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Abstract

The Fed’s policy rule switches during the different phases of the business cycle. This

finding is established using a dynamic mixture model to estimate regime-dependent

Taylor-type rules on US quarterly data from 1960 to 2021. Instead of exogenously

partitioning the data based on tenures of the Fed chairs, a Bayesian framework

is introduced in order to endogenously select timing and number of regimes in a

data-driven way. This agnostic approach favors a partitioning of the data based

on two regimes related to business cycle phases. Estimated policy rule coefficients

differ in two important ways over the two regimes: the degree of gradualism is

substantially higher during normal times than in recessionary periods while the

output gap coefficient is higher in the recessionary regime than in the normal one.

The estimate of the inflation coefficient largely satisfies the Taylor principle in both

regimes. The results are substantially reinforced when using real-time data.
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1 Introduction

From the late 1960s to the early 1980s, the US economy experienced a period of

deep and frequent recessions. Since the early 1980s, however, macroeconomic dynamics

changed: the inflation rate stabilized at low levels in the context of rare recessions. The

leading explanation for such a better macroeconomic performance has been related to

a change in the conduct of monetary policy, as shown in the seminal paper by Clarida

et al. (2000). According to this view, the appointment of Paul Volcker as chair in 1979

led to a shift in the response of the Federal Reserve to inflationary pressures from highly

accomodative to highly responsive. More specifically, the Federal Reserve started raising

the nominal interest rate above one in response to an increase in inflation, thus increasing

the real rate and satisfying the Taylor principle that guarantees equilibrium determinacy

in most New Keynesian models. While challenged by a series of papers highlighting the

role of lower shocks volatility to explain the more stable macroeconomic environment

(cf. Sims and Zha (2006) and the references therein), the original result of Clarida et al.

(2000) has been confirmed by a large subsequent literature (see Lubik and Schorfheide

(2004) among many others).

One assumption that characterizes the analysis of Clarida et al. (2000) and most of

the subsequent literature (Coibion and Gorodnichenko, 2011) has received relatively little

scrutiny: the exogenous partitioning of the data into a pre-Volcker and a post-Volcker era

or, alternatively, into different periods corresponding to the tenure of various Fed chairs

(Carvalho et al. (2021) and Barnichon and Mesters (2023)). This practice leaves open

the possibility that changes in the conduct of monetary policy are coincidental (rather

than causal) and/or that these are more related to the occurrence of specific economic

conditions rather than to the leadership of a specific Fed chair, as discussed in Bianchi

(2013). It is in fact conceivable that the pre-Volcker and post-Volcker periods feature

a different composition of shocks, a different balance of booms and recessions or of any

other economic conditions across the two periods. If monetary policy is state-dependent,

the prevalence of a specific state may also influence the estimated coefficients of simple

reaction functions.

One possible solution is to adopt a methodology that endogenously partitions the data

into different regimes (not necessarily adjacent as in the pre-Volcker/post-Volcker exam-

ple) and compares the behavior of monetary policy across regimes. The goal of this paper

is to propose such a framework based on a novel dynamic mixture model of the Taylor

rule (Taylor, 1993) with an endogenously selected number of components. In the model

each observation is generated from one of the component distributions with a certain

probabilistic weight. Consider the special case where we know from which component

each observation comes from, then we can partition the data set into sub-periods and

estimate a standard regression model on each of the these periods. The dynamic mixture
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model does this endogenously and in an agnostic data-driven manner. It is important to

emphasize that the mixture model has been used extensively in economics but it has been

mainly applied to cross-sectional data (see Compiani and Kitamura (2016) for an exten-

sive review of the literature and Frühwirth-Schnatter (2006) for a textbook treatment).

Mixture models have also been used for clustering the cross-sectional dimension of a panel

of time series (see Paap and Van Dijk (1998), Canova (2004) and Frühwirth-Schnatter

and Kaufmann (2008) among others), for forecasting purposes (see Casarin et al. (2023)

among others) and for model combination or selection (see Waggoner and Zha (2012)

and Loria et al. (2022)). However, to the best of our knowledge, we are the first to apply

the mixture model to estimate simple macroeconomic relationships like monetary policy

rules.

In terms of empirical results we obtain credible evidence about the following.

First, given our model, the data favor a partitioning based on two regimes. The tim-

ing of the regimes and the implications for the evolution of monetary policy, however, are

substantially different from the conventional approach based on exogenous partitioning.

Our two regimes correspond roughly to one regime, labeled normal, corresponding to eco-

nomic expansions and a second more recessionary regime, which materializes occasionally

and mainly in the first part of the data period where most recessions are concentrated.

Second, the estimated policy rule coefficients are different in the two regimes. The

main difference concerns the degree of interest rate smoothing. In fact, we find that

the estimated degree of gradualism is credibly lower in the recessionary regime with

estimates in the range of 0.5 to 0.7, depending on the specification, against a value of

around 0.9 in the normal regime. Such an asymmetric behavior of policy reflects the

fact that contractions are shorter but swallower than expansions, in keeping with the

properties of many macroeconomic time series. Notably, the lower degree of gradualism

in the recessionary regime is reinforced in a battery of sensitivity exercises. Another

result emerging from our estimation is that the estimate of the inflation coefficient is

rather similar across regimes and largely satisfies the Taylor principle in both regimes.

Interestingly, the output gap coefficient is higher in the recessionary regime. While the

difference in these estimates across regimes is slightly less strong than in the case of the

gradualism coefficient, it appears robust in our exercises. Somewhat intuitively, it signals

that the central bank cares relatively more about output dynamics in downturns.

In a nutshell, the main result of our paper is that the data seem to prefer a partitioning

based on the state of the business cycle rather than on the tenure of a specific Fed chair.

Yet, when imposing an exogenous partitioning in 1979:Q3 and estimating the mixture

model on both the pre-Volcker and post-Volker periods, we recover the familiar result

that the Fed has responded more aggressively to inflation over time, as in Clarida et al.

(2000). In addition, when we impose dogmatically the presence of a third regime, such a

regime features a low response to inflation and is prevalent at the beginning of the data
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period. Therefore, our model can identify time-variation in the response to inflation but

endogenously choose to put more weight on the asymmetry in gradualism based on the

state of the business cycle. Importantly, such asymmetry in gradualism is substantially

larger when using the Greenbook/Tealbook data. Therefore, our main result is robust

to the use of real-time data, unlike the asymmetry in the response to inflation which is

substantially weaker when using real-time data in models with exogenous partitioning,

as shown by Coibion and Gorodnichenko (2011).

The results of this paper contribute to the literature on the estimation of Taylor-type

rules. Following the seminal contribution of Clarida et al. (2000), several papers have ex-

tended the baseline framework by increasing the set of regressors (Bernanke and Gertler

(2000) and Castelnuovo (2003) among many others), using real-time data (Orphanides

(2001) and Coibion and Gorodnichenko (2011)), taking a cross-country perspective (Clar-

ida et al. (1998)) or using multivariate systems (Arias et al., 2019). Important earlier

contributions on non linearities in the policy rule include Dolado et al. (2004) and Surico

(2007).1 We contribute to this literature by using the dynamic mixture model that so far

has not been applied to estimate policy rules.

Within the literature on monetary policy rules, our results are related to a series

of papers discussing the role of gradualism in monetary policy. In a wellknown speech,

Bernanke (2004) listed the benefits of conducting gradual adjustments in monetary policy.

From a normative point of view, Woodford (2003) and Caballero and Simsek (2022)

propose models in which smoothing emerges as a feature of optimal monetary policy. In

contrast, Rudebusch (2006) argues that the estimated degree of monetary policy inertia

reflects the role of omitted variables in the reaction function which manifest itself in the

form of persistent monetary policy shocks. If gradualism was a proper feature of monetary

policy, according to Rudebusch (2006), the interest rate should be highly predictable.

While this debate is not settled, both Coibion and Gorodnichenko (2012) and Caballero

and Simsek (2022) have provided counterarguments and substantial additional evidence

that gradualism is in fact a feature of modern monetary policy. Interestingly, while the

overwhelming majority of empirical papers on policy rules estimate a substantial degree

of gradualism, little evidence on the state-dependence of gradualism has been provided.

One exception is Florio (2006) who estimates a smooth transition regression that allows

for asymmetric interest rate smoothing.

We note that several alternatives to our endogenous partitioning exist in the litera-

ture. These refer to the estimation of policy rules with time varying parameters either in

a single equation context (Boivin (2006) and Coibion and Gorodnichenko (2011)) or in a

1Most of the more recent literature focuses on the state-dependent effects of monetary policy shocks
but ignores the systematic component of policy which obviously affects in and of itself the propagation
of shocks. A non-exaustive list of recent contributions include Aastveit and Anundsen (2022), Alpanda
et al. (2021), Aruoba et al. (2022), Ascari and Haber (2022), Barnichon and Matthes (2018), Debortoli
et al. (2023), Eichenbaum et al. (2022), Gargiulo et al. (2024) and Tenreyro and Thwaites (2016).
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Structural Vector Autoregressions with time-varying parameters and stochastic volatility

with a focus on the interest rate equation (Cogley and Sargent (2005), Primiceri (2005),

Aastveit et al. (2023)). Of particular interest are models which allow explicitly for policy

regimes like Owyang and Ramey (2004) and Sims and Zha (2006). We differ in using a

simple methodology which imposes little structure and is thereby less prone to specifica-

tion errors. This becomes advantageous for estimating and classifying regimes in cases

where the data period includes brief and abrupt episodes, such as recessions.

The contents of this paper is organized as follows: Section 2 describes our economet-

ric approach. Section 3 contains our empirical results. Section 4 considers alternative

specifications for mixture weights. Section 5 puts our results in perspective with respect

to the existing literature. Section 6 concludes. Some additional results are provided in

the Supplementary Material that serves as an online Appendix.

2 Model Structure and Inference Procedure

In this Section, we describe the dynamic mixture model starting from a Bayesian in-

terpretation of the Taylor rule regression and then describing the details of the estimation

of our model.

2.1 The baseline monetary policy rule in a Bayesian context

We rely on the specification used by Carvalho et al. (2021) who show that the monetary

policy rule can be safely estimated with OLS, without the need for instrumental variables,

because the monetary policy shocks are so small that they induce only a minimal bias in

the estimated coefficients.2 They estimate the following reduced form regression

rt = αaux + ρ1,auxrt−1 + ρ2,auxrt−2 + βauxπt + γauxyt + εt, εt ∼ N(0, σ2), (1)

and solve for the structural parameters using the relationships: ρ = ρ1,aux + ρ2,aux, β =

βaux/(1 − ρ), γ = γaux/(1 − ρ). These three parameters are our object of interest and

summarize the degree of gradualism, the response to inflation and the response to the

output gap, respectively. The constant αaux can be interpreted as the natural rate of

interest. The policy rate (rt) is the effective federal funds rate, inflation (πt) is the

year-on-year rate of change in core PCE, and the output gap (yt) is constructed using the

Congressional Budget Office (CBO) estimate of potential GDP. The use of two lags of the

interest rate is consistent with the preferred specification in Coibion and Gorodnichenko

(2012) who find strong evidence for interest rate smoothing of order two.

2Carvalho et al. (2021) show that the asymptotic OLS estimation bias is proportional to the fraction
of the variance of regressors due to monetary policy shocks. Since monetary policy shocks explain only
a small fraction of the variance of typical Taylor rule regressors, the bias tends to be small.
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The reduced form regression in (1) can be rewritten for notational convenience as:

rt = x′
tβ + εt, εt ∼ N(0, σ2), (2)

which implies that each observation rt is modeled as coming from the same distribution

(rt|θ) = N(x′
tβ, σ

2), where θ = (β′, σ2)′, β = (αaux, ρ1,aux, ρ2,aux, βaux, γaux) and xt =

(1, rt−1, rt−2, πt, yt)
′.

It is well known that parameters β and σ2 from this model can be estimated in a

simple simulation based Bayesian procedure using a Gibbs Sampler.3 In online Appendix

A.1, we show estimation results for the four sub-periods used by Carvalho et al. (2021)

and for our full estimation data period using this Bayesian framework.

2.2 From a Taylor rule regression model to a mixture model

Wemove now to the description of the mixture model. We are interested in considering

different monetary policy regimes (or components) in which the Taylor rule coefficients

are potentially different.

If we know which component each observation comes from, we can partition the data

set according to the information in the k-components and estimate a standard linear

regression model for each of the sub-periods. This is then mostly done exogenously

by splitting the data into sub-periods. It is problematic, however, since governors are

not always hawkish/dovish; sub-periods may contain different economic conditions like

recessions/expansions; and policy rule coefficients may change. As a consequence basic

inferential procedures like OLS and Bayesian linear regression average these results out.

However, in many applications, it is unclear which distribution rt comes from. This

includes scenarios where the researcher is uncertain about the policy stance in a given

period, or when the time series of interest behaves differently over a period; perhaps due

to a change in policy regime. Then it is natural to consider a model specification that

allows each observation rt to come from a possibly different distribution. This is the basis

of the finite mixture model. The underlying idea of this model is that each observation

is generated from one of the component distributions within a mixture model. In our

case, each component represents a Taylor-type monetary policy rule (Clarida et al., 2000)

and is assigned a specific probabilistic weight. If we specify that all mixture components

follow a Normal distribution akin to the above regression model, then we can model each

observation rt as coming from a mixture of Normals:

3The algorithm works as follows: Start by choosing initial conditions β(0) = a, and σ2(0) = b > 0.
Then, repeat the following steps from d = 1, . . . , D: Draw β(d) ∼ f(β|r, σ2(d−1)) (multivariate Normal)

and σ2(d) ∼ f(σ2|r,β(d)) (inverse-Gamma). In practice, the first D0 draws are discarded as a burn-in
period to eliminate any effects of the initial conditions. For more details and background, see Koop
(2003).
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f(rt|p,xt,θ) =
k∑

j=1

pjfj(rt|xt,θj), (3)

where p = (p1, . . . , pk)
′ are the component/mixing probabilities, that satisfy pj ≥ 0 and∑k

j=1 pj = 1; xt = (1, rt−1, rt−2, πt, yt)
′ are data on the explanatory variables given in

equation (1); θj = (β′
j, σ

2
j )

′ are the parameters of j -th component density with βj =

(αj,aux, ρ1j,aux, ρ2j,aux, βj,aux, γj,aux)
′ and σ2

j the variance of the disturbance term εjt. The

k-component/mixing densities fj(rt|xt,θj), j = 1, . . . , k, are all Normal densities, i.e.,

(rt|xt,θj) ∼ N
(
x′
tβj, σ

2
j

)
.4

The Taylor rule representation in (3) endogenously classifies each interest rate obser-

vation, rt, as belonging to one of k possible mixture components (also known as regimes)

conditional on the economic environment, xt, and associated policy response, θj. To see

this more clearly, we introduce a latent time-varying component indicator St ∈ {1, · · · , k},
such that the probability that St equals to j is equal to pj, i.e.:

Pr(St = j|p) = pj. (4)

Given the component labels, S = (S1, . . . , ST )
′, the model can be viewed as partitioning

the interest rate data, r = (r1, . . . , rT )
′, into k regimes such that:

(rt|St,xt,θ) ∼ N(x′
tβSt

, σ2
St
), (5)

where θ = (θ′
1, . . . ,θ

′
k)

′ and θSt =
(
β′

St
, σ2

St

)′
with St ∈ {1, . . . , k}. To see that this latent

variable representation gives the same model, note that integrating out the component

label gives

f(rt|p,xt,θ) =
k∑

j=1

f(rt|St = j,xt,θ)Pr(St = j|p),

=
k∑

j=1

pjf(rt|xt,θj),

(6)

where the final expression is the same as (3).

We make here a remark about the interpretation of the unobserved states in a mixture

process. In business cycle analysis states in the economy are interpreted as expansionary

and recessionary regimes. The data-driven states from a mixture process do not have this

direct interpretation. However, in our empirical analysis we find a close correspondence

between the data-driven states and the economic regimes. Henceforth, we make regularly

use of the term regimes to indicate the states, as shown empirically in Section 3.

4For a classic treatment of finite mixtures we refer to the textbook of Frühwirth-Schnatter (2006).
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2.3 Estimation of the mixture model with known number of

components.

We now discuss how to estimate the mixture model. For expository purposes, we

consider first the case in which the number of components is known. Note that this is

the case considered in Section 5.1 where we impose dogmatically the presence of three

regimes.

The mixture model is more difficult to estimate than the regression model. The main

reason for this is that the usual prior for the parameters of the regression model is no

longer conjugate, and a standard Gibbs sampling method can not directly be applied.

This problem can be overcome by using data augmentation. As shown in (5), given

the component labels in S, the mixture model can be seen as a series of k regime-specific

linear regression models, each with a Normal likelihood function. The parameter vectors

θj, j = 1 . . . , k, can therefore be estimated with standard linear regression methods using

the observations from each regime.

In line with the linear regression framework, we specify standard independent Normal

and inverse-Gamma priors for the regression parameters of each component, i.e., f(θj) =

f(βj, σ
2
j ) = f(βj)f(σ

2
j ), in which:

βj ∼ N(βj0,Vj0), σ2
j ∼ IG(νj0,Sj0), j = 1, . . . , k. (7)

In principle, the econometrician has the flexibility to assign distinct values for the component-

specific prior hyperparameters, however we here set them globally, i.e., βj0 = β0, Vj0 =

V0, νj0 = ν0, and Sj0 = S0, for all j = 1, . . . , k.

So far we have discussed the estimation of the mixture model conditional on the

component indicator for each period. A crucial final step is to specify an appropriate

prior for the component probabilities in order to obtain a well-specified posterior distri-

bution. We therefore use an independent Dirichlet prior (also know as the generalized

Beta distribution) specified over the component probabilities:

p ∼ D(α1, . . . , αk) (8)

where αj > 0, j = 1, . . . , k, are positive, real-valued, concentration parameters. The

concentration parameters shape the distribution by influencing how the probability mass

is spread across the components. For instance, if one αj is much larger than the others,

then the probability mass will be highly concentrated on the corresponding component.

To ensure that no prior information favors one particular component over another, we

therefore remain agnostic and specify a symmetric concentration parameter, αj = α,

for all j = 1, . . . , k. When α = 1, the Dirichlet distribution becomes uniform over the

(k − 1) simplex, meaning that all possible outcomes are equally likely. When α > 1, the
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distribution tends to be more concentrated around the center of the distribution simplex,

indicating that the probabilities are more evenly spread across the different categories.

When α < 1, the distribution is more concentrated towards the corners and edges of the

simplex, suggesting a preference for distributions where fewer categories are likely to have

higher probabilities, and the rest are closer to zero.

Using Bayes rule, it is straightforward to show that the conditional posterior distri-

butions of the mixture weights, the component indicators, and the equation parameters

are, respectively:

(p|r,S,θ) ∼ D(e1(S), . . . , ek(S)), (S|r,p,θ) ∼ M(1,p, T ), (9)

(βj |r,S,p,θ−βj
) ∼ N(µj ,Vj), (σ2

j |r,S,p,θ−σ2
j
) ∼ IG(νj , Sj), j = 1, . . . , k,

where θ−γ denotes θ excluding γ ∈ {βj, σ
2
j}, ej(S) = α + Tj(S), with Tj(S) denoting

the number of observations assigned to component j, and M(1,p, T ) is used to denote

T independent draws from the Multinomial posterior distribution, i.e. St ∼ M(1,p),

t = 1, . . . , T . For notation convenience, the data xt, t = 1, . . . , T , is omitted from (9).

We emphasize that while the prior Dirichlet distribution for the mixture weights is

symmetric, the posterior Dirichlet distribution is not symmetric. Intuitively, this is be-

cause the mass placed on each of the component weights is determined by the dynamic

classification of each observation through the latent component indicators, that learns

about the state of the macroeconomic environment through data given the model’s like-

lihood function. To see this, note that since the component indicators are conditionally

independent given the data and model parameters, the joint conditional mass function

of S is the product of T conditionally independent mass functions:

f(S|r,θ,p) ∝
T∏
t=1

f(rt|St,θ)f(St|p), (10)

and we can sample each of them separately. At each date t, the classification probabilities

are given by:

Pr(St = j|rt,θ,p) = ctf(rt|St = j,θj)Pr(St = j|pj), (11)

where f(rt|St = j,θj) = ϕ
(
rt;x

′
tβj, σ

2
j

)
is a Normal density, j = 1, . . . , k, and ct is a

normalizing constant that is given by:

ct =
1∑k

j=1 pjϕ
(
rt;x′

tβj, σ
2
j

) . (12)

Combining (11) and (12) shows that elements in S are drawn independently from the

multinomial distribution in (9). The time pattern of this classification sequence is shown

in Figure 2 and in later figures.
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We emphasize that the conditionally independent distribution in (10) arises because

the mixture model implicitly assumes that the classification sequence is independent.

An alternative specification of the mixture model would be to impose more structure

on this sequence. A common example of such a structure is a Markov process, i.e.,

P (St = j|St−1 = i), for all i, j ∈ {1, . . . , k}. Another example would be to impose

different regimes a priori as in Carvalho et al. (2021), i.e., P (St = j) = 1, for a given sub-

period of time. We discuss these possibilities in Section 4, where we compare the results

of three cases in increasing order of structural information: (1) time-varying classification

sequence that are independent, (2) time-varying classification sequence that is dependent

and follow a Markov structure, and (3) time-invariant classification sequence that follow

exogenous regimes for the Pre- and Post-Volcker periods as in Carvalho et al. (2021).

Now we can estimate the mixture regression model using the Gibbs sampler, as speci-

fied in Algorithm 1 on the model parameters and here extended with the inclusion of the

mixture weights.

Algorithm 1 Gibbs Sampler for the Mixture Regression Model with known k

1: Select the number of components, k, and initialize component weights, p
(0)
j = 1

k
,

parameter values, θ
(0)
j = (β

(0)′

j , σ
2(0)
j )′ = (a′, b)′, b > 0, j = 1, . . . , k, and component

indicators, S
(0)
t ∼ M(1,p(0)), t = 1, . . . , T .

2: for d = 1 to D do

a) Given component indicators, S(d−1), classify the observations rj(S), xtj(S),

Tj(S), and sample parameter values θ
(d)
j = (β

(d′)
j , σ

2(d)
j )′, j = 1, . . . , k (inde-

pendent multivariate Normal and inverse-Gamma)

b) Given the parameter values, θ
(d)
j , and component weights p(d−1), sample the

component indicators S(d) = (S
(d)
1 , . . . , S

(d)
T )′ (independent Multinomial)

c) Given the parameter values, θ
(d)
j , and component indicators S(d), sample com-

ponent weights p(d) = (p
(d)
1 , . . . , p

(d)
k )′ (independent Dirichlet)

3: end for

2.4 Estimation of the mixture model with unknown number of

components

We next consider the mixture regression model with an unknown number of compo-

nents k which constitutes our baseline model. Here, the main challenge is to estimate

this number reliably and efficiently. This has been a nontrivial issue in the literature on

this topic.5 We are using the Sparse Finite Mixture Markov-Chain Monte Carlo (SFM-

5Several alternative methods exist like the Reversible Jump MCMC (Green, 1995; Richardson and
Green, 1997), which is computationally complex and suffers from convergence problems in several cases,
and the Dirichlet Process mixture (Miller and Harrison 2013), which suffers from unreliability. Koop and
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MCMC) algorithm due to Malsiner-Walli et al. (2016). An important advantage of this

MCMC method is its simplicity and ease of implementation. The algorithm can be

viewed as a two-step process. In step 1, the researcher starts by deliberately overfitting

the mixture model by specifying the number of components larger than the number of

components expected to describe the data. In step 2, a regularization prior is used which,

in combination with likelihood and data, shrinks the number of mixture components to-

wards a credible number with substantial posterior probability. This method of selecting

the number of components is also appealing because it overcomes well-known problems

associated with using marginal likelihoods for component selection (Frühwirth-Schnatter,

2006), and it avoids the computational burden of having to estimate infinite mixture mod-

els using non-parametric approaches (Frühwirth-Schnatter and Malsiner-Walli, 2019).

To learn from the information set (data, likelihood and prior) how much sparsity is

needed in the regularization prior, we treat the concentration parameter in the Dirichlet

distribution α as an unknown parameter to be estimated. To that end, we specify a

Gamma hyperprior of the form

α ∼ G(α0, α0k), (13)

where α0 is to be selected by the researcher and k is the number of mixture components.

This prior is desirable for two reasons. First, it is informative on near-empty compo-

nents, i.e. V ar(α) = 1
α0K2 , while being uninformative across components, i.e, E(α) = 1

K
.

Second, it ensures that the Dirichlet prior approximates a Dirichlet process prior with

concentration parameter α as k becomes large (Ishwaran et al., 2001).6

The trade-off in adopting this approach is that the conditional posterior distribution

implied by (8) and (13) is given by

f(α(d)|p(d)) ∝ f(α(d−1))
Γ(α(d−1)k)

Γ(α(d−1))k

(
J∏

j=1

p
(d)
j

)α(d−1)−1

, (14)

where Γ(·) is the Gamma function.7 Sampling from (14) therefore requires an addi-

tional Metropolis-step within the Gibbs sampler outlined earlier, as specified below in

Algorithm 2. This Algorithm makes it clear that the main difference in estimating the

mixture regression model with unknown number of components is the estimation of the

concentration parameter.

Potter (2007) propose an alternative based on change-point modelling, allowing the number of change
points to be unknown.

6The Dirichlet process prior is a commonly used prior for infinite mixture models.
7The Gamma function is defined as Γ(x) =

∫∞
0

e−zzx−1dz where x > 0.
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Algorithm 2 Metropolis-within-Gibbs Sampler for the Mixture Regression Model with
unknown k

1: Initialize the concentration parameter, α0 = c > 0, and the number of components,
component weights, parameter values, and component indicators as in Algorithm 1.

2: for d = 1 to D do

1. Sample:

a) Parameter values, θ
(d)
j = (β

(d)
j , σ

2(d)
j )′, as in Algorithm 1.

b) Component indicators, S(d), as in Algorithm 1.

c) Component weights, p(d), as in Algorithm 1.

2. Given the parameter values, θ
(d)
j , component indicators S(d), and weights p(d),

sample the concentration parameter α(d) (Random Walk Metropolis step).

3: end for

Algorithm 2 provides estimates of the model parameters θ, p, α, and S, with k0

components such that k0 > kexp, where the latter is the expected value of k to describe the

data. The posterior distribution of the number of non-empty components, Pr(k0 = h|r),
h = 1, . . . , k0, can be directly obtained from the MCMC output. To that end, note that

the number of non-empty components in a given draw is given by

k(d) = k0 −
k0∑
j=1

1(Tj(S)
(d) = 0) (15)

where 1(·) is the indicator function. The relative frequency of each value across all draws,
1
D

∑D
d=1 k

(d), therefore returns the estimated posterior probability Pr(k0 = h|r), h =

1, . . . , k0. To estimate the credible number, k, of mixture components with substantial

probability, we use the posterior mode, k̂, as a point estimate from this distribution.8

After computing the posterior mode, we consider only the sub-sequent MCMC draws such

that the number of non-empty components is exactly equal to k̂. This step is important

because the main objective of this paper is to conduct component-specific parameter

inference on the resulting Taylor rule coefficients. If we were instead interested in using

the mixture model to fit an unknown distribution, then the number and exact nature of

the underlying distributions is less relevant, and all draws from the above algorithm can

be retained.9

The next step is to ensure that each of the draws within this sub-sequence is in the

correct order. To illustrate the problem, suppose that k̂ = 2 and the first retained draw,

8The posterior mode is the natural choice for two reasons. First, it is optimal under the 0/1 loss
function. Second, provided that k0 > kexp it is invariant to the initial choice of k0. We emphasize that
this is not the case for the posterior mean or median which would be effected by the initial choice of k0
due to the possibly large right tail when selecting large values of k0.

9As a recent example Cross et al. (2024) introduce a mixture of shifted-Poisson distributions for modal
inference in discrete data distributions. They find that inflation expectations in the Michigan survey
exhibit substantial heterogeneity, which is indicative of de-anchored expectations.
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d = 1, has a classification sequence (1, 2), while the second retained draw, d = 2, has

a classification sequence (2, 1). This is known as label switching, and is overcome by

clustering the retained draws into k̂ clusters using K-centroids cluster analysis (Leisch,

2006), where the distance between a point and a cluster centroid is determined by a

distance metric. Here we use the Mahalanobis distance which is widely used in cluster

analysis and classification techniques.

The final step is to ensure that the classification sequence from the previous step

results in a permutation of (1, . . . , k̂). Since classifications involving overlapping clusters

are indicative of overfitting, this step is akin to having a parsimonious set of well-identified

components (Frühwirth-Schnatter, 2011). In practice, this is done by simply checking

whether or not the clustered draws is a permutation of (1, . . . , k̂). If it is, then we retain

it. If it is not, then we discard it. For instance, in the case that k̂ = 2 we require that

the classification sequence is either (1, 2), or (2, 1). Draws that are clustered into a single

component, i.e., (1, 1) or (2, 2) are discarded. The remaining identified draws are then

resorted and used for inference.

The different steps in the algorithms are summarized in Figure 1. The Gibbs sampler

of Algorithm 1 is shown in steps 1a, 1b and 2 (excluding the role of the parameter α).

The Metropolis-Hastings step is shown as the addition for Algorithm 2 in step 1c. Given

this output one generates a complete vector of component indicators, S = (S1, ..., ST )
′, in

one step from a Multinomial distribution. As discussed above, the reduction procedure

going from a selection of components from k0 > kexp to a credible value of k makes direct

use of the MCMC output of Algorithm 2.

It is important to emphasize that this estimation procedure is particularly suitable

for our case of a parsimonious model structure due to the efficiency and flexibility of the

algorithm. To the best of our knowledge, this is the first application of the sparse finite

mixture approach of Malsiner-Walli et al. (2016) to Taylor rules, and the broader class

of dynamic regressions more generally.

We end this section with a remark. Given that with substantial posterior probability

we end up in our empirical analysis with two components or regimes, the Dirichlet prior on

the concentration parameter α reduces to a Beta prior, and the Multinomial conditional

posterior distribution of the component indicator St reduces to a Binomial distribution.

However, in practice, one starts the estimation procedure with a much larger number of

components or regimes than two.
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Initialize component weights, ptj, parameter values, θj,
concentration parameter, α, and component indicators, Stj

1. Given component indicators, Stj, allocate each observation, rt, to a mixture component
and sample parameter values, θj, component weights, pj, and concentration parameter, α

a. Sample parameter values, θj (Multivariate Normal and inverse-Gamma)

b. Sample component weights, pj (Dirichlet)

c. Sample concentration parameter, α (Metropolis-Hastings step)

2. Given the parameter values, θj, component weights, pj, and
concentration parameter, α, sample the component indicators, Stj (Multinomial)

Figure 1: Summary of the algorithm for the Sparse Finite Mixture Markov Chain Monte
Carlo (SFM-MCMC) sampling procedure

3 Results

We present estimation results on regime classification and on finite sample posterior

estimates of the policy rule parameters. In addition, we discuss the fit of the model in

comparison with alternative specifications.

3.1 Regime classification and inference on policy parameters

We estimate our baseline mixture model with unknown number of regimes for the

period 1960:Q1-2021:Q1. Since we lose one year of observations due to data transforma-

tions, the period used for analysis is therefore 1961:Q1-2021:Q1.

Our first result is that the mixture model endogenously selects a two component

density. The time series of the estimated component weights or probabilities are plotted

in Figure 2. We emphasize that these probabilistic weights can be associated with a regime

classification as done in business cycle analysis. Note the prevalence of the probabilistic

weights denoted by S1 which constitutes a “normal time” regime. On the contrary, the

probability of being in regime S2 episodically increases substantially, in particular in the
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Figure 2: Time series of the estimated component (regime) indicators. The shaded areas
show NBER recession periods.

Figure 3: Regime indicator, defined as the average probability of being in regime S1 is
larger than 50 percent (blue line) and the CBO output gap (black line). The shaded
areas show NBER recession periods.

first part of the data sample. In fact, given our time series, regime S2 can be associated

with recessions. This is more visible in Figure 3 where we plot the CBO output gap

together with a regime indicator associated with periods when the probability of being in

regime S1 is larger than 50 percent. The regime indicator captures all recessions present
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in the data (marked with grey bars) and a few additional episodes. Since most recessions

materialize in the first part of the data sample, regime S2 is substantially more prevalent

during that period. Clearly, the mixture model does not select two adjacent regimes, as

often assumed in specifications with exogenous partitioning.

The posterior moments and densities of the structural parameters from the mixture

model are shown in Table 1 and Figure 4. One major result is that the interest rate

smoothing coefficient, ρ, is clearly and credibly different across the two regimes. Accord-

ing to our estimates, the reaction function exhibits a high degree of gradualism (with

posterior mean equal to 0.92) in normal times and a much lower degree of gradualism

(with posterior mean equal to 0.72) in the recessionary regime. Put simply, the Fed seems

to respond much more gradually to the state of the economy in normal times.10 This

asymmetry is important from an economic point of view but also credible from a statis-

tical point. The posterior mean of ρ in S1 is outside the 68% and 90% credible region of

the posterior of ρ in S2. We further show in the upper panel of Figure 4 how different

the two posterior densities are for the smoothing parameter. Not surprisingly, estimates

are more precise in regime S1 which contains a much larger number of observations.

Table 1: Posterior moments for structural parameters in the mixture model

Posterior Mean 68% CI 90% CI

Mixture S = 1

β 1.87 (1.48,2.25) (1.25,2.62)
γ 1.04 (0.76,1.32) (0.62,1.60)
ρ 0.92 (0.90,0.94) (0.88,0.95)

Mixture S = 2

β 1.94 (1.32,2.59) (0.97,3.32)
γ 1.44 (0.56,2.37) (0.27,3.59)
ρ 0.72 (0.60,0.85) (0.50,0.90)

Notes: The table shows the posterior moments and credible intervals (68% and 90%)
for the structural parameters of each components in the mixture model. S1 denotes the
“normal time” regime and S2 the “recession” regime. β is the inflation coefficient, γ the
output gap coefficient and ρ the interest smoothing coefficient.

Our second result concerns the response coefficients to inflation β and the output gap

γ. The response to inflation is essentially the same across regimes while the response

to the output gap is substantially larger in the recessionary regime (a posterior median

of 1.44 against a value of 1.04 in normal times). Thus, the Fed seems to respond more

10One may wonder whether the asymmetric degree of smoothing is capturing a symmetric response to a
very asymmetric variable like the unemployment rate which is not included in our baseline regression. In
order to investigate this concern, we replace the output gap with the unemployment rate in the estimated
mixture Taylor rule in online Appendix A.2. Our results are not only confirmed but even reinforced with
an estimated degree of smoothing of around 0.5 in the recessionary regime in this experiment.
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Figure 4: Posterior densities of structural parameters (top row) and difference between
posterior densities of structural parameters (bottom row) in the mixture model. For
visualization purposes the areas under the densities in the top panel are not scaled to be
the same.

to real economic activity when economic conditions deteriorate sharply as in recessions.

Intriguingly, our methodology suggest that the most stable parameter is the coefficient on

inflation which is precisely the coefficient whose magnitude changes the most in models

with exogenous partitioning.

Are the mixture regimes different? To investigate this question, we look at the dif-

ference between the estimated posterior densities of the structural parameters in the

mixture model for regimes S1 and S2. The bottom panel in Figure 4 shows that gener-

ated draws in the two regimes are quite different. For all three parameters (β, γ, ρ) the

evidence indicates that generated draws in regime S2 occur over a wider range than for

S1, which confirms the results about the credibility intervals reported in Table 1. For the

coefficient ρ it is seen that the posterior density is very skew in regime S2 and the gen-

erated draws occur much more in a wider stationary region than for regime S1. For the

output coefficient γ the posterior density is also strongly asymmetric. For the inflation

coefficient β the posterior densities in both regimes are more symmetric but in regime

S2 more draws are generated in both the left and the right tail. These results stem from

a simulation-based Bayesian inference procedure which holds for the exact finite sample

data.

We believe that our evidence of asymmetric gradualism is sensible. In an influential
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speech, Panetta (2022), at that time Member of the Executive Board of the ECB, states

that gradualism was clearly appropriate in the euro area in 2022 because of the strength

of recent shocks that was generating extreme uncertainty about the outlook for economic

activity and because of the unprecedented nature of the shocks. However, in the same

speech, Panetta (2022) clearly states that ”...a gradual approach is not appropriate in

all circumstances. For example, when faced with deflationary shocks that risk rooting

interest rates at the lower bound, it pays to act more decisively”. Therefore, it seems

that gradualism is desirable mainly during tightening cycles. Note that financial stabil-

ity considerations are often invoked (see Bernanke (2004)) as a second justification for

gradualism in addition to the robustness argument used by Panetta (2022). However, the

need to proceed cautiously in order to avoid financial market disruptions is also asym-

metric in nature: it is invoked when central banks increase interest rates but not when

central banks quickly lower interest rates in response to a deteriorating outlook. Finally,

the logic of asymmetric gradualism was stressed also during the FOMC video conference

meeting at the Fed on October 15, 2010 when it was stated ”In their discussion of the

relative merits of smaller and more frequent adjustments versus larger and less frequent

adjustments . . . , [FOMC] participants generally agreed that large adjustments had been

appropriate when economic activity was declining sharply in response to the financial

crisis. In current circumstances, however, most saw advantages to a more incremental

approach that would involve smaller changes . . . calibrated to incoming data.”.

3.2 Shocks and model fit

We evaluate the implied monetary policy shocks from the structural estimates and the

in-sample fit of our mixture model. The residuals represent non-systematic deviations

from Taylor Rule fundamentals and can consequently be interpreted as monetary policy

shocks.

As shown in Figure 5, monetary shocks are small with the exception of the end of the

1970s when we identify a series of large and volatile shocks. This is evidence that mone-

tary policy was less systematic in that specific period and more generally in the first part

of the sample (see also Bernanke et al. (1997)). This is a common result in the literature

showing that fluctuations in the interest rate reflect mostly the endogenous response of

the central bank to the state of the economy rather than unsystematic interventions.

Next, we compare models using the Bayesian R2 (Gelman et al., 2019), which is the

Bayesian analogue of the widely used coefficient of determination (also known as R2).

Gelman et al. (2019) define this R2 as:

R2
Bayes =

varfit
varfit + varres

. (16)
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Figure 5: Fitted Mixture Taylor Rule and actual Federal funds rate (left) and monetary
policy shocks from the mixture regression (right)

The procedure to evaluate R2
Bayes is as follows: one generates a random draw from the

posterior of the parameters and evaluates one value of R2
Bayes using equation (16) (similar

to the Frequentist approach where one obtains one R2 using, for instance, OLS estimators

of the parameters). The generation of parameter draws and the evaluation of R2
Bayes

is repeated many times. Formally, R2
Bayes is integrated/averaged over the parameter

space, for details see Gelman et al. (2019). Note that R2
Bayes is a regular function of

the parameters, as a consequence the simulated finite sample posterior density of R2
Bayes

follows directly from the simulated values of the posterior density of the model parameters.

This is in contrast to the Frequentist approach in this respect.

Table 2: Model Comparison Metrics

Mean 90% credible interval

Two Regimes Mixture 90.73 (89.46,91.60)
Linear Regression 89.81 (89.06,90.39)

Notes: The table shows the posterior mean and 90% credible interval for Bayesian R2 for
estimated Taylor rules based on the mixture regression with two regimes, and the linear
regression over the full sample.

Table 2 shows that the mixture model provides a good fit with a tight finite sample

posterior density of R2
Bayes and a mean which is outside the 90% credible interval of the

density for the full-sample linear regression model. The mean fit of the linear regression

model is also slightly lower. This suggests that, on average, the mixture model provides

a superior in-sample fit.
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To further investigate the significance of this improvement, we plot the posterior

distributions of each models R2
Bayes together in Figure 6. The figure highlights that the

empirical support of the posterior distribution for the mixture model tends to be larger

than the linear regression. To determine the credibility of this improvement, we make use

of the two-sample Kolmogorov–Smirnov function for pair-wise equality of the Bayesian

R-squared distribution from the mixture model with the linear regression. In this test

the null hypothesis is that the MCMC draws of the Bayesian R-squared from the two

models are drawn from the same distribution, and the alternative hypothesis is that they

are not drawn from the same distribution. The test provides strong evidence that the

distributions are not equal. We therefore conclude that the mixture model provides a

superior in-sample fit relative to the linear regression model.

Figure 6: Bayesian R-squared for the Mixture model (red) and linear regression model
(Blue). Solid lines are the respective posterior means.

4 Increasing structural information on mixture weights

So far, we considered the case of independent time-varying classification of the data.

However, various scholars have examined changes in monetary policy regimes by specify-

ing the Taylor Rule as a Markov-Switching regression model, or by exogenous partitioning

based on the Fed chairperson. In this section we show that both of these models are in

the general class of mixture regression models. However, the unrestricted mixture with

independent time-varying classification provides a superior fit of the data.11

11See Davig and Leeper (2007) for a seminal contribution in the use of Markov-Switching Taylor
rules. Sims and Zha (2006) also provide a related multivariate analysis with a Markov-Switching vector
autoregression (VAR) model.
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In a Markov-Switching regression model the vector of discrete latent indicators, S =

(S1, . . . , ST )
′, is defined such that each St is a discrete latent process, with finite state

space {1, . . . , k}, whose dynamics are described by an irreducible and aperiodic Markov

chain. Specifically, the dynamics of St are governed by the k × k transition matrix P , in

which each element pij represents a transition probability from state i in period t− 1 to

state j in period t, defined as:

Pr(St = j|St−1 = i) = pij, (17)

where i, j ∈ {1, . . . , k}.
The core difference between our mixture and Markov switching mixture models is

seen by comparing the component indicator specifications in (4) and (17). We here high-

light two important differences between these different specifications. First, the Markov

process in (17) introduces autocorrelation into the regime indicator. In contrast, (4) im-

plies that the component indicator in the mixture model has no built-in a priori memory.

Second, the specification of a latent Markov process for the latent component indicator

means that the states St must be estimated using forward and backward filtering recur-

sions. These recursions are well known and are often referred to as the ‘Hamilton filter’

after the seminal paper by Hamilton (1989).12 This additional step greatly increases the

computational complexity of the model. In contrast, the dynamic independence of the

component indicator in (10) implies that St in the mixture model is sampled directly

from a multinomial distribution.

The equation parameters in the Markov-Switching model can be estimated using a

similar Bayesian method as in our mixture regression model. In fact, the priors for el-

ements of θj are set in exactly the same way as in our mixture model, and result in

exactly the same (conditional) posterior distributions across regimes. We also assume

that the number of regimes k is known, and specify a Dirichlet distribution for the tran-

sition probabilities such that (pi,1, . . . , pi,k), i = 1, . . . , k, with symmetric concentration

parameter α. From the viewpoint of prior specification, the key difference between the

mixture model and Markov-Switching model is that specifying the latent indicator St as a

Markov process introduces the transition probability matrix P . Since the Federal Funds

Rate is known to evolve with a high degree of gradualism, we specify an informative prior

on the regime transition probability matrix such that P = 1k + ζIk, in which 1k is a

k × k matrix with all entries equal to one, Ik is the identity matrix of size k, and ζ > 0

is a parameter that controls the degree of regime persistence. To see this note that the

expected probability of staying in regime j is given by E(pjj) = 1+ζ
ζ+k

. Thus, a higher value

of ζ indicates a higher persistence and vice-versa. Here we set k = 2 and ζ = 18 which

12A comprehensive textbook treatment of these forward filtering and backward smoothing procedures
can be found in Frühwirth-Schnatter (2006).
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translates to a 95% prior probability of staying in the same regime.13

Results from the Markov-Switching model are presented in Table 3. While the mag-

nitude of the estimated coefficients is similar to our baseline model, the characterization

of the regimes is quite different. As shown in Figure 7, the partitioning of the regimes

is less interpretable in the Markov-Switching model with the less frequent regime being

never selected after the late 1980s. In contrast, the model assigns a high probability to

the less frequent regime for longer periods in the first part of the data sample.

Table 3: Posterior moments of estimated structural parameters a two-regime Markov-
Switching model

Posterior Mean 68% CI 90% CI

Mixture S = 1

β 1.36 (1.03,1.69) (0.85,2.04)
γ 0.95 (0.74,1.17) (0.60,1.36)
ρ 0.90 (0.87,0.92) (0.86,0.94)

Mixture S = 2

β 1.68 (1.13,2.21) (0.78,2.89)
γ 1.18 (0.35,2.01) (0.14,3.23)
ρ 0.72 (0.59,0.85) (0.48,0.90)

Notes: The table shows the posterior moments and credible intervals (68% and 90%)
for the structural parameters in a two-regime markov-switching model. S1 denotes the
“normal time” regime and S2 the “recession” regime. β is the inflation coefficient, γ the
output gap coefficient and ρ the interest smoothing coefficient.

This highlights an important difference between our baseline mixture model and the

Markov-Switching model. In the mixture model the state variable is independent with

respect to time while it follows a Markovian process in the Markov-Switching model. This

means that the Markov-Switching model imposes a stronger structure and the estimation

of the states requires filtering and smoothing steps, which also makes the states more

persistent. Since recessions are less likely to occur than expansions (particularly in the

latter part of our data sample) and also less persistent, there is a risk that the Markov-

Switching model may underestimate the frequency of recessions. On the contrary, the

mixture model imposes very little structure and sampling is done directly from a Multi-

nomial distribution, making the model more parsimonious and less prone to specification

errors.14

13To see this note that E(pjj) = 1+ζ
ζ+k = (1 + 18)/(18 + 2) = 0.95.

14The coding of a mixture model is also much simpler, and the computational speed faster. This is
primarily because the component indicator in the mixture model can be sampled from a multinomial
distribution in one line of code. In contrast, for the case of Markov-Switching, the latent states are
sampled using computationally costly forward and backward smoothing recursions that require more
computer time.
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Figure 7: Regime indicator from a two-regime markov-switching model, defined as the
probability of being in regime S1 is larger than 50 percent (blue line) and the CBO output
gap (black line). The shaded areas show NBER recession periods.

As a third case of information on the component indicator, we consider a time-

invariant specification that uses exogenous partitioning before and after the Volcker pe-

riod as in Clarida et al. (2000). Following Carvalho et al. (2021), we specify the break

date such that the pre-Volcker period ends in 1979:Q2 and the post-Volcker period starts

from 1979:Q3. If we define the pre-Volcker period as regime 1, then this corresponds to

defining a component indicator such that:

Pr(St = 1) = 1, if t ≤ 1979Q2 and 0 otherwise, (18)

Pr(St = 2) = 1, if t > 1979Q2 and 0 otherwise.

For completeness, this indicator is illustrated in Figure 8, and the estimated Taylor

rule parameters are presented in Table 4. In line with the real-time analysis of Carvalho

et al. (2021), we find that the Taylor rule in the post-Volcker regime places a much larger

emphasis on inflation, along with slightly lower gradualism.15

To compare the in-sample fit of the models, we use the Bayesian R-squared. Re-

sults from the three cases are plotted together in Figure 9, and summarized in Table 5.

The posterior mean and 90% credible interval of the Bayesian R-squared for the Markov

switching and exogenous break models are 90.19 (88.83, 91.19), and 89.63 (88.87, 90.23)

respectively. Comparing this to results in Table 2 suggests that, on average, the mix-

ture model provides a superior in-sample fit over these two model, however the Markov-

15We note that the results here differ slightly from those in Appendix A.1 since these results are
obtained with the most recent data vintage as opposed to real-time data.
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Figure 8: Regime indicator for the regression with an exogenous break in 1979:Q2 (blue
line) and the CBO output gap (black line). The shaded areas show NBER recession
periods.

Table 4: Posterior mean for Bayesian estimation of the Taylor rule structural parameters
in various periods

Pre-Volcker Post-Volcker
1960Q1-1979Q2 1979Q3-2021Q1

β 0.84 2.17
γ 0.83 0.84
ρ 0.75 0.69

Notes: The table shows the posterior moments and credible intervals (68% and 90%) for
the structural parameters when imposing a time-invariant specification that uses exoge-
nous partitioning before and after the Volcker period as in Clarida et al. (2000). β is the
inflation coefficient, γ the output gap coefficient and ρ the interest smoothing coefficient.

Switching model still provides a superior in-sample fit over the two regression models.

To determine the credibility of the mixture models improvements, we again use the two-

sample Kolmogorov–Smirnov function. In both cases, we find strong evidence that the

Bayesian R2 distributions from the mixture model is not equal to that of the Markov

switching or linear regression models. We therefore conclude that the mixture model

provides a superior in-sample fit relative to both of these model specifications.
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Figure 9: Bayesian R-squared for the Mixture model (red), Markov Switching model
(Blue) and exogenous break model (Black). Solid lines are the respective posterior means.

Table 5: Model Comparison Metrics

Mean 90% credible interval

Two Regimes Markov-Switching 90.19 (88.83,91.19)
Two Dogmatic Regimes 89.63 (88.87,90.23)

Notes: The table shows the posterior mean and 90% credible interval for Bayesian R2

for estimated Taylor rules based on the mixture regression with two regimes, Markov
switching regression with two regimes, and a regression with exogenous break in 1979Q2,
respectively.

5 Our results in perspective

In this section, we compare our results with those in the literature emphasizing a shift

over time in the policy response against inflation. In addition, we discuss the robustness

of our results with respect to using real-time data, a sample excluding the zero lower

bound period or a time-varying natural rate of interest.

5.1 Asymmetric smoothing or changes in the response to infla-

tion?

Our main result is that the mixture model identifies two (and only two) regimes that

feature a similar response to inflation but varying degrees of gradualism and respon-

siveness to real economic activity. At first sight, this result seems in contrast with the

seminal paper by Clarida et al. (2000) and the following literature based on exogenous
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partitioning. In fact, these papers identify a large increase in the policy response to in-

flation during the post-Volcker period, whereas our model favors partitioning based on

the phase of the business cycle.

In order to reconcile the two set of results, we impose an exogenous partitioning in

1979:Q3 and estimate the mixture model on both the pre-Volcker and the post-Volcker

periods. The results for the post-Volcker period largely confirm the findings of the baseline

model based on the full data sample, as shown in Table 6 and Figure 10. The model

relies on two regimes with the recessionary regime featuring a lower degree of gradualism.

In addition, the response to inflation is estimated largely above one in both regimes.

When estimated over the pre-Volcker period, the mixture model still selects two regimes.

However, in this case both regimes feature a low response to inflation with a coefficient

lower than one (see Table 6) in keeping with Clarida et al. (2000). Since the model is

estimated over a short data sample (less than 20 years), the identification of the two

regimes is poor, as shown in Figure 10. Nonetheless, this experiment is particularly

insightful: it shows that our baseline model selects the asymmetry between expansions

and recessions as more salient than the asymmetry between pre-Volcker and post-Volcker.

Table 6: Posterior moments for structural parameters in the mixture model over the
”Pre-Volcker” and ”Post-Volcker” period

pre-Volcker post-Volcker
Mean 68% CI 90% CI Mean 68% CI 90% CI

Mixture S = 1 Mixture S = 1

β 0.87 (0.60,1.06) (0.21,1.38) 2.90 (2.51,3.31) (2.17,3.67)
γ 0.84 (0.50,1.09) (0.22,1.64) 0.87 (0.65,1.08) (0.51,1.28)
ρ 0.69 (0.61,0.81) (0.28,0.86) 0.89 (0.86,0.91) (0.84,0.93)

Mixture S = 2 Mixture S = 2

β 0.96 (0.13,1.77) (0.03,3.02) 2.11 (1.83,2.36) (1.66,2.63)
γ 0.99 (0.12,1.92) (0.03,3.50) 0.62 (0.24,0.97) (0.10,1.39)
ρ 0.50 (0.18,0.78) (0.05,0.86) 0.24 (0.08,0.40) (0.02,0.55)

Notes: The table shows the posterior moments and credible intervals (68% and 90%) for
the structural parameters of each components in the mixture models estimated over the
”Pre-Volcker” and ”Post-Volcker” period, respectively. S1 denotes the “normal time”
regime and S2 the “recession” regime. β is the inflation coefficient, γ the output gap
coefficient and ρ the interest smoothing coefficient.

Intriguingly, if we force the mixture model to select three components (see Table

7), we recover a normal-time regime with high response to inflation and high degree of

interest rate smoothing, a regime with high response to inflation and low smoothing which

captures mainly economic downturns, and a third regime featuring a very low response

to inflation and an intermediate degree of gradualism. This third regime is associated
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(a) Pre-Volcker (b) Post-Volcker

Figure 10: Time series of estimated components (regimes) probabilities (weights) for
mixture regressions over the ”Pre-Volcker” and ”Post-Volcker” period, respectively. The
shaded areas show NBER recession periods.

Table 7: Posterior distribution of estimated structural parameters in the Mixture model
with three regimes.

Posterior Mean 68% CI 90% CI

Mixture S = 1

β 2.90 (2.21,3.63) (1.90,4.32)
γ 1.19 (0.78,1.60) (0.58,2.07)
ρ 0.94 (0.92,0.96) (0.90,0.97)

Mixture S = 2

β 2.60 (1.97,3.32) (1.73,4.14)
γ 0.55 (0.14,0.91) (0.05,1.43)
ρ 0.33 (0.08,0.59) (0.02,0.71)

Mixture S = 3

β 0.45 (0.17,0.72) (0.06,0.90)
γ 1.10 (0.71,1.46) (0.54,1.90)
ρ 0.76 (0.71,0.81) (0.67,0.84)

Notes: The table shows the posterior moments and credible intervals (68% and 90%) for
the structural parameters of each components in a mixture model with three components
(three regimes). S1 denotes the “normal time” regime and S2 and S3 are both associated
with more recessionary periods. β is the inflation coefficient, γ the output gap coefficient
and ρ the interest smoothing coefficient.

mainly with selected periods in the first part of the data sample (see Figure 11), in

keeping with the narrative of Clarida et al. (2000) and the subsequent literature. One

can see the recessionary regime in our baseline model as a combination of the second and
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Figure 11: Time series of estimated components (regimes) probabilities (weights) in a
three component mixture regression. The shaded areas show NBER recession periods.

third regimes in this extended model. This result confirms that the mixture model can

identify different patterns in the response to inflation over time. Nonetheless, the main

asymmetry is between expansions and contractions. Given that contractions are rare and

shallow, such asymmetry can be captured only by a model with endogenous partitioning.

5.2 The role of real-time data

We re-estimate our model using the Greenbook/Tealbook forecasts prepared by the

Federal Reserve staff before each meeting of the Federal Reserve Open Market Committee

(FOMC) as real-time measures of expected inflation and the output gap. For both infla-

tion and the output gap, we use the average of the nowcast and the one-quarter ahead

forecast.16 In this case, the data sample is 1975:Q1-2017:Q4 because of data availability.

The results presented in Table 8 show a substantially larger difference in the degree of

gradualism (measured by ρ) between normal times (0.92) and the recessionary regime

(0.54) than in our baseline estimation in Section 3. Interestingly, the difference in the

response to the output gap (γ) is also substantially larger in the recessionary regime (a

posterior mean of 1.67 compared to 0.92 in normal times). The inflation coefficient β is

somewhat larger in normal times (1.53 vs. 1.35) but the Taylor principle is easily satisfied

in both regimes.

These results are particularly connected with Coibion and Gorodnichenko (2011), who

16In online Appendix A.3, we show that results are very similar when using either only nowcasts or
only one-quarter ahead forecasts for inflation and the output gap.
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Table 8: Posterior moments and credible intervals for structural parameters in the Mix-
ture model with Greenbook forecasts over the data period 1975:Q1-2017:Q4.

Posterior Mean 68% CI 90% CI

Mixture S = 1

β 1.53 (0.63,2.38) (0.24,3.13)
γ 0.92 (0.30,1.50) (0.11,2.14)
ρ 0.92 (0.90,0.94) (0.88,0.95)

Mixture S = 2

β 1.35 (0.31,2.45) (0.09,3.66)
γ 1.67 (0.43,3.02) (0.13,4.11)
ρ 0.54 (0.35,0.73) (0.19,0.82)

Notes: The table shows the posterior moments and credible intervals (68% and 90%) for
the structural parameters of each components in the mixture model when using Green-
book/Tealbook data. We use the average of the nowcast and one-quarter ahead forecasts
for inflation and output gap, respectively. For inflation we use data for the GDP deflator.
S1 denotes the “normal time” regime and S2 the “recession” regime. β is the inflation
coefficient, γ the output gap coefficient and ρ the interest smoothing coefficient.

estimate the Federal Reserve reaction function under exogenous partitioning. Notably,

these authors include as regressors the Greenbook forecasts as real-time measures of ex-

pected inflation, output growth and the output gap. They find that the long-run response

to inflation is higher in the second period but the difference is not statistically significant,

thus in contrast with Clarida et al. (2000). Therefore, while the main asymmetry in mod-

els with exogenous partitioning is dampened when using real-time data, the asymmetries

recovered by our model with endogenous partitioning are amplified. In addition, Coibion

and Gorodnichenko (2011) find that the degree of interest rate smoothing has risen in

the second part of their sample. This is consistent with our results once one recognizes

that recessions are mostly concentrated in the pre-Volcker period.

All in all, we conclude that the asymmetry in gradualism and in the response to

the output gap are reinforced when using real-time data while the asymmetry in the

response to inflation in models with exogenous partitioning is substantially weaker when

using real-time data .

5.3 Alternative data period and the natural rate of interest

Our data sample ends in 2021:Q2 and therefore include the period in which the policy

rate was constrained by the zero-lower-bound. It is reasonable to assume that during

that specific period, the policy rule did not accurately represent the policy stance. Note,

however, that our model could in principle capture the zero-lower-bound period as an

independent regime. In practice, this is not the case. In order to check that our results
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are not driven by this peculiar period, we re-estimate the model by stopping the data

sample in 2007:Q4. All results are confirmed in this experiment as shown in Table 9.

In a second exercise, we take into account that the natural rate of interest has declined

over our data sample. Rather than imposing a constant value for the natural rate of

interest, we assume that the natural rate of interest is time-varying and is computed

following the method proposed by Laubach and Williams (2003). Therefore, the term

in the left hand side of the regression includes the difference between the federal funds

policy rate and the Laubach-Williams estimate of the natural rate of interest. Results in

Table 9 are based on estimates over the period 1961:Q1-2021:Q2. While a lower degree

of gradualism in the recessionary regime is confirmed, the differences in the output gap

coefficient across regimes are now magnified with respect to the baseline model (1.53 vs

0.67) and the response to inflation is estimated to be stronger in the recessionary regime.

Table 9: Posterior moments for structural parameters in the mixture model on a pre
Great Recession sample and on a sample allowing for changing natural rate of interest.

Pre Great Recession Natural rate of interest
Mean 68% CI 90% CI Mean 68% CI 90% CI

Mixture S = 1 Mixture S = 1

β 1.67 (1.17,2.15) (0.87,2.71) 1.45 (1.08,1.81) (0.85,2.17)
γ 1.18 (0.70,1.63) (0.51,2.28) 0.67 (0.40,0.93) (0.28,1.22)
ρ 0.91 (0.88,0.94) (0.86,0.95) 0.91 (0.89,0.93) (0.88,0.95)

Mixture S = 2 Mixture S = 2

β 1.86 (1.17,2.57) (0.78,3.43) 1.81 (1.18,2.62) (0.80,3.56)
γ 1.43 (0.42,2.52) (0.16,3.72) 1.53 (0.51,2.64) (0.21,3.86)
ρ 0.67 (0.51,0.83) (0.35,0.89) 0.74 (0.62,0.87) (0.51,0.91)

Notes: The table shows the posterior moments and credible intervals (68% and 90%) for
the structural parameters of each components in the mixture models when the estimation
sample ends in 2007:Q4 and when estimating on the full sample but using the Laubach-
Williams estimate of the natural rate of interest, respectively. In the latter case, the left
hand side of the regression includes the difference between the federal funds rate policy
rate and the Laubach-Williams estimate of the natural rate of interest. S1 denotes the
“normal time” regime and S2 the “recession” regime. β is the inflation coefficient, γ the
output gap coefficient and ρ the interest smoothing coefficient.

6 Conclusion

In this paper, we propose a methodology based on a mixture model to endogenously

partition interest rate data into different regimes. We estimated mixture weights and pa-

rameters of the component distributions using a relatively simple Markov Chain Monte
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Carlo method. The methodology is applied to the estimation of basic Taylor-type mone-

tary policy rules, contrasting with the commonly used approach of exogenous partitioning

for estimating such policy rules (cf. Clarida et al. (2000)).

Our approach endogenously selects two regimes that can be associated with normal

times and recessions. We obtain a substantially higher degree of monetary gradualism

in normal times. In addition, evidence is obtained about a more aggressive response

to real economic activity in the recessionary regime. The magnitude of the response to

inflation does not exhibit clear variation across regimes. While we find some evidence

of changes in the response to inflation in auxiliary experiments, our model endogenously

chooses to put more weight on the asymmetry in gradualism based on the state of the

business cycle. Put differently, the model sees the asymmetry between expansions and

recessions as more salient than the asymmetry between pre-Volcker and post-Volcker. A

modelling implication from our results is therefore that models that include the reaction

of monetary authorities to various economic variables, such as commonly used DSGE

models, should take into account that the degree of gradualism is state-dependent.

In terms of future research, it would be certainly interesting to apply the mixture

model to a multivariate set-up. While clearly outside the scope of this paper, such an

extension would make it possible to investigate all the questions studied so far in Markov-

Switching Vector Autoregressions (cf. Sims and Zha (2006), Bianchi (2013) and Bianchi

and Melosi (2017)) in the context of a model that can isolate regimes related to brief and

abrupt episodes, as shown in our paper.
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Supplementary Material for the paper “Tay-
lor rules with endogenous regimes”

A Additional Results

A.1 Carvalho et al. (2021) with Bayesian estimation

Results in Table A.1 show that the main OLS point estimates for the Taylor Rule

coefficients in from Table 1 of (Carvalho et al., 2021, p.151) are robust to the use of

Bayesian estimation under standard non-informative independent Normal and inverse-

Gamma priors. We also provide new “Full-Data Sample” estimates for the period that

we investigate in Section 3.1.

Table A.1: Posterior median for Bayesian estimation of the Taylor rule structural param-
eters in various periods

Pre-Volcker Volcker-Greenspan Greenspan-Bernanke Post-Volcker Full Data Period
1960Q1-1979Q2 1979Q3-2005Q4 1987Q3-2007Q4 1979Q3-2007Q4 1960Q1-2021Q1

β 0.90 1.99 1.39 2.00 1.50
γ 0.79 0.75 1.01 0.81 1.09
ρ 0.80 0.55 0.82 0.56 0.84

We also provide estimates of the associated fitted Taylor Rules and associated mone-

tary policy shocks from exogenous partitioning of the data using the dates in their paper.

Figure A.1: Fitted Taylor Rule (left) and monetary policy shocks (right) at different
periods
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A.2 Results with the unemployment rate

The unemployment rate is commonly used to measure the business cycle. For ro-

bustness, we therefore run a specification where we replace the output gap with the

unemployment rate in our baseline mixture regression.

The data is plotted together with the estimated regime indicator in Figure A.2. In

line with the main results we find that the regime indicator captures all recessions except

for the 1990s recession.

Figure A.2: Regime indicator from the mixture model, defined as the probability of being
in regime S1 is larger than 50 percent (blue line) and the demeaned Unemployment rate
(black line). The shaded areas show NBER recession periods.

The results in Table A.2 are broadly consistent with the main results. First, we find

a credibly different coefficient for interest rate smoothing across the two regimes. This

supports our conclusion that the Fed’s response to the business cycle is more gradual in

normal times, as opposed to during recessions. Second, there is also evidence that the

Fed’s response to the unemployment rate is larger in the recessionary regime. However,

the size of this response is smaller than the one we obtain for our baseline results with

the CBO Output gap. Finally, a key difference in these results, compared to those with

the output gap, is the relative magnitude of the Fed’s responses to inflation and the

unemployment rate. In this case, the evidence suggests that the Fed places substantially

more weight on targeting inflation in normal times, as opposed to during recessionary

periods.
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Table A.2: Posterior moments for structural parameters in the mixture model with un-
employment instead of the output gap

Posterior Mean 68% CI 90% CI

Mixture S = 1

β 2.46 (1.65,3.36) (1.21,4.23)
γ 0.24 (0.04,0.43) (0.01,0.77)
ρ 0.95 (0.93,0.97) (0.92,0.98)

Mixture S = 2

β 1.27 (0.73,1.74) (0.38,2.29)
γ 0.53 (0.09,0.93) (0.03,1.61)
ρ 0.66 (0.49,0.83) (0.34,0.82)

Notes: The table shows the posterior moments and credible intervals (68% and 90%)
for the structural parameters of each components in the mixture model. S1 denotes the
“normal time” regime and S2 the “recession” regime. β is the inflation coefficient, γ the
unemployment coefficient and ρ the interest smoothing coefficient.

A.3 Results for alternative Greenbook/Tealbook specifications

In section 5.2 we specify mixture Taylor rule estimates when using the average of

Greenbook/Tealbook nowcasts and one-quarter ahead forecasts for inflation and the out-

put gap. For robustness, we provide results below when we use only Greenbook/Tealbook

nowcasts (Table A.3) and only Greenbook/Tealbook one-quarter ahead forecasts (Table

A.4).
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Table A.3: Posterior moments and credible intervals for structural parameters in the
Mixture model with Greenbook nowcasts over the data period 1975:Q1-2017:Q4.

Posterior Mean 68% CI 90% CI

Mixture S = 1

β 1.42 (0.45,2.34) (0.14,3.12)
γ 1.22 (0.49,2.91) (0.21,2.64)
ρ 0.91 (0.89,0.94) (0.74,0.95)

Mixture S = 2

β 1.34 (0.30,2.45) (0.09,3.61)
γ 1.81 (0.43,3.35) (0.13,4.38)
ρ 0.53 (0.33,0.72) (0.17,0.80)

Notes: The table shows the posterior moments and credible intervals (68% and 90%) for
the structural parameters of each components in the mixture model when using Green-
book/Tealbook data. We use nowcasts for inflation and output gap, respectively. For
inflation we use data for the GDP deflator. S1 denotes the “normal time” regime and S2
the “recession” regime. β is the inflation coefficient, γ the output gap coefficient and ρ
the interest smoothing coefficient.

Table A.4: Posterior moments and credible intervals for structural parameters in the
Mixture model with Greenbook one-quarter ahead forecasts over the data period 1975:Q1-
2017:Q4.

Posterior Mean 68% CI 90% CI

Mixture S = 1

β 1.51 (0.62,2.37) (0.24,3.09)
γ 0.72 (0.21,1.21) (0.07,1.73)
ρ 0.92 (0.90,0.94) (0.88,0.95)

Mixture S = 2

β 1.39 (0.32,2.52) (0.10,3.74)
γ 1.52 (0.40,2.72) (0.13,3.89)
ρ 0.56 (0.36,0.75) (0.20,0.83)

Notes: The table shows the posterior moments and credible intervals (68% and 90%) for
the structural parameters of each components in the mixture model when using Green-
book/Tealbook data. We use one-quareter ahead forecasts for inflation and output gap,
respectively. For inflation we use data for the GDP deflator. S1 denotes the “normal
time” regime and S2 the “recession” regime. β is the inflation coefficient, γ the output
gap coefficient and ρ the interest smoothing coefficient.
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