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Abstract

This paper investigates the feasibility of using earlier provisional data to improve
the now- and forecasting accuracy of final and official statistics. We propose the use of a
multivariate structural time series model which includes common trends and seasonal
components to combine official statistics series with related auxiliary series. In this
way, more precise and more timely nowcasts and forecasts of the official statistics can
be obtained by exploiting the higher frequency and/or the more timely availability of
the auxiliary series. The proposed method can be applied to different data sources
consisting of any number of missing observations both at the beginning and at the end
of the series simultaneously. Two empirical applications are presented. The first one
focuses on fatal traffic accidents and the second one on labour force participation at the
municipal level. The results demonstrate the effectiveness of our proposed approach in
improving forecasting performance for the target series and providing early warnings
to policy-makers.
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1 Introduction

When realizations of a dynamic process suffer from long delays, it can potentially cause a
variety of challenges in the practice of their statistical analyses, especially in situations where
timely and accurate information is critical for decision-making and policy-making. Although
high-frequency time series become increasingly available, many traditional low-frequency
time series, as published by government and statistical offices, still suffer from publication
lags of some length. A growing literature has emerged on methods that can incorporate
provisional or more timely auxiliary data to make more accurate predictions for the current
and future state of the unknown dynamic process; see, for example, Grybauskas, Pilinkienė,
Lukauskas, Stundžienė, and Bruneckienė (2023) for an extensive literature overview. Many
of these contributions rely on the use of multivariate frameworks that combine past data
with present (preliminary) information, by jointly modelling the time series of interest with
related auxiliary series; see, for example, Harvey (2006), Doz, Giannone, and Reichlin (2011),
and Blasques, Koopman, Mallee, and Zhang (2016). The statistical analyses used in these
contributions rely on state space methods; see Harvey (1989) and Durbin and Koopman
(2012). Other approaches include the Bayesian analysis in Carriero, Clark, and Marcellino
(2015) and the mixed-frequency analysis in Kuzin, Marcellino, and Schumacher (2011) where
realizations can be sampled at different periodic frequencies (for example, monthly, quarterly
and yearly).

In this paper we develop a general state space framework for the specific task of creating
early warning indicators for variables of key interest. We illustrate the importance of this
development by two applications of societal relevance. First, in road traffic safety studies,
the reported number of traffic fatalities is of interest to the general public but also to policy
makers in national governments. There are often multiple sources that issue data on the
number of road traffic fatalities. For example, in many countries, the national statistical
office provides the official monthly and yearly numbers of road fatalities. But government
agencies for roads and traffic usually also provide information on the number of road fatal-
ities. The construction of these statistics typically rely on different resources (for example,
police and/or hospital records) and on different counting methods (which can also be based
on different definitions). In this first empirical application, we consider the monthly number
of road traffic fatalities in the Netherlands which are provided by Statistics Netherlands
(SN) and the government agency “Rijkswaterstaat (RWS)”. The publication frequency of
their official statistics is yearly, while SN provides early provisional data on a monthly ba-
sis (flash-estimate). The provisional data is subject to revision throughout the year. The
adopted definitions of the data from SN and RWS are such that the data can be regarded
as realizations from the same underlying dynamic process for road safety.

Second, another variable of key importance, especially for economic policy makers and
the general public, is the labour force participation (LFP) statistic. A recent literature
overview of nowcasting unemployment using data from a Labour Force Survey (LFS) and
other external resources is provided in Grybauskas, Pilinkienė, Lukauskas, Stundžienė, and
Bruneckienė (2023). In case of the Netherlands, SN publishes labour force participation
figures which are derived from the Tax Administration and Employee Insurance Agency reg-
isters at a quarterly frequency, at the municipal level (or even at the neighborhood level).
This information, however, comes with a delay of more than one year. SN also conducts the
Dutch LFS on a monthly basis and these estimates become available within the first two
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weeks of the subsequent month. Due to sampling error and the higher frequency, this could
be considered as a preliminary noisy indicator (flash-estimate) for the final figure retrieved
directly from the Tax Administration and Employee Insurance Agency. In van den Brakel
and Michiels (2021) these quarterly tax register figures are combined with quarterly LFS
figures in a bivariate state space model to nowcast low regional figures on labour force par-
ticipation derived from the tax register. In our second empirical application, we investigate
the feasibility of using these earlier provisional monthly LFS data to improve the forecasting
accuracy of the final LFP figure provided by SN.

For the two empirical studies, our general state space framework is based on a multi-
variate unobserved components time series model with trend and seasonal components as
proposed and described in detail by Harvey (1989). The trend and seasonal components can
capture common structures within the multiple set of realized time series observations. The
overall methodology is general and can be applied to many different data sources which may
be subject to missing observations, both at the beginning and at the end of the series. In the
first empirical application it is shown that our proposed method of using earlier provisional
data leads to more precise forecasts of the final and official monthly number of road fatalities
in the Netherlands. In the second empirical application it is shown how the method achieves
more accurate nowcasts of quarterly LFP rates of the municipality of Amsterdam. The two
applications indicate that our proposed method can be applied in settings where the avail-
ability of auxiliary data is important for providing timely information to policy makers. The
multivariate framework can facilitate an early warning system, allowing to detect whether
the upcoming final figures are expected to substantially deviate from the past. Another
important feature of the method is its robustness to unexpected turning points which are
encountered, for example, during the Covid crisis. Both applications are based on time series
data that include the Covid crisis period.

The remainder of this paper is organized as follows. Section 2 introduces the multivariate
unobserved components time series model in general terms and it describes the estimation
method and diagnostic checks for assessing the validity of the model. In Section 3 and
Section 4 we present and discuss the results of the empirical studies for Road Safety and
Labour Force processes, respectively. In both sections we start with outlining the available
data, then we adjust the general model for the application at hand and we finalize both
studies with an extensive in-sample assessment and forecasting study in which different model
adjustments and forecasting scenarios are compared over an expanding window between
2011-2022. Section 5 concludes.

2 Methodology

2.1 Statistical Early Warning Model

Our statistical framework is based on the linear Gaussian state space model for the analy-
sis of time series data, see Harvey (1989), Durbin and Koopman (2012), and Commandeur
and Koopman (2007); see also Appendix A. An important motivation for opting for this
methodology is that it easily handles missing data in time series, and transparently gener-
alizes to the joint analysis of multivariate time series. Define the N × 1 observation vector
yt = (y1,t, . . . , yN,t)

′ which represents the observations at time t of N time series variables
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yi,t, for i = 1, . . . , N . The statistical early warning model belongs to the general class of
seemingly unrelated time series equations (SUTSE) models, which can be considered as a
multivariate extension of the univariate structural time series model of Harvey (1989). We
can represent it as a multivariate unobserved components time series model given by

yt = µt + γt + εt, εt ∼ NID(0,Σε), (1)

for t = 1, . . . , T , with T as the length of the time series, where µt is a N × 1 vector of
unobserved long-term stochastic trends, γt is a N×1 vector of unobserved seasonal stochastic
effects and εt is a N × 1 vector of the irregular, disturbance or noise component. The trend
can be defined as the local linear trend model, where the trend consists of a stochastic level
µt and slope νt components, and is given by

µt+1 = µt + νt + ξt, ξt ∼ NID(0,Σξ), (2)

νt+1 = νt + ζt, ζt ∼ NID(0,Σζ), (3)

where the disturbance vectors ξt and ζt are mutually independent (also at all lags) and both
independent of εt. Specific trend specifications can be obtained by introducing restrictions
on the N × N covariance matrices Σξ or Σζ by enforcing sparseness (zero coefficients), by
having rank conditions or even by setting them equal to 0. Such specifications also lead
to a more parsimonious model. The seasonal process can be modeled as a dummy seasonal
model,

γt+1 = −
s−1∑
j=1

γt+1−j + ωt, ωt ∼ NID(0,Σω), (4)

where s equals the number of months or quarters per year, depending on the frequency
of the time series, and the disturbance vector ωt is independent of all other disturbance
vectors. Alternatively, a trigonometric seasonal model can be used, see Appendix A. The
model is defined as a SUTSE as it has for each equation its own trend, seasonal and irregular
components, but at the same time it allows for cross-sectional correlations in the disturbances
within these components. Their subsequent disturbance covariance matrices Σζ , Σω and Σξ

can be diagonal, full rank or rank deficient (matrix with rank less than its dimension). A
rank deficient covariance matrix implies the presence of common components or factors.

The benefit of common factor models is that the estimation procedure is more efficient
because they are more parsimonious. Especially when multiple time series refer to the same
dynamic process it seems reasonable to consider such model simplifications. When the time-
liness of these time series differ, common factor models naturally allow for forecasting the less
timely target variable(s), exploiting the timely information of the auxiliary variable(s). This
is the main goal of our paper. Various common factor models are compared with univariate
benchmarks in two empirical applications to show the flexibility of the methodology as it
can be utilized in broad range of applications. As benchmarks a basic structural time series
model with deterministic and stochastic slope and seasonal are used, introduced by Harvey
(1989). Both models are univariate variations on the SUTSE models described in (1)-(4),
where the first variant does not include a disturbance term for the slope and seasonal com-
ponent. The preliminary estimate for the target series gives practitioners an early indication
on the current state of the target series, before the latest observations have come in, hence
we call the common factor models under consideration statistical early warning models.
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2.2 State and parameter estimation

The class of SUTSE models outlined in the previous section contains unobserved components
and covariance matrices for the stochastic disturbances in these components, which are
both generally unknown. Estimates for the state variables, which include the unobserved
components, can be retrieved with signal extraction algorithms such as the Kalman filter.
The covariance matrices of the measurement disturbance terms and the state disturbance
terms are often referred to as hyperparameters and can be estimated via the method of
maximum likelihood.

In order to apply the Kalman filter, the SUTSE model is cast into the state space form
which is relatively straightforward, see Harvey (1989, Chapter 8). Let the collection of
observed information at time t be denoted by the N × t data matrix Yt = (y1, . . . ,yt)

′.
The unobserved components, such as trend µt, seasonal γt and associated components, are
gathered in the state vector αt, for which optimal estimates are retrieved by the Kalman
filter. This recursive algorithm obtains the first two moments given all observed information,
i.e. E(αt|Yt) and Var(αt|Yt). In general, the filtered estimate of the states at time t can
be modified using the information that comes available after time t. This can be done by a
backward recursive algorithm which we usually refer to as the Kalman smoother. Note that
at time T , both methods obtain the same result, see Durbin and Koopman (2012, Chapter
4) for a discussions and derivations of these techniques. A convenient property of Kalman
filtering and smoothing is that the recursions can be adjusted straightforwardly when missing
observations in the time series need to be handled, see (Durbin and Koopman 2012, Section
4.10). At time t = 1, the Kalman filter needs to be initialised. For nonstationary processes
and regression effects in the state vector, a diffuse initialization can be used, see Durbin and
Koopman (2012, Chapter 5).

Both signal extraction techniques assume however that the system matrices and hyper-
parameters of the state space model are known. This is generally not the case, therefore the
unknown values are replaced by their maximum likelihood estimates obtained by a numerical
optimization procedure. The standard errors of the Kalman filter and smoother estimates do
not account for the uncertainty of replacing the true hyperparameter values for their max-
imum likelihood estimates. Several parametric and nonparametric bootstrap methods exist
for estimating this extra uncertainty, see Pfeffermann and Tiller (2005). The state space
models discussed in this paper are implemented and fitted in OxMetrics (Doornik 2021),
with the extensive use of SsfPack (Koopman, Shephard, and Doornik 2008).

2.3 Diagnostic checking

The model assumptions underlying the linear Gaussian models from Section 2.1 boil down
to the assumption that the one-step-ahead-prediction errors are normally and independently
distributed. Basic diagnostic tests can be performed on the standardised one-step ahead
prediction errors to detect significant departures from the model assumptions. These pre-
diction errors are often referred to as residuals or innovations, since they reflect the part
of yt that can not be predicted from the available information up until t. Note that the
standardised innovations are transformed in order to apply these basic diagnostic tests on
the individual elements separately, see Durbin and Koopman (2012, Chapter 7). Hence all
N mutually independent standardised innovations are normally and serially independently
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distributed with constant unit variance in a correctly specified state space model. Model
misspecification could lead to biased estimates and incorrect inference, hence we propose
several diagnostic checks here to detect this.

A standard test for serial correlation in the first P lags of the residuals is proposed by
Ljung and Box (1978). This test statistic is asymptotically χ2 distributed with P−H degrees
of freedom for structural models, under the null hypothesis that the residuals are serially
independent and where H refers to the number of hyperparameters. To test whether the
variance of the innovations is constant over time, we propose a basic heteroscedasticity test
by dividing the sums of two exclusive squared residual subsets of size h. This test statistic
should be Fh,h distributed, under the null hypothesis of homoscedasticity. To challenge the
normality assumption of these innovations, we obtain the skewness and kurtosis, which for
a normal distribution should be centered around zero and three respectively. They can be
combined into a test statistic that is asymptotically χ2 with 2 degrees of freedom, under the
null hypothesis that the innovations are normally distributed.

In statistical quality control, the Cusum (or cumulative sum control chart) is a sequential
analysis technique originally developed by Page (1954). It is typically used for monitoring
change detection. As its name implies, Cusum involves the calculation of a cumulative sum
of the standardised residuals to detect possible breaks in the dynamic process of the time
series. For a correctly specified model this cumulative sum is expected to sum to zero and
when several consecutive prediction errors have the same sign (i.e., are all positive, or are
all negative) than this implies that a structural break is occurring in the development of the
series. Visually, a structural break can be spotted when this cumulative sum starts drifting
away from the horizontal time axis. When the sum becomes more and more negative then
the observed counts are getting smaller and smaller than what we would expect. On the
other hand, when the sum becomes more and more positive then the observed counts are
getting larger and larger than what should be expected, and this is reason to raise the alarm.

2.4 Goodness-of-fit: in-sample and out-of-sample

The in-sample fit of various competing models are evaluated based on the Akaike information
criterion (AIC). This allows for a fair comparison of the log-likelihood values of competing
models with different numbers of parameters. In general, models with more parameters
will have a larger log-likelihood by default. The AIC corrects for this by penalizing the
log-likelihood based on the number of parameters.

The prediction accuracy of the competing models are determined on the basis of three
performance measures: the mean absolute percentage error (MAPE), the mean squared error
(MSE) and the mean absolute error (MAE) which are defined as

MAPE =
1

n

n∑
t=1

∣∣∣∣yt − ŷt|Ωt

yt

∣∣∣∣× 100, MSE =
1

n

n∑
t=1

(
yt − ŷt|Ωt

)2
, MAE =

1

n

n∑
t=1

∣∣yt − ŷt|Ωt

∣∣ ,
where ŷt|Ωt is the nowcast or forecast (in the latter case, Ωt is replaced by Ωt−1) of the
univariate target series yt, given all available information in data set Ωt at time t and n is
the number of nowcasts in the forecast window. In the case of MAPE, the prediction error
is expressed as a percentage relative to the actual observation.
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3 Empirical Study I: Traffic Safety Monitor

3.1 Data

Both Statistics Netherlands (SN) and the government agency “Rijkswaterstaat (RWS)” are
collecting statistics on road fatalities on a monthly frequency, which are being published on
a monthly or yearly frequency. The data consist of four time series on the number of road
fatalities, see Figure 1. These series are:

1. final number of road fatalities (FINRF) in the Netherlands, provided by SN;

2. registered number of road fatalities (REGRF) in the Netherlands, issued by RWS;

3. preliminary number of road fatalities amongst Dutch citizens (PRERFDC), from SN;

4. final number of road fatalities amongst Dutch citizens (FINRFDC), also from SN.

Once issued, the observations in the final series remain fixed and are not revised or adapted
over time.

FINRF 

1990 2000 2010 2020

50

100

150

200
FINRF REGRF 

1990 2000 2010 2020

50

100

150

200
REGRF 

PRERFDC 

1990 2000 2010 2020

50

100

150

200
PRERFDC FINRFDC 

1990 2000 2010 2020

50

100

150

200
FINRFDC 

R
F

Time (month)

Figure 1: Available monthly observations of the time series on the number of road fatalities.

The first data that become available in the Netherlands are those on the preliminary
number of road fatalities among Dutch citizens (PRERFDC), as they are updated every
throughout the year. This is followed by the registered number of road fatalities (REGRF) a
couple of months later, and then a couple of weeks later by the final number of road fatalities
(FINRF). The final number of road fatalities among Dutch citizens (FINRFDC) are then the
last to become available. The general aim of this empirical study is to investigate how to use
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the preliminary data in the PRERFDC and in the REGRF series to improve the precision
of what to expect for the final FINRF data before they are officially issued by Statistics
Netherlands.

The data used for this empirical study are shown in Figure 1 and cover the months of
1996(1)-2022(12) for FINFR, 1987(1)-2021(12) for REGRF, 2005(1)-2023(2) for PRERFDC,
and 1995(1)-2021(12) for FINRFDC.

3.2 Road Safety model

Since the four monthly time series all refer to the same process, that is, the underlying
latent aggregate road safety process of the Netherlands, it seems reasonable to assume that
the state disturbances of these four series are driven by the same dynamic process. We
therefore impose the restriction that the level disturbances of the four series exhibit perfect
linear dependence, and we apply the same restriction to the slope disturbances and the
seasonal disturbances. This results in a SUTSE model with common levels, common slopes
(and therefore common trends), and common seasonal components, which is obtained by
restricting the disturbance covariance matrices Σξ, Σζ and Σω to be all of rank one. As a
result, the road safety model can be described as follows:

yi,t = θµ,i µ
†
t + θν,iµ

††
t + θγ,i γt + εi,t, εi,t ∼ NID

(
0, σ2

εi

)
, i = 1, . . . , 4, (5)

where y1,t is the time series variable of interest (FINRF), y2,t, y3,t and y4,t are the auxiliary

time series of REGRF, PRERFDC and FINRFDC, respectively, µ†
t is the common level, µ††

t

is the common trend, γt is the common seasonal and εi,t is the irregular component which
is assumed to be contemporaneously correlated across i = 1, . . . , 4, the loading coefficients
θµ,i, θν,i and θγ,i are fixed, and variance σ2

εi
is strictly positive. Typical additional vectors in

the SUTSE model, containing fixed intercepts, linear trends and seasonal effects to capture
deterministic deviations from a common component, are not present in the Road Safety
model because all four time series are based on the same well-defined definition of “road
fatalities”. The purpose of this model is to produce timely nowcasts and forecasts for the
variable FINRF.

The common level µ†
t is a dynamic stochastic level and specified as the local level model

of Harvey (1989),
µ†
t+1 = µ†

t + ξt, ξt ∼ NID
(
0, σ2

ξ

)
, (6)

where the disturbance ξt is mutually independent (at all lags) of all other disturbances in
the model. The common trend µ††

t contains a dynamic stochastic slope νt and is specified as
the smooth trend model as given by

µ††
t+1 = µ††

t + νt,

νt+1 = νt + ζt, ζt ∼ NID
(
0, σ2

ζ

)
,

(7)

where disturbance ζt is mutually and serially independent of all other disturbances. The
common seasonal is specified in trigonometric form, also see Harvey (1989),

γt =

(s/2)∑
j=1

γj,t, (8)
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where
γj,t+1 = cos(λj)γj,t + sin(λj)γ

∗
j,t + ωj,t, λj = 2π j/s,

γ∗
j,t+1 = − sin(λj)γj,t + cos(λj)γ

∗
j,t + ω∗

jt, j = 1, . . . , (s/2),
(9)

in which ωj,t and ω∗
j,t are independent NID (0, σ2

ω) disturbance terms (mutually and serially
independent, also of all other disturbances) and s = 12 since we have monthly data. The
irregular vector (ε1,t, . . . , ε4,t)

′ is NID with a full non-singular covariance matrix which can
be estimated by the method of maximum likelihood, together with the other parameters.
The loadings or weights for the level, trend and seasonal components in each series are θµ,i,
θν,i and θγ,i, respectively, with θµ,1 = θν,1 = θγ,1 = 1. The default option for the Road
Safety model is to set θµ,i = θν,i = θγ,i = 1, for i = 2, 3, 4. Alternative option is to estimate
the loadings of the auxiliary series θµ,i, θν,i and θγ,i, for i = 2, 3, 4, by maximum likelihood,
together with the variances for the level, trend, and seasonal, plus the irregular covariance
matrix. A SUTSE model with stochastic level and with deterministic slope and seasonal
effects, delivers the most parsimonious version and is obtained by restricting σ2

ζ = σ2
γ = 0.

The performance of these models is evaluated both in-sample and in terms of forecasting
precision in the following subsections. A discussion on how to cast the Road Safety model
into state space form can be found in Appendix B.1.

3.3 In-sample fit comparisons

Six variations on the general statistical early warning model are selected by applying different
restrictions on the covariance matrix structure of the three unobserved components. In this
section, they are compared based on the entire sample, before testing their performance in
terms of forecasting precision. The covariance matrix of the irregular εi,t for i = 1, . . . , 4, in
(5) is a full matrix in all models:

1. The first most basic model specifies one common stochastic level, while the slope and
seasonal components are deterministic. The level loadings θµ,i = 1 for all i.

2. The second model introduces a stochastic common slope and trigonometric seasonal
component to the model, where all loadings are fixed to be equal to one.

3. The third model estimates the loadings of the auxiliary series for the slope and seasonal
components freely by maximum likelihood, instead of fixing them to one.

4. The fourth model resembles model 1, but the level loadings of the auxiliary series are
estimated by maximum likelihood instead of fixed to one.

5. The fifth model extends model 4 by reintroducing stochastic common slope and sea-
sonal components, while their auxiliary loadings are fixed to one.

6. The sixth model is the most extensive model which includes all common unobserved
components and where the loadings of the auxiliary series are freely estimated for all.

Table 1 evaluates the in-sample performance of the models. Model 6 has the best model fit
since it has the lowest AIC. The model fit of models 3, 4 and 5 are almost as good as model
6 since their AIC values are only slightly bigger. Based on the AIC of Models 1 and 2, they
are clearly the worst fitting models. The model diagnostics for the standardized innovations
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are presented per series and test for autocorrelation, heteroscedasticity and normality. These
tests would all be insignificant under correct model specification. Overall, there seems to
be no serial correlation present, but the homoscedasticity and normality hypotheses seem
violated for the first and second series (FINRF and REGRF) for some of the models.

Table 1: Model diagnostics for Road Safety monitor series: Log likelihood, AIC, and tests
on normality, autocorrelation and heteroscedasticity for FINRF (y1,t), REGRF (y2,t), PRE-
RFDC (y3,t) and FINRFDC (y4,t).

Model 1 2 3 4 5 6
Series Statistic

Log L 1212.121 1214.601 1230.019 1232.626 1235.745 1237.712
AIC -7.789 -7.792 -7.891 -7.920 -7.928 -7.940

y1,t Ljung Box 32.011 31.503 32.269 30.111 31.061 32.158
H(h) 1.497* 1.457* 1.468* 1.353 1.303 1.318
Skewness -0.176 -0.126 -0.168 -0.108 -0.079 -0.063
Kurtosis 3.771** 3.616* 3.789** 3.813** 3.733** 3.695**
Normality 9.313** 5.738 9.525** 9.169* 7.283* 6.466*

y2,t Ljung Box 35.462 36.568 30.785 29.617 31.716 29.703
H(h) 2.221** 2.150** 2.088** 2.008** 1.925** 1.912**
Skewness -0.292* -0.250* -0.283* -0.239* -0.200 -0.179
Kurtosis 3.916** 3.742** 4.032** 3.978** 3.876** 3.880**
Normality 20.026** 13.575** 23.489** 20.094** 15.717** 15.308**

y3,t Ljung Box 38.912 39.618 38.296 36.158 39.944 37.518
H(h) 1.315 1.279 1.323 1.185 1.165 1.112
Skewness -0.237 -0.184 -0.244 -0.148 -0.113 -0.133
Kurtosis 3.520 3.322 3.526 3.483 3.342 3.306
Normality 4.219 2.039 4.399 2.742 1.434 1.400

y4,t Ljung Box 31.202 35.616 30.615 27.135 33.013 34.679
H(h) 1.218 1.176 1.231 1.115 1.055 1.059
Skewness -0.285* -0.229 -0.300* -0.207 -0.185 -0.188
Kurtosis 3.745** 3.476 3.751** 3.724** 3.534 3.477
Normality 11.398** 5.657 11.985** 9.011* 5.475 4.783

**p < 0.01, *p < 0.05

In order to explore this further, a visual representation of the residual based diagnostics
of model 4 is given in Figure 2. While the figures for the second series REGRF seem to
contradict the test results on normality from Table 1, this could be explained by the larger
amount of observations for this time series. The power of the tests to detect deviations from
the null hypothesis increases with the sample size of the observed time series. Visually, the
diagnostic checks show nothing alarming in terms of normality violations, autocorrelation,
heteroscedasticity or drifting CUSUM for any of the series. This holds for all six models, as
they all resemble Figure 2. See Figure B1 and Figure B2 in Appendix B, which show the
visual innovation diagnostics for models 2 and 6 as example.

An overview of the estimated hyperparameters based on the entire sample between 1987-
2023 is given in Table B1. Since the covariance matrix of the irregular is a full matrix in all
models, we present the individual irregular variances from (5) and the correlations of these
idiosyncratic noise terms between each series. Given that the four series represent similar
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Figure 2: Innovations diagnostics of Model 4, obtained with Kalman smoother.

processes, it is expected to observe such high correlations. The high loading estimates in
model 3 are the result of the small values for the corresponding variances of the common
slope and seasonal disturbance terms. Further note that the parameter estimates for the
variances of the common slope and seasonal disturbance terms in the more extensive models
5 and 6 tend towards zero as well. This implies that these stochastic extensions of model 4
do not provide much added benefit. Given that their AIC’s were quite similar, we consider
the more parsimonious model 4 as the best performing model in-sample.

Estimates of the unobserved components are presented in Figure 3. The estimates of the
slope and seasonal components are time-invariant for this model specification. At the begin-
ning of the series there are long periods with missing observations. As a result the standard
errors of the smoothed trend are large or even missing at the beginning. Similar graphs
for the other models can be found in Figures B3 - B7. It shows overall that multivariate
models with common factor restrictions are able to decompose and capture the unobserved
components that drive the dynamic progression of these time series. We notice that when
loadings of a common factor are fixed to 1, the four component estimates should resemble
each other, which can be seen in the plots of Model 2 and 5.
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Figure 3: State vector estimates in Model 4, obtained with Kalman smoother.

3.4 Forecasting evidence

In order to investigate the relative precision of the forecasts of the final monthly number
of fatalities (FINRF) in a certain year, say year X, we fitted the six SUTSE models with
common trends and seasonal components presented in the previous section using five different
scenarios.

In each scenario the forecasts for FINRF are calculated for the twelve months of year
X, and then these forecasts are compared with the actual data for FINRF in year X, which
had not been used when fitting the model. The first scenario is a benchmark to investigate
whether the availability of more and more recent data for the other series than FINFR would
indeed result in more precise forecasts. Thus for the benchmark the 1- to 12-step ahead
forecasts for FINFR are calculated for the 12 months of year X using a univariate basic
structural time series model with deterministic (DBSTSM) and stochastic (SBSTSM) slope
and seasonal components, fitted to the FINFR monthly data observed up to and including
year X−1.

All scenarios are meant to mimic different moments throughout the year at which SN and
RWS publish new data. Only PRERFDC is updated on a monthly basis, with a publication
lag of three months. FINRF, REGRF and FINRFDC are updated yearly. For example, our
target series FINRF is updated around the end of April, hence at X(4) all twelve monthly
observations of X−1 become available. Scenarios 2, 3, 4 and 5 forecast FINRF using our
proposed multivariate SUTSE models at X(5), X(10), X+1(1) and X+1(4) respectively and
Table 2 shows the most recent observation of the auxiliary series at those moments in time.
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Table 2: Time series availability (✓) in the forecast scenarios.*

Scenario Forecast Series Month
moment X−2(12) X−1(3) X−1(6) X−1(9) X−1(12) X(3) X(6) X(9) X(12)

1 X(4) FINRF ✓ ✓ ✓ ✓ ✓
2 X(5) FINRF ✓ ✓ ✓ ✓ ✓

REGRF ✓ ✓ ✓ ✓ ✓
PRERFDC ✓ ✓ ✓ ✓ ✓
FINRFDC ✓

3 X(10) FINRF ✓ ✓ ✓ ✓ ✓
REGRF ✓ ✓ ✓ ✓ ✓
PRERFDC ✓ ✓ ✓ ✓ ✓ ✓ ✓
FINRFDC ✓

4 X+1(1) FINRF ✓ ✓ ✓ ✓ ✓
REGRF ✓ ✓ ✓ ✓ ✓
PRERFDC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
FINRFDC ✓

5 X+1(4) FINRF ✓ ✓ ✓ ✓ ✓
REGRF ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
PRERFDC ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
FINRFDC ✓ ✓ ✓ ✓ ✓

*The year number is X, the previous year is X−1, and the number between brackets refers to the month.

Recall from the notation introduced at the end of Section 2 that Ωt contains the data available
at period t and that Yt = (y1, . . . , yt)

′. In scenario 1, Ωt = (Y1,t−j) for j = 1, . . . , 12 depending
on the month of forecast year X. In scenario 2, Ωt = (Y1,t−j, Y2,t−j, Y3,t−j, Y4,t−j−12), in scenario
3, Ωt = (Y1,t−j, Y2,t−j, Y3,t−j+6, Y4,t−j−12), in scenario 4, Ωt = (Y1,t−j, Y2,t−j, Y3,t−j+9, Y4,t−j−12)
and in scenario 5, Ωt = (Y1,t−j, Y2,t−j+12, Y3,t−j+12, Y4,t−j).

All analyses were applied to the logarithms of the observations. To assess the forecast
precision of the proposed models we applied a real-time forecasting study to the years X =
2011, . . . , 2022 and computed the well-known criteria for precision: the mean squared error
(MSE), the mean absolute error (MAE) and the mean absolute percentage error (MAPE).
The resulting MAPE for each model in the five scenarios are presented in Table 3, while
the other criteria can be found in Table B2 and Table B4. Each column in Table 3 contains
the MAPE averaged over the 12 months of a particular year. The final column presents
the average of all relative forecast errors over the entire period of the real time analysis.
Note that the model parameters are re-estimated each year, as there are more observations
available to fit our models on when we progress through the forecasting years. How the
hyperparameter estimates of model 4 in scenario 3 develop over the years can be found in
Table B5 as an example.

When comparing the forecasting precision of the univariate models in scenario 1 with
the multivariate models of scenario 2 no clear increase in performance is found. However,
scenario 2 does not utilize the timeliness of the auxiliary series yet, this is what scenarios 3,
4 and 5 are designed for. The multivariate SUTSE models in the final three scenarios clearly
outperform the univariate structural time series models.

Table 3 averaged the MAPE for the h-step ahead forecasts for h = 1, . . . , 12 within each
year. Table 4 presents the MAPE forecasts for the 12 months or the 12 different h-step
ahead forecasts, averaged over the years. This provides a comprehensible illustration of the
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Table 3: MAPE forecasting performance based on the 1- to 12-step ahead forecasts per
forecasting year and in total.

Scenario Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total
1 DBSTSM 3.444 3.092 5.083 2.806 3.827 3.721 3.098 4.829 2.362 2.368 4.393 5.563 3.716

SBSTSM 3.423 3.092 5.083 2.806 3.827 3.721 3.098 4.829 2.362 2.368 4.393 5.563 3.714
2 1 3.542 3.147 5.512 3.082 3.475 3.509 2.895 4.751 2.483 2.347 4.505 5.380 3.719

2 3.495 3.078 5.319 2.824 3.857 3.662 3.169 4.794 2.446 2.405 4.460 5.427 3.745
3 3.614 3.046 5.018 2.939 3.753 3.773 3.667 4.794 2.545 2.340 4.595 5.463 3.796
4 3.619 3.074 5.127 2.920 3.903 3.644 2.930 4.552 2.276 2.530 4.517 5.780 3.739
5 3.494 3.184 5.139 2.799 3.821 3.761 3.071 4.254 2.116 3.104 5.081 4.990 3.735
6 3.515 3.782 4.835 2.786 4.102 4.177 3.882 5.025 3.298 2.607 4.369 6.753 4.094

3 1 2.294 2.967 2.308 2.046 2.598 2.728 2.708 3.453 2.771 2.886 3.434 2.155 2.696
2 2.349 2.978 2.104 2.359 2.587 2.607 2.742 3.412 2.684 3.013 3.404 2.027 2.689
3 2.586 2.761 1.927 2.317 2.754 2.515 2.888 3.135 2.518 3.357 3.523 2.271 2.713
4 2.322 2.723 2.153 1.898 3.060 2.875 2.814 3.342 2.608 3.202 3.505 2.163 2.722
5 2.460 2.654 2.119 2.029 2.859 2.698 2.750 3.410 2.752 3.052 3.432 2.442 2.721
6 2.436 2.943 1.983 2.254 3.172 2.421 2.814 3.010 2.422 3.962 3.660 2.628 2.809

4 1 2.272 2.051 1.860 2.088 1.551 1.947 2.202 2.309 2.695 2.775 3.176 1.403 2.194
2 2.305 2.030 1.726 2.135 1.493 1.793 2.228 2.300 2.621 2.882 3.196 1.403 2.176
3 2.565 1.828 1.542 2.168 1.448 1.673 2.487 2.137 2.589 3.259 3.287 1.483 2.206
4 2.210 1.700 1.658 1.955 1.887 2.147 2.335 2.241 2.619 3.172 3.199 1.445 2.214
5 2.345 1.858 1.649 2.088 1.592 1.952 2.324 2.463 2.676 2.875 3.193 1.090 2.176
6 2.599 1.751 1.672 2.009 2.743 2.741 3.513 3.688 3.714 2.758 3.210 3.355 2.813

5 1 1.052 1.295 0.816 1.269 0.691 1.431 0.961 0.950 1.188 0.886 1.757 0.649 1.079
2 1.075 1.286 0.786 1.250 0.695 1.409 0.961 0.940 1.192 0.883 1.763 0.646 1.074
3 0.995 1.694 0.890 1.463 1.283 1.677 1.710 1.557 1.771 1.058 2.163 1.977 1.520
4 0.725 1.217 0.835 1.236 1.047 1.638 1.252 1.415 1.811 1.739 1.726 2.335 1.415
5 0.739 1.379 0.783 1.256 0.820 1.492 0.989 0.931 1.167 0.821 1.760 0.615 1.063
6 1.218 1.451 0.752 1.177 0.734 1.365 1.093 0.987 1.202 1.037 1.891 0.801 1.142

Table 4: MAPE forecasting performance for 1- to 12-steps ahead forecasts per month.

Scenario Model Jan Feb Mar Apr May June July Aug Sept Oct Nov Dec
t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12

1 DBSTSM 4.202 5.135 3.246 3.992 2.148 3.010 4.789 3.076 3.788 4.928 2.701 3.572
SBSTSM 4.193 5.124 3.234 4.004 2.135 3.025 4.772 3.094 3.805 4.907 2.679 3.592

2 1 4.364 5.078 3.083 3.889 2.154 3.213 4.812 2.910 3.921 5.017 2.741 3.444
2 4.404 5.204 2.931 4.039 2.171 3.243 4.868 3.068 3.877 4.993 2.651 3.487
3 4.359 5.158 3.129 3.971 2.341 3.248 4.965 3.101 3.833 4.944 2.876 3.621
4 4.096 5.008 3.257 3.904 2.405 2.975 4.664 3.267 4.020 4.839 2.636 3.800
5 4.633 5.533 3.330 3.869 2.171 2.774 4.634 3.365 3.683 5.070 2.551 3.203
6 4.502 5.315 4.354 4.307 2.480 3.395 4.965 3.878 3.830 5.068 2.558 4.479

3 1 1.817 2.279 1.515 1.172 1.347 2.425 4.328 2.816 3.549 4.860 2.696 3.543
2 1.673 2.302 1.499 1.184 1.295 2.431 4.300 2.922 3.523 4.889 2.733 3.514
3 1.576 2.461 1.639 1.248 1.083 2.369 4.472 3.161 3.342 4.887 2.790 3.526
4 1.593 2.526 1.593 1.345 1.441 2.373 4.271 3.058 3.405 4.671 2.544 3.845
5 1.510 2.299 1.741 1.359 1.302 2.740 4.255 3.157 3.477 5.023 2.477 3.316
6 1.481 2.658 1.887 1.536 1.210 2.622 4.390 3.546 3.470 4.647 2.640 3.616

4 1 1.828 2.299 1.496 1.175 1.316 2.395 1.989 1.607 1.366 4.343 3.247 3.267
2 1.675 2.325 1.496 1.200 1.267 2.397 1.971 1.609 1.354 4.405 3.122 3.293
3 1.605 2.471 1.631 1.143 1.137 2.342 2.019 2.006 1.166 4.319 3.184 3.444
4 1.632 2.510 1.599 1.377 1.478 2.321 1.854 1.734 1.281 4.206 2.985 3.592
5 1.488 2.302 1.663 1.272 1.300 2.673 1.815 1.832 1.287 4.867 2.554 3.054
6 1.761 2.696 2.443 2.079 1.782 3.596 2.329 2.665 2.455 4.961 2.984 4.003

5 1 1.066 0.921 1.055 1.393 1.233 1.451 1.111 1.110 0.522 1.044 1.350 0.690
2 1.002 0.915 1.067 1.385 1.230 1.453 1.120 1.108 0.527 1.033 1.343 0.702
3 1.407 1.197 1.443 1.803 1.628 2.048 1.426 1.632 0.908 1.357 2.043 1.344
4 0.976 1.416 1.338 1.547 1.746 1.803 1.159 1.526 1.369 1.266 1.560 1.272
5 0.879 1.116 1.174 1.221 1.379 1.418 1.062 1.183 0.638 0.896 1.169 0.618
6 1.019 0.917 1.203 1.376 1.344 1.662 1.159 1.231 0.650 0.992 1.380 0.774
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advantage of a multivariate extension for the 12 different forecast windows. The results in
forecast scenario 3 and 4 clearly show a decrease in forecast accuracy for the largest horizons,
for which there are no provisional observations for PRERFDC yet. However, the accuracy
of those months still improves upon the univariate benchmarks for some of the models. For
the shorter horizons it is clear that a multivariate model utilizes the more timely available
provisional data. As a result, multivariate models provide much more accurate forecasts
than univariate models.

Figure 4 illustrates these findings by comparing the forecasts of model 4 in the different
scenarios with the realized target series observations. Moreover, it clearly shows that scenario
5 outperforms the rest in the final months of each year, which holds for the forecasts of all
models as shown in Figures B8 - B12. This is in line with the construction of the scenarios,
since it is the only scenario that uses auxiliary information of REGRF and PRERFDC up
until the last quarter of X. The first graph of Figure B13 presents the corresponding forecast
uncertainty. These forecast standard errors also follow a similar pattern. The standard errors
in scenarios 1 and 2 are very similar and the highest overall. In scenario 3 and 4 a jump
is visible at the 7- and 10-step ahead predictions, which are caused by the design of these
scenarios since they are the subsequent months of the most recent monthly observation of
PRERFDC. Naturally, the errors become slightly higher within each year, because a 1-step
ahead prediction is made with more precision than a 12-step ahead prediction.

If we compare the performance between the models within a scenario in Table 3, we find
that model 4 is actually one of the worst performing models in terms of forecasting precision.
Model 2 outperforms the rest in scenario 3, while model 5 does best in scenario 5. Both
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Figure 4: 1- to 12-step ahead forecasts of the FINRF series of Model 4, in the different
forecasting scenarios over the forecasting years 2011-2022.
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Figure 5: 1- to 12-step ahead forecasts of the FINRF series of the different models in scenario
3, over the forecasting years 2011-2022.

models present similar results in scenario 4. However, note that the MAPE is expressed as
a percentage and the performance differences between models are much smaller than the
differences between the scenarios. When considering the MSE and MAE in Table B2 and
Table B4, it is shown that no model outperforms another model convincingly. Scenario 3 can
arguably be considered as the most realistic one, when the forecasts are made in the month
of October, in the year of interest. Figure 5 confirms the minor differences in the point
estimates of each model visually for this scenario, but it holds in all multivariate scenarios,
see Figures B14 - B16. Nevertheless, the second graph of Figure B13 shows that model 5
has slightly less uncertainty in scenario 3, therefore it could be considered as the preferred
model when forecasting the target series FINRF. The combined forecasts and uncertainty of
model 5 in scenario 3 and 5 are presented in Figure 6, it shows the gain in forecast accuracy
with models that use information from correlated auxiliary series.
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Figure 6: 1- to 12-step ahead forecasts with uncertainty of the FINal Road Fatalities series
on a log scale, obtained with the best performing model 5 in scenario 3 (top) and scenario
5 (bottom).

4 Empirical Study II: Labour Force participation

4.1 Data

The data of this study consists of two time series with different observation frequencies.
Both series capture the labour force participation (LFP), see Figure 7:

1. the LFP rate in the municipality of Amsterdam derived from the Tax Administration
and Employee Insurance Agency registers (Register), on a quarterly frequency.

2. the LFP rate in the Netherlands estimated from the Labour Force Survey (LFS) issued
by Statistics Netherlands, on a monthly frequency.

Typically, data published by the Tax Administration suffer from long publication delays.
Self-employed taxpayers can opt for a delayed tax declaration, hence the final tax assessment
can take several years. It takes approximately nine months after the reference year has ended
before the first preliminary data is published, while it can take up to another year thereafter
before the final figures are determined. On the contrary, the LFS is conducted every month,
so the LFP rate can be obtained much faster from that source, see the discussion in van den
Brakel and Michiels (2021).

The benefit from determining the LFP rate on the basis of the registers however is
that this data cover the entire target population and can be used to derive very detailed
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Figure 7: Available time series of quarterly labour force participation (LFP) rate in Amster-
dam derived from the tax register and monthly LFP rate in the Netherlands obtained from
the labour force survey.

regional figures. The LFS, on the other hand, is a sample which implies that LFP estimates
contain sampling error. As a result, reliable monthly indicators can only be produced at high
aggregation levels. van den Brakel and Michiels (2021) discuss inference methods that are
used to generalize these sample findings to the target population. The general aim of this
empirical study is to investigate how the noisy fast higher-frequent LFS series can be used
to improve the precision of what to expect of the more precise slow lower-frequent LFP rate
series from the tax register before their rates are officially issued. Figure 7 shows the data
set of quarterly LFP rates for period 2003(1)-2021(4) from the “Register” and of monthly
LFP rates for period 2001(1)-2022(12) from the LFS of SN.

4.2 Labour Force model

Let yt denote the LFP rate for Amsterdam for quarter t, derived from the Tax Register
and x[τ ] the estimate for the LFP rate at the national level of the Netherlands for month τ
obtained from the LFS. The target variable of interest is the quarterly time series yt, which
will be combined in a model with the auxiliary monthly time series x[τ ] with the purpose to
produce more timely nowcasts for yt. The LFS is based on a rotating panel design. Each
month a stratified simple random sample of persons enter the panel. This panel is observed
five times at quarterly intervals. A sample that enters the panel in month τ is observed at
months τ, τ +3, τ +6, τ +9 and τ +12. After the fifth interview at τ +12, the sample leaves
the panel. This creates serial correlation between x[τ ] and x[τ+3j], for j = 1, . . . , 4.
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The publication frequency difference of both time series restricts us from fitting a bivariate
SUTSE model to the data straightforwardly. Many approaches exist in the literature for
handling mixed frequency data. We take the approach of stacking the monthly observations
in a quarterly 3× 1 vector series, and incorporate this vector within a multivariate dynamic
process of a quarterly frequency, see Blasques, Koopman, Mallee, and Zhang (2016) for the
details. It is shown that low- or high-frequency representations of any linear dynamic process
lead to equivalent maximized log-likelihood values and parameter estimates. The following
quarterly notation for the monthly LFS series is adopted:

xt =

xt,1

xt,2

xt,3

 =

 x[τ ]

x[τ+1]

x[τ+2]

 , (10)

where xt,i refers to the i-th month within quarter t and τ is the corresponding monthly index.
Then the Labour Force model can be written as a SUTSE model, that is

zt = Θµµ
†
t + µθ +Θνµ

††
t + µθ,t +Θγγ

†
t + γθ,t + Stut + εt, εt ∼ NID(0,Σε), (11)

where zt = (yt,x
′
t)

′ is the 4× 1 vector of observations, the components level µ†
t , trend µ††

t ,
seasonal γ†

t and irregular εt are defined similarly as in the model equation (5), but are now
in bold as they are vectors, this also applies to the loading matrices Θµ, Θν and Θγ, vectors
µθ, µθ,t and γθ,t capture the deterministic deviations from the common components for level,
trend and seasonal, respectively, vector Stut accounts for the survey sampling structure in
the data, and Σε is the irregular covariance matrix. The loading matrices are imposed by a
Cholesky decomposition for a rank deficient covariance matrix of the disturbance term, see
Section 2.1 for further details. In particular, for a two factor model we have

Σj = ΘkΣ
†
jΘ

′
k =


1 0

θk,2,1 1
θk,3,1 θk,3,2
θk,4,1 θk,4,2

[
σ2
j1

0
0 σ2

j2

] [
1 θk,2,1 θk,3,1 θk,4,1
0 1 θk,3,2 θk,4,2

]
, (12)

with (j, k) ∈ {(ξ, µ), (ζ, ν), (ω, γ)}. In a similar way, the one factor model can be obtained
straightforwardly by specifying Θk = (1, θk,2,1, θk,3,1, θk,4,1)

′ and Σ†
j = σ2

j , where θk,2,1, θk,3,1
and θk,4,1 can be interpreted as the loadings in (5) for xt,1, xt,2 and xt,3, respectively, while σ

2
j

reflects the variance of the disturbance term. These unknown parameters can be estimated
by the method of maximum likelihood or they can partly be restricted to zero or one. Finally,
the dynamic specifications for the elements of the trend vectors µ†

t and µ††
t are given by (6)

and (7), respectively. The dynamic specification for the elements of the seasonal component
vector γt are specified as a dummy seasonal component, see Appendix C.1.

The sampling error effect is represented by the vector Stut. The vector ut = (ut,1, ut,2, ut,3)
′

contains the sampling errors of the monthly LFS estimates of xt. Note that the register vari-
able yt is based on a complete enumeration and is therefore observed without sampling error.
The sampling errors of the monthly LFS estimates account for heteroscedasticity that arise
from time-varying sample variance and autocorrelation induced by the rotating panel design
of the LFS. This is achieved by scaling the sampling errors ut,i with the standard errors of
xt,i, that is kt,i =

√
Var(xt,i), hence St is a 4× 3 scaling matrix where the first row contains

zeros followed by diag(kt,1, kt,2, kt,3). To account for serial correlation due to the sample
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overlap of the rotating panel design, each ut,i is on its turn modelled as an AR(3) process
with zero autocorrelation coefficients for the first two lags, i.e. ut,i = ϕut−1,i + et,i. Note
that ϕ can be estimated from the survey data, see also van den Brakel and Krieg (2015) or
van den Brakel and Michiels (2021). They found that the AR(3) coefficient ϕ̂ = 0.59, which
is treated as known here. The 4×1 vector εt contains the idiosyncratic noise of the quarterly
register series and monthly LFS series, where the latter is again stacked according to (10).
Both are considered NID sequences, hence Σε = diag(σ2

εy , σ
2
εx , σ

2
εx , σ

2
εx). Further details and

a discussion on how the Labour Force model can be cast into state space form are provided
in Appendix C.1.

4.3 Covid correction

The Covid-19 crisis had strong effects on the labour force figures. The start of the Covid
crisis is indeed marked with sharp turning points in the monthly LFS figures. The crisis also
resulted in a sudden increase of the monthly changes in the labour force figures (van den
Brakel, Souren, and Krieg 2022). The flexibility of the time series model to pick up a sudden
increase in the monthly changes is mainly determined by the variance of the level and slope
disturbance terms. At the start of the Covid crisis, the values of these variances is based
on the volatility of the period-to -period changes observed in the past. As a result the time
series model will not be able to follow a sudden increase in this volatility, resulting in a
temporarily misspecification of the time series model. The time series model can be adapted
by temporarily increasing the flexibility of the trend. This can be achieved by increasing the
variances of the level and slope disturbance terms of the trend by multiplying the maximum
likelihood estimates of these variances with a time dependent factor which values are used
as a-priory known values in the model. See van den Brakel, Souren, and Krieg (2022) and
Gonçalves, Hidalgo, Silva, and van den Brakel (2022) for a detailed discussion.

The following time-varying covariance structures for the level and slope disturbance terms
are considered:

ξt ∼ NID(0, σ2
ξ,tΣξ), ζt ∼ NID(0, σ2

ζ,tΣζ), (13)

where the variance factors σ2
ξ,t and σ2

ζ,t are assumed to be known and are equal to one
throughout the length of the sample, except for the period surrounding the outbreak at the
start of 2020. To minimize the manual adjustments, the time-varying factors are quickly
returning their values to one, typically after a few quarters.

4.4 In-sample fit comparisons

In this applications four variants of the Labour Force model are tested. First they are
compared based on their in-sample performance. The variants are obtained by applying
restrictions on the covariance matrix structures of the different unobserved components.
The sampling error and irregular structures are kept diagonal in all models:

1. In the first model, both trend components and the dummy seasonal component are
specified by one common factor. This is enforced by Σξ, Σζ and Σω all being rank one
matrices where the loadings are freely estimated by maximum likelihood.
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2. In the second model, both trend components are still specified by one common factor,
but the seasonal component now has four independent factors. This is enforced by a
diagonal Σω of rank four.

3. In the third model, the trend components are modelled by two common factors, while
the seasonal component is again specified by one common factor.

4. In the fourth model, the trend components are specified by two common factors. The
seasonal component is modeled by four independent factors.

Table 5 shows the model diagnostics for the four different models, which is used to evaluate
the in-sample model performance. Model 3 has the lowest AIC, with and without increasing
the flexibility of the trend during the Covid crisis. This indicates that Model 3 is the
best fitting model to our data. Various tests on the standardized innovations are presented.
Increasing the flexibility of the trends clearly leads to a general improvement when comparing
the diagnostics in the table. No evidence can be found for the presence of heteroscedasticity
anymore, while there is less evidence for violations of the normality assumption.

Table 5: Model diagnostics of LFS models with constant variance (left panel) and time-
varying variances (right panel) for trend disturbance terms.

constant trend variance time-varying trend variance

Model 1 2 3 4 1 2 3 4
Series Statistic

Log L -135.173 -147.909 -126.531 -127.469 -118.166 -132.159 -110.772 -112.105
AIC 3.920 4.279 3.677 3.703 3.441 3.835 3.233 3.271

yt Ljung Box 9.429 21.158 9.392 9.372 15.095 10.152 10.110 10.346
H(h) 1.785 2.570* 2.211* 2.182* 0.589 1.636 0.751 0.811
Skewness -2.069** -1.616** -1.033** -1.043** 0.485 0.391 0.631* 0.678*
Kurtosis 14.795** 10.916** 10.370** 10.354** 3.825 5.619** 3.948 4.032
Normality 462.184** 216.312** 173.312** 172.857** 4.798 22.100** 7.371* 8.586*

xt,1 Ljung Box 18.935 17.592 20.862 20.202 23.666 27.310* 28.229* 27.564*
H(h) 2.479* 2.919** 2.414* 2.413* 1.666 1.452 1.512 1.431
Skewness -0.762** -0.454 -0.660* -0.667* -0.452 -0.199 -0.214 -0.131
Kurtosis 5.664** 4.681** 5.007** 4.986** 3.755 3.333 3.153 3.207
Normality 32.569** 12.623** 19.965** 19.797** 4.801 0.930 0.711 0.385

xt,2 Ljung Box 12.577 10.971 11.201 11.402 16.246 8.448 14.596 10.651
H(h) 1.867 2.554** 2.403* 2.356* 1.445 1.457 1.521 1.404
Skewness -0.581* -0.162 -0.471 -0.506 -0.209 -0.049 -0.177 -0.239
Kurtosis 4.250* 3.824 4.185* 4.231* 2.882 2.831 3.110 3.367
Normality 10.063** 2.714 7.918* 8.775* 0.652 0.132 0.478 1.254

xt,3 Ljung Box 60.199** 30.718* 32.893** 32.484** 65.889** 33.144** 36.945** 36.714**
H(h) 1.591 2.699** 2.909** 2.827** 1.234 1.608 1.706 1.683
Skewness -0.219 0.171 0.084 0.053 -0.011 -0.088 0.207 0.210
Kurtosis 3.839 4.077* 4.302* 4.294* 3.113 3.515 3.441 3.512
Normality 3.103 4.417 5.960 5.827 0.046 1.025 1.266 1.515

**p < 0.01, *p < 0.05

A visual representation of the innovations from Model 3 for all four series is found in
Figure 8, which clearly shows the large negative one-step ahead prediction errors when
Covid started spreading. The largest drop in the labour force participation took place in
April of 2020, but recovered quickly in the following months, which is also visible in the
monthly LFS figures in Figure 7. This clarifies why the negative prediction in 2020Q2 is less
extreme for the M2 and M3 series compared to the M1 series.
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Figure 8: Innovations diagnostics of Model 3, obtained with Kalman smoother, with constant
variances for trend disturbance terms.
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Figure 9: Innovations diagnostics of Model 3, obtained with Kalman smoother, with time-
varying variances for trend disturbance terms.
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Figure 9 shows the improvement in the innovation diagnostics when the flexibility of the
trends is increased at the start of the Covid crisis. In general, these visual diagnostic checks
show nothing alarming in terms of normality violations, autocorrelation, heteroscedasticity or
drifting CUSUM. The diagnostics of Model 1 show a similar improvement in the prediction
error, see Figures C1 and C2, however the CUSUM starts to drift outside the confidence
bounds. This is not the case for Models 2 and 4. Their diagnostics resemble those of Model
3, see Figures C3 - C6.

The maximum likelihood procedure is based on all observations between 2001-2022. The
resulting parameter estimates are presented in Table C1. Table C2 shows the factors from
(13) used to increase the variances of the level and slope disturbance terms. They are
responsible for the parameter estimate difference in Table C1. The factors are multiplied
with the entire (rank deficient) level and slope covariance matrices, and Table C1 presents
the resulting variance and loading parameters after decomposing these covariance matrices in
(12). Similar to findings in van den Brakel and Michiels (2021), we observe a small variance
for the irregular compared to the variance of the sampling error, indicating the latter captures
most of this idiosyncratic variation. Model 2 without increasing the flexibility of the trend
during the Covid period is estimated as a common smooth trend model, as the disturbance
terms of the level and seasonal get variance parameters not far from zero. It seems that
specifying a model with four independent seasonal components is redundant, because again
most variance parameters are near zero. The hyperparameter estimates of Model 3 confirm
the conclusion based on the AIC that a model with two common factors for both trend
components and one common seasonal factor is the best fitting model to our data.
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Figure 10: State vector estimates in Model 3, obtained with Kalman smoother.
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Figure 10 shows the resulting smoothed estimates of the unobserved components when
the estimated hyperparameters of Model 3 are used in the Kalman filter and smoother recur-
sions. Figure 11 shows the same with the time-varying trend disturbance term variances and
especially in the figures of the slope one can see the confidence bound becoming temporarily
wider because of it. It also shows that the sampling error and irregular are closely related.
For some models, the estimated irregular becomes very small, but the sampling error be-
comes larger and vice versa, see Figures C7 - C12. If either the irregular or sampling error
becomes too small it is left out of the figure to avoid confusion. In general, the proposed
multivariate models are able to identify the common unobserved components accurately.
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Figure 11: State vector estimates in Model 3 including time-varying variances for the trend
disturbance terms at the start of the Covid outbreak.

4.5 Forecasting evidence

In this section the forecasting performance of our SUTSE models are tested for the quarterly
LPF rate figures that are derived from the tax register (yt). The quarter of interest is denoted
with Q. This forecasting study identifies four different scenarios in which the Labour Force
models are fitted. They are presented in Table 6.

In each scenario the 5-step ahead forecast for the tax register LFP rate in quarter Q
is calculated and compared with the actual observation. Since the tax register series yt
becomes available at a quarterly frequency with a delay of about five quarters, the forecast
horizon in this application is 5 quarters as shown in Table 6. Under scenario 1 a univariate
basic structural time series model is applied. This scenario serves as a benchmark to assess
to which extend the availability of the faster and more recent data from the LFS would
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Table 6: Time series availability (✓) in the forecast scenarios.*

Scenario Forecast Series Quarter
moment Q−5 Q−4 Q−3 Q−2 Q−1 Q

1 Q(1) Register ✓
2 Q(2) Register ✓

LFS M1 ✓ ✓ ✓ ✓ ✓ ✓
LFS M2 ✓ ✓ ✓ ✓ ✓
LFS M3 ✓ ✓ ✓ ✓ ✓

3 Q(3) Register ✓
LFS M1 ✓ ✓ ✓ ✓ ✓ ✓
LFS M2 ✓ ✓ ✓ ✓ ✓ ✓
LFS M3 ✓ ✓ ✓ ✓ ✓

4 Q+ 1(1) Register ✓
LFS M1 ✓ ✓ ✓ ✓ ✓ ✓
LFS M2 ✓ ✓ ✓ ✓ ✓ ✓
LFS M3 ✓ ✓ ✓ ✓ ✓ ✓

*The quarter is Q and the number between brackets refers to the month in Q, 1,2,3.

improve the forecasting precision in the other three scenarios. Scenario 2, 3 and 4 include
auxiliary information already available up until Q, which indicates that the forecasts can
be thought of as nowcasts. These scenarios resemble the moments when the monthly LFS
figures for the first, second and third month of that quarter become available and a more
precise nowcast for yt can be obtained. This is about two weeks after the end of the reference
month. Recall that Ωt contains the data available at period t and that Yt = (y1, . . . , yt)

′.
In scenario 1, Ωt = (Yt−5), in scenario 2, Ωt = (Yt−5, Xt,1, Xt−1,2, Xt−1,3), in scenario 3,
Ωt = (Yt−5, Xt,1, Xt,2, Xt−1,3) and in scenario 4, Ωt = (Yt−5, Xt,1, Xt,2, Xt,3).

The forecasting study was applied to the quarters Q = 2011(1), . . . , 2021(4). Table 7
shows the MAPE for the separate years and the average over all years. Results are presented
for all models with and without increasing the flexibility of the trend during the Covid crisis.
Table C3 and Table C4 present the MSE and MAE. The hyperparameters are re-estimated by
maximum likelihood in each quarter, to take into account the most recent observations while
progressing through the forecast window. Comparing scenario 1 with the other scenarios in
the performance measure tables show that the additional value of the auxiliary information
from the LFS is small during the period 2014 until 2019 where the LFP rate has a stable
increasing trend. The contribution of the auxiliary information is substantial in periods
around a turning point, i.e. 2012 and 2013 and the years of the Covid crisis. This indicates
that the nowcast of a detailed, precise figure derived from a register that comes with a
long publication delay of five reference periods can be improved successfully with a timely
indicator that is obtained from a sample survey.

Increasing the variances of the level and slope disturbance terms clearly increases the
prediction errors in 2020 and 2021. It shows that, while this procedure did have a positive
effect on the one-step ahead prediction errors as is shown in Section 4.4, it negatively influ-
ences the five-step ahead prediction errors. Table 7 shows that it had the smallest impact
when model 3 was used for forecasting. The influence of these correction factors on the
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Table 7: MAPE forecasting performance based on the 5-step ahead forecasts per forecasting
year and in total, for models with time constant and time-varying variances for trend dis-
turbance terms.*

Scenario Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 (2019) 2020 (2020) 2021 (2021) Total (Total)
1 BSTSM 2.207 1.819 0.722 0.748 1.463 0.560 0.339 0.405 0.405 0.405 3.371 3.371 5.704 6.523 1.613 1.687
2 1 2.410 1.089 0.417 1.319 1.093 0.807 0.332 0.289 0.512 0.487 2.168 3.280 1.889 5.494 1.120 1.547

2 2.061 0.882 0.485 1.148 0.994 0.785 0.308 0.216 0.413 0.406 2.104 3.418 1.939 5.880 1.030 1.508
3 1.457 0.982 0.293 1.268 1.085 0.924 0.422 0.416 0.641 0.618 2.110 3.363 1.765 2.812 1.033 1.240
4 1.833 1.138 0.659 1.487 0.467 0.795 0.801 0.289 0.333 0.322 1.723 2.039 1.904 4.190 1.039 1.275

3 1 2.405 1.090 0.443 1.240 1.126 0.872 0.389 0.427 0.446 0.422 2.083 3.195 1.995 5.608 1.138 1.565
2 2.107 0.885 0.468 1.072 1.021 0.847 0.387 0.352 0.350 0.343 2.044 3.310 2.010 5.978 1.049 1.525
3 1.191 1.546 0.635 1.662 0.731 0.492 1.125 0.633 0.263 0.247 1.715 2.079 1.979 2.063 1.088 1.128
4 1.850 1.835 0.930 1.602 0.442 0.427 0.974 0.546 0.268 0.253 1.657 1.988 2.042 4.316 1.143 1.378

4 1 2.360 0.877 0.172 0.815 0.994 0.786 0.509 0.585 0.552 0.519 1.975 3.200 1.984 5.297 1.055 1.465
2 1.854 0.880 0.528 1.268 0.916 0.783 0.276 0.311 0.397 0.423 1.927 2.913 1.950 6.018 1.008 1.470
3 1.494 1.099 0.476 1.345 0.583 0.591 0.966 0.627 0.583 0.566 1.722 2.205 1.926 5.037 1.038 1.363
4 1.801 1.063 0.628 1.445 0.484 0.458 0.765 0.964 0.441 0.417 1.694 2.412 1.987 5.242 1.066 1.425

*Brackets refer to results including time-varying trend disturbance term variances.

uncertainty of the forecasts is visualized in Figure C16. This figure also confirms that the
increase in the forecast standard errors surrounding the Covid crisis is of a lesser magnitude
for model 3, which could explain the smaller increase in prediction errors for this model.
For all models and scenarios it follows that increasing the flexibility of the trend component
during the Covid period deteriorates the forecast performance.

Figure 12 compares the nowcasts of model 3 in the different scenarios. The forecasts in
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Figure 12: 5-step ahead forecasts of the register LPF rate series of Model 3, in the different
forecast/nowcasting scenarios, constant (top) and time-varying (bottom) variances for trend
disturbance terms.

26



the univariate scenario 1 seem to react late to changes in the trend, i.e. the lack of more
timely information and the long publication lag that a univariate model has to deal with is
clearly visible. When comparing scenario 4 with 2 or 3 in either Table 7 or Figure 12, it
seems like waiting until the final monthly observation within the quarter of interest does not
necessarily lead to a better forecast. This holds for all Models, see Figures C13 - C15. As
expected the forecast uncertainty in Figure C16 is higher in scenario 1, but does not differ
much in the other scenarios. Recall that the difference between them is the availability of
just one extra monthly LFS observation when fitting the model and generating the forecasts,
hence this is not that surprising.

As mentioned before, Figure 12 indicates that in the period between 2014 and 2020 with a
stable upward trend in the LFP rate, all scenarios generate roughly equal nowcast errors. The
advantage of a multivariate extension is clearly visible in times of changes in the trend. The
figures also indicate that the models with a flexible trend component during the Covid period,
result in larger nowcast errors. When considering their overall forecasting performance within
a scenario in Table 7 instead, we already mentioned that model 3 outperforms the other
models, which was mainly due to the fact that this model was less affected by the correction
factors used to increase the variances of the level and slope disturbance terms. However,
without this correction, model 2 is actually the best performing model. In general, model
1 is the worst performing model. Overall the largest difference is between the univariate
model without auxiliary information versus the multivariate series that include auxiliary
information. Differences between the three scenarios and multivariate models that include
auxiliary information are smaller. When looking at the yearly disaggregation however, it
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Figure 13: 5-step ahead forecasts of the register LPF rate series of the different models, in fore-
casting scenario 3, constant (top) and time-varying (bottom) variances for trend disturbance terms.
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follows that this is again mainly due to years with changes in the trend. In stable years,
this could be the other way around. Figure 13 shows the nowcasts of the different models in
scenario 3 as example and it confirms this finding, but it holds for all multivariate scenarios,
see Figures C17 and C18. Figure 14 shows the combined nowcasts and uncertainty of models
2 and 3 in scenario 3, since they can be considered the preferred models with constant or
time-varying trend disturbance variances.
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Figure 14: Forecasts with uncertainty of the Register LFP rate obtained with the best performing
models 2 & 3 in scenario 3, with constant (top) and time-varying (bottom) variances for trend
disturbance terms.

5 Conclusion

In this study we have developed a procedure for the early detection of the development of
dynamic processes for which the corresponding observations exhibit long publication lags.
The procedure exploit more timely information from auxiliary time series data. For this
purpose, we have adopted a multivariate SUTSE model with common trends and common
seasonal components, and have assumed that the different time series have similar underlying
data generating processes. The proposed method is very general as it can be applied to a wide
range of situations, in particular in official statistics, to construct timely early indicators.
The recent Covid crisis emphasized the relevance of having timely indicators on a wide
range of topics for policy and decision makers. In two empirical applications of key interest
to the general public, we have validated the model assumptions and we have shown that
the methods can handle different publication frequencies and can generate nowcasts and
forecasts at different points throughout the year. A solution when mixed-frequencies exist is
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proposed and it is shown how the methods perform in the case of unexpected circumstances
such as the Covid outbreak.

In the first application, we have analyzed the development of the Dutch road safety
process as observed in the official and final monthly number of road traffic fatalities in
the Netherlands, issued once a year by Statistics Netherlands (SN). We proposed different
variants of multivariate SUTSE models with common trends and seasonal components that
can be treated as statistical early warning models, and that can detect potentially alarming
developments in the official and final monthly number of road fatalities at an early stage. The
models use three other proxies for the development of Dutch road safety, where two of these
proxies contain observations that become available before the official and final statistics are
issued by SN. The preliminary observations in these other sources clearly help to improve
the forecasting precision of the official figures, compared to the forecasts obtained from
univariate models. Particularly, a multivariate SUTSE model with one common level, one
common slope and one common seasonal generates the best forecasts.

In the second application, we have shown how detailed indicators of the labour force
participation (LFP) rate at the municipal level can be nowcasted using monthly estimates
for the LFP rate at the national level. The detailed regional figures are derived from a tax
register, which can be interpreted as a complete and accurate enumeration of quarterly LFP
figures. These figures, however, come with a delay of five quarters which heavily compromise
their relevance. The national figures on the other hand are obtained with the Labour Force
Survey (LFS), which results in noisy LFP estimates that are available two weeks after a
month has ended. Multivariate SUTSE models are proposed that combine the quarterly
figures for the capital Amsterdam with monthly LFS figures. The model accounts for the
sampling error of the LFS estimates and serial correlation induced by the rotating panel
design of the LFS. The labour force figures are strongly affected by the Covid outbreak.
The crisis induced turning points and strongly increased the period-to-period changes. To
avoid model misspecification it was necessary to increase the flexibility of the trend by
treating the variances of the level and slope disturbance terms as time-varying parameters. A
forecasting study comparison has shown that this Covid modification deteriorates the multi-
period forecast performance. Hence, while the one-step ahead prediction error/innovation
diagnostics benefit from the increased flexibility, it does not lead to more precise five-step
ahead predictions. It is found that the inclusion of more timely auxiliary information becomes
beneficial for nowcasting the quarterly labour force rate, compared to predictions made by
a univariate model, particularly for periods where the trend is not monotonically in- or
decreasing. In general, a multivariate SUTSE model with one common level, one common
slope and deterministic dummy seasonal component performs the best without the time-
varying trend disturbance terms. With the increased trend flexibility, a model with two
common levels, two common slopes and one common seasonal component achieves the best
predictions.

Overall, this paper shows that the use of multivariate SUTSE models works well when
there is a need for a preliminary estimate of a dynamic process for which the observations
become available with potentially long publication lags. We have effectively developed a
statistical tool that is able to provide an early warning on which policy-makers can act. The
method is general, widely applicable and can deal with problems that arise in practice. More
extensive higher dimensional applications could be explored further, as well as forecasting
multiple target series simultaneously.
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A Supplementary material Section 2

We start off from the state space approach for the analysis of time series data, see Harvey
(1989), Durbin and Koopman (2012), and Commandeur and Koopman (2007). An important
motivation for opting for this methodology is that it easily handles missing data in time series,
and transparently generalizes to the analysis of multivariate time series. Let yt denote the
N × 1 observation vector that contains the N observations at time t. The general linear
Gaussian state space model for the T -dimensional observation sequence y1, . . . ,yT is given
by

yt = Ztαt + εt, εt ∼ NID(0,Ht), (A.1)

αt+1 = Ttαt +Rtηt, ηt ∼ NID(0,Qt), t = 1, . . . , T, (A.2)

where αt is the state vector, εt and ηt are disturbance vectors and the system matrices Zt, Tt,
Rt, Ht and Qt are fixed and known but a selection of elements may depend on an unknown
parameter vector. Equation (A.1) is called the observation or measurement equation, while
(A.2) is called the state or transition equation. The M × 1 state vector αt is unobserved.
The N × 1 irregular vector εt has zero mean and N ×N variance matrix Ht.

The N ×M matrix Zt links the observation vector yt with the unobservable state vector
αt. Besides the state variables that define the trend, seasonal and cycle, αt may also consist
of regression variables. The M × M transition matrix Tt in (A.2) determines the dynamic
evolution of the state vector. The R × 1 disturbance vector ηt for the state vector update
has zero mean and R×R variance matrix Qt. The observation and state disturbances εt and
ηt are assumed to be serially independent and independent of each other at all time points.
In many standard cases, R = M and matrix Rt is the identity matrix IM . In other cases,
matrix Rt is an M ×R selection matrix with R < M . Although matrix Rt can be specified
freely, it is often composed of a selection from the first R columns of the identity matrix IM .

By appropriate choices of the vectors αt, εt and ηt, and of the matrices Zt, Tt, Ht, Rt

and Qt, a wide range of different time series models can be derived from (A.1) and (A.2). In
this paper we discuss the class of seemingly unrelated time series equations (SUTSE) models,
which can be considered a multivariate extension of structural time series models:

yt = µt + γt + εt, εt ∼ NID(0,Σε), (A.3)

where yt is a N × 1 vector of time series, µt is a N × 1 vector of unobserved trends, γt is a
N × 1 vector of unobserved seasonal effects and εt is a N × 1 vector of the irregular or noise
component. The trend is defined as the local linear trend model, where the trend consists of
a stochastic level and slope component,

µt+1 = µt + νt + ξt, ξt ∼ NID(0,Σξ), (A.4)

νt+1 = νt + ζt, ζt ∼ NID(0,Σζ). (A.5)

More parsimonious trend models can be obtained straightforwardly by restricting the N×N
covariance matrices Σξ or Σζ to be equal to 0. The seasonal process can be modeled as a
dummy seasonal model,

γt+1 = −
s−1∑
j=1

γt+1−j + ωt, ωt ∼ NID(0,Σω), (A.6)
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where s equals the number of months or quarters per year, depending on the frequency of
the time series. Alternatively, a trigonometric seasonal model can be used,

γt =

(s/2)∑
j=1

γj,t, (A.7)

where

γj,t+1 = cos

(
2πj

s

)
γj,t + sin

(
2πj

s

)
γ∗
j,t + ωj,t,

γ∗
j,t+1 = − sin

(
2πj

s

)
γj,t + cos

(
2πj

s

)
γ∗
j,t + ω∗

j,t, j = 1, . . . , (s/2),

(A.8)

and where the trigonometric functions are scalars, γj,t and γ∗
j,t are N × 1 vectors and ωj,t

and ω∗
j,t are independent NID(0,Σω) variables. The disturbance terms of the different com-

ponents in (A.3), (A.4), (A.5) and (A.6) or (A.8) are mutually independent. However, the
model allows for cross-sectional correlations in the disturbances within these components.
In other words, Σξ, Σζ and Σω can be diagonal, full rank or rank deficient (i.e., a matrix
with rank less than full).

In case of rank deficient covariance matrices, the SUTSE model from (A.3) can be written
as a common factor model, in which some or all of the components are driven by disturbance
vectors with less than N elements:

yt = Θµµ
†
t + µθ +Θνµ

††
t + µθ,t +Θγγ

†
t + γθ,t + εt, εt ∼ NID(0,Σε), (A.9)

µ†
t+1 = µ†

t + ξ†t , ξ†t ∼ NID(0,Σ†
ξ), (A.10)

µ††
t+1 = µ††

t + ν††
t , (A.11)

ν††
t+1 = ν††

t + ζ††
t , ζ††

t ∼ NID(0,Σ††
ζ ), (A.12)

where µ†
t is a Kµ × 1 vector of common levels, modelled as in (A.4) with ν†

t equal to 0 for

all t and diagonal Σ†
ξ, µ

††
t is a Kν × 1 vector of common slopes, modelled as in (A.4) and

(A.5) without a vector with level disturbance terms and diagonal Σ††
ζ and γ†

t is a Kγ × 1

vector of common seasonals, modelled as in (A.6) or (A.7) and (A.8) and diagonal Σ†
ω. The

N ×1 vector µθ consists of Kµ zeros as first elements followed by a N −Kµ vector µ̄ of fixed
levels as remainder. The N × 1 vector µθ,t consists of Kν zeros as first elements followed
by a N − Kν vector µ̄ + ν̄t of fixed linear trends as remainder. The N × 1 vector γθ,t
consists of Kγ zeros as first elements followed by a N −Kγ vector of fixed seasonal effects
as remainder, i.e. γ̄t = γ̄j if t corresponds to seasonal period j, for j = 1, . . . , s. The
N ×Kµ factor loading matrix Θµ has the ij-th element θij equal to zero for j > i and θii
equal to one. Similar structures apply to Θν and Θγ. Note that we can obtain the original

SUTSE notation (A.3) by writing µt = Θµµ
†
t + µθ + Θνµ

††
t + µθ,t and γt = Θγγ

†
t + γθ,t,

while Σξ = ΘµΣ
†
ξΘ

′
µ, Σζ = ΘνΣ

††
ζ Θ

′
ν and Σγ = ΘγΣ

†
ωΘ

′
γ are singular matrices with rank

Kµ, Kν and Kγ respectively (Koopman, Harvey, Doornik, and Shephard 2009).
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B Supplementary material Section 3

B.1 State space form

The Road Safety model can be written in linear state space form from (A.1)-(A.2). The
measurement equation is:

y1,t
y2,t
y3,t
y4,t

 =
[(
1 0 1 0 1 0 1 0 1 0 1 0 1

)
⊗ I4

]
αt +


ε1,t
ε2,t
ε3,t
ε4,t

 , (B.1)

where the state vector αt is specified as follows:

αt =
(
µ′

t ν ′
t γ ′

t

)′
, µt =

(
µ1,t µ2,t µ3,t µ4,t

)′
, νt =

(
ν1,t ν2,t ν3,t ν4,t

)′
,

γt =
(
γ ′
1,t γ∗′

1,t γ ′
2,t . . . γ ′

5,t γ∗′
5,t γ ′

6,t

)′
,

γj,t =
(
γ1,t γ2,t γ3,t γ4,t

)′ ∀ j ∈ {1, . . . , 6},

γ∗
j,t =

(
γ∗
1,t γ∗

2,t γ∗
3,t γ∗

4,t

)′ ∀ j ∈ {1, . . . , 5},

which contains the trend and trigonometric seasonal components for the four monthly time
series. As discussed the idiosyncratic noise of the target and auxiliary series are Gaussian
i.i.d. sequences with a full irregular covariance matrix:

Σε =


σ2
ε1

σε1,2 σε1,3 σε1,4

σε2,1 σ2
ε2

σε2,3 σε2,4

σε3,1 σε3,2 σ2
ε3

σε3,4

σε4,1 σε4,2 σε4,3 σ2
ε4

 . (B.2)

The state vector’s dynamic transitioning can be described as follows:

αt+1 =

[
Tµ 08×44

044×8 Tγ

]
αt + ηt, ηt ∼ N(0,Ση). (B.3)

The trend is defined as local linear trend model and the seasonal component as stochas-
tic trigonometric seasonal model, see Harvey (1989) and Durbin and Koopman (2012), by
specifying:

Tµ =

[
1 1
0 1

]
⊗ I4, Tγ = diag(C1,C2,C3,C4,C5,−I4),

Cj =

[
cosλj sinλj

− sinλj cosλj

]
⊗ I4, λj =

πj

6
, ∀ j ∈ {1, . . . , 5},

ηt =
(
ξ′t ζ ′

t ω′
1,t ω∗′

1,t ω′
2,t . . . ω′

5,t ω∗′
5,t ω′

6,t

)′
,

ξt =
(
ξ1,t ξ2,t ξ3,t ξ4,t

)′
, ζt =

(
ζ1,t ζ2,t ζ3,t ζ4,t

)′
,

ωj,t =
(
ω1,t ω2,t ω3,t ω4,t

)′
, ∀ j ∈ {1, . . . , 6},

ω∗
j,t =

(
ω∗
1,t ω∗

2,t ω∗
3,t ω∗

4,t

)′
, ∀ j ∈ {1, . . . , 5}.
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The covariance matrix of the disturbance terms is a blockdiagonal matrix of 4×4 submatrices:

Ση = diag(Σξ,Σζ , I11 ⊗Σω), (B.4)

where these disturbance term variance blocks are rank deficient in case of common factors
for the corresponding component. Loadings are then retrieved from the lower triangular
matrix of a Cholesky decomposition of such a block.
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B.2 Tables

Table B1: Parameter estimates.

Model 1 2 3 4 5 6

σ̂2
ξ 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005

θ̂µ,2 1 1 1 1.2089 1.2747 1.2328

θ̂µ,3 1 1 1 0.9900 0.9861 1.0910

θ̂µ,4 1 1 1 0.9466 0.9358 0.9253
σ̂2
ζ - 2.574e-14 9.896e-13 - 1.754e-08 1.586e-12

θ̂ν,2 - 1 -180.2032 - 1 90.7448

θ̂ν,3 - 1 57.4598 - 1 -151.8539

θ̂ν,4 - 1 74.5109 - 1 -10.3725
σ̂2
ω - 2.519e-06 0 - 2.570e-06 2.822e-06

θ̂γ,2 - 1 94.9402 - 1 0.9037

θ̂γ,3 - 1 101.0762 - 1 0.9014

θ̂γ,4 - 1 -38.0955 - 1 0.9857
σ̂2
ε1

0.0199 0.0187 0.0198 0.0199 0.0189 0.0188
σ̂2
ε2

0.0239 0.0227 0.0233 0.0226 0.0216 0.0215
σ̂2
ε3

0.0220 0.0209 0.0220 0.0220 0.0211 0.0205
σ̂2
ε4

0.0216 0.0204 0.0215 0.0217 0.0209 0.0206
ρ̂ε2,1 0.9282 0.9244 0.9364 0.9349 0.9335 0.9345
ρ̂ε3,1 0.8651 0.8577 0.8660 0.8651 0.8592 0.8617
ρ̂ε4,1 0.9020 0.8963 0.9038 0.9038 0.8994 0.8991
ρ̂ε3,2 0.8145 0.8050 0.8294 0.8226 0.8166 0.8190
ρ̂ε4,2 0.8377 0.8292 0.8552 0.8512 0.8464 0.8479
ρ̂ε4,3 0.9507 0.9480 0.9507 0.9510 0.9490 0.9509
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Table B2: MSE forecasting performance based on the 1- to 12-step ahead forecasts per
forecasting year and in total.

Scenario Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total
1 DBSTSM 0.040 0.024 0.056 0.022 0.033 0.044 0.019 0.049 0.013 0.021 0.046 0.076 0.037

SBSTSM 0.041 0.024 0.056 0.022 0.033 0.044 0.019 0.049 0.013 0.021 0.046 0.076 0.037
2 1 0.038 0.022 0.066 0.023 0.028 0.041 0.017 0.049 0.014 0.020 0.050 0.074 0.037

2 0.041 0.022 0.060 0.022 0.032 0.045 0.019 0.049 0.014 0.021 0.048 0.072 0.037
3 0.040 0.021 0.054 0.024 0.030 0.047 0.025 0.050 0.015 0.020 0.048 0.072 0.037
4 0.047 0.024 0.058 0.023 0.033 0.044 0.018 0.045 0.011 0.023 0.049 0.081 0.038
5 0.041 0.025 0.057 0.022 0.032 0.048 0.019 0.038 0.010 0.033 0.057 0.064 0.037
6 0.046 0.037 0.050 0.024 0.036 0.052 0.032 0.055 0.024 0.018 0.047 0.102 0.044

3 1 0.028 0.019 0.016 0.008 0.021 0.021 0.016 0.035 0.017 0.025 0.027 0.018 0.021
2 0.031 0.020 0.014 0.011 0.020 0.021 0.017 0.033 0.016 0.027 0.027 0.017 0.021
3 0.029 0.017 0.013 0.011 0.021 0.020 0.020 0.029 0.014 0.029 0.029 0.023 0.021
4 0.029 0.016 0.016 0.006 0.026 0.023 0.018 0.032 0.015 0.029 0.030 0.019 0.022
5 0.030 0.016 0.015 0.007 0.023 0.021 0.018 0.032 0.017 0.030 0.025 0.027 0.022
6 0.035 0.021 0.013 0.010 0.025 0.019 0.019 0.024 0.014 0.040 0.031 0.032 0.024

4 1 0.021 0.009 0.011 0.008 0.010 0.009 0.010 0.012 0.016 0.024 0.021 0.007 0.013
2 0.024 0.009 0.010 0.008 0.010 0.009 0.011 0.012 0.016 0.026 0.022 0.007 0.014
3 0.025 0.008 0.009 0.009 0.009 0.008 0.014 0.011 0.015 0.028 0.024 0.008 0.014
4 0.021 0.008 0.011 0.008 0.014 0.010 0.012 0.012 0.015 0.028 0.021 0.007 0.014
5 0.026 0.008 0.010 0.008 0.011 0.009 0.013 0.014 0.017 0.030 0.022 0.004 0.014
6 0.026 0.009 0.012 0.009 0.019 0.017 0.024 0.032 0.036 0.019 0.023 0.025 0.021

5 1 0.003 0.004 0.002 0.003 0.002 0.004 0.002 0.002 0.004 0.002 0.006 0.001 0.003
2 0.003 0.004 0.002 0.003 0.001 0.004 0.002 0.002 0.004 0.002 0.006 0.001 0.003
3 0.003 0.007 0.002 0.004 0.004 0.006 0.006 0.006 0.008 0.002 0.009 0.010 0.006
4 0.001 0.004 0.002 0.003 0.003 0.006 0.004 0.005 0.007 0.007 0.005 0.011 0.005
5 0.001 0.004 0.002 0.003 0.002 0.004 0.002 0.002 0.003 0.002 0.006 0.001 0.003
6 0.003 0.005 0.001 0.003 0.001 0.004 0.003 0.002 0.003 0.003 0.008 0.001 0.003

Table B3: MSE forecasting performance based on the 1- to 12-step ahead forecasts per
month.

Scenario Model t+1 Feb Mar Apr May June July Aug Sept Oct Nov Dec
1 DBSTSM 0.050 0.051 0.029 0.034 0.014 0.027 0.054 0.034 0.036 0.056 0.018 0.037

SBSTSM 0.050 0.051 0.029 0.034 0.014 0.027 0.054 0.034 0.036 0.056 0.018 0.038
2 1 0.060 0.051 0.026 0.032 0.015 0.027 0.052 0.032 0.038 0.054 0.019 0.033

2 0.056 0.054 0.026 0.034 0.015 0.028 0.052 0.033 0.037 0.055 0.019 0.036
3 0.052 0.054 0.029 0.034 0.015 0.028 0.054 0.033 0.037 0.053 0.021 0.036
4 0.053 0.049 0.030 0.034 0.016 0.026 0.053 0.037 0.041 0.056 0.019 0.042
5 0.061 0.060 0.028 0.035 0.013 0.022 0.047 0.034 0.033 0.061 0.015 0.038
6 0.048 0.055 0.045 0.040 0.018 0.034 0.065 0.050 0.042 0.059 0.019 0.051

3 1 0.007 0.012 0.007 0.004 0.003 0.014 0.044 0.023 0.033 0.051 0.020 0.033
2 0.006 0.012 0.007 0.004 0.003 0.014 0.043 0.023 0.032 0.051 0.021 0.036
3 0.006 0.013 0.007 0.005 0.003 0.013 0.044 0.028 0.030 0.052 0.022 0.034
4 0.005 0.014 0.007 0.006 0.004 0.012 0.044 0.026 0.032 0.052 0.019 0.038
5 0.006 0.014 0.008 0.005 0.004 0.017 0.042 0.029 0.031 0.056 0.017 0.035
6 0.005 0.014 0.008 0.008 0.003 0.014 0.042 0.037 0.030 0.056 0.021 0.043

4 1 0.007 0.012 0.006 0.004 0.003 0.014 0.008 0.007 0.004 0.043 0.022 0.029
2 0.006 0.012 0.006 0.004 0.003 0.014 0.008 0.007 0.004 0.044 0.022 0.033
3 0.006 0.014 0.007 0.004 0.003 0.013 0.009 0.010 0.003 0.044 0.024 0.032
4 0.006 0.014 0.007 0.006 0.004 0.012 0.008 0.007 0.004 0.045 0.021 0.033
5 0.005 0.014 0.008 0.005 0.004 0.016 0.008 0.008 0.004 0.052 0.017 0.031
6 0.007 0.019 0.015 0.010 0.007 0.028 0.016 0.016 0.014 0.055 0.023 0.041

5 1 0.003 0.002 0.003 0.005 0.004 0.005 0.003 0.003 0.001 0.002 0.004 0.002
2 0.002 0.002 0.003 0.005 0.004 0.005 0.003 0.003 0.001 0.002 0.004 0.002
3 0.005 0.003 0.005 0.007 0.005 0.009 0.005 0.008 0.002 0.004 0.009 0.005
4 0.002 0.004 0.004 0.005 0.007 0.009 0.004 0.005 0.004 0.004 0.006 0.004
5 0.002 0.003 0.003 0.004 0.004 0.005 0.003 0.003 0.001 0.001 0.003 0.001
6 0.002 0.003 0.003 0.004 0.004 0.006 0.003 0.003 0.001 0.002 0.004 0.002
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Table B4: MAE forecasting performance based on the 1- to 12-step ahead forecasts per
forecasting year and in total.

Scenario Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 Total
1 DBSTSM 0.141 0.125 0.186 0.110 0.153 0.150 0.122 0.196 0.095 0.090 0.163 0.234 0.147

SBSTSM 0.140 0.125 0.186 0.110 0.153 0.150 0.122 0.196 0.095 0.090 0.163 0.234 0.147
2 1 0.144 0.126 0.201 0.120 0.140 0.142 0.114 0.193 0.100 0.090 0.167 0.227 0.147

2 0.143 0.124 0.194 0.111 0.154 0.148 0.125 0.195 0.099 0.092 0.166 0.228 0.148
3 0.147 0.122 0.183 0.115 0.150 0.152 0.144 0.195 0.103 0.089 0.171 0.229 0.150
4 0.149 0.124 0.187 0.114 0.157 0.147 0.116 0.185 0.092 0.096 0.169 0.243 0.148
5 0.143 0.128 0.188 0.110 0.153 0.152 0.120 0.171 0.085 0.118 0.186 0.210 0.147
6 0.144 0.153 0.179 0.110 0.164 0.169 0.154 0.205 0.133 0.101 0.164 0.283 0.163

3 1 0.096 0.117 0.091 0.078 0.105 0.110 0.107 0.143 0.111 0.110 0.134 0.091 0.108
2 0.099 0.118 0.083 0.090 0.105 0.105 0.109 0.141 0.108 0.115 0.133 0.086 0.108
3 0.107 0.109 0.077 0.089 0.111 0.102 0.114 0.129 0.101 0.128 0.138 0.097 0.108
4 0.097 0.109 0.086 0.073 0.124 0.116 0.112 0.138 0.104 0.122 0.137 0.091 0.109
5 0.103 0.106 0.084 0.078 0.116 0.109 0.109 0.141 0.110 0.117 0.133 0.104 0.109
6 0.102 0.119 0.079 0.087 0.128 0.098 0.111 0.123 0.096 0.151 0.143 0.112 0.112

4 1 0.094 0.081 0.073 0.080 0.063 0.077 0.086 0.093 0.108 0.106 0.123 0.056 0.087
2 0.096 0.081 0.068 0.082 0.061 0.071 0.087 0.092 0.105 0.110 0.124 0.057 0.086
3 0.105 0.073 0.062 0.084 0.058 0.066 0.097 0.085 0.104 0.124 0.127 0.060 0.087
4 0.092 0.068 0.066 0.075 0.076 0.085 0.091 0.090 0.105 0.121 0.124 0.058 0.088
5 0.097 0.074 0.066 0.080 0.065 0.078 0.091 0.100 0.107 0.110 0.123 0.045 0.086
6 0.107 0.070 0.067 0.078 0.110 0.110 0.138 0.151 0.150 0.108 0.126 0.139 0.113

5 1 0.042 0.051 0.032 0.049 0.027 0.056 0.037 0.038 0.047 0.035 0.067 0.027 0.042
2 0.043 0.051 0.031 0.049 0.027 0.055 0.037 0.038 0.047 0.035 0.067 0.026 0.042
3 0.040 0.066 0.034 0.056 0.051 0.065 0.066 0.062 0.070 0.042 0.083 0.083 0.060
4 0.028 0.048 0.032 0.048 0.041 0.065 0.050 0.057 0.073 0.068 0.066 0.096 0.056
5 0.029 0.054 0.030 0.049 0.032 0.059 0.039 0.037 0.046 0.032 0.067 0.025 0.042
6 0.049 0.057 0.029 0.046 0.029 0.054 0.042 0.040 0.048 0.041 0.072 0.033 0.045

Table B5: Real-time hyperparameter estimates of model 4 in forecast scenario 3.

2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022
σ̂2
ξ 0.0002 0.0002 0.0002 0.0001 0.0001 0.0002 0.0002 0.0002 0.0003 0.0003 0.0003 0.0005

θ̂µ,2 1.2646 1.3993 1.4644 1.4910 1.4967 1.3865 1.2426 1.2558 1.2419 1.2379 1.2159 1.2073

θ̂µ,3 1.9184 2.1501 1.6638 1.6446 1.5516 1.2046 1.1237 0.9525 0.9069 0.8985 0.9137 0.9676

θ̂µ,4 1.0381 1.0632 0.9874 0.9513 0.9646 0.9343 0.9055 0.8808 0.8841 0.8700 0.8951 0.9429
σ̂2
ε1

0.0170 0.0177 0.0192 0.0198 0.0196 0.0194 0.0196 0.0196 0.0198 0.0194 0.0196 0.0199
σ̂2
ε2

0.0197 0.0204 0.0215 0.0223 0.0217 0.0214 0.0223 0.0220 0.0224 0.0219 0.0225 0.0226
σ̂2
ε3

0.0165 0.0174 0.0205 0.0216 0.0211 0.0209 0.0205 0.0213 0.0216 0.0214 0.0219 0.0217
σ̂2
ε4

0.0197 0.0194 0.0216 0.0228 0.0225 0.0223 0.0219 0.0219 0.0218 0.0213 0.0217 0.0212
ρ̂ε2,1 0.9463 0.9468 0.9486 0.9484 0.9456 0.9437 0.9398 0.9391 0.9409 0.9373 0.9376 0.9347
ρ̂ε3,1 0.8674 0.8845 0.8925 0.9012 0.8848 0.8855 0.8809 0.8824 0.8798 0.8700 0.8678 0.8608
ρ̂ε4,1 0.9303 0.9292 0.9310 0.9320 0.9287 0.9196 0.9179 0.9121 0.9125 0.9063 0.9053 0.9027
ρ̂ε3,2 0.8232 0.8364 0.8492 0.8562 0.8404 0.8378 0.8395 0.8401 0.8424 0.8280 0.8258 0.8198
ρ̂ε4,2 0.8944 0.8907 0.8938 0.8943 0.8887 0.8771 0.8751 0.8691 0.8725 0.8624 0.8584 0.8507
ρ̂ε4,3 0.9330 0.9420 0.9506 0.9497 0.9494 0.9546 0.9538 0.9510 0.9497 0.9506 0.9524 0.9494
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B.3 Figures
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Figure B1: Innovations diagnostics of Model 2, obtained with Kalman smoother.
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Figure B2: Innovations diagnostics of Model 6, obtained with Kalman smoother.
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Figure B3: State vector estimates in Model 1, obtained with Kalman smoother.
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Figure B4: State vector estimates in Model 2, obtained with Kalman smoother.
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Figure B5: State vector estimates in Model 3, obtained with Kalman smoother.
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Figure B6: State vector estimates in Model 5, obtained with Kalman smoother.
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Figure B7: State vector estimates in Model 6, obtained with Kalman smoother.
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Figure B8: 1- to 12-step ahead forecasts of the FINRF series of Model 1,in the different
forecasting scenarios over the forecasting years 2011-2022.
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Figure B9: 1- to 12-step ahead forecasts of the FINRF series of Model 2,in the different
forecasting scenarios over the forecasting years 2011-2022.
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Figure B10: 1- to 12-step ahead forecasts of the FINRF series of Model 3,in the different
forecasting scenarios over the forecasting years 2011-2022.
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Figure B11: 1- to 12-step ahead forecasts of the FINRF series of Model 5,in the different
forecasting scenarios over the forecasting years 2011-2022.
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Figure B12: 1- to 12-step ahead forecasts of the FINRF series of Model 6,in the different
forecasting scenarios over the forecasting years 2011-2022.
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Figure B13: 1- to 12-step ahead forecast standard errors comparison from model 4 in the
different scenarios and of the different models in scenario 3 respectively.
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Figure B14: 1- to 12-step ahead forecasts of the FINRF series of the different models in
scenario 2, over the forecasting years 2011-2022.
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Figure B15: 1- to 12-step ahead forecasts of the FINRF series of the different models in
scenario 4, over the forecasting years 2011-2022.
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Figure B16: 1- to 12-step ahead forecasts of the FINRF series of the different models in
scenario 5, over the forecasting years 2011-2022.
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C Supplementary material Section 4

C.1 State space form

The Labour Force model can be written in linear state space form from (A.1)-(A.2). The
measurement equation can be written as:

yt
xt,1

xt,2

xt,3

 =

 (
1 0 1 0 0

)
⊗ I4


0 0 0
kt,1 0 0
0 kt,2 0
0 0 kt,3


αt +


εt,y
εt,1
εt,2
εt,3

 , (C.1)

where the state vector αt is specified as follows:

αt =
(
µ′

t ν ′
t γ ′

t u′
t

)′
, µt =

(
µt,y µt,x1 µt,x2 µt,x3

)′
, νt =

(
νt,y νt,x1 νt,x2 νt,x3

)′
,

γt =
(
γt,y γt,x1 γt,x2 γt,x3 . . . γt−2,y γt−2,x1 γt−2,x2 γt−2,x3

)′
, ut =

(
ut,1 ut,2 ut,3

)′
,

which contains the trend, dummy seasonal and sampling error terms. As discussed the
idiosyncratic noise of the target and LFS auxiliary series are Gaussian i.i.d. sequences with
the following diagonal irregular covariance matrix:

Σε =


σ2
εy 0 0 0

0 σ2
εx 0 0

0 0 σ2
εx 0

0 0 0 σ2
εx

 . (C.2)

The state vector’s dynamic transitioning can be described as follows:

αt+1 =


(

Tµ 08×12

012×8 Tγ

)
020×3

03×20

 ϕ 0 0
0 ϕ 0
0 0 ϕ


αt + ηt, ηt ∼ N(0,Ση), (C.3)

where ϕ is the monthly autoregressive coefficient of the sampling error, retrieved from van den
Brakel and Michiels (2021) and treated as known. We opt for a local linear trend model
and a stochastic seasonal dummy model, again see Harvey (1989) and Durbin and Koopman
(2012), by specifying:

Tµ =

[
1 1
0 1

]
⊗ I4, Tγ =

−1 −1 −1
1 0 0
0 1 0

⊗ I4, ηt =
(
ξ′t ζ ′

t ω′
t 01×8 e′

t

)′
,

ξt =


ξt,y
ξt,x1

ξt,x2

ξt,x3

 , ζt =


ζt,y
ζt,x1

ζt,x2

ζt,x3

 , ωt =


ωt,y

ωt,x1

ωt,x2

ωt,x3

 , et =

et,1
et,2
et,3

 .

The covariance matrix of the disturbance terms is a blockdiagonal matrix of:

Ση = diag(Σξ,Σζ ,Σω,08×8,Σe), (C.4)
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where,

Σe =

σ2
e 0 0
0 σ2

e 0
0 0 σ2

e

 , (C.5)

and it is expected that σ2
e = 1 due to the scaling of the sampling error.

C.2 Tables

Table C1: Parameter estimates with constant (left) and time-varying (right) variances for
trend disturbance terms.

Model 1 2 3 4 1 2 3 4
σ̂2
ξ1

0.1235 1.133e-08 0.0897 0.0914 0.0580 0.0026 0.0346 0.0346
σ̂2
ξ2

- - 0.0475 0.0464 - - 0.0308 0.0324

θ̂µ1,2 0.3278 1926.0761 0.4350 0.4371 0.3830 3.6643 0.3410 0.2819

θ̂µ1,3 0.3776 1784.4226 0.4788 0.4673 0.4160 3.4528 0.4089 0.3625

θ̂µ1,4 0.4553 1675.4192 0.3776 0.4069 0.4684 3.3569 0.5497 0.5748

θ̂µ2,3 - - 0.7975 0.8017 - - 0.7533 0.7718

θ̂µ2,4 - - -0.0140 -0.0359 - - -0.2062 -0.1616
σ̂2
ζ1

0.0072 0.0340 0.0179 0.0176 0.0051 0.0296 0.0097 0.0100
σ̂2
ζ2

- - 0.0007 0.0007 - - 0.0009 0.0009

θ̂ν1,2 1.1395 0.5876 0.6442 0.6461 1.1465 0.6122 0.7551 0.7431

θ̂ν1,3 1.1814 0.6770 0.7726 0.7715 1.1822 0.6772 0.8442 0.8273

θ̂ν1,4 1.2859 0.7931 0.9999 0.9925 1.2823 0.7735 0.9944 0.9726

θ̂ν2,3 - - 0.9542 0.9548 - - 0.9741 0.9756

θ̂ν2,4 - - 1.0569 1.0719 - - 1.0901 1.1104
σ̂2
ω1

0.0029 0 0.0039 0.0041 0.0043 0.0036 0.0053 0.0049
σ̂2
ω2

- 0 - 3.393e-11 - 3.920e-11 - 4.530e-12
σ̂2
ω3

- 0 - 0.0002 - 0.0008 - 0.0007
σ̂2
ω4

- 0 - 4.369e-13 - 9.617e-13 - 7.222e-12

θ̂γ1,2 0.0086 - 0.0909 - -0.2181 - -0.1520 -

θ̂γ1,3 -0.4189 - -0.2201 - -0.6051 - -0.4324 -

θ̂γ1,4 0.0714 - 0.0483 - -0.0316 - -0.0606 -
σ̂2
e 1.1865 0.9902 0.4702 0.4652 1.1565 1.0536 0.5551 0.5659

σ̂2
εy 2.933e-18 0.0535 4.697e-08 1.015e-19 8.417e-13 0.0172 0.0022 0.0038

σ̂2
εx 1.243e-07 0.0049 0.0151 0.0155 6.369e-10 1.004e-13 0.0125 0.0117

Table C2: Time-varying Covid correction factors.

Component Factor Quarter
2019(2) 2019(3) 2019(4) 2020(1) 2020(2) 2020(3)

Level σ2
ξ,t 1 10 20 20 10 1

Slope σ2
ζ,t 1 2 4 4 2 1
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Table C3: MSE Forecasting performance based on the 5-step ahead forecasts per forecasting
year and in total, with constant and time-varying* variances for trend disturbance terms.

Scenario Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 (2019) 2020 (2020) 2021 (2021) Total (Total)
1 BSTSM 3.231 1.695 0.308 0.326 0.983 0.276 0.062 0.086 0.101 0.101 6.074 6.074 17.488 26.429 2.785 3.597
2 1 2.563 0.709 0.092 0.809 0.547 0.385 0.082 0.063 0.133 0.126 2.384 6.086 2.599 15.002 0.942 2.406

2 2.079 0.421 0.103 0.633 0.437 0.361 0.070 0.037 0.084 0.082 2.310 6.439 2.793 17.144 0.848 2.528
3 0.988 0.626 0.067 0.774 0.578 0.478 0.126 0.113 0.217 0.209 2.241 6.581 2.243 6.879 0.768 1.584
4 1.506 0.710 0.291 1.207 0.116 0.331 0.377 0.052 0.059 0.058 1.666 2.354 2.011 9.732 0.757 1.521

3 1 2.584 0.701 0.110 0.701 0.573 0.414 0.098 0.119 0.097 0.090 2.155 5.722 2.946 15.716 0.954 2.439
2 2.291 0.392 0.103 0.535 0.456 0.391 0.090 0.086 0.060 0.058 2.126 5.969 3.022 17.922 0.868 2.572
3 0.992 1.471 0.202 1.214 0.414 0.136 0.697 0.238 0.038 0.037 1.492 2.356 2.237 2.851 0.830 0.964
4 1.654 1.452 0.361 1.363 0.103 0.086 0.537 0.150 0.040 0.039 1.479 2.270 2.300 10.415 0.866 1.675

4 1 2.456 0.554 0.016 0.396 0.462 0.437 0.129 0.189 0.177 0.154 2.236 5.709 2.667 13.062 0.884 2.142
2 1.744 0.377 0.132 0.704 0.367 0.373 0.042 0.062 0.078 0.092 1.938 5.071 3.006 17.919 0.802 2.444
3 1.060 0.630 0.219 0.873 0.207 0.277 0.471 0.233 0.165 0.157 1.527 2.854 2.867 12.879 0.775 1.806
4 1.513 0.560 0.323 1.010 0.119 0.142 0.366 0.430 0.101 0.089 1.485 3.377 2.953 14.023 0.818 1.995

*Brackets refer to results including correction.

Table C4: MAE Forecasting performance based on the 5-step ahead forecasts per forecasting
year and in total, with constant and time-varying* variances for trend disturbance terms.

Scenario Model 2011 2012 2013 2014 2015 2016 2017 2018 2019 (2019) 2020 (2020) 2021 (2021) Total (Total)
1 BSTSM 1.432 1.173 0.462 0.480 0.951 0.368 0.226 0.275 0.279 0.279 2.266 2.266 3.882 4.442 1.072 1.123
2 1 1.560 0.701 0.267 0.846 0.710 0.531 0.222 0.197 0.352 0.335 1.459 2.202 1.268 3.725 0.738 1.027

2 1.335 0.568 0.311 0.737 0.646 0.517 0.206 0.147 0.284 0.280 1.416 2.296 1.302 3.986 0.679 1.002
3 0.944 0.632 0.188 0.813 0.704 0.609 0.281 0.283 0.441 0.425 1.420 2.257 1.185 1.884 0.682 0.820
4 1.187 0.732 0.422 0.953 0.303 0.524 0.536 0.197 0.229 0.221 1.159 1.370 1.284 2.847 0.684 0.845

3 1 1.557 0.701 0.284 0.795 0.731 0.575 0.259 0.291 0.307 0.290 1.401 2.145 1.339 3.801 0.749 1.039
2 1.365 0.569 0.300 0.687 0.663 0.558 0.259 0.239 0.241 0.236 1.375 2.224 1.349 4.052 0.692 1.014
3 0.772 0.996 0.407 1.065 0.473 0.324 0.754 0.431 0.181 0.170 1.154 1.397 1.333 1.387 0.717 0.743
4 1.199 1.182 0.596 1.027 0.287 0.281 0.652 0.371 0.184 0.174 1.114 1.336 1.377 2.932 0.752 0.913

4 1 1.528 0.565 0.110 0.523 0.645 0.517 0.340 0.398 0.380 0.358 1.326 2.149 1.336 3.591 0.697 0.975
2 1.201 0.567 0.338 0.813 0.595 0.515 0.184 0.211 0.274 0.291 1.296 1.954 1.309 4.082 0.664 0.977
3 0.968 0.708 0.305 0.861 0.378 0.389 0.646 0.426 0.401 0.390 1.158 1.480 1.293 3.417 0.685 0.906
4 1.167 0.685 0.402 0.926 0.314 0.301 0.512 0.655 0.304 0.287 1.139 1.619 1.335 3.559 0.704 0.948

*Brackets refer to results including correction.
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C.3 Figures
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Figure C1: Innovations diagnostics of Model 1, obtained with Kalman smoother.
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Figure C2: Innovations diagnostics of Model 1 including time-varying variances for the trend
disturbance terms at the start of the Covid outbreak.
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Figure C3: Innovations diagnostics of Model 2, obtained with Kalman smoother.
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Figure C4: Innovations diagnostics of Model 2 including time-varying variances for the trend
disturbance terms at the start of the Covid outbreak.
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Figure C5: Innovations diagnostics of Model 4, obtained with Kalman smoother.
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Figure C6: Innovations diagnostics of Model 4 including time-varying variances for the trend
disturbance terms at the start of the Covid outbreak.
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Figure C7: State vector estimates in Model 1, obtained with Kalman smoother.
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Figure C8: State vector estimates in Model 1 including time-varying variances for the trend
disturbance terms at the start of the Covid outbreak.
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Figure C9: State vector estimates in Model 2, obtained with Kalman smoother.
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Figure C10: State vector estimates in Model 2 including time-varying variances for the trend
disturbance terms at the start of the Covid outbreak.
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Figure C11: State vector estimates in Model 4, obtained with Kalman smoother.
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Figure C12: State vector estimates in Model 4 including time-varying variances for the trend
disturbance terms at the start of the Covid outbreak.
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Figure C13: 5-step ahead forecasts of the register LPF rate series of Model 1, in the different
forecast scenarios, constant (top) and time-varying (bottom) variances for trend disturbance terms.
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Figure C14: 5-step ahead forecasts of the register LPF rate series of Model 2, in the different
forecast scenarios, constant (top) and time-varying (bottom) variances for trend disturbance terms.
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Figure C15: 5-step ahead forecasts of the register LPF rate series of Model 4, in the different
forecast scenarios, constant (top) and time-varying (bottom) variances for trend disturbance terms.
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Figure C16: Forecast standard errors comparison from model 3 in the different scenarios and of
the different models in scenario 3, with constant (left) and time-varying (right) variances for trend
disturbance terms.
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Figure C17: 5-step ahead forecasts of the register LPF rate series of the different models, in
forecasting scenario 2, constant (top) and time-varying (bottom) variances for trend disturbances.
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Figure C18: 5-step ahead forecasts of the register LPF rate series of the different models, in
forecasting scenario 4, constant (top) and time-varying (bottom) variances for trend disturbances.

59


	Introduction
	Methodology
	Statistical Early Warning Model
	State and parameter estimation
	Diagnostic checking
	Goodness-of-fit: in-sample and out-of-sample

	Empirical Study I: Traffic Safety Monitor
	Data
	Road Safety model
	In-sample fit comparisons
	Forecasting evidence

	Empirical Study II: Labour Force participation
	Data
	Labour Force model
	Covid correction
	In-sample fit comparisons
	Forecasting evidence

	Conclusion
	Supplementary material Section 2
	Supplementary material Section 3
	State space form
	Tables
	Figures

	Supplementary material Section 4
	State space form
	Tables
	Figures


