.419 0.429 0.374 0.357 0.378
SP -0.602 -0.414 -0.441 -0.325 -0.348 -0.228 -0.198 -0.232
c = 0% Sharpe 0.658 0.844 0.699 0.994 0.801 0.514 0.502 0.702

∆1 -106 -198 -58 -302 -132 170 190
∆10 169 -121 37 -282 -84 195 196

c = 1% Sharpe 0.651 0.836 0.692 0.980 0.787 0.507 0.496 0.688
∆1 -110 -204 -64 -303 -132 163 182
∆10 165 -127 31 -282 -84 188 188

c = 2% Sharpe 0.643 0.829 0.684 0.967 0.774 0.501 0.491 0.673
∆1 -114 -210 -69 -304 -132 156 174
∆10 161 -133 26 -283 -84 181 180

Panel D: Monthly forecasts
Mean return 7.581 8.590 7.211 9.150 7.549 4.679 4.529 6.263
σ̂p 10.669 10.521 10.513 9.655 9.626 9.136 9.014 9.171
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.23)
StDev ret 13.395 10.754 10.952 9.723 10.051 10.268 10.211 9.818
TO 0.359 0.261 0.273 0.409 0.428 0.245 0.211 0.442
CO 0.527 0.478 0.489 0.405 0.412 0.372 0.355 0.367
SP -0.556 -0.430 -0.451 -0.301 -0.315 -0.223 -0.192 -0.208
c = 0% Sharpe 0.566 0.799 0.658 0.941 0.751 0.456 0.444 0.638

∆1 -90 -223 -83 -290 -126 163 177
∆10 304 -129 30 -299 -104 205 214

c = 1% Sharpe 0.563 0.796 0.656 0.936 0.746 0.453 0.441 0.633
∆1 -91 -225 -85 -290 -126 161 175
∆10 302 -131 28 -299 -104 203 212

c = 2% Sharpe 0.560 0.793 0.653 0.931 0.741 0.450 0.439 0.628
∆1 -92 -227 -87 -290 -127 158 172
∆10 301 -133 26 -299 -104 201 209
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Table 7: The GMV portfolio, dimension 50
This table shows portfolio statistics of the Global Minimum Variance portfolio, based on daily,
weekly, biweekly, and monthly predictions of the 50 × 50 covariance matrix, according to the
following models: BEKK-GARCH, CCC(DCC)-GARCH (CCC(DCC)-GAR), CCC(DCC)-HEAVY-GAS
(CCC(DCC)-HGAS), multivariate HEAVY-GAS, CAW, and HAR-DRD (HDRD). Parameters are estimated
with a moving window of 1,000 observations and re-estimated after 250 observations. We report the
average annualized return and standard deviation (both using the true realized covariance matrix and daily
returns), as well as the turnover (TO), portfolio concentration (CO), and short positions (SP). The lowest
portfolio volatilities are marked in bold. We also list the p-value that belongs to the model confidence set
approach (mcs) of the lowest ex-post daily volatility using the true realized covariance matrix based on a 5%
significance level. Bold p-values correspond to models that belong to the model confidence set. Finally, the
table reports the economic gains of switching from each model listed in the column to the HAR-DRD model
in annual basis points, ∆γ , for various transaction cost levels c and risk aversion coefficients γ. A bold ∆γ

significantly differs from zero at the 5% level. Panel A, B, C, and D show results of daily, weekly, biweekly,
and monthly forecasts, respectively. The out-of-sample period goes from January 2005 until December 2019
and contains 3696 observations.

BEKK CCC DCC CCC DCC CAW HEAVY HDRD
GAR GAR HGAS HGAS GAS

Panel A: Daily forecasts
Mean return 4.816 9.450 7.583 12.831 9.90 6.851 6.628 9.049
σ̂p 10.641 9.509 9.542 9.073 9.08 8.129 8.017 8.283
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 11.793 10.600 10.537 10.386 10.29 9.569 9.667 9.658
TO 0.475 0.591 0.608 0.902 0.97 0.331 0.255 1.164
CO 0.577 0.466 0.488 0.442 0.46 0.366 0.346 0.402
SP -0.982 -0.608 -0.662 -0.593 -0.66 -0.397 -0.348 -0.489
c = 0% Sharpe 0.408 0.892 0.720 1.235 0.96 0.716 0.686 0.937

∆1 446 -31 155 -371 -79 219 242
∆10 653 56 236 -305 -22 211 243

c = 1% Sharpe 0.307 0.751 0.574 1.017 0.72 0.629 0.619 0.633
∆ 1 272 -175 15 -437 -128 9 13
∆10 479 -89 95 -371 -71 1 14

c = 2% Sharpe 0.205 0.610 0.429 0.798 0.49 0.541 0.553 0.329
∆1 99 -319 -125 -503 -177 -201 -216
∆10 305 -233 -45 -437 -120 -208 -215

Panel B: Weekly forecasts
Mean return 4.838 8.847 7.353 11.168 8.639 5.981 5.881 8.038
σ̂p 10.773 9.812 9.813 9.345 9.345 8.434 8.302 8.599
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 11.662 10.218 10.336 9.667 9.734 9.483 9.299 9.436
TO 0.467 0.461 0.467 0.806 0.860 0.318 0.251 0.910
CO 0.567 0.467 0.487 0.430 0.449 0.364 0.345 0.387
SP -0.954 -0.632 -0.682 -0.576 -0.632 -0.391 -0.345 -0.452
c = 0% Sharpe 0.415 0.866 0.711 1.155 0.888 0.631 0.632 0.852

∆1 343 -73 77 -311 -57 206 214
∆10 556 -3 159 -290 -31 210 203

c = 1% Sharpe 0.395 0.843 0.689 1.113 0.843 0.614 0.619 0.803
∆1 321 -96 55 -316 -60 176 181
∆10 534 -26 136 -296 -34 180 170

c = 2% Sharpe 0.375 0.820 0.666 1.071 0.798 0.597 0.605 0.755
∆1 299 -119 33 -321 -62 147 148
∆10 512 -48 114 -301 -36 151 136
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(continued from previous page)

BEKK CCC DCC CCC DCC CAW HEAVY HDRD
GAR GAR HGAS HGAS GAS

Panel C: Biweekly forecasts
Mean return 4.890 8.945 7.697 10.533 8.350 5.318 5.472 7.263
σ̂p 10.772 10.038 10.034 9.454 9.448 8.600 8.456 8.755
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 11.593 10.531 10.810 9.768 10.016 9.773 9.601 9.560
TO 0.458 0.407 0.416 0.713 0.756 0.306 0.247 0.783
CO 0.557 0.469 0.488 0.421 0.437 0.362 0.344 0.376
SP -0.924 -0.655 -0.702 -0.560 -0.607 -0.386 -0.341 -0.424
c = 0% Sharpe 0.422 0.849 0.712 1.078 0.834 0.544 0.570 0.760

∆1 259 -158 -31 -325 -104 197 180
∆10 456 -67 88 -306 -63 216 183

c = 1% Sharpe 0.412 0.840 0.702 1.060 0.815 0.536 0.563 0.739
∆1 251 -168 -40 -327 -105 185 166
∆10 447 -77 78 -308 -63 204 170

c = 2% Sharpe 0.402 0.830 0.693 1.041 0.796 0.528 0.557 0.719
∆1 242 -177 -49 -329 -106 173 153
∆10 439 -86 69 -309 -64 192 156

Panel D: Monthly forecasts
Mean return 4.763 8.528 7.415 10.045 8.211 4.633 4.992 6.726
σ̂p 10.721 10.379 10.377 9.592 9.581 8.852 8.692 8.958
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.04)
StDev ret 12.630 10.601 11.094 9.558 10.010 10.608 10.173 9.812
TO 0.445 0.353 0.363 0.564 0.596 0.288 0.240 0.641
CO 0.538 0.472 0.487 0.409 0.421 0.360 0.342 0.362
SP -0.870 -0.676 -0.712 -0.535 -0.570 -0.379 -0.335 -0.385
c = 0% Sharpe 0.377 0.805 0.668 1.051 0.820 0.437 0.491 0.686

∆1 228 -172 -55 -334 -146 217 177
∆10 521 -94 73 -359 -127 294 211

c = 1% Sharpe 0.373 0.801 0.665 1.044 0.814 0.434 0.488 0.678
∆1 226 -175 -59 -335 -147 213 172
∆10 519 -97 70 -360 -128 290 207

c = 2% Sharpe 0.369 0.797 0.661 1.037 0.807 0.431 0.485 0.671
∆1 224 -179 -62 -336 -148 209 168
∆10 517 -100 67 -361 -128 286 202
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pay a fee ranging from 235 to 452 basis points per year to switch from the HAR-DRD model

to the CCC-HEAVY-GAS model.

Finally, we increase the estimation window from 1,000 to 1,500 days (roughly equivalent

to six years). Tables A.3 and A.4 show the corresponding results. The percentage of

improvement in the QLIK and RMSE attributed to the use of realized variances is similar to

the one observed in our original specification. However, in the case of the STEIN function,

this percentage decrease is lower (75% on average vs. 91%). The results regarding the

economic performance of GMVPs are broadly similar to those in our main specification. The

CCC-HEAVY-GAS model continues to outperform models using the full realized covariance

matrix, this time with an even greater Sharpe ratio difference and larger utility gains,

ranging from 360 to 581 basis points per year.

Overall, we observe that our main results are robust against changes in the portfolio

size and the length of the estimation and updating windows. Consistent with our main

specification, we find that using HF data to model variances contributes the most to the

statistical performance improvements (roughly 69%). Moreover, Sharpe ratios and utility

gains can become even higher when using a larger estimation window.

7 Conclusions

This study provides new insights into the advantages of using high-frequency data to

model financial volatilities in medium-sized portfolios. We build upon the work of Hautsch

et al. (2015) - who find that incorporating realized measures of covariances does matter

for portfolio selection - by evaluating both the statistical accuracy and the economic

performance of forecasts obtained using a variety of approaches in multivariate covariance

forecasting, and investigating the sources of these gains. We do so by disentangling the

realized covariances into realized variances and realized correlations. Our results indicate

that a significant portion of the improvement in forecasts’ statistical performance derived

from incorporating HF data can be obtained using models that combine daily returns and

realized variances, particularly on the daily horizon (over 76%). Furthermore, although our

results confirm that the models that use the full realized covariance matrix offer superior

ex-post portfolio volatilities, we observe significant economic advantages of simpler models
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that combine realized variances and daily returns, particularly the CCC-HEAVY-GAS, as

evidenced by its higher Sharpe ratios and substantial utility gains. These findings are

robust across different horizons, portfolio sizes (30 and 50 assets), and various estimation

and updating window lengths. Finally, our results indicate that dynamically modeling

correlations, as done in DCC models, do not yield significant economic benefits over simpler

approaches for portfolios of this size.
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A Additional results

Table A.1: Statistical loss functions with different updating windows (dimension
50)
This table shows the mean of the RMSE, QLIK, and STEIN loss functions based on daily,
weekly, and biweekly predictions of the covariance matrix of returns of 50 stocks according to the
following models: BEKK-GARCH, CCC(DCC)-GARCH (CCC(DCC)-GAR), CCC(DCC)-HEAVY-GAS
(CCC(DCC)-HGAS), multivariate HEAVY-GAS, CAW, and HAR-DRD (HDRD). Parameters are estimated
with a moving window of 1,000 observations and re-estimated after 22 observations. The lowest value of all
loss functions across the models is marked in bold. In addition, we report the mcs p-values based on a 5%
significance level. The p-values of the models within the model confidence set are marked in bold. Panel A,
B, C, and D show results of daily, weekly, biweekly, and monthly forecasts, respectively. The out-of-sample
period goes from January 2005 until December 2019 and contains 3,696 observations.

BEKK CCC DCC CCC DCC CAW HEAVY HDRD
GAR GAR HGAS HGAS GAS

Panel A: Daily forecasts
RMSE 64.91 60.27 60.64 51.52 51.32 50.45 50.56 46.66

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)
QLIK 125.44 61.21 64.65 57.60 61.13 55.89 55.78 56.51

(0.00) (0.00) (0.00) (0.00) (0.00) (0.75) (1.00) (0.04)
STEIN 189.74 182.03 176.88 175.29 171.77 208.02 186.21 188.61

(0.00) (0.00) (0.01) (0.01) (1.00) (0.00) (0.00) (0.00)

Panel B: Weekly forecasts
RMSE 279.70 265.81 267.94 214.88 213.86 201.42 200.08 191.30

(0.00) (0.00) (0.00) (0.00) (0.00) (0.05) (0.12) (1.00)
QLIK 202.01 142.41 144.90 139.77 142.71 137.89 137.42 138.43

(0.00) (0.00) (0.00) (0.00) (0.00) (0.14) (1.00) (0.02)
STEIN 35.38 27.49 27.91 19.43 20.53 22.30 17.93 21.53

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)

Panel C: Biweekly forecasts
RMSE 545.28 532.28 536.90 424.97 422.95 392.77 382.10 379.27

(0.00) (0.00) (0.00) (0.00) (0.00) (0.31) (0.79) (1.00)
QLIK 232.41 178.17 180.10 175.34 177.74 173.60 172.98 173.69

(0.00) (0.00) (0.00) (0.00) (0.00) (0.11) (1.00) (0.11)
STEIN 28.20 22.70 23.14 13.42 14.52 14.74 11.18 14.44

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)

Panel D: Monthly forecasts
RMSE 1210.4 1224.2 1234.7 989.95 984.15 897.05 839.84 901.96

(0.00) (0.00) (0.00) (0.00) (0.00) (0.21) (1.00) (0.21)
QLIK 264.27 219.53 220.72 216.54 218.14 214.86 213.89 213.99

(0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (1.00) (0.85)
STEIN 23.15 22.02 22.19 10.81 11.61 11.40 8.01 10.78

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
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Table A.2: GMV portfolio analysis with updating window length Tw = 22
(dimension 50)
This table shows portfolio statistics of the Global Minimum Variance portfolio, based on daily,
weekly, biweekly and monthly predictions of the 50 × 50 covariance matrix, according to the
following models: BEKK-GARCH, CCC(DCC)-GARCH (CCC(DCC)-GAR), CCC(DCC)-HEAVY-GAS
(CCC(DCC)-HGAS), multivariate HEAVY-GAS, CAW, and HAR-DRD (HDRD). Parameters are estimated
with a moving window of 1,000 observations and re-estimated after 22 observations. We report the average
annualized return and standard deviation (both using the true realized covariance matrix and daily returns),
as well as the turnover (TO), portfolio concentration (CO), and short positions (SP). The lowest portfolio
volatilities are marked in bold. We also list the p-value that belongs to the model confidence set approach
(mcs) of the lowest ex-post daily volatility using the true realized covariance matrix based on a 5%
significance level. Bold p-values correspond to models that belong to the model confidence set. Finally,
the table reports the economic gains of switching from each model listed in the column to the HAR-DRD
model in annual basis points, ∆γ , for various transaction cost levels c and risk aversion coefficients γ. A
bold ∆γ is significantly different from zero at the 5% level. Panel A, B, C, and D show results of daily,
weekly, biweekly, and monthly forecasts, respectively. The out-of-sample period goes from January 2005
until December 2019 and contains 3696 observations.

BEKK CCC DCC CCC DCC CAW HEAVY HDRD
GAR GAR HGAS HGAS GAS

Panel A: Daily forecasts
Mean return 4.437 7.980 5.956 12.181 9.394 7.068 6.603 8.855
σ̂p 10.823 9.431 9.487 8.978 9.086 8.119 8.017 8.256
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 12.286 10.440 10.367 10.238 10.291 9.606 9.680 9.688
TO 0.484 0.601 0.612 0.918 0.986 0.314 0.252 1.166
CO 0.582 0.473 0.495 0.443 0.467 0.364 0.346 0.403
SP -1.000 -0.617 -0.677 -0.592 -0.672 -0.393 -0.348 -0.490
c = 0% Sharpe 0.361 0.764 0.575 1.190 0.913 0.736 0.682 0.914

∆1 470 95 297 -327 -48 178 225
∆10 728 163 358 -277 7 171 224

c = 1% Sharpe 0.262 0.619 0.426 0.964 0.671 0.653 0.616 0.611
∆1 298 -47 157 -390 -93 -37 -5
∆10 556 21 218 -340 -39 -44 -6

c = 2% Sharpe 0.163 0.474 0.277 0.738 0.430 0.571 0.551 0.307
∆1 126 -190 17 -452 -139 -251 -236
∆10 384 -122 79 -403 -85 -259 -237

Panel B: Weekly forecasts
Mean return 5.470 7.433 5.849 10.319 7.948 6.202 5.856 7.795
σ̂p 10.952 9.778 9.837 9.241 9.342 8.420 8.301 8.540
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 11.984 10.254 10.397 9.539 9.731 9.523 9.317 9.514
TO 0.476 0.468 0.473 0.818 0.872 0.301 0.248 0.907
CO 0.572 0.479 0.501 0.431 0.453 0.362 0.345 0.387
SP -0.972 -0.643 -0.702 -0.574 -0.645 -0.387 -0.345 -0.452
c = 0% Sharpe 0.456 0.725 0.563 1.082 0.817 0.651 0.629 0.819
c = 0% Sharpe 0.46 0.72 0.56 1.08 0.82 0.65 0.63 0.82

∆1 259 43 203 -252 -13 159 192
∆10 500 110 283 -250 6 160 175

c = 1% Sharpe 0.436 0.702 0.540 1.038 0.772 0.635 0.615 0.771
∆1 237 21 182 -257 -15 129 159
∆10 478 88 262 -254 4 130 142

c = 2% Sharpe 0.416 0.679 0.517 0.995 0.726 0.619 0.602 0.723
∆1 216 -1 160 -261 -17 98 126
∆10 456 66 240 -259 2 99 109
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(continued from previous page)

BEKK CCC DCC CCC DCC CAW HEAVY HDRD
GAR GAR HGAS HGAS GAS

Panel C: Biweekly forecasts
Mean return 5.847 7.649 6.362 9.585 7.551 5.607 5.455 7.036
σ̂p 10.960 10.011 10.070 9.340 9.428 8.583 8.455 8.675
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 11.560 10.677 10.905 9.667 9.976 9.787 9.605 9.582
TO 0.468 0.413 0.421 0.721 0.766 0.288 0.244 0.778
CO 0.561 0.482 0.503 0.421 0.440 0.361 0.344 0.376
SP -0.943 -0.665 -0.719 -0.557 -0.619 -0.381 -0.342 -0.423
c = 0% Sharpe 0.506 0.716 0.583 0.992 0.757 0.573 0.568 0.734

∆1 140 -50 81 -254 -48 145 158
∆10 332 53 206 -246 -12 163 160

c = 1% Sharpe 0.496 0.707 0.574 0.973 0.738 0.565 0.562 0.714
∆1 132 -59 72 -256 -48 133 145
∆10 324 44 197 -248 -12 151 147

c = 2% Sharpe 0.485 0.697 0.564 0.954 0.718 0.558 0.555 0.693
∆1 124 -69 63 -257 -48 120 131
∆10 316 34 188 -249 -12 139 134

Panel D: Monthly forecasts
Mean return 5.548 7.514 6.367 9.069 7.307 4.994 4.943 6.726
σ̂p 10.919 10.355 10.408 9.463 9.530 8.828 8.689 8.846
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 12.885 10.942 11.433 9.610 10.244 10.594 10.176 9.718
TO 0.455 0.357 0.368 0.567 0.600 0.270 0.237 0.632
CO 0.542 0.485 0.502 0.408 0.423 0.358 0.342 0.362
SP -0.888 -0.685 -0.728 -0.531 -0.578 -0.374 -0.336 -0.383
c = 0% Sharpe 0.431 0.687 0.557 0.944 0.713 0.471 0.486 0.692

∆1 154 -66 54 -235 -53 182 183
∆10 488 56 226 -246 -2 266 226

c = 1% Sharpe 0.426 0.683 0.553 0.937 0.707 0.468 0.483 0.685
∆1 152 -69 51 -236 -53 178 178
∆10 485 52 223 -246 -3 262 221

c = 2% Sharpe 0.422 0.679 0.550 0.930 0.700 0.465 0.480 0.677
∆1 150 -72 48 -237 -54 174 174
∆10 483 49 220 -247 -3 258 217
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Table A.3: Statistical loss functions with estimation window length Ts = 1500
(dimension 50)
This table shows the mean of the RMSE, QLIK, and STEIN loss functions based on daily,
weekly, and biweekly predictions of the covariance matrix of returns of 50 stocks according to the
following models: BEKK-GARCH, CCC(DCC)-GARCH (CCC(DCC)-GAR), CCC(DCC)-HEAVY-GAS
(CCC(DCC)-HGAS), multivariate HEAVY-GAS, CAW, and HAR-DRD (HDRD). Parameters are estimated
with a moving window of 1,500 observations and re-estimated after 250 observations. The lowest value of all
loss functions across the models is marked in bold. In addition, we report the mcs p-values based on a 5%
significance level. The p-values of the models within the model confidence set are marked in bold. Panel A,
B, C, and D show results of daily, weekly, biweekly, and monthly forecasts, respectively. The out-of-sample
period goes from January 2007 until December 2019 and contains 3,196 observations.

BEKK CCC DCC CCC DCC CAW HEAVY HDRD
GAR GAR HGAS HGAS GAS

Panel A: Daily forecasts
RMSE 71.50 66.03 66.55 56.66 56.15 55.41 56.35 51.25

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00)
QLIK 135.62 61.80 65.14 58.64 62.04 57.87 57.50 58.22

(0.00) (0.00) (0.00) (0.03) (0.00) (0.41) (1.00) (0.25)
STEIN 197.37 200.02 189.33 188.38 181.15 202.86 185.96 194.41

(0.00) (0.00) (0.00) (0.00) (1.00) (0.00) (0.14) (0.00)

Panel B: Weekly forecasts
RMSE 306.11 281.92 284.29 233.85 230.90 216.86 224.06 206.82

(0.00) (0.00) (0.00) (0.00) (0.00) (0.06) (0.06) (1.00)
QLIK 212.63 143.36 146.09 140.96 143.78 140.21 139.26 140.38

(0.00) (0.00) (0.00) (0.01) (0.00) (0.05) (1.00) (0.05)
STEIN 39.09 25.56 25.32 21.35 21.92 22.14 18.06 22.76

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)

Panel C: Biweekly forecasts
RMSE 593.64 548.06 552.79 457.17 451.61 415.59 427.13 402.98

(0.00) (0.00) (0.00) (0.00) (0.00) (0.25) (0.24) (1.00)
QLIK 242.89 178.90 181.14 176.66 178.93 176.16 174.91 175.77

(0.00) (0.00) (0.00) (0.00) (0.00) (0.02) (1.00) (0.07)
STEIN 32.01 18.80 18.92 14.87 15.64 14.85 11.37 15.52

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)

Panel D: Monthly forecasts
RMSE 1300.4 1207.0 1217.3 1050.3 1039.0 934.88 929.36 935.40

(0.00) (0.00) (0.00) (0.00) (0.01) (0.99) (1.00) (0.99)
QLIK 274.00 219.94 221.49 218.03 219.48 217.68 215.94 216.44

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.38)
STEIN 27.19 16.03 16.07 12.15 12.73 11.62 8.24 11.79

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
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Table A.4: GMV portfolio analysis for estimation and updating window lengths
Ts = 1500, Tw = 250 (dimension 50)
This table shows portfolio statistics of the Global Minimum Variance portfolio, based on daily,
weekly, biweekly, and monthly predictions of the 50 × 50 covariance matrix, according to the
following models: BEKK-GARCH, CCC(DCC)-GARCH (CCC(DCC)-GAR), CCC(DCC)-HEAVY-GAS
(CCC(DCC)-HGAS), multivariate HEAVY-GAS, CAW, and HAR-DRD (HDRD). Parameters are estimated
with a moving window of 1,500 observations and re-estimated after 250 observations. We report the
average annualized return and standard deviation (both using the true realized covariance matrix and
daily returns), as well as the turnover (TO), portfolio concentration (CO), and short positions (SP). The
lowest portfolio volatilities are marked in bold. We also list the p-value that belongs to the model confidence
set approach (mcs) of the lowest ex-post daily volatility using the true realized covariance matrix based on a
5% significance level. Bold p-values correspond to models that belong to the model confidence set. Finally,
the table reports the economic gains of switching from each model listed in the column to the HAR-DRD
model in annual basis points, ∆γ , for various transaction cost levels c and risk aversion coefficients γ. A
bold ∆γ is significantly different from zero at the 5% level. Panel A, B, C, and D show results of daily,
weekly, biweekly, and monthly forecasts, respectively. The out-of-sample period goes from January 2007
until December 2019 and contains 3,196 observations.

BEKK CCC DCC CCC DCC CAW HEAVY HDRD
GAR GAR HGAS HGAS GAS

Panel A: Daily forecasts
Mean return 5.153 9.548 7.238 13.659 9.837 6.981 6.965 9.429
σ̂p 11.410 9.632 9.645 9.288 9.295 8.353 8.237 8.513
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 12.577 10.915 10.761 10.796 10.620 9.936 9.996 9.989
TO 0.526 0.538 0.571 0.868 0.961 0.362 0.256 1.199
CO 0.625 0.448 0.477 0.426 0.454 0.376 0.351 0.406
SP -1.111 -0.566 -0.647 -0.553 -0.649 -0.433 -0.361 -0.505
c = 0% Sharpe 0.410 0.875 0.673 1.265 0.926 0.703 0.697 0.944

∆1 457 30 227 -415 -34 244 246
∆10 720 85 299 -339 24 240 247

c = 1% Sharpe 0.304 0.751 0.539 1.062 0.698 0.611 0.632 0.641
∆1 287 -169 69 -498 -94 33 9
∆10 550 -81 141 -422 -36 29 9

c = 2% Sharpe 0.199 0.626 0.405 0.860 0.470 0.519 0.568 0.339
∆1 118 -335 -89 -581 -154 -178 -229
∆10 381 -248 -17 -505 -96 -182 -229

Panel B: Weekly forecasts
Mean return 5.657 9.823 7.647 12.111 8.689 5.808 6.171 8.451
σ̂p 11.564 9.901 9.911 9.575 9.572 8.680 8.538 8.827
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 12.285 10.280 10.497 9.940 9.979 9.880 9.603 9.889
TO 0.522 0.476 0.495 0.795 0.872 0.358 0.254 0.949
CO 0.615 0.444 0.473 0.415 0.440 0.375 0.351 0.391
SP -1.082 -0.570 -0.645 -0.538 -0.623 -0.430 -0.359 -0.470
c = 0% Sharpe 0.461 0.956 0.728 1.218 0.871 0.588 0.643 0.855

∆1 306 -133 87 -366 -23 264 225
∆10 547 -97 143 -361 -15 263 200

c = 1% Sharpe 0.439 0.932 0.705 1.178 0.827 0.570 0.629 0.806
∆1 284 -157 64 -373 -27 234 190
∆10 526 -121 120 -368 -18 234 165

c = 2% Sharpe 0.418 0.909 0.681 1.138 0.783 0.551 0.616 0.758
∆1 263 -181 41 -381 -31 205 155
∆10 504 -145 98 -376 -22 204 130
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(continued from previous page)

BEKK CCC DCC CCC DCC CAW HEAVY HDRD
GAR GAR HGAS HGAS GAS

Panel C: Biweekly forecasts
Mean return 5.879 10.216 8.347 11.375 8.326 4.941 5.707 7.419
σ̂p 11.580 10.067 10.082 9.691 9.677 8.855 8.704 8.987
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 12.072 10.543 10.956 10.116 10.371 10.299 9.984 10.128
TO 0.517 0.443 0.460 0.720 0.783 0.355 0.252 0.826
CO 0.604 0.445 0.473 0.405 0.428 0.374 0.350 0.380
SP -1.052 -0.585 -0.657 -0.521 -0.597 -0.427 -0.357 -0.442
c = 0% Sharpe 0.487 0.969 0.762 1.124 0.803 0.480 0.572 0.733

∆1 176 -275 -84 -396 -88 250 170
∆10 374 -235 -3 -397 -65 266 156

c = 1% Sharpe 0.476 0.958 0.751 1.106 0.784 0.471 0.565 0.712
∆1 168 -285 -93 -398 -89 238 155
∆10 366 -245 -12 -399 -66 254 142

c = 2% Sharpe 0.465 0.948 0.741 1.088 0.765 0.462 0.559 0.691
∆1 160 -295 -103 -401 -90 226 141
∆10 358 -254 -21 -402 -67 242 128

Panel D: Weekly forecasts
Mean return 5.978 10.073 8.277 10.810 7.960 4.054 5.117 6.822
σ̂p 11.544 10.343 10.359 9.828 9.801 9.121 8.959 9.206
mcs p-value (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (1.00) (0.00)
StDev ret 13.344 10.756 11.591 10.012 10.612 11.122 10.548 10.302
TO 0.511 0.403 0.419 0.591 0.636 0.353 0.251 0.687
CO 0.584 0.448 0.474 0.391 0.409 0.373 0.349 0.365
SP -0.993 -0.613 -0.677 -0.492 -0.552 -0.422 -0.352 -0.404
c = 0% Sharpe 0.448 0.937 0.714 1.080 0.750 0.364 0.485 0.662

∆1 121 -320 -131 -402 -110 286 173
∆10 457 -273 5 -431 -79 367 197

c = 1% Sharpe 0.444 0.932 0.710 1.073 0.743 0.361 0.482 0.655
∆1 119 -324 -134 -403 -111 282 168
∆10 455 -276 2 -432 -80 364 192

c = 2% Sharpe 0.439 0.928 0.706 1.066 0.736 0.357 0.480 0.647
∆1 117 -327 -137 -404 -112 278 163
∆10 453 -279 -1 -433 -80 360 187
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Table A.5: Percentage improvement in loss functions
This table shows the percentage decrease in statistical loss functions attributed to the inclusion of realized
variances. It is calculated as the reduction in the RMSE, QLIK, and STEIN average loss functions obtained
when transitioning from the CCC(DCC)-GARCH models to the CCC(DCC)-HEAVY-GAS models, relative
to the difference between the average loss function of the CCC(DCC)-GARCH models and that of the
realized multivariate models, CAW, HEAVY-GAS-tF and HAR-DRD. This analysis is conducted for daily,
weekly, biweekly, and monthly predictions of the covariance matrix of 50 stock returns, with two alternative
specifications: i) parameters are estimated with a moving window of 1,000 observations and re-estimated
after 22 observations, and ii) parameters are estimated with a moving window of 1,500 observations and
re-estimated after 250 observations. An na indicates that the average loss function of the CCC(DCC)-
HEAVY-GAS model is lower than that of the realized multivariate models.

RMSE STEIN QLIK
TIS/Tw 1000/22 1500/250 1000/22 1500/250 1000/22 1500/250
Daily 80% 83% na na 52% 56%
Weekly 76% 75% na 85% 42% 49%
Biweekly 74% 71% 95% 73% 45% 50%
Monthly 69% 60% 90% 66% 47% 49%

Average 75% 72% 93% 75% 47% 51%
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