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Abstract

In several scientific fields, such as finance, economics and bioinformatics, important the-

oretical and practical issues exist involving multimodal and asymmetric count data distribu-

tions due to heterogeneity of the underlying population. For accurate approximation of such

distributions we introduce a novel class of flexible mixtures consisting of shifted negative

binomial distributions, which accommodates a wide range of shapes that are commonly seen

in these data. We further introduce a convenient reparameterization which is more closely

related to a moment interpretation and facilitates the specification of prior information and

the Monte Carlo simulation of the posterior. This mixture process is estimated by the sparse

finite mixture Markov chain Monte method since it can handle a flexible number of non-

empty components. Given loan payment, inflation expectation and DNA count data, we

find coherent evidence on number and location of modes, fat tails and implied uncertainty

*The present paper should not be reported as representing the views of Norges Bank. The views expressed are

those of the authors and do not necessarily reflect those of Norges Bank.
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measures, in contrast to conflicting evidence obtained from well-known frequentist tests. The

proposed methodology may lead to more accurate measures of uncertainty and risk which

improves prediction and policy analysis using multimodal and asymmetric count data.

JEL codes: C11, C14, C63.

Keywords: Count data, multimodality, mixtures, shifted negative binomial, Markov chain Monte

Carlo, Bayesian inference, sparse finite mixture.

1 Introduction

In several scientific fields important theoretical and practical issues exist involving multimodal

and/or asymmetric count data distributions due to heterogeneity of the underlying population.

To determine the existence of multiple modes, statistical testing procedures are used on a reg-

ular basis. Two common examples are the dip test (Hartigan and Hartigan, 1985; Hartigan,

1985) and the Silverman test and its extensions (Silverman, 1981; Fischer et al., 1994). As an

illustrative example we show count data in Figure 1 on repayment details of clients obtaining a

loan (panel (a)), inflation expectations from survey responses (panel (b)), and repetitive DNA

tandem repeat sequences from human genome (panel (c)). We later show that the frequentist

tests give conflicting evidence on the existence of a single mode at the 5% level of significance

for two of three datasets. Moreover, it is important to note that these tests also remain silent

on the mode locations and the probability that a given point is in fact a mode as opposed to

noise in the data.1 This is relevant since in financial economics information on multimodality

may be used to categorize clients according to their defaulted installment behavior, which has

direct policy relevance. Similarly, multimodality in the distribution of inflation expectations

is linked with unanchored expectations, which is relevant for formulating an effective inflation

policy. Deviations in the configurations in the D4Z4 count data may indicate genetic diseases;

see, e.g., Bruce et al. (2009) and Balog et al. (2012) among several others.

To deal with these problems, we introduce a simulation-based Bayesian approach using a

1We emphasize that when the number of modes is estimated, most existing methods also do not provide
uncertainty metrics around these values (Fischer et al., 1994; Hall and Ooi, 2004), with a few exceptions based on
nonparametric density estimates (Müller and Sawitzki, 1991; Minnotte, 1997; Chaudhuri and Marron, 1999). We
refer to McLachlan and Peel (2004) for an extensive summary of frequentist and Bayesian methods for determining
the number of modes.
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Figure 1: Examples of Count Data in Finance, Economics and Bioinformatics

flexible mixture of shifted negative binomial distributions. Our proposed framework provides a

posterior probability of multimodality, estimates the number of modes and reveals their location

in the distribution, and produces an model consistent measure of uncertainty around these values.

We start by discussing a number of features of the negative binomial distribution and consider

its interpretation as the marginal of a continuous Poisson-gamma mixture. This implies adding

an extra latent variable to a Poisson distribution which allows – in a Markov chain Monte

Carlo (MCMC) simulation method – to make use of the well-known conditional augmented

data likelihood and posterior in a Gibbs step for the mean parameter of the negative binomial

distribution.

In terms of methodology we present three contributions. First, we introduce a convenient
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reparameterization of the negative binomial distribution which is more closely related to a mo-

ment interpretation. It is well-known that Bayesian estimation of the dispersion parameter of

the negative binomial is notoriously difficult. Consider the usual parameterization with the

dispersion and probability parameters, see section 2 for details, then posterior inference of the

probability parameter is straightforward due to conjugacy between the beta and negative bino-

mial distributions. However, inference about the dispersion parameter is more difficult because

there is no conjugate prior. Our experience with various simulations revealed that specifying a

random walk Metropolis(-Hastings) step over this parameter is unreliable due to extremely poor

mixing of the simulated draws and it leads to a lack of convergence to the true posterior. Existing

literature on estimating this dispersion parameter is also surprisingly sparse. Zhou and Carin

(2013) provide a detailed discussion of this literature and associated problems on identifying and

estimating the dispersion parameter. Theses authors note that while the maximum likelihood

estimator has been used to provide point estimates of the dispersion parameter, it is often not

robust with respect to initial conditions. It can be biased or even fail to converge in small

samples. The authors also note that while Bayesian approaches are able to model estimation

uncertainty and incorporate prior information in small samples, the estimation is difficult as it

relies on approximating the ratio of two gamma functions. In contrast, our reparameterization

facilitates relatively simple and reliable estimation of these parameters.

Second, we introduce a novel shift parameter which is useful for cases where the distribution’s

support need not begin at zero, making it well suited for modeling data that are concentrated

around certain non-zero values, such as the aforementioned DNA tandem repeat data. Moreover,

allowing the shift parameter to be zero preserves all properties of the regular negative binomial

distribution and allowing it, for instance, to deal with zero inflated count data. Finally, we

specify a finite mixture of this general class of distributions which accommodates a wide range

of distributional shapes that are commonly seen in many multimodal count data sets across

the physical and social sciences, in particular, it allows for credible estimation of number of

modes, their locations, and implied uncertainty of these features. Another advantage of using

a negative binomial mixture, as opposed to say a mixture of Poisson distributions, is that the

negative binomial distribution can account for fat tails, which are characteristic of overdispersion

in count data.
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In terms of computational efficiency, we apply the sparse finite mixture Markov chain Monte

Carlo (SFM MCMC) method due to Malsiner-Walli et al. (2016), see also Frühwirth-Schnatter

and Malsiner-Walli (2019), to our class of flexible mixtures in order to estimate the number of

(non-empty) components of the mixture. This MCMC approach consists of initially overfitting

the number of mixture components by selecting a larger number of components than is expected

to describe the data and then using a sparse hierarchical prior on the mixture weights to shrink

the model space to a credible number of components with substantial posterior probability. Esti-

mating the number of (non-empty) components in this way has the practical benefit of reducing

the computational burden when the number of alternatives is large, and reduces the probability

of model misspecification when conducting inference under model specification uncertainty.

In terms of empirical analysis, the benefit of our approach is shown in the application using

the three count data sets in Figure 1. First, using lending data from a Spanish bank, see Dionne

et al. (1996), the probability that a client of a bank is able to repay a loan is shown to depend

on the uncertainty that exists with respect to the number of defaulted payments. Results from

fitting the mixture of shifted negative binomials leads to credible evidence about a bimodal

distribution with accurate location of modes including their uncertainty. Such information may

be used for the institution’s risk policy of granting loans.

Using count data from survey responses to the question “By what percentage do you expect

prices to go up, on average, during the next 12 months?”, from the University of Michigan’s Sur-

veys of Consumers yields evidence about a bimodal mixture, which is suggestive of unanchored

expectations, alternative learning (Pfajfar and Santoro, 2010), and possible lack of economic

literacy (Burke and Manz, 2014).

The data of DNA tandem repeats from Schaap et al. (2013) show that applying the proposed

class of flexible mixtures and the MCMCmethod provides substantial support with high posterior

probability for a distinct unimodal distribution with a very fat right tail instead of some spurious

modes.

In all three datasets, results from log-predictive likelihood analyses suggest that the mixture

of shifted negative binomial distributions provides a good or better fit of the data compared to

a corresponding mixture of shifted Poisson distributions. This empirical evidence reinforces the

theoretical merits of our proposed shifted negative binomial mixture.
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These results should be of interest to academics, policy makers and practitioners, who rely

on such tests when making both inference and predictions.

The contents of this paper are organized as follows: Section 2 presents the class of mixtures

of shifted negative binomials and the convenient reparameterization. Section 3 presents the

SFM MCMC algorithm. Section 4 presents empirical results for three count data sets. Section 5

concludes.

2 A flexible mixture of shifted negative binomials

2.1 A class of flexible mixtures based on the negative binomial distribution

The negative binomial distribution was introduced by Pascal (1679) and subsequently studied

by Montmort (1713). There exist several parameterizations of this distribution. We make use

of the specification that is defined as the number of failures before the r-th success. In order

to illustrate the flexibility of the negative binomial distribution Figure 2 shows examples of the

shape of the Probability Mass Function (PMF) of the negative binomial distribution for a given

value p = 0.5 and for r = 1, 5, 10. The extreme value r = 1 leads to a geometric distribution,

shown in Figure 3. The other extreme case r → ∞ (while holding the mean µ = r(1−p)
p constant,

so that p = r
r+µ → 1) leads to a Poisson distribution, see Figure 4. So, the interval 1 < r < ∞

allows for flexible shapes. For example, for the negative binomial distributions with p = 0.5 in

Figure 2 as r increases from 1 to 5 and 10, we observe a decreasing right skewness (with skewness

equal to 2.12, 0.95 and 0.67, where the means 1, 5 and 10 are larger than the modes 0, 4 and

9) and a decreasing kurtosis (9.50, 4.30 and 3.65); see Table 1. The kurtosis of the negative

binomial distribution increases for decreasing values of r and increasing values of p: it tends to

∞ if r → 0 or p → 1. On the other hand, if r → ∞, then the skewness and kurtosis tend to

well known values for the Gaussian distribution, 0 and 3, respectively. Summarizing, the class of

negative binomial distributions includes both heavily right-skewed, fat-tailed distributions, and

almost symmetric, thin-tailed distributions.

In Figure 5 we illustrate the difference between a Poisson distribution (with mean λ = 5

and kurtosis 3.20) and three negative binomial distributions for r = 1, 5, 50 with the same mean

but different kurtosis 9.03, 4.30 and 3.30. Although the PMF and kurtosis look similar for the

6



Table 1: Characteristics of negative binomial, geometric and Poisson distributions

negative binomial geometric Poisson

pmf pNB(yi|p, r) = Γ(r+yi)
Γ(r)yi!

(1− p)yipr pGeom(yi|p) = (1− p)yip pPoi(yi|λ) = λyie−λ

yi!

mean r(1−p)
p

1−p
p λ

mode ⌊ (r−1)(1−p)
p ⌋ if r > 1, 0 if r ≤ 1 0 ⌊λ⌋ (& λ− 1 if λ integer)

variance r(1−p)
p2

(1−p)
p2

λ

skewness 2−p√
(1−p)r

2−p√
(1−p)

1√
λ

kurtosis 3 + 6
r +

p2

(1−p)r 9 + p2

(1−p) 3 + 1
λ

Poisson distribution and the negative binomial distribution with large parameter r = 50, there

is still a considerable difference in the far right tail. Figure 6 shows that the ratio of the Poisson

and negative binomial PMF tends to 0, also for r = 50, so that extreme outliers are relatively

much more likely for the negative binomial PMF.

2.1.1 A Poisson-Gamma mixture representation

The negative binomial distribution can also be specified as the marginal of a Poisson(λ) distri-

bution, where λ > 0 is a random variable having a gamma distribution with shape parameter r

(r > 1) and rate parameter p
1−p (0 < p < 1):

pNB(yi|r, p) =

∫ ∞

0
pPoisson(λi)(yi) pGamma

(
r, p

1−p

)(λi) dλi, (1)

see Appendix A.

So, we have as the joint probability mass/density function of (yi, λi):

p(yi, λi|r, p) = p(yi|λi)p(λi|r, p) =
λyi
i exp(−λi)

yi!

(
p

1−p

)r
λr−1
i exp

(
−λi

p
1−p

)
Γ(r)

. (2)

We note the analogue between the negative binomial and the Student-t distribution. The former

is the marginal of a Poisson-gamma mixture for count data while the latter is the marginal

of a normal-gamma mixture for continuous data, where the negative binomial and Student-t
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Figure 2: Probability mass function pNB(p,r)(yi) =
Γ(r+yi)
Γ(r)yi!

(1− p)yipr with p = 0.5 for different
values of the parameter r

Figure 3: Probability mass function pGeom(p)(yi) = (1−p)yip for different values of parameter p

Figure 4: Probability mass function pPoisson(λ)(yi) = λyie−λ

yi!
for different values of the mean

parameter λ
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Figure 5: Comparison of probability mass functions of negative binomial distributions and
Poisson distribution (all with mean 5)

Figure 6: Ratio of probability mass functions of Poisson distribution and negative binomial
distributions (all with mean 5)

distributions tend to the Poisson and normal distribution, respectively, if the shape parameter

tends to infinity.

In this paper, we contribute by introducing a reparameterization that connects the param-

eters r and p of the negative binomial with the mean of this distribution. Moreover, this repa-

rameterization facilitates the simulation-based Bayesian estimation of the model. It is given
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as:

µ =
r(1− p)

p
, (3)

r̃ =
1

1 + r
, (4)

with inverse transformation

r =
1− r̃

r̃
, (5)

p =
r

r + µ
=

1− r̃

1− r̃ + µr̃
. (6)

This reparametrization has multiple advantages. First, it is easily interpreted as the mean of the

negative binomial distribution. Second, the conditional augmented data posterior distribution

of µ is a well-known distribution: a truncated version of the inverse gamma distribution, as

discussed below. Third, the transformed shape parameter r̃ takes its values in the finite inter-

val (0, 12), which facilitates the specification of a (non-informative) prior and the Monte Carlo

simulation of the posterior. The possibly fat right tail of the distribution of the original, un-

transformed parameter r may harm the efficiency of the MCMC method – for example, due to

long sequences of relatively high values of r and/or because it is difficult to tune an appropriate

standard deviation of the candidate steps in a random walk Metropolis(-Hastings) step for r.

The simulation of the transformed parameter r̃ does not suffer from these problems.

Using a set of simulated data from the negative binomial distribution with p = 3/8 and r = 1

(or equivalently µ = 5 and r̃ = 1/4), we show in Figure 7 the shape of the likelihood for the

parameters r and p and compare it with the likelihood shape using the transformed parameters

µ and r̃. Clearly the latter shape shows more curvature than the former which is an indication

that the resulting shape of the posterior is more well-behaved. This usually helps the mixing

properties and computational efficiency of the MCMC procedure.
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Figure 7: Log-Likelihood Surface for Negative Binomial Model

True parameter values: p = 0.375, r = 3.00, µ = 5.00 and r̃ = 0.25.

Using this reparameterization we have

pNB(yi|r̃, µ) =
Γ(yi +

1−r̃
r̃ )

yi! Γ
(
1−r̃
r̃

) (
µr̃

1− r̃ + µr̃

)yi ( 1− r̃

1− r̃ + µr̃

)( 1−r̃
r̃ )

(7)

p(yi, λi|r̃, µ) =
λyi
i exp(−λi)

yi!

rrµ−rλr−1
i exp

(
−λi r

µ

)
Γ(r)

(8)

with r = 1−r̃
r̃ , where (7) is the reparameterized version of the PMF in Table 1 and where (8) is

the reparameterized, more convenient version of (2).

This representation implies that we can make use, in a Monte Carlo simulation procedure,

of a known conditional augmented data likelihood/posterior of the mean parameter µ instead of

facing a non-standard conditional likelihood/posterior where a Metropolis step has to be used

instead of a Gibbs step for the mean parameter µ.

2.1.2 A mixture of shifted negative binomial distributions

We now specify the class of a finite mixture of shifted negative binomial distributions. Let

yi for i = 1, . . . , n be independent realizations from a mixture of J shifted negative binomial

distributions:

yi − κj ∼ NB(µj , r̃j) if zij = 1 for i = 1, . . . , n; j = 1, . . . , J, (9)
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where zij = 1 if yi belongs to component j, and 0 otherwise and the latent variable distribution

is defined as Pr[zij = 1] = πj , for i = 1, . . . , n; j = 1, . . . , J, with πj ≥ 0 for j = 1, . . . , J and∑J
j=1 πj = 1, and where the shift parameter κj is a non-negative integer. That is,

p(yi|θ) =
J∑

j=1

πj
Γ
(
yi − κj +

(
1−r̃j
r̃j

))
(yi − κj)! Γ

(
1−r̃j
r̃j

) (
(1− r̃j)

(1− r̃j) + µj r̃j

)( 1+r̃j(yi−κj−1)

r̃j

)(
r̃jµj

1− r̃j

)yi−κj

(10)

p(yi, λi|θ) =
J∑

j=1

πj
λ
yi−κj

i exp(−λi)

(yi − κj)!

r
rj
j µ

−rj
j λ

rj−1
i exp

(
−λi rj

µj

)
Γ(rj)

(11)

with θ = {µ, r̃, κ, π}, µ = {κ1, . . . , κJ}, r̃ = {r̃1, . . . , r̃J}, κ = {κ1, . . . , κJ} and π = {π1, . . . , πJ}.

This class of a finite mixture of shifted negative binomial distributions is a very flexible class of

distributions for non-negative integer data that allows for multimodality, underdispersion and

overdispersion. In Section 4 we show the usefulness of the added flexibility in three sets of

empirical data from different scientific fields.

2.2 Likelihood and prior

Given data y = {y1, . . . , yn} and latent variables zi = {zi1, . . . , ziJ}, z = {z1, . . . , zn} and

λ = {λ1, . . . , λn}, the augmented likelihood for the parameters θ of model (9) (where the latent

variables λ are integrated out) follows directly from subsection 2.1:

l (θ| y, z) =


∏n

i=1

∏J
j=1

[
Γ(yi−κj+rj)
(yi−κj)! Γ(rj)

(1− pj)
rjp

yi−κj

j

]zij
π
zij
j , yi = κj , κj + 1, . . . , ∀i, j with zij = 1

0, otherwise,
,

(12)

and the augmented likelihood for θ given data y, latent variables z and λ is:

l (θ|y, z, λ) = (13)
∏n

i=1

∏J
j=1

λ
yi−κj
i exp(−λi)

(yi−κj)!

r
rj
j µ

−rj
j λ

rj−1

i exp

(
−

λi rj
µj

)
Γ(rj)

zij

π
zij
j , yi = κj , κj + 1, . . . , ∀i, j with zij = 1

0, otherwise,

where rj =
1−r̃j
r̃j

and pj =
rj

rj+µj
, j = 1, 2, . . . , J .
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Given the specification of the flexible class of distributions and the implied likelihood, we

discuss our motivation and specification of the prior. It is relevant to distinguish between

experimental sciences like medicine where data on treatment and control groups are collected

and non-experimental sciences, that we deal with, where data are given and a diagnostic data

step is usually taken to determine a plausible class of models and priors, implying that the latter

are typically data dependent. We take the point of view that in the scientific fields where we

analyze data, it is of interest to let the information in the likelihood dominate the information

in the prior. Therefore, we make use of uninformative but proper priors for the parameters.

Specifically, we make use of continuous and discrete uniform priors defined on bounded regions

for µj , r̃j and κj and a symmetric Dirichlet prior for the weight parameters πj :

µj ∼ Unif(µmin, µmax), (14)

r̃j ∼ Unif

(
0,

1

2

)
, (15)

κj ∼ DiscUnif(κmin, κmax), (16)

(π1, . . . , πJ) ∼ Dirichlet(α, . . . , α). (17)

where Unif and DiscUnif denote the continuous and discrete uniform distributions, respectively.

We set [µmin, µmax] = [κmin, κmax] = [0,M ] with M equal to the maximum of the data sample,

M = max(yi|yi = 1, . . . , n). Similar results are obtained for different large values of M , so that

the prior does not need to be data-dependent. Note that r̃j <
1
2 and rj > 1 imply that we have

rjnj − 1 > 0 (even if nj , the number of observations belonging to component j, is equal to 1),

so that the conditional posterior distribution of µj is a truncated version of an inverse gamma

distribution (from which one easily simulates using inverse transform sampling). For 0 < rj ≤ 1

it would be possible that rjnj − 1 ≤ 0, in which case the conditional posterior distribution of µj

would still be proper, but no longer a truncated version of an inverse gamma distribution. Then

its properness would only stem from the fact that µj takes its values on the finite interval [0,M ],

since on the infinite interval [0,∞) the right tail of the conditional posterior of µj would not

have a finite integral. The assumption that rj > 1 does not seem very restrictive. In literature

it is sometimes assumed that the parameter r of the negative binomial distribution is a positive
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integer, in which case one has r ≥ 1. The geometric distribution (corresponding to r = 1) allows

for infinite right skewness and kurtosis (for p → 1).

3 Markov chain Monte Carlo method

Alternative MCMC methods exist for the estimation of the model parameters and number of

components of a mixture process. We apply the SFM MCMC algorithm, see Malsiner-Walli

et al. (2016) and Malsiner-Walli et al. (2017). This method consists of initially overfitting

the number of mixture components by choosing a number that is larger than the number of

components expected to describe the data. Next, a sparse hierarchical prior on the mixture

weights is applied to shrink the model space to a credible number of components. The authors

show that the SFM approach is more reliable than Dirichlet process mixtures which are known

to overfit the number of components (Miller and Harrison, 2013), and that the SFM approach is

conceptually simpler and substantially easier to implement than the Reversible Jump MCMC,

see Green (1995); Richardson and Green (1997).

We note that, to the best of our knowledge, for the case of a set of non-experimental multi-

modal data there does not exist a theorem that shows which MCMC method, simulating draws

from posterior distributions of mixture processes, is uniformly superior in terms of convergence

properties and robustness. Different information content between model, prior information and

data play an important role in choosing which MCMC method is most suitable in a certain case.

The choice of the SFM MCMC method turns out to be easy to implement and seems efficient

in our applications.

Two practical issues are important for the implementation of the SFM MCMC method.

First, its mixing quality is an important indication for the (speed of) convergence of the algo-

rithm, no matter the application of the model. Since data in the non-experimental sciences are

usually given, an initial visual data inspection, as discussed earlier for the default data, inflation

expectations data and DNA data, is a very common sense strategy in order to obtain a good

guess on the prior for the parameters, see Frühwirth-Schnatter (2011), in particular, a plausible

value and range of the shift parameter is useful. This may have a substantial effect on the speed

of convergence of the SFM procedure. Second, in this study we are interested in the predictive

14



distribution of the observable variables of our datasets in order to credibly determine the num-

ber and location of modes. We are not interested in the identification of the mixture structure.

Therefore, label switching is less of an issue here.

3.1 Sparse Finite Mixture Markov Chain Monte Carlo

For ease of exposition, we start to present the proposed MCMC procedure for the case of known

number of non-empty components (with fixed Dirichlet prior for (π1, . . . , πJ)). For background

on the case of a given number of components, J , we refer to Frühwirth-Schnatter (2006), Chapter

3. After that, we extend this to the case of unknown number of non-empty components (with

hierarchical prior for (π1, . . . , πJ)), the case of the sparse finite mixture. We make use of the priors

(14)–(17) which yield in combination with the likelihood the following conditional posteriors:

λi|yi, zi, θ ∼ Gamma

yi +
J∑

j=1

zij(−κj + rj),
1∑J

j=1 zijpj

 (18)

p(κj |y, z, θ−κ) ∝
∏

i|zij=1

Γ(yi − κj + rj)

(yi − κj)!
× p

∑
i|zij=1

(yi−κj)

j (19)

1

µj

∣∣∣∣ y, z, λ, θ−µ ∼ Gamma[ 1
M

,∞)

rjnj − 1, rj
∑

i|zij=1

λi

 (20)

p(r̃j |y, z, θ−r̃) ∝
(
Γ

(
1− r̃j
r̃j

))−nj

× (21)

∏
i|zij=1

Γ

yi −
J∑

j=1

zijκj +

(
1− r̃j
r̃j

)×

(
(1− r̃j)

(1− r̃j) + µj r̃j

)( 1+r̃j(yi−
∑J

j=1 zijκj−1)

r̃j

)(
r̃jµj

1− r̃j

)yi−
∑J

j=1 zijκj

π|z ∼ Dirichlet (n1 + α, . . . , nJ + α) , (22)

where rj =
1−r̃j
r̃j

and pj =
rj

rj+µj
(j = 1, 2, . . . , J), and where nj =

∑n
i=1 zij is the number of

observations in component j and κj is an integer in [κmin,min{mini|zij=1 (yi) , κmax}].

That is, λi (i = 1, . . . , n), µj (j = 1, . . . , J) and π are simulated from their conditional
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posterior distributions – Gamma, truncated inverse Gamma and Dirichlet distributions. κj

(j = 1, . . . , J) are simulated from their conditional posterior distributions on the grids of integer

values in [κmin,min{mini|zij=1 (yi) , κmax}], so that in this specific case of a discrete conditional

posterior distribution a Griddy-Gibbs step is equivalent with a Gibbs step. The parameters r̃j

(j = 1, . . . , J) are simulated using a random walk Metropolis(-Hastings) step using a Gaussian

candidate distribution with standard deviation 0.1.

This procedure is extended to the case of an unknown number of non-empty components

by applying the SFM MCMC algorithm. As noted earlier, this method consists of initially

overfitting the number of mixture components and next use a sparse hierarchical prior on the

mixture weights is to shrink the model space to a credible number of components.

To learn from the information set (data, likelihood and prior) how much sparsity is needed,

the concentration parameter in the Dirichlet distribution α has a Gamma hyperprior of the form:

α ∼ Gamma(aα, bα), (23)

where E(α) = aα/bα = 1
200 strongly favors small values. By Bayes theorem the conditional

posterior distribution of α given the partition P of components across observations, p(α|P) ∝

p(α)p(P|α), is given by

p(α) ∝ αaα−1 exp(−bαα), (24)

p(P|α) ∝ Γ(Jα)

Γ(n+ Jα)

K∏
k=1

Γ(nk + α)

Γ(α)
. (25)

Sampling from this distribution is done with a Metropolis-Hastings step.

3.2 Simulation-based mode inference for multimodal and asymmetric count

data

The simulation-based procedure proceeds as follows. One generates draws θ(m) = {µ(m), r̃(m), κ(m), π(m)}

(m = 1, . . . ,M), each defining a mixture of J (m) non-empty components of shifted negative bino-

mial distributions. We emphasize that draws of parameters r(m) and p(m) can be easily recovered

from µ(m) and r̃(m) using (5) and (6). The number of modes is treated as an unknown parameter
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and for each draw θ(m) the number of modes L(m) and their location is calculated. Each draw

θ(m) leads to a probability mass function

p(ỹ|θ(m)) =
J(m)∑
j=1

π
(m)
j p

NB(r̃
(m)
j , µ

(m)
j )

(
ỹ − κ

(m)
j

)
, (26)

where p
NB(r̃

(m)
j , µ

(m)
j )

(.) is the probability mass function of the negative binomial distribution

with mean µ
(m)
j and transformed shape parameter r̃

(m)
j .

The modes ym must satisfy either:

1. p(ym − 1) < p(ym) > p(ym + 1), or

2. p(ym − 1) < p(ym) = p(ym + 1) = . . . = p(ym + l − 1) > p(ym + l).

Case 1 is a unique mode which is clearly identified. Case 2 is a mode in which l consecutive

values of the posterior predictive probability mass function are of equal value. We count this as

a single mode, but keep track of each location. At the leftmost boundary 0 we count a mode if

p(0) > p(1), and at the rightmost boundary M we count a mode if p(M − 1) < p(M). We note

that simulation-based mode inference can be done efficiently with parallel Monte Carlo methods,

see, e.g., Basturk et al. (2016).

4 Empirical results for Financial, Economic and DNA Count

Data

We report results on the accuracy of the approximation of the PMF mixture of shifted negative

binomial distributions to the count data of Figure 1 including a comparison of the results from

our Bayesian method with frequentist testing methods. Next, credible evidence on locations of

modes with their implied uncertainty is shown.

4.1 Defaulted payment installments

In finance, the probability that a client of a bank is able to repay a loan may depend on the

number of defaulted payments and the uncertainty around it. Given the heterogeneity of the

population of bank clients, analysis of this issue may involve multimodal data characteristics
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of the distribution of repayments. Knowledge about these modal features is useful for risk

management. Using data from Dionne et al. (1996) repayment details of clients obtaining a loan

from a financial institution in Spain in 1990 are studied. This dataset consists of 4,691 count

observations ranging from from 0 to 34 defaulted loan payment installments which have been

used to study the expected costs of risk misclassification in credit scoring. Since then they have

been analyzed by, among others, Karlis and Xekalaki (2001) and Woo and Sriram (2007). We

note that these data are a typical example of ‘zero inflated count data’ and show a high degree of

‘overdispersion’. Moreover, the possible multimodality suggests that a single negative binomial

or a mixture of these distributions without the shift parameter may fail to approximate this data

distribution given the large mass at zero and the fat tail.

The estimated PMF of the mixture of shifted negative binomial distributions is shown in

Panel (a) of Figure 8. It leads to reasonably accurate estimates from a visual diagnostic point

of view. For comparison, we also provide a fitted mixture of shifted Poisson distributions in

Panel (b). The shifted Poisson mixture puts quite a bit of mass at zero, around 4-5, and in the

far right tail of the distribution around 10-20 while the shifted negative binomial mixture has

a tighter fit around counts of 0 and 4, without categorizing the observations in the right tail

as modes. This indicates a better ability of the shifted negative binomial mixture to capture

the multimodality and the tail behavior. The overdispersion parameter in the shifted negative

binomial distribution permits it to put relatively less weight on the observations in the right tail

of the distribution, which implies that the estimation results are more robust in case of outliers.

This prevents finding spurious modes. However it is still difficult to determine visually from a

figure whether this is a feature of the data or the model.

In order to analyze which model is preferred by the data we consider the log-predictive

likelihoods of each model in Table 3. These predictive likelihoods were computed using the cross-

validation density (see Eklund and Karlsson (2007) and references therein). For the default data,

we find that the log-predictive likelihood of the mixture of shifted negative binomial distributions

is larger than the associated value for the mixture of shifted Poisson distributions. This suggests

that the mixture of shifted negative binomial distributions does a better job at predicting the

data.

The results so far motivate us to look at a more substantive analysis of the empirical results.
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Figure 8: Default Data, Fitted Mixtures and Modal Inference

The first issue is the basic question whether the PMF of the data is unimodal or multimodal

which can be addressed through a straightforward hypothesis test procedure. Results from the

Silverman (1981) test, the Hall and York (2001) test, the Cheng and Hall (1998) test and the

Hartigan and Hartigan (1985) test are provided in the top row of Table 2 together with the

results using our proposed Bayesian procedure. For the frequentist test results, we find that

while the Cheng and Hall test rejects the null hypothesis at the 5% level of significance, the

remaining three tests all fail to reject the null. The Bayesian results from the shifted negative

binomial mixture suggest that the posterior probability of uni-modality is 0%. This implies that

the posterior probability of multimodality is 100%. This is further illustrated in Panel (a) of

Figure 8, which provides strong evidence in favor of a multimodal mixture distribution.
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Table 2: Hypothesis test results

Data set Silverman Hall and York Cheng and Hall Hartigan and Hartigan Bayesian

Default 0.51 0.09 0.01 0.48 0.00

Inflation 0.73 0.42 0.00 0.00 0.02

DNA 0.69 0.41 0.49 0.96 1.00

Hypothesis test results for H0 : Nmodes = 1, H1 : Nmodes ≥ 2, with Nmodes the number of modes of the data

distribution. Results for Frequentist tests are p-values associated with the null hypothesis. Result for the Bayesian

test is the posterior probability of uni-modality.

We re-emphasize that a key advantage of our proposed Bayesian procedure is the direct

obtained information about the number of modes, their locations and the degree of uncertainty

surrounding them. The central column of Panel (a) in Figure 8 shows the number of modes for

the shifted negative binomial mixture along with their posterior probabilities. There is credible

posterior support for a total of two modes, with 100% posterior probability for two modes with

a fat right tail. The right column of Panel (a) in Figure 8 shows the location of the modes along

with their posterior probabilities. We observe that there are modes at values 0 and 4. The

results for the shifted Poisson mixture indicate however more than two modes (albeit with low

probability) where the third mode appears to be a spurious one.

Table 3: Log-predictive Likelihood Results

Data set Shifted Negative Binomial Shifted Poisson

Default -6984 -7015

Inflation -1373 -1374

DNA -1674 -1773

Notes: Average log-predictive likelihoods of all observations, computed using the cross-validation density

approach (see Eklund and Karlsson (2007) and references therein).

In conclusion, our analysis using a mixture of shifted negative binomial distributions with

financial count data leads to credible estimates of number and locations of modes which may be

used for the institution’s policy of granting loans. Our results could be used by a risk manager
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to categorize clients according to their defaulted installment behavior. For each client, it is

typically the case that information is provided regarding their individual characteristics, e.g.,

income, profession, etc, at the beginning of the contract. In further research such micro-data

could be used within our methodology as explanatory variables to develop more detailed risk

management profiles and quantify the expected costs of risk misclassification in credit scoring.

4.2 Inflation Expectations

We consider count data from survey responses to the question “By what percentage do you ex-

pect prices to go up, on average, during the next 12 months?”, from the University of Michigan’s

Surveys of Consumers, which are shown in Figure 1. The right panel in Figure 1 contains re-

sponse data in 2023 with a total of 480 observations. It is notable that many respondents select

round numbers 10%, 20% or even 30% which suggests that such behavior is indicative of high

uncertainty. Visually, there are two lower modes at 0% and 3-4%, suggesting a de-anchoring of

inflation expectations away from the central bank’s target of 2% and a mode at 30%. This sug-

gests that inflation expectations have widespread disagreement, both within the subgroup with

‘credible’ expectations and the subgroup with ‘incredible’ expectations. Heterogeneity within

the joint distribution of private agents’ inflation expectations has been linked with alternative

learning (Pfajfar and Santoro, 2010) and economic (il)literacy (Burke and Manz, 2014). In these

studies multimodality is typically “eyeballed” from the data but our flexible class of shifted neg-

ative binomial mixtures can be used to formally detect and explore this phenomenon to which

we now turn.

The estimated PMF of the mixture of shifted negative binomial distributions is shown in

Panel (a) of Figure 9. For comparison, the fitted mixture of shifted Poisson distributions is

shown in Panel (b). It is seen that both mixtures have a similar distribution of mass in the

center but that the shifted Poisson mixture also puts some mass for a mode in the far right

tail of the distribution while the shifted negative binomial mixture does not categorize these

observations as modes. This again indicates a better ability of the shifted negative binomial

mixture to capture the tail behavior. The overdispersion parameter in the shifted negative

binomial distribution permits it to put relatively less weight on the observations in the right tail

of the distribution, which implies that the estimation results are more robust in case of outliers.
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This prevents finding spurious modes. The log-predictive likelihoods of each model are shown in

the middle row of Table 3. It is seen that in terms of this measure of fit both mixtures do not

differ much.

Results from the frequentist and Bayesian test procedures about the existence of multiple

modes are shown in the middle row of Table 2. For the frequentist test results we find conflicting

evidence on the existence of multiple mode: two test do not reject the null hypothesis of a single

mode at the 5% level of significance while two tests reject the null. The Bayesian result from the

shifted negative binomial mixture suggest that the posterior probability of unimodality is 2%.

The central column of Panel (a) in Figure 9 shows that both mixtures give evidence about

more than one mode. However, the shifted negative binomial mixture gives substantial support

for two modes while the mixture of Poissons gives some posterior probability to three modes.

The right column of Panel (a) in Figure 9 shows the location of the modes along with their

posterior probabilities. The third mode of the Poisson mixture seems to be a spurious one.

We conclude that the evidence about the location of modes from the shifted binomial mixture

is more credible than the shifted Poisson mixture from an economic perspective.
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Figure 9: Inflation Expectations Data, Fitted Mixtures and Modal Inference
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4.3 DNA tandem repeats data

In bioinformatics it is known that more than half of the human genome consists of repetitive

DNA. Tandemly repeated DNA sequences comprise a substantial proportion thereof. In different

populations one can identify commonalities and differences of so-called Macro-Satellite Repeats

(MSRs) as a particular group of repetitive DNA sequences with evidence of multimodal size

distributions. Estimating the number and location of modes in such distributions is important

since observed deviations in the configurations of MSRs may indicate genetic diseases, see Bruce

et al. (2009) and Balog et al. (2012) among several others. Schaap et al. (2013) provide the

first comprehensive study of MSRs in different human populations, using mixtures of shifted

Poisson distributions with a given number of components – based on the Bayesian Information

Criterion (BIC). We construct a mixture of shifted negative binomial distributions to estimate

posterior features using counts of DNA tandem repeat data for the case of D4Z4 illustrated

in Figure 10. These data are obtained from 270 unrelated human DNA samples from Asian,

African and Caucasian origin, see Schaap et al. (2013). It is of substantial interest to analyze

the number and location of modes in the data, since differences in these values may next be

linked to e.g. genetic diseases.

The estimated PMF for the mixture of shifted negative binomial distributions is shown in

panel (a) of Figure 10. For comparison in panel (b) gives the PMF of the estimated mixture of

shifted Poissons. The shifted Poisson mixture indicates four modes while the shifted negative

binomial mixture indicates unimodality without categorizing the observations in both tails as

modes. We re-emphasize that the overdispersion parameter in the shifted negative binomial

distribution makes the estimation of this distribution more robust in case of outliers. The log-

predictive likelihood of the shifted binomial mixture in Table 3 is substantially better than the

shifted Poisson mixture.

Next, we explore the results of the frequentist tests and our Bayesian procedure about possible

multimodality given in the bottom row of Table 2. All four frequentist tests do not reject the null

hypothesis of unimodality at the 5% level of significance and the Bayesian procedure indicates

that the posterior probability of unimodality is 100%.

The second column of each sub-panel in Figure 10 shows the possible number of modes along
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Figure 10: DNA Data, Fitted Mixtures and Modal Inference

with their posterior probabilities. There we observe that the negative binomial mixture holds

on to one mode but the shifted Poisson to four modes. The third column of each sub-panel in

Figure 10 shows the location of the modes along with their posterior probabilities. We conclude

that the statistical evidence about the number of modes from the mixture of shifted binomials

is more credible than the results of the models of the mixture of shifted Poissons, based on the

predictive likelihoods.

5 Conclusions

We introduced a simulation-based Bayesian approach using a mixture of shifted negative bino-

mial distributions in order to estimate multimodal and asymmetric distributions for count data

sets and determine the number and location of modes with substantial posterior probability. For

computational efficiency, we applied the sparse finite mixture Markov chain Monte Carlo method

from Malsiner-Walli et al. (2016) in order to estimate the number of non-empty components of

the mixture.

For empirical analysis we made use of three count data sets from finance, economics and
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bioinformatics. Analysis of the financial data about repayment details of clients obtaining a

loan from a financial institution in Spain in 1990 yields evidence that the data distribution is

bimodal and has a fat right tail. A mixture of shifted negative binomial distributions leads to

credible estimates of location of modes which may be useful information for the institution’s

policy of granting loans.

Using count data of inflation expectations, we again find evidence that the data distribution

is bimodal and has a fat right tail, where the evidence about the location of modes from the

shifted binomial mixture is more credible than the shifted Poisson mixture from an economic

perspective.

Using count data of DNA tandem repeats from Schaap et al. (2013) we found that apply-

ing the proposed model and method provides substantial posterior probability for a unimodal

distribution in agreement with the frequentist tests.

More generally, our results indicate that the proposed methodology provides effective tools

for quantification of accuracy and uncertainty of the modes of multimodal data distributions

which is useful for forecasting and policy analysis.

In future research, we plan to compare the proposed method with other tests to detect

multimodality and to estimate in more detail quantiles of non-standard distributions for risk

analysis. The method can also be extended to multivariate (e.g. panel) data.
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A Specification of the negative binomial density as the marginal

of a continuous mixture of Poisson densities

The negative binomial density can be specified as the marginal density of a continuous mixture

of Poisson densities, where the mixing distribution of the Poisson rate is a gamma distribution.

Consider the negative binomial distribution as a Poisson(λ) distribution, where λ > 0 is a

random variable with a gamma distribution with shape parameter r and rate parameter p
1−p :

p(yi|r, p) =

∫ ∞

0
pPoisson(λi)(yi) pGamma(r, p

1−p
)(λi) dλi

=

∫ ∞

0

λyi
i exp(−λi)

yi!

(
p

1−p

)r
λr−1
i exp

(
−λi

p
1−p

)
Γ(r)

dλi

=

(
p

1−p

)r

yi! Γ(r)

∫ ∞

0
λyi+r−1
i exp

(
− λi

1− p

)
dλi

=

(
p

1−p

)r

yi! Γ(r)
(1− p)yi+rΓ(yi + r)

=
Γ(yi + r)

yi! Γ(r)
(1− p)yipr, (27)

where the fourth equality follows from the fact that for a > −1 and b > 0 we have

∫ ∞

0
λa exp(−bλ)dλ = b−(a+1)Γ(a+ 1) (28)

with a = yi + r − 1 and b = 1
1−p .
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