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Abstract

We introduce the vector-valued t-Riesz distribution for time series models of electricity

prices. The t-Riesz distribution extends the well-known Multivariate Student’s t

distribution by allowing for tail heterogeneity via a vector of degrees of freedom

(DoF) parameters. The closed-form density expression allows for straightforward

maximum likelihood estimation. A clustering approach for the DoF parameters is

provided to reduce the number of parameters in higher dimensions. We apply the t-

Riesz distribution to a 24-dimensional panel of Danish daily electricity prices over the

period 2017-2024, considering each hour of the day as a separate coordinate. Results

show that multivariate t-Riesz-based density forecasts improve significantly upon the

standard Student’s t distribution and the t-copula. Further, the t-Riesz distribution

produces superior implied univariate density forecasts during the afternoon for the

distribution as a whole and during 8 a.m.- 8 p.m. in its left tail. Moreover, during

crisis periods, this effect is even stronger and holds for almost every hour of the day.

Finally, portfolio Value-at-Risk forecasts during the central hours of the day improve

during crisis periods compared to the classical Student’s t distribution and the t-

copula.

*Anne Opschoor and Dewi Peerlings thank the Dutch National Science Foundation (NWO) for financial
support under grant VI.VIDI.201.079. Luca Rossini acknowledges financial support from the Italian Ministry
MIUR under the PRIN project Modelling Non-standard Data and Extremes in Multivariate Environmental
Time series (MNEMET) (grant 20223CEZSR).
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1 Introduction

Models for electricity prices have gained considerable attention over the past decade. This

is due in part to recent crisis events such as the COVID-19 pandemic and the Russian

invasion of Ukraine with its subsequent impact on energy markets worldwide. The volatility

of electricity prices, however, is also partly rooted in developments related to the sustainable

energy transition many countries are facing. A particularity of electricity as an important

tradable good is that it cannot or can only partially be stored. It must typically be consumed

when and where it is produced. In contrast to traditional fossil fuel energy plants, renewable

energy sources (RES) such as solar or wind energy exhibit much more volatile electricity

production patterns due to their dependence on partly unpredictable weather conditions.

Such volatility may not only result in stress on the electricity transport infrastructure.

It may also result in high volatility for electricity spot prices. High uncertainty in such

prices may render further investments in renewable energy sources (RES) too risky or even

unprofitable and in this way jeopardize the sustainable energy transition. It is therefore

important to get a better grip on the dynamics of electricity price densities for forecasting

and risk analysis.

The electricity price literature has thus far mainly focused on univariate models

for electricity prices for individual hours of the day; see for instance Koopman et al.

(2007), Gianfreda and Grossi (2012), Paraschiv et al. (2014) and Chan and Grant (2016).

Maciejowska and Nowotarski (2016) and Ziel (2016) find that hours from the previous day

influence the early morning hours of the following days. Only recently, Gianfreda et al.

(2020, 2023) have shifted the attention to multivariate time series models for electricity

prices, where the 24 hourly prices are analyzed jointly. They provide evidence that electricity

prices are fat-tailed, particularly during the central hours of the day.

In this paper, we contribute to this line of literature by developing a model for electricity

prices based on the recently proposed t-Riesz distribution (Ghorbel and Louati, 2019). We

introduce a new dynamic version of the t-Riesz distribution to describe the dynamics of time-
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varying volatilities in electricity prices and we present efficient ways to estimate the model’s

parameters in high dimensions using both targeting and clustering. The t-Riesz distribution

generalizes the multivariate t-distribution by mixing a multivariate normal with an inverse

Riesz. The inverse Riesz as opposed to an inverse chi-squared distribution is characterized

by a vector of degrees of freedom (DoF) parameters, rather than by a single scalar DoF. In

this way, it allows for tail heterogeneity. Such a generalization seems useful for empirical

data, as found by the preliminary results of Gianfreda et al. (2020, 2023), who found that

the typical Student’s t distribution with its single DoF parameter may be too restrictive for

electricity prices.

Our dynamic extension of the t-Riesz distribution is observation-driven and therefore

has an explicit expression for the likelihood function. Parameter estimation by maximum

likelihood (ML) isstraightforward. However, when using the dynamic t-Riesz distribution in

a higher dimensional setting, the number of parameters still increases for two reasons and

may thus complicate the maximization of the likelihood. First, if the dimension k of the

data increases, the intercept term of the covariance matrix transition equation increases the

number of parameters in the model quadratically by k(k + 1)/2. We address this by using

a targeting approach to estimate this intercept. Second, the number of DoF parameters

increases with the dimension k. Here, for more parsimony, we introduce a clustering

approach to reduce the number of free DoF parameters. This still allows for flexibility

and tail heterogeneity but also reduces the computational burden during optimization.

We apply our new model to Danish Electricity prices over the period of January 2017 –

May 2024. This period covers major events like the COVID-19 pandemic and the Russian

invasion of Ukraine. In particular, February 2022 onwards was important for electricity

prices due to the discussion and subsequent ban on Russian gas trading on European

markets (see, Ravazzolo and Rossini, 2023). Our full sample results clearly show that the

dynamic conditional t-Riesz distribution fits the 24 hour data significantly better than the

multivariate Student’s t distribution. Out-of-sample, we find that the t-Riesz distribution

produces superior multivariate density forecasts compared to the t distribution, confirming

our in-sample findings. Moreover, the t-Riesz distribution also outperforms the t-copula.

Further, the t-Riesz distribution produces superior implied (full-domain) marginal density

forecasts during the afternoon and better implied left-tail marginal density forecasts during
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8 a.m. - 8 p.m. Focusing on the crisis period related to the Russian invasion of Ukraine,

the result becomes even stronger: the t-Riesz distribution then outperforms the Student’s

t distribution during almost all hours of the day. This underlines the importance of

allowing for tail heterogeneity during crisis periods. Finally, during crisis periods, the t-Riesz

distribution is also able to better predict upper risk quantiles of a portfolio of electricity

prices during the central hours of the day better than the t-distribution and the t-copula. In

particular, the number of Value-at-Risk violations is closer to the nominal coverage value.

The remainder of this paper is organised as follows. Section 2 introduces the new dynamic

t-Riesz model. Section 3 discusses the empirical application. Section 4 concludes.

2 The model

2.1 The t-Riesz distribution

The t-Riesz distribution for a general vector y ∈ Rk×1 generalizes the multivariate Student’s

t distribution by mixing the multivariate normal with an inverse Riesz distribution rather

than with a scalar inverse chi-squared distribution. The inverse Riesz distribution is

characterized by a vector-valued DoF parameter ν = (ν1, . . . , νk)
⊤ ∈ Rk×1 rather than

by a single, scalar DoF parameter ν. It therefore allows for tail heterogeneity in different

directions for the vector y. We refer to the appendix for more details on the inverse Riesz

distribution. The pdf of the t-Riesz distribution is given by the following theorem (see

Ghorbel and Louati, 2019).1 For a proof, see the appendix.

Theorem 1 (the t-Riesz pdf). Let y ∈ Rk×1 with pdf

pT R(y;Σ,ν) =
Γ ((ν + 1)/2) U |Σ|ν/2

Γ (ν/2) πk/2
· U |Σ+ y y⊤|−(ν+1)/2 , (1)

with the generalized multivariate Gamma function Γ(ν) = πk(k−1)/4
∏k

i=1 Γ
(
νi +

1−i
2

)
for

2νi > i − 1 and i = 1, . . . , k, and U |Y |ν =
∏k

i=1U
2νi
i,i the Upper Power Weighted

Determinant (UPWD) for a positive definite matrix Y with (unique) upper triangular

1We concentrate in this paper on the so-called type-I t-Riesz distribution, based on a type-I inverse
Riesz distribution. There is also a type-II t-Riesz distribution, but in our empirical application, we found
the differences between these two distributions to be only minor.
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Cholesky decomposition Y = UU⊤, where U has positive diagonal elements.

Then y as characterized by the pdf in Eq. (1) has a t-Riesz distribution and the distribution of

y can be obtained by mixing a multivariate normal distribution with an independent inverse

Riesz distribution.

Interestingly, except for the use of the non-standard generalized gamma functions rather

than the regular gamma function, and of the power-weighted determinant rather than the

regular determinant, the density expression of the t-Riesz distribution in Eq. (1) one-on-one

mirrors and generalizes the pdf expression of the multivariate Student’s t distribution.

We note that the power weighted determinant is not a regular determinant and lacks

well-known properties such as |A · B| = |A| · |B| for matrices A,B ∈ Rk×k. We refer to

Lemma 1 in the appendix for more details. If, however, all elements of ν are identical, i.e.,

ν = (ν, . . . , ν)⊤, then Γ(ν) collapses to the standard multivariate gamma function, and the

Upper Power Weighted Determinant collapses to a simple power of the standard determinant

U |Y |ν = |Y |ν . In that case, the t-Riesz distribution collapses to the multivariate Student’s

t distribution. The following corollary establishes the precise link between the two.

Corollary 1. Under the conditions of Theorem 1, if we assume ν = ν · ιk for a scalar

ν > k − 1, then y has a multivariate Student’s t distribution with ν − k + 1 degrees of

freedom, i.e., pT R(y;Σ, ν · ιk) = pT (y;Σ, ν − k + 1).

The corollary makes clear that it is possible to test whether the t-Riesz distribution collapses

to the multivariate Student’s t distribution by testing whether all elements in ν are the same.

It also makes clear that the t-Riesz can be quite fat-tailed even if some of the νis are quite

large. For instance, if all νis are equal to 26 for k = 24 dimensions, then the corresponding

multivariate Student’s t distribution only has ν−k+1 = 3 degrees of freedom. Empirically,

we often find that for our k = 24 at least some of the entries νi are substantially smaller

than 26, increasing the overall fat-tailedness of the distribution in some directions.

Figure 1 shows simulated draws with covariance matrix I2 from a bivariate t distribution

with 7 degrees of freedom as well as draws from a t-Riesz distribution with ν = (5, 10)⊤.

The scatter plot in the top panel of Figure 1 clearly shows the differences in the tails: in the

corners, the t-Riesz distribution has more probability mass compared to the t distribution.

Also, the conditional densities differ substantially between the two distributions. The

5



Figure 1: The t-Riesz vs the multivariate Student’s t distribution
This figure shows simulated draws and conditional distributions of two bivariate distributions: the t
distribution with 7 degrees of freedom and the t-Riesz distribution with ν = (5, 10)⊤ and covariance matrix
I2. The top panel shows a scatterplot of x2 against x1, while bottom panel show the pdf of x1 given that
x1 − x2 = ±3.

conditional density of (X1 | X2 = 0) is fatter for the t than the t-Riesz distribution, while the

opposite holds for the distribution of x2 given x1 = 0. The plots in the bottom panels show a

“joint identical crash or boom probability”, i.e. the probability along the line x1 − x2 = ±3

according to the Gaussian, t and t-Riesz distribution. The figure clearly shows that the

latter has a much higher joint crash (and boom) probability than the t, and even more so

compared to the Gaussian distribution. To sum up, the new distribution allows for much

more flexibility in the tails than the standard multivariate Student’s t distribution.
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2.2 Scale matrix dynamics, parameter estimation, and targeting

When applying the t-Riesz distribution in the multivariate time series context for modeling

electricity prices, it is important to allow for a time-varying scaling matrix Σ, i.e., for Σt.

We do this as follows. First, we define Vt = Var[yt | Ft−1] = UVtU
⊤
Vt

as the time-varying

conditional covariance matrix of yt, where M (ν) is the static diagonal covariance matrix of

a standard (Σt = Ik) t-Riesz distribution, and UVt is the unique upper triangular Choleski

decomposition of Vt.
2 Using the uniqueness of the Choleski decomposition, the diagonality

of M (ν), and the relation UVtU
⊤
Vt

= UΣt M (ν)U
⊤
Σt
, we obtain UΣt = UVtM (ν)−1/2,

and thus Σt = UΣtU
⊤
Σt

= UVtM (ν)−1U
⊤
Vt
. Using this expression for the time-varying

scale matrix Σt in the t-Riesz distribution, we obtain the following time-varying parameter

specification of the t-Riesz:

yt ∼ T R(µt , UVtM (ν)U
⊤

Vt
, ν), (2)

Vt+1 = (1− A−B)Ω+ A (yt − µt)(yt − µt)
⊤ +B Vt, (3)

with scalar parameters A and B, k × 1 DoF parameter ν, k × k matrix-valued intercept

parameter Ω, and time-varying conditional mean µt (to be specified later). Unlike a

standard BEKK-MGARCH specification, the conditional covariance matrix Vt of yt does

not enter the conditional density in (2) directly, but only via its upper triangular Choleski

decomposition UVt interacted with the diagonal matrix M (ν).

We can now easily compute the log-likelihood function of the dynamic t-Riesz model.

Using a set of static parameters A, B, ν, Ω, and a starting value V1, we first obtain all

the values of Vt for t = 1, . . . , T , using the filter (3). Next, we compute the log-likelihood

function using the t-Riesz pdf in (1) with Σt = UVtM(ν)U
⊤
Vt
, i.e.,

T∑
t=1

log Γ ((ν + 1)/2)− log Γ (ν/2) + log U |Σt|ν/2 + log U |Σt + y y⊤|−(ν+1)/2 . (4)

This log-likelihood function can subsequently be maximized with respect to the static

parameters to obtain the maximum likelihood estimator (MLE).

2Note that the upper triangular decomposition UVt can be obtained from the lower triangular Choleski
decomposition of Vt as UVt = (L−1

V −1
t

)⊤.
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In higher dimensions k, estimating the intercept Ω becomes increasingly cumbersome.

We therefore propose a targeting approach to estimate Ω. Assuming stationarity and the

existence of an unconditional first moment of Vt (and thus a second unconditional moment

of yt), we can take unconditional expectations of the left-hand and right-hand sides of (3)

to obtain V = E[Vt] = Ω. Based on this result, we estimate Ω by its sample equivalent

Ω̂ = T−1
∑T

t=1(yt−µt)(yt−µt)
⊤. Using Ω̂, we can then estimate the remaining parameters

by standard maximum likelihood.

An elaborate set of simulation results is provided in Appendix B. We first show the

finite sample properties of the static t-Riesz distribution (with targeting). Second, we show

that we can test the null hypothesis of a multivariate Student’s t distribution versus the

alternative of the t-Riesz distribution and that this test has power in finite samples. Third,

we show that our model in (??)–(3) performs well in finite samples: it estimates the correct

parameters back correctly if the model is correctly specified.

2.3 Clustering of DoFs and ordering of variables

If the dimension k of the data increases, the number of DoF parameters in ν also increases.

Estimating all of these DoF parameters separately may be empirically challenging. To

introduce more parsimony in the model, we propose a clustering approach. Here, we group

the elements of ν into different clusters that each have the same value for the DoF parameter.

A challenge for the clustering approach is that not only the value of the DoF parameter

of the cluster matters but also the order of the coordinates in the random vector yt. The

latter is due to the use of the inverse Riesz distribution in the construction of the t-Riesz

distribution and is well-known and accepted in the Riesz literature; see also the Bartlett

construction of the inverse Riesz in Eq. (A.1) in the appendix. We solve this challenge by

combining the ordering and cluster assignment steps into one. Algorithm 1 summarizes the

procedure.

In short, we make G groups of consecutive coordinates, each of size kg − kg−1 for

g = 1, . . . , G, with 1 ≤ k1 < . . . < kG = k denoting the end-coordinates of each cluster.

Initially, we randomly order the elements of yt and estimate the static parameters of the

model. We then consecutively take each coordinate i in yt and put it in each of the positions
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Algorithm 1 Clustering DoFs and Ordering the Coordinates

1: Fix the number of clusters G. Randomize the order of the elements of yt and initialize
0 = k0 < k1 < . . . < kG = k to define the cluster end points kg for g = 1, . . . , G.

2: Set νi = ν̃g for i ∈ [kg−1 + 1, kg], and maximize the log-likelihood with respect to A, B,

and ν̃ = (ν̃1, . . . , ν̃G) while putting Ω̂ at its targeting estimate from Section 2.2.
3: For i = 1 : k do

a: Shift coordinate i from yt to position j for each j = 1, . . . , k;
b: Compute the value of the log-likelihood function at the current estimated parameters,
using an equivariant transformation of the targeted Ω̂;
c: if j crosses a cluster boundary point, i.e., j = kg +1, then compute the log-likelihood
value both for νj = ν̃g and νj = ν̃g+1, and proceed with the new ν̃g+1 for the next
positions j;
d: retain the coordinate position j⋆ that results in the highest likelihood and put
coordinate i in the new position j⋆ with corresponding cluster assignment;
e: if j∗ ̸= i, then re-estimate all static parameters of the model;
f: move to the next coordinate i from the original order of coordinates.

4: Possibly re-iterate steps 2-3 until cluster assignments stabilize; possibly also re-iterate
steps 1-4 such for different random starting points and retain the best solution.

j = 1, . . . , k, switching the value of its DoF parameter if it changes cluster membership. For

each position and value of the DoF parameter, we calculated the value of the likelihood.

Finally, we update the coordinate of i and its corresponding DoF parameter to the position

and cluster where it has the highest likelihood.

A final choice in Algorithm 1 is the choice of the number of clusters G. Different

data-driven approaches can be used for this based on for instance within-cluster similarity

and between-cluster dissimilarity (see Hastie et al., 2009, Chapter 14). Here, we apply

Algorithm 1 for different values of G and choose the value that minimizes the BIC; compare

the approach of Oh and Patton (2023) for clustering in a copula context. Other model

selection or cluster selection criteria could also be used.

3 Application: density forecasts of electricity prices

3.1 Data

In this paper, we focus on one-day-ahead electricity prices, where bids to buy and offers

to sell are submitted voluntarily for each hour of the following day. More specifically, this

market is opened several days in advance and closed at noon of the day preceding physical
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delivery. The actual spot prices realized the next day may depart from these one-day-ahead

prices. The electricity prices themselves are affected by factors such as the installed capacity,

the international dynamics of fossil fuel prices, plant maintenance, outages, interconnections

with foreign markets, weather conditions, and market microstructure noise (see Gianfreda

et al., 2023, for a more complete description of electricity markets).

Our empirical analysis focuses on Denmark, and in particular the Danish zonal price area

DK1, which is the Western Denmark area (see Pircalabu et al., 2017; Pircalabu and Benth,

2017). We focus on DK1 since it is part of the European continental electricity system

and relies on higher Central European prices, while DK2 (Eastern Denmark) is part of the

Nordic electricity system and thus refers to the cheaper northern prices. The dataset spans

the period from January 1, 2017, to May 31, 2024, and comprises the COVID-19 pandemic

and the Russian invasion of Ukraine with the subsequent price cap implementation.

Daily one-day-ahead auction prices for each hour of the next day are collected from

Refinitiv-Eikon and are quoted in Euros per MegaWatt-hour (MWh). To account for

daylight-saving changes, we remove the 25th hour in October and interpolate the missing

24th hour in March. Operators trading in these markets use forecasts at day t of demand

and of wind and solar activity to construct a set of 24 hourly price forecasts for delivery at

day t + 1. These prices are submitted before the closure of the market at around noon of

day t.

Figure 2 provides an overview of the historical data for electricity prices. The top left

panel shows the electricity prices for each hour over the day over the entire sample period.

We can clearly see the strong increase in electricity prices after the Russian invasion of

Ukraine when Danish electricity prices were strongly affected by the sanctions on Russian

gas. The top right panel provides the sample distributions of electricity prices, with high

variability across all the hours and with some negative spikes in the central hours. In

particular, we can see some outliers varying between 800 Euros/MWh during the initial

Russian invasion of Ukraine and −440 Euros/MWh during the second wave of the current

war. Lastly, the bottom panel depicts the intraday dynamics across days of the week for

the prices. The different markers provide evidence of different behaviors across the 24 hours

and the different days of the week, with low values during the weekends and high values

during the first two days of the week.
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Figure 2: Hourly Electricity Prices for Denmark.
Hourly Danish (DK1) electricity one-day-ahead prices (top left), sample price distributions (top right), and
Intraday profiles across days of the week (bottom left) from January 1, 2017 to May 31, 2024 (T = 2, 708
days). [Monday (◦), Tuesday (+), Wednesday (⋆), Thursday (•), Friday (×), Saturday (□), Sunday (⋄)]

The electricity prices in the top-left panel of Figure 2 clearly also show outliers and

even negative prices from time to time. This may call for a different distribution than the

normal for density forecasting. This suspicion is confirmed in Figure 3, where we provide

the kurtosis of the one-day-ahead electricity prices for each separate hour of the day jointly

with the overall kurtosis of all pooled hours (in red). We see clear evidence of a strong

kurtosis across all hours of the day, ranging from a low of 13 to a high of 17. The troughs

appear during the first peak hours (8–10 a.m.) and early evening (6–8 p.m.), but even these

still provide evidence of heavy tails.
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Figure 3: Kurtosis of Hourly Electricity Prices
This figure shows Kurtosis across hours (in black) and the overall kurtosis (in red) with 95% confidence
bands (in dashed red) for the Danish (DK1) electricity one-day-ahead prices. The sample covers the period
from January 1, 2017, to May 31, 2024 (T = 2, 708 days).

3.2 Model set-up and evaluation criteria

Let yt = (y1,t, y2,t, . . . , y24,t) ∈ R24×1 be a vector of hourly one-day-ahead electricity prices

at day t, such that k = 24. Following Gianfreda et al. (2023), we model the conditional

mean of yh,t for hour h at day t as

yh,t =
K∑
k=1

ψkdk,t +
24∑
l=1

ϕ1,lyl,t−1 + ϕ2yh,t−2 + ϕ7yh,t−7 + ϵh,t, (5)

where we included twelve month dummies (d1,t, . . . , d12,t), two weekend dummies (for

Saturdays, d13,t, and Sundays, d14,t), and the lag of all 24 prices of the previous day (yt−1),

and the 2nd and 7th lag of the hour-specific price.

We gather all hourly error terms ϵh,t into a vector ϵt, which we model by a t-Riesz

distribution with time-varying covariance matrix Vt according to the model specified in

Eqs. (2)–(3). We call this the BEKK t-Riesz model. Note that if ν = νιk, the model

becomes a BEKK t model with ν − k + 1 degrees of freedom for ν > k − 1. Parameter

estimation is carried out in two steps. First, we estimate the parameters of the conditional

mean equation by OLS. Next, we estimate the parameters of the BEKK t-Riesz model by

Maximum Likelihood and targeting as described in Section 2.2. Hence, the BEKK t-Riesz

likelihood only needs to be optimized with respect to the parameters A, B, and ν. Standard
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errors are obtained using the standard sandwich covariance matrix estimator.

We investigate the one-step-ahead density forecast performance of the new dynamic t-

Riesz distribution vis-a-vis the BEKK Student’s t model. We consider both the multivariate

density forecasts for the full vector yt, as well as the implied marginal density forecasts of

the electricity prices yh,t at each hour as obtained from the estimated multivariate density.

To assess the differences in performance, we use the log scoring rule (see Mitchell and Hall,

2005; Amisano and Giacomini, 2007). Define the difference in log score between two density

forecasts M1 and M2 corresponding to vector yt as

dls,t = Sls,t(yt,M1)− Sls,t(yt,M2), (6)

for t = R,R + 1, . . . T − 1 with R the length of the estimation window and Sls,t(yt,Mj)

(j = 1, 2) the log score of the density forecast corresponding to model Mj at time t,

Sls,t(yt,Mj) = log pyt(yt|Vt,Ft−1,Mj), (7)

where pt(·) is the pdf of the t-Riesz or the Student’s t BEKK model. The null hypothesis of

equal predictive ability is given by H0 : E[dls] = 0 for all P = T −R out-of-sample forecasts.

This null can be tested through a Diebold and Mariano (1995) (DM) statistic

DMls =
d̄√
σ̂2/N

, (8)

with out-of-sample average d̄ of the log score differences and HAC variance estimator

σ̂2. Under the assumptions of the framework of Giacomini and White (2006), DMls

asymptotically follows a standard normal distribution. A significantly positive value means

that model M1 has a superior forecast performance over model M2. We also consider the

Model Confidence Set (MCS) of Hansen et al. (2011). The MCS automatically accounts for

the dependence between model outcomes given that all models are based on the same data.

We follow Gianfreda et al. (2023) and also compute one-step-ahead marginal density

forecasts of electricity prices for each hour of the day as implied by the multivariate density

for yt, i.e., the pdf of yh,t for every h = 1, . . . , 24. We evaluate these marginal density

forecasts by using the quantile CRPS score (Gneiting and Ranjan, 2011), which is defined
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as

Sh,t(yh,t+1) =

∫ 1

0

QSα

(
F−1(α), yh,t+1

)
ω(α)dα, (9)

with the cumulative distribution function (cdf) F of the pdf pyt , and the quantile score

QSα (F
−1(α), yh,t+1) given by

QSα

(
F−1(α), yh,t+1

)
= 2

(
Iyh,t+1≤F−1(α) − α

) (
F−1(α)− yh,t+1

)
, (10)

with the quantile forecast F−1(α) and 0 ≤ α ≤ 1. Further, ω(α) is a weight function, which

is set equal to 1 (no weight), α2 (weight on the right tail), and (1− α2) (weight on the left

tail), respectively. Similar to the log scoring rule, we test for differences in the (weighted)

Q-CRPS score between two distributions using the DM test. The lower the CRPS score,

the better the one-step-ahead density forecasts are.

Finally, we investigate the implications of the different forecasting distributions from a

risk management perspective. More specifically, we are interested in the probability that

the (average) electricity price during the central hours of the day exceeds a certain number.

This portfolio Value-at-Risk is formally defined as

Pr(ypt+1 ≥ pV aR1−q
t+1 |Ft−1;µt+1,Vt+1) = q, (11)

with ypt+1 = y⊤
t+1w an equal weighted average of the electricity prices of tomorrow and q

a particular quantile. We choose the 8 central hours during the day (9 a.m. - 4 p.m.)

for our analysis and set q equal to 0.10, 0.05, 0.025, and 0.01 respectively. We evaluate

our forecasted 1-step Value-at-Risk values by the classical Conditional Coverage test of

Christoffersen (1998), and its two subtests: the Unconditional Coverage test and the test

on the independence of the violations.

3.3 Full sample results

Table 1 presents the main results. We first discuss the results for the full sample of

T = 2, 708 observations. As the focus is on the density forecasts and the effect of the

new tail heterogeneity model, we concentrate on the volatility and tail part of the results.
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Table 1: Full sample parameter estimates, likelihoods and information criteria
This table reports maximum likelihood parameter estimates of the BEKK model of (2) - (3), assuming
a t-Riesz or a multivariate Students’s t distribution, applied to a panel of 24 hourly Danish electricity
prices. The Table lists the coefficients, as well as the standard errors, obtained by the sandwich covariance
estimator. We report the log-likelihood L, the BIC, and the χ2 statistic (plus critical value using a 1 %
significance level) of the test on an identical DoF parameter across coordinates, H0 : ν = ν ιk. The sample
spans the period from January 1, 2017, until May 31, 2024 (T = 2, 708 days).

t-Riesz multivariate t

BEKK parameters
A 0.005 A 0.007

(0.001) (0.001)
B 0.993 B 0.991

(0.001) (0.001)

Degrees of Freedom parameters
ν1 4.205 ν6 10.883 ν11 18.745 ν16 20.922 ν21 25.872 ν 2.717

(0.393) (0.458) (1.893) (0.323) (0.339) (0.034)
ν2 5.500 ν7 13.256 ν12 19.685 ν17 22.337 ν22 25.948

(0.381) (1.307) (0.911) (0.409) (0.281)
ν3 6.605 ν8 14.917 ν13 22.553 ν18 23.551 ν23 26.891

(0.387) (1.093) (2.271) (0.358) (0.269)
ν4 7.432 ν9 16.286 ν14 20.503 ν19 24.981 ν24 25.617

(0.155) (1.149) (0.546) (0.461) (0.031)
ν5 8.872 ν10 17.056 ν15 20.597 ν20 25.934

(0.198) (1.522) (0.465) (0.398)
L -197,915 -200,039
BIC 396,036 400,101
LR test 4,247
χ2
0.99(23) 41.64

For a more thorough discussion on the conditional mean part, see for instance Gianfreda

et al. (2020, 2023).

Looking at the log-likelihood values of the t-Riesz and multivariate t BEKK specification

in Table 1, the t-Riesz model is clearly superior with a log-likelihood improvement of about

2,100 points compared to the multivariate t. The corresponding Likelihood Ratio test

statistic for H0 : ν = ν ιk is significant at the 1% level, hence rejecting the multivariate

t distribution. This is also confirmed by the BIC values: the BIC of the BEKK t-Riesz

model is about 4,050 points lower than that of the BEKK t model. Tail heterogeneity thus

seems empirically important for electricity prices.

When looking at the estimated DoF parameters, we see they range from a low 4.205 to

a high 25.934 for the t-Riesz, whereas the ν for the multivariate t equals 2.717. Note that

according to Corollary 1, a t-Riesz with DoF parameter ν = (2.717 + 24− 1)ιk = 25.717 ιk

would result in a multivariate t distribution with 2.722 DoF. We see, however, in Table 1,
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that many of the estimated DoF parameters νi for the t-Riesz distribution are substantially

below 25.717. This implies that the t-Riesz is much fatter-tailed in certain directions than

the multivariate Student’s t distribution.

We confirm this pattern by looking at the differences between the two distributions via

the QQ plots in Figure 4. Using the two estimated models from Table 1, we simulate 100,000

draws from the multivariate t and the t-Riesz distribution, respectively. We then plot the

QQ plot for four different hours: 2 a.m., 9 a.m., 1 p.m., and 9 p.m.. If the t-Riesz and

multivariate t distribution were similar, the blue marks for the t-Riesz should be very close

to the red dashed line. The figure clearly indicates that there is a substantial difference

between the two distributions at 2 a.m., 9 a.m., while for 1 p.m. and 9 p.m., the marginal

distributions are roughly equal. The differences do not only apply to the right tail (high

electricity prices) but also to the left tail. Note that the estimated DoF parameters are

already corrected for time-varying volatility via Eq. (3). The latter is important, as Table

1 also confirms the result of Gianfreda et al. (2023) that there is substantial time-varying

volatility for electricity prices.

To sum up, hourly electricity prices do not only exhibit fat tails, but there is also

substantial tail heterogeneity, even after correcting for time-varying volatility. The t-

Riesz distribution statistically outperforms the multivariate t distribution and seems a

better description of the distribution of electricity prices. In particular, the multivariate

t distribution seems to underestimate the fat-tailedness and thus the risk of electricity

prices for some hours of the day. In the next subsection, we investigate whether these

results continue to hold out-of-sample and what the implications are for predicted portfolio

Value-at-Risks.

3.4 Out-of-sample results

To assess the out-of-sample behavior of the new dynamic t-Riesz model, we perform two

different analyses. In the first analysis, we compare density forecasts of the new t-Riesz

distribution to those of the benchmark multivariate t density using the joint vector yt of all

24 hours of the day. As a second benchmark, we also consider a copula approach as a natural

competitor of the t-Riesz distribution. Copulas are used in many applications in economics

16



Figure 4: QQ plots
This figure shows QQ plots for the implied marginal distributions of electricity prices at 2 a.m., 9 a.m., 1
p.m., and 9 p.m. based on 100,000 simulated draws from the t and t-Riesz distribution with covariance
matrix I and full sample based DoF parameters of Table 1. The red dashed line corresponds to the t
distribution, while the blue scatters correspond to the t-Riesz distribution.

and finance (see e.g. Patton, 2009; Cherubini et al., 2011; McNeil et al., 2015). We follow

Christoffersen et al. (2014) and consider the t-copula for the dependence structure with

DCC type of correlations and model each marginal separately by a univariate Student’s t

distribution with a mean equation as in (5), GARCH volatilities and νh degrees of freedom.

In addition, we compare the BEKK t and BEKK t-Riesz performances in terms of the

implied out-of-sample marginal density forecasts for each separate hour of the day. In our

second analysis, we compare the out-of-sample risk implications of all models by computing

the portfolio Value-at-Risk during 8a.m.-8p.m. from the one-step-ahead density forecasts.

All results are based on a rolling window of 800 observations, where we re-estimate the

static parameters of each model roughly every 2 months (66 days).
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3.4.1 Density Forecasts

For the density forecasts, we adopt the following procedure. At each point in time, we

evaluate the one-step-ahead density forecasts of the whole vector yt using the log-scoring

rule. To assess the quality of the one-step-ahead marginal density forecasts, we use the

Q-CRPS score as given in (9). We approximate the required integral for the Q-CRPS by

a numerical one over a grid of 1000 points. Note that the marginal density is unknown for

the t-Riesz distribution. We approximate it by simulating 250,000 vectors yt at each time

t to compute the daily CRPS for the t-Riesz for each hour separately.

Table 2 and Figure 5 summarize the results. We see in panel A of Table 2 that the

multivariate out-of-sample density forecasts of the t-Riesz distribution are superior to those

of the multivariate t. The DM test of 14.67 is clearly significant in favor of the t-Riesz.

Even the difference in log score vis-a-vis the t-copula is positive and significant. This is

partly surprising since the t-copula allows for more flexibility by modeling each marginal

density separately with a time-varying mean, volatility, and DoF parameter. Its dependence

structure, by contrast, is still very restrictive with one tail shape parameter rather than k

parameters as in the t-Riesz distribution. Also, the results for the model confidence sets

point in the same direction. The t-Riesz is always in the model confidence set, whereas

the multivariate t and the t-copula never are. This implies that the heterogeneity in

tail behavior for the full 24-hour multivariate distribution of electricity prices is not only

important in-sample but also out-of-sample. Such tail heterogeneity cannot be captured by

the multivariate Student’s t distribution.

Second, in panel B we see that the average daytime (8 a.m. – 8 p.m.) marginal density

forecasts as implied by the multivariate t-Riesz distribution for yt again outperform those of

the Student’s t distribution, both for the full support and for the left tail. The DM statistics

become even more negative when we focus on the second half of the out-of-sample period

containing the crisis (i.e. the Russian invasion of Ukraine). Hence also during such times of

turmoil, the t-Riesz distribution with its more flexible, heterogeneous tail behavior proves

valuable compared to a plain-vanilla Student’s t distribution.

Third, Figure 5 shows the results for the marginal density forecasts per hour in more

detail. The figure consists of 6 different sub-plots for all combinations of full versus crisis
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Table 2: Out-of-Sample one-step-ahead density forecasts results
This table shows results of one-step-ahead density forecasts of the full and marginal densities of yt (the
vector with 24 electricity prices at day t) according to the BEKK model assuming a multivariate Student’s
t or a t-Riesz I distribution and a t-copula with univariate GARCH-t marginals. We use a moving window
of 800 observations and re-estimate our parameters after 66 days. Panel A shows the mean of the log-score
as defined in (7) according to four different approaches: The BEKK t-Riesz full (estimating all 24 DoFs),
BEKK t-Riesz cluster (BEKK Tr with a clustering approach using 3 clusters), the BEKK t model and the
t-copula model with GARCH-t marginals. The panel also lists the pair-wise DM statistics on significant
differences in the log-score against the BEKK Tr full model. Positive statistics indicate that the BEKK
tRiesz full model has superior density forecasts. Finally, we list the MCS p-values based on a 5% significance
level. The highest value of the predictive log-score across the models and the p-values of the models within
the model confidence set are marked in bold. Panel B shows results on the average marginal density
forecast during the hours 8 a.m. - 8 p.m., using the average Q-CRPS score of (9) ω(α) = 1, α2 and (1−α)2,
respectively. The panel shows DM statistic of equal density forecasts between the multivariate Student’s t
and the t-Riesz distribution is significant at a 5% level. Negative values indicate superior density forecasts
of the t-Riesz distribution. The panel discriminates between the whole out-of-sample and the second half
containing the crisis period (December 2021 - May 2024). The out-of-sample period goes from March 19,
2019, until May 31, 2024 (T = 1, 901 days).

Panel A: multivariate density forecasts
t-Riesz (full) t-Riesz cluster mult t t-copula

Sls -79.581 -79.635 -80.254 -80.120
mcs p-value (1.00) 0.024 (0.00) (0.00)
DMls 3.187 14.670 5.861

Panel B: Average univariate density forecasts (8:00 - 20:00)
DMQ−CRPS stat (t vs t-Riesz )

Full OOS Crisis period
Full dist -2.188 -5.366
Left tail -5.024 -7.238
Right tail 1.613 -0.514

period, and the full support versus the left or right tail. Red bars indicate that the t-Riesz

implied marginal distributions perform better than their Student’s t counterparts based on

the Q-CRPS score and a DM statistic at a 5% significance level. For blue bars, the converse

holds, while no bars are shown if the scores are not significantly different at a 5% level.

The first message from the figure is that the t-Riesz distribution with tail heterogeneity

improves upon the t distribution when considering the full support of the distribution and

its left tail. This result holds regardless of whether we focus on the full out-of-sample (left

panels) or on the second half of the out-of-sample period that includes the crisis period.

The gain is statistically significant during 12a.m.-5p.m. and 8p.m. for the full distribution

and holds during 7 a.m. - 8 p.m. when we focus solely on the left tail of the distribution.

Only in the case of the right tail, the t distribution sometimes does a better job during the

full out-of-sample period, while the opposite holds during night time in crisis periods.
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Second, comparing the left and right panels, the tail heterogeneous t-Riesz distribution

is even more preferred during times of turmoil than when evaluated over the full out-of-

sample period, irrespective of the focus of the distribution (full support, left tail, or right

tail). Especially for the full support and the left tail, the t-Riesz distribution outperforms

the t distribution for almost every hour of the day.

To sum up, one-step ahead multivariate density forecasts of the BEKK t-Riesz model

are superior to those of the t-distribution and the t-copula. In addition, the univariate

marginal distributions implied by their multivariate counterparts show that the t-Riesz

distribution outperforms the t-distribution for many hours of the day, both for the full

marginal distribution and its left-tail. During crisis periods the result is even stronger and

holds for almost all hours of the day. Again, this illustrates the empirical usefulness of the

t-Riesz distribution in allowing for tail heterogeneity in electricity prices over the course of

the day.

Finally, Table 2 shows the performance of the clustering-based dynamic t-Riesz model

using the approach described in Section 2.3. This reduces the number of DoF parameters

of the t-Riesz distribution and checks whether the t-Riesz is not overfitting the data with

its k different DoF parameters in the vector ν. To estimate the number of clusters and

the order of the variables for the t-Riesz, we iterate the clustering algorithm twice over the

in-sample period of the first 800 observations, resulting in 3 clusters with cluster-adjusted

DoF values νi = ν̃g + i + 1 for ν̃1 = 2.29, ν̃2 = 5.57, and ν̃3 = 3.33, respectively; see

Algorithm 1 in Section 2.3. Table 2 shows that the multivariate density forecasts of this

more parsimonious dynamic t-Riesz distribution also outperform those of the multivariate

Student’s t and the t-copula. A pairwise Diebold-Mariano test of the clustered dynamic

t-Riesz distribution against the t (-copula) distributions results in t-statistics of 12.545

and 5.158 respectively. Hence the differences are statistically significant. The clustering

approach performs worse than the full t-Riesz model, but the difference is relatively small

compared to improvements vis-á-vis the other competitors. Hence, clustering the DoF

parameters in our current application and reducing the number of parameters can be

implemented without a substantial loss in density forecast performance.
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Figure 5: Testing univariate density forecasts using the Q-CRPS score
This figure shows results on the DM test of one-step-ahead density forecasts of hourly electricity prices
between the BEKK t-Riesz and BEKK t model using the Q-CRPS score of (9) based on three different
weighting schemes. The top panel shows results when ω(α) = 1 (no weight), the middle panel depicts the
case when ω(α) = α2 (right tail), and the bottom panel corresponds to the case ω(α) = (1 − α)2 (left
tail). The left panel shows results based on the full out-of-sample, while the right panel focuses on the crisis
periods (December 2021 - May 2024). Each sub-figure shows for each hour (1 a.m. - 12 a.m.) whether the
difference in the Q-CRPS score is statistically significant at a 5% level. The out-of-sample period goes from
March 19, 2019, until May 31, 2024 (T = 1, 901 days).

3.4.2 Forecasting Risk Measures

We end the empirical section by evaluating the 1-step ahead portfolio Value-at-Risk forecasts

of the average electricity price during 9a.m.-4p.m. Table 3 lists the results of these

VaR predictions during the second half of the out-of-sample, which includes the crisis
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period. We list the number and percentage of violations, as well as the p-values for the

(un)conditional coverage and independence test. A bold number indicates that the null of

correct (un)conditional coverage or independence cannot be rejected.

The table shows that the portfolio VaR forecasts of the t-Riesz distribution are

unconditionally correct and closest to their nominal values. In contrast to this, the t-

copula with its flexible margins is too conservative and overpredicts the portfolio volatility

as all violation rates are substantially below their nominal value. For the 90% and 95%

VaR the difference is even so large that the null hypothesis of correct unconditional

coverage is rejected for the t copula model. Finally, t-distribution and t-Riesz distribution

behave similarly from a VaR perspective, with a slight edge for the t-Riesz model as

the independence test rejects rejects for the t distribution at the 97.5% VaR. Also, the

unconditional coverage percentages for the t-Riesz distribution are (slightly) closer to their

nominal values than for the t distribution.

To sum up, during crisis periods, the t-Riesz distribution outperforms the t distribution

and the t-copula with respect to the number of violations and the independence of violations.

4 Conclusions

In this paper, we introduced the conditional dynamic t-Riesz distribution into time series

econometrics with a focus on electricity prices. The t-Riesz distribution was obtained

by mixing the inverse Riesz distribution (Tounsi and Zine, 2012) with the multivariate

normal distribution, allowing for heterogeneity in tail behavior compared to the well-

known multivariate Student’s t distribution. While the multivariate t only depends on

a single, scalar degrees of freedom parameter, the t-Riesz is characterized by a vector of

degrees of freedom parameters. The model could easily be estimated by straightforward

maximum likelihood methods. The different degrees of freedom parameters could be grouped

into clusters using the clustering algorithm provided in this paper, thus introducing more

parsimony into the model.

We applied the new dynamic conditional distribution to a panel of 24 Danish daily

electricity prices during the period 2017-2024, including the start of the Russian invasion of

Ukraine. The full sample analysis revealed that the t-Riesz distribution fits electricity prices

22



Table 3: Out-of-Sample portfolio Value-at-Risk forecasts during Crises periods
This table shows results of one-step-ahead portfolio Value-at-Risk forecasts of the average electricity price
between 9 a.m. and 4 p.m. according to the BEKK model assuming a multivariate Student’s t or a t-
Riesz I distribution and a t-copula with univariate GARCH-t marginals. We use a moving window of 800
observations and re-estimate our parameters after 66 days. The Table shows for four different quantiles (90,
95, 97.5, and 99) the number (percentage) of violations, and p-values associated with the (Un)conditional
Coverage and Independence tests of Christoffersen (1998). Bold numbers show that the null hypothesis
can not be rejected (UC/IND/CC tests) The table shows results on the second half of the out-of-sample
(December 2021 - May 2024), including the Crisis period and contains 901 days.

Risk quantile (1-q)
0.9 0.95 0.975 0.99

BEKK t-Riesz
# violations 94 47 22 9
perc violations 10.43% 5.22% 2.44% 1.00%
p-value UC 0.667 0.767 0.910 0.997
p-value IND 0.000 0.000 0.111 0.074
p-value CC 0.000 0.000 0.280 0.203

BEKK t
# violations 98 54 24 9
perc violations 10.88% 5.99% 2.66% 1.00%
p-value UC 0.386 0.184 0.755 0.997
p-value IND 0.000 0.000 0.025 0.074
p-value CC 0.000 0.000 0.076 0.203

t-Copula
# violations 69 32 20 6
perc violations 7.66% 3.55% 2.22% 0.67%
p-value UC 0.015 0.036 0.583 0.283
p-value IND 0.005 0.027 0.461 0.777
p-value CC 0.001 0.010 0.656 0.540

significantly better than the multivariate t-distribution. The degrees of freedom parameters

of the t-Riesz varied significantly across the different coordinates. In addition, multivariate

density forecasts improved significantly when using the t-Riesz distribution compared to the

t distribution and the t-copula.

Especially during the second half of the out-of-sample period (December 2021 - May

2024), the t-Riesz distribution also produces superior implied univariate density forecasts

during most hours of the day, as well as better density forecasts in the left tail. Finally, the

t-Riesz also produced better risk quantiles than the t distribution and the t-copula since the

start of the Russian invasion of Ukraine. Overall, the results support the empirical relevance

of tail heterogeneity for electricity prices, and the proposed dynamic t-Riesz distribution can
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be a useful device to capture this feature of the data in an empirically congruent way.

References

Amisano, G. and R. Giacomini (2007). Comparing density forecasts via weighted likelihood

ratio tests. Journal of Business and Economic Statistics 25 (2), 177–190.

Anderson, T. W. (1962). An Introduction to Multivariate Statistical Analysis. Technical

report, Wiley New York.

Chan, J. C. C. and A. L. Grant (2016). Modeling energy price dynamics: GARCH versus

stochastic volatility. Energy Economics 54, 182–189.

Cherubini, U., S. Mulinacci, F. Gobbi, and S. Romagnoli (2011). Dynamic Copula Methods

in Finance. John Wiley and Sons.

Christoffersen, P., V. Errunza, K. Jacobs, and X. Jin (2014). Correlation dynamics and

international diversification benefits. International Journal of Forecasting 30 (3), 807–

824.

Christoffersen, P. F. (1998). Evaluating interval forecasts. International Economic

Review 39 (4), 841–862.
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A Lemmas and Proofs

Lemma 1 (see Appendix B of Opschoor et al., 2023). Given a scalar ν, a vector ν = (ν1, . . . , νk)
⊤ ∈

Rk×1, a vector of ones ιk ∈ Rk×1, and Y ∈ Rk×k a positive definite matrix, then we have the following

identities.

(i) If ν = ν · ιk, then |Y |ν·ιk = U |Y |ν·ιk = |Y |ν . As special case, when ν = 1, we have

|Y |ιk = U |Y |ιk = |Y |.

(ii) Let ν1,ν2 ∈ Rk×1 be two vectors of constants, then we have |Y |ν1
· |Y |ν2

= |Y |ν1+ν2
, and

U |Y |ν1
· U |Y |ν2

= U |Y |ν1+ν2
.

(iii) ( |Y |ν )
−1

= |Y |−ν , and ( U |Y |ν )
−1

= U |Y |−ν .

(iv) |Y |ν = U |Y −1|−ν .

(v) If L,Σ ∈ Rk×k, where Σ is positive definite with lower triangular Cholesky decomposition L such

that Σ = LL⊤, then |L−1Y (L−1)⊤|ν = |Y |ν · |Σ|−ν .

Similarly, if U is the upper triangular Cholesky decomposition of Σ with Σ = UU⊤, then

U |U−1Y (U−1)⊤|ν = U |Y |ν · U |Σ|−ν .

The Riesz distribution is characterized by two parameters: a positive definite scaling matrix Σ = LL⊤

with lower triangular Cholesky decomposition L, and a vector of degrees of freedom (DoF) parameters

ν = (ν1, . . . , νk)
⊤, with νi > i− 1 for i = 1, . . . , k. Let G ∈ Rk×k be the random matrix

G =



√
χ2
ν1

0 · · · 0

N (0, 1)
. . . 0

...
... N (0, 1)

. . . 0

N (0, 1) · · · N (0, 1)
√
χ2
νk−k+1


, (A.1)

where all elements of G are independent random variables. Then Y = LGG⊤L⊤ has a type-I Riesz

distribution, Y ∼ RI(Σ,ν), where type-I relates to the fact that we have taken a lower triangular Cholesky

decomposition in the Bartlett decomposition. A type-II Riesz distribution uses the upper-triangular

decomposition instead but is not used in the current paper. If νi ≡ ν for i = 1, . . . , k, (A.1) collapses

to the well-known Bartlett decomposition of a standard Wishart distribution (Anderson, 1962) and the

Riesz collapses to the Wishart distribution. In contrast to the Wishart distribution, the Riesz distribution

thus allows for heterogeneous tail behavior in the cross-section.

Tounsi and Zine (2012) introduce tail fatness into the Riesz distribution by developing the inverse Riesz

distribution. If Y ∼ RI(Σ−1,ν), then X = Y −1 has a (type-I) inverse Riesz distribution, which we denote

as X ∼ iRI(Σ,ν). Let Σ−1 = LΣ−1L
⊤

Σ−1 , then E[X] = (L⊤
Σ−1)−1M(ν)L−1

Σ−1 with M(ν) the first moment

of a type-I inverse Riesz distribution with Σ = I; see Louati and Masmoudi (2015) and Theorem 2 below.
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Proof of Theorem 1: The pdf of the inverse Riesz is given by

piRI (X;Σ,ν) =
|X−1|0.5(ν+k+1) · etr

(
− 1

2ΣX−1
)

|Σ−1|0.5ν · Γ (ν/2) · 2ν⊤ιk/2
.

We therefore obtain the joint density of y and X as

p(y,X) =
exp

(
− 1

2y
⊤X−1y

)
|2πX|1/2

·
|X−1|0.5(ν+k+1) · etr

(
− 1

2ΣX−1
)

|Σ−1|0.5ν · Γ (ν/2) · 2ν⊤ιk/2

=
|X−1|ιk/2 |X−1|0.5(ν+k+1) etr

(
− 1

2

(
Σ+ y y⊤) X−1

)
(2π)

k/2 |Σ−1|ν/2 · Γ (ν/2) · 2ν⊤ιk/2

=
|X−1|0.5(ν+1+k+1) etr

(
− 1

2

(
Σ+ y y⊤) X−1

)
| (Σ+ y y⊤)

−1 |(ν+1)/2 · Γ ((ν + 1)/2) · 2(ν+1)⊤ιk/2
×

|
(
Σ+ y y⊤)−1 |(ν+1)/2 · Γ ((ν + 1)/2) · 2(ν+1)⊤ιk/2

(2π)
k/2 |Σ−1|ν/2 · Γ (ν/2) · 2ν⊤ιk/2

.

The first factor can be recognized as the pdf of the inverse Riesz of type-I. Therefore, integrating out X,

we only retain the last factor, which we can rewrite as

p(y) =

∫
p(y,X) dX

=
|
(
Σ+ y y⊤)−1 |(ν+1)/2 · Γ ((ν + 1)/2) · 2(ν+1)⊤ιk/2

(2π)
k/2 |Σ−1|ν/2 · Γ (ν/2) · 2ν⊤ιk/2

=
|
(
Σ+ y y⊤)−1 |(ν+1)/2 · Γ ((ν + 1)/2)

(π)
k/2 |Σ−1|ν/2 · Γ (ν/2)

From Lemma (1iv)
=

U |Σ+ y y⊤|−(ν+1)/2 · Γ ((ν + 1)/2)

U |Σ|−ν/2 · Γ (ν/2) (π)
k/2

From Lemma (1iii)
=

Γ ((ν + 1)/2) U |Σ|ν/2
Γ (ν/2) (π)

k/2
· U |Σ+ y y⊤|−(ν+1)/2 .

Proof of Corollary 1: We use the following matrix calculus result for a matrix Σ: For a k × 1 column

vector y and row vector y⊤, it holds that:

|Σ+ y y⊤| = |Σ||1 + y⊤Σ−1y|.

The pdf of the t-Riesz distribution with ν = νιk is given by

pT R(y;Σ∗, ν · ιk) =
Γ ((νιk + 1)/2) U |Σ∗|νιk/2

Γ (νιk/2) (π)
k/2

· U |Σ∗ + y y⊤|−(νιk+1)/2 .

Since ν = νιk, Var(y) = Σ = Σ∗

ν−k−1 = Σ∗

νT−2 as νT = ν− k+1. Hence Σ∗ = Σ(νT − 2). Using Lemma (1i),
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the equalities νT = ν − k + 1 and Σ∗ = Σ(νT − 2) and the matrix calculus result of above we obtain

pT R(y;Σ∗, ν · ιk) =
Γ ((νιk + 1)/2)

Γ (νιk/2) (π)
k/2 U |Σ∗|νιk/2 U |Σ∗ + y y⊤|−(ν·ιk+1)/2

From Lemma (1i)
=

Γ ((νιk + 1)/2)

Γ (νιk/2) (π)
k/2

|Σ∗|ν/2|Σ∗ + y y⊤|−(ν+1)/2

Matr Calc result
=

Γ ((νιk + 1)/2)

Γ (νιk/2) (π)
k/2

|Σ∗|ν/2|Σ∗|−(ν+1)/2
(
1 + y (Σ∗)−1y⊤)−(ν+1)/2

=
Γ ((νιk + 1)/2)

Γ (νιk/2) (π)
k/2

|(νT − 2)Σ|νT+k−1/2|(νT − 2)Σ|−(νT+k)/2

(
1 +

yΣ−1y⊤

νT − 2

)−(νT+k)/2

=
Γ ((νιk + 1)/2)

Γ (νιk/2) (π)
k/2

|(νT − 2)Σ|−1/2

(
1 +

yΣ−1y⊤

νT − 2

)−(νT+k)/2

=
Γ ((νιk + 1)/2)

Γ (νιk/2) ((νT − 2)π)
k/2 |Σ|1/2

(
1 +

yΣ−1y⊤

νT − 2

)−(νT+k)/2

=
Γ ((νT + k)/2)

Γ (νT /2) ((νT − 2)π)
k/2 |Σ|1/2

(
1 +

y⊤ Σ−1y

νT − 2

)−(νT+k)/2

= pT (y;Σ, νT ),

where the second last step comes from the fact that if ν = νT + k − 1, then

Γ ((ν · ιk + 1)/2)

Γ (ν · ιk/2)
=

πk(k−1)/4
∏k

i=1 Γ
(
(νT + k − 1 + 1)/2 + 1−i

2

)
πk(k−1)/4

∏k
i=1 Γ

(
(νT + k − 1)/2 + 1−i

2

)
=

Γ
(
νT+k+1−1

2

)
Γ
(
νT+k+1−2

2

)
· · ·Γ

(
νT+k+1−(k−1)

2

)
Γ
(
νT+k+1−k

2

)
Γ
(
νT+k−1+1−1

2

)
Γ
(
νT+k−1+1−2

2

)
· · ·Γ

(
ν+k−1+1−(k−1)

2

)
Γ
(
νT+k−1+1−k

2

)
=

Γ
(
νT+k

2

)
Γ
(
νT

2

) .

To make the paper self-contained, we also state the first moment of the inverse Riesz distribution. We

refer directly to Dı́az-Garćıa (2013) and Louati and Masmoudi (2015) for the proofs.

Theorem 2 (Expectation of the inverse Riesz distribution).

(i) Let Y ∼ iRI(I,ν), then E[Y ] =
∑k

i=1 ciai with ci = diag(ei) and

ai =
1

νi − (i+ 1)

k∏
j=i+1

νj − j

νj − (j + 1)
if i = 1, . . . , k − 1,

ai =
1

νi − (i+ 1)
if i = k.
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(ii) Let Y ∼ iRII(I,ν), then E[Y ] =
∑k

i=1 ciai with ci = diag(ei) and

ai =
1

νi − (k + 1)
if i = 1,

ai =
1

νi − (k − i+ 2)

i−1∏
j=1

νj − (k − j + 1)

νj − (k − j + 2)
if i = 2, . . . , k.

B Simulation results

To investigate the properties of the new model, we perform four simulation experiments. All simulation

experiments are based on samples of 1000 observations. We then use Maximum Likelihood to estimate

the parameters of interest. In addition, we estimate their standard errors by computing the inverse of the

(negative) Hessian at the optimum. We replicate each experiment 1000 times.

The first experiment aims to assess the small sample properties of the MLE for the DoF parameters

and the elements of V . We simulate vectors yt of dimension k = 2 from the t-Riesz distribution. We set

V = LL⊤ with L the lower Cholesky matrix with elements L11 = 2.752, L21 = 2.125, L22 = 3.006 and

ν = (5, 10). To save space, we only consider the type-I distributions. Results on the type-II distributions

are qualitatively similar and are available upon request.

The second experiment focuses on the estimation of the DoF parameters in a 5-dimensional case, where

now the elements of V are estimated using a targeting approach as explained in Section 2.2. We set

ν = (4, 6, 8, 10, 12) for the t-Riesz distribution.

Panel A of Table B.1 presents the results of all the first two simulation experiments. We find that all

parameters are estimated near their true values. Comparing the Monte-Carlo standard error of the estimates

(std column) with the mean of the estimated standard error over all replications (mean(s.e.) column), we

find that our computed standard errors fairly reflect estimation uncertainty. We see an increase in the

variability of the ν parameters in both panels A.1 and A.2. It appears that the sensitivity of the DoF

parameters decreases with respect to the log-likelihood (and variance) of a standard t-Riesz distribution.

The third simulation experiment investigates the statistical gain of the t-Riesz distribution with various

DoF parameters over the standard multivariate Student’s t distribution with just one DoF parameter.

Guided by the empirical application, we focus on a 5-variate t-Riesz I distribution with DoF vector

ν = (3.97, 5.71, 6.90, 12.4, 9.24)⊤. We define ν̄ = 10 and νrange = ν − ν̄ιk. The simulation experiment now

consists of the following steps. First, we simulate 1000 vectors yt from a T R(0,Σ, ν̃) with ν̃ = ν̄ιk+λνrange

for λ = (0, 0.15, . . . , 0.60, 0.90). Note that if λ = 0, the t-Riesz distribution collapses to a multivariate

Student’s t distribution with DoF parameter ν̄. On the other hand, if λ = 1 we have a t-Riesz distribution

with DoF vector ν. Second, we estimateΣ (using the targeting approach) and the DoF parameters assuming

a t-Riesz distribution or a multivariate Student’s t distribution. For each λ we test the null-hypotheses

ν = ν̄ιk. This boils down to the Likelihood-Ratio test with k − 1 degrees of freedom. We repeat this

exercise 1000 times.
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The results of the third experiment are shown in Panel B of Table B.1. If we simulate from a multivariate

Student’s t distribution (i.e. λ = 0), the likelihood ratio test has been rejected in 10 % of all cases. Further,

when we deviate slightly from the multivariate Student’s t distribution, we increasingly reject the null

hypothesis of a scalar ν. For example, if λ = 0.6, corresponding to ν = (6.38, 7.42, 8.13, 11.44, 9.54)⊤, we

reject in 83% of all cases.

The final simulation experiment investigates the small sample properties of the dynamic BEKK t-Riesz

model of (2)–(3). Guided by the empirical results, we simulate time-varying covariance matrices and return

vectors with k = 10. We set ν = (5, 7.5, 10, 12, 12, 15, 14, 14, 16, 16)⊤, A = 0.01 and B = 0.98. Similar to

the second and third experiments, we use a targeting approach to estimate Ω and use maximum likelihood

to estimate the A, B, and the DoF parameters.

Panel C of Table Table B.1 lists the small sample properties of the parameters of the dynamic BEKK

t-Riesz model. We see that A and B and most of the DoF parameters are estimated near their true values.

There seems to be a small upward bias in the DoF parameters. Note again that our computed standard

errors fairly reflect estimation uncertainty.
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Table B.1: Parameter estimations of the t-Riesz distributions
This table shows Monte Carlo averages and standard deviations (in parentheses) of parameter estimates of
simulated vectors from the t-Riesz distribution (type-I) of dimensions two and five. Panel A.1 corresponds
to the bivariate case, where both the (Cholesky elements L11 (L22), L21 of V as well as the degrees of
freedom (DoF) parameters ν are estimated. Panel A.2 shows the results of the five-variate case, where
the elements of V are estimated by targeting in the first step, and the DoF parameters are estimated
in the second step by maximum likelihood. Panel B lists Monte Carlo results on the difference between
the multivariate Student’s t distribution and the t-Riesz distribution. We simulate 1000 vectors from a
T R(0,Σ, ν̃) with ν̃ = ν̄ιk + λνrange for λ = (0, 0.15, . . . , 0.60, 0.90) with ν̄ = 10 and νrange = ν − ν̄ιk
with ν = (3.97, 5.71, 6.90, 12.4, 9.24)⊤. We estimate the parameters assuming a t(0,Σ, ν̃) or a T R(0,Σ, ν̃)
distribution. For each value of λ we perform a likelihood ratio test on the null hypothesis ν = ν̄ιk. The
table lists the percentage rejections of this hypothesis for different values of λ. Panel C reports results
on the 10-dimensional BEKK t-Riesz model of (2)–(3) with ν = (5, 7.5, 10, 12, 12, 15, 14, 14, 16, 16)⊤ with
T = 1000. The table reports the true values, the mean and standard deviation of the estimated coefficients,
as well as the mean of the computed standard error. Results are based on 1000 Monte Carlo replications.

Panel A: Small sample properties of MLE
Panel A.1: dimension 2 Panel A.2: dimension 5 (targeting)

Coef. True mean std mean(s.e.) Coef. True mean std mean(s.e.)
L11 2.752 2.752 0.088 0.090 ν1 4 4.07 0.46 0.40
L21 2.125 2.127 0.123 0.125 ν2 6 6.07 0.58 0.55
L22 3.006 3.003 0.085 0.085 ν3 8 8.13 0.81 0.77

ν4 10 10.03 0.85 0.92
ν1 5 5.12 0.77 0.79 ν5 12 12.16 1.09 1.15
ν2 10 10.26 1.81 1.84

Panel B: multivariate Student’s t vs t-Riesz
λ 0 0.15 0.3 0.45 0.6 0.75 0.90
perc rejections 0.10 0.16 0.29 0.55 0.83 0.97 1.00

Panel C: BEKK t-Riesz model parameters
Coef. True mean std mean(s.e.)
A 0.010 0.010 0.001 0.001
B 0.980 0.975 0.003 0.003
ν1 5 5.28 0.764 0.755
ν2 7.5 7.82 0.926 1.042
ν3 10 10.37 1.242 1.452
ν4 12 12.33 1.271 1.630
ν5 12 12.33 1.151 1.250
ν6 15 15.13 1.299 1.737
ν7 14 14.24 0.992 1.094
ν8 14 14.25 0.806 0.787
ν9 16 16.16 0.922 1.029
ν10 16 16.24 0.769 0.767
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