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Abstract 

This paper explores how the interaction between human-driven vehicles (HVs) cruising 

for parking and autonomous vehicles (AVs) traveling back and forth affects travel 

behavior and congestion. To capture the spatial distribution of parking, we develop a 

continuous spatial optimization model, with a discrete choice logit model governing the 

choice between the two modes. Various congestion externalities are considered in the 

proposed model. Using optimal control method, we derive the social optimum under 

user-equilibrium constraints and compare it to the unpriced user equilibrium. Without 

pricing, the introduction of AVs may increase or lower congestion depending on whether 

cruising or traveling back and forth dominates. Thus, AVs may be underused or overused, 

as the marginal external benefit of switching to AVs may be positive or negative. In our 

numerical model, with optimal pricing, the introduction of AVs always reduces travel 

costs. In terms of parking, the introduction of AVs is efficient in reducing parking demand 

and results in a smaller and less compact city. The efficiency of pricing is significantly 

impacted by the congestion interactions. When only one congestion type exists, it 

increases with the degree of congestion. However, when both congestion types exist, the 

efficiency of pricing is ambiguous. Specifically, when both HVs’ cruising congestion and 

AVs’ back-and-forth congestion are heavy, the efficiency of pricing is lower. Our 

proposed model reveals that the effects of AVs on travel and urban equilibrium may be 

more difficult to assess and less beneficial than often thought. Our numerical study 

provides policy insights into actions that regulators could consider for the operation of 

AVs. 
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1. Introduction 

Parking is a major challenge for car usage in cities worldwide, particularly in 

European cities where on-street parking predominates. The potential of autonomous 

vehicles (AVs) to reduce congestion and parking in city centers has sparked considerable 

interest among urban planners. AVs could, for example, drop off and pick up travelers in 

high-cost parking areas and return home or park in less expensive locations. This 

reduction in parking demand creates opportunities for urban redevelopment, such as 

reallocating space for cycle paths, green space, or more real estate. 

However, the anticipated decrease in parking demand may be offset by increased 

congestion caused by AVs traveling back and forth without travelers, which warrants 

serious concern. Previous studies have demonstrated the significant impact of AV parking 

on congestion, as each traveler generates two AV trips (one to the destination and one to a 

place to park), thereby increasing travel demand (e.g., Levin and Boyles, 2015; Shafiei et 

al., 2023). Nonetheless, the interaction between congestion resulting from human-driven 

vehicles (HVs) parking and AVs traveling back and forth remains largely unexplored. 

In the absence of pricing, unassigned parking lots become a common resource that is 

vulnerable to overuse, so this becomes a modern tragedy of the commons. Implementing 

optimal parking pricing involves accounting for congestion externalities and equalizing 

parking demand by setting higher rates at meters closer to the central business district 

(CBD). Hence, it is essential to explore pricing strategies for both HVs and AVs to 

decentralize the social optimum and evaluate their impacts on travelers and congestion. 

Against this background, we develop a continuous spatial optimization model to 

explore decisions regarding travel modes and parking location choices in an environment 

featuring both AVs and HVs, while considering the interaction between HVs cruising and 

AVs traveling back and forth. Specifically, we aim to address the following three 

questions: (i) What are the impacts of HVs’ cruising for parking and AVs’ back-and-forth 

movements on travelers and congestion? (ii) How can we achieve an equilibrium that 

maximizes the benefits of AVs while minimizing their negative effects on congestion? (iii) 

How do travelers respond to such socially optimal pricing? 

In the literature, studies have examined the impact of parking on traffic congestion 

(e.g., Arnott and Inci, 2006; Shoup, 2006; Van Ommeren et al., 2021), modeled the 

impact of cruising for parking (e.g., Arnott and Inci, 2006; Shoup, 2006; Arnott et al., 

2015; Geroliminis, 2015; Arnott and Williams, 2017; Qian and Rajagopal, 2014), and 

proposed a number of parking management strategies to improve parking and traffic 

efficiency, such as parking/congestion pricing (Arnott et al., 1991; Zhang et al., 2005; 
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Zhang et al., 2008; Zheng and Geroliminis, 2016; Liu and Geroliminis, 2017; Lu et al., 

2021), parking permit or reservation systems (Liu et al., 2014; Liu et al., 2016; Chen et 

al., 2019; Wang et al., 2020), and competition among multiple parking facilities (Li et al., 

2008; Inci and Lindsey, 2015). For a more comprehensive review, see Inci (2015). 

However, all these parking-related studies propose approaches for non-AV transportation 

systems, wherein AVs are not considered. 

Recently, parking management with AVs has received increasing attention. For 

example, Liu (2018), Zhang et al. (2019), and Su and Wang (2020) built on the Vickrey 

bottleneck model to investigate the departure time and parking location choices of AVs. 

Tian et al. (2019) extended the bottleneck model by considering both regular and shared 

AVs with and without parking space constraints and derived optimal solutions for parking 

capacity and ride-sharing occupancy. Millard-Ball (2019) used a traffic microsimulation 

model to demonstrate how AVs can implicitly coordinate to reduce the cost of cruising 

for parking. In their work, Bahrami et al. (2021) used a Wardrop equilibrium to 

investigate AV parking choice, highlighting the importance of time-based congestion 

pricing. More recently, Zhang, Liu, and Zhang (2023) investigated the joint network 

equilibrium of parking and travel route choices with mixed private and shared AVs, in 

which the private AVs need to make both route and parking choices. Tscharaktschiew and 

Reimann (2023) developed an economic equilibrium speed and parking choice model to 

identify the classical (negative) cruising-for-parking externality of HVs, namely a 

(positive) speeding-when-cruising externality that may occur in the era of AVs. Although 

existing studies have shed some light on the parking issue with AVs, existing parking 

models have primarily focused on AVs’ parking choices separately, and failed to 

characterize the congestion interactions. 

This study adopts a continuous monocentric spatial optimization approach, whereby 

HVs have parking location choices at the end of a long, narrow city, and AVs are parked 

at home. Most of the literature using the linear corridor approach examined congestion 

tolling (Mun et al., 2003; Verhoef, 2005; Li et al., 2014), curbside parking and park-and-

ride facilities (Anderson and de Palma, 2004; Wang et al., 2004; Liu et al., 2009; Lu et al., 

2021), joint equilibrium of land use and travel (Li et al., 2012a), and a bi-modal transport 

system design problem (Li et al, 2012b). Regarding AVs’ parking problem in a linear 

corridor, Liu (2018), Zhang et al. (2019), and Zhang, Liu, Levin, and Waller (2023) 

analyzed the joint equilibrium of departure time and parking location choices in a linear, 

continuous, and monocentric city with a bottleneck-constrained highway. However, their 

focus is on fully AV environments, with constant AV parking densities. 
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This study is related to Verhoef et al. (1995) and Anderson and de Palma (2004). 

Verhoef et al. (1995) developed a spatial parking model to investigate the optimal 

distribution of parking fees, taking residential and business locations and existing 

infrastructures as given. Anderson and de Palma (2004) considered a long, narrow city 

with a CBD at the end. They investigated the regulatory parking policies while 

considering the interaction between cruising congestion and travel congestion. Our study 

differs from those of Verhoef et al. (1995) and Anderson and de Palma (2004) in two 

important aspects. First, in addition to HVs’ searching and cruising congestion, we also 

investigate AVs’ back-and-forth congestion and the interaction between different 

congestion types. Second, we examine the effects of optimal pricing on travelers and 

congestion while considering travelers’ stochastic preferences. 

The main methodological contributions of the paper are twofold. First, we develop 

an (user) equilibrium model of mode and parking-location choices in a monocentric city 

system with HVs and AVs. The congestion interaction between HVs’ cruising and 

searching for parking and AVs’ back-and-forth movements are explicitly considered. 

Mode choices are characterized by stochastic user equilibrium. Second, using optimal 

control method, we derive the social optimum under user-equilibrium constraints and 

compare it to the unpriced user equilibrium. The optimal parking fee for HVs is space 

differentiated: it varies with the parking location and equals the marginal external cost 

(MEC) imposed at a location. The optimal pricing on AVs is constant, as their fee equals 

their constant MEC. 

Our work provides three core policy and societal contributions. 

(i) We compare the congestion effects of AVs and HVs to test if introducing AVs 

lowers congestion in our setting (with and without pricing). In our model, AVs do not 

automatically lower congestion, which is so in many more optimistic models. Although 

HVs cruising for parking and AVs traveling back and forth both raise travelers’ travel 

price and total travel cost, their joint effects on travelers depend on which congestion type 

dominates. The marginal external benefit (MEB) of switching from an HV to an AV may 

be negative or positive, depending on the specific congestion parameters. If it is positive, 

a trip in an AV causes less congestion than a trip in an HV, as the extra congestion from 

traveling back and forth is small compared to the congestion from cruising. 

(ii) We examine how AVs and/or (spatially varying) parking pricing affects the 

parking equilibrium and thus the urban form. Given the number of HV and AV users, 

HVs’ cruising and AVs’ back-and-forth congestion both increase HVs’ parking span due 

to increased parking costs. Nonetheless, the introduction of AVs is efficient at reducing 
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parking demand and leads to a smaller and less compact city. In the absence of pricing, 

HVs’ cruising congestion leads to a more compact and larger city, whereas the reverse is 

true with pricing. In contrast, AVs’ back-and-forth congestion results in a less compact 

and smaller city without pricing, and the opposite with pricing. The joint effects depend 

on which congestion effect dominates. 

(iii) We evaluate the efficiency of (spatially varying) parking pricing in reducing 

congestion. When only one type of congestion exists, the efficiency of pricing increases 

with the degree of congestion. When HVs’ cruising and AVs’ back-and-forth congestion 

both exist, however, the efficiency of pricing is significantly impacted by their 

interactions. In particular, when both types of congestion are heavy, the efficiency of 

pricing is low. 

The remainder of this paper is organized as follows. Section 2 presents the proposed 

(equilibrium) model. Section 3 solves the social optimum model analytically. Section 4 

discusses the social optimum. Section 5 uses numerical examples to illustrate the 

properties of the proposed model. Finally, Section 6 provides conclusions and 

recommendations for further studies. 

 

2. Model formulation 

2.1. Problem description 

We investigate travelers’ traveling and parking issues when there is a mix of HVs 

and AVs in a monocentric urban system. We consider that there is a common destination 

located at x=0, and there are N travelers located far away. The CBD is at the end of a long, 

narrow city and is served by parallel access roads. Perpendicular to these access roads are 

side streets that are used for on-street parking. Such a city system has been adopted in 

some relevant studies, such as Anderson and de Palma (2004), reflecting the main 

characteristics of traveling, parking, and congestion. Travelers travel from home to the 

CBD using either HVs or AVs. Other transport modes such as public transport and taxis 

are ignored in this paper. An illustration of the monocentric bi-modal urban system is 

shown in Fig. 1. 

Suppose that parking is not assigned to individuals in advance. HVs can park on the 

street at any vacant location but, before parking, they need to cruise and search for a 

vacant parking space. Suppose that if drivers stop somewhere, they will search at this 

location until they find a vacant parking spot. Referring to Fig. 1, with an HV, travelers 

first drive toward downtown, then start to cruise to find a parking location (side street), 

then look for an empty parking space on this side street. Once an available parking spot is 

found, they walk to the CBD. 
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Fig. 1. Monocentric bi-modal urban system established. 

 

For AV users, it is assumed that, due to the limited space in the city center, there are 

no parking spaces for them. In this sense, AVs must park outside the city. To simplify, we 

consider AVs must park at home. Other parking places for AVs are not considered in this 

paper but will be explored in a subsequent study. As AVs can drive themselves, users with 

an AV will first reach the destination, and then the AVs turn back home to park 

themselves. 

The exclusion of normal traffic congestion from the present study stems from a 

methodological imperative that focuses on the interaction between HVs’ parking and AVs’ 

back-and-forth congestion. A flow congestion function could be adopted to characterize 

the normal traffic congestion. However, this would only complicate the technical analysis 

without providing significantly different insights for our model. 

 

2.2. Congestion externalities 

In the bi-modal urban transport system investigated, there are three types of 

congestion externalities: HVs searching for parking, HVs cruising for parking, and AVs 

traveling back and forth. We do not consider normal traffic congestion, which has already 

been studied extensively in the literature. 

The searching externality refers to the effect of one parker increasing the search time 

for subsequent parkers. Essentially, finding a vacant spot takes longer when more parkers 

are searching. The cruising externality arises from HVs cruising for parking, slowing 

down other vehicles. This directly impacts traffic flow on the main arteries and indirectly 

affects side streets if cruisers search there. Increased cruising traffic leads to amplified 

delays at traffic lights and disrupts traffic flow, reducing the speed of through traffic—a 

secondary effect of the cruising issue. AVs’ back-and-forth congestion involves the 

externality of deadheading—empty return trips to remote parking after completing trips 

in the city. This adds to traffic and may offset the anticipated congestion reduction from 

AV technology. Specifically, congestion from AVs’ return trips could exacerbate the 
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cruising externality, further slowing traffic on both main arteries and side streets, 

intensifying delays and flow interference. 

 

2.3. HVs’ generalized travel cost 

As discussed in section 2.1, an HV trip from home to the CBD includes four phases: 

regular driving, cruising for a parking street in the parking area, searching for a parking 

space in a side street, and walking to the CBD.  

Let x denote the distance of a location from the CBD, and x  denote the farthest 

distance parked, or the parking span, which is determined endogenously. Let n(x) denote 

the number of cars parking at x; we also call it the parking density at x. At the parking 

boundary x , ( ) 0n x =  holds, meaning that the car parked the farthest away incurs the 

minimum searching cost. 

Let ( )nC x  denote the generalized travel cost by HVs parking at x. This cost thus 

includes the regular travel cost from home to the parking span, the cruising cost from the 

parking span to the parking street x, the searching cost at x, the walking cost from x to the 

CBD, and the monetary automobile cost: 

1 2( ) ( ( ) ( )) ( ) ( ) ( )n n s w nC x T x T x C x C x x =  + + + + ,                                                (1) 

where n  is the value of time for HV users. 1( )T x  is the driving time from home to the 

parking boundary x , which can be expressed as 1 max( ) ( )T x L x V= − , where maxV  

represents the free-flow speed assumed to be identical for HVs and AVs (see, e.g., Van 

den Berg and Verhoef, 2016; Yu et al., 2022a, b). 2 ( )T x  represents the driving time from 

x  to the parking location x. ( )sC x  denotes the searching cost to find a vacant space at 

location x, ( )wC x  represents the walking time cost, and ( )n x  is the monetary 

automobile cost. 

We now formulate the driving time from the parking boundary x  to parking location 

x, 2 ( )T x . A cruising HV at location x introduces additional delay for all vehicles passing x, 

whereas an AV passing through x during its return trip adds delay for all vehicles crossing 

x. We assume the travel delay induced by the cruising HVs is proportional to the number 

of drivers cruising for parking at x, and for AVs it is proportional to the number of AVs. 

Accordingly, we model the travel speed at x, ( )V x , through the following speed-flow 

function: 
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max

( )1 1

( )

n a aw n x w N

V x V s

+
= + ,                                                                               (2) 

where nw  measures the cruising congestion caused by HVs and aw  measures the extra 

congestion caused by AVs traveling back and forth, with 0 1aw   and 0 1nw  . A 

larger 
iw  means a greater degree of congestion externality. Specifically, when 

0n aw w= = , the travel time reduces to the free-flow travel time max( )x x V− . Therefore, 

the travel time from x  to x is: 

2

max

( )1 1
( )

( )

x x
a a n

x x

w N w n x
T x dx dx

V x V s

 +  
= = +  

  
  ,                                           (3) 

This analysis emphasizes the impact of HVs’ parking and AVs’ back-and-forth on traffic 

flow and travel delay. 

Next, we address HVs’ searching process for finding a parking space at location x. 

Existing literature models the searching time as a convex function of the parking 

occupancy rate (e.g., Anderson and de Palma, 2004; Qian and Rajagopal, 2015; Arnott 

and Williams, 2017; Leclercq et al., 2017). 1  We adopt the searching cost function 

proposed by Anderson and de Palma (2004), assuming that each parking spot at location x 

is equally likely to be vacant. The vacancy probability is determined by the ratio of HVs 

choosing x to the total parking spots at x, denoted as 1 ( ) ( )n x K x− , where ( )n x  is the 

number of HV drivers choosing to park at x, and ( )K x  is the number of parking spots at x. 

For simplicity, we set ( )K x K= . Therefore, the expected spaces searched for before 

finding a vacant spot is 1/(1-n(x)/K). Let   denote the search cost incurred by a driver 

checking whether or not a spot is occupied. The expected cost to HV drivers who choose 

to search for parking at location x is: 

( )
( )

s

K
C x

K n x

 
=

−
.                                                                                                     (4) 

The expected searching cost increases with the number of cars parked, n(x), and 

approaches infinity as the number of parkers approaches the parking capacity, K. 

Let wV  denote the walking speed, which is assumed to be constant. The walking cost 

for HV users parking at x is thus: 

 
1 Specifically, search time remains steady at low or medium occupancy levels but sharply increases at high occupancy, 

especially for the last few available spots. If travelers are aware of high occupancy (e.g., 99%) and lack a designated 

spot, they are unlikely to choose that lot due to the expected high cruising time. 
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( ) w
w

w

x
C x

V

 
= ,                                                                                                          (5) 

where w  is the value of time for walking. 

The monetary cost of traveling by HVs, ( )n x , is assumed to be a linear function of 

the distance traveled, as in Wang et al. (2004), Liu et al. (2009), and Li et al. (2012a), 

expressed as: 

0( ) ( )n n nx mc L x mc =  − + ,                                                                                     (6) 

where nmc  is the variable cost (e.g., fuel cost per unit of distance) and 0nmc  is the fixed 

cost of traveling by HVs (e.g., insurance or road taxes). 

Consequently, the travel cost of choosing a parking space at location x is: 

0

max

( )
( ) ( ) .

( )

x

n a a n w
n n n n

wx

w N w n x xK
C x mc L x dx mc

V s K n x V

 


  +  
= +  − +  + + +   

−  
   (7) 

It should be noted that the externality caused by HVs cruising is a non-localized 

externality, since drivers at x impact all drivers parking closer to the CBD. 

 

2.4. AVs’ generalized travel cost 

As AVs do not require parking spaces, AV travelers will first travel to the CBD, then 

the AVs return home to park themselves. The generalized travel cost by AVs comprises 

the travel time cost to the CBD and the return journey cost. Although AVs do not need to 

cruise and search for a parking spot, they are still subject to congestion caused by 

cruising HVs. The travel time per unit of distance by AVs can thus be separated into two 

parts: before entering the parking area and traveling within the parking area. Let aC   be 

the generalized travel cost of AVs, expressed as: 

0
max

1

( )

x

a a a a

L x
C dx

V V x
  

−
=  +  + ,                                                                        (8) 

where the first term gives the cost of traveling from home to the parking area, and a  is 

the value of time for AV users. Because travel time in an AV can be used for other 

purposes, such as relaxing or handling email, the value of travel time is lower than the 

cost of travel time in an HV, implying that a n  . a  gives the monetary automobile 

cost of the full journey. Note that when AVs drive back from the CBD, the vehicles are 

empty, thus the congestion delay cost is zero, and only the monetary cost matters. 
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The monetary cost of traveling by AVs, a , is assumed to be a linear function of the 

distance traveled, like the HV mode: 

02a a amc L mc =  + ,                                                                                                (9) 

where amc  represents the variable cost of traveling by AVs (e.g., fuel cost per unit of 

distance) and 0amc  represents the fixed cost (e.g., the cost of buying the autonomous car). 

x is the travel distance from the parking boundary to the CBD, and the factor “2” 

represents the round trip. 

Consequently, the generalized travel cost for an AV can be rewritten as: 

0
0

max

( )
(2 )

x
a n a a

a a a a

L w n x w N
C dx mc L mc

V s




 + 
= +  +  + 

 
 ,                                    (10) 

where “2” denotes the full trip of AVs traveling to CBD, amd parking themselves at home. 

 

2.5. Joint travel mode and parking location choice 

Travelers’ decisions regarding parking location and travel mode choices follow a 

hierarchical choice structure. This can be studied without loss of generality as a two-step 

maximization. 

First, for any aN  and nN , HV drivers minimize their travel costs by choosing the 

parking location. The associated individual cost-minimization problem is: 

0

max

( )
min   ( ) ( )

( )

s.t.   x 0,  x

x

n a a n w
n n n n

x
wx

w N w n x xK
C x mc L x dx mc

V s K n x V

x

 


  +  
= +  − +  + + +   

−  

 

 .

(11) 

Solving Eq. (11) yields the user-equilibrium parking density n(x) and parking 

boundary x , for a given aN  and nN . The generalized cost is constant in the equilibrium 

regardless of the parking location x. We can thus omit x in the generalized cost function, 

and use ( , )n a nC N N  and ( , )a a nC N N  to denote the equilibrium generalized cost of HV 

users and of AV users, respectively. 

Second, travelers determine the travel mode based on random utility maximization. 

This random utility comprises a deterministic component, ( , )i a nC N N , and a stochastic 

idiosyncratic mode preference. When these idiosyncratic preferences follow an 

independently and identically distributed (i.d.d.) extreme distribution, the number of AV 
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and HV users can be determined using the following logit formula: 

( ); ( )
a n

a n a n

C C

a a n n a nC C C C

e e
N N N N N N

e e e e

 

   

− −

− − − −
=  + =  +

+ +
,                                 (12) 

where the scale parameter   governs the relative importance of the unobserved 

idiosyncratic component in the travel cost. Specifically, when   tends toward infinity, it 

reduces to the deterministic mode choice model. 

 

2.6. Total travel cost and welfare 

The total travel cost, TC, is the sum of the total travel cost of HV and AV users: 

0
( ) ( )

x

n a aTC C x n x dx C N=  +  .                                                                              (13) 

Given that the unobserved component of mode utility reflects individual preferences, 

there are benefits of variety. Introducing an additional alternative typically results in 

higher expected utility (Koster et al., 2018). In the absence of income effects, the welfare, 

W, is calculated as: 

1
ln lna n

a n

a n a n

N N
W TC N N

N N N N

    
= − −  +     + +    

,                                           (14) 

where the first part represents the deterministic total travel cost, and the second term is 

consistently non-negative and encapsulates the total benefits of variety. 

 

3. Analytical analysis on the unpriced user equilibrium 

3.1. Step one: HVs’ parking location choice equilibrium 

Given the number of HV and AV users, we can characterize HV users’ optimization 

problem as the minimization of their generalized travel cost, as presented in Eq. (11). To 

provide a clearer picture of the individual optimization process, we solve the Lagrangian 

implied by Eq. (11), ( ) ( )nL C x x x= −  − , with   representing the Lagrangian 

multiplier associated with the constraint x x . 

The Kuhn-Tucker conditions for this Lagrangian are: 

2

max

( ) ( )
0

( ( ))

0;   0 and ( ) 0

n a a n w
n n

w

w N w n xL K n x
mc

x V s K n x x V

L
x x x x

 
 

 


+  
= − − −  −  + − = 

 −  


= −    − =



.      (15) 

Hence, if  x<x , the equilibrium parking pattern is determined by the following 
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differential equation: 

2

max

( )( )

( ( ))

n a a n w
n n

w

w N w n xK n x
mc

K n x x V s V

 


+
 = + +  −

− 
.                                  (16) 

 

Proposition 1. Given 
aN  and 

nN , in the absence of pricing, the equilibrium parking 

span is smaller when: (i) HVs’ parking search cost,  , is lower, i.e., 0x    ; (ii) HVs’ 

cruising congestion cost, nw , is lower, i.e., 0nx w   ; and (iii) AVs’ extra congestion 

cost of traveling back and forth, aw , is lower, i.e., 0ax w   . 

Proof. See Appendix A. 

 

Proposition 1 indicates that the parking span x  increases with all types of 

congestion. The intuition behind Proposition 1 is as follows. A lower parking searching 

cost means that drivers are less sensitive to parking congestion. The new equilibrium 

therefore involves more congested parking at each location close to the CBD and the total 

area devoted to parking falls. A decrease in nw  and aw  lessens the congestion annoyance 

from HVs cruising for parking and AVs traveling back and forth, causing HV drivers to 

drive further inward. Again, this creates more intense usage of parking spaces further in. 

By combining Eq. (16) with the boundary condition ( ) 0n x = , we can derive the 

expression for the parking density at x, ( )n x . Substituting this into the condition that all 

HVs park between [0, ]x , i.e., 
0

( )
x

nn x dx N= , enables us to obtain the expression for x , 

which is a function of nN . 

 

3.2. Step two: travelers’ mode choice equilibrium 

Considering that the furthest parking location involves ( ) 0n x = , the relationship 

between HVs users’ equilibrium cost nC  and x  is: 

0

max

( ) ( )n w
n n n n

w

x
C C x mc L x mc

V V

 


  
= = +  − + + + 

 
.                                           (17) 

Let 0 0

max max

(2 )a n
n a a nmc L mc L mc mc

V V

 


 
 = − −  +  + − − 

 
. Calculating the difference 

between the equilibrium travel cost of AVs and HVs yields: 
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max

n n a a w n
a n a n

w

w N w xN
c C C mc x

s V V

 


 +
 = − =  − − −  +  

 
.                            (18) 

Eq. (18) shows that the difference in the generalized travel cost can be positive or 

negative, depending on the parameters. Specifically, taking the derivative of Eq. (18) with 

respect to 
nw  and 

aw  and combining Proposition 1 yields 0nc w    and 0ac w   , 

meaning that both the HVs’ cruising congestion parameter and the AVs’ back-and-forth 

congestion parameter tend to amplify the travel cost difference between HV and AV users. 

As we use stochastic preferences, in the equilibrium, the number of HVs and AVs is 

set by Eq. (12). 

 

3.3. Congestion effects 

We investigate the congestion effects by examining the MEB of switching from an 

HV to an AV. By combining Eqs (10), (17), and (13), the total travel cost can be 

expressed as: 

0

max

0
0

max

( )

( )
        (2 )

n w
n n n n n n

w

x
a n a a

a a a a a a a

x
TC mc L x N N N mc N

V V

L w n x w N
N dx N mc L N mc N

V s

 





  
= +  − + + + 
 

 + 
+ +   +   +  

 


,      (19) 

which can be further rewritten as: 

0

max

0

max

( )

        (2 )

n w
n n n n n n

w

a n n a a
a a a a a a a

x
TC mc L x N N N mc N

V V

L w N w xN
N N mc L N mc N

V s

 





  
= +  − + + + 
 

 +
+ +   +   + 

.                  (20) 

It should be noted that the total cruising congestion cost imposed on HV users is 

( )1

0

[ ] ( )

x x

n

x

w
n x dx n x dx

s

  
  
 
 
  , which can be expressed as 

2

2

n n nw N

s


 , and the total cruising 

congestion cost imposed on AV users is a n n aw N N s   . Accordingly, the cruising 

congestion cost imposed by HVs is independent of the specific parking distributions, and 

increases with the cruising congestion parameter nw .2 

Let F  denote the proportion of AV users, i.e., ( )a a nF N N N= + . The MEB of 

 
2
 This stems from considering that the congestion resulting from cruising increases linearly with the number of cruisers. 
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switching from an HV to an AV can be calculated as:
a n

TC F
MEB C C

N

 
= − − . 

Combining Eqs (20) and (18), the MEB is: 

max

( )

(1 )
a n a

n w
n a

w

x
w x w N w FN

x FMEB mc F F
V V F s

 



− +   = + −  − −   

 
.            (21) 

As 0x F    and maxn n w wV mc V +  , the first term in Eq. (21) is always 

positive. The sign of the second term depends on the values of 
aw , 

nw , and the 

corresponding parking distribution, making the MEB positive or negative. It is positive 

when the reduction in HVs’ cruising and searching congestion outweighs the increase in 

AVs’ back-and-forth congestion, and vice versa. Eq. (21) demonstrates how these 

different forces jointly determine the MEB. A positive MEB means the overuse of AVs 

without tolling, whereas a negative MEB means their underuse. Specifically, when 

0a nw w= = , the MEB is always positive, since AVs do not need to search for a parking 

spot. 

 

4. Social optimum 

Given various types of congestion externalities, the total welfare is not, in general, 

minimized in the unregulated equilibrium. This section discusses the social optimum, 

whereby the total welfare should be maximized. 

 

4.1. Formulation of the social optimum problem 

The welfare-maximizing problem can be mathematically formulated as: 

( ), , ,

0

max      

. .      ( )

          ( ) 0

a nn x x N N

x

n

W

s t n x dx N

n x

=



 .                                                                                             (22) 

The above welfare maximization problem can be studied without loss of generality as a 

two-step maximization. 

First, for any aN  and nN , the regulator minimizes the total travel cost, ( , )a nTC N N : 
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0( ), 

0

min   ( , ) ( ) ( )

( )
. .     .

 ( ) 0

x

a n n a a
n x x

x

n

TC N N C x n x dx C N

n x dx N
s t

n x

=  + 


=


 




.                                                       (23) 

Solving Eq. (23) yields the optimal parking distribution under total cost minimization for 

a given number of HV and AV users. 

Next, the regulator maximizes welfare by deciding aN  and nN : 

,

1
max    = ln ln ( , )

a n

a n
a n a n

N N
a n a n

N N
W N N TC N N

N N N N


    

−  + −     + +    
,                (24) 

where ( , )a nTC N N  is the optimal value of the objective function as found in Eq. (23). In 

the following analytical analysis, we first focus on the first step, how to regulate the 

congestion and parking distribution for a given number of AV and HV users, and second 

on how the interaction of different types of congestion affects travelers. In the numerical 

examples, we use simulation to further examine the effects of aw  and nw . 

 

4.2. Step one: optimal distribution of parking fee 

This section uses the Hamiltonian-based dynamic optimization to derive the optimal 

toll, given the number of HVs and AVs. Substituting Eqs (7) and (10) into Eq. (23), the 

total cost minimization problem in the first step can be reformulated as3: 

( ) 0
0( ),

max

0 0 0

2

max

min   , ( ) ( )
( )

( )
        ( ) ( ) ( )

        

x
n w

a n n n
n x x

w

x x x
n a a n a a n n

a a n

a n a a n n n
a n

xK
TC N N mc L x mc n x dx

V K n x V

w N w n x w N w
x n x dx N dx A x n x dx

s s s

L w N N x w
N N mc

V s s

 

 


  

   
= +  − + + +   

−  

+ 
−   +  −  

 

 
+ + +  +



  

0(2 )   a a a aL N mc N  + 

, (25) 

subject to 

( )
( )

( ) ,  (0) 0,   is choosen free

n

n n n

dA x
n x

dx

A x N A x


=


 = =

 ,                                                         (26) 

 

3 It should be noted that 
2

0 0

( )
( ) ( ) ( )

x
x x

n n n n

n n n n

x

w n x w w
dx n x dx N A x n x dx

s s s


 

 
  =  −  
 

   . 



16 

 

where ( )nA x  is the number of HVs parking between 0 and x, i.e., 
0

( ) ( )
x

nA x n x dx=  . 

We use optimal control method to solve the above total cost minimization problem. 

The associated Hamiltonian for (25) and (26) is: 

      
0

max

( ) ( )
( )

( ) ( )
   ( ) ( ) ( )

n w
n n

w

n a a a a n n n n a a a a

xK
H mc L x mc n x

V K n x V

w N N w n x w A x N w N
x n x n x n x

s s s s

 

   


   
= − +  − + + +   

−  


+   − +  − + 

,   (27) 

with ( )nA x  being the state variable, ( )n x  being the control variable, and   the adjoint 

(or costate) variable. 

The necessary first-order conditions of Eq. (27) are: 

( )

max

2

02

( )
( ) ( )

( )

             0
( )

n n a a a n a n n n
n

w
n

w

w N x w N w A xH
mc L x

n x V s s s

xK
mc

VK n x

   





= − +  − + − +



− − − + =
−

,                        (28) 

( )
( )

n n

n

wH
n x

x A x s

 
= − = − 

 
.                                                                                 (29) 

Because   gives the shadow price for the state variable ( )nA x , it signifies the marginal 

value of having an HV traveler park at an additional unit of distance. Consequently, this 

value is closely linked to the spatial distribution of the optimal parking fees, influencing 

individual behavior and the spatial parking pattern. 

Taking the spatial derivative of Eq. (28) and combining with Eq. (29), we obtain: 

( )

2

2

max

( )( ) ( )
0n n a a n n w n n

n

w

K

K n xw N w n x w n x
mc

V s s x V s



    

 
  

−  + + + − − − =


            (30) 

as a necessary condition for the optimum. Comparing Eq. (30) with individual optimizing 

behavior in Eq. (16) reveals that optimality requires the following parking pricing 

strategies: 

( )

2

2
( ) ( )( ) ( )n n n

K K

K n x K n xd x w n x

dx x x s

 

 

 
      −  −    = − +

 
.                                         (31) 

Eq. (31) implies that the slope of the parking fee gradient should exactly reflect the 
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increase in the externality of HV drivers’ searching and cruising. Here, the first two terms 

represent the increase in the searching externality caused by parking at x, and the last 

term represents the increase in the cruising externality caused by cruising at x. Eq. (31) 

indicates that when regulating HV parking, only spatial parking fee differentials matter, 

and not the absolute values of parking fees. According to Eq. (31), the optimal parking 

fee for HVs can be expressed as the sum of a space-varying parking fee and a constant 

#

n : 

( )

2
#

2 0
( ) ( )

( )( )

x
n n

n n

wK K
x n x dx

K n x sK n x

 
 = − +  +

−−
 .                                       (32) 

Comparing Eqs (28) and (11), we note that a choice of 
#

n a n aw N s =  implies that 

travelers at x are also charged for their externality on AV drivers, caused by cruising at x. 

Therefore, the spatial distribution of parking fees for HVs parking at location x is given 

by: 

( )

( )

2

2 0

2 0

( ) ( )
( )( )

( )
        ( )

( )

x
n n a n a

n

x
n n a n a

w w NK K
x n x dx

K n x s sK n x

w w NK n x
n x dx

s sK n x

  


 

= − +  +
−−


= +  +

−





.                                (33) 

In Eq. (33), the first term means the searching externality caused by HVs parking at x, the 

second term means the cruising externality on HV users parking between [0, x], and the 

third term means the congestion externality imposed on AV users. Note that the last term 

does not affect HVs’ parking distribution; it only mitigates congestion costs by reducing 

HV demand. Since parking closer to the center is more desirable, the optimal parking fee 

increases with closeness to the CBD to counteract this effect and reduce the over-

congestion, which is most pronounced closest to the CBD. 

The congestion toll on AVs equals their MEC; that is, the difference between the 

marginal social cost and the private cost: 

0
( ) ( )

x
a a n a

a a a

a

w x wTC
C N x x n x dx

N s s

 



= − =  +  −
  .                                             (34) 

Unlike the spatially varying pricing for HVs, the pricing for AVs remains constant across 

space. In Eq. (34), the first term means the congestion externality on AV users, and the 

second term is the congestion externality on HV users.  
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4.3. Step one: discussion of the optimal parking distribution 

After discussing the distribution of the parking fees and congestion pricing, we now 

investigate HVs’ parking patterns. According to Eq. (7) and (33), the travel price of HV 

users parking at x is: 

( )

0

max

2 0

( ) ( ) ( )

( )
   ( )

( )

( )
       ( )

( )

n n n

x

n a a n w
n n n

wx

x
n n a n a

P x C x x

w N w n x xK
mc L x dx mc

V s K n x V

w w NK n x
n x dx

s sK n x



 


 

= +

  +  
= +  − +  + + +   

−  


+ +  +

−





. (35) 

In the equilibrium, the travel price remains constant over x. Solving ( ) 0ndP x dx =  

yields: 

( )

2

3

max

2 ( )

( )

n a n a w
n

w

w NK n x
mc

x V s VK n x

   
 = + − +
−

.                                              (36) 

Similar to the unpriced equilibrium, we only consider the case of ( ) 0n x x   ; 

therefore, 
max

w n n a a
n

w

w N
mc

V V s

   
 + + . Eq. (36) implies that the value of nw  has no 

impact on HV drivers’ parking distribution. The reason is that the cruising congestion 

cost is linear in our modeling approach. 

 

Proposition 2. Given aN  and nN , under the social optimum, HVs’ parking span: (i) is 

independent of HVs’ cruising congestion parameter, nw ; (ii) increases with AVs’ back-

and-forth congestion parameter, aw ; and (iii) increases with HVs’ parking searching 

congestion parameter,  . 

Proof. See Appendix B. 

 

4.4. Step two: optimal number of HVs and AVs 

We now proceed to the second step of determining the optimal proportion of AVs, F, 

by maximizing the following welfare: 

1 (1 )
max    W= (1 ) ln ln ( )

F

F N FN
F N FN TC F

N N

 −    
−  − + −    

    
.                     (37) 

Taking the derivative of W with respect to F  yields: 
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( )
ln 0

1

TC F N F

F F


+  =

 −
.                                                                                    (38) 

which can be simplified as 
( ) 1

ln
TC F N F

F F

 −
= 


. 

In comparison to the deterministic user equilibrium, in the stochastic user 

equilibrium, the regulator equals the marginal benefit to the marginal cost, where 

1 1
ln

F

F

−
  is the benefit of variety per traveler, which is then multiplied by the total 

number of travelers to obtain the total benefits of variety. Specifically, as   tends to 

infinity, the stochastic equilibrium approaches the deterministic equilibrium. 

 

5. Numerical studies 

This section presents numerical studies that examine the model proposed above. The 

analytics cannot decisively compare HVs’ cruising and AVs’ back-and-forth congestion, 

as the net effects depend on the parameters. This comparison of course lends itself to 

numerical analysis. 

 

5.1. Numerical model 

The parking model presented is a continuous space optimization, involving the 

determination of the number of AV and HV users, the parking distribution, and tolls. To 

address this, we first discretize the feasible parking region and transform the associated 

continuous functions into discrete counterparts. We then employ an iterative backward 

solution method. The underlying principle is to employ a global search method to identify 

the number of HV and AV users and use the method of successive averages to determine 

the parking density and parking span.  

Base case parameters are listed in Table 1; they are chosen to reflect realistic travel 

costs. We consider a city 20 km in length, with 40,000 parking spots per kilometer  

(Anderson and de Palma, 2004). Following Van den Berg and Verhoef (2016), the value 

of time in a normal car is €10/h, and the value of time in an autonomous car is €8/h. The 

free-flow travel speeds of AVs and HVs are 60 km/h. The value of walking time is 1.8 

times the value of travel time, i.e., €18/h. The cost of searching for one spot is €0.5. The 

parameter in the congestion function,  , is 0.15, consistent with the BPR-type 

congestion function. The road capacity is 4,000 vehicles/h. The scale of utility,  , is 
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assumed to be 1. The fixed and variable components of the monetary cost of travel by HV, 

0nmc  and nmc  are set as €1.51 and €0.05/km, respectively. For AV users, the fixed and 

variable components of the monetary travel cost, 
0amc  and 

amc , are set as €2.51 and 

€0.09/km, respectively. Under this calibration, when all cars are HVs without cruising 

congestion, in the absence of pricing, the equilibrium travel cost is €12.78, and the total 

travel cost is €115,020. In the social optimum, the equilibrium travel price is €15.96, and 

the total travel cost is €98,352. 

 

Table 1. Input parameters for the numerical illustration 

Parameter               Definition Baseline value 

n  The value of time in an HV €10/h 

a  The value of time in an AV €8/h 

w  The value of walking time €18/h 

  The cost of searching for one spot €0.5 

  Parameter in the congestion function 0.15 

nV  Free-flow travel speed of HVs 60 km/h 

aV  Free-flow travel speed of AVs 60 km/h 

wV  Walking speed 5 km/h 

L Length of the city 20 km 

K Parking spots per kilometer 40,000 

s Capacity of the road 4,000 

  Scale of utility 1 

N Total number of users 9,000 

nmc  Variable cost of traveling by HVs €0.05/km 

0nmc  Fixed cost of traveling by HVs per trip €1.51 

amc  Variable cost of  traveling by AVs €0.09/km 

0amc  Fixed cost of AVs per trip €2.51 

 

5.2. Numerical results 

Table 2 presents the outcomes under unpriced equilibrium. We compare the results 

under various scenarios, including only searching congestion (wa=wn=0), HVs’ searching 

and cruising congestion (wa=0, wn=0.4), HVs’ searching and AVs’ back-and-forth 

congestion (wa=0.4, wn=0), and all types of congestion (wa=wn=0.4). 
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Table 2. Outcomes under unpriced equilibrium 

    Outcome 

 

No AVs 
No HV cruising 

(wa=wn=0) 

Only HV cruising 

(wa=0, wn=0.4) 

Only AV back 

and forth 

(wa=0.4, wn=0) 

Both HV cruising 

and AV back and 

forth (wa=wn=0.4) 

Number of AVs 0 5370 5141 6123 5842 

Number of HVs 9,000 3630 3859 2877 3158 

Proportion of AVs 0 0.60 0.57 0.68 0.65 

Price with AVs - 8.78 9.24 10.21 10.52 

Price with HVs 12.78 9.20 9.54 10.99 11.15 

HVs’ parking span 2.05 0.63 0.63 0.53 0.63 

TC of AVs - 47127 47504 62507 61468 

TC of HVs 115,020 33404 36806 31632 35213 

Total travel cost 115,020 80531 84310 94140 96681 

Welfare* -115,020 -74461 -78163 -88500 -90848 

Note: Welfare is negative as we only consider downsides of travel and thus costs. We could add a constant of integration measuring travel 

benefits—e.g., getting to your job—or include price-sensitive demand. This would make welfare positive.  

 

Table 2 indicates that introducing HVs’ cruising congestion increases the number of 

HVs while decreasing the number of AVs. This occurs because HVs’ cruising congestion 

affects AV drivers more than it does on HVs.4 In contrast, introducing AVs’ back-and-

forth congestion raises the number of AVs and lowers the number of HVs. Although AVs 

affect all HV parkers and all other AVs, HVs are impacted more due to their higher value 

of time. When all congestion types are taken into account, the number of AVs is reduced 

and the number of HVs is raised, meaning that HVs’ cruising congestion effects dominate 

AVs’ back-and-forth congestion. 

Table 3 presents the outcomes for the social optimum, showing a different pattern to 

the unpriced case. Introducing cruising congestion reduces the number of HVs, as 

charging for a cruising externality prompts users to switch from HVs to AVs. Similarly, 

introducing AVs’ back-and-forth congestion decreases the number of AVs. In the full case 

of wa=wn=0.4, the number of AVs decreases and the number of HVs increases, indicating 

that AVs’ back-and-forth congestion effects dominate HVs’ cruising congestion effects. 

Comparing results under unpriced parking and the social optimum reveals that when 

 
4 AVs are subject to cruising congestion between 0 and x , whereas HVs parking between [0, x] are only affected by the 

cruising congestion at x. 
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ignoring HVs’ cruising congestion and AVs’ back-and-forth congestion, no tolling leads 

to an underuse of AVs. Including HVs’ cruising congestion still results in underusing AVs 

under unpriced parking, whereas considering AVs’ back-and-forth congestion leads to 

overuse of AVs. In the full model with wa=wn=0.4, unpriced parking results in an overuse 

of AVs, meaning that the effects of AVs’ back-and-forth congestion dominate. 

In terms of total travel cost, both HVs’ cruising congestion and AVs’ back-and-forth 

congestion increase total travel cost. Specifically, under the social optimum, HVs’ 

cruising congestion raises the total travel cost of all AV users while reducing the total 

travel cost of all HV users due to the lower proportion of HVs. 

 

Table 3. Outcomes under the social optimum 

Outcome 

 

No AVs 
No HV cruising 

(wa=wn=0) 

Only HV 

cruising 

(wa=0, wn=0.4) 

Only AV back 

and forth 

(wa=0.4, wn=0) 

Both HV cruising 

and AV back and 

forth (wa=wn=0.4) 

Number of AVs 0 6209 6828 4385 4046 

Number of HVs 9,000 2791 2172 4615 4954 

Proportion of AVs 0 0.69 0.76 0.49 0.45 

Price with AVs - 9.28 10.54 12.37 15.18 

Price with HVs 15.96 10.08 11.69 12.32 14.98 

HVs’ parking span 2.53 1.11 0.95 1.58 1.74 

TC of AVs - 54492 61703 42642 42928 

TC of HVs 98,352 22674 17366 45397 53372 

Total travel cost 98,352 77166 79069 88039 96300 

Welfare -98,352 -71593 -74096 -81804 -9010 

 

 

5.3. Numerical results: Distribution of HVs parking 

Fig. 2 depicts HVs’ parking distribution under different congestion degrees. HVs’ 

parking distribution is closely related to the number of HVs. Without pricing, excessive 

parking near the CBD occurs because HV drivers fail to consider that selecting a spot 

close to the CBD increases the search cost for numerous other drivers attempting to park 

there, and increases the crowding cost for all users passing by. 
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    (a) 0n aw w= =                                               (b) 0,  0.4a nw w= =  

 

(c) 0.4,  0a nw w= =                                          (d) 0.4,  0.4a nw w= =  

                  Fig. 2. Effects of congestion degree on HVs’ parking distribution. 

 

Comparing Fig. 2a and Fig. 2b, we observe that in the absence of pricing, the 

introduction of HVs’ cruising congestion leads to a more compact city, whereas the social 

optimum results in a less compact and smaller city. This is mainly because without 

pricing, the congestion associated with HVs searching and cruising raises AV users’ travel 

price more, inducing some users to switch from AVs to HVs. Comparing Fig. 2a and Fig. 

2c, we observe that AVs’ back-and-forth congestion results in a larger and more compact 

city under the social optimum, and a smaller and less compact city in the absence of 

pricing. This is because the social optimum uses space-differential pricing to optimize 

HVs’ parking distribution and increases the number of HV users. In the full model 

incorporating all our congestion types, the outcome is a combination of the separate 

effects. Fig. 2d shows that the parking resembles that in Fig. 2c, indicating that the effects 

of AVs’ back-and-forth congestion dominates HVs’ cruising congestion. 
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Fig. 3 depicts HVs’ parking distribution before introducing AVs. Comparing Fig. 2 

and Fig. 3, we can find the introduction of AVs is efficient at reducing parking demand in 

the city center, and results in a smaller and less compact city. 

 

(a) 0nw =                                                    (b) 0.4nw =  

Fig. 3. HVs’ parking distribution before introducing AVs. 

 

5.4. Numerical results: Distribution of optimal parking pricing 

 
Fig. 4. Distribution of space-varying parking fees for HVs. 

 

Fig. 4 presents the optimal parking fee distribution. As vehicles parked nearer to the 

CBD contribute more to congestion through cruising and searching, parking fees increase 

as the parking location x approaches the CBD. The parking fees are lowest under 

wa=wn=0 and highest under wa=wn=0.4. This is intuitively because more congestion is 

induced by introducing HVs cruising and AVs traveling back and forth. When comparing 

scenarios under wn=0.4, wa=0 and wa=0.4, wn=0, we can observe an intersection occurs 

at x=0.3. This indicates that the congestion closer to the CBD is induced more by HVs 



25 

 

cruising for parking, and the congestion further from the CBD is induced more by AVs 

traveling back and forth. 

 

5.5. Effects of wn and wa on travelers’ mode choices and total travel cost 

It is interesting to see what happens when the degree of different types of congestion 

varies, by varying the values of wn and wa. 

 

5.5.1. Varying wn 

   

   (a) Proportion of AVs (unpriced)               (b) Proportion of AVs (social optimum) 

   

  (c) Total travel cost (unpriced)              (d) Total travel cost (social optimum) 

Fig. 5. Effects of wn on travelers and total travel cost. 

 

We vary HVs’ cruising congestion parameter wn from 0 to 1. In the absence of 

pricing, Fig. 5a shows that as HVs’ cruising congestion parameter wn increases, the 

number of AVs decreases, implying a greater impact on AVs compared to HVs. Fig. 5b 

shows that in the social optimum, travelers’ mode choices present contrasting patterns. 

Specifically, as wn increases, the number of AVs increases. The space-varying toll raises 

the travel price for HV users, particularly with a larger wn. As for the resulting total travel 
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cost, the total travel cost increases with HVs’ cruising congestion parameter wn, both in 

the absence of pricing and in the social optimum, as shown in Fig. 5c and Fig. 5d. This is 

clearly due to the increasing congestion for HV and AV users. 

 

5.5.2. Varying wa 

We now vary AVs’ back-and-forth congestion parameter wa from 0 to 1. In the 

absence of pricing, Fig. 6a shows that as AVs’ congestion parameter wa increases, the 

number of AVs increases: the AVs’ back-and-forth congestion affects HV users more 

than AV users, as AVs drive through the entire city twice. As depicted in Fig. 6b, the 

resulting total travel cost rises with wa, due to the increased congestion caused by AVs 

moving back and forth. 

Fig. 7 enables the same analysis for the social optimum. It can be seen that the 

proportion of AV users decreases with wa, and the total travel cost increases with wa. 

 
                (a) Proportion of AVs                                     (b) Total travel cost 

         Fig. 6. Unpriced equilibrium (varying aw ). 

   
                         (a) Proportion of AVs                                     (b) Total travel cost 

Fig. 7. Social optimum (varying aw ). 
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5.5.3. Comparison: Unpriced equilibrium versus the social optimum 

In this subsection, we compare the outcomes under no tolling and the social 

optimum. As we will see, the interaction between HVs’ cruising congestion and AVs’ 

back-and-forth congestion significantly impacts AVs’ use and pricing efficiency. It should 

be noted that in Fig. 8b and Fig. 9b, a negative value is good and represents a higher 

pricing efficiency. 

Fig. 8a shows that without tolling, AVs can either be underused or overused, 

depending on the relative intensities of AVs’ back-and-forth congestion and HVs’ cruising 

congestion. Specifically, when AVs’ back-and-forth congestion is low, the absence of 

tolling results in AVs being underused. Conversely, when AVs’ back-and-forth congestion 

is heavy, the lack of tolling leads to overuse. Moreover, with moderate AVs’ back-and-

forth congestion, an increase in the HVs’ cruising congestion parameter shifts the 

scenario from overuse to underuse. 

In Fig. 8b, we observe that tolling is efficient in reducing total travel cost. When AVs’ 

back-and-forth congestion is low, the efficiency of pricing increases with HVs’ cruising 

congestion. Conversely, when AVs’ back-and-forth congestion is heavy, the efficiency of 

pricing decreases with HVs’ cruising congestion. For moderate AVs’ back-and-forth 

congestion, our numerical result shows that the efficiency of pricing first decreases and 

then increases, indicating that AVs’ back-and-forth congestion dominates first, and then 

HVs’ cruising congestion dominates. 

   

 (a) Difference in the proportion of AVs         (b) Difference in total travel cost 

        Fig. 8. Varying HVs’ cruising congestion parameter nw . 

    Note: The difference refers to the comparison between the results with tolling and without tolling. 

 

Fig. 9 depicts the impact of AVs’ cruising congestion parameter wa. The patterns 

observed differ from those in Fig. 8. In Fig. 9a, an increase in the AVs’ back-and-forth 
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congestion parameter shifts AVs from underuse to overuse, regardless of the value of wn. 

In Fig. 9b, when wn=0, the efficiency of pricing increases with wa. When wn=0.8, the 

efficiency of pricing initially increases with wa, and then falls. With moderate wn, the 

efficiency of pricing depends on which effect dominates, and lies between wn=0 and 

wn=0.8. 

   

     (a) Difference in the proportion of AVs         (b) Difference in total travel cost 

Fig. 9. Varying AVs’ cruising congestion parameter aw . 

    Note: The difference refers to the comparison between the results with tolling and without tolling. 

 

6. Conclusion 

We aimed to compare the cruising congestion of HVs with the back-and-forth 

congestion of AVs, caused by AVs dropping off their passengers at the destination and 

then driving back out of the city to park where this is cheap. To do so, we derived the 

joint equilibrium of travel mode and parking location choices by developing a spatial 

optimization model that incorporates stochastic user preferences. Our model explicitly 

considers the interaction between HVs and AVs, addressing various congestion 

externalities, such as HVs’ searching congestion and cruising congestion, and AVs’ back-

and-forth congestion. The model properties were analytically and numerically explored 

under both the unpriced equilibrium and the social optimum. 

Some insightful findings were obtained. First, without pricing, the introduction of 

AVs may raise or lower congestion depending on whether the cruising or back-and-forth 

form of congestion dominates. Specifically, if HVs’ cruising congestion dominates, the 

introduction of AVs tends to lower overall congestion; if AVs’ back-and-forth congestion 

dominates, the introduction of AVs tends to raise overall congestion. Accordingly, AVs 

may be underused or overused, as the MEB of switching to AVs may be positive or 

negative. 
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For HVs’ parking distribution, given the number of HV and AV users, HVs’ cruising 

and AVs’ back-and-forth congestion both increase HVs’ parking span due to increased 

parking costs. So, in this setting, AVs may or may not help with congestion. Still, the 

introduction of AVs is efficient at reducing parking demand in the city center, resulting in 

a smaller and less compact city.  

Space-varying tolling can change travelers’ travel choice behavior and urban spatial 

parking structure. The space-varying parking fee on HVs comprises the searching 

externality caused by HVs parking at location x, the cruising externality on HV drivers 

parking between specified locations, and the congestion externality imposed on AV users. 

The congestion tolling on AVs equals the MEC imposed by AV users. Without pricing, 

parking close to the CBD will be excessive. In the social optimum, the parking fee for 

HVs decreases as the parking location approaches the CBD. 

The congestion interactions between HVs and AVs significantly impact the 

efficiency of pricing. When only one congestion type exists, the efficiency of pricing 

increases with the degree of congestion. However, when both congestion types exist, the 

efficiency of pricing is ambiguous. Specifically, when both HVs’ cruising congestion and 

AVs’ back-and-forth congestion are heavy, the efficiency of pricing is low. 

Our model shows that the effects of AVs on travel and urban equilibrium may be 

more difficult to assess and less beneficial than often thought. It also provides a new 

avenue for investigating the traveling and parking equilibrium when there are both 

human-driven and autonomous vehicles. This leads to interesting follow-up directions. 

First, it is important to extend this study to cover price-sensitive demand and compare the 

efficiency of space-varying pricing with more realistic policies, such as uniform or step 

pricing. Previous studies, such as Millard-Ball (2019), have shown that more realistic 

policies can lead to different outcomes. Second, it was assumed that AVs would be parked 

at home. Other parking location choices could be studied, such as parking near the 

workplace, a dedicated parking belt, and cruising on the road. Third, we only considered 

the trip from home to the CBD. The return trip from CBD to home seems reasonably 

symmetrical, other than that there may be less searching and cruising time at the 

destination. But not necessarily so as in many cities most of the searching and cruising 

occurs in the evening at home. It would be interesting to extend our model to examine the 

integrated daily travel and parking patterns, such as Zhang et al. (2008), Lu et al. (2021), 

and Zhang et al. (2019). Fourth, it was assumed that all travelers live away from the CBD. 

However, in reality, people differ in their preferences for residence, and some want to live 
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in the city center. Therefore, it would be worthwhile to determine the location 

endogenously. Fifth, we could consider AVs raising road capacity as they can drive closer 

together in platoons than can HVs and use intersections more efficiently (e.g., Chang and 

Lai, 1997; Van den Berg and Verhoef, 2016). Sixth, we used a monocentric city. However, 

many cities have multiple centers. Therefore, a multicentric urban model should be 

developed for further study.  
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Appendix 

Appendix A. Proof of Proposition 1. 

Proof. We illustrate with Proposition 1 (i). Suppose 
1 20    , and the corresponding 

parking density is 1( )n x  and 2 ( )n x , respectively. According to Eq. (16), we therefore 

have: 
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Because 1( )n x  and 2 ( )n x  are both continuous, with positive density at x=0 and the 

integral of each of them over its support is nN , there must be at least one crossing of 
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these parking densities. Due to 
1( ) 0n x x   , we consider that these parking densities 

cross once, at x . Then at any such crossing, x , 1 2( ) ( )n x n x=  holds. Denote derivatives 

with primes. From 
1 20    , we can obtain that 1 2( ) ( )n x n x   holds. That ( ) ( )on x n x   

is true at any crossing implies that there can be only one crossing. That the equilibrium 

density slopes down more steeply at the crossing means that the equilibrium density is 

1 2( ) ( )n x n x  for x x , and the converse is true for x x . As a result, 1 2x x  holds. 

This completes the proof of Proposition 1(i). Using the same logic, we can prove 

Proposition 1(ii) and (iii). □ 

 

Appendix B. Proof of Proposition 2. 

Proof. The logic is the same as that in Proposition 1. Suppose 1 2

a aw w , and the 

corresponding parking density is 1( )n x  and 2 ( )n x , respectively. According to Eq. (36), 

we therefore have: 

( )

12

1

3

max1

( )2
0

( )

n a n a w
n

w

w Nn xK
mc

x V s VK n x

   
 = + − + 

−
 and 

( )

22

2

3

max2

( )2
0

( )

n a n a w
n

w

w Nn xK
mc

x V s VK n x

   
 = + − + 

−
. 

Similar to Proposition 1, we can derive that the two parking densities cross once. Hence, 

at any such crossing, x , 1 2( ) ( )n x n x=  holds. Due to 1 2

a aw w , we have that 1 2( ) ( )n x n x   

holds. This means the equilibrium density is 1 2( ) ( )n x n x  for x x , and the converse is 

true for x x . As a result, 1 2x x  holds. This completes the proof of Proposition 2(i). 

Using the same logic, we can prove Proposition 2(ii) and (iii). □ 

 

 


