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Abstract

In economics and finance, speculative bubbles take the form of locally explosive dynamics

that eventually collapse. We propose a test for the presence of speculative bubbles in the

context of mixed causal-noncausal autoregressive processes. The test exploits the fact that

bubbles are anticipative, that is, they are generated by an extreme shock in the forward-

looking dynamics. In particular, the test uses both path level deviations and growth rates to

assess the presence of a bubble of given duration and size, at any moment of time. We show

that the distribution of the test statistic can be either analytically determined or numerically

approximated, depending on the error distribution. Size and power properties of the test

are analyzed in controlled Monte Carlo experiments. An empirical application is presented

for a monthly oil price index. It demonstrates the ability of the test to detect bubbles and

to provide valuable insights in terms of risk assessments in the spirit of Value-at-Risk.
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1 Introduction

Economic and financial bubbles can have significant disruptive impact for households, companies,

governments, and investors. The 2000’s housing price bubble in the United States, resulted in

the doubling of real-estate prices in a span of just seven years, from 2000 to 2007, and the subse-

quent collapse triggering the subprime crises of 2008. More recently, the cryptocurrency Bitcoin

experienced multiple bubble events. The bubble of 2017-2018 led to a collapse of about 65%

in the price of Bitcoin from 6 January to 6 February 2018, leaving many investors with heavy

losses. On 26 November 2018, the price of Bitcoin fell by 80%. Similarly, from January 2018 to

September 2018, other cryptocurrencies collapsed in value by 80%, making the 2018 cryptocur-

rency crash worse than the 1995-2000 dot-com bubble collapse of 78%. Early-warning indicators

of bubble dynamics and potential bubble collapse size, if available, can play a fundamental role

in measuring, understanding and mitigating economic and financial risk.

The recent literature on mixed causal-noncausal autoregressive (MAR) models may offer a

systematic way of modeling time-series with local explosive dynamics. As a data generating

processes, the MAR model is able to generate short-lived bubbles with characteristics similar to

those observed in the data; see e.g., Gourieroux and Jasiak (2016) and Fries and Zaköıan (2019).

Recently, research has focused on the forecasting of extreme events using MAR models based on

closed-form expressions and approximation methods (Lanne et al., 2012; Gouriéroux and Zaköıan,

2017; Hecq and Voisin, 2021). However, there is still a lack of formal statistical tests that leverage

MAR models to test for the presence of bubbles in the data.

Existing tests for bubbles currently available in the literature extend the research on unit

roots to effectively test for the presence of locally explosive dynamics; see e.g. Phillips and Yu

(2011) and Phillips et al. (2011, 2015). These papers offer an important set of tools to test for

bubbles, but they can be complicated to implement and computationally expensive to run. Their

test is based on an autoregressive (AR) model specification yt = ρyt−1 + εt for which recursive

augmented Dickey-Fuller (ADF) tests are used to check for a random walk (H0 : ρ = 1) versus

explosive trajectories of the data (H1 : ρ > 1). We propose an alternative method, which is simpler

to use, allows for date-stamping a bubble, and is based on the well-studied intuition behind MAR

dynamics and the modeling of bubbles. More specifically, we make use of a stationary model in

which the linear noncausal component is exclusively responsible for the locally explosive dynamics.
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Figure 1: The trajectory of a causal autoregressive process yt = ρyt−1+εt (left) and a noncausal
autoregressive process yt = ρyt+1 + εt (right), with ρ = 0.9, ε50 = 1 and zero otherwise.

The proposed method provides a straightforward way to test for bubbles, which also takes into

consideration the size and the date of collapse. Further, it allows us to build confidence bounds

for the trajectory of the bubble.

We can illustrate the simple reasoning behind the testing procedure by contrasting a stationary

AR process yt = ρyt−1+εt with its noncausal counterpart yt = ρyt+1+εt where we set ρ = 0.9. We

consider the simplified scenario where all error terms {εt}T=100
t=1 are zero, except at displacement

t = 50 where it equals unity. The trajectories of these AR processes are shown in Figure 1. In both

scenarios, a single extreme error observation is responsible for the dynamic structure. However, in

the causal scenario (left), the shock is introduced to the system at t = 50 and its effect fades out

at a geometric rate. This means that prior to the shock, for example at t = 40, it is impossible

to anticipate the shock and its effect on the process. This is different for the noncausal process

(right), in which the process grows geometrically towards the extreme observation at t = 50,

which makes the process anticipative. At t = 40, the process already contains information about

the shock and this knowledge can be exploited to test whether a bubble emerges in real data

by comparing whether its current trajectory is compatible with a noncausal process that has an

extreme observation of a certain size h steps ahead (in our illustration of Figure 1, h = 10).

Our testing procedure is also valid when the bubble is observed in the presence of stochastic

trends, which is often the case in real-life applications. The treatment of non-stationary dynamics

and stochastic trends has been until recently one of the main challenges for analysing time series
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using MAR models. A common treatment is to detrend the time series prior to modeling; see

e.g. Hecq and Voisin (2022) using the Hodrick-Prescott filter, or Hencic and Gouriéroux (2015)

using polynomial detrending. More recently, a filtering approach is proposed by Blasques et al.

(2023) which is based on a joint model that includes both a random-walk fundamental component

and a bubble component that is specified as a MAR model. Both components are treated in the

filter updating simultaneously. Hence, the filter also allows the test to be implemented in non-

stationary settings. These findings lead to an integrated testing framework for bubbles based on

MAR methodology and provide clarity on whether and how to detrend in real-time which is not

always unequivocal for alternative testing procedures.

In this study, we develop the test for the presence and location of explosive dynamics and we

show that the proposed test has favorable size and power properties in finite samples. For this

purpose, we carry out a Monte Carlo simulation study in which we consider different scenarios

for the null parameters, the shock size and the horizon, as well as the error distribution. In

the empirical study, we highlight the flexibility of the testing procedure and show that it can

be further extended to a Value-at-Risk (VaR) application, which provides practitioners with the

possibility to make a reasonable risk assessment a-priori in the presence of bubble dynamics in

the data. Python code to implement the proposed testing method is provided.

This paper is organized as follows. In Section 2 we introduce the mixed causal-noncausal

model and an estimation method. Section 3 provides our proposed testing procedure to detect

the presence of bubbles and Section 4 investigates its performance in various settings. In Section

5, we illustrate the method in an application on an oil price index and show how it can be used

to make a reasonable risk assessment. Section 6 concludes.
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2 Mixed causal-noncausal autoregressive model

We specify the stationary mixed causal-noncausal autoregressive (MAR) model in detail and

discuss the estimation of its parameters. We further consider a non-stationary extension of the

MAR model for the purpose of increasing its empirical relevance.

2.1 Stationary MAR model

Consider a mixed causal-noncausal autoregressive (MAR) process {yt}t∈Z given by

ϕ(L)ψ(L−1)yt = εt, (1)

where L is the lag operator, ϕ(L) = 1− ϕ1L− . . .− ϕrL
r is the lag polynomial of order r ∈ N+

with fixed coefficients ϕ1, . . . , ϕr, L
−1 is the lead operator, ψ(L−1) = 1− ψ1L

−1 − . . .− ψsL
−s is

the lead polynomial of order s ∈ N+ with fixed coefficients ψ1, . . . , ψs, and {εt}t∈Z is a sequence of

independent and identically distributed (i.i.d.) non-Gaussian error terms. We denote this process

as MAR(r, s), where the total autoregressive order equals p = r+ s. To ensure stationarity of the

process, we assume that the roots of both polynomials lie strictly outside the unit circle, i.e.,

ϕ(z) ̸= 0 for |z| ≤ 1 and ψ(z) ̸= 0 for |z| ≤ 1.

We follow Lanne and Saikkonen (2011) in defining unobserved causal and noncausal components

of the MAR process as

ut = ψ(L−1)yt ⇐⇒ ϕ(L)ut = εt,

vt = ϕ(L)yt ⇐⇒ ψ(L−1)vt = εt,

(2)

which provide an effective way to disentangle the dynamics due to backward- and forward-looking

behavior in the MAR model, as represented by ut and vt, respectively. In this paper, the filtered

processes {ut}t∈Z and {vt}t∈Z play a crucial role in the bubble testing procedure. Whereas the
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process {yt}t∈Z has a two-sided moving average representation1

yt =
∞∑

j=−∞

βjεt+j, (3)

where the weights βj are functions of both the polynomial coefficients ϕ1, . . . , ϕr and ψ1, . . . , ψs,

the filtered processes {ut}t∈Z and {vt}t∈Z can be expressed as one-sided moving averages given by

ut =
∞∑
j=0

γjεt−j and vt =
∞∑
j=0

ζjεt+j, (4)

where the weights γj and ζj are functions of the polynomial coefficients ϕ1, . . . , ϕr and ψ1, . . . , ψs,

respectively. In both cases, the weights are exponentially decaying for an increasing j due to

the assumption of a stationary MAR. It is well-documented in the literature that bubbles are

exclusively generated in the noncausal component {vt}t∈Z, which is often called anticipative. As

explained in Gouriéroux and Zaköıan (2017) and Hecq et al. (2016), the development of a bubble

is due to the presence of a large shock ετ , at some future time point τ relative to current time

point t < τ . Equation (4) reveals that the effect of such a future shock is already contained in

the noncausal component vt, while this is not the case for ut. Given the exponential decay of

the coefficient sequence {ζj}j∈N0 , the sequence {vt}t∈Z build up towards this extreme value and

reaches its peak at time τ . At time points beyond τ , that is time points τ + 1, τ + 2, . . ., the

large disturbance ετ no longer contributes to the formation of vt (and thus yt), which causes the

process to return to the baseline path. In other words, the bubble crashes at time τ + 1. This

insight provides a way to compare whether available data at time t is compatible with a bubble

crashing h + 1-step ahead, that is, at τ = t + h + 1, which we exploit in our testing procedure

outlined in Section 3.

2.2 Parameter Estimation

The MAR process in (1) requires a non-Gaussian error term to ensure identifiability of the causal

and noncausal parts of the model. For this reason, different estimation methods have been

proposed, which can be classified as least squares (Gouriéroux and Zaköıan, 2017; Fries and

1The process {yt}t∈Z exists almost surely under quite weak conditions, such as E|εt|κ < ∞ for κ > 0 and∑∞
j=−∞ |βj |κ < ∞ (see e.g., Brockwell and Davis, 1991) which is automatically satisfied under the assumption on

the roots of the polynomials being outside the unit circle.
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Zaköıan, 2019), spectral methods (Hecq and Velásquez-Gaviria, 2022) and approximate maximum

likelihood (Breidt et al., 1991; Lanne and Saikkonen, 2011). The first two methods have the

advantage that they do not require the assumption of an error distribution, but they do entail

either solving an extensive matching problem (based on extreme residuals clustering) or evaluating

relatively non-standard criterion functions. In our study we opt for the approximate maximum

likelihood (AML) estimator, as it is well-established in the literature. However, the choice of

estimation method does not have a direct influence on the proposed bubble testing procedure set

out in Section 3.

We follow the same procedure as Lanne and Saikkonen (2011). More specifically, we assume

that the distribution of the non-Gaussian error term εt has a (Lebesgue) density fσ(x;λ) =

σ−1f(σ−1x;λ) satisfying the regularity conditions of Andrews et al. (2006), with the d×1 param-

eter vector λ that contains the scale parameter σ > 0 and other unknown coefficients in the scaled

density function f(·). We have r × 1 vector ϕ = (ϕ1, . . . , ϕr)
′ and s× 1 vector ψ = (ψ1, . . . , ψs)

′

containing the causal and noncausal autoregressive parameters, respectively. Their permissible

parameter space is defined by the stationarity condition that the roots of both polynomials lie

strictly outside the unit circle. We can collect all parameters in the (r + s + d) × 1 parameter

vector θ = (ϕ′,ψ′,λ′)
′
. The approximate log-likelihood function for {yt}Tt=1 is given by

lT (θ) =
T−s∑
t=r+1

gt(θ) =
T−s∑
t=r+1

log fσ(ϕ(L)ψ(L
−1)yt;λ), (5)

where gt is the individual log-likelihood contribution at time t which could also be expressed solely

in terms of {ut}T−s
t=r+1 and {vt}T−s

t=r+1 using the relations in (2). Maximizing lT (θ) over permissible

values of θ gives the AML estimator of θ.

2.3 The stochastic trend plus MAR model

To enable the analysis of bubbles for non-stationary time series, we also consider the stochastic

trend plus MAR model of Blasques et al. (2023). We refer to this model as the MAR stochastic

trend (MARST) model and we formulate the model for an observed non-stationary time series

{zt}t∈Z. This observed time series is then decomposed by an unobserved random walk process

{µt}t∈Z (stochastic trend) and an unobserved stationary MAR process {yt}t∈Z. Hence, in a

stationary setting, µt = 0 and zt = yt is observed, while in a non-stationary setting zt = µt + yt
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is observed but yt only is not. The MARST model is given by

zt = µt + yt, µt = δ + µt−1 + αεt−s,

yt = [ϕ(L)ψ(L−1)]−1σεt,

(6)

where µt represents the stochastic trend with a drift coefficient δ (it can be set to zero) and with

scale parameter α that determines the amplitude of the trend update, while the MAR specification

remains as before. We explicitly include the scale parameter σ in the specification of the MAR

process {yt}t∈Z, in order to differentiate it from the scaling of the trend by α. Hence, the error εt

has density function fσ(εt;λ) as introduced in Section 2.2. The trend update is formulated as a

random walk with drift δ, where the trend innovation is set to εt−s where s is the lead order of the

noncausal lead polynomial ψ(L−1). The process in (6) can be estimated using (5) by augmenting

the parameter vector θ with α and δ and recognizing that in a non-stationary setting, yt can be

regarded as the detrended time series yt = zt − µt(θ) where we make the dependence of µt on

the parameter vector θ explicit. A filtering procedure for extracting the random walk component

µt(θ) based on data available at time t is developed in Blasques et al. (2023). The filtering also

enables the actual detrending yt = zt−µt(θ) which is repeated whenever θ changes its value. This

notion is particularly relevant during AML parameter estimation which is based on the numerical

maximization of the approximate log-likelihood function.

The consideration of the MARST model is motivated by the fact that bubbles in economic

and financial data are often observed in the presence of non-stationary features in the time series.

In particular, trending time series are often encountered in economics. Various ad-hoc methods

have been employed in the MAR literature to remove such non-stationary features, including

polynomial regression (Hencic and Gouriéroux, 2015) and the Hodrick-Prescott filter (Hecq and

Voisin, 2022). Although these methods may work in practice, their theoretical implications are

not documented. The methodology developed by Blasques et al. (2023) for the MARST model

ensures strong consistency and asymptotic normality of the AML estimator of θ, for a set of

rather flexible assumptions. Moreover, an important feature of the MARST specification is that

it allows for detrending in real-time, while the other methods are typically applied ex-post. This

ability and its practical relevance make it a strong case to proceed in empirical applications, where

the bubble is oftentimes observed in time series where non-stationary features are present.
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3 A Test for the Presence of Speculative Bubbles

Given the discussion in Section 2.1 and the decomposition implied by equations (2) and (4), we

assume that bubbles arise in vt from the anticipation of a sizeable shock in the near future. If one

of the upcoming shocks is a draw far enough in the tails of the error distribution, a relevant bubble

can appear in the process yt. Without loss of generality, we solely focus on extreme positive draws

in what follows. To be able to introduce our proposed testing procedure, we formalize this concept

as follows. For a random variable X, we consider whether a realization is a draw from the upper

quantile of the underlying distribution, i.e. qX(α) = {x : FX(x) ≥ 1 − α}, where FX(x) denotes

the cumulative distribution function of a random variable X and α is the chosen significance

level. Since we typically require large positive draws in our context, we define the quantile in this

alternative way that isolates the right tail of the distribution. We denote by dX(α) a draw from

the quantile qX(α) and the parameter h represents the horizon at which we expect the bubble

process to reach its peak.

The results in this section depend crucially on a correct description of the marginal distribution

of the random variable ZT , as well as the joint distribution of the bivariate random variable

(ZT , QT ), which are given by

ZT =
∞∑
j=0
j ̸=h

ζjεT+j and QT =
∞∑
j=1
j ̸=h

(ζj−1 − ζj)εT+j − εT ,

with marginal and joint distributions denoted pZ(ζ,λ), and pZQ(ζ,λ), respectively, where λ

contains the distributional parameters including the scale parameter σ (and possibly, location,

shape, symmetry, etc.) of the error distribution fσ(εt;λ). In Proposition 1, we define a test

statistic which depends on the noncausal component vt = ϕ(L)yt, and parameters α and h which

account for the size of a future shock, and the horizon at which the shock εT+h occurs. Specifically,

this proposition is useful in establishing pZ(ζ,λ) as the distribution under the null hypothesis

εT+h = dε(α) for the infeasible test statistic

kT = vT − ζhdε(α),

which can be used as a finite-sample approximation of the distribution for the feasible counterpart

k̂T = v̂T−ζ̂hd̂ε(α) where v̂T = ϕ̂(L)yt and ζ̂h are based on the AML estimates ϕ̂ and ψ̂ respectively
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and d̂ε(α) depends on the estimated distribution of the residuals.

Proposition 1. Let the process {yt}t∈Z be generated by a MAR(r, s) model. Then, given ζh ∈ R,

and under the null hypothesis of a shock corresponding to a certain quantile of size qε(α), occurring

h periods ahead, the test statistic kT satisfies

kT ∼ pZ(ζ,λ).

Proof: Immediate from the fact that vT =
∑∞

j ̸=h ζjεT+j+ζhεT+h, so that kT =
∑∞

j ̸=h ζjεT+j = ZT .

We notice that, in practice, the unknown ζj’s required to calculate vt and ζh, can be treated

as nuisance parameters and substituted by their plug-in estimates ζ̂j to obtain a feasible statistic

k̂T . It is in that sense that the distribution stated in Proposition 1 for the infeasible statistic

kT is only a finite sample approximation for the distribution of k̂T . Naturally, the quality of the

approximation will depend on the sample size T as the variance of each ζ̂j vanishes with T → ∞

and we obtain convergence to ζj.

Proposition 2. Let Assumptions (A1) - (A7) in Lanne and Saikkonen (2011) hold. Then the

feasible test statistic k̂T = v̂T − ζ̂hd̂ε(α) satisfies k̂T
d→ pZ(ζ,λ) as T → ∞.

Proof: Immediate from Slutsky’s theorem given the fact that Assumptions (A1) - (A7) in Lanne

and Saikkonen (2011) ensure (ζ̂, λ̂)
p→ (ζ,λ) as T → ∞. The consistency of the AML esti-

mator for the MAR model is proven for a general class of non-Gaussian distributions specified

in Andrews et al. (2006). Whereas the error distributions are confined to having finite variance,

Gourieroux and Jasiak (2016) provide evidence that AML is also consistent in the context of

Cauchy errors.

Naturally, depending on the underlying distribution of the innovations fσ(εt;λ), the approxi-

mate test statistic’s distribution pZ(ζ̂, λ̂) will be available in closed form, or may require Monte

Carlo approximation. Analytic tractability is available, for example, for the case of Cauchy

innovations which is common in the MAR literature.2

2This result can be extended to the general class of α-stable distributions, see Fries and Zaköıan (2019) for
more details.
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Remark 1. Let the innovations be independent identically distributed innovations satisfying ε0 ∼

Cauchy(α, β). Then,

kT ∼ Cauchy
( ∞∑

j ̸=h

ζj , ξ(β, ζ)
)
,

where ξ is a function of (β, ζ) that defines the scale of the resulting Cauchy.

In practice, suppose that a large shock takes place h ∈ N displacements ahead, i.e., εT+h ∈ qε(α),

such that we can write

vT =
∞∑
j ̸=h

ζjεT+j + ζhεT+h.

Under the null that a bubble reaches its peak h steps ahead from now (and consequently crashes

h + 1 steps ahead) with a size determined by the qε(α) quantile of the underlying distribution,

we can now use

k̂T = v̂T − ζ̂hd̂ε(α) ∼ ZT ,

with ZT =
∑∞

j ̸=h ζjεT+j to perform testing. The quantity Pr(ZT < k̂T ) measures the probability

of the level of the data to be compatible with a trajectory including a bubble assumed by the

null. In this way, we can test if the data is significantly different from a bubble of a given size, as

determined by the quantile qε(α), at a certain horizon h. Depending on the error distribution, the

distribution of ZT can be determined theoretically or approximated by simulations to tabulate

appropriate critical values. We refer to this test as the “level test”.

We can further enrich the specification of the test by using growth rates in addition to the

levels. For this purpose, we consider temporal changes in vT as

∆vT+1 =
∞∑
j=1
j ̸=h

(ζj−1 − ζj)εT+j − εT + (ζh−1 − ζh)εT+h.

In a similar fashion as for the levels, and under the null hypothesis that εT+h = dε(α), we define

the test statistic

rT = ∆vT+1 − (ζh−1 − ζh)dε(α).

In Proposition 3, we establish that we can jointly test ηt = (kt, rt) using their random variables

representation Nt = (Zt, Qt) under the null hypothesis. We refer to this test as the “level-growth

test”.
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Proposition 3. Let the process {yt}t∈Z be generated by a MAR(r, s) model. Then, given ζh ∈ R,

and under the null hypothesis of a shock corresponding to a certain quantile of size qε(α), occurring

h periods ahead, the test statistic NT satisfies

(kt, rt) ∼ pZQ(ζ,λ).

Proof: Immediate from the fact that kT = ZT and rT = ∆vT+1 − (ζh−1 − ζh)εT+h =
∞∑
j=1
j ̸=h

(ζj−1 −

ζj)εT+j − εT = QT .

Similar to the first test, the limit distribution will be known in closed form, or may require

Monte Carlo approximation, depending on the distribution of the innovations.

Remark 2. Let the innovations be independent identically distributed innovations satisfying ε0 ∼

Cauchy(α, β). Then, (kt, rt) is multivariate Cauchy.

As noted before, the unknown ζj’s can be substituted by their plug-in estimates ζ̂j to obtain

a feasible statistic η̂t = (k̂t, r̂t). As such, the distribution stated in Proposition 2 for the infeasible

statistic (kt, rt) is a finite sample approximation for the distribution of (k̂t, r̂t), where

r̂T = ∆v̂T+1 − (ζ̂h−1 − ζ̂h)d̂ε(α) ∼ QT .

The performance of the test procedure depends again on the choice of the null parameters

(α,h). As such, a grid of tests can be considered to test every (α, h) combination. We can also

slice the problem by defining

min{α : Pα,h(Nt < η̂t) ≤ 0.05},

min{h : Pα,h(Nt < η̂t) ≥ 0.05},
(7)

which represents the maximum size of a bubble (at a fixed horizon h) compatible with the data

or the earliest burst compatible with the data for a bubble driven by a given quantile qε(α),

respectively. Note that we fix the significance level at 5% in (7), but this can easily be adapted if

desirable. The definition of the quantile we adopt makes larger significance levels more restrictive

in the testing procedure (as will be shown in the empirical application).
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4 Monte Carlo Study

In this section, we investigate the performance of the proposed level-growth testing procedure

in terms of size and power using an extensive simulation study. We consider a data generating

process (DGP) based on (1), which we denote by MAR(1,1), and is given by

(1− ϕ1L)(1− ψ1L
−1)yt = εt,

with causal parameter ϕ1 = 0.7 and different specifications for the noncausal parameter ψ1 and

error distribution. More specifically, we consider a low (ψ1 = 0.5) and high (ψ1 = 0.8) persistence

scenario as they influence the duration of the bubble trajectory. For the error term, we study

both the standard Cauchy and Student’s t-distribution, as they represent situations in which the

distribution of our test statistic is analytically known and requires approximation, respectively.

We choose a sample size of T = 1000 and run M = 10, 000 iterations.3,4 In addition to the

persistency of the noncausal process and the chosen error distribution, the choice of size and

occurrence of the shock can influence the power and size of the test. For this reason, we investigate

shocks drawn from various upper quantiles qε(α) and different horizons h.

Table 1 displays the size and power of the test for a MAR(1, 1) with ψ1 = 0.8 and standard

Cauchy distributed errors for α ∈ {0.01, 0.005, 0.001, 0.0005, 0.0003, 0.0001} and h ∈ {5, 10, 15, 20}.

The reported results show that the size is very close to the nominal level of 5% for all different

combinations of shock size and horizon. At a fixed shock size, we observe a decrease in power as

h grows larger, which is in line with our expectations. It highlights that it becomes increasingly

difficult to test for a bubble relatively far in the future, as we only have very limited information at

our disposal. In contrast, if we have been on the bubble trajectory for multiple consecutive time

points, this information is directly exploited by the test. For a fixed horizon h, we also observe

that a more extreme shock to the system boosts the power of the test. This can be explained

intuitively: whenever the shock is very large, the trajectory deviates a lot from the baseline path

and thus exhibits a clear bubble pattern in the data. The large increase in the level and the fast

growth rate combined provide valuable information to the test.

3The test relies on the parameter estimates. As a smaller sample size typically means a large sampling variance,
the test’s performance could be adversely affected. Therefore, we run our simulation study also with a smaller
sample size of T = 300 and find qualitatively similar results. Results are available upon request.

4For the Student’s t-distribution innovation, we useM = 1000 due to the time consuming procedure to simulate
the critical values under the null.
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Quantile Size Power Size Power Size Power Size Power

h = 5 h = 10 h = 15 h = 20

α = 1% 0.052 0.402 0.052 0.081 0.054 0.055 0.049 0.055

α = 0.5% 0.054 0.835 0.051 0.154 0.048 0.057 0.050 0.055

α = 0.1% 0.049 0.984 0.052 0.924 0.051 0.446 0.053 0.070

α = 0.05% 0.051 0.990 0.052 0.973 0.051 0.857 0.051 0.168

α = 0.03% 0.049 0.996 0.051 0.984 0.052 0.937 0.049 0.518

α = 0.01% 0.050 0.999 0.052 0.993 0.052 0.983 0.047 0.935

Table 1: Size and power of the test for Cauchy distributed innovation and high persistence

In Table 2, the importance of the persistency in the autoregressive process is revealed. When

we perform the same exercise for a process that has ψ1 = 0.5 instead of ψ1 = 0.8, the power is

clearly affected. In fact, we present results for the same values of α, but restrict our attention

to only h ∈ {2, 4, 6, 8} as testing at longer horizons is not instructive. We find that the power

of the test is overall comparable to the ones obtained at larger horizons in Table 1. In the first

two columns, we observe a similar increase in power over the different quantiles. However, for

the cases h ∈ {6, 8}, it generally takes a much larger shock to obtain satisfactory power. This

result does not come as a surprise: for the process to really manifest itself as a bubble in the low

persistence case, we need a very large disturbance. Only in this way, the effect of the moderate

noncausal parameter and its ability to generate a bubble can be identified in the period prior

to the crash. This is natural as the information propagates dynamically through the system

as ψh
1 . At horizon h = 5, we can see that this quantity is approximately ten times larger for

ψ1 = 0.8 compared to ψ1 = 0.5. It has to be mentioned though that empirical applications

using MAR methodology typically identify highly persistent noncausal processes. Simulations

also show that for a noncausal AR(1), an autoregressive parameter closer to unity is needed to

mimic speculative bubbles observed in economic and financial time series. As expected, the size

remains stable around 5%, as the test statistic’s distribution is analytically known.
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Quantile Size Power Size Power Size Power Size Power

h = 2 h = 4 h = 6 h = 8

α = 1% 0.053 0.359 0.053 0.053 0.053 0.044 0.050 0.036

α = 0.5% 0.051 0.912 0.053 0.068 0.050 0.047 0.053 0.039

α = 0.1% 0.055 0.992 0.054 0.939 0.052 0.104 0.050 0.039

α = 0.05% 0.051 0.996 0.054 0.971 0.054 0.650 0.052 0.055

α = 0.03% 0.051 0.998 0.053 0.988 0.054 0.916 0.051 0.082

α = 0.01% 0.053 0.999 0.053 0.997 0.054 0.982 0.054 0.826

Table 2: Size and power of the test for Cauchy distributed innovation and low persistence

To address a scenario in which we have to simulate the critical values of our test statistic’s

distribution, Table 3 considers the high persistence case where the error term follows a Student’s

t-distribution with ν = 2 degrees of freedom. We observe a similar pattern of decrease in power

for lower quantiles and higher horizons, albeit at a faster pace. This can be attributed to two

factors. The approximation of the distribution, but also to the fact that the chosen t-distribution

is less leptokurtic than the Cauchy distribution. This means that the same quantiles generally

correspond to less pronounced bubbles being generated. Most notably, however, we can see the

effect of simulation on the size of the test, which is further away from the nominal value of 5%

than in the exact setting. It is important to note, however, that the number of simulations used

to compute the critical values are much lower than before (M = 1000 instead of M = 10, 000)

due to the time consuming nature of this procedure and this clearly impacts the quality of the

approximation.

Quantile Size Power Size Power Size Power

h = 5 h = 10 h = 15

α = 0.1% 0.049 0.712 0.047 0.223 0.049 0.059

α = 0.05% 0.047 0.920 0.056 0.230 0.056 0.066

α = 0.03% 0.047 0.990 0.051 0.309 0.054 0.092

α = 0.01% 0.045 0.99 0.049 0.698 0.052 0.171

Table 3: Size and power of the test for Student’s t distributed innovation with ν = 2 and high
persistence
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5 Empirical Study

In this section, we consider real-time testing for the presence of a bubble in the West Texas

Intermediate (WTI) monthly oil price index. The data used is the same as in Hecq and Voisin

(2022), with the only difference that we shorten the sample to our period of interest.5 More

specifically, we study the data from March 1995 to October 2014 and focus on the sizeable bubble

emerging around 2008. It is followed by a sharp decline in 2009, which is motivated by a strong

revision of the short-to-medium-run demand for oil as a result of the unfolding financial crisis.

Figure 2a displays the raw data, which appears non-stationary. We follow the convention in

the MAR literature to not take the first difference or the growth rate of the series, because

such transformations eliminate the bubble pattern of interest. Instead, we consider two types of

detrending methods: an ad-hoc procedure using a time polynomial and joint modeling based on

the MARST specification. Figure 2b shows the data after MARST detrending, which is the case

that we mainly highlight for expository purposes. We observe that the WTI monthly price index

now resembles a stationary process with an episode of locally explosive dynamics.

(a) Monthly Oil Price (b) Detrended Series of Monthly Oil Price

Figure 2: The sample considered in our application, for which our focus mainly lies on the
bubble of 2008 and the period displaying spikes afterwards.

Similar to Hecq and Voisin (2022), we fit a MAR(1, 1) to the data obtained after detrending,

which yields

(1− 0.28L)(1− 0.92L−1)yt = et,

where et denotes the residual. For the error term, we assume a non-standardized Student’s t-

5The data is also freely available from the U.S. Energy Information Administration.
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distribution t(ν, σ) and estimate the degrees of freedom parameter ν and scale parameter σ equal

to 1.76 and 1.86 respectively. This distribution is often employed in the literature, as it also

encompasses the standard Cauchy case (for ν and σ equal to 1). However, as indicated in the

previous sections, this choice requires us to tabulate the critical values of the test statistic’s

distribution. Most importantly, the estimated noncausal parameter ψ̂1 = 0.92 reveals that we are

in a high persistence scenario, in which our test performs well according to the simulation study.

In this application, we illustrate how the level-growth test can be used for real-time testing, grid

testing and risk assessment in the spirit of Value-at-Risk (VaR).

5.1 Real-Time Testing

As discussed in Section 3, our test depends on two dimensions, the horizon h for the bubble

to reach its peak and the quantile of the shock driving the bubble qε(α) for a fixed significance

level, which we set at 5% throughout this study as in (7). These equations also reveal the exact

roles of horizon h and quantile qε(α) in the testing procedure. Let us first fix the horizon h = 3

to investigate how the choice of quantiles influences the test. Figure 3 displays the results of

the level-growth test for two different quantiles based on α ∈ (0.07%, 0.04%). The shaded area

represents the observations that are identified by the test as being compatible to a bubble reaching

its extreme point h = 3 displacements in the future. In other words, the areas date-stamp the

beginning and ending of a bubble according to our test procedure. This has implications in

terms of risk as the period associated with the shock that drives the bubble is also the period

where the crash is about to happen. By comparing the two panels in Figure 3, it is clear that a

higher quantile corresponds to a test result that is more restrictive in highlighting observations

compatible with the given shock (and subsequent crash). It is also worth noting that especially

at high levels of persistence and with quantiles quite far in the tail, a bubble has a long span (in

practice, around 20 time periods). This means that we are already quite far into the bubble when

testing at a horizon h = 3. However this test still has relevant implications as it gives a sense of

the size of the crash that is compatible with the data at a certain horizon.

Figure 4 shows the scenario in which we keep the quantile fixed at qε = 0.9996 but vary

the horizon h ∈ (3, 8). We find that the test is more conservative in identifying observations

compatible with a bubble for a lower horizon h. This is to be expected, as it is generally more

difficult to identify a bubble when we are still relatively far away from its peak. Interestingly, the
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(a) α = 0.07%, h = 3 (b) α = 0.04%, h = 3

Figure 3: The observations compatible with a bubble originating from a shock corresponding to
a two different quantiles three periods ahead.

test can be called more conservative in terms of risk assessment for larger h. It might namely

identify observations that are congruous with a bubble while they do not truly instigate one.

However, this might still be important information, as it provides an early-stage warning to

monitor the development in the time series and the corresponding risk involved. Moreover, we

compare the data-stamping of bubbles in the WTI oil price index of our test with those obtained

by applying the backward ADF (BADF) test (Phillips et al., 2011) and the backward Supremum

ADF (BSADF) test (Phillips et al., 2015). We can conclude that the identified bubbles roughly

coincide with a quantile based on α = 0.04% and horizon h = 5. The tests are thus able to

generate similar results, but in the sequel we want to focus on how the two dimensions (α, h) in

our procedure can be exploited to infer more about possible bubble emergence.

(a) α = 0.04%, h = 3 (b) α = 0.04%, h = 8

Figure 4: The observations compatible with a bubble originated by a shock corresponding to a
fixed quantile at two different horizons.
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5.2 Grid Testing

The analysis shows that extending the horizon allows for testing at the beginning of an explosive

episode. The answer to the question “are we in a bubble?” is however increasingly difficult to

answer at such an early stage. Therefore, we propose to exploit the two dimensions of the test

simultaneously, as they suggest the existence of a two-dimensional frontier of significance dividing

the explosive episodes that are compatible with the data observed today with those that are not.

Because the frontier evolves over time, we illustrate its computation by explicitly considering

three different points for the 2008 explosive episode. Figure 5 shows the data that we observe in

the three considered scenarios: at the start of a bubble, early stage of the bubble and towards

the end of the bubble. To calculate the frontier, we perform a grid of tests at these chosen dates.

(a) Start of the bubble (b) Early stage of the bubble (c) Final stage of the bubble

Figure 5: Observed data for the different scenarios considered.

Table 4 displays the testing results for various combinations of quantiles and horizons, at

the three scenarios of interest. The first panel reveals that at the start of the bubble, the null

hypothesis is rejected for a large number of performed tests. This occurs due to the fact that

we are operating in a portion of the sample without bubble or at best at an early stage of a

bubble.6 In such a scenario, the observations are not compatible with a large explosive episode

happening at short horizon. The table makes the stories of Figure 3 and 4 more explicit: we

reject the presence of a bubble when the quantile is too high or the horizon is too low. When the

horizon increases, the data start belonging to a period of bubble expansion and less rejections are

observed. Interestingly, we have at h = 10 that no rejection takes place, not even for the highest

quantile. The closer we get to the actual crash of the bubble, the more certain the test becomes

and the data becomes compatible with extreme episodes happening at a relatively short horizon.

This can be concluded from the second panel, which contains only three rejections for the highest

6We approach the problem as real-time testing, i.e., we pretend at this stage that we do not know whether a
bubble manifests itself or not.
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quantiles at relatively low horizons. Finally, in the third panel, at the final stage of the bubble,

the test is vastly certain that an explosive episode is mimicking a bubble that manifests itself in

the upcoming period. The only case that is rejected, is a shock from the largest quantile at the

lowest horizon (i.e., an exceptionally extreme bubble taking place very soon). However, all other

tests do not reject the null, and do this convincingly given the provided p-values.

Start of the bubble

h = 3 h = 5 h = 7 h = 10

α = 0.1% 0.056 0.256 0.505 0.733

α = 0.08% 0.030 0.174 0.437 0.695

α = 0.05% 0.005 0.066 0.270 0.500

α = 0.03% 0.000 0.012 0.112 0.478

α = 0.01% 0.000 0.000 0.003 0.114

Early stage of the bubble

h = 3 h = 5 h = 7 h = 10

α = 0.1% 0.434 0.734 0.859 0.900

α = 0.08% 0.306 0.673 0.828 0.896

α = 0.05% 0.086 0.446 0.741 0.879

α = 0.03% 0.008 0.178 0.570 0.839

α = 0.01% 0.000 0.001 0.052 0.576

Final stage of the bubble

h = 3 h = 5 h = 7 h = 10

α = 0.1% 0.879 0.919 0.937 0.951

α = 0.08% 0.864 0.909 0.929 0.949

α = 0.05% 0.788 0.882 0.921 0.943

α = 0.03% 0.572 0.842 0.898 0.935

α = 0.01% 0.001 0.255 0.743 0.901

Table 4: Test results (p-values) for compatibility of observations with a bubble for different
sizes and horizons, tested at different stages of the 2008 bubble. Rejections of the test at a 5%
significance level in bold.

20



5.3 Risk Assessment

The evaluation of various combinations of shock size and horizon suggests an evaluation of risk

based on the test presented in (7). For each of the panels considered (i.e., being at different points

in the bubble), it is possible to evaluate the maximum bubble compatible with the observed data

at the different horizons. This is consistent with the intuition behind risk measures such as Value-

at-Risk (VaR). Let us illustrate this by considering the scenario that we are at the start of the

bubble. The first panel of Table 4 (first row) reveals that, if the innovation driving the bubble

is located h = 3 periods ahead, it cannot be larger than an observation corresponding to the

quantile q = 0.9992. As a consequence, we do not expect a crash of a larger size. If we repeat this

exercise for all horizons, we have a confidence bound for the bubble-driving error term at each

moment in time. Most importantly, this also provides a bound on the size of the crash, given

that the explosive episode indeed ends on the specific date considered.

(a) h = 10 from the peak (b) h = 4 from the peak (c) h = 2 from the peak

Figure 6: Confidence bounds for the maximum bubble compatible with the observed data at
different horizons, in the spirit of VaR, computed at a significance level of 5% and 10%.

Figure 6 shows the corresponding frontiers that can be generated this way, for significance

levels of 5% (orange line) and 10% (green line). We note that the frontier generally becomes closer

to the real data trajectory when we are located closer to the peak of the bubble. The confidence

bound is quite precise at short horizons and becomes wider as the horizon of the bubble is more

distant. It is worth noting that there is no temporal information in this testing procedure about

when the bubble actually bursts. However, for risk assessment, it provides an interesting way of

doing scenario analysis. It provides an answer to the question “given that the bubble crashes at

the preset data, what is the maximum crash size to expect?”. This can be extremely valuable

when trying to monitor risk in real-time. It has to be noted that a bubble typically does not

crash to zero, but to the baseline path before the emergence of explosive dynamics. If the MAR
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specification adequately captures the data, the causal part plays a role in determining the level

of the baseline path.

6 Conclusion

We have introduced a novel test for bubbles in time series that are modelled as mixed causal-

noncausal autoregressive (MAR) models. The testing procedure is simple to implement and allows

for the date-stamping of a bubble. A Monte Carlo study suggests that the test has acceptable

power and size properties. In an empirical study of a monthly oil price index, it is shown that

the test can produce important insights, allowing for Value-at-Risk calculations which entail a

reasonable risk assessment a-priori in the presence of bubble dynamics in the data. In particular,

the consideration of different combinations of shock size and horizon creates the possibility to

perform scenario planning for risk.

The proposed test is a first attempt to leverage the MAR methodology to test for speculative

bubbles. Future research could focus on testing for bubbles with different rates of increase. This

might be established by considering MAR models with time-varying coefficients or aggregating

noncausal processes (see e.g., Gouriéroux and Zaköıan, 2017, Section 4). Moreover, an extension

to the multivariate case allowing for possibly cointegrated bubbles can be explored.
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