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Abstract

Score-driven models have been applied in some 400 published articles over the last
decade. Much of this literature cites the optimality result in Blasques et al. (2015),
which, roughly, states that sufficiently small score-driven updates are unique in locally
reducing the Kullback-Leibler (KL) divergence relative to the true density for every
observation. This is at odds with other well-known optimality results; the Kalman
filter, for example, is optimal in a mean squared error sense, but may move in the wrong
direction for atypical observations. We show that score-driven filters are, similarly, not
guaranteed to improve the localized KL divergence at every observation. The seemingly
stronger result in Blasques et al. (2015) is due to their use of an improper (localized)
scoring rule. Even as a guaranteed improvement for every observation is unattainable,
we prove that sufficiently small score-driven updates are unique in reducing the KL
divergence relative to the true density in expectation. This positive—albeit weaker—
result justifies the continued use of score-driven models and places their information-
theoretic properties on solid footing.

Keywords: generalized autoregressive score (GAS); dynamic conditional score (DCS); Kull-
back Leibler; censoring; scoring rule; divergence
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1 Introduction

The use of score-driven (SD) models has proliferated over the last decade. They were orig-

inally introduced by Creal et al. (2013) and Harvey (2013) and known by different names

and acronyms; recent literature (e.g., Artemova et al. 2022a,b, Harvey 2022) has converged

on the terminology of SD models. These models contain a distribution with a time-varying

parameter governing e.g. intensity, location, scale or shape. They are characterized by the

use of the score—the derivative of the (researcher-postulated) log-likelihood function with

respect to the time-varying parameter—to drive the dynamics of this parameter. This can

be viewed as a form of gradient ascent seeking to enhance the model fit locally after each

new observation. As SD filters track a moving target, they remain perpetually responsive;

hence, in contrast with gradient methods in the optimization literature, the time-varying

parameter does not converge. SD filters have been employed in a wide range of applications;

for a list of almost 400 published articles, see www.gasmodel.com. The majority of this

literature relies on the convenient (but questionable) assumption of correct specification in

that the SD filter is assumed to be the data-generating process.

Blasques et al. (2015) rightly question this assumption, investigating whether SD updates

based on misspecified densities yield an improved model fit when measured against the true

(but unknown) density. The difficulty is that gradient methods—by definition—use the most

recent observation to locally move the parameter to a region of better fit according to the

postulated density. However, the postulated density may be misspecified, and the latest

observation abnormal. To illustrate, even when the density is correctly specified, any single

observation used to fine-tune the model could have been an outlier, such that accommodating

it reduces the fit when measured against new observations. The key innovation in Blasques

et al. (2015) is to treat the observation yt ∈ Y ⊆ R used in the update at time t as fixed,

and to ask whether the model fit is improved when measured against a hypothetical (and

independent) redraw from the true distribution, which for clarity is denoted by a different

symbol, xt ∈ Y (or simply x ∈ Y when used as an integration variable).

1.1 Problem formulation

Suppose that for all t ∈ N, the observation yt ∈ Y is drawn from the random variable Yt

with true density pt, which could be a non-parametric density or depend parametrically on
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a true parameter, λt, in which case pt(·) ≡ p(·|λt). The parametric and possibly misspecified

researcher-postulated densities for Yt are ft|t−1(·) ≡ f(·|ϑt|t−1) before updating and ft|t(·) ≡
f(·|ϑt|t) after updating (by using the observed value yt), where ϑt|t−1 and ϑt|t represent the

researcher’s (previously) predicted and updated parameters, respectively. The canonical SD

update (essentially, a gradient step) reads ϑt|t = ϑt|t−1 + α∇ϑ(yt, ϑt|t−1), where α > 0 is the

step size or learning rate and ∇ϑ(yt, ϑt|t−1) := (∂/∂ϑ) log f(yt|ϑ)|ϑt|t−1
is the score. In turn,

predictions are based on updates; in the simplest case, ϑt+1|t = ϑt|t. While the prediction

and updating steps can always be merged into a single prediction-to-prediction recursion

(e.g., ϑt+1|t = ϑt|t−1 + α∇ϑ(yt, ϑt|t−1) in the simplest case), following Lange et al. (2024) we

find it conceptually useful to treat both steps separately; this is without loss of generality

and aligns with the literature on state-space models (e.g., Durbin and Koopman 2012).

Given a prediction ϑt|t−1 and a true density pt, Blasques et al. (2015) investigate whether,

for all yt ∈ Y , the expectation of log f(·|ϑt|t) based on an independent redraw xt ∈ Y exceeds

that of log f(·|ϑt|t−1); i.e., they ask if∫
Y
pt(x) log f(x|ϑt|t) dx

?
>

∫
Y
pt(x) log f(x|ϑt|t−1) dx, ∀yt ∈ Y . (1)

Here, the left-hand side depends on the realization yt via the update ϑt|t, while the hypo-

thetical redraw x from the true density pt is integrated out on both sides. The integration

range could be either the whole space Y , as indicated in inequality (1), or some subset, as

discussed below. If a (localized) version of inequality (1) could be shown to hold, uniquely

for SD updates or their equivalents, this would provide a strong argument for their use.

In information-theoretic terms, inequality (1) features the negative cross-entropies of

f(·|ϑt|t) and f(·|ϑt|t−1) on its left- and right-hand sides, respectively, relative to the true

density pt. Hence, inequality (1) is equivalent to asking whether an SD update based on

the observation yt ∈ Y reduces the Kullback and Leibler (1951, henceforth KL) divergence

relative to the true density, i.e.,

KL(pt∥ft|t)
?
< KL(pt∥ft|t−1), ∀yt ∈ Y , where (2)

KL(pt∥ft|t) :=

∫
Y
log

(
pt(x)

ft|t(x)

)
pt(x) dx. (3)

1.2 Proposed solution in the literature

Roughly, Blasques et al. (2015) state in their Propositions 1 and 2 that inequalities (1) and

(2) hold uniquely for SD updates (and their equivalents) under two “localization” conditions
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(visible in their equation (7)) regarding (i) the state space and (ii) the outcome space Y :

(i) ϑt|t is sufficiently close to ϑt|t−1, which can be achieved by limiting the learning rate α,

thus representing a localization in the state space, and

(ii) all integrals in (1) to (3), which average out the hypothetical redraw x ∈ Y , are trimmed

by ignoring values of x that are sufficiently far from yt. Specifically, the integration

range {x ∈ Y} below each integral is replaced by a small ball B around yt, implying a

localization in the outcome space.

According to Blasques et al. (2015, p. 330), SD updates are “locally realized KL optimal”,

which indicates the dependence on the locality conditions and the realization yt ∈ Y . Here

we emphasize the use of trimming as the localization technique; hence, we refer to Blasques

et al.’s (2015) locally realized KL measure as trimmed KL, or TKL for short; see (6) for the

definition.

This trimming approach in Blasques et al. (2015) is however not entirely satisfactory.

While the localization condition (i) regarding the difference ϑt|t − ϑt|t−1 is natural for all

gradient-based methods (e.g., Nesterov 2018), the localization condition (ii) involving trim-

ming in the outcome space is problematic. First, by forcing x to be similar to yt, it goes

against the original idea of letting x ∈ Y represent an independent redraw from the true

density. Second, as pointed out by Diks et al. (2011) and Gneiting and Ranjan (2011) in the

context of density forecasts, trimming implies the desired outcome

TKL(pt∥ft|t) < TKL(pt∥ft|t−1) whenever ft|t(x) > ft|t−1(x), ∀x ∈ B. (4)

Hence, we would obtain a reduction in the TKL measure whenever the updated density ex-

ceeds the predicted density on B, irrespective of the true density pt. This is less than ideal,

as a performance criterion that is disconnected from the true density cannot be informative.

Third, by integrating over B instead of the entire outcome space Y , the resulting TKL mea-

sure may turn negative, violating the standard non-negativity requirement for divergences

(Amari and Nagaoka 2000; De Punder et al. 2023). The correction by Blasques et al. (2018)

addresses this last concern by “hard-coding” non-negativity of the TKL measure into the

(corrected) definition, but neglects the first and second concern; in particular, the corrected

TKL measure remains uninformative about the true density, as we shall see in Section 3.1.
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1.3 Proposed contributions based on CKL and EKL divergences

To address the abovementioned concerns, we use a censored version of the KL divergence

in (3), denoted CKL, which is based on the censored likelihood score of Diks et al. (2011).

In contrast to the TKL measure, CKL is a localized divergence measure; hence, it can be

used to locally compare different distributions (De Punder et al. 2023). Our first main

result, Theorem 1, shows that SD filters are not guaranteed to improve the CKL divergence

relative to the true density. While somewhat discouraging, this finding is unavoidable: an

almost-sure improvement is a tall order. The Kalman filter, for example, is optimal in a

mean squared error sense (Durbin and Koopman 2012, p. 15), but may move in the wrong

direction when confronted with atypical observations; this is inherently hard to avoid.

As Theorem 1 shows, we obtain a reduction in the CKL divergence if and only if pt(yt) >

f(yt|ϑt|t−1); i.e., the true density should exceed the predicted density at the observation

yt. If this (practically unverifiable) condition holds, the resulting improvement is consistent

with Blasques et al. (2015, 2018). If it does not, we obtain the new result that SD updates

may actually deteriorate matters—a possibility not previously recognized. As both cases

occur with positive probability, Theorem 1 yields the new result that, for any given observa-

tion, SD updates may—or may not—reduce the CKL divergence relative to the truth. This

finding stands in contrast to a large and growing body of literature claiming that SD up-

dates are necessarily beneficial; recent examples include Holỳ and Tomanová (2022, p. 1653),

Delle Monache et al. (2023, p. 1014) and Ballestra et al. (2024, p. 376), who all credit Blasques

et al. (2015) with showing the guaranteed optimality of SD updates.

Based on Theorem 1, the best one can hope for is that, on average, the good behavior

dominates the bad. Our second main result, Theorem 2, confirms that, even as a guar-

anteed improvement at every time step is unattainable, sufficiently small SD updates are

unique in reducing the KL divergence relative to the true density in expectation. This

constitutes a strong argument in favor of the application of SD filters. While other de-

sirable properties have been established in the literature (see Section 1.4), SD updates are

not necessarily unique in delivering them; to our knowledge, Theorem 2 presents the first

information-theoretic characterization of SD updates. To this end, we introduce a new diver-

gence measure: the expected KL divergence, denoted EKL, where, in addition to the standard

(non-localized) integral over all x ∈ Y , we average out the observation yt (and hence the

update ϑt|t) using the true density pt. As both yt and x are now averaged out over the
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whole space Y , we can dispense with the localization condition that x should be similar to

yt; this allows us to avoid the problems in Blasques et al. (2015, 2018). In sum, Theorems 1

and 2 place the information-theoretic properties of SD models on solid footing, and will—we

hope—underpin their continued and effective use in a wide variety of applications.

1.4 Comparison with related information-theoretic results

Here we discuss related approaches in three recent papers. First, Gorgi et al. (2024) show that

the SD update ϑt|t represents an improvement over the prediction ϑt|t−1 in that, on average,

the update lies closer to the pseudo-true parameter, which is defined as the parameter that

minimizes the KL divergence of the postulated density from the true density. While moving

towards the pseudo-true parameter in expectation is desirable, this property is not necessarily

unique to SD updates, making their result weaker than our characterization of SD updates.

Moreover, the approach does not restrict the second moment of the updated parameter ϑt|t,

which could still be infinite. Here, we focus not on the parameter but on the associated

density update, taking into account its entire shape by employing the KL divergence to

compare it with the true density.

Second, Creal et al. (2024) show that SD updates reduce the expected generalized method

of moments (GMM) loss function: the expectation of the squared score is smaller when eval-

uated at the update ϑt|t than at the prediction ϑt|t−1. Their approach has some similarities

with our work in that they consider an improvement in expectation (albeit for a different

loss function), where the expectation involves two independent draws from the true density:

one to update the parameter, the other to evaluate the loss function. The expected GMM

loss is arguably less natural than the KL divergence as the pseudo-true parameter (based

on the KL divergence) does not necessarily minimize the expected GMM loss. Moreover, a

peculiarity of the update in Creal et al. (2024) appears to be that the score is pre-multiplied

by the inverse of the expectation—under the true density—of the negative Hessian of the

postulated log-likelihood function. This approach is infeasible in practice (as the true den-

sity is unknown), deviates from the standard SD setup (which employs only the postulated

density), and may yield a negative scaling if the model density is misspecified.

Third, Beutner et al. (2023) investigate the behavior of SD updates under “in-fill” asymp-

totics, which means that the number of observations per unit of time increases to infinity.

They show that, for each point in time, the filtered parameter path converges in proba-
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bility to the pseudo-true parameter path; they also establish convergence rates and derive

the asymptotic distribution. While SD updates achieve the lowest asymptotic error under

correct specification, the same cannot be established for the misspecified case.

Although the properties discussed in Gorgi et al. (2024), Creal et al. (2024) and Beutner

et al. (2023) may offer certain advantages, it is unclear whether SD updates are unique in

achieving them. In contrast, our work demonstrates that within the class of updating rules

local to the state space, only SD updates (or their equivalents) are guaranteed to achieve

EKL reductions. This finding holds for both correct and incorrect model specifications.

To the best of our knowledge, this result is unique in providing an information-theoretic

characterization of SD updates.

2 Preliminaries

This section starts our formal analysis. For some connected outcome space Y ⊆ R, we

consider a univariate stochastic process {Yt : Ω → Y}Tt=1 from a complete probability space

(Ω,F ,P) to a measurable space (YT ,B(YT )). The true conditional distribution of Yt given

Ft−1 := σ(Ys; s ≤ t− 1) is denoted by Pt ∈ P , where P is the class of absolutely continuous

distributions on Y with Lipschitz-continuous densities pt. In denoting (conditional) expec-

tations, we are explicit about the density relative to which the integral is taken, e.g., using

Ept [·] for the expectation with respect to pt. We sometimes abuse notation and write Yt ∼ pt

or pt ∈ P for densities pt.

2.1 Updating rules and score-driven filters

The researcher-postulated (and typically misspecified) predictive density for Yt is ft|t−1(·) ≡
f(·|ϑt|t−1), where ϑt|t−1 ∈ Θ ⊆ R denotes the researcher’s predicted parameter based on

the information set Ft−1. The specification of the model density f(·|ϑt|t−1) may implicitly

include a link function (see Harvey 2022, p. 324–326, e.g. the exponential link), which is often

used to map the time-varying parameter (e.g., the logarithmic variance) to a meaningful

domain (e.g., the positive real line). The postulated density f(·|ϑt|t−1) may further depend

on static parameters or exogenous variables known at time t − 1, which are suppressed for

readability; similarly for other densities below. Using the real-time information set Ft (i.e.,

including the observation yt drawn from Yt), the researcher computes an updated parameter
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ϑt|t = ϕ(yt, ϑt|t−1), where the function ϕ is called the updating rule that typically depends on

static parameters (e.g., the learning rate) that are suppressed in the notation. For a general

updating rule ϕ, we denote the difference between the updated and predicted parameters for

time t as ∆ϕ(yt, ϑt|t−1) := ϕ(yt, ϑt|t−1)− ϑt|t−1 = ϑt|t − ϑt|t−1.

The hope is that the updated density ft|t(·) ≡ f(·|ϑt|t) represents an improvement over

the predicted density ft|t−1(·). A natural objective for the updating rule would be to try

to maximize Ept [log f(Xt|ϑ)] with respect to ϑ; according to this criterion, the pseudo-truth

achieves optimality. However, as this objective function is unobservable in practice due to

the expectation involving the unknown true density pt, stochastic-gradient methods suggest

using the observed gradient, i.e., ∇ϑ(yt, ϑt|t−1) := (∂/∂ϑ) log f(yt|ϑ)|ϑt|t−1
, to update the

parameter in the direction of steepest ascent; this logic leads to the popular class of SD

filters or updates (Blasques et al. 2015):

Definition 1 (SD update). The SD updating rule reads ϑt|t = ϕSD(yt, ϑt|t−1) := ϑt|t−1 +

α∇ϑ(yt, ϑt|t−1) with learning rate 0 < α < ∞. An updating rule ϕ is called score-equivalent

if sign
(
∆ϕ(yt, ϑt|t−1)

)
= sign

(
∇ϑ(yt, ϑt|t−1)

)
, ∀(yt, ϑt|t−1) ∈ Y ×Θ, where sign(0) := 0.

Score-equivalent updates move the parameter in the same direction as the SD updating

rule ϕSD. E.g., score-equivalence is evident for the widely-used scaled SD updating rule

ϕSSD(yt, ϑt|t−1) := ϑt|t−1 + αSt|t−1∇ϑ(yt, ϑt|t−1), where St|t−1 is an Ft−1-measurable scaling

function that allows for additional flexibility in the updating rule; see e.g., Creal et al. (2013,

eq. 3). As the scaling function St|t−1 is independent of yt, and assumed to be strictly positive

as in Blasques et al. (2015), for the purpose of theory development, it simply acts as a

positive constant. Without loss of generality, therefore, we henceforth set St|t−1 = 1.

Having formalized the class of SD updates, we turn to the prediction step of the frame-

work. Following Blasques et al. (2015), we focus on the simplest case: the identity mapping

ϑt+1|t = ϑt|t. In practice, researchers often employ the linear transformation ϑt+1|t = ω+βϑt|t,

where |β| < 1 governs the mean reversion. Keeping the prediction and updating steps sepa-

rate, as we do here, is without loss of generality as they can always be merged into a single

prediction-to-prediction step: Combining the linear mapping ϑt+1|t = ω + βϑt|t with the SD

update in Definition 1 yields ϑt+1|t = ω+β(ϑt|t−1+α∇ϑ(yt, ϑt|t−1)). Up to reparametrization,

this is precisely the standard formulation of SD models. Following Lange et al. (2024), we

view both steps as being conceptually distinct: based on a given observation yt, the updating
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step aims to improve the fit relative to the true density pt from which yt was drawn, while

the prediction step aims to improve the fit relative to the future density pt+1, from which no

observations have (yet) been received. The latter is arguably more difficult as nothing can be

said about pt+1 based on yt, unless we know something about the (possibly mean-reverting)

dynamics of pt.

2.2 Divergence measures, scoring rules and their localization

To analyze how the researcher’s updated density ft|t compares to the true density pt, it

is standard to employ divergence measures such as the Kullback and Leibler (1951, KL)

divergence in (3); for an overview, see Amari and Nagaoka (2000). For two distributions

P, F ∈ P that we represent by their densities p and f , a divergence measure D(p∥f) is an

(extended) real-valued function that satisfies (i) D(p∥f) ≥ 0 and (ii) D(p∥f) = 0 if and only

if p = f (formally, if and only if p(Y ) = f(Y ) p-a.s. for Y ∼ p).

A popular construction of divergence measures is through scoring rules S(f, Y ), which

map a density f (or more generally, a distribution F ) and a random variable Y ∼ P with

density p to an (extended) real value. Omitting mathematical subtleties, a scoring rule is

called proper if EP [S(f, Y )] ≤ EP [S(p, Y )] for all f and strictly proper if the inequality is

an equality if and only if f = p; for details, see Gneiting and Raftery (2007). To avoid

confusion, we emphasize that scoring rules are unrelated to the score in Definition 1.

For any strictly proper scoring rule, the difference between expected scores DS(p∥f) :=
Ep[S(p, Y )]− Ep[S(f, Y )] is a divergence measure as it is non-negative and zero if and only

if p = f . E.g., taking the logarithmic scoring rule S(f, y) = log f(y), we obtain the KL

divergence KL(p∥f) = Ep[log p(Y )]− Ep[log f(Y )] ≥ 0 with equality if and only if p = f .

In the literature, several (initially unsuccessful) attempts were made at localizing scoring

rules. For example, Amisano and Giacomini (2007) use trimming to introduce the weighted

likelihood scoring rule, wlA(f, y) := 1A(y) log f(y), where A ⊆ Y is some region of interest

and 1A(y) equals unity if y ∈ A and zero otherwise. This scoring rule is localizing in that

densities that coincide on A achieve the same score for all y ∈ Y . As independently pointed

out by Diks et al. (2011) and Gneiting and Ranjan (2011), however, it fails to be proper, as

the following conclusion is immediate from its definition:

f1(y) > f2(y), ∀y ∈ A =⇒ wlA(f1, y) > wlA(f2, y), ∀y ∈ A. (5)
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As (5) holds for all y ∈ A, it also holds in expectation and even if f2 is the true density, hence

illustrating the impropriety of the weighted likelihood scoring rule. This deficiency leads to

the problems of the TKL-measure of Blasques et al. (2015) mentioned in (4). For the same

reason, the TKL measure can become negative; hence, it is not a divergence measure.

In response to these problems, Diks et al. (2011) propose the locally proper censored

likelihood scoring rule clA(f, y) := 1A(y) log f(y) + 1Ac(y) logF (Ac), where F (Ac) denotes

the probability the distribution F assigns to Ac, the complement of A. Here, censoring

accounts for the omitted set Ac in an aggregated form. De Punder et al. (2023) generalize

the concept of censored scoring rules and provide a definition of localized divergences:

Definition 2 (Localized divergence measure). For any two densities p, f ∈ P with Y ∼ p

and a localization set A ⊆ Y, a localized divergence DA(p∥f) satisfies

(i) DA(p∥f) ≥ 0 and (ii) DA(p∥f) = 0 ⇐⇒ p(Y )1A(Y ) = f(Y )1A(Y ), p-a.s.

The TKL measure in Blasques et al. (2015), mentioned in Section 1.2 and formalized

below in (6), is essentially based on the improper weighted likelihood scoring rule and does

not satisfy the requirements of Definition 2.

3 Localized Kullback-Leibler criteria

3.1 Trimmed Kullback-Leibler measure

As discussed in the introduction, a guarantee that SD models globally improve the KL diver-

gence as in (1)–(2) is infeasible; some form of localization is required. While the localization

in the state space (e.g., by limiting the step size α) is uncontroversial, Blasques et al. (2015)

consider a KL-type measure that restricts x to be close to yt by trimming the outcome space,

TKLB(pt∥ft|t) :=
∫
B

log

(
pt(x)

f(x|ϑt|t)

)
pt(x)dx. (6)

Here, the integration range is restricted to some neighborhood B ≡ Bδ(yt) := {x ∈ Y :

|x− yt| ≤ δ} around the realization yt for some (small) δ > 0. Hence, this measure ignores

(i.e., trims) all potential outcomes outside the ball B.
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Blasques et al. (2015) call an updating scheme ϕ (locally) optimal1 if it guarantees a TKL

reduction for any realization yt ∈ Y , i.e., if

∆TKL
δ (ϕ) ≡ ∆TKL

δ (ϕ|yt, ϑt|t−1, pt) := TKLB
(
pt∥ft|t

)
− TKLB

(
pt∥ft|t−1

)
< 0. (7)

The idea behind the criterion ∆TKL
δ (ϕ) < 0, which we call TKL-reducing, is that when

updating the model density from ft|t−1 to ft|t, the discrepancy with respect to the true density

pt should decrease, at least locally around the observation yt. Roughly, Blasques et al. (2015,

Proposition 1–2) establish that SD updates are unique in guaranteeing ∆TKL
δ (ϕ) < 0 for all

yt ∈ Y . This would seem to present an attractive theoretical feature distinguishing SD

updates from all other updating rules; as such, to justify the chosen approach, the majority

of articles on SD filters since 2015 mention this property.

The conclusions in (4) and (5) however imply that localization by trimming, which re-

stricts the integration area to B, yields a criterion that is disconnected from the true density

and hence cannot be informative. Perhaps most strikingly, even if the predicted density were

perfect in that ft|t−1 = pt, according to the proposed TKL-criterion, it would be considered

favorable to adjust away from the true density as long as ft|t > ft|t−1 on B. The following

example illustrates this predicament for a SD filter applied to a dynamic-location model.

Example 1. Consider the sequence of true distributions Yt|Ft−1 ∼ pt = N (λt, 1) with the

time-varying conditional mean λt, for which we use the (correctly specified) model ft|t ∼
N (ϑt|t, 1) based on the time-varying model parameter ϑt|t. The Gaussian model likelihood

implies the SD update ∆ϕ(yt, ϑt|t−1) = α(yt−ϑt|t−1) with learning rate α > 0. Hence, the SD

update drives the conditional mean in the direction of the observation yt relative to ϑt|t−1.

Each panel in Figure 1 shows the starting density ft|t−1(·) = f(·|ϑt|t−1) in red together with

the updated density ft|t(·) = f(·|ϑt|t) in blue based on the (same) realization yt and associated

ball B ≡ Bδ(yt) around yt. The true (and unknown) density pt(·) = p(·|λt) in black varies

across panels to illustrate four possible scenarios, where the true density is shifted to the left

or right of the predicted density, or happens to coincide with the predicted or updated density.

1We deviate from Blasques et al. (2015) and Gorgi et al. (2024) and avoid the word “optimal” if an

updating rule represents an improvement according to some criterion. First, many updating rules could

achieve improvements, implying that all of them were “optimal”. Second, some updating rules may achieve

larger improvements than others; hence, some would be “more optimal”. Instead, if inequality (7) holds, we

simply say that the updating rule is TKL-reducing ; and similarly for CKL and EKL reductions later on.
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ϑt|t−1ϑt|t

λt

yt
δ δ

pt = ft|t−1ft|t

(a) λt = ϑt|t−1 > ϑt|t

ϑt|t−1ϑt|t λt
yt
δ δ

ptft|t−1ft|t

(b) λt > ϑt|t−1 > ϑt|t

ϑt|t−1ϑt|t

λt

yt
δ δ

ft|t−1pt = ft|t

(c) λt = ϑt|t < ϑt|t−1

ϑt|t−1ϑt|t

λt

yt
δ δ

pt ft|t−1ft|t

(d) λt < ϑt|t < ϑt|t−1

Figure 1: Illustration of a SD conditional mean model with four hypothetical truths in the

four panels.

In all four panels, the SD update guarantees ft|t > ft|t−1 on B, such that (4) directly

implies an improvement in the TKL measure. According to Blasques et al. (2015), therefore,

the update in all four panels should be beneficial. However, while the updated density is

shifted towards the true density in panels c and d, it is shifted in the direction away from

the true density in panels a and b. Surprisingly, in panel a, it would be deemed beneficial

to adjust even though the predicted density was perfect as ft|t−1 = pt. (We note that the

localization in the state space, which is related to the (small) learning rate α > 0 in Blasques

et al. (2015), does not affect the conclusion; ϑt|t being arbitrarily close to ϑt|t−1 leads to the

same problems.) As already mentioned, this counterintuitive behavior of the TKL-measure

can be explained through its construction based on the improper weighted likelihood scoring

rule.

As hinted at in Section 2.2, the mathematical reason for the puzzling conclusions of

12



Example 1 lies in the TKL-measure’s construction using an improper scoring rule. In fact,

using the improper weighted likelihood scoring rule wlB(f, x) = 1B(x) log f(x) of Amisano

and Giacomini (2007), the TKL-criterion can be rewritten as an expected score difference,

TKLB(pt∥ft|t) = Ept

[
wlB

(
pt, Xt

)
− wlB

(
ft|t, Xt

)]
.

As the impropriety implies that the true density does not necessarily achieve the lowest ex-

pected score, the TKL measure is not a (localized) divergence and it violates both conditions

in Definition 2.2

On an intuitive level, localizing by trimming on B disregards the entire behavior on

Bc with the above-mentioned adverse consequences. Instead, localizing by censoring as

discussed in Section 2.2 disregards the behavior on Bc as much as possible, while still ac-

knowledging an aggregate behavior on Bc; as such, the censored KL divergence inherits the

attractive theoretical properties of the (global) KL divergence.

3.2 Censored Kullback-Leibler divergence

In the context of scoring rules, Diks et al. (2011) and De Punder et al. (2023) show that

localization through censoring corrects the theoretically undesirable behavior of trimming.

Hence, we consider the censored KL (CKL) divergence

CKLB(pt∥ft|t) :=
∫
B

log

(
pt(x)

f(x|ϑt|t)

)
pt(x)dx

+ log

( ∫
Bc pt(x)dx∫

Bc f(x|ϑt|t)dx

)∫
Bc

pt(x)dx,

(8)

where, as before, B ≡ Bδ(yt) = {x ∈ Y : |x−yt| ≤ δ} is a ball of (small) radius δ > 0 around

the realization yt. The first line in (8) is equivalent to the TKL measure proposed by Blasques

et al. (2015) in (6), whereas the second line adds a correction term for the ignored—but in

its aggregated form necessary—information on Bc. De Punder et al. (2023) show that the

CKL divergence in (8), which is based on the censored likelihood score of Diks et al. (2011), is

a local divergence measure in the sense of Definition 2, for which the inclusion of the second

line of (8) is crucial.

2Panel a of Figure 1 illustrates one violation, namely that the incorrect density ft|t−1 achieves a lower

divergence from pt than the truth pt itself. For the violation of the “=⇒” direction in the second condition

in Definition 2, it suffices to recognize that
∫
A
log
(
p(y)

)
p(y)dy and

∫
A
log
(
f(y)

)
p(y)dy may be identical for

densities p and f that differ on A; the reason is that integrals may coincide even as integrands differ.
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Definition 3 (CKL difference). For any (yt, ϑt|t−1, pt) ∈ Y × Θ × P and δ > 0, the CKL

difference for an updating rule ϕ is given by

∆CKL
δ (ϕ) ≡ ∆CKL

δ (ϕ|yt, ϑt|t−1, pt) : = CKLBδ(yt)(pt∥ft|t)− CKLBδ(yt)(pt∥ft|t−1).

Assumption 1. For the model density, we have that 0 < f(y|ϑ) < ∞ for all (y, ϑ) ∈ Y×Θ,

f(y|ϑ) is Lipschitz continuous in y for all ϑ ∈ Θ and twice continuously differentiable in ϑ

for all y ∈ Y.

The next theorem pins down the condition under which SD updates imply an improve-

ment in the CKL divergence, i.e., ∆CKL
δ (ϕ) < 0. While this result can be generalized to allow

for general (i.e., possibly non-score driven) updating rules (see Appendix A), for expositional

clarity we focus on the SD case here.

Theorem 1. Let Assumption 1 hold. Then, for all pt ∈ P and all (yt, ϑt|t−1) ∈ Y × Int(Θ)

such that ∇ϑ(yt, ϑt|t−1) ̸= 0, there exists α > 0 and corresponding δ ≡ δα > 0 such that

∆CKL
δ (ϕSD|yt, ϑt|t−1, pt) < 0 ⇐⇒ pt(yt) > f(yt|ϑt|t−1).

Similar to Blasques et al. (2015, Proposition 1), Theorem 1 considers two localizations: (i)

an incremental SD update ϕSD(ϑt|t−1, yt) = ϑt|t−1+α∇ϑ(yt, ϑt|t−1) through a sufficiently small

learning rate α > 0, and (ii) a small enough δ ≡ δα > 0 that focuses interest around yt and

which has to be chosen sufficiently small given the (typically small) choice of α. The crucial

difference to the results of Blasques et al. (2015) is that Theorem 1 shows that SD models are

not guaranteed to be CKL-reducing. This contradicts Proposition 1 in Blasques et al. (2015,

p. 330), which states that “every [. . .] score update is locally realized KL optimal [. . .] for any

true density pt”. Our use of the CKL divergence demonstrates that an improvement hinges

on the (practically unverifiable) condition pt(yt) > f(yt|ϑt|t−1). This dependence on the true

density is consistent with our intuition based on Figure 1, where we saw that adjusting the

researcher’s density upwards at yt is beneficial whenever pt(yt) > f(yt|ϑt|t−1) (see panels c

and d), while doing so amounts to a deterioration of the model fit whenever the converse of

this condition holds (see panels a and b).

The correction note by Blasques et al. (2018) acknowledges the importance of the addi-

tional (and unverifiable) condition pt(yt) > f(yt|ϑt|t−1). However, instead of remedying the

underlying cause of the problem—localization by trimming—they add the restriction that
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pt > ft|t−1 on B in order to “ensure that the local Kullback-Leibler divergence is strictly

positive”. This implies that localization of the integral in (6) now concerns the adjusted set3

B̃ := B ∩
{
y ∈ Y : pt(y) > f(y|ϑt|t−1)

}
. (9)

While localizing all integrals using the ball B̃ ensures the positivity of the TKL measure,

some adverse consequences are immediate. First, the set B̃ depends on the unknown true

density pt and can hence never be verified in practice. Second, B̃ is the empty set when the

predicted density ft|t−1 dominates the true density pt on B. This case occurs with positive

probability; see e.g., panel b of Figure 1. In this case, the strict improvement of Blasques

et al. (2015, Proposition 1) holds on an empty set; essentially, it is no longer guaranteed.

Third, the solution in (9) “reverse-engineers” the impropriety issue of the weighted likelihood

while ignoring its root cause.

In contrast, the condition pt(yt) > ft|t−1(yt) emerges naturally as an output of our Theo-

rem 1, which says that SD updates yield an improvement in the CKL measure if the (unver-

ifiable) condition pt(yt) > ft|t−1(yt) holds, while yielding a deterioration if pt(yt) < ft|t−1(yt).

The possibility of a deterioration of fit was, in the literature to date, not recognized. Our

contribution is to point out that both cases occur with positive probability, while in practice

we never know which is which.

Going back to Example 1 and Figure 1, we see that the condition pt(yt) > f(yt|ϑt|t−1)

holds in panels c and d, but not in panels a and b. Hence, the formal results of Theorem 1

align with our interpretations obtained from Figure 1 that (local) improvements in the model

fit cannot be obtained in all cases. However, based on the particular observation yt, it is more

likely in Figure 1 that the densities pt in panels c or d correspond to the truth, compared

to the densities shown in panels a and b. Hence, we can hope that the “good behavior”

happens more frequently than the “bad behavior” for SD models, such that the model fit is

at least improved in expectation, as we explore in the following section.

Remark 1. Blasques et al. (2015, Appendix 1) discuss a “forward-looking notion” that

analyzes whether the updated density ft|t represents an improvement over the predicted density

3An alternative interpretation of Blasques et al. (2018) is that they simply impose pt(yt) > ft|t−1(yt) as

an additional condition, which is assumed to hold throughout the original article. However, the intersection

of assumptions may then be empty for the same reason that the ball B̃ may be empty. Indeed, condition

pt(yt) > ft|t−1(yt) will fail for some t; in this case, apparently nothing can be said about SD updates.
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ft|t−1 in fitting the one-step-ahead true density pt+1. Theorem 1 can easily be extended to

this case by simply replacing pt by pt+1 to yield

∆CKL
δ (ϕSD|yt, ϑt|t−1, pt+1) < 0 ⇐⇒ pt+1(yt) > f(yt|ϑt|t−1).

As yt is drawn from pt, however, we have no information whatsoever at time t regarding pt+1,

unless something is known about the dynamics of the true densities.

E.g., for a parametric true density pt+1(·) ≡ p(·|λt+1), if the time-varying parameter pro-

cess {λ}t were mean-reverting, then for some values of ω and β it could be that the predicted

density f(·|ϑt+1|t) with ϑt+1|t = ω + βϑt|t is better than f(·|ϑt|t) in approximating p(·|λt+1).

This analysis is distinct from the updating step, however, as it concerns the prediction step.

4 Expected Kullback-Leibler divergence

Theorem 1 above shows that whether SD models are CKL-improving hinges on the true,

unknown distribution, hence illustrating the impossibility to establish guarantees for CKL-

improvements that hold for every observation yt. Here, we follow the intuition gained in

Figure 1 and show that only SD models (and their equivalents) ensure expected KL improve-

ments.

For this, we consider the Expected KL (EKL) divergence, Ept [KL(pt|ft|t)], where ft|t is

now evaluated at the random variable Yt ∼ pt. More precisely,

EKL(pt∥ft|t) :=
∫
Y

∫
Y
log

(
pt(x)

f(x|ϑt|t(y))

)
pt(x)pt(y)dxdy, (10)

which we assume to be finite throughout the paper, and where we make explicit the depen-

dence of the update ϑt|t(y) = ϕ(y, ϑt|t−1) on the observation y. In (10), both integrals cover

the entire outcome space Y , i.e., there is no localization of the redraw x in the neighbor-

hood of the realization yt. In fact, the EKL measure is a global performance measure in the

outcome space. Moreover, and in contrast with the preceding analysis, the observation y

is now written without subscript t; this is because it is averaged out (i.e., integrated over)

using the true density. The assumed independence of y and the hypothetical redraw x used

to compute the KL divergence is reflected in the product of true densities pt(y) and pt(x).
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Definition 4 (EKL-difference). For any (ϑt|t−1, pt) ∈ Θ × P, the EKL difference for an

updating rule ϕ is given by

∆EKL(ϕ) ≡ ∆EKL(ϕ|ϑt|t−1, pt) := EKL(pt∥ft|t)− EKL(pt∥ft|t−1).

Assumption 2. Let f(x|ϑ) be twice continuously differentiable in ϑ for all x ∈ Y, and for

∇ϑϑ(x, ϑ) :=
∂2 log f(x|ϑ)

∂ϑ2 and some c < ∞, it holds that |∇ϑϑ(x, ϑ)| < c for all x ∈ Y , ϑ ∈ Θ.

Furthermore, ∆EKL(ϕ|ϑt|t−1, pt) exists and is finite for all ϑt|t−1 ∈ Θ and pt ∈ P.

To formulate our characterization result on EKL-improving updating rules, we require

a specific form of locality in the state space, which we formalize through the concept of

linearly downscaled updates: For a given updating rule ϕ that, by using y ∈ Y , updates

the time-varying parameter from ϑt|t−1 to ϑt|t(y) = ϕ(y, ϑt|t−1) and a generic (typically

small) value κ > 0, we define the linearly downscaled updating rule ϕκ that updates to

ϑκ
t|t(y) = ϕκ(y, ϑt|t−1), which is such that

∆ϕκ(y, ϑt|t−1) = ϑκ
t|t(y)− ϑt|t−1

!
= κ(ϑt|t(y)− ϑt|t−1) = κ∆ϕ(y, ϑt|t−1). (11)

The downscaling with parameter κ generalizes the learning rate α in SD updates to general

updating rules: SD updates arise by setting ∆ϕSD,κ(Yt, ϑt|t−1) = κ∇ϑ(Yt, ϑt|t−1) such that

α = κ. In contrast, for general updating rules, the purpose of the downscaling is to control

the step size in a linear fashion, which is required in the proof of the following Theorem 2 to

obtain a small update while controlling the moments of ϕκ: Given the first two (non-zero and

finite) moments of ϕ, the expectation of ∆ϕκ scales with κ while its second moment scales

with κ2, such that the second moment, which appears in a second order Taylor expansion,

becomes negligible for sufficiently small κ.

Theorem 2. Assume that ϑt|t−1 ∈ Int(Θ) and Assumption 2 holds. Moreover, let pt ∈ P
and ϕ be such that Ept

[
∇ϑ(Xt, ϑt|t−1)

]
is finite and non-zero, Ept

[
∆ϕ(Yt, ϑt|t−1)

]
̸= 0 and

Ept

[
∆ϕ(Yt, ϑt|t−1)

2
]

< ∞. Define ϕκ(y, ϑt) for κ > 0 as in (11). Then, the following

equivalence holds

Ept

[
∆ϕ(Yt, ϑt|t−1)

]
Ept

[
∇ϑ(Xt, ϑt|t−1)

]
> 0 ⇐⇒ ∃κ̄ : ∀κ ∈ (0, κ̄] : ∆EKL(ϕκ|ϑt|t−1, pt) < 0.

Theorem 2 establishes a desirable characterization result of an updating rule ϕ being

EKL-reducing. This result can indeed be used as a clear motivation for employing time-

varying parameter models based on SD updates as this model class stands out as the only
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one that is guaranteed to improve the model fit in the EKL-sense. Especially the logical

equivalence in Theorem 2, which differentiates our result from those in Gorgi et al. (2024)

and Creal et al. (2024), establishes a unifying feature of SD updating rules.

We denote the equivalence condition of Theorem 2,

Ept

[
∆ϕ(Yt, ϑt|t−1)

]
Ept

[
∇ϑ(Xt, ϑt|t−1)

]
> 0, (12)

as score-equivalence in expectation, as it provides a natural extension of the (almost sure)

score-equivalence of Blasques et al. (2015) given in Definition 1. As the EKL-criterion is

formulated in terms of expectations, it is natural that we obtain the weaker notion of score-

equivalence in expectation. In contrast to Blasques et al.’s (2015) TKL measure and our CKL

divergence, taking expectations in (10) avoids the localization of x around yt, such that we

obtain an information-theoretic characterization result that holds globally in the outcome

space.

However, we still require a locality in terms of the update size, here captured through

the parameter κ. As noted in the introduction, the locality in the state space is natural for

gradient-based methods (e.g., Nesterov 2018), as the information conveyed by the gradient

is inherently local. Essentially, an improvement in the objective function can only be ensured

by an infinitesimal gradient step. For a sufficiently large step size, the model fit can almost

always be deteriorated; e.g., in Figure 1, an excessively large step size may decrease the

model fit. Hence, EKL reductions by SD updates can only be ensured by taking the step size

α > 0 small enough.

For SD updates, we have Ept

[
∆ϕSD(Yt, ϑt|t−1)

]
= αEpt

[
∇ϑ(Yt, ϑt|t−1)

]
with some α > 0,

which takes the role of the downscaling parameter κ. Equation (12) implies that the expected

signs of ∆ϕSD and ∇ϑ coincide and we immediately get the following result from Theorem 2.

Corollary 1. Let Assumption 2 hold and ϑt|t−1 ∈ Int(Θ), pt ∈ P, Ept

[
∇ϑ(Xt, ϑt|t−1)

]
̸= 0

and Ept

[
∇ϑ(Xt, ϑt|t−1)

2
]
< ∞. Then, ∃ᾱ > 0 : ∆EKL(ϕSD|ϑt|t−1, pt) < 0, ∀α ∈ (0, ᾱ].

The informal arguments in Blasques et al. (2021, Eq. (5)–(7)) can be interpreted as

hinting at some quantity that we formalize here as the EKL-measure together with the result

of Corollary 1. However, their simulation-based approach does not contain a theoretical

treatment and stops short of giving a characterization of EKL-improving updating rules, as

we provide in Theorem 2.
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Remark 2. The statement of Theorem 2 remains valid for discrete distributions Pt, given

that the model probability function is twice continuously differentiable in the time-varying

parameter. In the discrete case, the KL divergence and the integrals in (10) should be replaced

by their discrete (or measure-theoretic) counterparts.

Remark 3. The class of implicit score-driven updates in Lange et al. (2024) is score equiva-

lent (almost surely and in expectation) when applied to a univariate process in the sense that,

with probability one, the implicit score has the same sign as the usual (explicit) score; see

Proposition 1 in Lange et al. (2024) for details. Hence, under the conditions in Theorem 2,

implicit score-driven updates with sufficiently small learning rates are EKL-reducing.

In contrast, the class of quasi score-driven updates in Blasques et al. (2023) is not guar-

anteed to be score-equivalent in expectation; see Appendix B for details. Hence, following

Theorem 2, EKL-reductions may or may occur, depending on the validity of (12).

5 Conclusion

The past decade has seen a dramatic rise in the application of score-driven (SD) models,

underpinned by Blasques et al.’s (2015) finding that SD updates are always beneficial, even

when the observation density is misspecified. As we have shown, this result relies on a

questionable localization procedure (i.e., by trimming) of the underlying Kullback-Leibler

divergence. Unfortunately, the guarantee fails when a proper localization technique (i.e.,

censoring) is employed. Censoring has been recognized as favorable over trimming in the

literature on scoring rules and divergence measures (Diks et al. 2011; Gneiting and Ranjan

2011; De Punder et al. 2023).

Our main contribution, Theorem 2, establishes that SD updates are unique in provid-

ing an improvement guarantee under an expected (rather than localized) Kullback-Leibler

divergence measure. This result constitutes an information-theoretic characterization of SD

updates and complements recent contributions by Gorgi et al. (2024) and Creal et al. (2024).

It supports the continued use of SD filters and places their information-theoretic properties

on solid footing. Further, the expected KL divergence allows for extensions to discrete proba-

bility distributions, multivariate time-varying parameters and the inclusion of a time-varying

scaling matrix. Recent theoretical work on localized information-theoretic properties—e.g.,

Blasques et al. (2019), Beutner et al. (2023) and Blasques et al. (2023, Supplemental Ap-
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pendix A)—may also benefit from using censored and/or expected Kullback-Leibler diver-

gence measures.
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Appendix

Appendix A establishes equivalence conditions when general updating rules are CKL-reducing.

Appendix B provides details on whether quasi SD updates of Blasques et al. (2023) are EKL-

reducing. All proofs are given in Appendix C.

A CKL-reductions of general updating rules

The key result in Blasques et al. (2015) is that updating rules are TKL-reducing if and only

if they are score-equivalent. Here we generalize Theorem 1 and provide a similar character-

ization of CKL-reducing updates.

Theorem 3. Let Assumption 1 hold. Then, for all (yt, ϑt|t−1, pt) ∈ Y × Int(Θ) × P, there

exists κ̄ > 0 and δ ≡ δκ̄ > 0 such that for all ϕ with |∆ϕ(yt, ϑt|t−1)| < κ̄, we have

∆CKL
δ (ϕ|yt, ϑt|t−1, pt) < 0 ⇐⇒ ∇ϑ(yt, ϑt|t−1)∆ϕ(yt, ϑt|t−1)

(
pt(yt)− f(yt|ϑt|t−1)

)
> 0.

The right-hand side of the equivalence in Theorem 3 shows that whether an updating

scheme ϕ is CKL-reducing depends on the signs of three individual components: the score

∇ϑ(yt, ϑt|t−1), the update direction ∆ϕ(yt, ϑt|t−1) and—as already present in Theorem 1
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above—the truth through
(
pt(yt)− f(yt|ϑt|t−1)

)
. For score-equivalent updates, it holds that

∇ϑ(yt, ϑt|t−1)∆ϕ(yt, ϑt|t−1) > 0 such that Theorem 1 arises as a special case of Theorem 3.

As in Theorem 1, the outcome space locality parameter δ ≡ δκ̄ has to be chosen much

smaller than the state-space locality parameter κ̄; see the arguments in the end of the proof

of Theorem 3 for details.

Theorem 3 establishes that if
(
pt(yt)−f(yt|ϑt|t−1)

)
> 0 holds, then an arbitrary updating

scheme is locally CKL-reducing if and only if it is score-equivalent to the SD update, i.e.,

∇ϑ(yt, ϑt|t−1)∆ϕ(yt, ϑt|t−1) > 0 at the current (yt, ϑt|t−1). However, similar to Theorem 1, this

characterization hinges on the practically unverifiable condition
(
pt(yt) − f(yt|ϑt|t−1)

)
> 0

and is hence of limited use in practice.4

In light of Remark 1, a forward notion of Theorem 3 holds equivalently when considering

the distribution Pt+1 with density pt+1 by simply using the factor
(
pt+1(yt) − f(yt|ϑt|t−1)

)
on the right-hand side of the logical equivalence statement. Hence, a separate treatment of

these cases as in Appendix 1 of Blasques et al. (2015) is not required here.

B Quasi score-driven updates

Blasques et al. (2023) generalize the class of SD updates to the class of so-called Quasi-SD

(QSD) updates by allowing the update to be based on the score of a postulated density

f̃(·|ϑt|t−1) that possibly differs from the model density f(·|ϑt|t−1). While both, f and f̃ are

assumed to be driven by the same time-varying parameter ϑt|t−1, neither of these distributions

is assumed to coincide with the truth pt. If f̃ ≡ f , the class of SD updates is obtained, which

is EKL-reducing by Corollary 1. Formally, QSD updates are defined as

ϕQSD(yt, ϑt|t−1) := ϑt|t−1 + α∇̃(yt, ϑt|t−1), ∇̃ϑ(yt, ϑt|t−1) :=
log f̃(yt|ϑ)

∂ϑ

∣∣∣∣∣
ϑt|t−1

,

4A further notable difference between the characterization results of Blasques et al. (2015, Proposition 2)

and our Theorem 3 is the locality of the required score-equivalence. In Theorem 3, we impose local score-

equivalence that only has to hold at the pair (yt, ϑt|t−1) whereas Blasques et al. (2015, Proposition 2) claim

a global score equivalence for all (y, ϑ) ∈ Y × Θ. This difference is not caused by the different localization

methods (i.e., censoring opposed to trimming), but by an inaccuracy in the proof of Blasques et al. (2015,

Proposition 2): Using the notation of Blasques et al. (2015), in the “only if” direction on page 340, the

neighborhoods FY and YδY (yt) are not necessarily overlapping, which could be fixed by imposing a local

score-equivalence opposed to their global notion.
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which are a particular instance of an updating rule that is of linearly downscaled form (11)

with κ = α.

As we have characterized all updating rules that are guaranteed to be EKL-reducing in

Theorem 2, we can now exploit this result to immediately conclude that ϕQSD is EKL-reducing

if, and only if,

Ept

[
∇̃ϑ(Yt, ϑt|t−1)

]
Ept

[
∇ϑ(Xt, ϑt|t−1)

]
> 0. (13)

Hence, QSD updates may or may not be EKL-reducing, depending on whether (13) holds.

Example 2 (GARCH-t). Blasques et al. (2023) show that the GARCH-t filter of Bollerslev

(1987) is an example of a QSD update where f̃(·|ϑt|t−1) is a Student-t density with ν degrees

of freedom and time-varying variance ϑt|t−1, and f(·|ϑt|t−1) is Gaussian density with time-

varying variance ϑt|t−1. To formally obtain equivalence with the GARCH-t filter, the scaling

factor St|t−1 = −Ef̃

[
∂2f̃(yt|ϑ)

∂ϑ2

∣∣
ϑt|t−1

]
is required. As St|t−1 is Ft−1-measurable and positive, we

can however ignore its specific form as discussed after Definition 1.

Then, straight-forward calculations show that (13) is satisfied if and only if

Ept

[
Y 2
t − ϑt|t−1

]
Ept

[
ν + 1

ν − 2 +X2
t /ϑt|t−1

X2
t − ϑt|t−1

]
> 0.

While this holds trivially for the SD case of ν → ∞, it may or may not hold for any fixed

ν ∈ N, depending on the true distribution pt.

C Proofs

Proof of Theorem 1. The proof follows directly from the proof of Theorem 3 given be-

low by using ϕ = ϕSD with ϑt|t = ϕSD(yt, ϑt|t−1) := ϑt|t−1 + α∇ϑ(yt, ϑt|t−1) and κ̄ =

α∇ϑ(yt, ϑt|t−1). Notice that for ϕSD and any α > 0 and ∇ϑ(yt, ϑt|t−1) ̸= 0, it trivially

holds that ∆ϕSD(yt, ϑt|t−1)∇ϑ(yt, ϑt|t−1) = α∇ϑ(yt, ϑt|t−1)
2 > 0.

Proof of Theorem 2. Let ϕ be an arbitrary updating rule that updates the time-varying

parameter from ϑt|t−1 to ϑt|t = ϕ(y, ϑt|t−1) by using the observation y, and which satisfies

the conditions of Theorem 2. For a given ϕ and some generic κ > 0, let the “scaled-down”

updating rule ϕκ imply the updated parameter ϑκ
t|t(y), which is such that

∆ϕκ(y, ϑt|t−1) = ϕκ(y, ϑt|t−1)− ϑt|t−1 = ϑκ
t|t(y)− ϑt|t−1

!
= κ(ϑt|t(y)− ϑt|t−1) = κ∆ϕ(y, ϑt|t−1).
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In the following, we derive the explicit orders how ∆EKL(ϕκ) shrinks to zero as κ tends to

zero, which we use to establish that, for κ small enough, ∆EKL(ϕκ) approaches zero from

below.

For any x, y ∈ Y , applying the mean value theorem to log f(x|ϑκ
t|t(y)) at ϑt|t−1 gives

log f(x|ϑκ
t|t(y))− log f(x|ϑt|t−1)

= ∇ϑ(x, ϑt|t−1)(ϑ
κ
t|t(y)− ϑt|t−1) +

1

2
∇ϑϑ(x, ϑ

κ∗
t|t(x, y))(ϑ

κ
t|t(y)− ϑt|t−1)

2,

where ϑκ∗
t|t(x, y) is on the line between ϑt|t−1 and ϑκ

t|t(y). Plugging this expansion into the

definition of the EKL difference in Definition 4 and (10) yields

−∆EKL(ϕκ|ϑt|t−1, pt)

= EXt,Yt∼pt

[
log f(Xt|ϑκ

t|t(Yt))− log f(Xt|ϑt|t−1)
]

= EXt,Yt∼pt

[
∇ϑ(Xt, ϑt|t−1)(ϑ

κ
t|t(Yt)− ϑt|t−1) +

1

2
∇ϑϑ(Xt, ϑ

κ∗
t|t(Xt, Yt))(ϑ

κ
t|t(Yt)− ϑt|t−1)

2

]
= Ept

[
∆ϕκ(Yt, ϑt|t−1)

]
Ept

[
∇ϑ(Xt, ϑt|t−1)

]
+

1

2
EXt,Yt∼pt

[
∇ϑϑ(Xt, ϑ

κ∗
t|t(Xt, Yt))

(
∆ϕκ(Yt, ϑt|t−1)

)2]
= κEpt

[
∆ϕ(Yt, ϑt|t−1)

]
Ept

[
∇ϑ(Xt, ϑt|t−1)

]
+

κ2

2
EXt,Yt∼pt

[
∇ϑϑ(Xt, ϑ

κ∗
t|t(Xt, Yt))

(
∆ϕ(Yt, ϑt|t−1)

)2]
= κEpt

[
∆ϕ(Yt, ϑt|t−1)

]
Ept

[
∇ϑ(Xt, ϑt|t−1)

]
+O(κ2),

as κ ↓ 0, where we have used that Xt and Yt are independent and that ∇ϑϑ(·, ·) is bounded
by Assumption 2 such that the expectation in the penultimate line exists.

As Ept

[
∆ϕ(Yt, ϑt|t−1)

]
Ept

[
∇ϑ(Xt, ϑt|t−1)

]
< ∞ by assumption, multiplying the following

terms yields that

∆EKL(ϕκ|ϑt|t−1, pt)Ept

[
∆ϕ(Yt, ϑt|t−1)

]
Ept

[
∇ϑ(Xt, ϑt|t−1)

]
(14)

= −
(
κEpt

[
∆ϕ(Yt, ϑt|t−1)

]
Ept

[
∇ϑ(Xt, ϑt|t−1)

]
+O(κ2)

)
× Ept

[
∆ϕ(Yt, ϑt|t−1)

]
Ept

[
∇ϑ(Xt, ϑt|t−1)

]
= −κ

(
Ept

[
∆ϕ(Yt, ϑt|t−1)

]
Ept

[
∇ϑ(Xt, ϑt|t−1)

])2
+O(κ2). (15)

For κ small enough, the first term in (15) dominates the O(κ2) term such that (15) is negative

for κ sufficiently small enough. This implies that the terms in (14) have opposing signs (for

κ small enough), which we formalize in the following:
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Starting with the “=⇒” direction of the proof, if Ept

[
∆ϕ(Yt, ϑt|t−1)

]
Ept

[
∇ϑ(Xt, ϑt|t−1)

]
>

0, then we can always find a κ̄ small enough such that for all κ ∈ (0, κ̄], (15) is negative, and

hence, ∆EKL(ϕκ|ϑt|t−1, pt) must be negative as well for κ ∈ (0, κ̄].

For the “⇐=” direction of the proof, we assume that there exists a κ̄ such that for all

κ ∈ (0, κ̄], ∆EKL(ϕκ|ϑt|t−1, pt) is negative. As there always exists a κ̃ ∈ (0, κ̄] such that (15)

becomes negative, we can conclude that Ept

[
∆ϕ(Yt, ϑt|t−1)

]
Ept

[
∇ϑ(Xt, ϑt|t−1)

]
> 0, which

concludes the proof.

We require the following lemma for the proof of Theorem 3.

Lemma 1. For a given yt ∈ Y and δ > 0, consider a function g : Bδ(yt) → R, that is

Lipschitz-continuous on Bδ(yt) and which is allowed to depend on (time-varying) parameters.

Then, ∫
Bδ(yt)

g(y)dy = 2δg(yt) +O(δ2),

as δ ↓ 0.

Proof of Lemma 1. Using ϵ(y) := g(y)− g(yt), we have that

e :=

∣∣∣∣∫ yt+δ

yt−δ

g(y)dy − 2δg(yt)

∣∣∣∣ = ∣∣∣∣∫ yt

yt−δ

ϵ(y)dy +

∫ yt+δ

yt

ϵ(y)dy

∣∣∣∣ .
Since g(y) is Lipschitz-continuous on Bδ(yt), there exists a constant L > 0 such that |ϵ(y)| =
|g(y)− g(yt)| ≤ L|y − yt|. Consequently,∣∣∣∣∫ yt

yt−δ

ϵ(y)dy

∣∣∣∣ ≤ L

∫ yt

yt−δ

(yt − y)dy =
L

2
δ2, and∣∣∣∣∫ yt+δ

yt

ϵ(y)dy

∣∣∣∣ ≤ L

∫ yt+δ

yt

(y − yt)dy =
L

2
δ2,

and hence e ≤ Lδ2 = O(δ2), as δ ↓ 0.

Proof of Theorem 3. Given some yt ∈ Y , consider the ball B ≡ Bδ(yt) = {x ∈ Y : |x− yt| ≤
δ} around the realization yt for some (small) δ > 0. Furthermore, given ϑt|t−1 ∈ Θ, consider

an arbitrary updating rule ϕ such that |∆ϕ(yt, ϑt|t−1)| ≤ κ̄ for some κ̄ small enough. In

the following, we derive the explicit orders how ∆CKL
δ (ϕ) shrinks to zero as the two locality

parameters κ̄ and δ tend to zero. The desired result then follows by taking κ̄ > 0 and δ > 0

small enough.
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We start by (implicitly) defining IB and IBc through

∆CKL
δ (ϕ) = CKLBδ(yt)(pt∥ft|t)− CKLBδ(yt)(pt∥ft|t−1)

=

∫
B

log

(
pt(x)

f(x|ϑt|t)

)
pt(x)dx + log

( ∫
Bc pt(x)dx∫

Bc f(x|ϑt|t)dx

)∫
Bc

pt(x)dx

−
∫
B

log

(
pt(x)

f(x|ϑt|t−1)

)
pt(x)dx − log

( ∫
Bc pt(x)dx∫

Bc f(x|ϑt|t−1)dx

)∫
Bc

pt(x)dx

= −
∫
B

log

(
f(x|ϑt|t)

f(x|ϑt|t−1)

)
pt(x)dx︸ ︷︷ ︸

=: IB

− log

( ∫
Bc f(x|ϑt|t)dx∫

Bc f(x|ϑt|t−1)dx

)∫
Bc

pt(x)dx︸ ︷︷ ︸
=: IBc

,

as the negative of the components of the CKL-divergence difference that focus on B and Bc,

respectively, such that ∆CKL
δ (ϕ) = −IB − IBc .

For IB, it follows from Lemma 1 that

IB = 2δ log

(
f(yt|ϑt|t)

f(yt|ϑt|t−1)

)
pt(yt) +O(δ2), (16)

as δ ↓ 0. The latter invites the use of a Taylor expansion of log(z) around 1, specifically,

log(z) = z− 1+O((z− 1)2). The reasoning behind our choice for the expansion around one

is that the likelihood ratio in (16) tends to one as ∆ϕ ≡ ∆ϕ(yt, ϑt|t−1) tends to zero. The

Taylor expansion yields the following

log

(
f(yt|ϑt|t)

f(yt|ϑt|t−1)

)
=

f(yt|ϑt|t)

f(yt|ϑt|t−1)
− 1 +O

((
f(yt|ϑt|t)

f(yt|ϑt|t−1)
− 1

)2
)

=
f(yt|ϑt|t)− f(yt|ϑt|t−1)

f(yt|ϑt|t−1)
+O

(
κ̄2
)
, (17)

as κ̄ ↓ 0, where the order of the remainder term in (17) can be verified by an additional

Taylor expansion of ϑt|t 7→
f(yt|ϑt|t)

f(yt|ϑt|t−1)
around ϑt|t−1. More specifically,

f(yt|ϑt|t)

f(yt|ϑt|t−1)
= 1 +

1

f(yt|ϑt|t−1)

∂f(yt|ϑ)
∂ϑ

∣∣∣∣
ϑt|t−1

(ϑt|t − ϑt|t−1) +O
(
(ϑt|t − ϑt|t−1)

2
)

= 1 +∇ϑ(yt, ϑt|t−1)∆ϕ+O
(
(∆ϕ)2

)
,

and therefore

O

((
f(yt|ϑt|t)

f(yt|ϑt|t−1)
− 1

)2
)

= O
(
(∆ϕ)2

)
= O(κ̄2),

as κ̄ ↓ 0, since |∆ϕ(yt, ϑt|t−1)| ≤ κ̄.
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The other elements of IB in (16) are independent of ϑt|t−1 and ϑt|t. Hence, by substituting

(17) into (16), we find that

IB = 2δ
(
f(yt|ϑt|t)− f(yt|ϑt|t−1)

) pt(yt)

f(yt|ϑt|t−1)
+O(δ2) +O(δκ̄2), (18)

as δ ↓ 0 and κ̄ ↓ 0.

For IBc , we start by introducing some shorthand notation for the probabilities F̄t|t−1 :=∫
Bc f(x|ϑt|t−1)dx, F̄t|t :=

∫
Bc f(x|ϑt|t)dx and P̄t :=

∫
Bc pt(x)dx such that IBc simplifies to

IBc = log

(
F̄t|t

F̄t|t−1

)
P̄t. (19)

To motivate the following steps, notice that as δ tends to zero, both F̄t|t−1 and F̄t|t converge

to the integral over the entire support of a density, which equals one. Therefore, the ratio

F̄t|t/F̄t|t−1 tends to one. Hence, we recycle the motivation for the use of the Taylor expansion

of log(z) around 1, but now for analyzing the log-likelihood ratio of F̄t|t and F̄t|t−1, that is,

log

(
F̄t|t

F̄t|t−1

)
=

1−
∫
B
f(x|ϑt|t)dx

1−
∫
B
f(x|ϑt|t−1)dx

− 1 +O

((
F̄t|t

F̄t|t−1

− 1

)2
)

=

∫
B
f(x|ϑt|t−1)− f(x|ϑt|t)dx

1−
∫
B
f(x|ϑt|t−1)dx

+O(δ2κ̄2) +O(δ3κ̄) +O(δ4). (20)

Here, the order O

((
F̄t|t

F̄t|t−1
− 1
)2)

can be derived as follows

(
F̄t|t

F̄t|t−1

− 1

)2

=

(
1

F̄t|t−1

∫
B

(
f(x|ϑt|t−1)− f(x|ϑt|t)

)
dx

)2

=

(
− 1

F̄t|t−1

(
2δ
(
f(yt|ϑt|t)− f(yt|ϑt|t−1)

)
+O(δ2)

))2

=
1

F̄ 2
t|t−1

(
2δ

(
∂f(yt|ϑ)

∂ϑ

∣∣∣∣
ϑt|t−1

(ϑt|t − ϑt|t−1) +O
(
κ̄2
))

+O(δ2)

)2

=
(
O (δκ̄) +O

(
δκ̄2
)
+O

(
δ2
))2

= O(δ2κ̄2) +O(δ3κ̄) +O(δ4),

where, given Assumption 1, the second equality follows from Lemma 1 and the third equality

from applying a Taylor expansion to f(yt|ϑt|t) around ϑt|t−1. Specifically,

f(yt|ϑt|t)− f(yt|ϑt|t−1) =
∂f(yt|ϑ)

∂ϑ

∣∣∣
ϑt|t−1

∆ϕ+O
(
(∆ϕ)2

)
= O(κ̄), (21)
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as κ̄ ↓ 0, by Assumption 1. Furthermore, F̄t|t−1 tends to
∫
Y f(x|ϑt|t−1)dx = 1 as δ ↓ 0.

The true probability P̄t also tends to one as δ tends to zero. Therefore, by applying

Lemma 1 to
∫
B

(
f(x|ϑt|t−1)− f(x|ϑt|t)

)
dx in (20), the term IBc in (19) reduces to

IBc = log

(
F̄t|t

F̄t|t−1

)
P̄t

=
(
2δ
(
f(yt|ϑt|t−1)− f(yt|ϑt|t)

)
+O(δ2)

) P̄t

F̄t|t−1

+O
(
δ2κ̄2

)
+O(δ3κ̄) +O(δ4)

= −2δ
(
f(yt|ϑt|t)− f(yt|ϑt|t−1)

) P̄t

F̄t|t−1

+O(δ2), (22)

as δ ↓ 0 and κ̄ ↓ 0.

Combining the expressions for IB and IBc in (18) and (22), respectively, yields

∆CKL
δ (ϕ) = −(IB + IBc)

= −2δ
(
f(yt|ϑt|t)− f(yt|ϑt|t−1)

)( pt(yt)

f(yt|ϑt|t−1)
− P̄t

F̄t|t−1

)
+O(δ2) +O(δκ̄2).

By earlier arguments, the ratio P̄t/F̄t|t−1 tends to one as δ tends to zero. To further simplify

the expression for ∆CKL
δ (ϕ), the rate at which it does becomes important. Knowing the rates

of the individual probabilities P̄t and F̄t|t−1, being a direct consequence of Lemma 1, we get

P̄t

F̄t|t−1

=
1− 2δpt(yt)−O(δ2)

1− 2δf(yt|ϑt|t−1)−O(δ2)

=
1

1− 2δf(yt|ϑt|t−1)−O(δ2)
− 2δpt(yt) +O(δ2)

1− 2δf(yt|ϑt|t−1)−O(δ2)

= 1−O(δ),

as δ ↓ 0. Together with the established order f(yt|ϑt|t)− f(yt|ϑt|t−1) = O(κ̄) in (21), we can

further simplify ∆CKL
δ (ϕ) as

∆CKL
δ (ϕ) = −2δ

(
f(yt|ϑt|t)− f(yt|ϑt|t−1)

)( pt(yt)

f(yt|ϑt|t−1)
− 1 +O(δ)

)
+O(δ2) +O(δκ̄2)

= −2δ
f(yt|ϑt|t)− f(yt|ϑt|t−1)

f(yt|ϑt|t−1)

(
pt(yt)− f(yt|ϑt|t−1)

)
+O(δ2) +O(δκ̄2),

as δ ↓ 0 and κ̄ ↓ 0.

Using the expansion in (17) for the fraction
(
f(yt|ϑt|t)− f(yt|ϑt|t−1)

)/
f(yt|ϑt|t−1), we get

∆CKL
δ (ϕ) = −2δ

(
log f(yt|ϑt|t)− log f(yt|ϑt|t−1)−O(κ̄2)

)(
pt(yt)− f(yt|ϑt|t−1)

)
+O(δ2) +O(δκ̄2)

= −2δ
(
log f(yt|ϑt|t)− log f(yt|ϑt|t−1)

)(
pt(yt)− f(yt|ϑt|t−1)

)
+O(δ2) +O(δκ̄2),
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as δ ↓ 0 and κ̄ ↓ 0. Then, we can use a Taylor expansion of log f(yt|ϑt|t) around ϑt|t−1, i.e.,

log f(yt|ϑt|t)− log f(yt|ϑt|t−1) = ∇ϑ(yt, ϑt|t−1)(ϑt|t − ϑt|t−1) +O(κ̄2)

= ∇ϑ(yt, ϑt|t−1)∆ϕ(yt, ϑt|t−1) +O(κ̄2),

since |∆ϕ(yt, ϑt|t−1)| = |ϑt|t − ϑt|t−1| ≤ κ̄, to conclude that

∆CKL
δ (ϕ) = −2δ

(
pt(yt)− f(yt|ϑt|t−1)

)(
∇ϑ(yt, ϑt|t−1)∆ϕ(yt, ϑt|t−1) +O(κ̄2)

)
+O(δ2) +O(δκ̄2)

= −2δ
(
pt(yt)− f(yt|ϑt|t−1)

)
∇ϑ(yt, ϑt|t−1)∆ϕ(yt, ϑt|t−1) +O(δ2) +O(δκ̄2),

as δ ↓ 0 and κ̄ ↓ 0.

We continue to define the term

r(yt, ϑt|t−1, pt) :=
(
pt(yt)− f(yt|ϑt|t−1)

)
∇ϑ(yt, ϑt|t−1)∆ϕ(yt, ϑt|t−1), (23)

which is of order O(κ̄) for κ̄ ↓ 0 as |∆ϕ(yt, ϑt|t−1)| = |ϑt|t − ϑt|t−1| ≤ κ̄, whereas the terms(
pt(yt) − f(yt|ϑt|t−1)

)
and ∇ϑ(yt, ϑt|t−1) are independent of δ and κ̄. Taking the following

product then yields that

∆CKL
δ (ϕ|yt, ϑt|t−1, pt) r(yt, ϑt|t−1, pt)

= −2δr2(yt, ϑt|t−1, pt) + r(yt, ϑt|t−1, pt)
(
O(δ2) +O(δκ̄2)

)
= −2δr2(yt, ϑt|t−1, pt) +O(δ2κ̄) +O(δκ̄3),

where we notice that the first term −2δr2(yt, ϑt|t−1, pt) = O(δκ̄2) is strictly negative and

given that we can choose δ = δκ̄ much smaller than κ̄, the O(δκ̄2) term is of lower order than

(i.e., it does not vanish as fast as) the following O(δ2κ̄) +O(δκ̄3) terms.

Hence, there exists κ̄ > 0 and δ = δκ̄ > 0 (where the choice of δ = δκ̄ depends

on the choice of κ̄) such that for all updates ϕ with |∆ϕ(yt, ϑt|t−1)| ≤ κ̄, it holds that

∆CKL
δ (ϕ|yt, ϑt|t−1, pt)r(yt, ϑt|t−1, pt) < 0, implying that ∆CKL

δ (ϕ|yt, ϑt|t−1, pt) and r(yt, ϑt|t−1, pt) =(
pt(yt) − f(yt|ϑt|t−1)

)
∇ϑ(yt, ϑt|t−1)∆ϕ(yt, ϑt|t−1) have opposite signs, which is exactly the

statement that had to be shown. (A separate proof for the two directions in the “⇐⇒”

statement could be carried out as in the end of the proof of Theorem 2.)
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