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Abstract

Repetition is a classic mechanism for the evolution of cooperation.

The standard way to study repeated games is to assume that there is

an exogenous probability with which every interaction is repeated. If

it is sufficiently likely that interactions are repeated, then reciprocity

and cooperation can evolve together in repeated prisoner’s dilemmas.

Who individuals interact with can however also be under their control,

or at least to some degree. If we change the standard model so that it

allows for individuals to terminate the interaction with their current

partner, and find someone else to play their prisoner’s dilemmas with,

then this limits the effectiveness of disciplining each other within the

partnership, as one can always leave to escape punishment. The op-

tion to leave can however also be used to get away from someone who

is not cooperating, which also has a disciplining effect. We find that
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the net effect of introducing the option to leave on cooperation is posi-

tive; with the option to leave, the average amount of cooperation that

evolves in simulations is substantially higher than without. One of the

reasons for this increase in cooperation is that partner choice creates

endogenous phenotypic assortment. The model thereby produces a

good match with many forms of human cooperation in repeated set-

tings, where we end up interacting, not only with random others that

we cannot separate from, once matched, or with others that are ge-

netically related to us, but also with partners that we choose to stay

with, and that end up being similarly dependable not to defect on us

as we are not to defect on them.

1 Introduction

In the prisoner’s dilemma, repetition can stabilize cooperation. For coop-

eration to be stable, players need to condition their behavior on the past

actions of their interaction partner. If their partner does not cooperate, or

does not cooperate enough, then reciprocal players respond with defecting,

or with defecting more than they otherwise would. When faced with recipro-

cal partners, the self-interested thing to do can be to cooperate now in order

to receive cooperation in the future. If prisoner’s dilemmas are repeated,

this allows for reciprocity and cooperation to evolve together (Axelrod and

Hamilton, 1981; Boyd and Lorberbaum, 1987; Fudenberg and Maskin, 1990;

Nowak and Sigmund, 1990; Lorberbaum, 1994; Bendor and Swistak, 1995;

Binmore and Samuelson, 1992; Cooper, 1996; Volij, 2002; Imhof et al., 2005;

van Veelen et al., 2012; Press and Dyson, 2012; Adami and Hintze, 2013;

Hilbe et al., 2013; Stewart and Plotkin, 2013, 2014; Garćıa and van Veelen,

2016; van Veelen and Garćıa, 2019; Dal Bó and Pujals, 2020).

The standard setup in models for the co-evolution of reciprocity and coop-

eration assumes that randomly matched individuals are tied to their partner
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until the repeated game ends. Who plays with whom therefore is determined

exogenously. In this paper, we allow for players to end their interaction

with their current partner, and look for someone else to continue playing

with. Real life interactions are heterogeneous in the degree to which hu-

mans are tied to their partners. Some types of interactions allow for easy

ways to change partners, others impose higher thresholds for dissolving a

partnership, but all interactions find themselves somewhere on the spectrum

between the standard setting, where changing partners is not possible at all,

and the setting of this paper, where partners can be left, and new partners

can be found, after any round of the game.

We also assume that players are not informed about their new partner’s

past choices. If players are informed about what their partner did in previous

interactions with other players, then this could be used to enforce cooperation

through norms (Okuno-Fujiwara and Postlewaite, 1995), and it would allow

for reputation building (dos Santos et al., 2011, 2013), or indirect reciprocity

(Nowak and Sigmund, 1998; Ohtsuki and Iwasa, 2006). By considering a

minimal setting in which no information is shared with new partners, we

eliminate these possibilities. This way we isolate the role of partner choice in

a minimalistic setting, without prior information (cf. Noë and Hammerstein

(1994, 1995); McNamara et al. (2008); Barrett and Henzi (2006); Barclay

(2013)).

We analyze the evolutionary dynamics in a population playing the re-

peated prisoner’s dilemma, and we investigate whether the option to leave

undermines or facilitates the evolution of cooperation. There is a modest

number of papers that have a setup in which players have the option to leave

(Schuessler, 1989; Vanberg and Congleton, 1992; Enquist and Leimar, 1993;

Yamagishi et al., 1994; Kranton, 1996; Ghosh and Ray, 1996; Carmichael and

MacLeod, 1997; Sherratt and Roberts, 1998; Hayashi and Yamagishi, 1998;

Aktipis, 2004, 2011; Fujiwara-Greve and Okuno-Fujiwara, 2009; Fujiwara-
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Greve et al., 2015; Fujiwara-Greve and Okuno-Fujiwara, 2016, 2017; Izquierdo

et al., 2010, 2014, 2021; Vesely and Yang, 2010, 2012). While most of these

papers do not combine a full game-theoretical analysis with studying the

evolutionary dynamics, this literature does contain findings that are rele-

vant. The most important one is a result that states that with the option

to leave, there are no equilibria in which all players start cooperating in

the first period of every new interaction The rationale for this is straight-

forward. Any population in which all individuals do start cooperating right

from the beginning can be invaded by a mutant that takes advantage of this,

by defecting and leaving after the first period. Such a mutant would get the

highest possible payoff in every round, while the resident could at most earn

an average payoff equal to the payoff of mutual cooperation. Without the

option to leave, there are equilibria with full cooperation, and the fact that

fully cooperative equilibria do not exist if leaving is allowed for is a reflection

of the downside of the option to leave, which would allow for cheaters to get

away with defection and escape punishment whenever cooperation starts in

the first round.

To prevent invasions by defect-and-run mutants, a simple solution could

be to start every new partnership with a defection. Depending on the param-

eters of the game, however, one round of mutual defection may not be enough

to avoid exploitation. For some combinations of the benefit-to-cost ratio and

the continuation probability, starting to cooperate in round 2 may still leave

the door open for a mutant that sits out one round of mutual defection, then

defects on a resident that starts cooperating in round 2, and subsequently

leaves in order to repeat this with its next partner. In Appendix B.3 we

specify the minimum length of this initial string of defections, which is also

referred to as the trust-building phase (Fujiwara-Greve and Okuno-Fujiwara,

2009; Fujiwara-Greve et al., 2015; Fujiwara-Greve and Okuno-Fujiwara, 2016,

2017; Izquierdo et al., 2021). We also translate a result that implies that as
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soon as a trust-building phase that meets this threshold is included, cooper-

ative equilibria do exist (Fujiwara-Greve and Okuno-Fujiwara, 2009).

The fact that the option to leave rules out fully cooperative equilibria,

and may require multiple periods of trust-building, suggests that leaving

might be bad for the evolution of cooperation. Below, we will see that this

is not the case, but before we can see how the downside of the option to

leave can be more than offset by ways in which it can contribute to the

evolution of cooperation, we will have to describe the model we use, both for

the theoretical results and for the simulations.

2 The model setup

Individuals are matched to play prisoner’s dilemmas. In this paper, we

restrict attention to prisoner’s dilemmas with equal gains from switching

(Nowak and Sigmund, 1990), where the cost of cooperating instead of defect-

ing is c, irrespective of whether the opponent cooperates or defects, and the

benefits to the other player are b, again irrespective of what the opponent

plays herself.


C D

C b− c −c

D b 0



In order to simplify the notation and analysis further, and without loss of

generality, we normalize the costs to c = 1. This means that we can interpret

the b in the payoff matrix as the benefit-to-cost ratio.

Strategies are represented by finite state automata (FSAs). Figure 2 de-

5



picts some examples of FSAs. The colours of the states represent the output

when the FSA is in this state: red means defect; blue means cooperate; and

black means that this FSA terminates the interaction. All FSAs start in

the leftmost state when they begin interacting with a new partner, and the

arrows indicate to which state the FSA moves in response to their partner’s

action. After termination, the FSA does not have to transition to any state;

it restarts the interaction with its new partner in the leftmost state. Repre-

senting strategies as FSAs allows agent-based simulations to explore a very

rich and complete space of strategies; any thinkable strategy can be approxi-

mated arbitrarily closely by an FSA, and all FSA’s can be reached by a finite

sequence of mutations.

In the model, we assume that after every round, the pair is broken up

exogenously with probability 1 − δ, where δ ∈ (0, 1). Pairs can also be bro-

ken up because one of the players, or both, choose to end the interaction.

All broken-up pairs go to the matching pool, in which they are re-matched

before the subsequent stage game starts. Re-matching happens uniformly at

random; all pairs of individuals from the matching pool are equally likely to

be formed. The matching pool is not a random draw from the population as

a whole. If it would only contain individuals coming from pairs that are bro-

ken up exogenously, then the frequencies in the matching pool would match

the frequencies in the population as a whole. However, the matching pool

also contains individuals that broke up with their partner themselves, and

individuals that are broken up with. Whether that happens is determined

by the combination of strategies in the pair.

For the theoretical results, we assume an infinitely large population. We

also assume that, given the shares of the strategies present in the population,

and given the exogenous continuation probability δ, the shares of pairs that

consist of the different possible combinations of strategies, and the rounds

of the game they are in, are in short-run equilibrium. If there is only one
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strategy present in the population, and it never leaves, then it is in principle

possible that all pairs are in their first round of play. As pairs are broken up

randomly, however, over time the population will converge to a state in which

the ratio of pairs that are in the first round of play and pairs that are in their

nth round of play is 1 to δn−1. The intuition for this is that all pairs start

in round 1, while the probability for any pair of making it to the nth round

is δn−1. With more than one strategy present, including strategies that may

choose to leave, these calculations become more complicated Fujiwara-Greve

and Okuno-Fujiwara (2009); Izquierdo et al. (2021). We describe the way

of calculating the short-run equilibrium, and the expected payoffs that this

short-run equilibrium implies in detail in Appendix A.

3 Long-run equilibrium and indirect invasions

The short-run equilibrium takes the composition of the population as given.

In the long run, however, mutation and selection can change the composition

of the population. If the population is in a state in which no mutant could

ever get an expected payoff that is higher than the expected payoff of the

strategies present in the population, and all strategies present in the popu-

lation have the same expected payoffs, then this population state is a Nash

equilibrium. For applying other equilibrium concepts, like evolutionary sta-

bility, neutral stability, and robustness against indirect invasions, we also use

this separation of time scales, and assume that the population is in short-run

equilibrium in order to calculate the expected payoffs of all strategies.

For repeated games without the option to leave, we know that there are

many strategies that are neutrally stable (NSS) (Bendor and Swistak, 1995),

but no strategies that are robust against indirect invasions (RAII) (van Vee-

len, 2012; van Veelen et al., 2012; Garćıa and van Veelen, 2016). This means

that every Nash equilibrium can be invaded indirectly; for every Nash equi-
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librium, there is a neutral mutant that, if it goes to fixation, opens the door

for a second mutant, that then has a selective advantage. This theoretical

result is matched by the fact that in simulations without the option to leave,

all Nash equilibria are indeed left in due time, and for reasonably large popu-

lation sizes, all of those transitions out of equilibria happen through indirect

invasions (van Veelen et al., 2012; Garćıa and van Veelen, 2016).

With the option to leave, this remains true; all Nash equilibria can be

invaded indirectly. The reason is similar to the reason without leaving. For

equilibria with positive amounts of cooperation, this cooperation needs to be

stabilized with the threat of punishment – which can be to defect (or to defect

more than the strategy would otherwise), or to leave. When a population

finds itself in such an equilibrium, this punishment is not executed. A mutant

that has lost the capacity to punish therefore would be neutral. If random

drift allows this neutral mutant to attain a high enough frequency, it would

however open the door for a second mutant, that takes advantage of the loss

of the capacity to punish (see Appendix B for details).

An equilibrium with defection only can also be invaded indirectly. With-

out the option to leave, this would require a mutant that would cooperate, if

its partner initiates it. This is a neutral mutant, and it would open the door

for a second mutant that reaps the rewards for initiating cooperation. This

stepping stone path requires a minimum δ for the second mutant to have a

payoff advantage, and it is still there as a path out of full defection if leaving

is allowed for. With leaving, there is also an additional stepping stone path

out of fully defecting strategies. A strategy that defects and leaves would be

a neutral mutant of any fully defecting strategy. If this strategy takes over

the population, it opens the door for a mutant that defects, stays, and coop-

erates forever after, if it finds its partner has stayed as well. Importantly, this

path out does not require a minimum δ to constitute an indirect invasion.

For low δ, equilibria without any cooperation therefore are less stable with

8



the option to leave.

With stepping stone paths out of any Nash equilibrium, both with and

without the option to leave, the population will visit a variety of equilib-

ria, and it will transition between them through indirect invasions. Which

strategies are and which are not Nash equilibria, however, differs between

the two settings. For a sufficiently high b and δ, Tit-for-Tat, for example, is

an equilibrium without the option to leave, but it is no longer an equilibrium

if leaving is allowed for, as it cooperates in the first round. Also for high

enough b and δ, a strategy with a trust-building phase, like c1 in Fig. 2,

that, once it reaches the cooperative state, punishes defection with leaving,

is an equilibrium when leaving is possible, but this obviously is not a feasible

strategy if leaving is not allowed for.

4 Simulations with and without the option to

leave

The simulations do not have an infinitely large population. Because it is a

simulation, and not a theoretical model, we can moreover not simply assume

that it always is in short-run equilibrium. However, even a moderately large

finite population tends to be relatively close to short-run equilibrium almost

all of the time. More importantly, the long-run dynamics we see in the sim-

ulations match what the theory predicts, as we observe sequences of indirect

invasions.

The comparison we make here is rather straightforward. In one set of

simulations, the output in any state of an FSA can only be cooperate or

defect, and not leave; and in the other set of simulations, the output in any

state can also be to leave. Without the option to leave, the model then

reverts back to the standard model of repeated prisoner’s dilemma, with a
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(a) Without leaving (b) With leaving

(c) Differences

Figure 1: Simulation results. Panels (a) and (b) reflect average coopera-
tion levels for a range of benefit-to-cost ratios b and continuation probabilities
δ. The population size is N = 100. Selection or mutation steps happen at a
rate of 0.05 per stage game per matched pair. At a selection or a mutation
step, the pair is broken up, and the strategies are replaced by offspring from
strategies in the current population, in case of selection, or by a mutant. In
expectation, one mutation happens per 250 selection events. The color scale
in panels (a) and (b) runs from 0 to 0.785, which is the highest average co-
operation level in panel (b). Below the dotted line, no cooperative equilibria
exist, both with and without leaving. Panel (c) displays the difference in
average cooperation levels between the setting with and the setting without
leaving.

continuation probability that is equal to the probability δ with which pairs

are not broken up exogenoulsy (see Appendix A.3 for technical details). We
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then ran the simulations for a range of b’s, which should be interpreted as

the benefit-to-cost ratio, since we normalized the c’s to 1, and a range of δ’s,

where 1 − δ is the exogenous breakup probability. Comparing the average

amount of cooperation with and without the option to leave, we find that the

option to leave elevates cooperation levels substantially . For all combinations

of b and δ, cooperation is at least as high with leaving as it is without, and

the difference is sizable; if we take the average amount of cooperation over

the parameter space without leaving – that is: for δ from 0.01 to 0.95 in

steps of 0.02, and for b from 1 to 6 in steps of 0.1 – and compare it to

the average amount with leaving, then the latter is 42% higher. We should

obviously not attach deeper meaning to this exact number, because it is

the result of a somewhat arbitrary choice to stop at b = 6. If we were to

restrict the parameter space to benefit-to-cost ratios between 1 and 5, the

difference would be larger than 42%, and if we restrict it to benefit-to-cost

ratios between 1 and 7 the gap would be a bit smaller. The number does

however justify summarizing the observation that, compared to panel (a) in

Fig. 1, in panel (b) the cooperation levels are lifted up across the board, and

to a substantial degree.

Allowing for leaving means allowing for more strategies for playing re-

peated prisoner’s dilemmas. FSAs that only have states in which they play

cooperate or defect are still included when leaving is made possible; it is just

that FSAs in which there are states in which the output is that it leaves are

not included in the set of all strategies, when leaving is not allowed for. The

increase in size of the set of strategies means that there are more mutants

to consider, and for some strategies that are equilibria without the option

to leave, that means that they stop being equilibria with leaving, as noted

at the end of the previous section. Other strategies remain equilibria, but

might nonetheless be left through indirect invasions at a higher or lower rate.

In Appendix C, we highlight an example of this by considering the rate at
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which fully defecting equilibria are left. On the other hand, extending the

set of strategies not only means that there are more mutants to consider,

but also more residents that can be equilibria. In the next section we show

that in the version of the game with the option to leave, there are indeed

new equilibria that punish by leaving. We also show that these equilibria

can be more stable than their counterparts that punish by defecting, which

also existed in the game without the option to leave.

5 Relative stability of cooperative equilibria

with and without leaving

In order to see how the option to leave can add equilibria that are more

stable than similar equilibria without leaving, we turn to an example. In

this example, we compare an equilibrium strategy that punishes with defec-

tion, and one that punishes with leaving. The strategy that punishes with

defection is labelled g1, and it is best described as Grim Trigger, preceded by

a 1-period trust-building phase. The other strategy is c1, which also has a

1-period trust-building phase, but responds to defection after the first period

by leaving. If b and δ are sufficiently high, both are Nash equilibria – al-

though there is an intermediate part of the parameter space where g1 is, and

c1 is not (yet) an equilibrium. When playing against copies of themselves,

both of these strategies play one round of defection, and then cooperate for-

ever after. The only difference is that one punishes deviations with forever

defection, and the other with leaving.

Both strategies can be invaded indirectly in the same way. A strategy that

is identical to g1, or to c1, respectively, but that loses the ability to punish

would be a neutral mutant for both. Given that the only difference between

g1 and c1 is the way they punish, such a neutral mutant ends up being the
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𝑐! 

𝑔! 

𝑑𝐶 𝐴𝑙𝑙𝐷 

Figure 2: Indirect invasions in g1 and c1. The payoffs of g1 against g1,
and g1 against dC are the same as the payoffs of c1 against c1, and c1 against
dC. The payoffs of dC against g1 and dC against c1 are also the same. The
payoffs of All D against g1 and All D against c1 differ, but if dC goes to
fixation before All D arises, then both indirect invasions are equally likely to
succeed.

exact same strategy for both; this would be dC (see Fig. 2). Strategy dC is

neutral, both for g1 and for c1, and therefore it has a fixation probability of
1
N
, where N is the population size. If we can assume that the first mutant

has either gone extinct, or gone to fixation, before the next mutant appears,

then these indirect invasions into either g1 or c1 are equally likely to succeed,

because also the second step in the indirect invasion is identical.

If the mutation rate is not low enough to justify this assumption, however,

there is a difference. If All D enters the population at a point in time at

which both the resident (g1 or c1) and the first mutant (dC) are still present,

this takes the population to the interior of the simplex (i.e., to a mix of all

three strategies). In the interior of the simplex, the replicator dynamics are

different, and since the replicator dynamics are also informative about the

average dynamics in finite populations, the properties of the finite population
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(a) Indirect invasion of g1 (b) Indirect invasion of c1

(c) g1 vs All D (d) c1 vs All D

Figure 3: Replicator dynamics for indirect invasions of g1 and c1.
The red lines in panels (a) and (b) delineate the basins of attraction of
All D. Besides the basin of attraction of All D being smaller in panel (b),
on trajectories in the interior that do not converge to All D, more dC is
weeded out along the way. Panels (c) and (d) provide details relevant to
the replicator dynamics on the left edges of the simplex. Gray lines indicate
assortment, or relatedness, calculated as the probability with which type i
individuals are matched with other type i individuals minus the probability
with which an individual of type j ̸= i is matched with type i. In other
words, r = P (i|i) − P (i|j) for j ̸= i. Also in the interior of the simplex in
panel (b), but not in panel (a), there will be assortment. Payoffs, assortment,
and the replicator dynamics are all calculated under the assumption that the
distribution of players over pair-types, and over rounds of play, is stationary
(Izquierdo et al., 2021). The parameter values used are b = 3 and δ = 0.8.
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dynamics will be different too. A key ingredient for this difference is that

the presence of both c1 and All D in the same population creates assortment,

while with g1 and All D, this is not the case.

The easier way to see this difference, is to first focus on a population

of just g1, or just c1, respectively, and see what happens if some All D is

mixed in. With g1 and All D, all strategies just stay together, and no leaving

happens in any combination. With c1 and All D, on the other hand, the

c1-players stick together, while they dissociate from the All D players. At

really low frequencies of All D, g1 actually does a better job at suppressing

All D payoffs, because g1 “binds” the mutant All D’s, and after allowing All

D to get a payoff of b once, g1 then holds All D down to a payoff of 0 in all

subsequent periods. Strategy c1, on the other hand, cuts All D loose, which

allows it to go on and exploit other c1’s. This implies that at the point of

invasion (on the very left of panels (c) and (d) of Fig. 3) All D actually

gets higher payoffs with c1 than it does with g1. At higher frequencies of

All D, however, the assortment that c1 creates by staying with its own, but

dissociating from the All D’s, implies that All D’s mostly find other All D’s in

the matching pool. This assortment suppresses the payoffs to those that play

All D, when the resident is c1. At low frequencies, All D payoffs therefore

are suppressed more when the resident is g1, while at higher frequencies, All

D payoffs are suppressed more when the resident is c1. For higher b and δ,

the latter effect overpowers the former, making c1 more stable against All D

than g1 is against All D.

Comparing mixes of g1 and All D with mixes of c1 and All D helps under-

stand why there is endogenous assortment with c1, and not with g1, but the

more relevant effect on the stability of the two equilibria we consider here is

due to the differences in the interior of the simplex, when three strategies are

present. Also in the interior of the simplex, there is no assortment when the

strategies present are g1, dC, and All D, while there is endogenous assort-
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(a) Time in Pure States (b) Average Proportions

Figure 4: Relative stability of c1 and g1 as a function of the mutation
rate. The plots show properties of the stationary distribution of a Moran
process with parameters N = 40, δ = 0.8 and b = 3 and strategies c1, g1,
dC, and All D. Strategies mutate with equal probabilities into either of the
other strategies. The horizontal axis indicates the ratio of mutation steps
relative to selection steps. At a mutation rate of −1, a mutation happens
every 10 selection events, and at a mutation rate of −2, a mutation happens
every 100 selection events. Panel (a) shows, out of the time that is spent
at monomorphic population states, how much of it is spent at the different
strategies respectively. Panel (b) shows the average frequencies of individuals
of the respective types.

ment with c1, dC, and All D. This implies that trajectories in the interior

of the simplex in panel (b) weed out more dC than their counterparts in

panel (a) that start at the same points in the interior. The simulations are

the noisy, finite population counterpart of these replicator dynamics. That

implies that in the finite population dynamics of the simulation program, if

the second mutant, All D, appears at the same point on the right edge of the

simplex, that is, when the first mutant dC has reached the same frequency

after neutrally drifting into the resident (g1 or c1), then the dynamic will,

in expectation, set this invasion back more if the equilibrium the population

started in was c1, than it does if the population started in g1. That implies

that overcoming the tides and currents against this indirect invasion is harder
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when c1 is the resident, and that it takes, on average, more mutations, and

therefore more time, to successfully leave c1.

We can see the effect of not being in the low-mutation limit by calculating

invariant distributions in a finite population for a strategy set that only

consists of those four strategies. Increasing the mutation rate increases both

the time spent in the c1 equilibrium relative to the time spent in the g1

equilibrium, and it increases the average share of c1 (see Fig. 4). Both of

these effects are only reversed when the mutation rate approaches the point

where mutation becomes the only ingredient of the dynamics, leaving no

room for selection.

6 When punishing with leaving is better than

punishing with defecting

The four-strategy model above indicates how equilibria that punish by leav-

ing can be more resistant to indirect invasions compared to equilibria that

punish by defecting, away from the low-mutation limit. Using the same set

of strategies, but without dC, we can also see how, if leaving is an option,

punishing by leaving can outperform punishing by defecting in direct com-

petition between the two modes of punishment. If we focus on a population

consisting of strategies c1, g1, and All D only, then what matters for whether

c1 or g1 performs better, is the likelihood with which, after breaking up with

an All D player, one is re-matched, again, to an All D player. If the prob-

ability of trading in one All D partner for another is high, it is better to

be g1, and sit the current match out. This will result in getting the mutual

defection payoff while it lasts, but that then is better than risking wasting

another second-round cooperation on a new All D player. If the probability

of being matched again with yet another All D player is not too high, on
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the other hand, it is better to be c1 and leave, in the hope of finding a more

cooperative partner. The threshold frequency for when the prospect of estab-

lishing mutual cooperation makes it worth the risk is favorable for c1; only at

very high frequencies of All D is it better to punish with defection (see Fig.

5). Moreover, if punishing by defecting has an advantage over punishing by

leaving, both are already losing to All D. Everywhere outside the basin of

attraction of All D, where cooperation ends up prevailing, c1 always beats g1

(see also Appendix D).

c1

AllD g1

Figure 5: Leaving or defecting. Everywhere, except for the area down/left
from the red line, c1, which punishes with leaving, outperforms g1, which
punishes with defection. The small area where g1 outperforms c1 lies en-
tirely within the basin of attraction of All D, which is delineated by the blue
line. Appendix D contains a proof that this holds for all values of b and δ,
and also for pairs of cooperative strategies with longer trust-building phases.
This implies that, all else equal, if reciprocity evolves, those that punish with
leaving always do better than those that punish with defection. The param-
eter values used for this simplex are b = 3 and δ = 0.8.
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7 Discussion

The two mechanisms that received the lion share of the attention in the liter-

ature on the evolution of cooperation are kin selection – sometimes also clas-

sified as population structure – and repetition. Population structure typically

refers to any deviation from a well mixed population, in which individuals

are matched randomly. This includes interactions on networks (Lieberman

et al., 2005; Ohtsuki et al., 2006; Taylor et al., 2007; Santos and Pacheco,

2005; Allen et al., 2017), or within groups (Boyd and Richerson, 1988; Wil-

son and Wilson, 2007; Traulsen and Nowak, 2006; Simon et al., 2013; Luo,

2014; Akdeniz and van Veelen, 2020). In those models, local dispersal causes

neighbouring individuals, or individuals within the same group, to have an

increased probability of being identical by descent, and when they do, the

mechanism at work is kin selection (Hamilton, 1964a,b; Kay et al., 2020).

Our model relates, first and foremost, to the second mechanism, in which

repetition allows for reciprocity and cooperation to co-evolve (Axelrod and

Hamilton, 1981; Boyd and Lorberbaum, 1987; Fudenberg and Maskin, 1990;

Nowak and Sigmund, 1990; Lorberbaum, 1994; Bendor and Swistak, 1995;

Binmore and Samuelson, 1992; Cooper, 1996; Volij, 2002; Imhof et al., 2005;

van Veelen et al., 2012; Press and Dyson, 2012; Adami and Hintze, 2013;

Hilbe et al., 2013; Stewart and Plotkin, 2013, 2014; Garćıa and van Veelen,

2016; van Veelen and Garćıa, 2019; Dal Bó and Pujals, 2020). Our version

deviates from the standard setup, in that it allows for individuals to leave

their current partner, and seek out someone else to play prisoner’s dilemmas

with. This shortens the long arm of reciprocity, because it allows individuals

to run from punishment by defection. The option to leave however turns

out to increase rather than reduce the average amount of cooperation that

evolves. By allowing individuals to get up and leave, the model also in-

troduces the possibility of partner choice, and this can create endogenous
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assortment in mixed populations. Away from the low mutation limit, this

can make equilibria in which defections are punished with leaving more sta-

ble than equilibria in which defections are punished with defections. Partner

choice therefore seems to be at least as powerful a mechanism for the evo-

lution of cooperation in repeated games. Already in a minimal setting, in

which players have no prior information about the partner they are matched

with, and only have the interactions within the repeated game itself to base

their stay/go decisions on, this mechanism works very well.

Why humans cooperate with their siblings, even if it is costly, or why we

are altruistic towards our offspring is well explained by kin selection. The

research on the evolution of human cooperation therefore naturally centers

around the question why we also cooperate with non-kin. For this we tend

to turn towards repeated games and the reciprocity that can evolve there,

or to the interaction between repetition and population structure (van Vee-

len et al., 2012; Efferson et al., 2024). Our model points to the power of

a third mechanism, which is partner choice Noë and Hammerstein (1994,

1995); Sherratt and Roberts (1998); Barrett and Henzi (2006); McNamara

et al. (2008); Barclay (2013). The assortment that this generates is different

from the exogenous assortment that features in kin selection models. The

assortment in our model is endogenous, and not based on identity by de-

scent. Individuals in our model stay with their partner purely based on the

experienced phenotype of their partner, and are not playing with others that

are related to them, where relatedness would determine the probability with

which they inherited their strategy from the same individual. This pheno-

typic assortment, where unrelated, similarly dependable cooperators end up

playing with each other, may be a better match with the long-lasting cooper-

ation we observe in humans, who tend to exert some influence over who they

cooperate with, if they can, and who cooperate with genetically unrelated

others.
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Code availability

The code used in our simulations is publicly available on Github:

https://github.com/cjgraser/Repeated-Games-and-Partner-Choice.
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Garćıa, J., van Veelen, M., 2018. No strategy can win in the repeated pris-

oner’s dilemma: linking game theory and computer simulations. Frontiers

in Robotics and AI 5, 102.

Ghosh, P., Ray, D., 1996. Cooperation in community interaction without

information flows. The Review of Economic Studies 63, 491–519.

Hamilton, W.D., 1964a. The genetical evolution of social behaviour. I. Jour-

nal of Theoretical Biology 7, 1–16.

Hamilton, W.D., 1964b. The genetical evolution of social behaviour. II.

Journal of Theoretical Biology 7, 17–52.

Hayashi, N., Yamagishi, T., 1998. Selective play: Choosing partners in an

uncertain world. Personality and Social Psychology Review 2, 276–289.

Hilbe, C., Nowak, M.A., Sigmund, K., 2013. Evolution of extortion in iter-

ated prisoner’s dilemma games. Proceedings of the National Academy of

Sciences 110, 6913–6918.

23



Imhof, L.A., Fudenberg, D., Nowak, M.A., 2005. Evolutionary cycles of co-

operation and defection. Proceedings of the National Academy of Sciences

102, 10797–10800.

Izquierdo, L.R., Izquierdo, S.S., Vega-Redondo, F., 2010. The option to

leave: Conditional dissociation in the evolution of cooperation. Journal of

Theoretical Biology 267, 76–84.

Izquierdo, L.R., Izquierdo, S.S., Vega-Redondo, F., 2014. Leave and let leave:

A sufficient condition to explain the evolutionary emergence of coopera-

tion. Journal of Economic Dynamics and Control 46, 91–113.

Izquierdo, S.S., Izquierdo, L.R., van Veelen, M., 2021. Repeated games with

endogenous separation. Working paper .

Kay, T., Keller, L., Lehmann, L., 2020. The evolution of altruism and the

serial rediscovery of the role of relatedness. Proceedings of the National

Academy of Sciences 117, 28894–28898.

Kranton, R.E., 1996. The formation of cooperative relationships. The Journal

of Law, Economics, and Organization 12, 214–233.

Lieberman, E., Hauert, C., Nowak, M.A., 2005. Evolutionary dynamics on

graphs. Nature 433, 312.

Lorberbaum, J., 1994. No strategy is evolutionarily stable in the repeated

prisoner’s dilemma. Journal of Theoretical Biology 168, 117–130.

Luo, S., 2014. A unifying framework reveals key properties of multilevel

selection. Journal of Theoretical Biology 341, 41–52.

McNamara, J.M., Barta, Z., Fromhage, L., Houston, A.I., 2008. The coevo-

lution of choosiness and cooperation. Nature 451, 189–192.

24
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A The model

We mostly follow the model setup in (Fujiwara-Greve and Okuno-Fujiwara,

2009; Fujiwara-Greve et al., 2015; Fujiwara-Greve and Okuno-Fujiwara, 2016,

2017). In these papers, the authors consider a repeated prisoner’s dilemma

with the option to leave (or, as they call it, with voluntary separation). In

(Fujiwara-Greve and Okuno-Fujiwara, 2009) the stage game payoffs are given

by four parameters. We chose to restrict attention to prisoner’s dilemmas

with equal gains from switching, which means that we have only two param-

eters, if we also normalize the payoff of mutual defection to 0.


C D

C b− c −c

D b 0



Without loss of generality, we then chose c = 1, which is equivalent to divid-

ing all entries by c. This implies that we interpret b as the benefit-to-cost

ratio. This is the payoff matrix we use in the Main Text. Adding 1 to all

entries does not change the equilibrium analysis, or the replicator dynamics,

and because the simulations require non-negative payoffs, in order to be con-

sistent with the payoff matrix used in the simulations, here in the Appendix

we use the following equivalent payoff matrix.


C D

C b 0

D b+ 1 1
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Assuming equal gains from switching limits attention to prisoner’s dilemmas

in which the cost of cooperation to oneself, and the benefits to the other, are

independent of whether the other cooperates or defects. This is a real restric-

tion. Normalizing the lowest payoff to 0, and setting the cost of cooperation

to 1, on the other hand, is not a restriction of generality.

The model furthermore assumes that all pairs have an exogenous breakup

probability of 1 − δ, with δ ∈ (0, 1). Pairs can also be broken up because

one of the players, or both, choose to end the partnership. All individuals

from broken-up pairs are re-matched before the subsequent stage game, so

there are no costs associated with having to wait to play again. Re-matching

happens uniformly at random among the set of all unmatched individuals

between two stage games. We refer to this set as the matching pool.

The model in Fujiwara-Greve and Okuno-Fujiwara (2009) is slightly dif-

ferent, in that the δ there represents the probability of an individual surviving

between two stage games. If an individual dies, then the pair it was in is bro-

ken up. The dead individual is replaced by a new one, and both the newborn

individual and the surviving individual from the pair go to the matching pool.

This translates to an exogenous breakup probability of 1 − δ2. If the new-

born individual simply inherits the strategy of the deceased individual, there

is no difference between, on the one hand, surviving and, on the other hand,

dying and being replaced. In that case, the model from (Fujiwara-Greve

and Okuno-Fujiwara, 2009; Fujiwara-Greve et al., 2015; Fujiwara-Greve and

Okuno-Fujiwara, 2016, 2017) and the model in this paper are equivalent, up

to the change from δ2 to δ representing the probability for a pair not to

be broken up exogenously. The latter allows for a bit shorter notation and

representation of the results. Death and birth can also be reinterpreted as

update events, at which individuals may switch to different strategies, based

on the payoffs these strategies get in the population.
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Introducing selection in (Fujiwara-Greve and Okuno-Fujiwara, 2009; Fujiwara-

Greve et al., 2015; Fujiwara-Greve and Okuno-Fujiwara, 2016, 2017) would

imply that the offspring does not simply inherit the strategy of the deceased

individual, or that only the current shares of the different strategies present

in the population determine the probabilities with which they reproduce, but

that also the payoffs of individuals in the current population determine the

probabilities with which they pass on their strategy. In our model, introduc-

ing selection requires introducing replacement or update events altogether.

We will introduce selection explicitly below, in the section that describes

the simulations. All replacement events there will lead to the pair splitting

up, but not all splitting up of pairs will be the result of replacement events.

Before we do this, however, we describe how the payoffs are calculated for a

given composition of the population.

A.1 Calculating payoffs

In repeated games without the option to leave, the expected payoff of a

strategy can be computed by first computing the discounted payoffs for the

strategy against every strategy present in the population, and then weigh-

ing those payoffs according to the shares of those different strategies in the

population. In repeated games with the option to leave, this is no longer

possible. Given that players can choose to leave, also in the absence of ex-

ogenous breakups, not all matches last equally long. That implies that who

is matched to whom becomes partly endogenous, as some combinations of

strategies stick together longer than others.

In order to be able to calculate the payoffs, we will have to assume that a

strategy distribution is in a steady state, that is, it is in short-run equilibrium.

Below, we will first give the formula for the average payoff of a strategy, and

then we will show why the assumption that the population is in a steady
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state implies that the formula should have this form. In general, the repeated

prisoner’s dilemma has infinitely many pure strategies, with or without the

option to leave. However, the populations we consider will always be finite

mixtures of pure strategies. We will therefore refer to the strategies as si, for

i = 1, 2, ..., n. This allows us to denote the frequencies of these strategies in

the matching pool by a vector, x, where xi is the frequency of strategy si in

the matching pool.

For a combination of strategies si and sj, Tij will denote the number of

periods that si and sj play, if no exogenous breakup occurs. The expected

duration of this match, given that the pair is broken up exogenously with

probability 1− δ after every round, is

Lij = 1 + δ + · · ·+ δTij−1 =

Tij−1∑
t=0

δt =
1− δTij

1− δ
.

In order to compute the expected payoff Vij of si against sj, let aijt denote

the action profile at period t as strategies si and sj meet, for t = 1, ..., Tij.

The payoff to strategy si, matched with strategy sj, in round t is denoted by

u(aijt ). Then,

Vij =

Tij−1∑
t=0

δtu(ai,jt ).

With xi representing the stationary frequency of strategy si in the matching

pool, the average per-period payoff of strategy si is given by

vi(x) =

∑n
j=1 xjVij∑n
j=1 xjLij

. (1)
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A.2 Why these are the average payoffs, if we assume

short-run equilibrium

In short-run equilibrium, the shares of given pairs of strategies that find

themselves in any given round should be constant. We denote the fraction

of ordered pairs in the population as a whole, that consist of an si-player and

an sj-player, and that find themselves in the t’th round of their interaction,

by qij,t. Because the game is symmetric, qij,t = qji,t for any pair of strategies

(si, sj) and any t. It is also possible to derive the average payoff of an si-

player using unordered pairs, but it will be more straightforward to think of

ordered pairs.

In order for the frequencies qij,t to be constant in the short-run dynam-

ics, the share of (si, sj)-pairs that find themselves in the t’th round of their

interaction should be δ times the share of (si, sj)-pairs that find themselves

in the t− 1’st round of their interaction – provided that t ≤ Tij. The reason

is that between one period and the next, the probability that a group is not

broken up exogenously is δ. All groups of (si, sj)-pairs that find themselves

in the t − 1’st round of the game, and that are not broken up exogenously,

become groups of (si, sj)-pairs that find themselves in the t’th round – un-

less t > Tij. For qij,t to be constant in the short-run dynamics (see Izquierdo

et al. (2021)), it therefore has to be equal to δqij,t−1, while qij,t = 0 if t > Tij.

Because no strategy can end a partnership before the first round, the

shares in the first round moreover must be proportional to the shares in the

matching pool, if we assume short-run equilibrium. For ordered pairs, that

means that qij,1 should be proportional to xi times xj.

If we then choose

qij,t =
xixjδ

t−1∑n
k=1

∑n
l=1

∑Tkl

u=1 xkxlδu−1
for 1 ≤ t ≤ Tij
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and

qij,t = 0 for t > Tij,

then they are proper fractions, as they add up to 1, and all of these restric-

tions for them to be in short-run equilibrium are satisfied. These therefore

are the shares of different types of (ordered) pairs that find themselves at

different times in their interaction in short-run equilibrium.

Given that the population is in short-run equilibrium, the average payoff

to a strategy in the population as a whole, in in any given round, is constant

over time. The average payoff to strategy si in the population for which x

represents the frequencies of the strategies in the matching pool is given by

vi(x) =

∑n
j=1

∑Tij

t=1 qij,tu(a
i,j
t )∑n

j=1

∑Tij

t=1 qi,j,t
=

=

∑n
j=1

∑Tij

t=1 xixjδ
t−1u(ai,jt )∑n

j=1

∑Tij

t=1 xixjδt−1
=

=
xi

∑n
j=1 xj

∑Tij−1
t=0 δtu(ai,jt )

xi

∑n
j=1 xj

∑Tij−1
t=0 δt

=

=

∑n
j=1 xjVij∑n
j=1 xjLij

.

This is formula [1] above.

A.3 With or without leaving

If we then were to revert back to a setting in which leaving is not allowed,

then this would imply that we only allow for pairs of strategies si and sj with

Tij = ∞, Lij = 1
1−δ , and Vij =

∑∞
t=0 δ

tu(ai,jt ). Without leaving, and using

the fact that xi’s are frequencies in the matching pool that add up to one,

we find that the average per-period payoff becomes
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vi(x) =

∑n
j=1 xjVij∑n
j=1 xjLij

= (1− δ)

∑n
j=1 xjVij∑n
j=1 xj

= (1− δ)
n∑

j=1

xjVij.

This is equal to the normalized, discounted payoffs of strategy si against the

mix of strategies sj, for j = 1, ..., n where the discount factor is taken to be

the probability δ for a pair not to be broken up exogenously. Calculating a

stream of payoffs over time, and then normalizing therefore coincides with

taking the average in the population – where normalizing means multiplying

with 1− δ. Therefore, in the setup that we created to accommodate for the

possibility of leaving, if we choose not to allow for leaving, we are back in

a situation that is equivalent to the standard setting without leaving. This

also justifies comparing the cases with and without leaving within one and

the same framework.

A.4 Frequencies in the matching pool and in the pop-

ulation as a whole

Let us go back to the repeated prisoner’s dilemma with the option to leave.

If we want to know how large a share of the population as a whole is playing

strategy si, we can aggregate the frequencies of pair types over all strategies

sj that si could be matched with, and over all periods that a pair can be

in. The shares of strategies si, in the population as a whole are given by a

vector, x∗, where x∗i is the frequency of strategy si in the population as a
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whole, for i = 1, ..., n.

x∗i =
n∑

j=1

Tij∑
t=1

qij,t

=
n∑

j=1

Tij∑
t=1

xixjδ
t−1∑n

k=1

∑n
l=1

∑Tkl

u=1 xkxlδu−1

=
xi

∑n
j=1 xj

∑Tij

t=1 δ
t−1∑n

k=1

∑n
l=1 xkxl

∑Tkl

u=1 δ
u−1

=
xi

∑n
j=1 xjLij∑n

k=1

∑n
l=1 xkxlLkl

Frequencies in the matching pool therefore translate to frequencies in the

population as a whole in a relatively straightforward way. Going in the other

direction is not straightforward at all; for computing the frequencies in the

matching pool from the frequencies in the population as a whole, there is

generally no closed form expression; see Izquierdo et al. (2021). The fact

that the frequencies in the population as a whole and the frequencies in the

matching pool can be different is part of what makes the game with the op-

tion to leave interesting, as it is an unavoidable symptom of the endogenous

assortment that the setup with leaving allows for. This does however compli-

cate the appropriate definition of the replicator dynamics, and it also makes

the definitions of a Nash equilibrium and a Neutrally Stable State a bit more

involved; see Izquierdo et al. (2021). Theorem 1 in Izquierdo et al. (2021)

moreover shows that a Neutrally Stable State, according to the definition in

the same paper, is Lyapunov stable in the replicator dynamics. This is not

the case for a Neutrally Stable Distribution as defined in Fujiwara-Greve and

Okuno-Fujiwara (2009).
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A.5 Simulations

Translating this framework into a finite population model that we can simu-

late to analyze long-run dynamics requires two further ingredients; we need

to specify a selection procedure, and a mutation procedure.

To a large degree, we follow the approach taken in van Veelen et al.

(2012); Garćıa and van Veelen (2016, 2018), and extend it to the setting

with endogenous separation. As in those papers, strategies are represented

by finite state automata (FSAs) in our simulations. We do however depart

from the model in those papers, in that we allow for the output in every

state of the automaton – except for the starting state – to also take on the

value leave, besides cooperate and defect. The starting state cannot have the

output leave, as every strategy has to specify a stage game action for the first

stage game after it is being matched. A formal definition of an FSA is given

below, after the section that formally defines histories and strategies. For

understanding how they work, it is enough to be able to read their graphical

representations in for instance Fig. 6.

Because the option to leave is not present in van Veelen et al. (2012);

Garćıa and van Veelen (2016, 2018), they chose for all pairs in the population

to start playing the repeated prisoner’s dilemma at the same moment in time.

In that setup, when all pairs have finished their repeated interactions (with

independent, random durations), the entire population is updated based on

the payoffs the individuals earned in the repeated game. This makes the

selection dynamics a Wright-Fisher process. With leaving and re-matching,

the beginnings of the repeated interactions are not synchronised, and there-

fore it will be hard to use the Wright-Fisher process. Here we use a Moran

process instead, which implies that in each selection step, only one individual

is replaced by the offspring of a random member of the population, where

the probability for any individual to be the parent is proportional to their

payoff. Selection steps in our simulations occur between stage games, and
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the relevant payoffs for reproduction are the payoffs from the last stage game.

The pair to which the individual who gets replaced belonged is broken up,

and both the offspring that replaces the partner that is chosen to be replaced,

and the partner that is not replaced join the matching pool. Similarly, if one

member of a matched pair mutates, which in our simulations also happens

between stage games, and independently of selection events, the correspond-

ing pair is broken up, and both the mutant and its former partner join the

matching pool. In this paper, the presence or absence of the option to leave is

the only difference between the settings we compare. The simulation model

without leaving in this paper is therefore different from the simulation model

in van Veelen et al. (2012); Garćıa and van Veelen (2016, 2018), because

here we do not have synchronised beginnings of the repeated games, and we

have a Moran process instead of a Wright-Fisher process. The simulations

in van Veelen and Garćıa (2019) also use a Moran process, but because they

assume the low mutation limit, and because leaving is not an option there,

they can calculate the fixation probabilities explicitly, rather than running

agent-based simulations.

The exogenous break-ups that our selection and mutation processes bring

about are, of course, relevant for the probability with which matched pairs are

broken up in our simulations. To keep consistency with the basic theoretical

framework, when talking about the simulations, δ will denote the probability

with which the pair is not broken up exogenously. The remaining 1 − δ is

the probability that at least one individual in the pair mutates, plus the

the probability that at least one member in the pair dies and is replaced

in a selection event, plus an additional probability that the pair is broken

up without mutation or selection events. This last probability is equal to

the difference between 1 − δ and the sum of the other two probabilities. In

the simulations, the probability of mutation and selection events therefore

put an upper bound on the continuation probability, and in order to be able
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to go to relatively high continuation probabilities, we need to accept that

replacement and mutation events are relatively rare.

The mutation procedure we chose is a modified version of the mutation

procedure in van Veelen et al. (2012); Garćıa and van Veelen (2016, 2018).

In their procedure, all mutations make single small changes; they change the

output in a state, delete or add a state, or change a transition. We chose

a mutation procedure that also allows for multiple changes in one go. The

reason to do this, is that with leaving, mutants that would have a selective

advantage are sometimes multiple changes away from the resident automaton.

In order not to have populations remain in disequilibrium states, because the

mutation procedure cannot find the mutants that would have an advantage,

we therefore allow for multiple changes in one mutation event.

In the process of developing this mutation procedure we explored various

different specifications. Since a mutation that redirects a link, or removes a

state, can render one or more states unreachable, there are different options

how to deal with those unreachable states. We tried out mutation procedures

that after a mutation 1) remove all unreachable states; 2) reconnect the

unreachable states; and 3) keep the unreachable states around, which means

that future mutations may reconnect to this “junk DNA”. We also tried

different relative probabilities for adding or deleting states (see the code for

details). All of these modifications affect the average size and complexity of

the automata that evolve, and the share of unreached and neutrally-evolving

states in the automata. We did however find the same qualitative results

presented in this paper for all these versions of the mutation procedure. The

simulations reported in this paper all use the third mutation procedure.
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A.6 Histories and strategies

Here, we give a formal definition of the game. This is not needed to under-

stand the main text, or the main ideas here in the Appendix, but for the

proofs of the theorems, a bit of additional formality can be useful.

We assume a set of players I = {1, 2}, an action space A = {C,D}, equal
for both players, and a payoff function u : A×A → R. A history at time t is

a list of actions played up to and including time t− 1, where an empty pair

of brackets is used to denote the null history. If at,i is the action played by

player i at time t, then these histories are:

h1 = ()

ht = ((a1,1, a1,2) , ..., (at−1,1, at−1,2)) , t = 2, 3, ...

Sometimes we will also write (ht, (at,1, at,2)) for a history ht+1. We will also

write h←t for history ht, as seen from the perspective of player 2. The set of

possible histories at time t is:

H1 = {h1}
Ht =

∏t−1
i=1 (A× A) t = 2, 3, ...

and the set of all possible histories is:

H =
∞⋃
t=1

Ht.

A pure strategy is a function s : H → A that maps histories to the action

space.
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A.7 Finite state automata

For the simulations, we will restrict attention to strategies that can be rep-

resented by finite state automata (FSAs). An FSA, or a Moore machine

M , is a tuple {{1, ..., nM} , λM , µM}, where nM is the number of states,

λM : {1, ..., nM} → {C,D} gives the output in every state, and µM :

{1, ..., nM} × {C,D} → {1, ..., nM} gives the transitions as a function of the

state, and the action of the other player. Sometimes the formal definition

of a machine also specifies in which state the machine starts, but because

the states can always be renumbered so that the starting state is the first,

we assume, without loss of generality, that the machine starts in state 1.

Sometimes we will also order the remaining states, so that, if it plays against

a copy of itself, then, in the absence of errors, it will transition from state i

to state i + 1, until for the first time it goes back to a state it has already

been in, or remains in the state it is currently in. Figure 6 gives a graphical

representation of an FSA.
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B Theoretical results

B.1 No ESS

There is no finite mix of strategies that is evolutionarily stable in the repeated

prisoner’s dilemma, with or without the option to leave. This is caused by

the fact that in any population, there are histories that are never reached.

This implies that it is always possible to construct a neutral mutant, that

behaves identically to the resident after all histories that are reached, and

differently in at least one history that is not; see also Selten and Hammerstein

(1984) and Proposition 6 in Garćıa and van Veelen (2016).

B.2 No strategy that is RAII

For any cooperative equilibrium, strategies that behave identically to the

resident, but do not punish, can drift into the population as neutral mutants.

Once such a neutral mutant has established itself as the new resident, it

can subsequently be invaded by less cooperative strategies. Such indirect

invasions are possible, whether punishment happens with defection or with

leaving. For repeated games without the option to leave, this is observed in

Theorem 7 of Garćıa and van Veelen (2016). Here we give the equivalent

result for the case with leaving.

Theorem 1. No pure strategy that, when playing a copy of itself, ever plays

C in the repeated prisoner’s dilemma with endogenous separation is RAII.

Proof. If a strategy cooperates against itself after some history ht, it must

disincentivise defecting at this history, either by leaving or by defecting in

some future round. Otherwise, a mutant that defects at this history earns

higher payoffs, and could invade directly. However, as the history in which

a player defects after ht is never reached, any strategy that does not punish

41



this defection and otherwise behaves identically to the resident is a neutral

mutant. Such a strategy could then be invaded directly by a strategy which

behaves identically to the resident but defects at ht.

If the option to leave is not there, and a strategy does not always coop-

erate when it meets a copy of itself, then indirect invasions with an increase

in cooperation are also feasible, provided that δ is sufficiently high. This is

observed in Theorem 8 of Garćıa and van Veelen (2016). The indirect in-

vasion there is a neutral mutant that would cooperate (more), if the other

initiates it, but does not initiate (additional) cooperation itself, followed by

a mutation that initiates (additional) cooperation. For the second mutant to

have an advantage, the δ needs to be high enough.

With leaving, here we present a simpler result, which is that full defection

can always be invaded. It is simpler, in the sense that the starting point is

a population in which all strategies defect with all other strategies, while

the result for the case without leaving takes as a starting point all strategies

that fall short of full cooperation. On the other hand, while without leaving,

there is a restriction on the δ for this indirect invasion to exist, with leaving

there is no such restriction, and an indirect invasion exists regardless of the

value of δ.

Theorem 2. No mixture of strategies, in which all strategies always defect

with all strategies present in the population, is RAII.

Proof. In a population in which every strategy present never cooperates with

any other strategy present, all strategies are also defecting in the first period.

The strategy that defects and leaves in the first period (which we will de-

note with d0) therefore is a neutral mutant of any population with universal

mutual defection. If by random drift d0 takes over, and becomes the new

resident, then a strategy that defects in the first round, and then stays, and

cooperates forever after, earns a payoff of 1 against d0, as does d0 against
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d0, and as does d0 against this strategy, while this strategy earns a payoff of

1 + δ (b− 1) > 1 against itself. Any mix with universal defection therefore

can be invaded indirectly.

Theorem 1 and 2 combined imply that, also if leaving is allowed for, there

is no pure strategy that is RAII. These are the equivalents of Theorems 7 and

8 in Garćıa and van Veelen (2016), which do the same for the case without

leaving. The same paper also contains extensions of these two theorems to

finite mixtures of strategies. A similar extension of Theorem 1 above can be

made for the case with leaving. Theorem 2 already includes mixtures as it

is, and does not need extending.

Given that no strategy exists that is RAII, the best we can do, is find

strategies that are NSS. This is what we will look for below.

B.3 Pure strategies with a trust building phase

 

Figure 6: Strategy c1. As a finite state automaton, c1 has three states;
in state 1, the output is D (red); in state 2 the output is C (blue); and in
state 3, the output is to leave (black). The arrows indicate to which state
the strategy goes, after observing an action (C or D) by its opponent. It
does not have to transition to any state after termination by either player.

In this section we translate a result from Fujiwara-Greve and Okuno-

Fujiwara (2009) to fit our simplified model with equal gains from switching,
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and an exogenous breakup rate rather than an individual death rate. Strate-

gies cT , that cooperate after a trust building phase of length T , are defined

in Fujiwara-Greve and Okuno-Fujiwara (2009) as follows.

Definition 3. For any T ∈ N0 let cT be a strategy that

• plays D in period t if t ≤ T ,

• plays stay after round t = 1, ..., T if and only if (D,D) is observed in

round t,

• plays C in period t if t ≥ T + 1,

• plays stay after round t = T+1, T+2, ... if and only if (C,C) is observed

in round t.

Note that rounds of play in Fujiwara-Greve and Okuno-Fujiwara (2009), and

in this paper, are indexed starting at t = 1, so that strategy c0 has no trust

building phase. Also, it is possible to give alternative, but equivalent def-

initions of a trust building strategy cT – where equivalent means that the

alternative definition prescribes the same behaviour, not just when matched

with cT , but when matched with any possible strategy. Alternative defini-

tions would specify actions differently only for histories that simply cannot

occur, given that one plays according to cT oneself.

In the simulations, strategies are encoded as FSAs that only respond to

actions by the other player. This restricts their response to a history of length

t ending in (D,D) to be the same as the response to the same history, but

now ending in (C,D). Note, however, that, since output is deterministic,

only one of them can occur, which makes responses to histories that cannot

occur entirely inconsequential. Although the FSA representation in Figure

6, for example, is not the exact same strategy as c1, as defined in Fujiwara-

Greve and Okuno-Fujiwara (2009), it will play exactly the same as c1, defined

above, when matched with any possible strategy.
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Because our stage game is a bit simpler than the stage game in Fujiwara-

Greve and Okuno-Fujiwara (2009), and because we have an exogenous breakup

probability, rather than a probability for an individual to die, we can also

give a simpler version of their Proposition 1, with a simpler proof. Our

simpler version does however include an explicit formula for the thresholds

over which cT ’s become equilibria. These are depicted in Figure 7. Our ver-

sion also includes the straightforward extension that, below the threshold, no

equilibria exist that start cooperating before round T + 1.

Theorem 4. (Fujiwara-Greve & Okuno-Fujiwara, 2009)

1. cT is a Nash equilibrium if b ≥ 1−δT+1

δ−δT+1 .

2. All equilibria start with at least T +1 rounds of defection if b < 1−δT+1

δ−δT+1 .

Proof. Any other strategy s′ that does not do the same against cT as cT does

against cT would have to deviate by either

1. playing leave if (D,D) is observed in some round K ≤ T ,

2. playing C in some round K ≤ T

3. playing D in some round K ≥ T + 1, or

4. playing leave if (C,C) is observed in some round K ≥ T + 1.

Round K is the first round in which s′ does something that is different

from what cT would do. All of these deviations can then be combined with

additional, inconsequential changes beyond period K.

In order to be able to compare the payoffs of these alternative strategies,

we first calculate the average per-period payoff of cT in a population where
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everybody is playing cT .

u (cT , cT ) =
1 + δ · 1 + · · ·+ δT−1 · 1 + δT · b+ δT+1 · b+ · · ·

1 + δ + δ2 + · · ·
= (1− δ)

(1− δT ) · 1
1− δ

+ (1− δ)
δT · b
1− δ

= 1− δT + δT b = 1 + δT (b− 1)

1. In a population in which everybody (else) plays cT , the average per

period payoff of a strategy s1 that leaves in round K ≤ T is

u
(
s1, cT

)
= 1 < 1 + δT (b− 1) = u (cT , cT ) .

2. In a population in which everybody (else) plays cT , the average per

period payoff of a strategy s2, that plays cooperate in round K ≤ T , is

u
(
s2, cT

)
= 1− (1− δ)

δK−1

1− δK
< 1 < u (cT , cT ) .

This deviation therefore is worse than the deviation by s1, which makes

perfect sense, because playing C and being left is always worse than playing

D and leaving.

3. In a population in which everybody (else) plays cT , the average per

period payoff of a strategy s3 that plays D in round K ≥ T + 1 is

u
(
s3, cT

)
=

1− δT

1− δK
+

δT − δK−1

1− δK
b+

δK−1 − δK

1− δK
(b+ 1)

=
1− δT

1− δK
+

δT − δK

1− δK
b+

δK−1 − δK

1− δK
.

For the comparison with u (cT , cT ), it may be even easier to rewrite this in

a way that reflects that we can also consider the first T periods separately,
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and then consider the repeating pattern starting from period T + 1:

u
(
s3, cT

)
= 1− δT +

δT − δK

1− δK
b+

δK−1 − δK

1− δK
+

δK − δK+T

1− δK

= 1− δT +
δT − δK

1− δK
b+

δK−1 − δK+T

1− δK
.

Therefore, u (cT , cT ) ≥ u (s3, cT ) if and only if

1− δT + δT b ≥ 1− δT +
δT − δK

1− δK
b+

δK−1 − δK+T

1− δK

δT b ≥ δT − δK

1− δK
b+

δK−1 − δK+T

1− δK

δT
(
1− δK

)
b ≥

(
δT − δK

)
b+ δK−1 − δK+T(

δK − δK+T
)
b ≥ δK−1 − δK+T(

δ − δT+1
)
b ≥ 1− δT+1

b ≥ 1− δT+1

δ − δT+1
.

4. Because u (s3, cT ) > u (s4, cT ) for obvious reasons (playingD and being

left is always better than playing C and leaving), and because u (s2, cT ) <

u (s1, cT ) < u (cT , cT ) for all combinations of δ and T , as seen above, this

condition now guarantees that no other strategy can do better against cT

than cT . This proves the first part of the theorem.

For the second part of the theorem, we define dT as the strategy that plays

defect for the first T + 1 rounds, and leaves after round T + 1. Let s be as a

strategy that, when playing against a copy of itself, plays defect in the first

T rounds, and plays cooperate for the first time in round T + 1. The same

calculations that gave us the threshold above imply that, if b < 1−δT+1

δ−δT+1 , then

u (dT , cT ) > u (cT , cT ), and because u (dT , s) = u (dT , cT ) and u (cT , cT ) ≥
u (s, s), this implies that also u (dT , s) > u (s, s). Moreover, if b < 1−δk

δ−δk for
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k ≥ 3, then also b < 1−δk−1

δ−δk−1 , so strategies with even shorter trust-building

phases can also be invaded.

1 2 3 4 5 6 7 8
0.0

0.5

1.0

1

! ≥ 3

δ

b

! ≥ 1! ≥ 2

Figure 7: Pure cT equilibria: NSS, not RAII. Right/up from the black
lines is where different trust building strategies cT constitute equilibria. For
any point right/up from the dotted line, given by b = 1

δ
, there is some T such

that cT is a Nash equilibrium, as are all trust building strategies with longer
trust building phases. Proposition 2 in Fujiwara-Greve and Okuno-Fujiwara
(2009), appropriately adapted, implies that these equilibria are also NSS.

Also Proposition 2 in Fujiwara-Greve and Okuno-Fujiwara (2009) allows

for a simpler version, given our simpler stage game. Besides translating it

to the simpler setting, we also switch from the definition of neutral stability
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in Fujiwara-Greve and Okuno-Fujiwara (2009) to the definition of neutral

stability in Izquierdo et al. (2021). For pure equilibria, the latter definition is

more restrictive; the definition in Fujiwara-Greve and Okuno-Fujiwara (2009)

requires that no pure mutant can invade, while the definition in Izquierdo

et al. (2021) also requires mixtures of strategies not being able to invade.

Theorem 1 in Izquierdo et al. (2021) shows that being neutrally stable in

the latter definition moreover implies Lyapunov stability in the replicator

dynamics. Our Theorem 5 therefore is less general than Proposition 2 in

Fujiwara-Greve and Okuno-Fujiwara (2009), but it is also more specific about

the bounds, and it shows that cT satisfies a slightly more restrictive, and

dynamically more relevant equilibrium concept.

Theorem 5. (Fujiwara-Greve & Okuno-Fujiwara, 2009)

cT is an NSS if b > 1−δT+1

δ−δT+1

Proof. Here, we use Lemma 1 from Izquierdo et al. (2021). This lemma

states that if a strategy i never leaves when playing against itself, and

u (si, si) > u (sj, si) for any strategy sj such that a different history un-

folds when strategy sj plays with strategy si, then strategy si is a neutrally

stable strategy. Using this lemma, we can then re-use the proof of Theorem

2, with strict inequalities for strategy s3.

Although cT is an NSS when the condition in Theorem 5 is satisfied, it

is, by Theorem 1, not RAII; there is always an indirect invasion with loss of

cooperation.

Indirect invasions with an increase in cooperation are sometimes also

feasible. A first mutant would play like cT does, except that it would choose

to stay whenever the other player cooperates, also in the first T rounds, and

moreover that it would respond to the other player cooperating in any of

those earlier rounds by also switching to playing C. The second mutant then
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could be cK with K < T − 1, which implies it initiates cooperation at least 2

rounds before T . This would earn a payoff of 1− δK + δK+1b against the first

mutant, while v(cT , cT ) = 1 − δT + δT b, which is also the payoff of the first

mutant against itself. The second mutant would therefore have an advantage

over the first if

b >
1− δT−K

δ − δT−K
.

The mutant with the largest advantage would be c0, which starts cooper-

ating immediately in round 1. Even though c0 would itself not be a Nash

equilibrium, it remains true that if any cK can invade indirectly, then so can

c0. The condition for there to be a K < T − 1 such that cK can invade

cT indirectly, therefore, is that c0 can invade indirectly. This condition is

b > 1−δT
δ−δT , which is the same as the condition for cT−1 to be an equilibrium.

In Figure 7, this implies that between the thresholds for cT and cT−1, cT is

an equilibrium, and while it can be invaded indirectly by a sequence that

undermines cooperation, it cannot be invaded indirectly by a sequence that

increases cooperation, without undermining it first. Between the threshold

for cT−1 and cT , one could therefore argue that cT is more stable than the

other trust building strategies.

C Getting away from All D at a higher rate

The dynamics, both with and without the option to leave, tend to go through

similar phases. A population state in which there is no cooperation whatso-

ever is invaded indirectly, after which the population settles on a cooperative

equilibrium. A subsequent indirect invasion then takes it back to a fully

defecting equilibrium, such as, for example, All D. Sometimes an indirect in-

vasion will take the population from one equilibrium with a positive amount
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(a) Mean escape times (b) Escape times at b
c = 3

Figure 8: Stability of universal defection with and without the op-
tion to leave. Panel (a) shows, for a variety of b/c-ratios, how much time
(measured as the number of consecutive selection steps) the simulated popu-
lation spends on average with a resident that only defects, before a more co-
operative mutant invades successfully. The continuation probability is fixed
at δ = 0.9. Panel (b) shows the distribution of escape times for a b/c-ratio
of 3. The arrival rate of mutants is the same, with or without the option to
leave; it is just the sets of mutants, and the distributions over those, that are
different between the two settings.

of cooperation to another one, with a different amount of cooperation, but

transitions with a complete loss of cooperation are sufficiently more frequent

to ensure that the population returns to the set of fully defecting equilib-

ria very regularly. Given that cooperation tends to break down completely,

before it is re-established, both with and without the option to leave, any

change in the rate at which states like All D are left is consequential.

As is illustrated in Figure 8, the average time it takes for mutation and

selection to find a path out of equilibria that are equivalent to All D is

lower in the setting with the option to leave than it is without it. This also

contributes to the fact that there is more cooperation in the game with the

option to leave than there is without, even though the option to leave limits

the effectiveness of punishment with defection.
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D Punishing with leaving is always selected

for when cooperation is selected for

Assume the following three strategies. Strategy 1 is gn, which is Grim Trigger,

preceded by a trust-building phase of n periods. In an FSA, this trust-

building phase is represented by n states in which the output is defection,

and in which the FSA always moves to the next state. After having gone

through the n trust-building states, a cooperative state is reached, in which

gn stays as long as the opponent plays C, and a D state that is absorbing,

and where gn transitions to if the opponent played D (see Figure 2 in the

main text for g1). Strategy 2 is cn, which is essentially the same strategy,

but instead of punishing defections after the first n rounds with defecting

forever, it leaves (see also the definition in Section S2 above). Strategy 3 is

All D. If x1, x2, and x3 represent the shares of these three strategies in the

matching pool, then their payoffs are:

v1(x) =

(
1−δn
1−δ + δnb

1−δ

)
x1 +

(
1−δn
1−δ + δnb

1−δ

)
x2 +

(
1−δn
1−δ + δn+1

1−δ

)
x3

1
1−δx1 +

1
1−δx2 +

1
1−δx3

= 1 + δn (b− 1)− δn (b− δ)x3

v2(x) =

(
1−δn
1−δ + δnb

1−δ

)
x1 +

(
1−δn
1−δ + δnb

1−δ

)
x2 +

(
1−δn
1−δ

)
x3

1
1−δx1 +

1
1−δx2 +

1−δn+1

1−δ x3

=
1− δn + δnb (1− x3)

1− δn+1x3

v3(x) =

(
1

1−δ + δnb
)
x1 +

(
1−δn+1

1−δ + δnb
)
x2 +

(
1

1−δ

)
x3

1
1−δx1 +

1−δn+1

1−δ x2 +
1

1−δx3

=
1 + δn (1− δ) b (x1 + x2)− δn+1x2

1− δn+1x2

.
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Strategies 1 and 2 do equally well if x3 = b−1
b−δ ; if we fill in x3 = b−1

b−δ in the

formulas for the payoffs above, we find that v1(x) = v2(x) = 1. From the

formula for v3(x) above, we can immediately see that v3 ≥ 1, and that v3 > 1

if x1 + x2 > 0, which holds because x3 =
b−1
b−δ < 1, since δ < 1. This implies

that no trajectory of the replicator dynamics that starts at a population state

x with x3 ≥ b−1
b−δ can ever reach a population state with x3 < b−1

b−δ . For that

to happen, the trajectory would have to pass through some population state

for which x3 =
b−1
b−δ at which the share of strategy 3 is decreasing. This would

contradict the fact that the payoff of strategy 3 is higher than the payoff of

the other strategies for all population states x for which x3 =
b−1
b−δ .

The x here reflects shares in the matching pool. Section S1 above details

how these translate to shares in the population as a whole. Points on the

simplices in the main text all depict shares of strategies in the population as

a whole. The line where x3 =
b−1
b−δ here does have a constant share of strategy

3 in the matching pool, but that does not imply that the share of strategy 3

in the population as a whole is also constant. If the simplex in Fig 5 would

have represented shares in the matching pool, the red line would have been

parallel to the edge of the simplex at which x3 = 0, but since the simplex

represents shares in the population as a whole, it is not.

53


