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The Generalized Price Equation 

Abstract. The main ingredient of this paper is the derivation of the Generalized Price 
equation. This generalizes the original Price equation in the sense that it produces a set of 
Price-like equations, one for every different underlying model that one could assume has 
generated the data. All of these different Price-like equations are identities, and all of them 
only have a meaningful interpretation if the data are indeed generated by the model they 
presuppose. The criteria for choosing between these different Price-like equations are the 
exact same as the criteria that standard statistics uses when choosing the right statistical 
model, based on the data. The original Price equation in regression form is the generalized 
Price equation that goes with the simplest linear model. The problem with the widespread 
misuse of the Price equation is caused by the fact that it loses its meaning if the data are not 
generated by this model – in the same way that any of the other Price-like equations lose 
their meaning if the data are not generated by the model they presuppose. 

1. Introduction 

Right from the beginning, it has been unclear if the Price equation [1] was intended as a tool 
for modeling, or if it was supposed to be applied to data. The terminology of regression 
coefficients suggests the latter, but the use in the population genetics literature mostly 
suggests the former. The paper in which the equation was presented is also inconsistent and 
goes back and forth between the two options (see Section 4.3 in [2] for a close reading of 
[1]). Here, we will first go with the second option, because that offers a way in which we can 
give a meaningful interpretation to the “regression coefficients” in what Price [1] called the 
“regression form” of his equation. Both the initial paper and the subsequent literature 
suggest there is a link between statistics and the regression form of the Price equation, 
without establishing what that link is. This paper does provide that link, and in doing so it 
formulates a generalized version of the Price equation that gives it the flexibility that a 
proper link with statistics requires. This Generalized Price equation also turns out to provide 
a solution for the problems with the Price equation identified in [2-5]. The insight that it 
provides also sheds light on exactly what the source of the controversy in the Price equation 
literature is.  

In this paper, we will derive a general version of the Price equation. Besides the introduction 
of a bit of matrix notation, the first part of that derivation is totally standard, and leads to 
the Price equation as we know it, in what Price [1], [6] called the covariance form. 

𝑤"Δ𝑝̅ = Cov(𝑤, 𝑝) + 𝐸(𝑤∆𝑝)    (PE.C) 

Then we combine this with a set of statistical models, all of which include 1) a constant term, 
and 2) a linear term for the set of genes, the selection of which is tracked by the variable 𝑝̅, 
or the average p-score. For any model in this set, we find that in the covariance term, we can 
replace the realized fitnesses 𝑤!  with the estimated fitnesses 𝑤0!  according to the model. This 
leads to the generalized Price equation in covariance form, that, for any model in this set, 
reads  

𝑤"Δ𝑝̅ = Cov(𝑤0, 𝑝) + 𝐸(𝑤∆𝑝)    (GPE.C) 
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If we then unpack these covariances for any model in this set, we arrive at the generalized 
Price equation in regression form. We can for instance consider the set of models given by  

𝑤! = 𝛼 +2𝛽"𝑝!"
#

"$%

+ 𝜀!  

The 𝑅 is the largest exponent that is included in the polynomial of the model. Different 
choices for 𝑅 therefore imply different models; for 𝑅 = 1 we get a linear model; for 𝑅 = 2 
we get a quadratic model; for 𝑅 = 3 a cubic one, and so on. For every 𝑅, and thereby for 
every model in this set, we get a Price-like equation:   

𝑤"Δ𝑝̅ = ∑ 𝛽:"Cov(𝑝, 𝑝")#
"$% + 𝐸(𝑤∆𝑝)   (GPE.R1) 

The central point here is that there is not just one Price equation. There is a Price-like 
equation for every different model, as long as these models meet the minimal requirement 
of including a constant and a linear term. For rich enough settings (that is, for settings with 
sufficiently many different values that the p-scores can take) these Price-like equations 
moreover are generically proper different. That is to say, if we take any transition from a 
parent population to an offspring population, and combine this, for instance, with the Price 
equation for the linear model (𝑅 = 1), with the Price equation for the quadratic model (𝑅 =
2), then the 𝛽:% in the Price equation for 𝑅 = 1 will almost always be different from the 𝛽:% in 
the Price equation for 𝑅 = 2, unless the p-score can only be 0 or 1.  

The original Price equation in regression form is the generalized Price equation in regression 
form for the linear model. That implies that if the data are in fact generated by the standard 
linear model, writing the Price equation is a meaningful exercise. It also implies that if the 
data are not generated by the standard linear model, then writing the Price equation is not a 
meaningful exercise. For any set of data, one can write many Price-like equations, and all of 
them are identities. A meaningful Price equation exercise pertaining to data should really 
consist of using standard statistical tools for choosing between different statistical models. 
Any choice for a statistical model then automatically implies a choice for one of these Price-
like equations in regression form. The confidence with which the data allow us to pick one of 
the models is then by definition equal to the confidence we can have that we picked the 
right Price-like equation to describe the population genetic dynamics.  

The fact that there are more than one Price-like equation requires us to reflect on what the 
original Price equation is, and what we want to use it for. The Price equation is (i) an identity. 
That means that the left-hand side is equal to the right-hand side, whatever the parent 
population is and whatever the offspring population is. This is true for the original Price 
equation, and it is also true for all Price-like equations that we get by combining the 
Generalized Price equation with some model (choose some 𝑅). The being an identity implies 
that it (ii) “always gets the direction of selection right”; if the left-hand side is negative, then 
so is the right-hand side. This is a somewhat riskier way of looking at the equation because it 
makes it tempting to see one side of the identity as an explanation of the other. Again, this   
property is shared by all Price-like equations. The main ingredient that I would like to add to 
this, and that the abundance of Price-like equations necessitates, is that we would like to 
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pick one of those equations on the basis of whether or not it accurately describes the 
underlying population genetical dynamics. If it does, then I use the word “meaningful”.  

The main insight from the derivation of the generalized Price equation in regression form is 
therefore first and foremost positive and constructive, in the sense that it provides a recipe 
for finding an equation that is meaningful in the same way that the original Price equation is 
meaningful for the linear model. Besides that, it also helps us pinpoint what drives the 
misuse of the Price equation in the literature. Misapplying the Price equation comes down to 
applying the original Price equation (which is the generalized Price equation for the linear 
model) in a setting with a statistical model that is not linear, or that is general enough to 
allow for models other than the standard linear model. The misuse of the Price equation 
therefore is a special case of the chosen Price-like equation not matching the statistical 
model. 

Besides this main result, this paper also serves as a guide to the Price equation. We will start 
simple, by introducing a haploid setting with asexual reproduction. The reason to start there 
is that it is the easiest. We then derive the normal, standard Price equation, and consider a 
simple example, where it tracks the absence or presence of a single gene. Then we move on 
to allow for a genetic measure that is not binary, and derive the general version of the Price 
equation, both in covariance form and, for a specific set of models, in regression form. This 
derivation helps establish that there is a variety of Price-like equations. It also shows that the 
answer to the question which one allows for a meaningful interpretation is given by 
standard statistical considerations involving sample size and model specification. All of this 
happens in Section 2. 

In Section 3 we repeat this for diploid, sexually reproducing species. This is more interesting 
and allows us to illustrate the richness of possible underlying true models better. This 
section contains examples in which we assume heterozygote advantage, or dominance, and 
in which the genes we consider are sex-determining genes.  

In Section 4 we further enrich the set of possible models, by allowing the model to not only 
include genes, the selection of which we track with the average p-score, but also take other 
genes into consideration, reflected in an average q-score. This introduces additional scope 
for misspecification. 
 
In Section 5 we will describe how this carries over to the setting in which the Price equation 
is used for modelling.  
 
In Section 6 we conclude, and reflect on a few related issues, including dynamic sufficiency.  
 
In the twin TI discussion paper on the general version of Hamilton’s rule, we discuss how the 
use of the original Price equation, instead of its generalized version, has led to a 
longstanding disagreement concerning the generality of Hamilton’s rule, and how it can be 
resolved using the Generalized Price equation.  
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2. The Price equation for asexual reproduction 

The original Price equation allows for any ploidy. Here we begin simple, by choosing a ploidy 
of 1. That keeps the introduction of the matrix notation as well as the first examples easy to 
follow.  

We assume that the parent generation consist of 𝑛 individuals, and the offspring generation 
consist of 𝑚 individuals. We can represent who is whose offspring with an offspring matrix 
𝐴. Let 𝐴!& = 1 if 𝑖 is 𝑗’s parent, and 𝐴!& = 0 if not.  

If we fix a member of the offspring generation, and sum over the parent generation, we get 
the number of parents per child. With asexual reproduction, all kids have one parent, which 
implies that this sum must be 1; ∑ 𝐴!&'

!$% = 1 for all offspring 𝑗. Any offspring matrix must 
have this property. 

If we fix a member of the parent generation, and sum over the offspring generation, we get 
the number of children for that parent; 𝑎! = ∑ 𝐴!&(

&$%  for all parents 𝑖. With asexual 
reproduction, this is also the fitness of the parent; 𝑤! = 𝑎!. 

These two observations together have a straightforward implication. We can sum all 
elements of this matrix in two ways. The first is ∑ B∑ 𝐴!&'

!$% C(
&$% = ∑ 1(

&$% = 𝑚. The second is 
∑ B∑ 𝐴!&(

&$% C'
!$% = ∑ 𝑤!'

!$% . Because these must be equal, the sum of all fitnesses must equal 
the number of individuals in the offspring generation; ∑ 𝑤!'

!$% = 𝑚.  

Genes in the parent generation. Suppose that we know the “dose” of a gene [1], or the p-
score [7], for every individual in the parent population, and denote it by 𝑝! , 𝑖 = 1, . . . , 𝑛 for all 
parents. This dose may be restricted to be either 0 or 1, as it will in our first example, where 
this represents the presence or absence of a single gene. The idea of a dose, or a p-score, 
however, is that we also allow for this to be any measure for the presence or absence of a 
set of genes, and in particular genes that all contribute to a certain trait value. If we have 
two genes, both of which independently raise a certain trait value by the same amount, then 
a natural choice would be for the p-scores to be 0 if both are absent, %

)
 if one is present, and 

1 if both are present. In general, this means that 𝑝!  can take values on some subset of the 
interval [0,1]. 

Which genes are passed on. With sexual reproduction, there is randomness in which genes a 
parent passes on to their offspring. With asexual reproduction, offspring are just copies of 
their parents. That makes the matrix 𝑃, that represents the p-scores of the genes that are 
passed on, relatively easy. With asexual reproduction, 𝑃!& = 0 if individual 𝑖 from the parent 
population is just not a parent of individual 𝑗 in the offspring population (in other words 
𝑃!& = 0 if 𝐴!& = 0). If individual 𝑖 from the parent population is in fact the parent of 
individual 𝑗 in the offspring population (𝐴!& = 1), then 𝑃!&  is the p-score of the offspring. 
Here we assume that there is no mutation, which means that this is also the p-score of the 
parent. This implies a simple, straightforward relation between the p-scores in the offspring 
generation and the matrix 𝑃. If we fix an offspring, and sum over everyone in the parent 
generation, then all but one are not the parent of individual 𝑗, and for those, 𝑃!& = 0. For the 
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actual parent, the matrix returns the p-score of the offspring, and hence ∑ 𝑃!&'
!$% = 𝑝&*  for all 

offspring 𝑗. 

Change. The average p-score in the parent generation is 𝑝̅ = ∑ ,!
"
!#$
'

. Some of the older 
papers on the Price equation do not use upper bars to indicate averages. Since it natural for 
𝑝 to represent the vector of p-scores in the parent generation, 𝑝 = [𝑝%, … , 𝑝'], we do mostly 
add an upper bar to make sure there is no ambiguity regarding what this is: 𝑝̅ is the average 
of the 𝑝!’s in the parent population. Similarly, the average p-score in the offspring 

generation is 𝑝̅* =
∑ ,%

&'
%#$

(
. 

Derivation of the Price equation. The key ingredient in the derivation of the Price equation 
is that one can calculate the sum of the p-scores by going over the individuals in the 
offspring generation in two ways. With sexual reproduction, this is a bit more complex, but 
with asexual reproduction, this is really quite simple. 

1. One can go over all offspring, starting at offspring number 1 and ending at number 
𝑚, and just add up their p-scores. With the relation between matrix 𝑃 and vector 𝑝′, 
that amounts to ∑ 𝑝&*(

&$% = ∑ B∑ 𝑃!&'
!$% C(

&$% .  
2. For every parent, we can add up the p-scores of their offspring. Then we can go over 

all parents, and add those numbers up. This amounts to a switch in summation order 
from ∑ B∑ 𝑃!&'

!$% C(
&$%  to  ∑ B∑ 𝑃!&(

&$% C'
!$% .  

This switch allows us to write the average p-score in the offspring generation as 

𝑝̅* =
∑ 𝑝&*(
&$%

𝑚 =
∑ ∑ 𝑃!&'

!$%
(
&$%

𝑚 =
∑ ∑ 𝑃!&(

&$%
'
!$%

𝑚  

Then we can divide ∑ 𝑃!&(
&$%  by 𝑤!, if we undo that by also multiplying by 𝑤!, and we can 

subtract ∑ 𝑤!𝑝!'
!$%  if we undo that by also adding ∑ 𝑤!𝑝!'

!$% . This way we get 

𝑝̅* =
∑ 𝑤! J

∑ 𝑃!&(
&$%
𝑤!

K'
!$%

𝑚 =
∑ 𝑤!𝑝!'
!$% +∑ 𝑤! J

∑ 𝑃!&(
&$%
𝑤!

− 𝑝!K'
!$%

𝑚  

Then we add and subtract %
'
∑ 𝑤!'
!$% ∑ 𝑝!'

!$%  

𝑝̅* =
∑ 𝑤!𝑝!'
!$% + 1

𝑛∑ 𝑤!'
!$% ∑ 𝑝!'

!$% − 1
𝑛∑ 𝑤!'

!$% ∑ 𝑝!'
!$%

𝑚 +
∑ 𝑤! J

∑ 𝑃!&(
&$%
𝑤!

− 𝑝!K'
!$%

𝑚  

Now if we look at the first term on the right-hand side, and then the second term in the 
numerator, we can use ∑ 𝑤!'

!$% = 𝑚 to simplify it.  Because %
'
∑ 𝑝!'
!$%  is moreover the 

definition of the average p-score in the parent population, we can rewrite this whole 
equation as 
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𝑝̅* = 𝑝̅ +
∑ 𝑤!𝑝!'
!$% − 1

𝑛∑ 𝑤!'
!$% ∑ 𝑝!'

!$%

𝑚 +
∑ 𝑤! J

∑ 𝑃!&(
&$%
𝑤!

− 𝑝!K'
!$%

𝑚  

We can subtract 𝑝̅ on both sides and multiply this left and right by the average fitness 𝑤" =
(
'

. If we do that, we get 

𝑤"(𝑝̅* − 𝑝̅) =
1
𝑛2𝑤!𝑝!

'

!$%

−
1
𝑛)2𝑤!

'

!$%

2𝑝!

'

!$%

+
1
𝑛2𝑤! J

∑ 𝑃!&(
&$%

𝑤!
− 𝑝!K

'

!$%

 

A short way to write this is  

𝑤"Δ𝑝̅ = Cov(𝑤, 𝑝) + 𝐸(𝑤∆𝑝)    (PE.C) 

where  

Cov(𝑤, 𝑝) =
1
𝑛2𝑤!𝑝!

'

!$%

−
1
𝑛)2𝑤!

'

!$%

2𝑝!

'

!$%

 

and  

𝐸(𝑤∆𝑝) =
1
𝑛2𝑤! J

∑ 𝑃!&(
&$%

𝑤!
− 𝑝!K

'

!$%

 

This is what Price [1], [6] calls the covariance form. Here it is important to realize that the 
term that is abbreviated as Cov(𝑤, 𝑝) is not an actual covariance. I have made this point 
elsewhere1 and while it seems nit-picking, it pays to be precise conceptually. A covariance is 
a property of a random variable, and that is not what the Cov(𝑤, 𝑝)-term is here. If 𝑝!  and 
𝑃!&  are data, as we assume they are here, then the term abbreviated as Cov(𝑤, 𝑝) is the 
sample covariance. In Section 5, we switch to a modeling context. In that case, 𝑝!  represent a 
population state in a model, and the model is a statement about the probabilities of 
different transitions. Also here, the term abbreviated as Cov(𝑤, 𝑝) is not a covariance; it is a 
summary statistic describing an aspect of the transition from one population state to 
another. Similarly, the second term on the right-hand side is not an expected value. If 𝑝!  and 
𝑃!&  are data, it is the average difference between, on the one hand, the average p-score of 
the offspring of a parent and, on the other, its own p-score. Without mutation, this term is 0 
for asexual reproduction by definition. 

When we will derive the Generalized Price equation in Section 2.2, we will come back to this 
point in the derivation and proceed from there. In this section, on the other hand, we will 
simply follow Price [1], [6] in substituting 𝛽 ∙ Var(𝑝) for Cov(𝑤, 𝑝), where 	

 
1 Page 414 of [2], and Box 1, page 66 of [5]. 
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Var(𝑝) =
1
𝑛2𝑝!)

'

!$%

−
1
𝑛) R2𝑝!

'

!$%

S
)

	

and  

𝛽 =
Cov(𝑤, 𝑝)
Var(𝑝)  

If we do, then we get the following equation. 

𝑤"Δ𝑝̅ = 	𝛽 ∙ Var(𝑝) + 𝐸(𝑤∆𝑝)    (PE.R) 

This is what Price [1], [6] calls the regression form. Var(𝑝) is not really a variance, but if 𝑝!  
and 𝑃!&  are data, it is the sample variance. The 𝛽 is typically referred to as a regression 
coefficient, which it is if 𝑝!  and 𝑃!&  are data. We will get back to all of this below, but for now 
this is the final equation. 

Our next step is to look at two specific examples. After that, we will return to the covariance 
form of the Price equation (PE.C) above, and derive the generalized version starting from 
there.  

Example 2.1 

We start by assuming that the model captures one single gene – so p-scores are either 0 or 1 
– and that this one gene has some (unknown) effect on fitness. In other words, we assume 
that the true model that describes how fitnesses depend on p-scores is  

𝑤! = 𝛼 + 𝛽𝑝! + 𝜀!       (A) 

where 𝛼 is the baseline fitness, 𝑝! = 0 if the gene is absent, 𝑝! = 1 if it is present, 𝛽% is the 
linear effect of the gene on fitness, and 𝜀!  is a noise term.  

We can, for example, take a parent population that consists of two individuals. The first has 
the gene and two offspring. The second does not have the gene and has no offspring. In 
other words, 𝑝 = [1,0], 𝑤 = [2,0] and  

𝐴 = 𝑃 = T1 1
0 0U 

The ingredients of the Price equation then are: 𝑤" = 1, as there are 2 parents and 2 
offspring; Δ𝑝̅ = $

(, because the average p-score went from %
)
 to 1; 𝐸(𝑤∆𝑝) = 0, by definition 

with asexual reproduction without mutations; Cov(𝑤, 𝑝) = $
(, Var(𝑝) =

$
) and 𝛽 = 2. The 

calculations are in Appendix A.  

The Price equation therefore is: 

𝑤"Δ𝑝̅ = 	𝛽 ∙ Var(𝑝) + 𝐸(𝑤∆𝑝) 
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1 ∙ %
)
= 	2 ∙ %

-
+ 0 

In this case, the sample size is clearly not large enough for the 𝛽 from the Price equation to 
estimate the true 𝛽 from the model with any significance. The 𝛽 in the Price equation 
therefore cannot be interpreted as the fitness effect of the gene.  

At this point, there is some room for confusion, caused by the use of the word “population”. 
This is discussed on page 416 of [2], but it can be helpful to also elaborate a little on this 
here. Part of our intuition about statistics is shaped by polling or surveys. The setting for a 
poll or a survey is that there is a large population, of which we would like to know, for 
instance, what they would vote, if the election were held today; or how much time the 
average EU-citizen spends behind a screen; or what fraction of the people in the UK believes 
in evolution. The idea is then to randomly draw a sample from the population as a whole, 
and the larger the sample, and the more balanced it is, the larger the confidence that the 
average within the sample is close to the average of the population as a whole. On election 
day, we then find out the thing that the polls were trying to get at.  

This shapes our intuition, in the sense that we are tempted to think that if the two 
individuals in our sample are the whole population (as they are in the example above with 
the Price equation), then there is no statistical uncertainty left, and we know everything 
there is to know. That would be the case, if the question at hand were “how many offspring 
did the carriers of the gene get within this population, and how many did the non-carriers 
get?” In our case, however, the question that we would be interested in, in order to be able 
to describe the population genetic dynamics, is “how does the p-score affect fitnesses?”. For 
answering the second question, having a parent population of size 2 will not be sufficient. 

In order to illustrate the difference with a thought experiment, we can think of a relatively 
common versus an extremely rare genetic disorder. Suppose there is a genetic disorder that 
one in 1,000 people have. Assume also that we have data on everyone that was born with 
that genetic disorder in the UK in the years 2000 to 2005. In that case we would have a few 
thousand observations, which is more than enough to calculate the probability that people 
born with that genetic disorder survive into adulthood. If, within this thought experiment, 
we furthermore can assume that there are no changes in medical treatment, or other factors 
that could make being born in 2024 be different from being born in 2000, then for someone 
born with that genetic disorder in the UK today, the probability of surviving until the age of 
18 is estimated with high accuracy by the realized survival rate within this population.  

Now imagine another genetic disorder that only 1 in a million people are born with, and 
again assume that we have data for everyone that was born with this genetic disorder in the 
UK between 2000 and 2005. With the low incidence of this particular genetic disorder, this 
can easily leave us with less than a handful of observations only. Now even though in both 
cases we know the entire population within the bracket, for the extremely rare genetic 
disorder, we would not make predictions concerning the chances of survival until adulthood 
with the same confidence as we would for the much more common genetic disorder. For a 
doctor, the relevant question is what the probabilities are for her patient, and for this, 
knowing the whole population is very useful with the common genetic disorder, but much 
less so with the rare genetic disorder.  
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This serves to illustrate that, while with polling, the aim is to know the composition of the 
population, there are many settings in which that is not the underlying question. Statisticians 
therefore sometimes like to use the term “data generating process” instead of “population”. 
For polling, or market research, the question at hand is; if I were to pick a random member 
of the population, what would this person vote, or like to purchase. The data-generating 
process then would be that we ask a subset of people about their preferences. For an 
extremely rare genetic disease, however, the data generating process is that every once in a 
blue moon someone with that genetic disorder is born. This can render so few individuals 
that have the genetic disorder, that even knowing everyone in the population that does, will 
not give an answer to the question what for instance someone’s life expectancy is.  

If we now go back to the Price equation, then with a small population, even if the Price 
equation encompasses the whole population, it may not always be right to interpret the 𝛽 in 
it as the effect of the gene. It is a regression coefficient, and as such, it may be a noisy, and 
therefore unreliable, estimator of the true fitness effect of the gene, even if it is unbiased.   

One can however also imagine a vector 𝑝, and matrices 𝐴 and 𝑃, that together represent a 
much larger population, and therefore a much larger dataset. If this results in an estimate of 
the true 𝛽 that is statistically significant (that is: the true 𝛽 is most likely to be different from 
0) then the 𝛽 in the Price equation can be interpreted as the estimated effect of the gene in 
question on fitness. After the next example, from the derivation of the Generalized Price 
equation onwards, we will therefore use notation that differentiates between the true effect 
𝛽 and the estimator 𝛽:  of the true effect.  

All of this is under the assumption that model (A), 𝑤! = 𝛼 + 𝛽𝑝! + 𝜀!, is accurately specified. 
In this example, we assumed that the p-score only reflects the absence or presence of one 
single gene, and therefore the p-score can only be 0 or 1. That implies that in this case, there 
is no room for underspecification, and this assumption does not need to be tested. 

The main observation here is that the extent to which we can give a meaningful 
interpretation of the right-hand side of the Price equation is determined by standard 
statistical considerations. With small sample sizes, the 𝛽 from the Price equation will, as an 
estimator of the true 𝛽, typically not be significant, even if the true 𝛽 would really be 
different from 0. The low power of statistical testing then implies that there is really nothing 
we can say about the true 𝛽. Larger sample sizes allow us to infer more from the data, but 
even then, the interpretation is bound by the rules of statistics. If the 𝛽 from the Price 
equation is statistically significant, it is still the (unbiased) estimator of the effect of the gene 
on fitness, and not the effect of the gene on fitness itself. 

 

If the p-score only reflects the presence or absence of a single gene, and 𝛽 is statistically 
significant, then the right-hand side of the Price equation has a meaningful interpretation; 
the 𝛽 from the regression form of the Price equation is the estimated linear effect of this 
gene of fitness. 
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Example 2.2 

We now assume that the model captures two genes, both of which contribute to one and 
the same trait value. The possible p-scores therefore are 0 if both are absent; %

)
 if one is 

present; or 1 if both are present. If the p-scores translate to fitnesses in a linear way, then 
we are back in the setting of Example 2.1, just with one additional value that the p-score can 
take. We can however also allow for the possibility that the relation between p-scores and 
fitnesses is not linear. There are two steps between p-scores and fitnesses, so the non-
linearity might arise in either of the two. It might be that p-scores translate to trait values in 
a non-linear way; or it might be that the relation between trait value and fitness is not linear. 
Here, we assume that, for either of these two reasons, fitnesses follow a quadratic model:  

𝑤! = 𝛼 + 𝛽%𝑝! + 𝛽)𝑝!) + 𝜀!      (B) 

where 𝛼 is the baseline fitness, 𝛽% and 𝛽) are the linear and the quadratic effect of the p-
score on fitness, and 𝜀!  is a noise term.2 

Then we can, for example, take a parent population that consists of two individuals. The first 
has a p-score of 1, and two offspring; and the second has a p-score of %

)
, and no offspring. In 

other words, 𝑝 = T1, %
)
U, 𝑤 = [2,0] and  

𝐴 = 𝑃 = T1 1
0 0U 

The ingredients of the Price equation then are: 𝑤" = 1, as there are 2 parents and 2 
offspring; Δ𝑝̅ = $

), because the average p-score went from .
-
 to 1; 𝐸(𝑤∆𝑝) = 0, by definition 

with asexual reproduction without mutations; Cov(𝑤, 𝑝) = $
), Var(𝑝) =

$
$* and 𝛽 = 4. The 

calculations are in Appendix B. 

The Price equation therefore is: 

𝑤"Δ𝑝̅ = 	𝛽 ∙ Var(𝑝) + 𝐸(𝑤∆𝑝) 

1 ∙ %
-
= 	4 ∙ %

%/
+ 0 

As was the case in the first example, the sample size here is too small to estimate anything 
with significance. In this case, there is moreover an additional problem. The 𝛽 from the Price 
equation would be the right estimator to consider if the true model were to be model (A) 
from the previous example. If the true model is model (B), however, then with ever larger 

 

2 If we define 𝑤+, 𝑤
!
", and 𝑤, as the expected fitnesses of an individual with p-score 0, ,

-
 and 1, then 𝑤+ = 𝛼, 

𝑤
!
" = 𝛼 + ,

-
𝛽, +

,
.
𝛽-, and 𝑤, = 𝛼 + 𝛽, + 𝛽-. This we can rewrite as 𝛼 = 𝑤+, 𝛽, = −3𝑤+ + 4𝑤

!
" −𝑤, and 

𝛽- = 2 ,𝑤+ − 2𝑤
!
" +𝑤,-. 



 11 

sample sizes, the data would get ever likelier to reveal that, which would imply that the 𝛽 
from the Price equation cannot be interpreted meaningfully for any population size.  

A symptom of this is that even in a situation without noise, or with an infinitely large 
population, the 𝛽 would vary, depending on the composition of the parent population. If 
𝛽, = 0 and  𝛽- = 2, and the parent population would only contain individuals with a p-score 
of 0 or a p-score of %

)
, then the 𝛽 in the Price equation would be 1 (see Fig. 1 on the left). This 

is true, regardless of the relative shares of individuals with a p-score of 0 and a p-score of %
)
; 

all that is required is that no individual with a p-score of 1 is present in the parent 
generation. If, on the other hand, the parent population would only contain individuals with 
a p-score of %

)
 or a p-score of 1, then the 𝛽 in the Price equation would be 3 (see Fig. 1 on the 

right). If we apply what we find at the very end of Section 5 to this example, then we find 

that the 𝛽 in the original Price equation equals 𝛽 = 2 ∙ 0123,,,
(5

678(,)
. This implies that the 𝛽 

depends on the composition of the population. If we furthermore assume random mating, 
this simplifies to 𝛽 = 2 ∙ W%

)
+ 𝑝̅X, where 𝑝̅ is the average p-score in the parent population. 

With 𝑝̅ ranging from 0 to 1, this implies that the 𝛽 in the Price equation then ranges from 1 
to 3. 

 

 

 

 

 

 

Fig. 1|Dependency om the parent population. We assume that there is no noise, or that the population is 
infinitely large, so that the average fitness matches the expected values. On the left a parent population, all 
members of which either have a p-score of 0, or a p-score of !". With expected fitnesses belonging to these p-
scores of 0 and  !", respectively, that results in a 𝛽 of 1.  On the right a parent population, all members of which 
either have a p-score of  !", or a p-score of 1. With expected fitnesses belonging to these p-scores of !" and 2, 
respectively, that results in a 𝛽 of 3. In the literature, the dependence of the 𝛽 on the parent population is 
sometimes referred to as dynamical insufficiency. That, however, is not what this is in this case, as here, this is 
really a symptom of misspecification. If the model that generated the data would have been linear (model A), 
then, absent the noise, the 𝛽 would have been the same, regardless of the composition of the parent 
population. Dynamic (in)sufficiency is discussed in Section 6. 

This implies that if the true underlying model is model (B), and not model (A), we cannot 
interpret 𝛽 as the (linear) effect of these genes on fitness. There is however an alternative 
equation in which the regression coefficients would allow for a meaningful interpretation. In 
order to see what that would be, we go back to the derivation of the Price equation we went 
through earlier. 

0 ,
-
 1 

0 

2 

1 

0 ,
-
 1 

0 

1 

2 
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Derivation of the generalized Price equation.  

In the standard derivation of the Price equation, we arrived at  

𝑤"Δ𝑝̅ = Cov(𝑤, 𝑝) + 𝐸(𝑤∆𝑝)    (PE.C) 

where  

Cov(𝑤, 𝑝) =
1
𝑛2𝑤!𝑝!

'

!$%

−
1
𝑛)2𝑤!

'

!$%

2𝑝!

'

!$%

 

and  

𝐸(𝑤∆𝑝) =
1
𝑛2𝑤! J

∑ 𝑃!&(
&$%

𝑤!
− 𝑝!K

'

!$%

 

Now assume that we know that the fitnesses are generated by a model that can be written 
as follows 

𝑤! = 𝛼 +2𝛽"𝑝!"
#

"$%

+ 𝜀!  

where 𝜀!  is a noise term with expected value 0. If 𝑅 = 1, this is the standard linear model we 
considered in Example 1.1; 𝑤! = 𝛼 + 𝛽%𝑝! + 𝜀!. If 𝑅 = 2, that is the quadratic model we are 
considering in Example 2.1; 𝑤! = 𝛼 + 𝛽% ∙ 𝑝! + 𝛽) ∙ 𝑝!) + 𝜀!. Later, we will expand the set of 
models to all models that include a constant 𝛼 and a linear term 𝛽%, but for the derivation it 
works perfectly fine to focus on this set of models.  

If we have confidence in a model for some 𝑅 ≥ 1, we think that the true fitnesses are best 
described by 

𝑤0! = 𝛼 +2𝛽"𝑝!"
#

"$%

= 𝑤! − 𝜀!  

for some choice of 𝛼 and the 𝛽"’s. Therefore, it will be useful to think of this as the vector of 
estimated fitnesses, which we will indicate by  

𝑤0 = [𝑤0%, … , 𝑤0'] 

Now for any 𝑅 ≥ 1, minimizing the sum of squared errors,  

2𝜀!)
'

!$%

=2Z𝑤! − R𝛼 +2𝛽"𝑝!"
#

"$%

S[

)'

!$%
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will imply that the derivatives to 𝛼 and to 𝛽% are set to 0 (along with all other derivatives to 
the parameters of the model). This has two implications. 

Setting the derivative to 𝛼 to 0 implies that we choose 𝛼 such that 

−22Z𝑤! − R𝛼 +2𝛽"𝑝!"
#

"$%

S[
'

!$%

= 0 

and therefore also such that 

2𝑤!

'

!$%

=2R𝛼 +2𝛽"𝑝!"
#

"$%

S
'

!$%

=2𝑤0!

'

!$%

 

In other words, although for each individual 𝑖 its actual number of offspring 𝑤!  and its 
estimated fitness 𝑤0!  may, and typically will, differ, if we arrive at 𝑤0!  by minimizing least 
squares with a model that includes 𝛼, then they do add up to the same total. 

Setting the derivative to 	𝛽% to 0 implies that we choose 𝛽% such that 

2−2𝑝! Z𝑤! − R𝛼 +2𝛽"𝑝!"
#

"$%

S[ = 0
'

!$%

 

and therefore  

2𝑝!𝑤!

'

!$%

=2𝑝! R𝛼 +2𝛽"𝑝!"
#

"$%

S
'

!$%

=2𝑝!𝑤0!

'

!$%

 

In other words, for each individual the 𝑤!  and 𝑤0!  may differ (and if they do, then also 𝑝!𝑤!  
and 𝑝!𝑤0!  will be different), but if we arrive at 𝑤0!  by minimizing least squares with a model 
that includes 𝛽%, then the weighted sum ∑ 𝑝!𝑤!'

!$%  will nonetheless equal ∑ 𝑝!𝑤0!'
!$% . 

These two observations imply that if we use the data to estimate such a model with ordinary 
least squares (OLS), then we can also write 

Cov(𝑤, 𝑝) =
1
𝑛2𝑤!𝑝!

'

!$%

−
1
𝑛)2𝑤!

'

!$%

2𝑝!

'

!$%

=
1
𝑛2𝑤0!𝑝!

'

!$%

−
1
𝑛)2𝑤0!

'

!$%

2𝑝!

'

!$%

= Cov(𝑤0, 𝑝) 

The Generalized Price equation in covariance form then becomes 

𝑤"Δ𝑝̅ = Cov(𝑤0, 𝑝) + 𝐸(𝑤∆𝑝)    (GPE.C) 
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Now we can focus on the term summarized as Cov(𝑤0, 𝑝), and fill in 𝛼\ + ∑ 𝛽:"𝑝!"#
"$%  for 𝑤0!. 

We write 𝛼\ and 𝛽:"  to indicate that these are not just any 𝛼 and 𝛽", but the ones we find by 
minimizing the sum of squared errors. 

1
𝑛2R𝛼\ +2𝛽:"𝑝!"

#

"$%

S𝑝!

'

!$%

−
1
𝑛2R𝛼\ +2𝛽:"𝑝!"

#

"$%

S
'

!$%

1
𝑛2𝑝!

'

!$%

 

This can be shortened to  	
1
𝑛2R2𝛽:"𝑝!"

#

"$%

S𝑝!

'

!$%

−
1
𝑛2R2𝛽:"𝑝!"

#

"$%

S
'

!$%

1
𝑛2𝑝!

'

!$%

	

and if we change the summation order, this becomes  

2𝛽:"

#

"$%

R
1
𝑛2𝑝!";%

'

!$%

−
1
𝑛2𝑝!"

'

!$%

1
𝑛2𝑝!

'

!$%

S =2𝛽:"Cov(𝑝, 𝑝")
#

"$%

 

Therefore, if there is a model 𝑤! = 𝛼 + ∑ 𝛽"𝑝!"#
"$%  that we believe generated the data, and 

for which we estimate the parameters using ordinary least squares (OLS), we can always 
write the following equation, which we will call the Generalized Price equation in regression 
form. It is general, in the sense that it produces different equations for different choices of 
𝑅, and therefore for every model within this set of models, where fitnesses are polynomials. 
In Section 3, we will see that by combining the Generalized Price equation in covariance 
form with an even richer set of models, we can generalize the Generalizd Price equation in 
regression form even further.  

𝑤"Δ𝑝̅ = ∑ 𝛽:"Cov(𝑝, 𝑝")#
"$% + 𝐸(𝑤∆𝑝)   (GPE.R1) 

If 𝑅 = 1 we have the linear model, 𝑤! = 𝛼 + 𝛽%𝑝! + 𝜀!, and since Cov(𝑝, 𝑝) = Var(𝑝) the 
above equation then becomes 

   𝑤"Δ𝑝̅ = 𝛽:%Var(𝑝) + 𝐸(𝑤∆𝑝)    (2.1) 

If 𝑅 = 2 we have the quadratic model, 𝑤! = 𝛼 + 𝛽%𝑝! + 𝛽)𝑝!) + 𝜀!, and the above equation 
becomes 

𝑤"Δ𝑝̅ = 𝛽:%Var(𝑝) + 𝛽:)Cov(𝑝, 𝑝)) + 𝐸(𝑤∆𝑝)   (2.2) 

This moreover works for all models; the only thing that we need for this to work is that the 
statistical model includes a fixed term (for which we set the derivative of 𝛼 to 0) and a linear 
term (for which we set the derivative of 𝛽% to 0). What is important to keep in mind, is that if 
we apply the linear model to a dataset, and then we apply the quadratic model to the same 
dataset, then the 𝛽:%’s will be different between them. This is also what we encounter in our 
everyday statistics; if we estimate the same parameters in one model versus the other, the 
estimates will change.  
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Which of these equations has a meaningful interpretation, and/or to what degree, is 
perfectly in step with standard statistics. We may not have enough data to pick any model 
with any confidence, nor to estimate any parameter with significance. In that case none of 
these equations has a meaningful interpretation. We may, on the other hand, have an 
extremely large dataset that allows us to say with large confidence that the true model that 
generated them is for instance quadratic, and the sample size may also allow us to estimate 
the parameters with high accuracy. In that case equation (2.2) above has a meaningful 
interpretation, but not equation (2.1). Equations for 𝑅 ≥ 3 will then typically only differ 
marginally from equation (2.2), with estimates for 𝛽:!, 𝑖 ≥ 2, close to 0. 

The standard Price equation in regression form is equation (2.1) above. This equation only 
has a meaningful interpretation if we have confidence that the data are generated by a 
linear model (𝑅 = 1). Anything that one would be tempted to infer from the standard Price 
equation, without doing the statistics that confirms that the data are indeed generated by 
the linear model, is unwarranted. If a statistical test rejects model (A), then one cannot 
interpret the 𝛽 in the standard Price equation as the effect of these genes on fitness.  

Many researchers are enthusiastic about the fact that the Price equation is an identity. This 
regularly leads to the belief that the Price equation “cannot be wrong”. While it is correct to 
say that the Price equation is not wrong, in the sense that the left-hand side is equal to the 
right-hand side, it is important to also observe that this property is shared with other 
identities. In fact, we have found a range of different equations, one for every 𝑅 ≥ 1, and all 
of them are identities. If the “not being wrong” would just be about whether the left and the 
right-hand side are equal, then these equations can be (very) different, while none of them 
are wrong. If the “not being wrong” is to pertain to inferences one would draw from the 
Price equation, or interpretations of terms in it, then the multiplicity of equations implies 
that there must be some scope for being wrong, since these equations can differ from each 
other, leading to conclusions or interpretations that are at odds with each other.   

The Price equation can be generalized, in the sense that one can write a variety of Price-like 
equations for a variety of possible true models, that may have generated the data. Which 
one we can interpret meaningfully with how much confidence depends on completely 
standard statistical considerations concerning model specification and significance of 
parameter estimates.  

Before we go on to diploid species, there are a few more remarks that are worth making. 
The first is that I would like to reiterate that the genes that we are considering, and the 
genetic architecture, can limit which models make sense. If the p-score can only be 0 or 1, 
for instance, as it is in Section 2.1, then all models from the set we are considering here can 
be reduced to a model with 𝑅 = 1. If we take  

𝑤! = 𝛼 +2𝛽"𝑝!"
#

"$%

+ 𝜀!  

in combination with a binary p-score, then, since 𝑝!" = 𝑝!  for all 𝑟 ≥ 1, we can rewrite this 
as 
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𝑤! = 𝛼 + R2𝛽"

#

"$%

S𝑝! + 𝜀!  

This brings us back to a model with 𝑅 = 1, if we choose ∑ 𝛽"#
"$%  as the coefficient for the 

linear term. Equivalently, if we look at the Generalized Price equation in regression form, 
then the fact that 𝑝" = 𝑝 also implies that Cov(𝑝, 𝑝") = Cov(𝑝, 𝑝) = Var(𝑝) for all 𝑟, and 
hence the Generalized Price equation in regression form can be written as 

𝑤"Δ𝑝̅ =2𝛽:"Cov(𝑝, 𝑝")
#

"$%

+ 𝐸(𝑤∆𝑝) = R2𝛽:"

#

"$%

SVar(𝑝) 	+ 𝐸(𝑤∆𝑝) 

This is the Generalized Price equation for the linear model, if we, again, choose ∑ 𝛽"#
"$%  as 

the coefficient for the linear term. 

All of this is a formal way of saying that in this case, the regression coefficients only have 
meaning for the linear model, which is the model with 𝑅 = 1.  

The second remark is that we can also write the general regression form as follows. 

𝑤"Δ𝑝̅ = W∑ 𝛽:"
012(,,,/)
678(,)

#
"$% XVar(𝑝) + 𝐸(𝑤∆𝑝)  (GPE.R2) 

The third remark is that for any model in the set of models we are considering here, if the 
error terms have a constant distribution with expectation 0 (that is, the distribution is the 
same for all values of the p-score), and the data are indeed generated by that model, then 
the Gauss-Markov theorem implies that the regression coefficients 𝛽:"  for that model are 
Best Linear Unbiased Estimators, which means that they have minimal variance within the 
set of unbiased estimators. It is however quite possible that the distribution of numbers of 
offspring depends on the p-score in ways that do not satisfy this.  

One possibility is that the distribution of the error terms does not have a constant variance. 
An example would be if the number of offspring is drawn from a binomial distribution with 
𝑁 trials and success probability <;=$,!

>
. This makes 𝛼 + 𝛽%𝑝!  the expected number of 

offspring, and it makes 𝑤! = 𝛼 + 𝛽%𝑝! + 𝜀!  a well-specified model, but the variance of the 
error term now depends on 𝑝!. The Gauss-Markov theorem then no longer applies, and the 
regression coefficients 𝛽:"  no longer have minimal variance. If the error terms still have 
expectation 0 – as they do in these examples – then they are however still unbiased. This 
implies that the setup of the Generalized Price equation is still useful. Applying OLS will still 
produce regression coefficients 𝛽:"  that are unbiased, even though there may be other 
unbiased estimation procedures that reduce the variance of the estimators. 
Heteroskedasticity (the variance of the error term not being constant) also makes a 
difference for what appropriate statistical tests are.  

It is however also possible that the data are generated by a model that does not fit the set of 
models specified above. This would imply a departure from the setup that allows us to use 
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the Generalized Price equation, which is predicated on the statistical model including a 
constant term, and a term that is linear in the p-score.  

 

3. The Price equation for diploid species. 

We will now repeat this for a diploid, sexually reproducing species. This is also a special case 
of the original Price equation, which allows for any possible ploidy. What we add to the 
original Price equation, besides a bit of matrix notation, is that we separate both generations 
in females and males. This will be useful for the examples.  

Parents: mothers and fathers. Let the parent generation consist of 𝑘 females, numbered 
from 𝑖 = 1 to 𝑖 = 𝑘, and 𝑛 − 𝑘 males, numbered from 𝑖 = 𝑘 + 1 to 𝑖 = 𝑛. This makes for a 
total of 𝑛 individuals in the parent generation.  

Offspring: girls and boys. Let the offspring generation consist of 𝑙 females, numbered from 
𝑗 = 1 to 𝑗 = 𝑙, and 𝑚 − 𝑙 males, numbered from 𝑗 = 𝑙 + 1 to 𝑗 = 𝑚. This makes for a total 
of 𝑚 individuals in the parent generation.  

Which kids belong to which parents. Everyone in the offspring generation is the offspring of 
one female and one male parent in the parent generation. Who are the parents of which 
offspring, we represent, again, with an offspring matrix 𝐴; let 𝐴!& = 1 if 𝑖 is 𝑗’s parent, and 
𝐴!& = 0 if not. Every offspring having one mother and one father means that ∑ 𝐴!&?

!$% = 1 
for all 𝑗 (one mother per child), and ∑ 𝐴!&'

!$?;% = 1 for all 𝑗 (one father per child). This also 
implies ∑ 𝐴!&'

!$% = 2 for all 𝑗 (two parents per child).  

Parent fitnesses. The number of offspring of parent 𝑖, denoted by 𝑎!, is found by summing 
over the offspring; 𝑎! = ∑ 𝐴!&(

&$% . The fitness of parent 𝑖 we get by dividing this by the 
ploidy; 𝑤! =

%
)
∑ 𝐴!&(
&$% . Because everyone in the offspring generation has two parents in the 

parent population, the sum of these fitnesses of the parents must equal the number of 
individuals in the offspring generation: ∑ 𝑤! = 𝑚'

!$% .  

Genes in the parent generation. The “dose” of a gene [1], or the p-score [7] per individual in 
the parent population, is denoted by 𝑝! , 𝑖 = 1, . . . , 𝑛 for all parents. This dose may be 
restricted to be 0, %

)
, or 1, if this is a counter for a specific allele, of which one can have 0, 1, 

or 2 copies. The idea of a dose or a p-score, however, is that this allows for any measure for 
the presence or absence of alleles all over the genome, and in particular genes that all 
contribute to a certain trait value. This means that 𝑝!  can take values on some subset of the 
interval [0,1].  

Which genes are passed on. The matrix 𝑃 represents the p-score of the successful gametes 
that went into the offspring. This works as follows: 𝑃!& = 0 if individual 𝑖 from the parent 
population is just not a parent of individual 𝑗 in the offspring population (𝐴!& = 0). If 
individual 𝑖 from the parent population is a parent of individual 𝑗 in the offspring population 
(𝐴!& = 1), then 𝑃!&  is the p-score of the successful gamete. Because every individual is 
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composed of two gametes, this is a value in T0, %
)
U. There may be restrictions on what 𝑃!&  can 

be depending on what 𝑝! ∈ [0,1] is; for instance, if 𝑝!  counts alleles at one locus, as 
suggested above, then 𝑝!  can be either 0, if the gamete does not carry it, or %

)
 if it does. In 

this case, that would mean that if 𝐴!& = 1 (𝑖 is 𝑗’s parent), and the parent has 0 copies of the 
allele (𝑝! = 0), then the gametes cannot contain any copies either (𝑃!& = 0); if the parent 
has 1 copy of the allele (𝑝! =

%
)
), then the gametes can either contain 0 or 1 copy (𝑃!& = 0 or 

𝑃!& =
%
)
); and if the parent has 2 copies of the allele (𝑝! = 1), then the gametes must contain 

a copy as well (𝑃!& =
%
)
). More generally, without mutations, the genetic details would 

impose restrictions that will typically include that 𝑝! = 0 will imply 𝑃!& = 0 for all of its 
offspring, and that 𝑝! = 1 implies 𝑃!& =

%
)
 for all of its offspring (that is, for all 𝑗 for which 

𝐴!& = 1).  

Genes in the offspring population. The p-score of individual 𝑗 in the offspring generation is 
the sum of the p-scores of its gametes; 𝑝&* = ∑ 𝑃!&'

!$% . 

Change. The average p-score in the parent generation is 𝑝̅ = ∑ ,!
"
!#$
'

. The average p-score in 

the offspring generation is 𝑝̅* =
∑ ,%*
'
%#$

(
. 

Derivation of the Price equation. The key ingredient in the derivation of the Price equation 
is that one can calculate the sum of the p-scores in the offspring generation in two ways.  

1. One can first calculate the p-score of every individual in the offspring generation by 
adding the p-scores of the incoming gametes of each offspring individual (𝑝&* =
∑ 𝑃!&'
!$%  for every offspring 𝑗), and then sum these over all the members of the 

offspring generation. That amounts to ∑ 𝑝&′(
&$% = ∑ ∑ 𝑃!&'

!$%
(
&$% .  

2. One can also first add up the p-scores of the successful outgoing gametes of the 
parents (∑ 𝑃!&(

&$%  for parent 𝑖) and then sum over the parents. This amounts to a 
switch in summation order from ∑ ∑ 𝑃!&'

!$%
(
&$%  to  ∑ ∑ 𝑃!&(

&$%
'
!$% . This we can always 

do, because 𝑛 and 𝑚 are finite.  

Despite the differences (combinations of 𝐴 and 𝑃 that fit the asexual model setup of Section 
2 do not fit the sexual setup in this section, and vice versa), the remainder of the derivation 
is the exact same as the derivation for asexual reproduction in Section 2. Also the derivation 
of the generalized Price equation is the same. 

In order to illustrate the Price equation for a diploid, sexually reproducing species, we have 
three more examples. These examples moreover further illustrate that the interpretation of 
the Price equation is bound by the exact same considerations that confine interpreting 
parameter estimates in normal statistics. 
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Example 3.1: an allele with a fixed effect on fitness 

We begin with the equivalent of Example 1.1. The only difference between the setting with 
asexual reproduction from Example 1.1 and the setting with sexual reproduction is that in 
the latter, there is scope for model misspecification. We nonetheless start by assuming that 
we know what the underlying model of fitness is, and that it is linear:  

𝑤! = 𝛼 + 𝛽𝑝! + 𝜀!       (A) 

Here, the p-score 𝑝!  can be 0, %
)
, or 1, depending on whether the individual has 0, 1, or 2 

copies of a certain allele. 

Then we take a parent population consisting of two mothers and two fathers. The first 
mother has two copies of the allele, the second has none, the first father has one copy of the 
allele, the second has none. In other words, 𝑝 = b1,0, $(, 0c. Mother 1 has two kids with 
father 1 and one with father 2, mother 2 has one kid with father 2, which makes 𝑤 =
b0(,

$
(, 1,1c and 

𝐴 = d

1 1 1 0
0 0 0 1
1 1 0 0
0 0 1 1

e 

The transmission matrix is 

𝑃 =

⎣
⎢
⎢
⎡
$
(

$
(

$
( 0

0 0 0 0
0 $

( 0 0
0 0 0 0⎦

⎥
⎥
⎤
 

This makes 𝑝′ = b$(, 1,
$
(, 0c, which we get by summing over the columns. The ingredients of 

the Price equation then are: 𝑤" = 1, as there are 4 parents and 4 offspring; Δ𝑝̅ = %
@
, because 

the average p-score went up from .
@
 to %

)
; 𝐸(𝑤∆𝑝) = 0, because the only parent with a non-

binary p-score had a p-score of %
)
, and this parent had one successful gamete without, and 

one with the allele; Cov(𝑤, 𝑝) = $
1; and Var(𝑝) = %%

/-
. In line with the insight from the 

Generalized Price equation, we give the 𝛽 a hat, indicating that this is what the estimator 
would be for the true 𝛽, under the assumption that the true model is in fact linear. The 𝛽 in 
the original Price equation is defined as 012(A,,)

678(,)
, which is indeed the estimator of 𝛽, under 

the assumption of the data are generated by the linear model, so for the original Price 
equation, this does not change how the 𝛽 is calculated. For this example, this is 𝛽: = @

%%
. The 

calculations are in Appendix C. 

The Price equation, and the Generalized Price equation under the linear model, therefore is: 

𝑤"Δ𝑝̅ = 	𝛽: ∙ Var(𝑝) + 𝐸(𝑤∆𝑝) 
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	1 ∙ %
@
=	 @

%%
∙ %%
/-
− 0 

As in previous examples, this sample size is not large enough to estimate the true 𝛽 with any 
significance. Also, the sample size is not large enough to test if the model 𝑤! = 𝛼 + 𝛽𝑝! + 𝜀!  
is accurately specified. In this case, the 𝛽:  therefore cannot be interpreted as the fitness 
effect of the gene. 

One can however also imagine a vector 𝑝, and matrices 𝐴 and 𝑃, that together represent a 
much larger population, and therefore a much larger dataset. If this results in an estimate of 
the true 𝛽 that is significantly different from 0; if a statistical test with sufficient power does 
not reject model (A); and if a statistical test with sufficient power rejects that the 
expectation of the noise term 𝜀!  is not zero,3 then the 𝛽 in the Price equation does have a 
meaningful interpretation; it is an unbiased estimator of the true 𝛽, which is the effect of the 
p-score on fitness 

The main observation here is the same as with Examples 2.1 and 2.2. The extent to which we 
can give a meaningful interpretation of the right-hand side of the Price equation is 
determined completely by standard statistical considerations. With small sample sizes, 𝛽:  will 
typically not be significant, even if the true 𝛽 would be different from 0. Also tests for 
linearity will have low power, and will not reject linearity, even if the true model would not 
be linear. Larger sample sizes allow us to infer more from the data, but also then, the 
interpretation is bound by the rules of statistics. Any interpretation will have to be done with 
the exact same reservations that one would have with standard statistics.   

If the 𝛽:  is significant, and statistical tests with sufficient power do not reject model (A), then 
the right-hand side of the original Price equation in regression form (which is the right-hand 
side of the Generalized Price equation in regression form for the model 𝑤! = 𝛼 + 𝛽𝑝! + 𝜀!) 
has a meaningful interpretation; 𝛽:  is the estimated (linear) effect of the p-score on fitness. 

 

Example 3.2: heterozygote advantage / dominance 

In this example, we begin with a description of a life cycle in which heterozygotes have an 
advantage. The quadratic model that describes this can, however, also be used to describe 
dominance for alternative choices of the parameters.  

Suppose the p-score can be 0, %
)
, or 1, and assume that for any of those p-scores there are 

equally many females as there are males. The life cycle is as follows. Those with a p-score of 
0 all die. Those with a p-score of %

)
 all survive. Half of individuals with a p-score of 1 survive, 

the other half die. The female and male survivors then are randomly matched in pairs, and 
all of those pairs produce 3 kids.  

 
3 This would depend on 𝐸(𝑤∆𝑝) being sufficiently close to 0 to reject that there is no fair meiosis. 
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The fitnesses for these three p-scores therefore are 0, .
)
, and .

-
. Another way to describe that 

is:  

𝑤! = 𝛼 + 𝛽%𝑝! + 𝛽)𝑝!) + 𝜀!      (B) 

where 𝜀!  is a noise term, and 𝛼 = 0, 𝛽% =
)%
-

, and 𝛽) = − B
)
.4 

Then we can assume an infinite population, and we can assume that the shares in the parent 
population are as follows: 1 out of 9 parents has a p-score of 0; 4 out of 9 parents have a p-
score of %

)
; and 4 out of 9 parents have a p-score of 1. These frequencies are chosen to be 

stable; the life cycle as described above creates an offspring generation that is identical to 
the parent population. Figure 2 below illustrates all steps in the calculations, which are in 
Appendix D, and that confirm that this is indeed a fixed point of the dynamics.  

 

 

 

 

 

 

Fig. 2|A graphical representation of the life cycle for the equilibrium state of the population. Step 1: 
differential survival. All individuals in the parent generation with a p-score of 0 die, and half of those with a p-
score of 1 do. None of the parents with a p-score of !" die, so the heterozygote has the highest fitness.  Step 2: 
mothers and fathers. Half of all surviving parents are female, and half are male. Step 3 and 4: random 
matching. The parents are randomly matched. Step 5: fair meiosis. In each pair, the offspring inherits one allele 
from either parent. Step 6: scaling up. Parent pairs have on average 3 kids. 

One can do this for non-equilibrium parent populations too, in which case the numbers will 
change, but it might be instructive to first focus on this equilibrium population state. For this 
state, the ingredients of the Price equation are: 𝑤" = 1, as the number of offspring equals 
the number of parents; Δ𝑝̅ = 0, because the frequencies do not change; 𝐸(𝑤∆𝑝) = 0, 

 

4 In general, 𝑤+ = 𝛼, 𝑤
!
" = 𝛼 + ,

-
𝛽, +

,
.
𝛽-, and 𝑤, = 𝛼 + 𝛽, + 𝛽- (see also footnote 1). If fitness is linear, that 

would mean 𝛽- = 0. Heterozygote advantage would be −2𝛽, < 𝛽- < − -
2
𝛽, (which can only hold for 𝛽, > 0). 

A dominant gene would make 𝑤
!
" and 𝑤, equal, and therefore 𝛽- = − -

2
𝛽,; a recessive gene would make 𝑤+ 

and 𝑤
!
" equal, and therefore 𝛽- = −2𝛽,. 
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because of fair meiosis in an infinite population; Cov(𝑤, 𝑝) = 0, Var(𝑝) = %
B
 and 𝛽: = 0. The 

calculations are in Appendix D. 

The Price equation, and the Generalized Price equation under the linear model, for the 
equilibrium population state therefore is: 

𝑤"Δ𝑝̅ = 	𝛽: ∙ Var(𝑤, 𝑝) + 𝐸(𝑤∆𝑝) 

	1 ∙ 0 = 	0 ∙ %
B
+ 0 

If we were to interpret the 𝛽:  as the effect of the gene on fitness, then the fact that 𝛽 = 0 
would suggest that the gene has no effect on fitness. This would be wrong, because which p-
score an individual has clearly matters for fitness; it is just that the effect is not linear. At this 
particular frequency, it happens to be the case that the advantageous effect of an additional 
allele compared to the homozygote with a p-score of 0, and the disadvantageous effect of an 
additional allele compared to the homozygote with a p-score of %

)
 balance out. If the data are 

generated by Model (B), as we assume they are in this example, then one cannot interpret 
the 𝛽:  from the Price equation as the effect of the gene on fitness, which one can do if the 
data were generated by Model (A). Moreover, as in example 2.2, the 𝛽:  from the Price 
equation will depend on the composition of the parent population; for all parent populations 
that are not the equilibrium shares given above, the 𝛽:  will be non-zero, and can be positive 
or negative. This is a symptom of misspecification. (It can also be a reflection of frequency 
dependence, as we will see in the next example, but here fitnesses are not frequency 
dependent).  

With an infinitely large population, the Price equation would have a meaningful 
interpretation, if the true model were model (A). If the true model is model (B), however, 
even if the parent population is assumed to be infinitely large (which removes statistical 
considerations concerning sample size), the 𝛽:  in the Price equation does not have a 
meaningful interpretation, due to misspecification of the model.  

If the fitnesses depend on the p-scores in a quadratic way, as they do in this example, then, 
provided that we have sufficiently much data, a standard statistical exercise is likely to 
uncover the true model, and estimate its parameters with some accuracy and confidence. In 
this model, the fitnesses do not depend on the composition of the parent population, which 
means that for instance the expected values of the estimators for 𝛽% and 𝛽) do not depend 
on the composition of the parent population. The 𝛽:  that we are likely to find in the original 
Price equation in regression form, which is the Generalized Price equation for the model 
𝑤! = 𝛼 + 𝛽𝑝! + 𝜀!, on the other hand, does depend on the composition of the parent 
population. This is caused by misspecification, because in this example we assume that the 
true model is 𝑤! = 𝛼 + 𝛽%𝑝! + 𝛽)𝑝!) + 𝜀!. 

  



 23 

Example 3.3: sex-determining genes  

In this example, the p-score will represent sex determining genes. If we think of females as 
𝑋𝑋 and males as 𝑋𝑌, and we count the number of 𝑋’es, then the p-score for females is 1 
and for males it is %

)
 (everything would also work if the p-score would count the number of 

𝑌’s, in which case the p-score would be 0 for females and %
)
 for males). We can then write 

the Price equation, just based on the numbers of females and males in both generations.  

The ingredients of the Price equation then are: 𝑤" = (
'

, which is the size of the offspring 
generation over the size of the parent population; Δ𝑝̅ = $

(C
3
'D

4
"E, which is one half times the 

difference between the frequency of females in the offspring generation and the parent 
generation; 𝐸(𝑤∆𝑝) = %

)'
W𝑙 − %

)
𝑚X, which does not depend on the sex ratio in the parent 

population); Cov(𝑤, 𝑝) = '
("C

$
(D

4
"E, Var(𝑝) =

4
)"B1 −

4
"C and 𝛽: = 𝑚 ∙ 'D)?

?('D?)
. The calculations 

are in Appendix E. 

The Price equation therefore is: 

𝑤"Δ𝑝̅ = 	𝛽: ∙ Var(𝑝) + 𝐸(𝑤∆𝑝) 

𝑚
𝑛 ∙

1
2 o

𝑙
𝑚 −

𝑘
𝑛p = 	𝑚 ∙

𝑛 − 2𝑘
𝑘(𝑛 − 𝑘) ∙

1
4
𝑘
𝑛 o1 −

𝑘
𝑛p +

1
2𝑛 o𝑙 −

1
2𝑚p 

The most interesting observation here is that the 𝛽:  is determined entirely by the 
composition of the parent population (the 𝑘 and the 𝑛) and the number of offspring 𝑚. Just 
by the mechanics of sexual reproduction, if the number of females is smaller than the 
number of males (𝑘 < 𝑛 − 𝑘 → 2𝑘 < 𝑛), the 𝛽:  will be positive, whereas it will be negative if 
the number of females is larger than the number of males.  

 

In this example, the fitnesses are frequency dependent. Recovering this in a statistical 
exercise requires observations for different compositions of the parent population, and 
writing the Price equation for one composition of the parent population only is not 
informative. 

 
These examples for a diploid, sexually reproducing species explore a bit more what the 
scope is for possible ways in which fitnesses can depend on p-scores. The message however 
remains the same. The standard Price equation is just one out of a range of Price-like 
equations. There is one for every model, and the standard Price equation is the one for the 
linear model. Which of those equations has a meaningful interpretation, and to what extent, 
depends completely on what statistics has to say about the possible underlying true models 
that could have generated the data. 
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4. The Price equation with a p-score and a q-score. 

Here we take the same setup as in Section 2, but now we add information about genes that 
are not included in the p-score, while they may have an effect on fitness. Besides a vector 𝑝 
of p-scores for the parents, a vector 𝑝′ of p-scores for the offspring, and a transmission 
matrix 𝑃, we now also have a vector 𝑞 of q-scores for the parents, a vector 𝑞′ of q-scores for 
the offspring, and a transmission matrix 𝑄, all of which satisfy the same properties that a 
genetic system of transmission imposes (such as, for example, that if 𝐴!& = 0, then 𝑄!& = 0). 

In this setting, the Price equation tracks changes in the average p-score, while these p-scores 
are not the only genetic determinant of fitness. This enriches the set of possible true models, 
and therefore the set of possible Price equations, and it allows us to give additional 
illustrations of how there is no way around classical statistics if our aim is to find the right 
Price equation in this multitude of options.    

Derivation of the Generalized Price equation in regression form for this richer set of 
models.  

With this richer setup, allowing for p-scores and q-scores, we can choose a richer set of 
models that we consider. Assume, therefore, that we know that the fitnesses are generated 
by some model that can be written as follows: 

𝑤! = 2 𝛽?,F𝑝!?𝑞!F
(?,F)	∈	I

+ 𝜀!  

where 𝜀!  is a noise term with expected value 0, and 𝐸 is some set that indicates which 
coefficients 𝛽?,F  are nonzero. We assume that (0,0) and (1,0) are included. If those are the 
only ones in 𝐸, then this is the standard linear model we considered in Example 2.1; 𝑤! =
𝛼 + 𝛽𝑝! + 𝜀!, with 𝛽J,J = 𝛼 and 𝛽%,J = 𝛽. If 𝐸 = {(0,0), (1,0), (2,0)}, that is the quadratic 
model we are considering in Example 2.2; 𝑤! = 𝛼 + 𝛽%𝑝! + 𝛽)𝑝!) + 𝜀!, with 𝛽J,J = 𝛼, 𝛽%,J =
𝛽%, and 𝛽),J = 𝛽). If 𝐸 = {(0,0), (1,0), (0,1), (1,1)}, that is a model in which both the p-
score and the q-score matter, and in which there is an interaction term; 𝑤! = 𝛽J,J + 𝛽%,J𝑝! +
𝛽J,%𝑞! + 𝛽%,%𝑝!𝑞! + 𝜀!. 

If we repeat what we did in Section 2, choosing parameter values that minimize the sum of 
squared errors, where (0,0) and (1,0) are included, we arrive at the same generalized Price 
equation in covariance form. 

𝑤"Δ𝑝̅ = Cov(𝑤0, 𝑝) + 𝐸(𝑤∆𝑝)    (GPE.C) 

Also the continuation from the covariance form to the regression form is almost the same. 
For this, we focus on the term summarized as Cov(𝑤0, 𝑝).  

Cov(𝑤0, 𝑝) =
1
𝑛2𝑤0!𝑝!

'

!$%

−
1
𝑛)2𝑤0!

'

!$%

2𝑝!

'

!$%
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Here we fill in ∑ 𝛽:?,F𝑝!?𝑞!F(?,F)∈I  for 𝑤0!  

1
𝑛2R 2 𝛽:?,F𝑝!?𝑞!?

(?,F)	∈	I

S𝑝!

'

!$%

−
1
𝑛2R 2 𝛽:?,F𝑝!?𝑞!F

(?,F)	∈	I

S
'

!$%

1
𝑛2𝑝!

'

!$%

 

Because 𝑝!J𝑞!J = 1, which makes %
'
∑ 𝑝!J𝑞!J𝑝!'
!$% = %

'
∑ 𝑝!'
!$% = 𝑝!J𝑞!J

%
'
∑ 𝑝!'
!$% , we can 

leave out the first term, which means this is also 

1
𝑛2Z 2 𝛽:?,F𝑝!?𝑞!F

(?,F)	∈	I\(J,J)

[𝑝!

'

!$%

−
1
𝑛2Z 2 𝛽:?,F𝑝!?𝑞!F

(?,F)	∈	I\(J,J)

[
'

!$%

1
𝑛2𝑝!

'

!$%

 

and if we change the summation order, this becomes  

2 𝛽:?,F
(?,F)	∈	I\(J,J)

R
1
𝑛2𝑝!?;%

'

!$%

𝑞!F −
1
𝑛2𝑝!?

'

!$%

𝑞!F
1
𝑛2𝑝!

'

!$%

S = 2 𝛽:?,F
(?,F)	∈	I\(J,J)

Cov(𝑝, 𝑝?𝑞F) 

Therefore, if there is any model 𝑤! = ∑ 𝛽?,F𝑝!?𝑞!F(?,F)∈I  that we believe generated the data, 
and for which we estimate the parameters using ordinary least squares (OLS), we can always 
write the following equation, which we call the Generalized Price equation in regression 
form, for this larger set of models.  

𝑤"Δ𝑝̅ = ∑ 𝛽:?,F(?,F)∈I Cov(𝑝, 𝑝?𝑞F) + 𝐸(𝑤∆𝑝)  (GPE.R3) 

Because Cov(𝑝, 𝑝J𝑞J) = Cov(𝑝, 1) = 0, it, again, does not matter if we leave (0,0) in or 
take it out. 

This first of all encompasses the models that were included in Section 2. 

Choosing 𝐸 = {(0,0), (1,0)} here is the same as choosing 𝑅 = 1 in Section 2; both give us 
the linear model, 𝑤! = 𝛼 + 𝛽%,J𝑝! + 𝜀!, and since Cov(𝑝, 𝑝) = Var(𝑝) the above equation 
becomes 

   𝑤"Δ𝑝̅ = 𝛽:%,JVar(𝑝) + 𝐸(𝑤∆𝑝)    (4.1) 

Choosing 𝐸 = {(0,0), (1,0), (2,0)} here is the same as choosing 𝑅 = 2 in Section 2; both give 
us the quadratic model, 𝑤! = 𝛽J,J + 𝛽%,J𝑝! + 𝛽),J𝑝!) + 𝜀!, and the above equation becomes 

𝑤"Δ𝑝̅ = 𝛽:%,JVar(𝑝) + 𝛽:),JCov(𝑝, 𝑝)) + 𝐸(𝑤∆𝑝)   (4.2) 

This setup also allows for models that are not included in Section 2.  

Choosing 𝐸 = {(0,0), (1,0), (0,1), (1,1)}, for instance, give us a model with an interaction 
term between the p-score and the q-score, 𝑤! = 𝛽J,J + 𝛽%,J𝑝! + 𝛽J,%𝑞! + 𝛽%,%𝑝!𝑞! + 𝜀!, and 
the above equation becomes 
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𝑤"Δ𝑝̅ = 𝛽:%,JVar(𝑝) + 𝛽:J,%Cov(𝑝, 𝑞) + 𝛽:%,%Cov(𝑝, 𝑝𝑞) + 𝐸(𝑤∆𝑝) (4.3) 

This works for all models; the only thing that we need for this to work is that the statistical 
model includes a fixed term (for which we set the derivative to its coefficient to 0) and a 
linear term (for which we set the derivative to its coefficient to 0).  

Also here, we can rewrite the regression form:  

𝑤"Δ𝑝̅ = W∑ 𝛽:?,F(?,F)∈I
0123,,,4L35
678(,)

XVar(𝑝) + 𝐸(𝑤∆𝑝)  (GPE.R4) 

 

The Price equation can be generalized, also in a setting with two sets of genes, one captured 
by the p-score, the changes in which we track, and one by a q-score, the changes in which 
we do not track. The larger variety of possible true models, compared to models with a p-
score only, is reflected in the larger variety of Price-like equations. Which one we can 
interpret meaningfully with how much confidence depends, as before, on completely 
standard statistical considerations concerning model specification and significance of 
parameter estimates.  

 

5. Modeling 
 

Part of statistics is having to choose between statistical models, based on data. That means 
that the best we can do is to maximize the probability that we pick the right model. 
Modelling, on the other hand, relieves us of that uncertainty, as the model is just whatever 
we choose it to be. That makes it even more clear that there is something to be gained from 
matching the model that we happen to have chosen with the right Price-like equation.  
 
While we have seen that the literature is somewhat sloppy on how to use the Price equation 
on data, it is also not always very specific or precise on how the Price equation is to be used 
on models. In this section, we will first circumvent all complications, by assuming that we 
have a deterministic model, without noise. This is of course totally unrealistic, but it allows 
us to make a point about over- and underspecification of Price-like equations in a modelling 
context. This point is similar to the point about over- or underspecification in a statistical 
context. Moreover, this point also carries over to a setting where we assume an infinitely 
large population. This assumption allows us to treat the population dynamics as 
deterministic, even if there is uncertainty at the individual level about the number of 
offspring. In the last subsection, we will drop those assumptions, and show how even well-
specified Price-like equations have limitations in describing properties of dynamics in 
stochastic models that do not assume that the population size is large enough for models 
with infinite population size to be a good approximation.  
 
For simplicity, we begin assuming asexual reproduction. All points made below carry over to 
a setting with sexual reproduction but are easier made without. At the end of this section, 
we will revisit heterozygote advantage, for which we do switch to sexual reproduction. 
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Model A 
 
The first model is 𝑤! = 𝛼 + 𝛽%,J𝑝!. The absence of a noise term severely limits what values 𝛼 
and 𝛽%,J can take. If 𝑝!  is binary, then the fact that numbers of offspring are integers means 
that we can also only choose integers for 𝛼 and 𝛽%,J. If 𝑝!  is restricted to be 0, %

)
 or 1, then 𝛼 

can still only be an integer, while 𝛽%,J needs to be an even number. Larger sets of possible p-
scores further reduce what values for 𝛽%,J we can choose. If we assume infinite populations, 
with uncertainty at the individual level, but deterministic population dynamics, these 
restrictions are lifted, but for now we just assume that they are satisfied.  
 
A deterministic model implies that for any given parent population, represented by a vector 
of p-scores 𝑝, there is only one possible transition to an offspring population. For that one 
transition, we can use the Generalized Price equation, where the sum of squared errors is 
minimized, and equal to 0, at 𝛼\ = 𝛼 and 𝛽:%,J = 𝛽%,J. Here we simply use the matching 
statistical model, which in this case only needs to include 𝛼 and 𝛽%,J. The matching Price-like 
equation for this model is  

𝑤"Δ𝑝̅ = 𝛽:%,JVar(𝑝) 

where 𝛽:%,J does not depend on which 𝑝 we choose, and equals 𝛽%,J for any composition of 
the parent population. This equation can therefore serve as a useful summary of the 
dynamics induced by the model.  
 
Model B 
 
The second model is 𝑤! = 𝛼 + 𝛽%,J𝑝! + 𝛽J,%𝑞!. Again, the deterministic nature of the model 
puts restrictions on the values we can choose for 𝛼, 𝛽%,J, and 𝛽J,%, but those restrictions 
would be lifted if we assume infinite populations, with uncertainty at the individual level, but 
deterministic dynamics at the population level.  
 
As before, we can use the Generalized Price equation, where the sum of squared errors is 
minimized, and equal to 0, at 𝛼\ = 𝛼, 𝛽:%,J = 𝛽%,J, and 𝛽:J,% = 𝛽J,%. The matching Price-like 
equation for this model is 

𝑤"Δ𝑝̅ = 𝛽:%,JVar(𝑝) + 𝛽:J,%Cov(𝑝, 𝑞)  (5.B) 

in which 𝛽:%,J and 𝛽:J,% do not depend on the choice of 𝑝 and 𝑞, and are equal to 𝛽%,J and 𝛽%,J, 
respectively, for any composition of the parent population. 
 
Model C 
 
The third model is 𝑤! = 𝛼 + 𝛽%,J𝑝! + 𝛽J,%𝑞! + 𝛽%,%𝑝!𝑞!. Here we jump over the details, and 
go straight to the matching Price-like equation for this model, which is 
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𝑤"Δ𝑝̅ = 𝛽:%,JVar(𝑝) + 𝛽:J,%Cov(𝑝, 𝑞) + 𝛽:%,%Cov(𝑝, 𝑝𝑞)  (5.C) 
 
These three examples together illustrate that, also when modeling, there is a multitude of 
Price-like equations, that capture properties of the population dynamics implied by the 
model.  
 
Mismatching models and Price-like equations 
 
It is important to note that also in this modelling setting, all of these Price-like equations 
remain identities, and they can be combined, not just with the model with respect to which 
they minimize the sum of squared errors, but also with all other, possibly richer models, as 
long as they have a constant term, and a linear term for 𝑝!. As a symptom of such a 
mismatch, the coefficients in the Price-like equation stop being constants; they will vary with 
the composition of the parent population (the 𝑝 and, if present, the 𝑞 vector) if they are 
applied to other models. Another symptom is that the coefficients in the Price-like equation 
stop matching the according coefficients in the model.  
 
 
Applying the Generalized Price equation for Model A to Model B 
 
If we apply the Generalized Price equation for Model A to Model B, then the sum of squared 
errors can no longer be reduced to be 0, and is minimized at 𝛽:%,J = 𝛽%,J + 𝛽J,%

012(,,L)
678(,)

. The 

fact that the sum of squared errors is positive is noteworthy. The model is deterministic, and 
has no errors, and yet the sum of squared errors in the Price-like equation is larger than 0. 
By lack of actual errors, this can only be caused by misspecification of the model. The value 
for 𝛽:%,J at which the sum of squared errors is minimized if we apply the Generalized Price 
equation for Model A to Model B follows from the fact that both 𝑤"Δ𝑝̅ = 𝛽:%,JVar(𝑝) and 
𝑤"Δ𝑝̅ = 𝛽%,JVar(𝑝) + 𝛽J,%Cov(𝑝, 𝑞) are identities. The first follows from the derivation of the 
Generalized Price equation, combined with Model A, and the second was established above 
for transitions generated by Model B. We therefore end up with the following identity: 
 

𝑤"Δ𝑝̅ = 𝛽:%,JVar(𝑝) 
 
where 𝛽:%,J = 𝛽%,J + 𝛽J,%

012(,,L)
678(,)

. This implies that 𝛽:%,J no longer is a constant, as it varies 

with 𝑝 and 𝑞 through the 012(,,L)
678(,)

 – term. It also implies that  𝛽:%,J is not the linear effect for 

this model, which would be 𝛽%,J. 
 
Applying the Generalized Price equation for Model A to Model C 
 
If we apply the Generalized Price equation for Model A to Model C, then the sum of squared 
errors can also no longer be reduced to be 0, and is minimized at 𝛽%,J + 𝛽J,%

012(,,L)
678(,)

+

𝛽%,%
012(,,,L)
678(,)

. We therefore end up with the following identity: 

 
𝑤"Δ𝑝̅ = 𝛽:%,JVar(𝑝) 
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where 𝛽:%,J = 𝛽%,J + 𝛽J,%

012(,,L)
678(,)

+ 𝛽%,%
012(,,,L)
678(,)

. This implies that 𝛽:%,J is no longer a constant, 

as it varies with 𝑝 and 𝑞 through the 012(,,L)
678(,)

 – term and the 012(,,,L)
678(,)

 – term. It also implies 

that  𝛽:%,J is not the linear effect for this model, which would be 𝛽%,J. 
 
Applying the Generalized Price equation for Model B to Model C 
 
This would lead to more complex relations between, on the one hand, 𝛽:%,J and 𝛽:J,%, and, on 
the other, the true 𝛽%,J, 𝛽J,%, and 𝛽%,%, but the idea is the same: misspecification leads to a 
positive sum of squared errors, when it is being minimized, and coefficients that change with 
the state of the parent population.  

Also with modeling, misspecification is possible. This leads to Price-like equations in which 
the coefficients are not constant. 

 
Expected changes 
 
If we do away with the assumption of a deterministic model, one could still hope for the 
(Generalized) Price equation to be correct in expectation. In order to explore that possibility, 
we go back to Model A, but now with noise. That means that we go back to writing the 
model as 𝑤! = 𝛼 + 𝛽%,J𝑝! + 𝜖!. Explicitly or implicitly, the noise is typically assumed to have 
mean zero, which makes 𝛼 + 𝛽%,J𝑝!  the expected number of offspring of someone with p-
score of 𝑝!. Numbers of realized offspring are obviously integers, limiting what values 𝑤!  can 
take, but the fact that we assume (continuous) probabilities with which an individual has 
these integer numbers of offspring, implies that 𝛼 and 𝛽%,J can be any number. The model 
then captures how the p-score affects the distribution of the number of offspring, 
summarized by 𝛼 + 𝛽𝑝!  being the expected value of that distribution.  
 
We begin by fixing a parent generation characterized by a vector of p-scores; 𝑝 =
[𝑝%, … , 𝑝']. Any choice for 𝑝 also implies an average p-score 𝑝̅ and a “variance” in p-scores 
Var(𝑝). The new generation then is a combination of 𝑛 independent random variables, one 
for every individual, as given by the model. For any realization of these random variables, 
one could write the Generalized Price equation that belongs to Model A. With asexual 
reproduction and no mutation – which implies that 𝐸(𝑤∆𝑝) = 0 for every realization of 
these random variables – this would be 
 

𝑤"Δ𝑝̅ = 𝛽:%,JVar(𝑝) 
 
It is worth stressing once more that this equation holds for every realization of the random 
variables. The average fitness 𝑤"  and the value of 𝛽:% do, of course, depend on the realization, 
while the expected values of 𝑤"  and 𝛽:%,J, obvioulsy, do not. The expected value of 𝑤"  is the 
expected average fitness %

'
∑ B𝛼 + 𝛽%,J𝑝!C'
%$% . The expected value of 𝛽:%,J is 𝛽%,J, because we 

have assumed that the data are generated by Model A, and that is what it means for 𝛽:%,J to 
be an unbiased estimator of 𝛽%,J. All of this could make one hope that maybe the 
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(Generalized) Price equation could reflect a property of the expected change in average p-
score implied by the model. This hope is unfounded, as the following simple example shows.  
 
Assume a population of two parents, one without and one with a certain gene; 𝑝 = [0,1]. 
Without the gene, the probability of having 0 offspring and the probability of having 2 is 
both %

)
. With the gene, the probability of having 1 offspring and the probability of having 3 is 

both %
)
. That implies that the model fits 𝑤! = 𝛼 + 𝛽%,J𝑝! + 𝜖!, where 𝛼 = 1, 𝛽%,J = 1, and 𝜖!  

is 1 or −1, both with probability %
)
.  

 
This super simple model implies that there are four possible transitions, each with 
probability %

-
. Var(𝑝) is a property of the parent population, so Var(𝑝) = %

-
 for all four 

transitions. Below we list the ingredients of the Price equation in regression form for the 4 
transitions, all of which happen with probability %

-
.  

 
If the parents have 0 and 1 offspring, respectively, then 𝑤" = %

)
, Δ𝑝̅ = %

)
, and 𝛽:%,J = 1.  

If the parents have 0 and 3 offspring, respectively, then 𝑤" = .
)
, Δ𝑝̅ = %

)
, and 𝛽:%,J = 3.  

If the parents have 2 and 1 offspring, respectively, then 𝑤" = .
)
, Δ𝑝̅ = − %

/
, and 𝛽:%,J = −1.  

If the parents have 2 and 3 offspring, respectively, then 𝑤" = M
)
, Δ𝑝̅ = %

%J
, and 𝛽:%,J = 1.  

 
This helps verify that the expected value of 𝛽:%,J is indeed 𝛽%,J = 1, as 𝐸b𝛽:%,Jc =
%
-
(1 + 3 − 1 + 1) = 1. Also, that the expected value of 𝑤"  is indeed  %

'
∑ B𝛼 + 𝛽%,J𝑝!C'
%$% =

%
)
(1 + 2) = 	 .

)
, as 𝐸[𝑤"] = %

-
W%
)
+ .

)
+ .

)
+ M

)
X = 	 .

)
. The expected value of Δ𝑝̅, on the other 

hand, is 𝐸[Δ𝑝̅] = %
-
W%
)
+ %

)
− %

/
+ %

%J
X = 	 N

.J
. That implies that, while the (Generalized) Price 

equation holds for every realization, we cannot replace all terms in it by their expected 
values, as 
 

3
2 ∙

7
30 ≠ 1 ∙

1
4 

 
In other words, it is not generally true that  
 

𝐸[𝑤"]𝐸[Δ𝑝̅] = 𝐸b𝛽:%,JcVar(𝑝) 
 
with expectations taken over the random variables regarding the reproduction.  
 
As a side note, we can try to reconcile this with [8], which contains a claim that one might 
think, at first sight, contradicts this. Therefore, we would have to observe that in that paper, 
there are two ways in which the Price equation is used differently. The first is that it uses the 
covariance form, and not the regression form. The second is that it does not use realized 
fitnesses, but defines a new variable 𝑣! =

A!
AO

 for every realization, and uses that instead of 
the realized fitnesses. Both of these changes are needed to make this work; below we will 
show that neither one of the two is enough on its own. It is also very important to observe 
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that the change in variable from 𝑤!  to 𝑣!  obstructs any meaningful interpretation of the 
regression coefficients that is stable across realizations. The claim in [8] is therefore both 
true and useless. 
 
For all 4 realizations, we listed 𝑤" , Δ𝑝̅, and 𝛽:%,J, as calculated above, and we calculate 
Cov(𝑝, 𝑤). The regression coefficient for 𝑣 instead of 𝑤, which we denote by 𝜗:%,J here, is 
simply 𝛽:%,J divided by 𝑤" , as the variable 𝑣!  is defined as 𝑤!  divided by 𝑤" . Finally,  Cov(𝑝, 𝑣) is 
Cov(𝑝, 𝑤) divided by 𝑤"  for the same reason.  
 

 Parent 
1 

Parent 
2 𝑤"  Δ𝑝̅ 𝛽'!,# Cov(𝑝,𝑤) 𝜗'!,# Cov(𝑝, 𝑣) 

Transition 1 0	 1	 1
2 

1
2 1 

1
4 1 

1
2 

Transition 2 0	 3	 3
2 

1
2 3 

3
4 

1
3 

1
2 

Transition 3 2	 1	 3
2 −

1
6 −1 −

1
4 −

1
9 −

1
6 

Transition 4 2	 3	 5
2 

1
10 1 

1
4 

1
25 

1
10 

Average 1 2 
3
2 

7
30 1 

1
4 

71
225 

7
30 

  
 
From this table, we can see, as before, that it is not generally true that 𝐸[𝑤"]𝐸[Δ𝑝̅] =
𝐸b𝛽:%,JcVar(𝑝), as 	

3
2 ∙

7
30 ≠ 1 ∙

1
4 

 
Also, we can see that it is not generally true that 𝐸[𝑤"]𝐸[Δ𝑝̅] = 𝐸[Cov(𝑝, 𝑤)], as 
 

3
2 ∙

7
30 ≠

1
4 

 
Also, we can see that it is not generally true that 𝐸[Δ𝑝̅] = 𝐸b𝜗\1,0cVar(𝑝), as 
 

7
30 ≠

71
225 ∙

1
4 

 
The only thing that is true, is that 𝐸[Δ𝑝̅] = 𝐸[Cov(𝑝, 𝑣)]. This suggests that both the switch 
from the regression to the covariance form, and the switch from 𝑤 to 𝑣 are necessary – 
while regression coefficients relating to 𝑣 do not allow for a meaningful interpretation.  
 
 
Infinite populations 
 
With ever increasing populations, however, the variance in 𝑤" , 𝑝′, and 𝛽:%,J decreases ever 
more. In the limit of infinitely large populations, the dynamics become deterministic, and the 
(Generalized) Price equation will also hold again.  
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To illustrate this, we assume the same model as above, but now not with one parent without 
the gene, and one with, but with infinitely many parents, while we still assume that there 
are equally many parents with and without the gene. Under that assumption, the dynamics 
become deterministic. That implies that 𝑤" = .

)
, which coincides with the expected value for 

the example when there were only two members in the parent population. It also implies 
that 𝛽:%,J = 1, which also matches the expected value in the earlier setting, and Var(𝑝) is 
also still %

-
. The only term that changes, is Δ𝑝̅; with deterministic dynamics, 𝑝* = %∙J;)∙%

%∙%;)∙%
= )

.
, 

which makes Δ𝑝̅ = %
/
.  

3
2 ∙
1
6 = 1 ∙

1
4 

 
Notation 
 
With infinitely large populations, it is useful to change the notation. Instead of going over 
individuals and representing what p-scores they have, one would have to go over p-scores 
and indicate the relative size of the population is that has that p-score.  
 
To keep it relatively simple, we can think of a finite set of possible p-scores an individual can 
have, for instance ~0, %

Q
, )
Q
, … , 1�. An infinite population can then be characterized by a vector 

𝑥 = [𝑥J, 𝑥%, … , 𝑥Q], in which 𝑥F  measures the (relative) quantity of individuals with p-score F
Q
. 

One can assume that these are shares of the total population, in which case ∑ 𝑥FQ
F$J = 1. 

Alternatively, one can imagine that also with infinite populations, the size of the offspring 
generation as a whole may be larger or smaller than the parent population. This would 
require the possibility that population vectors do not add up to 1, which would make these 
numbers not only reflect the relative sizes of the set of individuals with different p-scores 
within one population, but also allow for a comparison of the size of the parent population 
and the offspring population.  

The average p-score in the parent population would then be 𝑝̅ =
∑ R3∙

3
5

5
3#6

∑ R35
3#6

. The quantities in 

the offspring generation could be denoted by 𝑦 = [𝑦J, 𝑦%, … , 𝑦Q], and these would be given 
by 𝑦F = 𝑥F ∙ 𝑤F. If we assume Model A, as we have above, that means that 𝑦F = 𝑥F ∙

W𝛼 + 𝛽%,J
F
Q
X. The average p-score in the offspring generation is 𝑝̅* =

∑ S3∙
3
5

5
3#6

∑ S35
3#6

, and the 

variance in p-score is Var(𝑝) = ∑ R3
∑ R45
4#6

WF
Q
X
)

Q
F$% − o∑ R3

∑ R45
4#6

F
Q

Q
!$% p

)
.  

With infinite populations, the randomness disappears, and we are back in a situation where 
the Generalized Price equation in covariance form holds: 

𝑤"Δ𝑝̅ = Cov(𝑤0, 𝑝) 

Here we left out the 𝐸(𝑤∆𝑝)–term, because with asexual reproduction, this would be 0 
always, but also with sexual reproduction, this would be 0 in the limit of infinitely large 
populations if we assume fair meiosis.  
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If we then assume Model A, as we have above, then the equation that we had for a parent 
population, half of which has a p-score of 0, while the other half has a p-score of 1, 
generalizes to an equation that applies to all compositions of the parent population: 

𝑤"Δ𝑝̅ = 𝛽:%,J ∙ Var(𝑝) 

In stochastic models, the (Generalized) Price equation holds for every realization. That does 
not imply that it holds in expectation. However, if we assume that the population is large 
enough for the infinite population model to be a good approximation, then the Generalized 
Price equation will be informative about the dynamics. Misspecification concerns of course 
still apply. 

 
Heterozygote advantage revisited 

With the relation between modeling and the Price equation sorted out, we can revisit 
selection with and without heterozygote advantage. This means that we go back to a diploid 
setting, in which the p-scores can be 0, %

)
, and 1. 

Model A 
 
First, we start with the linear model, which is 𝑤! = 𝛼 + 𝛽%𝑝! + 𝜀!. We called this Model A at 
the beginning of this section, and we will also call it Model A here. We furthermore assume 
an infinite population and fair meiosis. Under those assumptions, the Generalized Price 
equation for the linear model, applied to the linear model, is 
 

𝑤"Δ𝑝̅ = 𝛽:%Var(𝑝) 
 
Here, 𝛽:% is equal to the true 𝛽%, and if we now would like to translate this equation into a 
criterion for whether or not (or, possibly: when) this gene is selected for, then this is really 
straightforward: at all frequencies, the gene is selected for if  
 

𝛽% > 0 
 
We will refer to this as the rule for selection of a non-social trait with linear fitness effects. 
 
Model B 
 
If we take the quadratic model, then the fitness function is 𝑤! = 𝛼 + 𝛽%𝑝! + 𝛽)𝑝!) + 𝜀!. In 
the beginning of this section, we compared Model A to a different Model B, but here we will 
nonetheless refer to the quadratic model as Model B too, as it will be clear what this refers 
to here. The Generalized Price equation for the quadratic model, applied to the quadratic 
model, is 
 

𝑤"Δ𝑝̅ = 𝛽:%Var(𝑝) + 𝛽:)Cov(𝑝, 𝑝)) 
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Here, 𝛽:% is equal to the true 𝛽%, and 𝛽:) is equal to the true 𝛽). If we now would like to 
translate this equation into a criterion for when this gene is selected for, then this is still 
straightforward, but less concise: the gene is selected for if  
 

𝛽%Var(𝑝) + 𝛽)Cov(𝑝, 𝑝)) > 0 
 
If we now furthermore assume random mating between generations, then at an allele 
frequency of 𝑝, the shares of individuals with a p-score of 0, %

)
, and 1 are: (1 − 𝑝)), 

2𝑝(1 − 𝑝), and 𝑝), respectively. That makes    
 

Var(𝑝) = 𝐸[𝑝)] − 𝐸)[𝑝] =
1
42𝑝

(1 − 𝑝) + 𝑝) − o
1
22𝑝

(1 − 𝑝) + 𝑝)p
)

=
1
2𝑝
(1 − 𝑝) + 𝑝) − 𝑝) =

1
2𝑝
(1 − 𝑝) 

and 
 

Cov(𝑝, 𝑝)) = 𝐸[𝑝.] − 𝐸[𝑝]𝐸[𝑝)] = o
1
8 2𝑝

(1 − 𝑝) + 𝑝)p − 𝑝 o
1
2 𝑝
(1 − 𝑝) + 𝑝)p

=
1
4𝑝 +

3
4𝑝

) − 𝑝 o
1
2𝑝 +

1
2𝑝

)p =
1
4𝑝 +

1
4𝑝

) −
1
2𝑝

. =
1
2𝑝
(1 − 𝑝) o

1
2 + 𝑝p 

 
With random mating, the criterion for when this gene is selected for then becomes  
 

𝛽% + 𝛽) o
1
2 + 𝑝p > 0 

Heterozygote advantage would mean that 𝛽% > 0 and 𝛽) < 0, and if we for instance take 
𝛽% = 1 and 𝛽) = −1, then that simplifies to 

𝑝 <
1
2 

An important feature is that the rule for selection now depends on the population state, as 
Var(𝑝) and Cov(𝑝, 𝑝)) are not multiples of each other. This implies that 𝑤"Δ𝑝̅ may be 
positive for some, and negative for other population states. With additional assumptions, 
such as random mating, this reduces to frequency dependence – which is something we 
should expect with heterozygote advantage. The 𝛽:% and 𝛽:), however, are not dependent on 
the population state, as they are equal to the true 𝛽% and 𝛽), and therefore constant. Nice! 

The Generalized Price equation for Model A applied to Model B 

The Generalized Price equation for the linear model, applied to the quadratic model, is 
 

𝑤"Δ𝑝̅ = 𝛽:%Var(𝑝) 

with 𝛽:% = 𝛽% + 𝛽)
0123,,,(5
678(,)

. This also gets the direction of selection right for every 

population state, but here the 𝛽:% is not an estimator of anything in the quadratic model. As a 
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symptom of this, 𝛽:% depends on the population state. With the additional assumption of 

random mating, 0123,,,
(5

678(,)
= W%

)
+ 𝑝X, and therefore, under that assumption, 𝛽:% = 𝛽% +

𝛽) W
%
)
+ 𝑝X, which makes the 𝛽:% vary with 𝑝. 

 
6. Discussion 

One of the contributions of the Generalized Price equation is that it helps explain the lack of 
convergence in the debate on the Price equation, as well as the lack of convergence in the 
debate on the results that are derived with it (which we will come back to in the twin TI 
discussion paper on the general version of Hamilton’s rule). If we draw the positions with 
somewhat broad strokes, then on the one hand there is a majority position that has 
confidence in the method of using the original Price equation to derive results, and that 
believes those results to be correct and meaningful (see for instance [7], [9-21]). On the 
other hand, there is a minority position that disagrees with the results as well as the method 
(see for instance [2-5], [22-26]). I claim that the lack of convergence in the debate is the 
result of looking at everything through the lens of the original Price equation, instead of the 
generalized version. The original Price equation, which we understand to be the Generalized 
Price equation for the standard linear model, is mismatched when paired with models that 
are different, or more general, or with data that do not support the standard linear model. 
Empirical or theoretical claims that would be correct and meaningful under the standard 
linear model, or for data that would support the standard linear model, are easily 
interpreted to also be correct and meaningful in general. This is facilitated by the fact that 
the original Price equation is an identity, which does not cease to hold when it is combined 
with models other than the standard linear model, or with data that are generated by other 
models. If not paired with statistics, the original Price equation does not differentiate 
between data that support the standard linear model and data that do not, when applied to 
data – and neither do the other Price-like equations we arrive at when we combine the 
Generalized Price equation with other statistical models. While most of the papers from the 
minority position, including mine, are negative, in the sense that they point to where this 
can be problematic, the Generalized Price equation not only points to the problem, but also 
gives a solution, as it helps formulate correct and meaningful alternatives to accurately 
describe the population genetic dynamics, when the way in which fitnesses depend on p-
scores does not fit the standard linear model.  

It cannot be wrong because it is an identity. The arguments in defense of the way the Price 
equation is used in the literature typically include the fact that it is an identity (and therefore 
that it cannot be wrong) as well as references to its generality. In order to counterbalance 
this, it is worthwhile, first of all, to point out that neither being an identity nor being general 
is all that special. There are literally infinitely many equations, all of which are identities, and 
all of which are completely general in the same way that the Price equation is general. In a 
failed attempt to be funny, I pointed out in an earlier paper [3] that if we take the original 
Price equation in covariance form, and divide Cov(𝑤, 𝑝), not by Var(𝑝), but by the Planck 
constant ℎ times the number of times Denmark won the Eurovision Song Contest (denoted 
by 𝐷𝐾), then we can rewrite the Price equation as	 



 36 

𝑤"Δ𝑝̅ =
Cov(𝑤, 𝑝)
ℎ ∙ 𝐷𝐾 ∙ ℎ ∙ 𝐷𝐾 + 𝐸(𝑤∆𝑝) 

As a next step, we can define 𝛾 as 012(A,,)
T∙UV

, and write 

𝑤"Δ𝑝̅ = 𝛾 ∙ ℎ ∙ 𝐷𝐾 + 𝐸(𝑤∆𝑝) 

This equation is every bit as much an identity as the original Price equation in regression 
form, and it is also every bit as general. The equation as a whole, and the coefficient 𝛾 in 
particular, however, are clearly devoid of any use or meaning. What this example illustrates, 
is that it is not enough to be an identity. What we need is an identity with a meaningful 
interpretation. The original Price equation does have a meaningful interpretation for data 
that are generated by the standard linear model. We find that the Generalized Price 
equation, combined with different statistical models, produces other equations, that also are 
identities and that also are general, and that have a meaningful interpretation for data that 
are indeed generated by their presupposed statistical models. Having a meaningful 
interpretation therefore is limited to a subset of the models, or of the possible datasets, that 
the equations can be applied to. When dealing with data, one would have to resort to 
standard statistics to see if the data can inform us about the model that has generated them. 
Having a meaningful interpretation then is limited to those datasets that make us decide in 
favour of the model associated with any specific Price-like equation.  

What we can use the Generalized Price equation for. In a modeling context, we either 
directly assume a relation between p-scores and fitnesses, or we have a model that implies 
such a relation. For instance, we can assume a model 𝑤! = 𝛼 + ∑ 𝛽"𝑝!"#

"$%  for some 𝑅, in 
combination with the assumption of unbiased transmission. Alternatively, we can make 
modeling assumptions that imply such a relation between p-scores and fitnesses. The 
according Price-like equation in regression form then is 

𝑤"Δ𝑝̅ =2𝛽"Cov(𝑝, 𝑝")
#

"$%

 

This implies that all terms on the right-hand side are a combination of a model parameter, 
𝛽", that is independent of the population state, and a term that reflects a property of a 
population state, Cov(𝑝, 𝑝"). The equation then helps state how in infinitely large 
populations, the change in average p-score, corrected for the growth or shrinking of the 
overall population, on the left-hand side, depends on the combination of the current 
population state, and the model parameters, which we see on the right-hand side. This now 
describes the population genetic dynamics for all population states, as the model 
parameters 𝛽"  are constants that do not change with the population state. This may or may 
not be helpful for finding out properties of the model that we are interested in. In Section 4 
we have also seen that we can choose richer sets of models too, as long as models in it 
include a constant and a term that is linear in the p-score. 
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Fig. 3|Nested models and their Price-like equations. There are different models, and each model has its 
own Price-like equation. These Price-like equations are general, in the sense that they can be written for 
any dataset, regardless of the underlying data generating process or, in a theory context, for any model. 
The terms in it, however, only have a meaningful interpretation if the data are generated by a model in 
the set that the Price-like equation belongs to. In line with the setup in this paper, set A would represent 
models that are linear in the p-score (𝑤& = 𝛼 + 𝛽!,#𝑝&). This is the set of models for which the regression 
coefficient in the original Price equation in regression form has a meaningful interpretation. Set B could 
consist of models that are quadratic in the p-score (𝑤& = 𝛼 + 𝛽!,#𝑝& + 𝛽',#𝑝&'), set C could consist of 
models that also include a coefficient for the p-score to the power 3 (𝑤& = 𝛼 + 𝛽!,#𝑝& ++𝛽',#𝑝&' +
𝛽(,#𝑝&(), set D models that are linear in the p-score and the q-score (𝑤& = 𝛼 + 𝛽!,#𝑝& + 𝛽#,!𝑞&), and set E 
models that include an interaction term between the p-score and the q-score (𝑤& = 𝛼 + 𝛽!,#𝑝& + 𝛽#,!𝑞& +
𝛽!,!𝑝&𝑞&). The Price-like equations for these different models are all different.   

Dynamic (in)sufficiency revisited. One possibility for a full model is that the way fitnesses 
depend on the genes that an individual carries is all there is to it. In that case, a model 𝑤! =
𝛼 + ∑ 𝛽"𝑝!"#

"$%  maps any parent population state 𝑝 to an offspring population state 𝑝′. For 
simplicity, we assume that this is a deterministic model, or an infinitely large population, 
which also makes this transition deterministic. (The numbering of the offspring generation, 
that is, which individual is labeled individual 1, and so on, is irrelevant; all covariances are 
invariant to permutations of the population vector). We can then iterate this update step, 
which makes this a dynamically sufficient population dynamics.  

One reasonable observation to make here, is that the Price equation itself is not something 
of which it is useful to describe it as dynamically sufficient or not; dynamic sufficiency is a 
relevant property of the model it is applied to, and not of the Price equation itself [5]. If, on 
the other hand, one sees the Price equation as a tool to compute properties of the offspring 
generation, then it is tempting to describe it as dynamically insufficient. The Price equation 
gives the new average p-score, and uses the old p-score and the covariances Cov(𝑝, 𝑝") 
pertaining to the first generation to get there. If we then want to repeat this update step, 
and go from the second population state to the third one, we would need more than the 
average p-score in the second state, because now we also need the covariances Cov(𝑝, 𝑝") 
pertaining to the second generation. These covariances in the second state we can get from 
the model itself, but we cannot get those from applying the Price equation to the first 
population state. In that sense, one could be tempted to say that the Price equation is not 

all models      E                                  C      D                   B A 

all models 
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dynamically sufficient; once we have reduced what we know about a population state to its 
average p-score, we cannot apply it again.  

In the twin TI discussion paper on the general version of Hamilton’s rule, we will use the 
Price equation to derive Hamilton’s rule, and there, we have a setting in which the q-score 
does not reflect the dose of a gene in the individual itself, but in its partner. The model can 
then describe how the fitness of an individual depends on its p- and q-score, and this would 
produce the p-scores in the new generation. It would however not generate which 
individuals are partnered up with whom in the new generation, and therefore it would not 
identify who has which q-score in the new generation. In this case a full model would have 
to include more than the fitness function. In the absense of assumptions about the matching 
in the new generation, such a model would be dynamically insufficient. 

Notice that this is not the same as the regression coefficients 𝛽:", or 𝛽:?,F, depending on the 
population state, which is regularly also referred to as dynamical insufficiency. This is 
incorrect, and really a symptom of misspecification. Describing the dependency of the 
regression coefficients on the population state as dynamical insufficiency is just not correct, 
and it can have the effect of not recognizing this as a red flag. 

Summarizing. The paper in which the Price equation was presented was ambiguous about 
whether this was meant for statistics or modeling, and it was a bit loose with using terms 
from statistics and probability theory. That seemed harmless, but it has led to lasting 
damage in this field. Compared to the derivation of the original Price equation, it takes only 
a few extra lines of algebra to derive the Generalized Price equation. Behind those extra 
lines, however, hides an understanding that the original Price equation in regression form is 
really just one out of a variety of possible equations, and that the terms in it only have 
meaning if the data for this transition justify the conclusion that they are generated by the 
linear model. The original Price equation can however be written for any change between a 
parent and an offspring generation, also changes that are very unlikely to have been 
generated by the linear model that would give the terms in the classical Price equation 
meaning. For alternative models, one can write alternative Price-like equations, and those 
are equally general, in the sense that these can be written for any transition too. These other 
Price-like equations come with the same limitations on the interpretation of the terms in it; 
if the data do not justify concluding that the model the Price-like equation is build off of is 
accurate, the terms in it lose their meaning. The Generalized Price equation does however 
offer a Price-like equation for every model. The classical Price equation is just one of them; 
the one for the linear model.  
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Appendix 
A. Calculations for Example 2.1 

𝑝 = [1,0], 𝑤 = [2,0] and 𝐴 = 𝑃 = T1 1
0 0U 

𝑤" = %
)
(2 + 0) = 1 

Δ𝑝̅ = 𝑝̅* − 𝑝̅ = %
)
(1 + 1) − %

)
(1 + 0) = 1 − %

)
= %

)
 

𝐸(𝑤∆𝑝) =
1
𝑛2𝑤! J

∑ 𝑃!&(
&$%

𝑤!
− 𝑝!K =

'

!$%

1
𝑛2Z2𝑃!&

(

&$%

−𝑤!𝑝![ =
'

!$%

%
)
(2) − %

)
(2) = 0 

Cov(𝑤, 𝑝) =
1
𝑛2𝑤!𝑝!

'

!$%

−
1
𝑛)2𝑤!

'

!$%

2𝑝!

'

!$%

= %
)
(2 ∙ 1 + 0 ∙ 0) − %

-
(2 + 0)(1 + 0) = 1 − %

)
= %

)
 

Var(𝑝) =
1
𝑛2𝑝!)

'

!$%

−
1
𝑛) R2𝑝!

'

!$%

S
)

= %
)
(1) + 0)) − %

-
(1 + 0)) = %

)
− %

-
= %

-
 

𝛽 =
Cov(𝑤, 𝑝)
Var(𝑝) =

%
)
%
-
= 2 

B. Calculations for Example 2.2 

𝑝 = T1, %
)
U, 𝑤 = [2,0] and 𝐴 = 𝑃 = T1 1

0 0U 

𝑤" = %
)
(2 + 0) = 1 

Δ𝑝̅ = 𝑝̅* − 𝑝̅ = %
)
(1 + 1) − %

)
W1 + %

)
X = 1 − .

-
= %

-
 

𝐸(𝑤∆𝑝) =
1
𝑛2𝑤! J

∑ 𝑃!&(
&$%

𝑤!
− 𝑝!K =

'

!$%

1
𝑛2Z2𝑃!&

(

&$%

−𝑤!𝑝![ =
'

!$%

%
)
(2) − %

)
(2) = 0 

Cov(𝑤, 𝑝) =
1
𝑛2𝑤!𝑝!

'

!$%

−
1
𝑛)2𝑤!

'

!$%

2𝑝!

'

!$%

= %
)
W2 ∙ 1 + 0 ∙ %

)
X − %

-
(2 + 0) W1 + %

)
X = 1 − .

-
= %

-
 

Var(𝑝) =
1
𝑛2𝑝!)

'

!$%

−
1
𝑛) R2𝑝!

'

!$%

S
)

= %
)
o1) + W%

)
X
)
p − %

-
W1 + %

)
X
)
= M

@
− B

%/
= %

%/
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𝛽 =
Cov(𝑤, 𝑝)
Var(𝑝) =

%
-
%
%/
= 4	 

C. Calculations for Example 3.1 

𝑝 = b1,0, $(, 0c, 𝑤 = b0(,
$
(, 1,1c, 𝐴 = d

1 1 1 0
0 0 0 1
1 1 0 0
0 0 1 1

e, and 𝑃 = d

$
(

$
(

$
( 0

0 0 0 0
0 $

( 0 0
0 0 0 0

e. 

𝑤" = %
-
W.
)
+ %

)
+ 1 + 1X = 1 

Δ𝑝̅ = 𝑝̅* − 𝑝̅ = %
-
W%
)
+ 1 + %

)
+ 0X − %

-
W1 + 0 + %

)
+ 0X = %

@
 

𝐸(𝑤∆𝑝) =
1
𝑛2𝑤! J

∑ 𝑃!&(
&$%

𝑤!
− 𝑝!K =

'

!$%

1
𝑛2Z2𝑃!&

(

&$%

−𝑤!𝑝![
'

!$%

= %
-
W.
)
− .

)
+ 0 − 0 + %

)
− %

)
+ 0 − 0X = 0 

Cov(𝑤, 𝑝) =
1
𝑛2𝑤!𝑝!

'

!$%

−
1
𝑛)2𝑤!

'

!$%

2𝑝!

'

!$%

= %
-
W.
)
∙ 1 + %

)
∙ 0 + 1 ∙ %

)
+ 1 ∙ 0X − %

%/
W.
)
+ %

)
+ 1 + 1X W1 + 0 + %

)
+ 0X

= %
)
− %

%/
(4) W.

)
X = %

)
− .

@
= %

@
 

Var(𝑝) =
1
𝑛2𝑝!)

'

!$%

−
1
𝑛) R2𝑝!

'

!$%

S
)

= %
-
o1) + 0) + W%

)
X
)
+ 0)p − %

%/
W1 + 0 + %

)
+ 0X

)
=

= %
-
∙ M
-
− %

%/
∙ B
-
= %%

/-
 

𝛽: =
Cov(𝑤, 𝑝)
Var(𝑝) =

%
@
%%
/-
= @

%%
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D. Calculations for Example 3.2 

The stationary distribution. In order to be able to calculate the frequencies of the different 
p-scores in the offspring generation, we first establish that from the parent generation, all 4 
parents with a p-score of %

)
 survive, as well as 2 (out of the 4) parents with a p-score of %

)
 

(step 1 in Fig. 2).  Half of those are female and half of those are male, and therefore we can 
also think of this as a population where 12 out of 18 survive, 4 females and 4 males with a 
p-score of %

)
, and 2 females and 2 males with a p-score of 1 (step 2).  

These are randomly matched, which means that two thirds of the 4 females with a p-score 
of %

)
 (out of 18 parents) are matched with a male that also has a p-score of %

)
, and one third is 

matched with a male that has a p-score of %
)
, resulting in )

.
-
%@
= -

)N
 parent pairs in which both 

parents have a p-score of %
)
, and %

.
-
%@
= )

)N
 parent pairs with a female with a p-score of %

)
 and a 

male with a p-score of 1. Similarly, there will be %
.
)
%@
= %

)N
 parent pairs in which both parents 

have a p-score of 1, and )
.
)
%@
= )

)N
 parent pairs with a female with a p-score of 1 and a male 

with a p-score of %
)
 (step 3 and 4).  

If both parents have a p-score of %
)
, 1 out of 4 kids has a p-score of 0; 2 have a p-score of %

)
; 

and 1 has a p-score of 1. If one parent has a p-score of %
)
 and the other has a p-score of 1, 

then half of their offspring will have a p-score of %
)
, and the other half will have a p-score of 

1. Finally, if both parents have a p-score of 1, all of their offspring will have a p-score of 1 too 
(step 5).  

All parent pairs have 3 kids on average, which then scales this back to the frequencies in the 
parent population. For example, that results in 3 ∙ %

-
∙ -
)N
= %

B
 kids with a p-score of 0, where 3 

is the number of kids per parent pair, %
-
 is the proportion of kids with a p-score of 0 that a 

parent pair gets when both parents have a p-score of %
)
, and -

)N
 measures the number of such 

parent pairs (step 6). 
 
The Price equation 
 
Elements of the Price equation for the stationary population state:  

𝑤" = %
B
∙ 0 + -

B
∙ .
)
+ -

B
∙ %
)
∙ .
)
= 0 + /

B
+ .

B
= 1 

Δ𝑝̅ = 𝑝̅* − 𝑝̅ = )
.
− )

.
= 0 

𝐸(𝑤∆𝑝) = 0 
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Cov(𝑤, 𝑝) =
1
𝑛2𝑤!𝑝!

'

!$%

−
1
𝑛)2𝑤!

'

!$%

2𝑝!

'

!$%

= W%
B
∙ 0 + -

B
∙ .
)
∙ %
)
+ -

B
∙ %
)
∙ .
)
∙ 1X − W%

B
∙ 0 + -

B
∙ .
)
+ -

B
∙ %
)
∙ .
)
X W%

B
∙ 0 + -

B
∙ %
)
+ -

B
∙ 1X

= /
B
− 1 ∙ /

B
= 0 

Var(𝑝) =
1
𝑛2𝑝!)

'

!$%

−
1
𝑛) R2𝑝!

'

!$%

S
)

= W%
B
∙ 0) + -

B
∙ W%
)
X
(
+ -

B
∙ 1)X − W%

B
∙ 0 + -

B
∙ %
)
+ -

B
∙ 1X

)
=

= M
B
− ./

@%
= %

B
 

𝛽: =
Cov(𝑤, 𝑝)
Var(𝑝) = 0 

In general, we can assume 𝑘 individuals with a p-score of 0, 𝑙 individuals with a p-score of %
)
, 

and 𝑛 − 𝑘 − 𝑙 individuals with a p-score of 1. The ingredients of the Price equation without 
noise then become: 

𝑤" = %
'
W𝑘 ∙ 0 ∙ .

)
+ 𝑙 ∙ 1 ∙ .

)
+ (𝑛 − 𝑘 − 𝑙) ∙ %

)
∙ .
)
X = %

'
∙ .
)
W𝑙 + (𝑛 − 𝑘 − 𝑙) ∙ %

)
X = .

-
∙ 'D?;F

'
 

Δ𝑝̅ = 𝑝̅* − 𝑝̅ = -
.
∙ %
'D?;F

W𝑘 ∙ 0 ∙ 0 ∙ .
)
+ 𝑙 ∙ 1 ∙ %

)
∙ .
)
+ (𝑛 − 𝑘 − 𝑙) ∙ %

)
∙ 1 ∙ .

)
X

− %
'
W𝑘 ∙ 0 + 𝑙 ∙ %

)
+ (𝑛 − 𝑘 − 𝑙) ∙ 1X = 'D?

'D?;F
−

'D?D%)F
'

= '('D?)
('D?;F)'

−
('D?)(;%)F('D?)D

%
)F
(

('D?;F)'
=

?('D?)D%)F('D?);
%
)F
(

('D?;F)'
=

?('D?)D%)F('D?DF)
('D?;F)'

 

𝐸(𝑤∆𝑝) = 0 

Cov(𝑤, 𝑝) =
1
𝑛2𝑤!𝑝!

'

!$%

−
1
𝑛)2𝑤!

'

!$%

2𝑝!

'

!$%

=
1
𝑛2𝑤!𝑝!

'

!$%

−𝑤"𝑝̅

= %
'
W𝑘 ∙ 0 ∙ .

)
∙ 0 + 𝑙 ∙ 1 ∙ .

)
∙ %
)
+ (𝑛 − 𝑘 − 𝑙) ∙ %

)
∙ .
)
∙ 1X − .

-
∙ 'D?;F

'
∙ 'D?D

$
(F

'

= .
-
∙ 'D?

'
− .

-
∙ 'D?;F

'
∙ 'D?D

$
(F

'
= .

-
∙ J'('D?)

'(
−

('D?)(;%)F('D?)D
%
)F
(

'(
K

= .
-
∙
?('D?)D%)F('D?DF)

'(
 

Var(𝑝) =
1
𝑛2𝑝!)

'

!$%

−
1
𝑛) R2𝑝!

'

!$%

S
)

= %
'
o𝑘 ∙ 0 + 𝑙 ∙ W%

)
X
)
+ (𝑛 − 𝑘 − 𝑙) ∙ 1)p − o'D?D

$
(F

'
p
)
=

= 'D?D0)F
'

− o'D?D
$
(F

'
p
)
= '(D'?D0)'F

'(
− ("74)(DF("74);$)F

(

'(
= (?;F)('D?)D0)'FD

$
)F
(

'(
 

𝛽: =
Cov(𝑤, 𝑝)
Var(𝑝) = .

-
∙
?('D?)D%)F('D?DF)

(?;F)('D?)D0)'FD
$
)F
(
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When there are only individuals with a p-score of 0, or with a p-score of %
)
, we have 𝑘 + 𝑙 =

𝑛, and the 𝛽 is 4376

"370)"37
$
)3
( =

?F
$
)"37

$
)3
( =

?
$
)("73)

= ?
$
)4
= 4. 

When there are only individuals with a p-score of %
)
, or with a p-score of 1, we have 𝑙 = 0, 

and the 𝛽 is ?('D?)DJ
(?;J)('D?)DJDJ

= 4("74)
4("74) = 1. 

When there are only individuals with a p-score of 0, or with a p-score of 1, we have 𝑘 = 0, 

and the 𝛽 is 
JD$(F('DF)

F'D0)'FD
$
)F
( =

D$(F('DF)
$
)"37

$
)3
( =

D$(('DF)
$
)"7

$
)3

= −2. 

This illustrates the range of possible 𝛽: ’s. 

Just as a sanity check, if we choose 𝑘 = 1, 𝑙 = 4 and 𝑛 = 9, as in the stationary population 
state, we do indeed get  

𝑤" = .
-
∙ 'D?;F

'
= .

-
∙ %)
B
= 1 

Δ𝑝̅ =
?('D?)D%)F('D?DF)

('D?;F)'
= @D@

%)∙B
= 0 

𝐸(𝑤∆𝑝) = 0 

Cov(𝑤, 𝑝) = .
-
∙
?('D?)D%)F('D?DF)

'(
= .

-
∙ @D@
B(

= 0 

Var(𝑝) = (?;F)('D?)D0)'FD
$
)F
(

'(
= M∙@D0)B∙-D

$
)-
(

B(
= -JD)ND-

B(
= B

B(
= %

B
 

𝛽: =
Cov(𝑤, 𝑝)
Var(𝑝) = 0 

E. Calculations for Example 3.3 

The average fitness is just the size of the offspring generation over the size of the parent 
population; 

𝑤" =
𝑚
𝑛  

The change in p-score between the generations is one half times the difference between the 
frequency of females in the offspring generation and the frequency of females in the parent 
population; 

Δ𝑝̅ =
𝑙 + %

)(𝑚 − 𝑙)
𝑚 −

𝑘 + %
)(𝑛 − 𝑘)
𝑛 =

1
2 o

𝑙
𝑚 −

𝑘
𝑛p 
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If reproduction happens with equal probabilities on girls and boys, one would expect ?
'

 to be 

close to %
)
 for large populations.  

When calculating the 𝐸(𝑤∆𝑝) term, we make use of the fact that all mothers have a p-score 
of 1, and therefore their successful gametes must all have p-score %

)
. This implies that the 

sum of the p-scores of their successful gametes must be %
)
 times the number of individuals in 

the offspring generation; ∑ ∑ 𝑃!&(
&$%

?
!$% = %

)
𝑚. Also, it implies that 𝑤!𝑝! = 𝑤!  for all mothers, 

and therefore ∑ 𝑤!𝑝! =?
!$% ∑ 𝑤!?

!$% = %
)
𝑚. 

All fathers of daughters must have had a successful gamete with a p-score of %
)
, while all 

fathers of sons must have had a successful gamete with p-score 0. Therefore, the sum of 
their successful gametes must be %

)
  times the total number of daughters; ∑ ∑ 𝑃!&(

&$%
'
!$?;% =

%
)
𝑙. Also, it implies that 𝑤!𝑝! =

%
)
𝑤!  for all fathers, and therefore 

∑ 𝑤!𝑝! ='
!$?;% ∑ %

)
𝑤!'

!$?;% = %
-
𝑚.  

For mothers and fathers together therefore, ∑ ∑ 𝑃!&(
&$%

'
!$% = %

)
(𝑚 + 𝑙), and 

∑ 𝑤!𝑝! ='
!$%

%
)
𝑚 + %

-
𝑚 = .

-
𝑚. Therefore 

𝐸(𝑤∆𝑝) =
1
𝑛2Z2𝑃!&

(

&$%

−𝑤!𝑝![
'

!$%

=
1
𝑛 o
1
2 𝑙 −

1
4𝑚p =

1
2𝑛 o𝑙 −

1
2𝑚p 

When calculating the Cov(𝑤, 𝑝) term, we use ∑ 𝑤!𝑝!'
!$% = .

-
𝑚 again. 

Cov(𝑤, 𝑝) =
1
𝑛 R2𝑤!𝑝!

'

!$%

S −
1
𝑛) R2𝑤!

?

!$%

+ 2 𝑤!

'

!$?;%

SR2𝑝!

?

!$%

+ 2 𝑝!

'

!$?;%

S

= %
'
W.
-
𝑚X − %

'(
W%
)
𝑚 + %

)
𝑚Xo𝑘 + %

)
(𝑛 − 𝑘)p = .(

-'
− %

'(
(𝑚)%

)
(𝑛 + 𝑘)

=
3𝑚
4𝑛 −

𝑚
2𝑛 −

𝑚𝑘
2𝑛) =

𝑚
4𝑛 −

𝑚𝑘
2𝑛) =

𝑚
2𝑛 o

1
2 −

𝑘
𝑛p 

Var(𝑝) =
1
𝑛2𝑝!)

'

!$%

−
1
𝑛) R2𝑝!

'

!$%

S
)

= %
'
o𝑘 ∙ 1) + (𝑛 − 𝑘) W%

)
X
)
p − %

'(
W𝑘 + (𝑛 − 𝑘)%

)
X
)

= %
'
∙ %
-
(3𝑘 + 𝑛) − %

'(
∙ %
-
(𝑘 + 𝑛)) = .

-
?
'
+ %

-
− W%

-
?(

'(
+ %

)
?
'
+ %

-
X = ?

-'
W1 − ?

'
X 

𝛽: =
Cov(𝑤, 𝑝)
Var(𝑝) =

(
)'B

%
) −

?
'C

$
)
4
"C%D

4
"E

=
2𝑚B') − 𝑘C
𝑘(𝑛 − 𝑘) =

𝑚(𝑛 − 2𝑘)
𝑘(𝑛 − 𝑘)  

This implies that 𝛽: > 0 if 𝑘 < $
(𝑛. 
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